v3

parent 295f0564
......@@ -4,7 +4,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## 1 On the computation of π\n",
"## 1 On the computation of $\\pi$\n",
"\n",
"### 1.1 Asking the maths library\n",
"\n",
......@@ -13,7 +13,7 @@
},
{
"cell_type": "code",
"execution_count": 14,
"execution_count": 20,
"metadata": {},
"outputs": [
{
......@@ -40,7 +40,7 @@
},
{
"cell_type": "code",
"execution_count": 15,
"execution_count": 21,
"metadata": {},
"outputs": [
{
......@@ -49,7 +49,7 @@
"3.128911138923655"
]
},
"execution_count": 15,
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
......@@ -69,14 +69,12 @@
"source": [
"### 1.3 Using a surface fraction argument\n",
"\n",
"A method that is easier to understand and does not make use of the sin function is based on the\n",
"fact that if X ∼ U(0, 1) and Y ∼ U(0, 1), then P[X² + Y² ≤ 1] = π/4 (see \"Monte Carlo method\" on Wikipedia). \n",
"The following code uses this approach:"
"A method that is easier to understand and does not make use of the $\\sin$ function is based on the fact that if $X\\sim U(0,1)$ and $Y\\sim U(0,1)$, then $P[X^2+Y^2\\leq 1] = \\pi/4$ (see [\"Monte Carlo method\" on Wikipedia](https://en.wikipedia.org/wiki/Monte_Carlo_method)). The following code uses this approach:"
]
},
{
"cell_type": "code",
"execution_count": 18,
"execution_count": 22,
"metadata": {},
"outputs": [
{
......@@ -116,7 +114,7 @@
},
{
"cell_type": "code",
"execution_count": 19,
"execution_count": 23,
"metadata": {},
"outputs": [
{
......@@ -125,7 +123,7 @@
"3.112"
]
},
"execution_count": 19,
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
}
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment