Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
M
mooc-rr
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
00bd05cb42ba6c2a491841c680c81c95
mooc-rr
Commits
bb9b9181
Commit
bb9b9181
authored
Jun 03, 2025
by
00bd05cb42ba6c2a491841c680c81c95
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
module2/exo1/toy_notebook_en.ipynb
parent
e391755a
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
248 additions
and
15 deletions
+248
-15
toy_notebook_en.ipynb
module2/exo1/toy_notebook_en.ipynb
+148
-3
toy_notebook_fr.ipynb
module2/exo1/toy_notebook_fr.ipynb
+100
-12
No files found.
module2/exo1/toy_notebook_en.ipynb
View file @
bb9b9181
{
"cells": [],
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"toy_notebook_en \n",
"March 28, 2019\n",
"\n",
"## 1 On the computation of π\n",
"\n",
"### 1.1 Asking the maths library\n",
"\n",
"My computer tells me that π is approximately"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"3.141592653589793\n"
]
}
],
"source": [
"from math import *\n",
"print(pi)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 1.2 Buffon’s needle\n",
"\n",
"Applying the method of Buffon’s needle, we get the approximation\n"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"3.128911138923655\n"
]
}
],
"source": [
"import numpy as np\n",
"\n",
"np.random.seed(seed=42)\n",
"N = 10000\n",
"x = np.random.uniform(low=0, high=1, size=N)\n",
"theta = np.random.uniform(low=0, high=pi/2, size=N)\n",
"\n",
"approx_pi_buffon = 2 / (np.sum((x + np.sin(theta)) > 1) / N)\n",
"print(approx_pi_buffon)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 1.3 Using a surface fraction argument\n",
"\n",
"A method that is easier to understand and does not make use of the sin function is based on the\n",
"fact that if X ∼ U(0, 1) and Y ∼ U(0, 1), then P[X² + Y² ≤ 1] = π/4 (see \"Monte Carlo method\" on Wikipedia). \n",
"The following code uses this approach:\n"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAP8AAAD8CAYAAAC4nHJkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvVlwXNeZJvhdZGJNJDKR2ImNAJiQSIIUJYICJduivEmW7ZJdbneX3YqemqqIdjjKVc/91vMwLzUdEzFd0+WZake3u1weRzm6NhVdXijJtijbkkCC2ggSJJIAsZEAsSSQWDKxJHDn4ePvc/Li3ps3gQRFWPgjEAByuffcc/59NUzTxAEcwAF89KDgw17AARzAAXw4cED8B3AAH1E4IP4DOICPKBwQ/wEcwEcUDoj/AA7gIwoHxH8AB/ARhQPiP4AD+IjCAfEfwAF8ROGA+A/gAD6i4P+wblxdXW0ePnz4w7r9ARzA7yxcuXJl1jTNmmyf+9CI//Dhw+jr6/uwbn8AB/A7C4ZhjHr53IHafwAH8BGFA+I/gAP4iMIB8R/AAXxE4YD4D+AAPqJwQPwHcAAfUTgg/gM4gI8oHBD/ARzARxSyEr9hGN81DGPaMIx+h/cNwzD+b8MwbhmG8YFhGE/kf5kHcAAHkG/wkuTz1wD+EsDfOLz/AoDo/Z8eAP/v/d8H8DBAPA7EYsDCAhAOA9EoEIl82Ks6AIEP8XyyEr9pmm8YhnHY5SNfAvA3JjuBvm0YRtgwjAbTNCfztEbP4HkfvXzwd4Fo4nGgtxcIBICqKiCZ5P89PQ/+Wez2E/jw93ivztl63epqYHZ2+/N/iOeTj/TeRgDj2v8T9197oMSfDc/lLFbG4zg03ouGaACheocNzwfRPAhkz4a4sRifIRDg//I7FuOzPCiw28/XXgNME2hoAPx+4Ne/Br77XaC1FThzBjh9Ovve7JZw88kc9bUYBjA/z2erqgKmpoALF4AnngDq69V9fD51PokEMD4OzMwAk5PAl7+85wwgH8Rv2Lxm2w/cMIxvAPgGALS0tOTh1gquXAFGR4F0GggGgeZm7mksRpyQM25YjmHVH0D/cAAtm8DCQgDJGSAwGcOhL/dwv3dLNHZI9eqrwPIysLHBn8JCYGQE+Oxnd3bITojb2akkzI0bQFdX5vfKyoC5udzvtxuw2894nH/X1ACXLwN37/LgpqeBf/5n4Je/BJ59Fujutt+ffBBuvpijrGVzk3t/5QqwtcWzDQS435WV/N3QoO7z7rvAxz5Gwu/vB0pLgdpa7sED0ADy4e2fANCs/d8E4K7dB03T/I5pmt2maXbX1GQtOsoA2d8LF/hbcEd/r6AACIWA9XXu5cYGaUA/Y9/yAorDZdjaAt64CGysA8HaMpjxBXXdhQUSiQ5lZXzdywJffpmIEAhQCgQCwMQE8M475PbhMH+PjhJRdgL6Q8k9NjeB8+eBtTUSRHExr59IqO8lk7z/gwS7/RQmOD7O9VVUUAOYmCARmCYwPLz9sAXsnl+4/W7Wle2c7SAW494PD/OZSkr4DL/6FZ9taYmIubSUeR+A5zE+zs+XlvLsampyf5YdQD6I/zyA/+W+1/8sgES+7X2hK8HptTWFE/E4ae3ePQrSlRW1j7EY8Vw/481gGAWrSSwskDmXlgK+tSRWS8IYHQW+/32g/04Yialk5iLciMa6wHgcGBpSRJdIAH19wJ07/FlZIbLE48A//IMzgruBHeLOzmYync5Ovj44SGJaWeGPmCAPCsJh7p8OhYX8WVqiulZUxEMMBvmTTvPHiQicGMrbb9tLCK/r2glzXFjg3gvilZeT8W5ukrCDQeJAMJh5n6YmMudf/YpMb3YWSKWotu6ECeUIWdV+wzD+FsCzAKoNw5gA8L8BKAQA0zT/CsBPAHwewC0ASQB/lO9FOmlnfX2Kho4epZY7MAA8+igF69gY0N7O19NpMuSi5SjapnsxGweqW8pQkEoiNbuCd9CFgipqD4u1UQy+04vOJ4BQfRkPamVluwrttMCaGmBxkQcPUA1ZXyf3T6f5P8AFBQKKm7mpebpNWVAA3LzJa9bUEFlCISJPdbX6TihE27m/nypnOMxn2KkquVMbW+wugEidTPJ7pkmkHxujrXvvHtViIZTWVmczRQhX9jyRICFVVDibQdY1263L7ZydIBwGrl4F6upo2q2s8HxCIdrvXV3U8tra+MzJJF83DK4hHqeqv7QEPPMMv7eysucamhdv/9ezvG8C+FbeVmQDCws8Tx3KymgyPf448X99HTh2jHs8NEQcKisjfbW0AD/6EYXLyZMRDJs9mB2K4XD9HLaKwhio6EJBERGiogJYLYvgZqAHQz+P4bHDczh0LIxQjwvRWBfY3ExkmJnhYRsGESOd5vvLy/w7EgEeeSS7rTk0RHV+c5MPNDfH6xYVkclcvQp0dJDj6cQPULqePbt7B59uY/v93PxXXuF1OzqcCQzg3z09fD5hQqdPA++9B1y6xNf9fq7/3j0ifnk5iWFqigdsBSvhDg7y785OZQYsLnLfTp+29wvYrWsnzDEaBd58k1rd7Czv39ysTJcnngBeeonvyX0qKxXz/+QnyaANg3sYieyMCeUI+yLDz0k7A3juzc3Ulnw+agD19RSOp04pHDh5kvs9PAwUN0TQ9gc9eK/2ecy09WB2KwLT5DXC4fv+gmAEM+09mHn8ebyZ7kEcLghhXWAoRIKIRIgQwSDw3HNUQzY3idQbG+RQR4+qB7FT8+JxIrDfTwZy545CoIoK/mxsUHK8+CI3YWVl52q+k3NFtJt0Grh2jfepqyPj+cEPyOisNpkOQmjPP8/1XLlCwjdN7ktxMffJ76fq3NBABiAeWytEIiT0W7e41ps3+blQSH3GagbZ+QX0dQmDdHIuOUEkwr2fmlLayJEjZOyf/CS1m1u3+NkzZ3gf01RmSyhEQg8Geb7FxQ8k3PehdfLJBZy0s2PH+Lfs3fg4aSAS4T7W1/M7S0vEy6oqaoddXdz7wkLu89YWf+QapaX8XkWFRwew3QJ9PoZrYjESRCDAC46PK8dET49CVidbU5xJ1dVE4M1NPtzCAl+ThxGPss9HqQxwg3INTzp50BcWSJgXL5KbVlbSMz05SfXc6sl227C+Pjpo1taovRQVkXm0tQGHDnGPlpb4nOXlzt7+wUES2cmTvGYsxv2UPbWaQXI+TtGO3UQQZD8mJpSzqbWVz1lYyDVOTVFDaG7mHooAALjm9nYKgwcUht0Xkl+Yc3Exz00Y4+nTSrhVVBB3jh8nzbW0KGEcDAKrq/wR34v43wDgi1/kOfn9PBPRAprvxzCy+l6cFhiJkDFYF/mxj3Hxfn92CS1EvrrK/4W4FhaUAymZJGPo7aUq+bGP0R4SM8MruHnQCwoorYXwNzboTEml7D3Zbhs2MKBU38JC3isYJCPx+3l4x4/zme/csZfA1rXaOTftzCA3h95OIwjCNIqLec9Dh8jc796lHVpayn0bHubzLS+TUbzzDp/5Q3LG7gvJDyj6soKTyaYLY3GqAny9r484UF1NR6vPRz/L3BzPJ52mxibgyQHstEA7u/Kzn+V7loXHEUGs12I6h8MktOFhfqe2Fnj/fS5yaooPs74OHD4MnDiRW8za6sAbGyNz0kEkpWGo/9fX+b+orhKqy2nDQLNhZkZ5yhMJ/l1Tw9fLysgk7RyiVj+LnXPzxRfJDFZWvDn0rNdMJLgnIiWcHJzCNEpKuC/Fxdyb8XGeF6BUypISXvfECfoCpqfJAHfrjN0B7BvidwIvNJdKURCaJoWOz8fzSacpsKanaTKeOQN8+tP0r5lmph9tN76XOCKIoQcLAMJgEUQkgoyFO2mcZzujqIzHqRLOzhJxIhE+1OAgkau2lkgvxChqr5OKG4+TG/b2kgNGoyQwibGLKgooQl5YIHENDKgklvJyZrL5fGQaklQxO8tni8ftkfnYMZomlZWU8IODtImPHOF7y8s8oJIS3i8Y5KbojMzq7QfsnZuVld4devo1JfHGMIDGRveIjDAN06TaPj3NZ/D7eW6mqWL9c3Pcl7fe4v4Fg/Q3fAiw74nfDewYg2lS01pYIK6XlNA38P77xMevfIVMeWCAODMyArzwws7X4NWMdApnDs5G0CNcrLCQyLW4SA7l89EHcPs2Fzo8TGJ84QUimp0ElgWNjpJpGAYdeF1dZAKxmHIixmKUwD09VPsLC0mcS0tcQzJJBO7sJHG8+y6l9lNP8bNOxHL6NNcxP6/UrLNnVbbj3/0dVeaiIh7Q6iqfN5VSB5qvMJ0O+jXHxpR209LirEnF49QMrl7lnkQilBipFLUx8e+UlPBzIyOMRYdCRML5eWcmucfwO038VpBzeustCq5QiAJmbY344/OR6AEy/VCItFNSsvNsS68ZpE7hzLk5bOdiFy6QOE2Tav/oKB9ofp7hs0iEHMxOZdG99qGQUufHx5WdLVKuuhp4+mki8nvvkcA2N8ktq6v5elcXJdytW8C5c5mSeHGRGViNjZkhwEiEhO6UM7C0RGYjntfSUq5L9yt4CdPl6sDTr3nnDtfd0uKsScn1a2u5trIyIlBbG9fc0cF7VlbyOaemyBCqqvg8pqkY7oOstbgPHxni18+pvJzCcm2NuF9QoPxC/f3Eo0iEpu30NOlkc9Mej7OBG1HrJvedO5nOX8DFdA6HKVlv3CDhi6PJ5yMTGBqiPW1XHCILEi+obocmk8rL+cwzSv0dHlac8OZN/nR18ScUUurUyZP8biJBIrh6letsbd2uNjvZawA1j6UlMheR/FtbmX4FwP0awM5y9/VrSpRGwHog+vXLyshA19a49iNHqAXpiGIYNAckiamjg880MqLO5gFWN35kiF8/p2efJRNeXiZudXURz4aGeBaSbSoa38AAX9vYIH5LUVplJXHS7bzsTNNkkgxHF0obG3T+6oVfjlpsNKqymba2eLHVVS6gqUnZqVYpGIuRYRQXk8uM3p/tYJqU3nLDy5cVx7I6qrq7KdGDwcwwZUMDf0sG4+QkuWxhoTIrAgGVheeG6M3NKplJCKWhwT7Zxw1c1aks4MWs0K8vIcbjx3l9Ozu+uXk7Q5mcVI7BB1zWuy9CffkAPRW8qQn4gz+gLwYgDp44QdwS/8zWFpl3VRW1hIICvm8YxO+REdKeW14LkBnp0yM6ppkZVWpoUM5fa7RwG0QiwGc+owh9bQ2pSAMmSjsQmyzF3bENJAo0CaXXHnR1kXhv3iRn29xkVl17u7qhnrS0tKSkr5RLbm2p7EV5oHPn+HtwkJ9Ppfj91lYyj/FxcjinIg3rpokT8exZ/vb5cg+D7SZ33y18u9Pr2yGDJDHtpkBph/CRkfxWCdzcDHzqUyS2hga+/8lPEm+PHaPw8vmIw+vrxHfRiMfH+XmJeLlpk06m6eXL2+tS6uspKD05fyMReid/8xsk78YxsRhE0SYQXJ9DsrIZ1+ejeEL8SFb1t7ubRDo6SuKySl9d6pWXk3OaJtVUyV4ULqXb2pWVvG5BAaV7JMLvmyYleCxG+yqbGp7PtNvdOAWzmRVO129s5OtW7cbuuZqaVDaawAMqu953xJ/P2hJJwrPr4XH8uIpaHTlCwSha7tISzQK9SMvtvOxwyMkcyKmW477X/F58AiWJuyhKryNd14SV576GokhE0ZRdTLy7mwvOFicNBOhIjEZJ0JI88+Uv87OxGDmZHMbZs5Toov6nUsqsmJmhAxFQzSsWF8lZneoBdgP5YiK5XL+xkQzQyclo91y7RoSdgcG6nAcP3d3dZq6DOnXi1BmtnXq800Y6Tt/T79vXR5zt7lYMYWVFaYb5fpZsF3r7+zFEChawWRHGWnMUm6HIbzN+n38eStXWESyXBXvZFHmAzk6F/BIulLi/aVK1EsYgdftbWzQPPoz2YtmeM9f1yF6n0ypNWeL9zz1nf8+8IIICwzCumKbZnfVz+4n4rTicSBDP1tYytVev+5nLWTt1adrNeeWrfVxW2t4DBHO9qYSvrA+m5xgUFHAj9XBhLtwzXyCHMD7On2g00+Oa6x5duMBnuXZNOUpTKfpVvvUt5zqFPLZ380r8+0rt17VXScAqKSEe6ZEkLxGenYaABeS8vGiTTmcracjynvh+8m7a7kb9dVq8nSd9Y4OJPvLZM2fsVXndLyB+BFFVHiToSDA1ReIfHOTeHD2qHG9uDMm6P4bB/6WxB8DXamqcr5UPE2cHsK+IX7eTBwYYJZGqPj0WPzmZPT9jt+3bvJ6XG5MBMt/Ti76am70zAk+0vRMEc1u812YaVm4aiSi/wIO0c+2YmLVMORIhwU5MEJmOH1dRC6drWvdnfp7ZgYcPk6GtrvIax4/veWeeXGFfEb9IuMVF+piWl2lOhsM8r8ZGEntjI02t/n6Vh2LFrZ2EgHeinVnxS0xAn4/rEgYkuTRS9OWluc+egxuH9NJMQz5rZTp7kZrrBk5MbHmZYcRr15TULiri69IH7vHHna9rtz/Smam/n9dqa1NmTXm5+xofcBvzfUX8Irx+8ANKybU1EnpxMWPx9+4xrb2lRdVkSCsvK27l6m332hpcumyZJn9u3OB6JFcmFKIg6O1lircU0cn74guTuhCfj34iN9zIZW2e8SoeZz88Uc+lVZhwSDmMK1eo6g8MeO8U7KSqACpEJpu4uKiSilpasi/eTcJbmZiojktLvPbQkNJITJPRCbfcArsqwKEhlfBTUMADldBSV5e781S6/169ShXwxRdpFu0R7CviB3juW1sknKkp2vxSEr64yN+hEM/yyhXuYXs7w3V6U5hEgvstGZiFhfbCR87q7bfJZOwEm94a3O9X5cOnT/M7r73Gz4gJODNDQfnOO7ze008T/3w+MgspzBMm0dHhHj3yIqBz6k+h16enUkwIevttbk5ra2amXTpN6Sg1/W7qlvUgrU4U6yYmk1yDtPQqLeXnnBafTcLrUFamQpd+Pwm1slJFIVKp7T4LK1glyPg4r9PaSmYpffinp1Vo1G59UqA1PMx7BwKslfhP/wn46le9zTDYAew74hcwTZ7n3Bz3UKSq5JOMjXEP6+v5s7jIcxgdVbMinn6aBPLWW8Qnu2iAnFVBAX/6+8lYEgkKjnv3SAuRCAl5YoI4BPDvzk6aKFNTPO+xMc6nED9XIsE29Z2dxBFJZ796VfWiuHiRzMvJP+FmwuzItyFfamgAfvpTSl3pgTY3x350+ucCARLCBx/wAaQSMFsttLW4obaW1+rv5/3m55lJJX3a5uZ46E6LzybhrWqeOFb8fs4JmJ5mTYRk3yUS7hV3VvNlZoZSRLQk3ZEZiShksq7v3Xf52dJSMoGhIRUSHRri7z2w//Zleu/Ro9yjdJoJUi0tVP+rqniOUo05PU0mXFhIIn39dQqUiQmFr2fOsIZFEtJ00HGpooLX3NoC3niDeHn3rjItUinirGgjJSWqhPvxx4lrohUeOaImOJ06RTwfHVV9Of1+pYmsrfE7bu3l3bJMd9SaXr60sEAVq7ycnnzDYA7y7Gzm54TbtrSo1l6xGDmaWwjEqd25pBRLQQWgNtRt8U4PKxLerrehVBiePs17ADyQI0d4IG5zFawpwFLOq/cR1LUfp/UB3NOSEoVAhsF1uLUv3yXsS+Lv7iYOJpPc8+VlEmUwSEFx6xb/rqvjuQwNcS8Ng87XWCxzjoWOT3r/yrffVrgnwmdqSqXDS/eoykoymtJS4pTeMgyg47etjUVB0qdydZUaSXk58NhjZGLd3XxvY4O+omPHMjt16aDjlFP9QDS6w/R2+ZI0P+zoADo7sXT4BK7O1uPyaxxwkigIZw6dqK7mg3ziEyQmYRJ2YG2ZVVND1Ur63K+uKi4IqA11W7zTwzY3Z8/Tn5jgAXV3k/Crq3m969ft7yWIcvky/z9zhqq9WwNVp/UdO8bvLSyo766t8fPB4J718N+XxB+JcJ+/9CUSeCpFbeCLX6Qkrari2dXXUyAVFys7vaxMVV8KCD5ZhZE+8EaahCaTxMmNDSUUW1pU+ntZGbWC+XnSgWTDvviiak6ztkb8EudvIqGa1cq5b22pStYjR7YT99QUTZkLF0hHtbWqke2tW0roujEGR5Av+f3c3FQK02Mp/Ox6M/ovJTG1GsbMDHB5PorFyRWqu+If8Dp0wioF9YKhpiZuoHDK+XlufFWV++LdHlaktHTp3Y0K7TRFBsjsKKwfhNv6Tp8mgqTT6tAbG8kMm5v3LAy6b23+SIRe8FBoe8hYHLzRKPFGiKypSYVtpShNjzJZTcbOTqbyDg5SIPj9lODRKAXI+jo/5/fz+zIB6NgxlYQE8P/KSgrQ6mpGKzY2+PlEgmt8+mmaE3V1xC2ZyfH442Rs3d3KOS4NZoqLST9TU6ocWEqOr1yhib61xfVJuNlTfo8Qit8P9PZiqbQaF2ePwyjyo6ZwBXerurAwDLS3RzBY1IPulUmqPjU1/BFHl4Qa7EIOhrHdDk+nafsXFnKzgsFMb7+1Pt5p3XoUIRBQyR8NDaw+tPOgHz3KhiWGoaoYFxYoTazg5FuQKTLSUTiZJPJUVjoX9shhRCLAH/4hryGNWMUfsUdh0H2V3msHFy6Q+UpDGoCEMTJCpvnaa6q7Un29YqTT09sbc9hda2GBRPzoo8pOHxxUfpmCAhKY9Prr6SExy4yN6mr+yHuRCL938WImPs7Okl76+9XIN2lc88ILwO//vsJ5a2Ztfz+fsaKCOCLdiSsqyDR2lc0bj6P/5RgG3lpA4FAYyw1RrJdHkEqRRhsagOfPxFWoym5T9Hx/ievLxJr6ej6sHiIRh8duJfTQEDltZaXyrs7P02FpZQDxOJElHleDVKV02roGJ6T7zW/IrXdaQ6GvZRcx/9/J9F47KCggouvTef1+ZebpoS6naj6BXHtCrq5uF0qAmrEhHbeHhxluFCd1R8d23Lt1i3Rw/TrP3OfjfQoKlN9Jmv5avfviWFxc5P+5lBxnxbNIBHcae7DyMWBhQ4UrS0ro9zh6FEqivfwyCUcfIbayYh+uaGggBysupre7ooJMQneW7ba91cWL3EQJv8jvixe3H4AQuheic0oSAewdetK2qa9P9Yk7dsw5hPeA0n33NfFLD8jFRZ7H2hr3t7VVEUouae1eE8/kmnbnIwJQZmwIsczOKt+VHQg+TU9zHeIb8Pv53qVLqgHOnTt89vV11X14eVm1APNacuy1vsHaPbykRDGo35rfkQhVqZMnMyViWVlmiy/9dWnIKdzM+j2919nYGB9MEo68SMPJSdWEQSAUynT46OCV6LJNkbFWnsXjdAym0+zpD5DhxeNUzdxGne0h7Gvij8VUL0mpnqyoUCaWgNczzUf5tz5jw1ZK3gerxBVzYn2dhLu2xmuIs290VPmX5ueBf/kXahOGwWefnGQ+iIQKFxaIVwJ2PiOvOQAyS1K6h9+7p5yYujlv3ggjWJxEU2dACXC9xZddOqXe/VbXGPReZ5ubjKsWFKgwoFuyj4AM/RSJDyjvqldwUo3cMhSBTFOmooIpqOm0CvEYhhrjJX3cCgt50Hamxh7AviZ+XWAIsu22OCyXgh07nHCTktXVxA2pHm1oIIFLQs8zz5DY33+f3nsxmYeGMud5rq0pM6KuTiWUSfPR9nYyCBkI5KTBZKtv0J9RUo1lvKBd+XSwK4qtK70Y6AOOni5DqDCpWnxJ7r94KGMxLvbNN1ULI+vQUZ+PF759m9+TzLtsyT4Cjz0G/Nf/yuvU1vL76+vA5z+f/YBlA9xUI7t7C1PQTZnr18m4ysvJOcvLiRjvvMP1SHLT6iqdVX199rX/eYZ9TfxOppdMrnLKg99JQw+nzD8rTjhJyWeeUT4vKdx5/XU6EuvqeK833qA0ra9XfifDIA7pTuelJTX4V6S7afJe4uvwUnLsVt9g94x2Pjhde9hCBJvdPSgajOFu/xxCZ7Ubi6Pk9m1KvGiUGyQdflpbKZX1dFjpdSZODUA1EvVShTU9zV5t165RuygvB/7dv/OeL7+b7r+6ZJIBpAA3ESChS5sovUW5TJZ5WIjfMIzPAfgLAD4A/800zT+3vB8C8P8BaLl/zf/TNM3/ka9FOhGjbnpJ05ixMeLFqVOqJ4O1hNatfsKLHZwNJ6wzNiT0KPM1Ll0iwxc8lnySe/e4rtOn6ZOS2ZfiABcIBonPdXXqtdVVXkdC6140GDcfh9MzWpvvjo8ziUlgMxSB2d2DsTngqH5/fUF1dbzgyAgvsrqaOUFVsuWEO+ltxr0k++iHVFurHBOTk1SrpBQ0W3un3XT/1Tlrc7Oa21dZydclz0HGeX0IkJX4DcPwAfg2gM8CmABw2TCM86Zp6qlP3wJw3TTN3zMMowbATcMwfmCa5vpuF+hF85LQaE0N/SkyFl2fXCXZkdb6iViM9RP/6l+pWHo2Zp8NJ+wIb3ycwkfOWxqRrK3x/fl54vT162Raeqh4akqFBcvK6BOYnFSzO8NhapXSiNQruPk4nHp19PZSi5GzGB/nc3iaNwCQO6+sUP2RoQgyPtn6ZeFOVVW0fSQBpqHBPfZtV5EI8Bp6//VXX1XhRjvkMgz7UJJb6addu6eKCraH3tzkmmR+XEeHmkSUTnNvpqcpuYaG9twR6EXyPwnglmmawwBgGMYPAXwJgE78JoCgYRgGgHIAcQA5joi1h2zEGImQwGVYzFtvKWEyPp5ZhQqomZA6E5C/NzeJU7okA7Yzezt1eWqK53bhgv1ZLS6qITT19fTzJBL8TjhMnAoEKJhqajKft76ez1NcTGE5NcVsxuvX+f1EQtXR2CW/uZkxThqCXQg1FqN2ofcm2NrimisqPJTmx+NU+YWA0mmWMR4+zIeUjDf5ss6dUinl0XVL9tErEgsKqGL196vKLOm/HgiQOAGl9lnLIe1CSYcP0yHndF9dSt1vq45Uivf9kz/Zbj+m02qsd1kZ11JTw/wEfYjDHjR38EL8jQD02MgEACu6/CWA8wDuAggC+APTNLfysUAvmpf+GdEQRaUGMoXJ1avUOoeHiR9AZv2EUwGYzuz1piKzs9Tm7txh628nUyEYVENoAgGaAxcuqCw9ielXVvKauiTVo2KA8g+1t6tkumSSZqLVt2HXmi4bHjmFUOfngSefVFWvUnY8O+sxg/CUEBQyAAAgAElEQVQ+Ua1cHcbk5CqSG1Wo8B1G7cgUyo4c4WZYv+wWV7UDsa+EQ4XD3LBYjOqUHvrb2CCz6e/n4QSDKg00FlODQqyhJGC7U8lOStXXuyf4SFHRyy+rCT9SClxZqew+T6WYuYMX4jdsXrOmBT4P4D0AnwLQAeBVwzB+ZZrmYsaFDOMbAL4BAC0tLZ4W6KXphtW86u8nMhoGfUbSPLa9XdVPLC9TfV5fJyJPT1OCLS3RL1Rf7yzJpHxXsvjSaV57ZoaMRTc15KxaWngfGULT1MSU3sJCnrlI17Gx7fUw1sIw65AY3UwGMoWQNAWxM4PsehLq1bXd3Zl4LyFLa3u61lZeNyteLiwgUVqPGyhDhTmOEBJIVtTjhnEEhz/1Va5fFr9TdVe3r06e5P83b3Kh1oq7hQUeelOT0kTu3aPabQ0lSeXi668Twazc1IvK6ARLS0oSyf961lYu18oBvBD/BAA9U6IJlPA6/BGAPzeZK3zLMIzbAB4FcEn/kGma3wHwHYDpvV4WaHVKSZRIGHg0mvmZigoSosyVbGlRQ2MHB2mvvvEGpZnPp5xWjz7K/S8szGy95iTJxDEnpkYo5GxqyDrjcUaohKnE43xdl/LV1ZSwTiPlvTBDXQgtL7ubQcB2jfXqVeLfiRPqvpIyPTCgSt5zbk8XDmPi3SQKq0NAcwhJAAWpFWCzmMwo6sHbmi0Uo9tXABNv5ue5YJ+Pqt3sLAlZbMRAQMVnxdaXXINAIHNcd0EBuenVq6o5hN+fGbJzOhgrDA1RggwPU+JsbvJePh9/67MJ96C4x0tV32UAUcMw2gzDKALwNVDF12EMwKcBwDCMOgCPABjOxwJFyt66BfzTPzH9ur6eTFYvptIrNmtq+P/nPsdKSznfQIDM/Q//EPi93+N+Ly6qGPrqKu/V0MCzdysA04vSdFND8vGtZ6WXft++zecJh4nHk5OqyEuvALSrPs1WpSe+rvffV4VF2dbmVl0roFfGSkFSURGZQ2GhR7yMRpGaWUGZycUXpFZgpFZgRKNkHtaFyN/irXWqptPHfYl9de0aN0GcEw0NPNxYjMQvU1EjEdU3IBAg95UhIrK5+rju8nIS+9QUbXVp1zU5ydecSi+t64zHVR74sWP8/O3bZACrq2RYVVU5lGLmDlklv2maacMw/hTABTDU913TNK8ZhvHN++//FYD/HcBfG4ZxFTQT/oNpmi7F3N4hHqfEPnJEJXg5qde62nnhguozIapreTnPt6dH9W/4/vd53aKi7F2knabq6qZGMLjdbyUg4cl4nOvXNZnVVV5HtAynULSbhz4epwP77l1eLxAgMykr47M7rc3qV2lupmCzq3wEiJ96rYTnorP7i08Ox1CemMNmMIy1ji4s+SMIl9ssBMhUU7J5f+NxEuH163xwses2N7kBw8OZ6prU3st9VlZoIkgZbmcnY65vvMFNOX2aCHXjRmaDE7F9KisV17aWXtr1XtPzwI8doyYxMUF19aWXyKT2YtLQffAU5zdN8ycAfmJ57a+0v+8C2JOsBL37rWhekm129qyzKRQOk7DEox8KkWCnpvi+9IL02kVaNDQ5r9LSzKm6knFXXm7vt7I+j9xPIkG5FH45eeivXCH+NDQQhzY2lG9DHJp2a7OaEm7j+IDsvTfdTPX27gh6N3uwbMc8Yllsmmzzznt7+dCRCAnvzh3WGxiGilM+9RS/FwxyU2ZmKB1OnFBdV+fneeAidZJJSuULF2i3SU+2QED1MDh+XLXbAoBXXuF1ZmaUQ0ef837jhiodLi0l4hw7Rp/D2bP21V95hoc+w09SS69dIxJL7Udfn7I79bJxgWiUCTx+v5r2PDJCc0HaY/X2qmpTwFmS6Rqa5O0vLvIe09PKaff009mZ827yRrLB9eukk7Iy5ZxbX+f6nYbFAN7mGOpgZT65DEBx01zmq6O4d74XiU2grLoMLdVJhHxZHB4SY5XR4+k0QynvvEOVbmGByR9DQyTC997jjPbmZhUOCod56AUFVAkrK1UlYjpNtVG45/y88hrX1CiVUaqyLlwgkr7+OpFNnEG9vUTYoiLV0mlqir+rqx2qpfYWHnriD4eZJl1aqrorp1I8q+Fhalu1tduRLRLh+S4vqz6Mjz6q8kkEfyQS4JYKa9XQxJckrcOtU3XdfFK5tgy3gtdS7/Jy/jQ0cL/cmNJuC5pyzYK101zicaB3MIJQtAeVszGkZ+dwbT6Moy92oVJ3eFi9v6J+CfHeu0eCqqzkYd+6RRu+pkYh0yOPKHXt2jVKXLHfxO6TSsRr13jwlZWK0Rw9SoJ+6im1jl//mvdYWaHaNTdHxJSahKUlIoxUPXZ2UoL4fKrJpF4t9QDgoSf+aJR2rDhSZfqxxMVPnFBl41Zka25WKr3ukZdSV2sLeicYGyPDkM68kp1qrdQDskvB3cyryHZtu2Y0d++qRiVuzGI3JeT50GaEgRQHIkg2cCHpFWBwFugR7dfKpaanSfgNDaq1kgxJkIyokhLVrtnnY7GPrq599av8rJUbSyWihN0Mg8jX1kYV//ZtZd/fvk0Cl3jorVtEzps3ed2SEqVuSpgqFKIPob9/e7XUA4KHnvjlvKWxa2Wl6nhbXOw8jgvIJDTrmHnAm8SVpDQx75aXiQ/V1WompQ5eMhJ3KmWzXVvi8oODFCoyz6C7O4ee/R7ByfkpkGtkyjMD0bmUdNQBlNe1rIxEXVjIsMfJk6pKMJUi8qTTSl0Tjio3FG4slYjSx1CGioqK39Ki1nHjBh9eVMLKSt4/maSan0iQAejz4wD7TjEPEB564gfIIMXkkmw3L/XqOqGVl28fM+82pEPUarHth4eZC7KwQMExNQX82Z9tJyIvSOxkM2dT5bNde35eZSiWlSnfV1lZ9o4+uYCsVwqkJiaoWX3608o/Jnvr1UzZkTmkf0k6rA4OkgjPnqVNODtL5NnaojR+991MJ5Fbbb7fz8+NjlJNP3XKW089acmUTivHlMw+cErgOBjXZQ/6+YyMULubn+c569N2xCSw67vgpczVTq3+xS94XfEzBAJMcTVN4pXE6/V6/lyQOBdnWbYS3PPnSQOtrcS3d94ho5PkHiA/zkXxgUgkpa2NAu7ttylgW1oyIwCBAGnm3XfpBBctxeqgzdkcsn7J7+fDy+ZVV3NTlpaIFFLTb3USWbmxHto5dEh5+ONx9XD64q32ls+negfMzqpGjisrlBx37vB7x47xd64jo/ME+6Z1t9jLgQAZsNRWvPmmSs4ZHHTO/xgaYpTltde499XV2/dVV6ulr0R/P+8hxWGlpVT3Fxbs75Vrq+xseS06uF1bCFIa48o6332Xa3v7bf68/rpqA7ZTWFhQBVKlpcoclgEqeihbwrTXrpEmpK7CmvOiJ0E5tdYHkDlYQQaD2H1JEkSiUapAq6skvMOHVb683SbroZ26On5XZvbpD6dDdzevu7nJzb11i8wiGqVP4sQJdc/xcZVQ8v77wPe+x2lBXpEgj7BviB/IJJRwmNl7585xH2dnnfdPmriurJCAV1b4/9BQ5vX1ATT9/VRnjxyhnX/jBpFYGoUII7LeyzMSW+6pg1PLe7dr6+3DAOWbuHWLTr9f/pIO6eFh4t/3vrf9+b1COKwGzAhY+wnozyYzPeTHaQiNPJ9jZqVdhp8QuPVLgiwyEKG2lqq/DGJw2mQ7Llpaqspr7SASoTRqbyezaGujNhAMEpEkpDg7S6ki7Znr6shkXnlFTYcR2KNBHTrsC7VfIJvN6/TetWvemrhKYtClSzwjSRU+epTm4tAQNT4p/HFaRy6e81zNBKdrW9uHDQ9TYNXWqjTme/fIKNvbuZfnzzPV2YtmaZ1CLG3tpW4gldreT0CeTW/EI+bvjsyPXGKKgiyJhAqjyfy//n5ugj5wVP+elyaMVrDWlvf3q6oxyZN+5x0ygMOHqUVIxlo8TrW0uzuzh6FbS6o8wL4i/myE4vReX5+3Jq7V1dQmZ2dJNGLTnzvH/xMJ4szWlvs6cvHd5GtUvbV9mCSQ9fQQb6Wib2WFOCWdg9ycf3rjXOm8JYVsDQ10Lq6tcd8kkqabN/JsTg7znOtUcmk6KCGIuTkS2sSEqnIyDH7u6ae330PnoisrysNbVMQH9bq+UAj41a9U3cDt22qmnGGopKOrV/n+xARtp4UFtUGmyUPcIz/AvlL73Wxeu/cmJ0mws7P0xywvq2vZNXGdnaWJJpV1jY38zOwsf8bHqS1UVPDaduvwUnuiQzYzQTdxvVynpoZr7uhgDorkJCwtqTZygL2aroP+HDK5a3iYGkQgwGft6eFYPil7t+KlrElShTc3GSIXh3nOiWzC/XWwNh2Uja+tpaQdGOBhLi+TIQgBNjfbE5EgUiLBw756lYfc06PacGdbn5T/ytiymRn+nD3LzZN6g4sXuZ72djoqZ2ZUh5fKSuUn2CM/wL6S/Nli5Pp7BQXK+frMM8CPfkQGcPIk931+fnsTV+kwJaWwDQ08k3ffJd489hidjYWFNA+kSYu+DqcpzF56PlohVyewfh2JaqVSpINr17gvjz6q0tHd2n55KQvWG4y4nZkUUYlQ3twkA7h8OUdtNpemgw0N/PzLL/PidXV8+IICcj07lV/AMPjQLS1qyq/Y524HKesbHVWTdmWTKyv54M88Q41ANJPWVq6ps1Nl+zU0kCk4DQDJE+wr4gfcCUVvn3bjhiLO5mZmTb71FkfIP/kkCV+394eGOG1pbY3EUlVFZiCNYJ56KlNTsGvSYtc6zql+3otZsJPmsQKnT6uOPOk0Hc6S7yD45ZZGnkt3JDuwe0YJt1onKHnWZm24/3xjFwZjERS8toCSxqrMPJq1Naoa4TBtb8mfd1L5h4aA736X9lAyqaq2UilyvePH1UHazVzr6FAagiBBRwe/u7ZG9aurC/jCF1ifXlCgcvulHHh1ldeScJN1lkEea/r3xay+XFppy6yEmzdV19tUinteUcGzs8vF/973eD6zs6oaU7L4mpvpo7GOZtOvJT6bX/5Sdb5pbWVrL79fMQo75HcaS+c2O7CxUY0KkwpF6/ftBoN47QmpzwPUe1kEg9RS3UbpuT1jLLa9inIn4+ys96kZ7sXa0hpWzAC6uu4zgF/+kg8tKb96Xfe//teZF5OQ0O3b5IrikX/uOR5+IqEKcmTaqtMMQOswRbvhiVeukLGMjJCBBIP8jjgcJQ3ZbhhkFi75OzOrL9dW2v39PBNp2xYO81zGxsigpXekjvgS3ZHBnffu8Tuzs/zMnTv8Wx8lZ2XCv/gFQ2nhMBnD+jrDuEVFPG9x4OUiza0OzkSCOOPzcU3S36C01H6AjZ2W5LVK1K47kpeS5WzPmM+qRv0+ay1RlPX3AgYwNlaGE+1JNSlF+p0BitNY4eJFHtbGBpGhpYWM4PXX2S21tFSZGC+/7B4+sks+OnxY9eWT0dsDA7TzCwpUYVJnp0oQOnFCNWmUWQYfJW9/rq20l5Z45svLVME7O3n+16+TQH7v95QTzi5GLtVwS0tk1qIeX75MLewzn1Fj4nWP/G9+o6I95eWMrd+7x6Sis2fV53JBfisOSelxcTF/ch1g4wROGsLUFKMdhkHi1+cbuIHbM0o4dW5O9cysqnI3wZ3WnGliRYCuHhSPxbB8Zw44GlY9227cyByXbBdKmZwkwdXVkdB8PqpuQ0P8/le/qgZrZpsBaOeckhFcIs1qa8kMXn6ZiHfiBEOJ16/zgRYXnZs05gkeem+/lyQYqxP4xg0iWGUlz/GNN2junTypvNW641QQXhxhpqneW18noXV38/fPfsazskrZVIqCQ2Bri5pEVRW/J556N4e1FayRgLU14h/A5xEHdm8vtdSxsdz2FtjuJJ+ZoUYrnv36ehJmbW12Z7eA2zNWV9MJLyPFFxf5f7Yomt2ahQlKd+44Iphp78HWZ55XzRaiUcXNJCPQjogaGvjwoRBTFX0+Lrqzkx7Lz35WfU9mAOpgDR85ZSxZM9W6u+lLKC/nvYNBXkufsroH/fuAfSD5vSTB6BISUK272ttJJDIT4e5dJT2lQ7N83zpia2VF4Ynkejz+uEqUseLP8eOq9Fuk+Ooqr6lrK7nG9XXVXcLTIyN8nnRapapPTW3vUrSTSsG5OTLNgQGVzpyrdpHNKf/EE7yeMIC2Nu57rlO0OjtVG/GSEp5ta6t0BdIeTIhyZcX5RufO0SMsElZ68507t13KnztHDglk2vx2MwCtapV1xJG1Z1pVFaMF1dV8fXZW1fnnGR56ye8lV16XkDL+qrVVNVZtbOQZ3L1LKba+TttZHGnWGPknPsEJPj5f9hRWgc9/XjGquTnV6/HjH+f7urYiRS6/+Y29FmEX29d76Tc28lnGxni/wkIyBJl7kS23QAerZiXZeHr6bjpNPHz/fara2a6bLQ25vp4E+tRT/F1fn1smq6xZCvlkqvHamraXueRNA2QI3/ymmp5bUkIiFweR9bMvvaRy9QMB5ezTwU6t+vWvgR//WKX9Ss+0SESllH7hC+TkUhQUjXpXu3KAh17ye61/1yXkr36lJiGZJv02iQQZqgy8TCYZETDNzFAUwD3u6+N+373L99bWVOhva2t727CODuDf/3v6fJJJnulTTymhoWdrBgLAxz6mJKIOTg5Ovz9zhoQMejVNrs2uS5FM2LGLSIlAku5X4swUrVNvV3bpkspEranxFpqTQiwReqL17LaTEbC9klcyF4uLlVl9904YK1eTKKsJoOV+pCzrjU6fVupNtpCIlx57uvaRSNCWqq+n+midSKw78155RRVBGIZyGn4IQzs+dMglV15698ko9EuXKM2iUUqIoSGeb3GxYsh6BAFQxPfCC8DPf04JHQwqbWJ+Hvj2t7eXplZWUv2XMlrriGwZyeXmvHRycL77LhmGPo58bY1aDGDfpejqVTX8RVrW/eAHFCzT07x2Vxe1oL4+4r5onUePUpu4dInab2srn0OS07LhoRMTy9Yz0Sl8bj1jJ7NC7huqjaJ6qRfJRaD/ahm6Oiz9AK2L3Ytaet3zKdVNlZVq9LKdF18eQNpTr65SSzh+XNmpeYJ9QfxO4HRmL77IopXRUSJOYyMR9tgxMtnxcUqwiortTS4ARXyBAPCVr1D9TiZVFKCigkQm8/2sTOPwYUrlWIznJSXgMnFaB7fRY/pngEyJ2dxMR6b4M0yTtv+TT6rP3rpFBmiNSP3jP9IPJdfq7iZB9vczMiFdo2/fVpWtoRB/+3x8T58abAdWJpZO8zwGB3kOdkNRJNRuZVYvvaQmfMtZd3aqNcqZxGLKoVsciCBZ1oPi8Rh8M3MYnw4j9GUblXEva+l1FUXsqdVVZffYefFjMTVPUG8YGYvR6ZRH2LfE73ZmHR2sVpOe/BIP9/ko8Scn+R3dj+NWHSjOtelp5QA0TaViW5kGYN+S24vK6xQKO3o0s8V8Mkk8qq1VdSGrq5l+EV1LEAiFKOl1JhQKkQHMzam1dnSoxrcbG3zm5WXe5+5dRqYkGcpOWOpMTJKESkpUUpueJCRn+cMf8v3aWjW3EKCJLCXUVVXcnzff5H0XFrZPzpLu3JuhCJKhnt/SWJcdLe8mjTIb6EMd791jGE98CYC9GSIPdO0a/xfbbnb2wQ/teJjAbp6c05lFIpk9+SUCMD3N71nHttlVB46PU7qOjFDqiwovzVqspak605DaDmnaYh0r5uTpl8pCPXlsYIDEPzFBHJDZfh//uHJkJxKZ0rurSxU2CRHJ5xobvdnd1gI3mQXg8/Es3nuPpoI1b0K+K0zs6lWaXBLalvteucI9lfHqiYSaYHzkiIp+vfkmfTW66SyFRrW1mXMIq6uJA2fOuD/bb2Eve6lHImqoY2EhEae2lgjl89nnHITD3NCuLiJgIsGH3YOuPg+9t1/A6jiNx1VTTwGrM1ePFEhI6fhx4I//WA1rcaoOnJwk4W9uksBKSmjrp1IkaqkZEMTSY9si6ZaWSGhOY8XsGn1IZaHEwAvun9Dly6q3gN/P9YlGCCjp/eij6prnznHN8/N0UsrfX/mKt25D0Sj3qb2dhC+NQCRLUkKCt29TUL38snJI6/F8w6Cv4MYNRYQyQ2N4WJkTiQQJ984dMgZpu15aqjQVMZ3DYeUA1kvmo1Ga0m7jzPRISqIgh8SLnYBI7NZWPmgyqcqE7QhaENDvJ7KePMnvSoJHHmHfEL+13ZU+T06IzdqiyinkJPUXdkQo35meJuJWVlLFlQ7Rd++SqK2lqU6j3Vpa7Dv9OHWrkVBYczOl++3bvOfGBglAxnmL000HK846RaROn/bWbUjWWlTE/ZB8F7+fzCCRINHLjEohrHg8k4nJrIpHH1XMWSIRkqsgE7WmpsgIlpaoWdy5Qw1H6HNpSbUll4iEPoewsND52ezKrS/PR7E4mUPfNa8gN/vRj+g1npigxFhcVNVnbqWZXltB7QL2jdrvNE9uZER1lykszN6bUcAtghCJUGJ//OPK3gVINOKMSqeJrHYlxTIlSqaQ9/fzzGX+o9s5irosYeCRERXuXV5WIb7KSiXh3JKFnCJSTqE4OwYQCrEITvpSVlZyLVev0icgiUA1NYrJLSyofaupIfMwTe7DygrX/vTTar6FMJFIhHu7vq60mU9+0r4F+xNPkNFaZyQ60YqteV8fweBqD7qLY2rG3o7qjaHs0uvXmRQhhSFbW1zo4cMqnv/++9vjxfqmP4B23vuG+K3OMsmNeOstEqhe+Wg3wCNXKCjgGUl33pYWImVFhbcxVmtrar6gNNPc2spkTHbRChlSMjGhaubjcV7r+nV681dX+fn2diUgcp2yk4uT2+qDqq3lPaem+PlUigyqooI4vbXFDMqhITKKQ4e4zliMTFGEWWEhz+utt2iOlJeTwZSXc8KytMD7xS+o/Swvq3F6p05RQ5Lwt1PBkb7HN25sZ45lZcBcKuKt3tgtJCgdf5eWeFChEDmdzDaPRFQVVmGhCk9kq0/fwzbe+4b4nebJPf749nLbXP01doUt8/NURTs76ajt66PP4Otfz34O1p4OAAm2pSUz3DU/TwS2El9BAb83Okoc8vv52Xff5Ro2NvjM1vbXds+Sj14BVh/U2hrNUL9fOUABqvamSeIfGCDDEmdjIMDvnDqVSWdTU5yelUrxGR99VA0alTOWCsZAQHW40sexy4xEu3McHFQMrriYvoTubofqTLdNkUO145aA6vi7tUXEEUklHE6cLocOkTNKqCLboiW0Ia2R88gI9g3xO2X6xWK7n31nPdPz57nHMgGnsJDE1t7uLf9c1qr3dKipoeYn4a6hIQoGmf+n41kgQAFx9CgRNpmk8JiY4DVeeMGZ8HOR5l7b4RUUKEZ1/LgyMb78ZT7j6Ki61uoqz2V5mc8qA2uCQTV8xbpHfj+98/okpMuXqcnJNaw1BnaNVJzOUVqHT07ydyzGhKltRX5um+LGGAA1zFGyqmS8U0kJ1ZJkkpsnQyCKi5lieukSkUPSSGXR1tCGnredJx+AJ+I3DONzAP4CgA/AfzNN889tPvMsgP8MoBDArGma53a9OgvYmUK7bYBpd6YyiUbmAAIqHyOXteqhRlH/ATKDpSVV52EdqHHsGDsO1dfzvj4f8ePUKa5tYECF/3QmkIs0NwxqM4mEal0mnX3tCEkGz4gjNBhUPQ6sjWsk5DY7q2LuAO9TXu68R3o41u8nsxgYUJqFdBKy0+ycznFkhEJ3a4v3r6+nJjE2RoaWMRfTLRFDxkVLGCcYzKwOE++j3FjstePHyQzef185psrL1YLr6ngY164RaQX5GhpUaEMePJ85CPBA/IZh+AB8G8BnAUwAuGwYxnnTNK9rnwkD+H8AfM40zTHDMGp3vTKP4DX33wnsmL0gLqDi7Ddu8OwLClRZdzbQGdPiIpn96ur2zk4CgmfyvXicji+/nwQ1N0cEfuwxfv6997h+KRX3GrKWIqF79/icMoQklSKeXrlCHJTsOUk0Aoh/Mnw2mSThHz1K/NRpRkynbA5Ja9OQtjZe/+RJ0om0ECstVY49p9wYu3N85x0y8Tt3uMaSEpWqva2a0E2S9PVxYyQBY3WV/586xf8lISIU4qbJvDRJCPmP/5EqiCSpPPEEOZNMPQGIFDry6VmB1umyeQAvkv9JALdM0xwGAMMwfgjgSwCua5/5twD+0TTNMQAwTXM6L6vzCLtxjtoxe0HcyUlK4LExqp4tLbS74/HM8u5s64rFKHkkTHX5Ms93cpJa4NGjauSYMK6vf11NjJIy4du3iZ8S8zYMpZ739HgvmonFVFfi1VUVZpMW3L/+tfJ5Ce4NDXF9H//4ds1COvwCmTTT3Mz9AqjNOIUTOzu35/NXVpIOq6p479VV7mFDw3YmEo+Tnqwt76qruTaJ4BUVkZm2tyv6zKAjN0miO5V0MIztNeGJBAn97Fk+uNVOv3CBHH16mveqrFRxzooKXmtycufTZT2CF+JvBKB3uJ8AYCW1TgCFhmG8DiAI4C9M0/wb64UMw/gGgG8AQIvEwT5kcHIkvviiQshIhIRfXq4cU141L8Enafsm05/SaZ5/eTm93T09mcQhKcpidycSfG9+np7vsjJqjCJMnJ7FTtqKlDRN4qbkJIhKPTNDQSNmSmmpytQLBrc3J5UuvtbOybW19JXYVS8KyFStI0co7UWbkP2IxVR1YTCozGNrHUxtLQnaWiz33HOqVF5oyOdT+7ONjpwkydYWVT5JcNCdGDrTKCykU88w+B07MAxqDZGIqgG/coWb2tysYrDhMK+fbbrsDsEL8duxPGvXTz+A0wA+DaAUwFuGYbxtmuZgxpdM8zsAvgOwgWfuy905OHnB5dx+8QtW76VSNNM6OymVV1bUnAdANYDNdZKSJL1cuqS84G1t6reUo+pgbeRx/jwJMRikBBsYoPoqCOzVBBINQVep5+a4R6+/zj0QLaWkRGkdEk6TzjldXSrbT1+rdNnx4nvI5qeQHyfQvy+jwX1UIrAAACAASURBVPRiOVmPhB43NqgN2GkQriAhj+Zm1Qz0vfdUhZMg1fy8CvltbHCD3nwzsweaIJOEL95+W7XqFkeTxESFEezEps0CXoh/AoDeyqQJwF2bz8yaprkCYMUwjDcAPAZgEA8BZPOCz88zNNvervLpf/ADSsXCwszJTaurfC1XzUsy92preZ5WaZvNjDMMag/xuGoXtr7O9dg1NnED0RBEpRbibmvjs0WjxN31deJ7PM73dGaxrXOO5Vm9psvvNrXeOiTHruWdFw0iK0gCxuioKnq4do0qod/PjXrtNRW+kLxm0yQR67PRdC1ibU1NPNna2u793cOEHy/EfxlA1DCMNgB3AHwNtPF1+GcAf2kYhh9AEWgW/F/5XOhuIJt0uXjRvhnr5CRV65ERniFAZGttzT370yptNzeJRyIc2tvdv7+1xQ5DN26QUAESXV1d7oJA1xBSKQowmU4klY59fVSPu7upDRQW0jchPfdmZsgA7HwfuTTs2G1zDy/fl+f1SkP2WmJEzfqTGfEnT/LGExOqmcC9e4rAZVrqwgKZhO6ckcQJgEghPc12sgk7hKzEb5pm2jCMPwVwAQz1fdc0zWuGYXzz/vt/ZZrmgGEYPwPwAYAtMBzYn69F7jbhKZt0cWvG+tJLJISBAb7++OP23v54nGbb9ftuUGsYTpe2uhNRRr/LAFcx+ewIam2NPqSzZ1UV3927ampwLnuiE0RFxfb5AKdPU7UX4VN7P34jU6iamojfg4OkCf3euYRfdxuqzdesQwFXLdE0eaiGQUeNSGmpLtvY4KHKAI7iYuXAk/7xPT3bFy0dVNraMru/5Mm2d4KHfmhHLkMunMA6QwHIHBTx3e/yf730dX6en//jP85+/Xg8UyMEyHAOH1ZhOPlcLMY6D3HgSYOQQMB9IIbdYJJkUoWXxUnptQlmLvsj9x4dVc48GYSiDySx7olXhr1b5p6PbFi5xttvZ7Y18yXi2BqMoXRtAUeD9+vIGxrUFF6ABC/dWlZWKC2k0cHKCrnkiRP8riCU20QVaeSxtbWjB/qdGdqRj14L2aRDLs1YddAR5u5d4oRTGA5Q0lbyRSYm6JmWDNDlZefn00Nily4R38JhImoolPvI7Vz2xy5jUZJ5nJKfcjFV3T7rhbB3axbrjFWav/T3A6da4qgf68VWSQDzBVVA7QZtnieeoOpz5QovcPo0N0xMg+lpqo2zszyo48fpKNHVertFS3PFHc8zyw0eeuK3qux2TTJyibfbOU2l9PXiRZ5ZQ8P2WX5WsCLM6qpq+iqVdxIVsCLw8rIqejEMfv/GDeVHcErMkZDYygqfXzrtZBu5nY2A9P0ZGVFOMb3Sz5qNJ7CXpqloVPPz1HakS7GXHAuv17dK+4oKCvTSUmDxnRjqmgNIIoDyChAxnniCxN3YSBvQNFWJ52c+wwtLymQ6zd9SwOFlMsledhaywENP/LpDR58ZpzfJ8MIUs0kHvfRVkEIq+uwYjH5GFRUk2HSa5t6RIyoqoHfsFRtSL3oJBFQpudjcTok5+v1kvPu9e8Q7p7biVhtWb4FlmipmLxWF8XhmBp++v/m2r7PBlSs0NWSfVlf5/5UrZAC7ASdp39KiajDSMwtYaapCalUTBPX1PFjrwEcdvvxle1tV9xI7ceS97CxkgYee+HWEu36dhy81EsJYd8IUrVN9xcQyDEqahoZMYtHzL6xn1NxMtf/uXUoNadYi1YZWRi7xcylYWVykr0fyz90Sc+R+H3yguve6jdy26x69tsbvS6ZbSQn3I1t34d2mUns9D6GF69dVpx5A9RH8yU92bA7b7otI+60tavWBADWrQoQR3UqioyugWr4lk+QUvb3eVCm7jXLzKuajt7lHeOiJX/axr4+2bmMjJavUWOyko7GUXm9uEvFnZ8lcZYb84iI1tMVFVVS1vJypaVh7x/f0MJVVGracOkXHsF3HXr3opatLee7X1pyHYFrv94lPUCWWWhGnkdt23aPjcUp9KT6TSjlpD66DVejkO+wcj3OY7iuvkBk+8giZZjxOJqi3KlteZphTBttkM4fdzB0rM+3tJfOWxqErK8BESRSPzfUCSQAV9yX45CQ5enGx+yLcNspL6TCw5+rVQ0/8APfR2k1GINeOxvG4Kr2urqYKvrxM5JiYoDYh1XaAc1GV3SDWY8eAP/qjTBxwqx2Qohe/n7kDbuaL9X6RCOdQVlbad9C1G8ohdSJCDEBmpRzwwITOb9f46qscshIMcp2Dg1yndAf+4AOVRbiwoIbXWsug7fwcTnMDZme3DyuRNvprazz7I0eAsrII3l/qwWoshq7UHCpawtxwvYopm01ux4HcVPu9VK8ssC+IH8hfR+NYTBXLGIbKB+/rozknY9Sk2s6pqErO6MoVVbxy9Oj2+7nVDszOej9fO5xwcnzpiK8P5ZAGpwUFiqD1Sjm79uB7adPHYmSCfr+aoWAYPI+REVXfv7bGzw0Ps6JR32cnc9hOuC4ukvGfPr19WEkqpRqUiDlmmkBiPYL0yR4MSDjzwoXswxcEnDiQDAF14rJ7mNWnw74gfqnaisdJ9Ovran5dKOTcf84O9HHcm5tEKoB/FxUR4dbWyAjEY+9WVDU/TwkiFZ16iS3gzshzjcl7xQkr4stQjnicSP3kk3QUzs9T6ykqorTr6VGScY+FDgDu1cYG7yPTkOUMbt5UNRaSSi+9CwFVVu/32++jXZSot5dMRXI4xFHa368SmUZGMrsvWduz52STO6n3MzOUYiKFrF1FDtp4EfSqrakp2mXinGpqIsLm4vXXe9FPTvK6o6Pce2nMubmphlbMzzsXVfX1EVl0b/TICF9/7jl1zwfEyH8LVsTXh3KcOUO88vn4/IuLqr1WYaGqqLP6pvYiWSccVnUSErqVNmDr6/y+5OsDlPivvcb9DYfJKOSMrL0w7aJEd+6oPhvSCkwGuX7qU2omYiqlEpmkbdhvaTsXm9xOvd/YoK156hS57OxsZleRvZwgZIGHnviFeabTatpLKqWm72Sz/aygl16PjhIZZBrzq6/ymh0dKoVXEFpKVX0+1di1r49MW/dGmybPVif+Bw1uwklP67XL7APUPuaChzvB2WiUzHJ0lPkKo6N0xkoJ9Xvv8TyCQTJmcWxKXX4wSKZmN8NSp1FppZ5KcW0VFXzuyUni1cgIr9/ZyfOVISJ6e/bf0nYuNrndQUjP8oYG+9HhB3F+BcI8r13j76Ym1QdOWqZJXbmXUKh+dtKRV+rl6+qIFAsLZARiUzs1dh0dzRwo8bCAVThNTfF5m5rU+15Cyrng4U5wNhLhHl+5QoaaSgHPPkvG/P77PPMTJ3gmfX30xxw6tL1hq12WoX7O0kq9s1O1wkun6fRrbeU119aU1tPdrTQYa3v2jItnAzstQXqW66Bv+kGcX4EwT/FUA5QApqk81UBuXmlJWFlcBP7+73nt+nrlcDpyZHvDDjvk7uykpCovJzKNjTH5q6ODzGNhQQ2RdCrYcYLdmH3WjL3xcX6/tJTOyVdf5fuG4W6+PojSXGEAIo0DAarojY1cRzyuOl1XVvJ3Msn9Fl+Ak92v0+jamsrhmJxUmbkbG1yjRBX8fq4nL0LWTkuQnuU66Jt+EOdXIMxTt8XE876wkDmswatXWpfiEt8eHSXRd3TwdWvDDjvkPnWKZ7q4yPMtK6MUWV9nYpD0oNMTabyYbvkw+3TEr63NnCFQW5uZXlxfb2++PsjSXH1/hdGXlPDcn3qK7wtTePddajPl5Vy3NEJxmoGhV1TeuaNCm4cO8f/6eqr7krvjtUejJ7BqCXK4gP2mH8T5Fcje+f3ck+pqeqtTKRKcdViDF4mpS/GGBtVyrbRUteqyNuywQ+7CQqqpExNkHDU1yns+PKx69euJNBKZcFtjPs0+3WwqLc2cMNzQoBKL7MxXNzx0ajdv91kd5Hvj46qGoKWFhCf7Kz0PAP6dSFBSi/S/d4/XKShQoctgMDPt17o+iWIA96v1fDwr0Yju3SNjkUGfss95d7xn8xkcxPkzQVRDycBbWFDDGgC+dvmyUusCAR701avbOygB27O7JicpAfTUXGvDDidC6OkhMZ08qcq8S0qUXwLITKQZGSFCuUl1NxXarm9AR4eqBrUiqJ3ZpIewpP+e077b5TLMz5PQpcv01askpmee4XM74awIvc1NNYhDhthIe/CGhu0Fc8JUJOxXXq4YbGUlmdf4OJ9F5llaNSex52VvFxeBv/s7nk1hodIajh9XGt+ONLB8lCEexPm3g5MGJYfT10d1sLiYHLyuzr7U1Zoq++STmam5dg073Biyfj2RWn5tZ/VEmsVF99Hi1vUJSEq5tW/Am2+y/+DHP545o95ajJM1hOUC6TT3RJje+fN8noEBEnI4TCJ64w33kmLRaG7f5rWsgzhWV1U059QprjWdpnZy+jTP6vp1En5/P5lFKESmPTxMRh6LqX2122PZW4BM5NYt3qepSfUnkNkCXjQwndZrl4bQefM8AsX34/cbG95tvQ8B9hXxW5mqpNzKoQiirK+rzjx2pa5eU3Ot4MSQ9euJ1BKJIuOxpWGkSFwdrI4xJy3D5+P1KitVeHF9XTmtGhqci3GyhrAcwClTrrdXdfBdX1ez+txME5G6uhaia0VOWoh0MQK4fxsb/Kyc1cYGryPzBwBnzenMGcVAxcsvA0Il+1L2xMtUIxE+tf44gr88j5FNP1oeq0ZwY5Ucqb19T8J0+YB9M6Lbbrxyby8PXkCkq/6aXamrEEQuU5Dl/jLXPR63v146Tan19NNq6lJjo+rR2NKiJI+AnQT2+aiN/OY3fFYxLwTRBTY2lPosIGm8+vqeew741rcowdNp75OfFxa2M6t0mvZyMKhqXAyDa3HramztYwi4D+IQ0MefNzWpMWfl5WQcppk5wFSX7gJ6noNEDQoLaUqcOKHGkOt74nYdIJMxlkzEUOzfREFVGFPThnKwiD32EMK+kfx2Eqimhq+fOcPXmptZ+Sfz3cfGuO9HjpAAge3aw5kz2QlArwJ00ubstAL9XgLZnLm6NPnYxzJ73ktGnN5NuLCQzEEiIAC/I30ErKankwAaGto+OKOjw9nRKVEMaSNumtm7Glu7BrsN4tBBN7nEJFhYYLZnOKzyNaTFPeC+x3orPgFrx18vZ6VrBr6lBaTD1ShJr2Jp5f7hlJRQ7bQr+ngIYN8Qv50KFo3SwaZXx50+TcTq6yNz6Owksc7PUx1/4w17IgbsvdDV1ZlVgKsetTk3Z5GbMzdbtadkxEnrxaIiEpAM4Ugm6feQPAgvjqqhIbYxq6wkA5XW5S+9lEkAGxtcx8QEE2303HwZsOlWZKUTca5ttHXGdeaMchxKhqwUS8k13PbYjqFNTVHyX7iwnVl6uc5mMAwjzbzxsnIA5v3CELs664cEHvoGngJOTSbX1qjC6RKur48Emk6r1NBkknnhIs1WVylFZMa95PQPDVGN3tpS2ZZLS3RIiaSQUGBDg3NDl95eJnPNzWXOuxP13wkuXNjeSVdGvDc3U5uZmlJNP8XbPzSkOgwXFHC9kj0qe2XXaBPI3sBUIgwSaq2r475IA9G5OX7+scfsp1PtBpz6XFqZdK4JVHq25tSUas0nTlOJ5ADOznv9OuZcHMs/70ViYRNd9bNoD86ivGIXXVV3Ab8zDTwF3EJt1kO3U+vGxlTdvmEotVlGqz3+uL0XenOT0k1Xtb1oc2NjaqyWPu/OLbQGOEul8XFGCdraSHyTk6qWf2iIxCce+ddf52tyb9kzp2w7t9blAPe3ooKhPFlXKKQqBSsqqHEJ4bz6qnOfgVzAam7Nz5M5PvFE5hiwnbYtF4k+Pc1rCrOUZ7xyRXWL8vszsyMlGiSh0N5rETS29eB4cQzGaiE+8B3F0RejqOx4+Lz8AvvG4efFSSec+MYNNX5aQKYei6MJUF18VlaoKfT2UqWVsepSTy6FWH19DA3duZNdm1taogSWIaylpdsdc3agO7dkwKSo/IGACn+NjnLNVVX8PTrK1w2D2kVBgSJewN2hJolOOkgSkIDV8SeVgoEACaGhwX5t4pjVHaReYGgI+C//hc++vMz7S9fiubnM9mgS3ssFBJ+ef57+oPr6zPfLyhhWlKKya9d45pIdKc+kM8aTz0bge6oH6598HunTPRicfXgJH9hHkh9wd1g5NbA4fZoqus/HENf0/fnBUqsvU1yXlniwKysk8KYmSi9Bto4OSu3paTKDb37TXdoYBglAes1JKq3evdntGXU7s6kpEznHx1UNvBCcdB8KhSjFr15VAyqzZYh6aV0uGok1p355OZMpWNcmUrSvL7OLULbS4PPnVV+FjQ0y3GRSzREU0JOfdpqJ55RXIde3y44UpqMnDumwR7U4eYV9RfxOMDREu3V6WnVXlgYW/f20Q5ubKb3LyigVEwkiV0EBkev2beU029hQuf6xGGu919eJdO3t/JyewWeFeJwIUVdHTWNhgUTS3b1dvbYDOyanI+fSEpmSePiDQT6L3n2oo4P74SVD1Evr8miUPpORkcxaetOkWSJDMnt71ZxJgY0Nvn7unDcHpHRbCgZ5v81NMu90mgxNH22mRzb0jEO7zE4ncDIpjx7dnh0pjOb998nYo9EHWouTV9j3xC+e6vl5NVX3Zz8DPvc5Etvt20Sa2lpK31iMCHL0KJFlbIzfi8f5dzDIQ93aovqcSmU6+wDnQRUCoqaL6iuNQaam3Ds+O4FdUtLCAp8PIEPp66NWIZLe52MHaa/ST29dbgcSHx8fV+m2hw/z3m+9RWYq+fLJJNeSSJBo3nuPr3/wgXLAbm4CL7+sqveszTVFM0ul+MymSd8EkBnZWFnhfmxucr9LS50zO92ezc6rD2RmRyaTNCkffZRm59aW6gvopa7hYYN9T/w//rEqnU2lqCYGg/TeRiJ8va5OceUzZ5Rqf+QIv7O2Rts+EFDz83TPeK5cXSbyijRMJFT57OXL1DZkXrybiqqrsj4f13nvnpoTOTjI7xYWkhArK/e2FiSRICE88giJUzoXDQ2RiAsKVJ8Aw1D97197jR750lIy4rv3ZzwXFrImwqoJSEafjCNfXOTzhsNskVZTk/mcly+ToYtqDthndrqBk0mpZ0cuL/PZA4HMcWWzsw+sFievsK+JPx6nxGtq4s/ICCV9ayulxMqKGqihQ1kZ3z95klKov5+fnZ9XvQJffJGfzbXCUvoNXr1KJNWn3lZVEVn0ohWnFmR2eQLSNfrUKfov3nsP+J//k8975kyeS1FtYHFROTEB/p6ZodSVXHxA9QC8dYsE095OgkinuTfimHzsMftOTDIN+/BhMhwxAZ55hve0Emk4zP2uq1Ov2WV27sQvINmR3d3A97/P5y8q2j6u7EG3assH7Dvi1w/wzh3Vk6+igsgiXWuOHlXc2E5yNzTwdyhEqfTGG2rwRTSaOX3WK1fX+w1KV+CrV5V/QKrSJJ4uk52B7RLKLtlHmo12dJAoCgv5fWl7vUet3n4LktWXSinJn0ySyemhUPGJSIl1IEDtQAhFzKFnnuFzSMxebGjZ86EhPmNbG5moDAW1QjRKG1+IWnI49CEmu+2REImocWXpNP1Ht2/z/85Ob5miDxt4In7DMD4H4C/AEd3/zTTNP3f43BkAbwP4A9M0/z5vq7wP1gO8ejUzHl1eztc3N5mcole1AZmS+9w5EvjiIiWxIG93t0o3tRbHWNdhlSA6wYrKPzNDJvXFL6qqNOtkZzvPsFPvRwEZwGGdKSB173vR+FVU97k53jMYVOFOGZxSoiW2BYPKodrQQFNMuiQfOqSSkiQ7UGxoiaNLjD2bxhWJUFM7f56qvrTI08Ox+eiREI0C//RP9HHMzKhmIjJ/oLvbubT6YYSsxG8Yhg/AtwF8FsAEgMuGYZw3TfO6zef+DwAX9mKhQGYzz2vXKOW3tijxt7Z48MEg8KUvKedVNsl9/jyvc+gQJfLoKK9hmkzqsB6kmwTRCVa6zpomi3Okc5O1UQVg70NwyqkXEA+0PlNAvOrPPKOSUl55RfWl2yki6g04JBpgmmrIRUMDtZ3ZWZ6BPpdgZoaSfnaW5yQVdM3NjEZI+bU0PhkdJVM+eza3NuIdHXTueZnQI7CTcNzkJM+ltJRMTKYkT0zQl3H69A67Lz2gdt06eJH8TwK4ZZrmMAAYhvFDAF8CcN3yuT8D8A8AzuR1hRrIaGuJu3Z0UJrEYiyCOXmSBPzJT2Z+z0lyv/02r/PYYzxEyewbGFD+AutBukkQp5DPsWOqOMdusrOdRLPTWCRXYGWFUsc6U0AawwpzFM/38DAl7k5MAp3ZHT5MBvOLX9DB19rK+62skBAaGmhuCd5WVmZ2Sk6nyRief54MS5y1RUU0HcRBWFCQ2VDTumanIiQ3u9sw6HfRU75lEpDdM9vRYSzG9TU2qopGGSiyvJxZUp2TZvEA23Xr4CXDrxGAliuGifuv/RYMw2gE8PsA/ip/S9sO4TA3U7y6Mt46GKSE4Vrcr6GXBst01qUlSphUikzg5k1+trNzeyaZXYmrlNDaZeetrJDI9ZLfxx+ng8yttNYuo/Gzn6W3u7hYNQ1tb1czBWZmuAYxCeRHH2iaK+jMzjDUuKzDh/lbOlCHQiRqu0rHmhpK9aNHaf40NfHz0SgZr8wrlDOtqHDO3pPQ7soKCXhlhf8PDbmf+fw8TbyiItUNeGpqe5amU+m45G5UV5NprK/z85LvsL7O93Swllbb3ujCBcY8NzdVs4Tbt8m9X34599TIHMCL5LcjJ2s10H8G8B9M09w0XKjPMIxvAPgGALS0tHhd428hGqUaW1dH4hobIyGcOsW9kzCeG7fVkVmms1ZX87fUdPt8qnOMgKiIXnriO5kY+fAGyz2knbjcyzC4XmluKdqA7dSZHMCqLou5sbioXnO7tqxX7ygkMXpdk1lc5FmuauOw7a578SK/J05T+X3xonOeQixGBlVSQq1rdpZ7ItqC9bNumt3GhhoeI8lV6TSvbyV+x5CwnfNqaUm1gJYuq9PTe6oBeCH+CQB6XloTgLuWz3QD+OF9wq8G8HnDMNKmab6sf8g0ze8A+A7Aqr5cFyuINDxMSbG+Tmni9ytpnA3Jrf37+vuJFFtb9CrX1tJ8EPtavNEzM7z/kSPuCR35Cvno+OFkv8u95LPt7ZSAW1s0Xdrbqdnk0rLLClZmJw019TRlL9e2Y4zSbDMWU4lVXV2K6VqvG48zvz8Y5DXq66kB6U5fOxBzcXRUtVAX887a8dfNN3DmDD/f1cX7ymTl556jABocVOXlriFhK4eRkdDiHBL7qKkpM484z+CF+C8DiBqG0QbgDoCvAfi3+gdM02yTvw3D+GsA/2Il/J2CxPLFM9zUxMOSg5c6bInxStmsE1j793V18dC2tlQXYIDEtLioSnwLC8kYBgcfzDw7q3PTzX63Rhn8fvpCJieJmF5bdtmB1fdQVUUiamvzVjegg84YrXb1F7/IvdU1A7smJ6EQnz+dVolaEk1wgnCYzFNPAjKM7Z165bNeNLvCQjID3S8nGaRZ8cLKYZqb6YD64ANVjCKxYulZtgeQlfhN00wbhvGnoBffB+C7pmleMwzjm/ff3zM7Px7PzCcHSIxVVfxfylk7OlRl2ugo89SdQHLU43Hua2EhD0gfrgnwkF9+mZ+RZJ1QSE1W2uuEDr3l9tYWw4XiS2hqykRaa5Th7Fk6pS5eJE6JUwzwPndPwCqxa2q4v7thfnb+rWxMVRjc008DP/0pibeoiK/L+HanZ7Oai5IHoHfqFciW1OWm2emamHSUtt1nK4cJhSh5amuVPXTsGKV/LJbbDPocwFOc3zTNnwD4ieU1W6I3TfN/3f2yCLEYN1JvWCm94iSUJqmei4tURdva1Ngz5+dx/x/gYTU2qpbcAvmu1nLyLAt+TE3R5CgpIbILw1tdde72m0iQmB55hCZCMkntSQZ05OpQtkP43fSncLKr3ZiqMLhAAHjhBdrusi9f+AK1P6uzXJjJwgJxZWlJzfjr6Mjs1Gt91p2m6npy3NtxmFQK+MpXMhM4Uinlxd0DeKgz/KRNlGlSxZP4ammp4tj19Zkqn7Xoxkpci4v8/JEj6jNOTsK9rtZyQxTBD93Zu75OpN3YyHS4WXFJ73Mv0Qo9OxDYWZJLvmAnMXf9LCSdW7oTSTTD2mH4/HkVd29vpyn0yCOZ3XqsA0i81l04gadkIjsOI6EdcWBIIcUehvseauKXuvBYjFK9vJzce26OZbuhkHN/+95elZQSjaoDlxg1oOK9FRX2iLfXk5OyIUpPD23VsTGaJ+3tqsBHb9hpxSW9zz1APJI059JSZcLsVotxy0txe28nTNXuLKamqBVeusQzbWlRzzw7q6JngCr1np5WjUZ1/444Vr3UXbiBU2bm9oQxizplbVt0+DAPW0o39wAe6k4+0SjVW+kOu7amKvAMwz6uPjlJKbe2xsQLv59OssVFSojFRf4v/eb7+4lEdojnpXuQG7i1+wbccwbk/p/+NJ1hjz6qUmM7Oojodmt9/nna/Hq0QgZcCDPt7+fru9Fi3OLhbu8B289NBmdKPwC70Lb1LFZX+d3iYhL+0pJ6LoDEbw291dfzs3o+gs6AJyZU3P6nP2W4fXPTe35EPE6t63vfA/72b+lvmZjgsxUXu3Q2ki9Go6pJYSxG1W0Pk3weaskfifD5QyE6/QCqbY8+qgpHrNpTZSXNpUBA9exbXVWhoCNH6FQdGCBH3twkQ/iTP3Few07UYi+2ny4BrSFFCUFFo/y7rS1T+3AzA+1m0+sRkJIS4lpr6861GDetRf530mj0c7t9mwSia2dO0lY/i95edc4tLSR8KSMWDclL3H1sjPu5vEyckLi9zFyU+oVsOCD5/TpR37xJid/UpHpK2poB+maKDSue5T1s/vlQEz/Ag62r46RWAUlvBbYT54ULSppKHr0+yhtQ7ZgAcmRJvc0neLH9hEjtwzYCQgAAIABJREFUQoo6AXR2ZqazPvaYexq4Tlwym/74cb6nV9Dtxpy0qreJBAlJzIu6Oq7VycTQz02KhUZGVJfjbL4Ia4Sjq4v3v3OHdRotLWoEm/Q8sJps8TjflzTfuTnuj4STCwoYPdLNEyeIxahxHjrEZ793j/8nEswBsEsYc9xM2w/lHx564s/V7talqSTxSJbb6io7sXR2KqmQSinVLp+OLy/nKQTgFFKUjkCDg9RYTp6kifLjH2e2mbaTlDpx6S3P5doy1nqnYNVa+vuV09owSITCdKXphZ2Jka8ux6EQJX5jIyW3DHKNxViFJz4U/Zn1jkurq/xeQYGaHQiQaSwv269B92vcuME1Nzby+cvLKWB8vsymsYCNBvIh9QF76Ik/19CLziykH5+ouI88opp7ZIv37ha8qPTyfG4hRasGMTenOvbYzeZz2498OS3jcTWvTwqJDIPOtJYWMtNf/Yp97goLgZ//nOO0vva17dfSuxwD/L266q3LsdM8Q32/JOXbjtnpHZeuX+eeysyGlRU+m2RJ2u2Bni9y965q9Z5Oq/Zi4TDX5Jr5t9eeZQd4qB1+ArozS7f53Obmra6ywUMgAPybf8MptmVl9OJubZEgi4q4v9nGTO0ExKk1OcnU7cVFpdK/+iqTTmT90uJLB2H8Vqeg5Na7zebTYbdOSyuIL6O4WJlily7xGerq+Prt2ySIpSXu9fQ0JeN//+98bv28Kir4mVSKDDmV4v9euxxbn8s03Z2oOgiDBnjPxx6jtnbokIq6bWzYz2fo66OZ4vPxOpJkdvGi6mwcjxMHnnkmy/7n+5A8wkMv+a3gxZEWifDgzp3bbq9JHYBTk4h8lVU7qfQApcz8vErAmZ9XCTjWNVk7Ee0kt94trXa3cWyZkwhw/Tdvcu1bW6p6T8aHmeb29OTmZpoHeoOQhgb3FG275xLIRYOWUWzDw1TTa2rUvmxskHGfPm0fbRsY4OdEY6mupgYn1X5S/djaSk0gq0mZr6KQHGBfSH4drCWmTqWfTmE0cXRZmSxAqfTtb9NR5PfvfOCEgKj0zz6rClakr72oyuLgray0Z/zV1QwV/fKX1CCKisgspIOthMy8JIFlC8F5Abt9jUZp0lRV8VpLS9S8JH+irk7NF7CWF0ejlJ5tbQxRtrXtbrydU1m1XemuRNeKisggZG6jVHuur+fWF9E06Zv5+tf5c/YsGeJDOqR3/0l+LzPT///2viy2ruNM8yvey03cN5G0REokTdmkJduy6DhOlMROvCaA0+nkIY6R7gm6ESRIBvPSQAbz0DPAYIDMW3ejkw6CIAimgU6A9HSnM0AyhjVJJ2nEi8jIi0QtFElxkUiREvd9q3n4+Lvqnlvn3LrkJX3Zuj8giLw895w6VfXXv39/Tw/huzc2GBbs6DAJQXaBhpAwxdCQ2ajnz1MKLS9TAqQDg21TUBKNj5vMRTvJyOXgsjeo3ZDy7FmqnO+8Y/L2fcaWCSirsOYdHR2mbn9x0WD7i4YyPc13Li5OrFXZbTptkHzvZ8/Fww+T0QXV+cEHqbVsbSViOdrU2UkhoZTBM9zcTM6/SNtvt4+IPgeO+SsryUCuBpgSax0a4iIMDlJazs5ygWMxtw/FrqATb/itW/yso2N3ZdXBLrcjI3zOI4+YhJvWVrea6wr/jo2R6c+cMbDXYRs0SJmIKAmO3YULnE9JQ6+q4t8EeffKFR5WCwumIUpNDcfY08Pwl1CmNV6f+7lKu2/fNmCrKysmSuE6HM+cMSAhMzP055w+zf3oVdbron1G9DlwzB+PA//yL5zsujpuLqnkk1irFAIVFzOUNDZG9StMeku998QET/7FRS7i5iZV47q6nZdV25LowgWqtWtrfJ5IjL4+hqVc4woyazBtNR3p7RuBSEXj45TqsZiRfPb8PPss7/XWWybkV1Ji4uaSbSloPnvs10ogEaxXrtC8kiQy8a8UFLihuYNUXc33DAppYBdaTCZUszToQDH/1BQhttvaTBus+XmGkaR6a33dzFlpKSX3zAxt77BFyMujNKquNg642Vl6fZeX+bzd5FzIASDMPDdHxrt1i4fX1paJOdtjdDmvXGmrvmPzTSqKor4+Ms3p04kty+/cMSnFwhjPPgv89Kf8zvw83/XmTTKV4PTtA1Td+5Sqn2NrK+fILhSLUtvDNIwd8+k+J/scKIdfXx+l3pEjdKx0dZG55SCQ3PXeXqbwXr/OeUsVypNsv5ISw+gLCwYX3/YX7IaEmaWZpqA1tbe7nW8u55Vv2iqQXFsAGCSk69cphWMxE/3wyWEXHDtXt2PXGCSOL5DeJSX8WQ61nWIL7oRswVpZyf1TXk6Vv7CQiMMSk0/XmZoRkg0iWVOvv87TyZVokAE6UMyfauPV1lKNnZ42HWTffZdqXNQCas3Tv6DAhKE+9jE6/wQcMxObwGZmybnXmv4JFyO4wr++GzTMsy9azalTBrX44kVqTD5eaZnn5WUTmxecftf8KEWbf2GB10rXHtEaIkEuM0xhbcYffJDz3Nb2gYTbDbW300bt7uaCFRSYXmV7AOSZ9Wq/jRl/4QKZc32dkrOmJnHj9fXREz40xA0HMHuvqSl6AaU3nO2YGRvz73LrS66ce7sM1aXhuVTLMLioYDejw4eTzcff/IY+DKX4T+LUvoAxUmjU2pqI0//xj7ud1FrTz7GywufF4zSnRNuK0qh24vjebSlxlLMwE474yHtUV3Nxp6cN6khXV7jXcZeU1cwv0mtzkx7tmRkytbTaamigZH7pJc6bpGs2NjLGCqTuqAu4syvT7XLrS7K5xO7u7U2NIx92D5vCAGElZ17ebWyMc3PpEj8rKuIc3bnjp9nYB1h+Ps2u2lquj8tJXV7OcdTUUJO6coV/v3OHuQvS4CNIO3F8p/rObrJoM+GId4GyvvYa7/F+PoHWpgRQyGcT74CyWu0XG21oyAA3SDnv2hp//9M/NVWPdrqmUCrJ8uabjOnH45RO+6HuheHIj43t3LQIJj/V1dFUtFFtpUeh+DIKCmgCpFvhF0y3vnMnPPGqvJzrdfUqD7vKSj5PfBdSuBTUan2TudL5zm6yaH3Gkwq/IQjKGotRO+vvt65PdxPvgrJa8ovzc3DQNKMsKCCjSntte+HSOdldJ/ni4s6ZPh2VsK+PGkptrUmUKS/3i9WHkQsQ9r336AOx0XClR2FJCU0i6f6rNTdtMGSVCtpqaoqgFXl5fAe7hPfGDWpt4qSdmCCUVn09QUok3dkFoybvIyHJ+XlGb0pKUuP82RRVSryb+ZV7C87E8HBqXAIblFVC0VqbXot9fcAT+1jkk9XM7zoE19bC66vTyRbbaUjVxeRAeiqhbAJptAHsXrNzlbi2tbn9FrbPIC/PxOplr732mqk1iIK2kvcuLOR9JGlJkmPm5nhIFxayym9zk88oLSWzlJeHw4lJMtfAAJmkooLzJr6v4Ly6WqNnKkrjml+A4xsZofSWKr6BgURTy95Pcg8pzgIcTVUynfIYQVnN/HIINjZS9Rc4L+m77nJQiW0nDOqKnwM7C6mG2X3BMtKNjcSGkz7x+91u0lR+izDNRJjXPgRtsM+LF8Nbisv1jY10JG5tmfTdzk6zqQcHDQyZJGUdOsQD48kn3e8ubbftZCitzdq60rODrdHb2sKzOjMxv7K3XKhRrkPN7lokuAeSR5IwB/tU5JPVNr/MwalTlBZ5eWT8oiJWS505k/wd3+KVnZhWYXbf5csmhCQhWukD6Bu/jwrXhdmQrrmy7dkTJzjmn/6UuHJSfBPsPxcs1FlfN+3A5+c530VFpoxYwnOSVCXp1DKngsHf3Gwk3cYGbVtRd0VLGBtzv7tU/EkVo5RfuwplZF0aG7lXyss5rokJPzPOZ55d83v0KMcDJKJGyTyFRRJaWxkl2dyk6SVNVd6fg3QWfheU1ZIf4IQ99xwdoD42dU+P6QgrXnRXam7wJB8f5zVih/pqC+vrtPukbHd+3oTPpOEkkPh8H81uJ97lYOmufD9MJe3udqvKdivwVC3F7U44Ev/f3DTRA5F0Q0O8vqiIh7YkX01MhEdVmpoSUYgAUzSUal0KC1MDggTnKdU8uwRyGGpUWPdl134uLbXW3w5x3bnDxfn97xkSyTCeX9Yzv5CPJmSrfwIJdfEiT9dgxyObAX1BJIMVbWLzNTRwI8/N0ZnzwANUN6MaToaF61LF6X3DvbaW4gIy7e2lHV5fz3GXlJjuPnl5/F/alJ87x++ePk1JbavSUZ1w5B1jMe5fyWuIxzlfn/qUAWJ1ka/vy16Xixd5EBUW0gyx19Fl+uwmnd4eX3k5JXpfH5lZWr/5HNRJC7e5aZwd9fUc8M9/ztBWBm3/A8P8Pt70nh7TbruqivNWXByewGIvQH19+AawE42uXjVdWWdmTE/F48dNddf4OMNgroaTYe/hG6f3dQra0tBWSW/dohp99arpTxiL8bARZ+pTT3HMk5PUDuJxXie5Fi+/bOZe0oUFiCPYCUckHcDrNjb4HmEdc1zrk8r3JUw4NMR3BJKr8uSaoIRfWDB4fUK+81xdnQyuumsBPTPDDWw3FqyspJ2Q4USfA8H8PpqQXNPQwI28sEDmOXKEP0fFz6MaLdiNP44f5wYbGOAmW19nimw8znucPEk78Nw5Mor0AqyqYpFLlIoZlEDSuPXyZdOsJB7331hhQKYLCybZ5/hxSiw5LO+7j2q2SP233+bnra3G6XbzJgFEH3iAz2hrM1WGUdK5qyv8uqgD0cfUk0Pi2jUTcgxW5YVJ+LGxnTtfBW9BwFWjyqu9Q8GVldzg0nkW4MSLlzuDlNUOPyFbE1pf57zE49SExBfS3U0GEVy1vDzTSz2V0yfo/JudNY0Wgo0/CgvJ8A0NdC6JN1rsy+Xl5FCkJGsFkzzefZeHSU9PsuOtqYnP/sMfEtO8h4cT8f/CfEG2U1FU0o0NSnuByhLBIgg7NgmopUBVKcU1EEYSx6E491IlzoQl2ABuB60kvviiDlVXM7LyyCPuNt9hyE527cbMDBO+fvtbznXYs+QQ//u/N/6lqEQk2wktmX3f/W4yzv/7CxeLcTACari8TObPcKLPgZD8qTQhUelE6m9tcd6OHycDpep4FNXrThhA7OWyMi7i/DzDWUEnT18fgSrsslD5XPwEly7xns3NprXYhz6UHKcvKOCaS5r3iRNGoxD8P5dvQqSMAIiWlfFZAmW9usq/Xb3KTRuLmUYVoiFJay+bbt8m0wKJDShcDTbDJF3wOtGEghgD//ZvDAOmY4tH+QiCWIjyjk1N/F53N79bV8fn5ueHz62MWSI6ktsQlrMQPPSlmrO/3+D7JeT3v/QSJdvt29wAjY27wzYLoQMh+SsrucHEngMSNaG+Pi5aaSlVsNJSTqqP1AeSpZLd6y4YwmlqMuAftkQtKeH3m5p4CNlVmQMDPERGRvhzdTXXsr+fG1Daj9lov7/+tckTePJJbq7Z2WT8v7AU09VVHn4yH8J8ohEcO2acm4BB4+noMJLw7Fm+q1TvSb2JbSO7qvLSwQoUiSzztbZGxpiY4PzYzVZSVQBGpe9GhVdlf9TVcW5HR5OxBoVs86G83BRHiSPVZTLIO0oDXvkX9gy0tdG597GPGTTTPcg395L8SqkXAPw1gBiAH2itvx34+ysAvrX96wKAr2ut38nUICXhQ6SIeJUbG41K195uTtXWVv59YsK/z6EtlaTKD0gO4cTjZBzBzpfmEPa6uDLT+vvJyNeu8XPJ6R8eZovpjQ1KdrtXo1LcGNKOfH7etJASCuIX/uxn/N8O3QFGYtpOtPZ2HgyCD1BaSgZvajI2++amyQcQPPuFBc5JWDFSOh50MblsxpC1ldoEl+NU3tdHu7DXN6wa8s03aU6mihLZ7b2UonkgAC1jY7z/0aO8VsYj7zg+zvtJAtbRoxHOxX1I9EnJ/EqpGIDvAHgWwCiA80qpn2ute63LBgF8Qms9rZR6EcD3AWRs5FGaUG0tmX5qitJrbc3YVjs9LMNCOCLdBaYq7LuuzLSqKuOBHh3l5ikp4WbPzyfj3blDjUOYZXaW6ui1a6ayc2Ym8UAThpANPDVFybm6atTRYBdi2Ve2BzzYB1De75lnjMki8FtVVaYY6fhxXmNTOtmTMobJSY5bTNzHHqM9HaxNsCHWd5MHYZNojqJ9SautmzcZjhQKtveSMuX5ec6HHKjBcHF7O53Aw8MmDCmZiOPjETDlewzm6SP5PwTgutZ6AACUUj8B8FkA7zO/1vr31vVvADiasRFuk2hC9lxIKamkdWpNSSVpna4MQB+STdLdTecMwE3nA+NcXW16x9vhr+FhMvdjj3GMUtQh0vTkSTqbbKapqOAzL14k47S1GaCSIEPI4VRXx40o9vrICNV0l6/IR0LbDHP4cCJqb1gxUjrpy3J/wU+oqzOeesFVdIX5Mgl3J5rj+fMMhUpashwCUksgzC3tvQSbcGOD/QuCadL2eCRqcv06tbeODn4vDL9xP8A8fZj/CACrMBSjiJbqfwbgl64/KKW+CuCrANAcxDj2oODJbTuLxKaanIzOGkuHNjeZH7C+zkV64w0+v6sr+t7NzcmZabW1hnEfeoj3m5xMvF+QaWZnjT3oAojMy+Mhd/486+RPnjRmCsDNODFh7Hm7ak/wD3wldDrFSOkWplVXc71sLUQgy6JAV2Xs4iiUBqTpCkgx88rK+Pz1da7T6dPUMIWB7fZeIyPmcC8t5XPFdxGsQmxvp8+noIBrL5ET+a5zrPsA5unD/MrxmXZeqNTTIPOfdf1da/190CRAV1eX8x5h5NKAgp1a7bjubhnf5aGtr+epPzNDZtracmtjYUU2L71E6b+8zI0VTPCxcwqKi8Or6STxyGaWwkJe39VFJhsZIeMXFiZX7b35Jv0L6VTBpZLmwfU5cYLv6luYlm4xm29Wnw/Jei0vUyKvrvLnzs7Ew1ApaoOSOt7ZaRKgALevZ3SUe1IqH6WYRxKQ5LtJtA9gnj7MPwqgyfr9KIBbwYuUUg8D+AGAF7XWGYUdCdOA4vG9a24aVnt965aJAYeF22Qj9/QYs6GjgwdGMEnHfrfjx8mkb79NxszPZzKNq697UDCcOJHoH2hpoZoeixn1FOD/c3PAj3/Md7p+nSr3zZuJvQ2CzCwm1txcYgORl15yr8+1a6lRd3yddS7yyerzvVeU6SG1BDYAi2gKQZ+Hy9dTXMzvnjhhDqnNTWphZWXmIJe1lfl4MK8SFXu1ubfJJ9R3HkC7UqpFKVUA4IsAfm5foJRqBvBPAL6stb6WsdFtU1g1nR2yyTTaql17bW8u2QypEjsAXnP6NPDRj/IeUegu8m6HDhnAkq4u/nzxItVJO9QlFXUSThSNYXU1dePKGzdYz1BebkA8+/sptcISb8S30tdn4MMFhae7270+Yag7mWgbJgy7umqSoOxYe6pkOBey8R/9EdXylpZk4Na+PpoAXV2cr7W1RJ9HWBViQQHXSXoDrK0xv2JpiSHcwkI6A197LXE+zk+3Y25sjzb3NqWU/FrrDaXUNwG8Cob6fqi1vqSU+tr2378H4C8B1AD4rmI624bW2jPIlprCNCBpceWrKtrSJgqdBkiuvV5aotNOmO6o5dKMSuxIZbIF3016+U1MRDvulKJmUVVlwlOSYCS59IBbXb96lYws9+7spAQTZCTbl2KPXToFBavsLlzgAWdTlIbqmpu5OYYpy8v5syQmRdnvktUX9K9EQZlL5EIOy6BnPmw/+fg8pApRnKK9vVT7Dx/m3ysqaOM/9BDf0zaZAOZkvD/fDdW4tvIEugo9N/cOyCvOr7X+BYBfBD77nvXznwP484yNKkBR9mYqVdG14FH2dFB1j8eZcDM3R1VQGmWWl/OED7OTfU224LtJLL+lxcSYxXF3+LBxmimXJ8bxucv/IIk0YRQ29rExmgbBz4H0zK/g/WdnqXmIypuXZ0qjb9zgAWcf0kDiIT48bDAI7FoKm2zTxE7ZlvFHga8AfhEMaVU2NMTPCwr4DpOTpmvU5CTH2GQZ0oKdEJzXu8t7G+s/EOm9O4E1m5pKTNnc2DALHouFo9PYc11dbTaRpGKKY0ygqFpb3WMJOofCEmKC7xaM5YvjTg4j2ZRbWzy4RkeN1/nMmeQcfZcj7bnn+D7Ly8Y+tZGRwja6oCYHP+/s5Bz4rk/w/iMjZGKB+ZJEn6Eh3sduZ37uHA+CxkYeIILDUFdHZpO5D1JYifPly3xuUVF0FyGfPVhdnYy8/fGP89qJCTJ9dbUpORey8RPsed0DzM4EOhDMH9zAgv9+/rxbZXd13X3nHUqteJxq7yOP8FpJHxWp7HJEbW0loinPzpLxb96kI88FxJHKORT2bq2tJiR46JBx3LmwBVZXeahIaKmvj98Pmz+h9nYeEnaTSRsZSZJSpqaMNK2uNuCfMl826ClgsBEkByAMQi3ISCINS0qMf6WoiOt04gQZSXwJQRX57l1WbpaXG0YMAoIGQUaVMnH6q1fpVAXCwVdc6xSmhc/N8b4LC+YzwXt4/nmzN+1mntXVxqzfY8zOBDoQzA+YyQ+GuFzedjtMV1HBxa6sJJN0dPAaFzqNUn5RhYoKMllHR3jGmIxPmKWxMRydN8iccgClqmE/d45qsaiYUQCXwee5mkza39GBQKxkKUYxgDT0qK8PXxv7feU+Ig3v3uW6FBcndmWy05lFRZZ4umh2S0uGWYIpz0GQ0bk5/q201Ph9VlaiwVfscYfR1BTHZGcAurowS2UfwD0kAsHXd5UpOjDML+TjSLOdM729VOsASpjGRkpgAak8c8Y4UuNx973Fyw/4ncwjI9QKDh2ihrGywu/YRSpR5BPyEhVzampnzV2iniGebZGuQKI0jfqeb16KFNv09ZEZ+/oMPt/KCrUtAUyx05nz8zkWCZsdPsy1nJ93+2BkTHaorabG4ArW1PBZrjLgdMmVAWh3YbYF10c/avaRzMc+YHYm0IFjfh88d4F9npvjBJeWUkWOxfg9AaKQ3nGCoXb+vLvmO92owtgYTQ45TOrrKXVE4mSKguYIkJnmLjvNL3E58oaHOW+XLiV68AHDCC0tBnFJ1qWsjD8H05mrqzmOggIyl6z18eM86ONxU2IsBUkiCCT5aW6O1335y2YcrpTpMArLUQjLAJRDMFXR1X7TgWN+WewoPHcpriktJWS0VGJ1dNDuD3qC7Xu7HFp5ebTZL1/mZ52d4eObmiLzr68blNreXm4KQXrdDQVx/tbXzWYLQ/tJtz7ENzc/eN+8PPM9KdFdWuJ1Ei5tbzcefLuO/+5damhaJ6b0Bk2gZ57hcxYW+L2qKuCFF+j4fOstSli7Hj8WM2OSLFBJ5hGfUTrZiFEp9zJv8pzZWZp9t25xfPPzPKSiiq72k7Ke+V2ZZqnw3KW45vZterUBxlalmCKMXB5dgZYeHuaiSfba8DDwuc8lb5K+Pkq3lRUu/uKiqQb0KWewQ5PBeDeQuPHW1wl6UVxMFdll9++kPsTHs+267/S08cRLF+KRkUQv/p07/L2/n1EHOSREhZ+YSByfSx12ofqOj5PxH3888VoBLpF3GR8nOtJjj/lnI9oUZdrY87a+bsLJ5eWmM49Un46NcY7uvz/joLzelNVgHq5MsGvXeAikwnOvqOBGy8/nJrx5k2i1YfFxwA0GIaGbqSnD/LdvA7/8JfCrXyXfQyrE8vKIiXfqFNVakXo+7zs5yfEuLlJqTE7y856exEw6wXmQ2H1hIc2AhgaTXReWHRmWfRc2D0HmcN23oYHzVVjI8Yujrq6OnxUWkvErK/lOwTr+1VVem2p8tbWci1//mrUJY2PuRqOHDpk+hPIuExNk/MZG//mw1+eNNxg5kqxLeY6NVixtz8vLjb+ispKH1rVr1CAFGer8eQNbtt+U1ZI/7JTVmqdlMNPMVkvn53my1tRQ/V9YINOeOhX9zKCkefVVMmA8zg1bUMB73r1LLL1PftIdghP7cnbWH1tA3ndwMDHeffcuDxBXJl1BAbWcJ580n9l2/07t91QOqFRZl4BRb4XsVmt1dVyzYB1/W1v0+AQ0s73d1BhMT1OrC8bLXYlgr766s/lwRQ3s1mSy9+RZtq9B0KDkd6UYYtSa8zA1BfzkJ8DXv773Hn6bslryh4Eu2k0RwtKeR0dNp5/FRf5/6hQ/T4cqK7nQU1NktIIC4yQsLEyWGAIXJaW7Dz/MGLoPopC8r11PIPBhdiadTfn5ZiO+/jr/Hx83mzEITir32G0CSar7yjw0NhrgipUVzsu77/KaWIzzOTGRmJsfNT45IKU7z9NPM2Lj2hNjYzx8bbBT17jHx6mpRIGi2lEDCUMWFfEgkr1n1wvcvMn7ApT4y8tcX1nXeJy+I0mzHhigX2k/Kaslf5jjSWzgVN73kpLE+OrSUjIsUyqS/O+BAYOQs7REle6BB6hdAInOtGBk4MgRP4ebvK9ICol3S7bg4iLVXTsnPT/faCTiZBoaAl55xYw/3exIoShHYar72unR4swrKKAWJZB0+fkmCUu85GGdboR86zwWFvhzURHNhPV1U11nJyq5fABBn0gwSai5mfMs+AF2MZTtj5H7NjQYNKiaGlZt3n9/Yp3G4cM0B6QuY49BfABkueT37Wnnos7ORPBJOXk7O9PvgffFL/L0npujlG1ooBpeU0NNIlidBnBDPP64KZ+9cIGMEFXBJu9rO9AmJ/lvbs5AQkkmnQCGnj1rCmLKy7nh7twx4xc79MYNlvAKY0S9d6rKOx+/gCQT/cVfAH/8x2TCU6eY8lpZaSS4+AmioL+FwjQOwTuUfP/Ll3kY1teTEQcGTN+HdHwAtrov1XzDw5z3Rx5hLYCg/AT9MY89ZpCI6uqIRPW1rxkYNCn+GRxMFHCZqHr0IaWDqVz7RF1dXbrbQ8+xT0CxlwQkwZaAkmZqn9avvUYGsgs+urpMf/pgimrUydrfnwiuWVtrPLxBmO7CwsQe3Fk1AAAT7ElEQVR68zAQB5dNHfT2j49zXCdOmLiwPOOJJ4wN64r1P/984n1deH1h7y2bL+hXCRu3D/mONYpc7zE+bqIMhw5RSzp/nmstTsflZe6BxsbEZ8mY5uYS80ZKS4EvfMHMgw0aIvBrx46Z+Uvn3X70I+Af/9HkKRQXc24/8xng85/nvpVaErsuxHfulVI9PlW1Wa32A+60Xp9e6GEprEGEHomNx+Ph8X/AYAj29PC0np3lhgpi24vzyJViDHCDPfRQuINJ3jfooLI3le2g8o3Jd3eHNzCVeQlDSXI9dycULHaqqCDjrq76q7auHHvRHGQONjaoRg8Pc64BMtrt2ya9WyiYNxKLMYKwsGBySFpakpOERN2X8aaDW3jkCA8mOVTicc51eXl6/SZ3S1nP/EJhVVlhvdABt8d6eJiboKeHCyjFHENDBqAzyt4SgA6RMAKd5eoQU1OTaL8XFfHQ8HG4yRiuXDHttl3pp+nE5EtL+fzr1+l0O3uW7zM1lZwHsLhIdTRVVaIvBYudpqbY4665mfD0YdV0LnJFZGzHcFkZmefaNVO5ODPj7nthoy1vbNBcUIrJYVL5KHkUkryzuMg1FUEAMOKyuWl8F1G+la0tvrMk/pSV8fsC6Cmw7dITAODnrn6Tu6EDw/xhjScl1urLUKOj3PxLSyYpBuCC9PTwALAdN+Pj3BxHj3Kh7M65QeisIJru0lIioKbWphd7lMPNNjGKikyq8pkzJrc96FiLcn729XFDCnpPdTXf5dw5Oi0ffTQZWOPqVT4rVVVi1FwHbXAJ9a2v0xsuSVv2uu0k1TUodZuaeMDffz/f4fZtAzkWPFgkIUzqBUpLeSBJ5qFoReXliWbG/LyZb1mzmhr+vrwcnSloh4MBkwkovSKam00TkKIi7pvJyYw37Dk4zG8vsG8v9CCJivu735EJFxa40ScnKQV7e40mIIs/MGAYdmSEKqGk6jY1JUJr2wtuY+KHofW6aGqKjB+PkzFWVkwn3YsX6WAKbiqXhmMz35UryYARBQW8Rhp32rUSt2+TaZ58MjVMt2v8No5CQwM39tWr5vBaXubfGhsT6x18zYowfEG5h6jRi4s8ZBobWY4clkknaMui6ot/pqyM45c1sM2MqSn+L5JZKQPXlerwCssEPHOG79XXR8EyO5tenki6dGCYfze90GWznDtHe0tCPLEY77W+TjVYVEc5RCT7zG5tvbXFjbG2xvEI3l7QPLAlssSxH3wwEcTBRX19iR17iov5szirfKRiMPW2sJDvJ624BMnm9Gky329+Q22ospKMYLdGk7lIVTBkM/3kJKX93bu898mT1JhGRw3wx9WrNLVqa6MRkcKeUVdnMAulWajk5+flkXHb2420DuueCyRDtgnzt7UZ7S1oZqyvJ9r3Ylr4NNK198aFC9yDYtaJNjk+nqhN+naeSocODPMH1VtXmywX2Yxw5AilmNhxhw/zVL99mxumuTkRAnt+3jhdFhf599FRLnB9PTewNAK9cIGb+ZlnEsc0O0uVt66On6eybWdmjMQXqRLmrAojF7LvxYs8wE6fNu3OpDpSQk2inivF94tqleWa46EhHsbd3Ryz9DG8cIHf7e01lXeFhTzQDh2iNiWNVsK0NxdAy6VLvL6kJLFZqITmfEqLAbO3YjFzsDz0kNH4jhzh53YBU35+4hqtrBgzyYdcmYBAcqOWvaztz+o4f5BkwqR4Q/Kio+KfNiM0N1OClZebXnm3bpm867o6MgpASVFaanIFRIoePcrvS8VaTQ03RyzGOLpEL2WzDgxws8Zipq3Y0BDbO7vGLmqspLtqbWrc5+b8chOCmZEVFWw7Ja2o8vPJmOPjjFU3NfFd19f5/7FjBnvOJ7/CjmzMzhq/wTvv8HAcHKRNfOwYnzE6ync7e5bazPo6taMo1dZ+ht3scmQkGa03LDM0VZPP554DvvENHpAbGwaH4R/+ITFPY3qaczg9zb9LToaYez4k++PKFe4ZG+shP5/m3fPP7426L3SgmB9IPwHC3ggCnywNEltbGcY5edLkDMjJu7pquv22tpKBxXn11FPceM3NLN4R9byy0pT9ujbr1hb9DdLa2TV2ac/e2mqcVbOzZJLCQr93diXC1NQwbm03fj161PgvjhxhKnJHB8fd1mZq58MSb2Qtzp3jIQcwpXZjw/xbXeW8LS2R+cvL+X9zswHReOopPj9qk8s6irMXMKnPQa1kNynNtoDZ3OQBaB/eGxvG33P6tDmkH300WesLI3sPnzzJg7K7m++4BwjdoXRg1H6hdNBigGRPsDhkqqvJ5AMDps+fIKrKySv5BX19XODpaS5KebnxzNpoNza5Qn3T09xQSoXjxdnmTX4+D5erV/ndwcFEEIieHt4nGJIMC/+5GDgsIhHVKgtwm1MLC6aS8vBhU9IsHv2tLR6oZWW8//y8GUMqxpR19Ime7CalWShVnsbyMjWFqNyQVPeW9ZfEszCH7l5R1jN/MOOtv5+L29xsmCDKS1xbm5yZZ7fOkrbUwtRSEBLsbWcfBHfvmkKOlRWqzzMz3ChPP83nujbrzIyp1GtrSwQCBQzzBhObVlf5jleuMMf8oYfIcJcuMVXWlZPugzyUbkQiCCQiYc/mZhMmk1bi0u5qbY2mVVUVNYuFBRMbB2i6yTOjsAftsTY1cR7EKXbiRDRG4E7s5t3maQTnK4j4E2zI2tXFse4nok9WM79s/s1NbjZBipG4d6oqsKkpk8wj0Fr19cDLL5P52tqSmVpScYO97WymAqgW/vM/0xaMxUy/POln72KslRUyysmTZJBXX6VaX1jI5924kdj+WyREcTEZX2L0t27x95aWcA3IFwdQmCTYP9CeQzl87UYX771nqg3FnBoepi/lwx82CLZ37phIweQk7ymq7d27PBA+8hGDvBNm48pYu7t50LS0UPLm57s9+bvFxEtH03CRD+KPTzbgXlJWM7+rvv3YMW6ylhaDmz8+7u5C291tIKME6urKFeA732EM2+4Ik66nuLqaG2N9PTkLzga6tBnr2We5UZeWCAZy6xbfqaGBB9PCgklLBoyE0NqondI0ZHk5ucnjTtJvw5gkqu/BoUP8TPLhJfOttZVmyuamQetpbuYzNjZYzQaQ4QsLDXKuqxdh2FgrKhizt1uFS3q2xMkzUQnnOrwlouDTqt0X8UfCzn19xuzciwo+F2U188vml5AbYBxeZWXUBu67z3RBDUrq7m5+d2SEm7migsx644bxaE9NGWkTLN0U+zqMqbSOBtB0MVZVFYEcpeAHMHH3/n5qKOXl3AC24+rBB+kRl25B99+fCG8N7F56iJQfHqZHfmsrse9BWxvfTQ7f+XmuhQ18Ke/7s59xriVsVlFBFR+g1vT666lTtF1q88wM50oaqFZU8CD81a84Nw0NmWln76MVRVFUbYR978HB5CK13Yw7Hcpq5g+rb5eSWol7B7vQAlT3h4b43dVVMtrgoEFTlYVoaUk8jQWpZXqaG76+nhusri4x1mszZzrqW3U1mbe4OLFWQWCv6uqMN19qz+NxAwtWVUWVc2mJ415cJJPZkikVbr+LXIVTvb2U0mVlnJe33uJ7K2UaUJaVue1qiR7YB6OdZZgqRTtMbY7F+K4SQQH4jK0tfkey+Hw0ibB58NEeUl0neyOooUhTFVsw1Nf7O7AzSVkd6nPVt0tsXcIhYTHd3l4yz/q6sU3X1niP++5LRMiZmUlEarl7lwdFXh7/Nj5uHFN2qK22dmd4A3NzJr69vs7vKMX/W1vNoSDM3NpK38Dmpkk+EaflygprDwDT9XUntd+uwqmqKgNWUljI97ahuIqLWRvgike7wm35+QZqy0a3EbQle+7CsAeVMvkHgtOwvMyxBlOYfbr12uQbRva5rr2d+6a723QRnpszeJBCO8lJyBRlNfPL6VhXR0lSUkKpOTFhmkgo5Y7pAoy9NjRwk0hIb2HBZPaVlSVW4YnzSoo4JF9bni+twoLM6QtEIVRWZlpMbW2ZBiL19UabsUEhg8kn8hzpIf+JT1CVFoAMX0BKm+xNKFK5qYkb+NIlhhuLijjvxcXczGfOJHf2EXIBsYhTbnHRpGjPztL3IUk0QDRQppTSbm0lArhWVoZj+PmSL9ipfd3cHAXFpUsGlx/ge1ZV8T2np6naa82fJZcf2DuYNR/yUvuVUi8A+GuwRfcPtNbfDvxdbf/90wCWAPwHrfUfMjFAu759asr0kBPv/d27nNRjx7jhpOpNAB07Oqh2LS9zIaRssrmZammwCq+khPfr7CQDFBQYn4OrCGUnXuXmZmOvDg5SMlRVcaxh6bRhz0m37j5MXbVNmMpK5uRPT5PBiovJDLW1TAx6/HFT2lpa6n6OK9wmjkz5rKAgUQPq76emIfUaYUCZ7e3UgmxAj6oqoz3tNLbvO5d245go2PGtLY710iX+XlTEffjmm8ZpmImchJ1SSsmvlIoB+A6AFwF0AnhZKRVsW/EigPbtf18F8HcZHicA472PxbgRhocNKCNAJ9LqqolTLy5Scj36KOPvx47x54oKg5wqC2VLKjutt6nJwITbPeN2czpLFt+pU4QI+9KXKPWPH08friwdyRGlrsr7j41xjgVRV5BmPv95qvjSndhnjHIA2GaB/ZlSZKxYjM+JxYh7NzoaDZTpghB79llm2KWrhe1kLuW6VLDjlZWJ/gmp0RcUKHuOdjPunZKP5P8QgOta6wEAUEr9BMBnAVipGvgsgP+liQn2hlKqUinVqLUey+RgL182m7G/n8xYWkob8JlnDMyUTNwTT3DT5OWZJBNh/GBChS2pSkoSE39qaqhltLT4t3SKIleR0iuv+HeNsSkdyZEqO/KJJ4yXXjDt7ruPTLi5aWL5Yd2J06XeXrOeAP+Px2kGPPVUNHJOmCa0GyeZ71zKdalgx9vbCe9eX2+agS4v029j2/S7zUnYKfkw/xEAI9bvowCCQ3VdcwRARpnfJpHQkmYLJKto1dVMOAli0YVJxqCJkQnmDCPXgu+kc0s62Wyp1Nrq6mQvve2RT9WdOBMkCL5AInKOfajvFfnOpVwnbb/q6oz/xe4fIdcNDBjNsa2NB1yYubSf5MP8rh43QTePzzVQSn0VNAvQ7NO7KkCdnXQMKWXw7dfWjOrpYuqd2lSZYs79IF/J4ROazARoii91dDDxRzIqBTRDwo37bQMD/nNZXc3aBxtM1DU/XV3J/on9fJ8o8vH2jwJosn4/CuDWDq6B1vr7WusurXVXnQ2o70lnztBuF3grCfEISIXLBv0gbapsIx8odPsa8cjbTUoyOXddXfRzbG5SK9nc5AH/8ssHY7189lY277+U0N1KqTiAawA+BeAmgPMAvqS1vmRd8xkA3wS9/U8A+But9Yei7usL3R2kIDacxHv3qrHBvzfySWLZj4YRH8Sz7hXyhe72wu1XSn0awF+Bob4faq3/h1LqawCgtf7edqjvbwG8AIb6vqK1juTsnTJ/jnKUo2jKKG6/1voXAH4R+Ox71s8awDfSHWSOcpSjD46yOsMvRznK0d5RjvlzlKN7lHLMn6Mc3aOUY/4c5egepRzz5yhH9yjlmD9HObpHKcf8OcrRPUpeST578mClJgEMeV5eC+DOHg5np5St4wKyd2zZOi7g38/YjmmtU+bPf2DMnw4ppbp9Mpb2m7J1XED2ji1bxwXce2PLqf05ytE9Sjnmz1GO7lE6KMz//Q96ACGUreMCsnds2Tou4B4b24Gw+XOUoxxlng6K5M9RjnKUYcoa5ldKvaCUuqqUuq6U+s+Ovyul1N9s//1dpdRjWTS2V7bH9K5S6vdKqUeyZWzWdY8rpTaVUl/IlnEppZ5SSr2tlLqklPrNfozLZ2xKqQql1P9RSr2zPbav7NO4fqiUmlBKXQz5e2Z5QGv9gf8DQUL6AbQCKADwDoDOwDWfBvBLEC/wwwDezKKxfQRA1fbPL2bT2KzrfgViMnwhG8YFoBJEgG7e/v1wtswZgP8C4H9u/1wHYApAwT6M7eMAHgNwMeTvGeWBbJH878ODa63XAAg8uE3vw4Nrrd8AUKmUasyGsWmtf6+13u67gzdADMP9IJ95A4D/COB/A5jIonF9CcA/aa2HAUBrnU1j0wDKthGqSkHm39jrgWmtf7v9rDDKKA9kC/OHQX+ne81eULrP/TPwdN4PSjk2pdQRAJ8D8D3sH/nM2QkAVUqpf1VK9Sil/iSLxva3ADpAENr3APwnrfXW/gwvkjLKA9nSpTdj8OB7QN7PVUo9DTL/2T0dkfVIx2fBsf0VgG9prTeVcl2+J+QzrjiAMyAwbDGA15VSb2itr2XB2J4H8DaATwJoA/CaUup3Wuu5pG/uL2WUB7KF+TMGD74H5PVcpdTDAH4A4EWtdUinvA9kbF0AfrLN+LUAPq2U2tBa/+wDHtcogDta60UAi0qp3wJ4BESK3kvyGdtXAHxb09C+rpQaBPAggLf2eGypKLM8sB9OFg9HRxzAAIAWGCfMQ4FrPoNEZ8dbWTS2ZgDXAXwk2+YtcP2PsD8OP5856wDw/7avPQTgIoCTWTK2vwPw37Z/rgch62v3aU2PI9zhl1EeyArJr7XeUEp9E8CrMPDgl2x4cNBT/WmQyZbA0zlbxvaXAGoAfHdbwm7ofSgQ8RzbvpPPuLTWl5VS/xfAuwC2wO7PzhDXfo8NwH8H8COl1Hsgo31La73n1X5KqR8DeApArVJqFMB/BZBvjSujPJDL8MtRju5RyhZvf45ylKN9phzz5yhH9yjlmD9HObpHKcf8OcrRPUo55s9Rju5RyjF/jnJ0j1KO+XOUo3uUcsyfoxzdo/T/AUC7Rv8D5vBgAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
" %matplotlib inline\n",
"import matplotlib.pyplot as plt\n",
"np.random.seed(seed=42)\n",
"N = 1000\n",
"x = np.random.uniform(size=N, low=0, high=1)\n",
"y = np.random.uniform(size=N, low=0, high=1)\n",
"1\n",
"accept = (x*x+y*y) <= 1\n",
"reject = np.logical_not(accept)\n",
"fig, ax = plt.subplots(1)\n",
"ax.scatter(x[accept], y[accept], c='b', alpha=0.2, edgecolor=None)\n",
"ax.scatter(x[reject], y[reject], c='r', alpha=0.2, edgecolor=None)\n",
"ax.set_aspect('equal')\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"It is then straightforward to obtain a (not really good) approximation to π by counting how many times, on average, X² + Y² is smaller than 1:"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"3.112"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"4*np.mean(accept)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
...
...
@@ -16,10 +162,9 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.
3
"
"version": "3.6.
4
"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
module2/exo1/toy_notebook_fr.ipynb
View file @
bb9b9181
{
"cells": [],
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"data": {},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAIAAAByhViMAAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzdeXiU5b34/2eyEUJC2EWQoqACLuBeRKt4rMcittaeaq0LaKnA6aK2RS0V\nRaWtPVYqFi0WOVCXn1bautXa47e1i1qx7kvrLrIqCmFLDCGTmfn9MefkoqyTWRJy5/X6w8t5\nZp57PvNkkryZLbFUKhUBAND+FbX1AAAA5IewAwAIhLADAAiEsAMACISwAwAIhLADAAiEsAMA\nCETIYffd7343FovdeuutbT1Iu/HSSy8dddRRZWVllZWVS5cubetxduGll16KxWKjR49u60Ha\npWnTpsVisZtvvrmtBwEgn9pT2KV/ke+77747ukBlZWUsFlu1alX6ZPfu3QcOHFhVVZX5Vdx5\n550PPfRQroO2W+edd96zzz577LHHTpw4saKiYtsLpL8E26qoqBg6dOjXv/71d955p/XHbn3N\nx+Hqq6/e7gVGjx695V2xPdr2a11ZWTlo0KAvfvGLv/jFL+rr67NbtoN/iwEUWklbD1BAl19+\n+eWXX96iXS677LKxY8d+7nOfK9BIu7PNmzf/4x//6Nq16//7f/+vpGRnd4zKysqxY8c2n0yl\nUh9++OErr7zys5/9bMGCBQ899NCnP/3pws+7W7juuuvOPPPMAw44oK0HKZQtv9Z1dXWLFy++\n7777fvOb30ybNm3BggUnnXRSSxfsyN9iAK0g5LBrqcWLF7frh1hytGnTpiiKunfvvvOqi6Jo\njz32+OUvf7nVxvr6+ilTpsyZM2fChAnvvfdeUVF7ejA4O8OHD3/llVcuvPDCJ598MhaLtfU4\nBbHt13rp0qU/+MEPbrvttrFjxz788MP//u//nvlqHfxbDKAVhPzbd9vX2P3617/+t3/7tx49\nepSVlfXr12/MmDG///3v02d98YtfHDx4cBRF//3f/x2LxY499tj09ng8ftNNNx155JFVVVXl\n5eX77rvvN77xjffff3/LK1q2bNnZZ5/du3fvioqKI4888r777lu7dm0sFvvkJz+ZvsAVV1wR\ni8Ueeuihn/3sZ/379+/WrVt6+8aNG6dOnTps2LDOnTt36tRpv/32u/TSSzdu3Ni88pVXXpne\ncdGiRaNHj66qqurdu/f5559fW1ubSqVmzZo1dOjQioqKAw444Lrrrtv5n/3d+Q35/Oc/3717\n9yiKli5dmn7eraVPqlZUVNx8881du3ZdtmzZq6++2rw989v4z3/+8/TTT+/Tp095efkhhxxy\nzz33bLn+0qVLzzrrrF69elVUVBxyyCHz589v6W3M7/GMoujYY48988wzn3rqqUxex7nL2bZ7\nJ8l64F0e9qwNHDhw7ty5119/fTwenzBhQvrfA5lc6Y6+xQo3KkBHlGo/XnzxxSiKBg8evKML\ndOnSJYqiDz74IH0y/TzsnDlz0ifnzp0bRVHv3r0nTZp05ZVXfuUrX+nRo0csFrvjjjtSqdTD\nDz98/vnnR1E0cuTIG2+8ceHChalUKpFIjBkzJoqioUOHXnzxxVdeeWX65J577rlkyZL0smvW\nrBkwYEAURcccc8z06dMnTJhQXl7+/e9/P4qi4447Ln2Z9Cuxvv3tb1dUVHz5y1++8MILU6lU\nY2Pjpz71qSiKDj/88ClTplx88cVDhgyJoujII49sampK73jttddGUTR16tRu3bp96Utf+vrX\nv77XXntFUXTeeeddfvnlAwYMmDx58rhx48rKyqIoSt+Q7drlDXnooYd++MMfRlHUvXv3G2+8\n8cYbb1y/fn0WX4L0KyD//ve/p09mfhuvvvrq6urqf//3f//Wt77V/NzfY489lr7M2rVr0wf5\nuOOOmzZt2qRJk/r27XvBBRdEUXT88cdneBvzeDzTx+ErX/nKqlWrunfv3rVr1xUrVmx5geOP\nP37Lu2Ims233TpLdwJkc9iuuuCKKotmzZ+/8Nu7oa51MJg855JAWXel2v8UyGRWAzHWgsDv4\n4IOjKHrnnXeaL798+fKqqqqRI0emT/7qV7+KomjChAnNF0i34NFHH93Q0NC8cdq0aVEUnXnm\nmemT6V+QZ5xxRvMF/va3v3Xu3HnL5kg3U3V19aOPPtp8sd/85jfpX3LNv8A2b948dOjQKIoe\neuih9JbrrrsuiqJOnTr9+c9/Tm9ZunRpcXFxaWnp0KFDa2pq0hvnzZsXRdGpp566oyOTyQ1Z\nt25dFEUDBw7c0SKpXX0J3nzzzaKiotLS0uYozPw2lpWV3Xnnnc1LTZkyJYqi8ePHp09eddVV\nURR96Utfar7ABx980Ldv3y0Pcia3MV/HM30czj///Obr/fznP7/lBbYKu0xm2+6dJLuBMzns\nOYZdKpX60Y9+FEXRueeem/mVbvstlsleAGSu/T0V+/777396BxoaGnay4/r162OxWDr+0vba\na681a9YsWrRoR7vcfvvtURRdeeWVnTp1at546aWXlpWVPfDAA+knoX7729+mNzZfYNSoUWed\nddaW66RfgDVs2LAtX5B02GGH3XfffbNnzy4uLk5vKSsrO+2006IoeuWVV7bcffTo0c0f6vGJ\nT3zi4IMPjsfj3/zmN3v06JHeeOqpp0ZR9O677+ZyQ3Lx4Ycf3n///WPHjk0mkxMnTqyurm7p\nbTzyyCPPPffc5pNnnHFGFEVvvfVW+uSDDz4YRdEll1zSfIG+ffv+53/+Z3a3MffjmZZKpaIo\n+upXv3rcccc98MAD9913344umcls272TZDdw5oc9F+m3jCxbtiyXK22dUQE6jvb35olNmzY9\n9thjWez42c9+9mc/+9kJJ5xw6aWXnnLKKenHe9LPYW1XKpV6/vnnoygaNWrUltu7du06ZMiQ\nV1999Z///Odhhx32xhtvFBUVpZ+WajZ27NgFCxZsteDRRx+95cm999577733Tv9/bW3txx9/\nHEVR+kNGtiqtrRbv2rVrFEXDhw/fasuO+iyTG3LEEUdsd9/tevfdd3f0XoEJEyb85Cc/aT6Z\n+W0cOXLklifTL/hLXyaZTL7++utRFI0YMWLLyzS/hLGltzHH47mVWCw2d+7cESNGfOMb3zjx\nxBOboza72ba6k2Q3cOaHPReVlZXp9XO50tYZFaDjaH9hN3jw4B29rr+ysjL9i2G7Zs2alUgk\n5s+fP2HChCiKDjjggFNPPXXy5Mn77LPPdi9fV1fX0NBQVla27a/q3r17R1G0Zs2aurq6xsbG\n6urq0tLSLS8wcODAbRdM77WlBx544IYbbnj++ed3/lhjr169tjyZjqotN6a3pHbwYv9MbshO\nrn1bW33cycqVK5988smhQ4fed999w4YN2+rCGd7GdGc32/IWpQ9yeXl5+gnuZj179mz+/xbd\nxhyP57aGDBnyve99b/r06Zdffvm2b6Ro0Wzb3kmyGzjDw56LmpqaKIqaHzXM+kpbYVSAjqP9\nhV3WSktLb7311unTpz/00EO///3v//SnP11//fWzZs268847zzzzzG0vv5Pf7slkMn2B9Lnb\nPny13Qe0toq/uXPnTpo0qaqqavLkyUcddVR1dXVRUdEDDzzw85//PNubuH2Z3JAWLbjVR2Bs\n2rTpoIMOeuONN5YuXbpV2OXlNqYn33b+RCLR/P95v40t9d3vfvfee++dO3fuOeeck343QHaz\nbXUnyU7r3LWeeeaZKIrSr4fL+kpb7bsAoIPoQGGXtueee06aNGnSpEkNDQ2/+MUvvvnNb06a\nNOm0007b8sVPaZWVlRUVFfX19evXr2/+gJK01atXR1HUu3fvysrK4uLi2traRCLR/CKhKIqW\nL1++y0nSb3h8+OGHjzvuuOaNO3nBX9YyuSG5rN+5c+dbbrllzJgxkyZN+sc//rHln/rIy21M\nH+TNmzdv2rRpywfttvxEtELfxl0qKyubO3fupz71qYkTJ7700ktb3hlaf7ZWuGs1Njbefffd\nURSdcsopuVxpq30XAHQQ7e/NE1lbunTpBx980HyyvLx88uTJo0aNWr9+/eLFi7e7S/qVT3/7\n29+23Lh27do333yzc+fOBx54YHFx8T777JNIJN54440tL/M///M/Ox9m8+bNK1eurKys3PL3\nWSqV2uWO2dnlDclx/c985jNnnHHGsmXLtvxTH/m6jcXFxfvtt1+0zavpn3zyyS1PFvo27tIx\nxxwzceLEN95444c//OFWzxq35mytc9eaMmXKypUrDzrooPTntmR3pa38XQDQEXSUsHv55Zf3\n3nvvc889t7GxsXljbW3t4sWLi4uL+/TpE0VReXl59H+vHEpLvxrvhz/84ZZ7/fCHP2xqajrn\nnHPSD/KdfPLJURTNnj27+QLPPPNM+sGMnejUqVOPHj3q6uqaH9tLpVLXXntt+j2G69evz/UG\n/6tMbkiOZs2a1bVr11tvvfXxxx9Pb8njbUw/LLTl2zLee++9//7v/97yMq1wG3fpv/7rv/bc\nc88f/ehHK1eubKvZCn3XWrFixTnnnDN79uyKioo77rgj/Txyhle61bdYK38XAHQEHeWp2BEj\nRpx99tl33333sGHDxowZ07NnzzVr1vzud79bsWLFxRdfnH4Z/rBhw2Kx2O9+97sJEyaUlZXN\nmTPnvPPOu++++x588MHDDz98zJgxpaWlf//73x977LH9998//SFeURRNmTLlrrvu+vnPf750\n6dKjjjpq6dKl991337Rp03b5Z2rPP//8n/zkJyeeeOL48eOjKHr44YfXrVt3++23n3zyyb/8\n5S8HDBhwzjnn5OvmZ3JDctSvX78ZM2ZcfPHFEyZMeOWVV9IPWeXrNn7nO9+54447Fi5cuHjx\n4qOPPnr16tW///3vL7zwwhtuuKE1b+MuVVdX//SnPz3jjDNeeumlLbe38mx5vGutWrXqi1/8\nYvr/Gxsbly9f/sorrySTyf79+y9cuPDQQw9t0ZVu+y2WyV7pz2QGICOt9YF5eZDjBxQnEolb\nbrll1KhRvXr1Ki4urq6u/tSnPjV//vxkMtm8wo9+9KNevXp16tTpsMMOS2+Jx+OzZs067LDD\nKioqOnXqNHTo0KlTp65bt26rwU466aSqqqquXbsef/zxf/rTn9J/U2v06NHpC6Q/ZvbHP/7x\nlntt2rTpiiuuGDx4cKdOnQYMGPC1r31tzZo1qVTq/PPP79KlS9++fV955ZXt7pj+8NvXX399\ny6WiXX228C5vSO4fUJxIJA4//PAoir7zne/keBvffvvtKIpGjBjRvOX1118/7bTTunXrVl5e\nfvDBB992223pB34++clPZn4b83U808eh+fOTt9L8F+6b74pZz5bdwJkc9gw/oHhLRUVFvXv3\nPvHEE2fPnl1fX7/V5TO50tQ232IZ7gVAhv73fZ3k19///veRI0em/0p6W88CAHQUHeU1doXz\n4YcfPvLII1u9rj/9aMeOPiEPAKAQhF2u/vCHP4wdO/Y///M/4/F4esuGDRtmzpwZ/d8fegIA\naB2eis1VY2PjiSee+OSTTx544IGnnHJKfX39gw8+uGLFitNPP30nfzwUACDvhF0e1NbW3njj\njQsXLly6dGkikRgyZMg555xzySWXlJR0lDcdAwC7A2EHABAIr7EDAAiEsAMACISwAwAIhLAD\nAAiEsAMACISwAwAIhLADAAiEsAMACETHCrv6+vpEItHWUwRl8+bNGzZsaGpqautBgtLY2Lh5\n8+a2niIoiURiw4YNDQ0NbT1IUJLJ5Mcff9zWU4Rm48aNdXV1bT1FaGpra9t6hNbTscIukUgk\nk8m2niIoiUQiHo87qvmVTCb9CyS/UqlUPB53VPMrlUr5R13exeNxRzXv4vF4W4/QejpW2AEA\nBEzYAQAEQtgBAARC2AEABELYAQAEQtgBAARC2AEABELYAQAEQtgBAARC2AEABELYAQAEQtgB\nAARC2AEABELYAQAEQtgBAARC2AEABELYAQAEQtgBAARC2AEABELYAQAEQtgBAARC2AEABELY\nAQAEQtgBAARC2AEABELYAQAEQtgBAASipK0HyFQikch9kVQqlUwm87IUaclkMv1fRzWPksmk\nQ5pf6TtqKpVyVPMokUg4pIXgqBZCSIc0FosVFe3wgblYKpVqzWmyk0qlNm7cmPs6iURi54eD\nlkokEslksqSkJBaLtfUs4Ugmk6lUqri4uK0HCUcqlWpqaioqKnJU8yjdHyUl7eYBgnYhHo/H\nYjFHNb/i8XhpaWlbT5E3RUVFVVVVOzq3fYRdvtTW1paXl4f01W1z9fX19fX1Xbt2LSsra+tZ\nwtHQ0JBMJisqKtp6kHA0NTWtX7++c+fOXbp0aetZwpFIJOrq6qqrq9t6kKDU1NQUFxd369at\nrQcJytq1a3v06NHWU7QSj10BAATCg71Au/f000/feOONO3n+IZVKNTY2FhcX7/wZrqOPPvpb\n3/pWAQYEaCXCDmj37rrrroULF+a+zl/+8hdhB7Rrwg5o99KP1Y2bddceg4dmvchtE09PxTfl\nbyiANiDsgEBU99mzR/+BWe9eXFISxfM4DkAb8OYJAIBACDsAgEAIOwCAQAg7AIBACDsAgEAI\nOwCAQAg7AIBACDsAgEAIOwCAQAg7AIBACDsAgED4W7EA/yuVSq1bty7HRbp3756XYQCyIOwA\noiiKNq5eFW/Y1KNHjxzXueqqq6655pq8jATQUsIOIIqiKNnUVFxSus/ho7JeIb5509KXnnnn\nnXfyOBVAiwg7gP9VXlk1Yc6vs9597cqlP/7sEXmcB6ClvHkCACAQwg4AIBDCDgAgEMIOACAQ\nwg4AIBDCDgAgEMIOACAQwg4AIBDCDgAgEMIOACAQwg4AIBDCDgAgECVtPQDQoTU2Ns6dO/fj\njz/OZZEXX3wxX/MAtGvCDmhLf/zjH7/5zW+29RQAgRB2QFtqbGyMouiQMf9xwOhTsl7kdzde\ntWHVyvwNBdBeCTug7e2x77CDT/pc1rs/dtsNGyJhB+DNEwAAoRB2AACBEHYAAIEQdgAAgRB2\nAACBEHYAAIEQdgAAgRB2AACBEHYAAIEQdgAAgRB2AACBEHYAAIEQdgAAgRB2AACBEHYAAIEQ\ndgAAgRB2AACBEHYAAIEQdgAAgRB2AACBEHYAAIEQdgAAgRB2AACBEHYAAIEQdgAAgRB2AACB\nEHYAAIEQdgAAgRB2AACBEHYAAIEQdgAAgRB2AACBEHYAAIEQdgAAgRB2AACBEHYAAIEQdgAA\ngRB2AACBEHYAAIEQdgAAgRB2AACBEHYAAIEQdgAAgShp6wEAApFKJqMoevLJJ88888xc1qmu\nrv7+97+/xx575GkuoAMRdgD5sXH1qiiKli1btmzZshyXOu64484777x8DAV0LMIOID/Sj9gd\nMHrM2O/MyHqRlx759R/m/CiZTOZvLqADEXYA+VRW0aVH/4FZ717RrUcehwE6Gm+eAAAIhLAD\nAAiEsAMACISwAwAIhLADAAiEsAMACISwAwAIhLADAAhEwT+g+NVXX73iiiu22jhp0qSxY8de\ndNFFS5Ysad5YXl6+cOHCQs8DABCqgofd0KFD58+f33zyo48+uvrqq4cPHx5FUV1d3cSJE0eO\nHJk+q6jIw4cAANkreNiVlpb26tWr+eRNN910+umnDxgwIIqi2travn37bnkuAABZa9W/FfvE\nE0988MEH06dPj6IoHo9v3rx50aJFd911V21t7b777jtu3Lj+/fvvaN9UKpWXGVKpVL6WIvq/\nr4ujWggd5JB2kJvZUu3ie6r527+tBwmQo5p3gR3SWCy2o7NaL+ySyeTdd9991llnlZSURFFU\nX1/frVu3pqamr33ta1EU3XPPPVOnTp0zZ06XLl22u+/atWvzMsbmzZvzsg5bqq2tbesRAlRf\nX9/WI7QGd57tqqurq6mpaespMtJe5mxHmpqaHNW8C+mQFhcXd+/efUfntl7Y/e1vf2toaDjh\nhBPSJ6urq++4447mcy+77LLx48c/9dRTJ5100rb7xmKx0tLS3GdIJBJFRUU76VxaKpFIJJPJ\nkpISRzWPkslkKpUqLi5u60FaQ/pfemylpKQkLz/0CiqVSiUSCV/B/IrH47FYzFHNr3g8vvt/\nQ2Vu5+9JaL27zp///OdRo0bt6HdV586de/fuvWbNmu2eG4vFqqurc5+htra2vLw8pK9um6uv\nr6+vr6+oqCgrK2vrWcLR0NCQTCYrKiraepDW0EFuZkt17tw5Lz/0CiqRSNTV1e3+c7YvNTU1\nxcXFjmp+rV27tuMc0lZ6I+rHH3/84osvHnXUUc1bli5devPNNzc1NaVPNjQ0rF69um/fvq0z\nDwBAeFrpEbt33nknkUjsueeezVt69OixaNGipqams846K5FI3HHHHZWVlaNGjWqdeQAAwtNK\nYbdu3bpYLNajR4/mLVVVVTNmzFiwYMEll1xSWlo6ZMiQ6667rlOnTq0zDwBAeFop7EaPHj16\n9OitNg4aNGjGjBmtMwAAQPD8sQcAgEAIOwCAQAg7AIBACDsAgEAIOwCAQAg7AIBACDsAgEAI\nOwCAQAg7AIBACDsAgEAIOwCAQAg7AIBACDsAgEAIOwCAQAg7AIBACDsAgEAIOwCAQAg7AIBA\nCDsAgEAIOwCAQAg7AIBACDsAgEAIOwCAQAg7AIBACDsAgEAIOwCAQAg7AIBACDsAgEAIOwCA\nQAg7AIBACDsAgEAIOwCAQJS09QBAe5VMJocOHfr222+39SAA/C9hB2SpoaHh7bffrqju3m/o\n8KwXqVn+3rr3l+VxKoCOTNgBOdlz/4MmzPl11rs/OnvGXxb8NI/zAHRkXmMHABAIYQcAEAhh\nBwAQCGEHABAIYQcAEAhhBwAQCGEHABAIYQcAEAhhBwAQCGEHABAIYQcAEAhhBwAQCGEHABAI\nYQcAEAhhBwAQCGEHABAIYQcAEAhhBwAQCGEHABAIYQcAEAhhBwAQCGEHABAIYQcAEAhhBwAQ\nCGEHABAIYQcAEAhhBwAQCGEHABCIkrYeAGgbs2fPvv3223NZIZlM5msYAPJC2EEHtXDhwuef\nf76tpwAgn4QddGg/ePaDouIsfw7Ur18749+G5HceAHLhNXYAAIEQdgAAgRB2AACBEHYAAIEQ\ndgAAgRB2AACBEHYAAIEQdgAAgRB2AACBEHYAAIEQdgAAgRB2AACBEHYAAIEQdgAAgRB2AACB\nEHYAAIEQdgAAgRB2AACBEHYAAIEQdgAAgShp6wEAyLMVK1Y88sgjua9zzDHHHHjggbmvA7Qa\nYQcQmssuu+yee+7JfZ0jjzzymWeeyX0doNUIO4DQNDQ0RFE05uLp5VVds17kt9dPTa8DtCPC\nDiBMh449o6rXHlnv/ruZV+ZxGKB1tJuwS6VS+VonX0sR/d/XxVHNr9T/aetBaDO7zx1gJ2M0\nf/u34jgdhaOad4Ed0lgstqOz2kfYpVKp9evX575OMpmMx+M7ORy0VDKZjKLo448/rq+vb+tZ\nwpH+pd7Y2FjQa2lqairo+uSivr4+lx968Xg8L2MkEomdj5FMJvPyw5lmqVRql4edlgrsjlpU\nVFRdXb2jc9tH2MVise7du+e+Tm1tbXl5eWlpae5LkVZfX19fX19ZWVlWVtbWs4SjoaEhmUxW\nVFQU9FpKStrHt3/H1KVLl1x+6OXrp1xxcfFOxkgkEnV1dTv5BUMWampqiouLu3Xr1taDBGXt\n2rV5qYh2wefYAQAEQtgBAARC2AEABELYAQAEQtgBAARC2AEABELYAQAEQtgBAARC2AEABMJH\nzwPsRmprPoqi6Oqrr549e3bWi7z77rv5mwhoT4QdwG6kZtniKIqWLFmyZMmStp4FaH+EHcBu\nJJVKRVF0xjWzD/vsWVkvct3JB29cvSp/QwHthtfYAQAEQtgBAARC2AEABELYAQAEQtgBAARC\n2AEABELYAQAEQtgBAARC2AEABELYAQAEQtgBAARC2AEABELYAQAEQtgBAARC2AEABELYAQAE\nQtgBAARC2AEABELYAQAEQtgBAARC2AEABELYAQAEQtgBAARC2AEABELYAQAEQtgBAARC2AEA\nBELYAQAEQtgBAARC2AEABELYAQAEQtgBAARC2AEABELYAQAEQtgBAARC2AEABELYAQAEQtgB\nAARC2AEABELYAQAEQtgBAARC2AEABELYAQAEQtgBAARC2AEABELYAQAEQtgBAARC2AEABELY\nAQAEQtgBAARC2AEABELYAQAEQtgBAARC2AEABELYAQAEQtgBAARC2AEABELYAQAEQtgBAARC\n2AEABELYAQAEQtgBAARC2AEABELYAQAEQtgBAARC2AEABELYAQAEQtgBAARC2AEABELYAQAE\nQtgBAARC2AEABELYAQAEQtgBAARC2AEABELYAQAEQtgBAARC2AEABELYAQAEoqQVruOiiy5a\nsmRJ88ny8vKFCxdGUVRXVzd37txXXnklHo8PGTJk8uTJffr0aYV5AACC1BphV1dXN3HixJEj\nR6ZPFhX978OEs2bNqqurmz59eqdOne6+++5rr732pz/9afO5AAC0SGtUVG1tbd++fXv9nx49\nekRRtGbNmmeffXbixIn77LNPv379Jk+evHLlyldffbUV5gEACFLBH7GLx+ObN29etGjRXXfd\nVVtbu++++44bN65///5vv/12aWnpPvvsk75YZWXlXnvt9eabb44YMaLQIwEABKngYVdfX9+t\nW7empqavfe1rURTdc889U6dOnTNnzsaNG6uqqmKxWPMlq6urN2zYsN1FksnkunXrch8mlUo1\nNjbmvg7NUqlUFEW1tbVtPUhQ0kd106ZNBb2Wpqamgq5PABKJRE1NzU4ukEqldn4BWiqVSjU1\nNTmq+RXYHbW4uLhbt247OrfgYVddXX3HHXc0n7zsssvGjx//1FNPRVG0ZdXtXCwWy8tr75LJ\nZCwWy/x62aVkMplKpRzV/EqHnUPK7mDnP3uTyaQXRudXIpHI1688mgV2R935b4fWePPEljp3\n7ty7d+81a9YMGjRo48aN6SZIn7Vhw4bu3btvd69YLLajs1qktra2vLy8tLQ09zYwwcEAACAA\nSURBVKVIq6+vr6+vr6ysLCsra+tZwtHQ0JBMJisqKgp6LSUlrf3tT7tTXFy8k5+9iUSirq6u\nurq6NUcKXk1Nzc4fjyELa9euzUtFtAsFD9ilS5fefPPNzU/6NDQ0rF69um/fvvvtt188Hn/3\n3XfT2zdu3Lh8+fJhw4YVeh4AgFAV/J/sPXr0WLRoUVNT01lnnZVIJO64447KyspRo0Z16tTp\n6KOPvuWWWy666KKysrJ58+YNHjz4gAMOKPQ8AAChKnjYVVVVzZgxY8GCBZdccklpaemQIUOu\nu+66Tp06RVF00UUXzZ079+qrr04kEgceeOC0adO8qAgAIGut8SKbQYMGzZgxY9vtFRUVl1xy\nSSsMAADQEXj1NLRLy5Yty/HzShoaGvI1DAC7iYzCLh6Peycp7D7mz58/YcKEtp4CgN1ORmHX\nr1+/s88+e/z48YcddlihBwJ2aeXKlVEU7X3IJ6t675H1Iq/9+ZGEzygGCEtGYXfQQQfdfPPN\nP/3pTw866KBx48ade+65e+65Z6EnA3bu+AsuHvqpk7Le/ZrjBiXq/MkQgKBk9Dl2f/7zn1eu\nXDl79uzu3btffvnlAwYMGDNmzC9/+ctC/8kjAAAyl+kHFPft2/cb3/jG448/vmLFipkzZ9bU\n1Hz5y1/u27fvhRde+MwzzxR0RAAAMtHivzzRr1+/iy++eMGCBWefffbGjRvnzZv3yU9+8phj\njnnuuecKMR8AABlqWdh9+OGHP/nJT0aMGHHQQQfde++9Y8eO/c1vfvPQQw81NjaOHDny0Ucf\nLdCUAADsUkZvnmhsbPztb397++23//73v29qakr/9Yjx48c3v4XiM5/5zOc+97mvf/3r77zz\nTiGnBaCVpJLJDRs2/OpXv9rRBZLJZENDQ0VFxU4WKSoqOvnkkysrKwswILAdGYXdnnvuuXbt\n2srKyvPOO+8rX/nKscceu9UFSktLJ0+efPrppxdgQgDaQFPj5mXLlp155pk5rnPVVVddc801\neRkJ2KWMwu6AAw644IILvvSlL3Xp0mVHlznssMPmzZuXv8EAaEupVKqqZ59jzpmU9QrrP1jx\n9K8WfPzxx3mcCti5jMLuiSeeWLVq1fz587/5zW+mt6xevXrOnDmTJ0/u06dPesuAAQO+8pWv\nFGpMAFpdl+49jz//oqx3X/rSM0//akEe5wF2KaM3T7z55puHHnrolClTmrfU19dPnz59xIgR\nixcvLthsAAC0QEZh993vfreysvLJJ59s3jJw4MDXXnutsrLy0ksvLdhsAAC0QEZh97e//e17\n3/vekUceueXGYcOGXXrppX/4wx8KMxgAAC2TUdjV1dWVlZVtu72ysjKRSOR7JAAAspFR2B16\n6KF33nnnVg1XW1s7a9asQw89tDCDAQDQMhm9K/aqq64aM2bM/vvvP2bMmN69eyeTyeXLlz/8\n8MM1NTWPPPJIoUcEACATGYXdySef/Oijj06dOvWWW25p3jh8+PBf/OIXJ598csFmAwCgBTIK\nuyiKTjrppJNOOqmmpub9998vLi4eMGBAVVVVQScDAKBFMg27tJ49e/bs2bNAowAAkIuM3jzx\n0UcfnX/++f379y8uLo5to9AjAgCQiYwesfvGN75x//33H3/88SeddFJJScse5AMAoHVkVGl/\n+tOffv3rX5922mmFngYAgKxl9FTspk2bRo0aVehRAADIRUZhd/jhh//zn/8s9CgAAOQio7C7\n8cYbL7/88kWLFhV6GgAAspbRa+wuvvjiDz74YNSoURUVFb17997q3CVLluR/LgAAWiijsCsq\nKtp///3333//Qk8DAEDWMgq7xx9/vNBzAACQo4xeY5fW0NDw7LPP3n///WvWrImiqKmpqWBT\nAQDQYpmG3cyZM/v06XPUUUd94QtfeOedd6Iomj59+gUXXCDvAAB2Exk9FXvbbbdNmTLlc5/7\n3CmnnDJ58uT0xiFDhlx//fUHHHDApZdeWsgJISirV68+5phj0g9770gqlYqiaCd/r6+hoSH/\nkwHQ/mUUdjfffPPkyZPnzJnT0NDQHHbjxo1744035s2bJ+wgc4sXL3777bfLK7tWVHff0WV2\n+QeYm+o35XcqAMKQUdi99dZbM2fO3Hb76NGjb7jhhnyPBOE7/HNnnTrlB1nvPm/yF9595ok8\nzgNAGDJ6jV3Xrl23+9TPhg0bOnfunO+RAADIRkZhN3z48BtuuGHTpn959mft2rXXXnvtyJEj\nCzMYAAAtk9FTsVdcccWnP/3p4cOHjx07Noqi22677dZbb73//vs3bdp06623FnhCAAAyktEj\ndqNHj3700UerqqpuuummKIrmz59/++23Dx069A9/+MMxxxxT4AkBAMhIRo/YRVF04oknvvDC\nCx999NH7778fRdHAgQO7d9/he/oAAGh9mYZdWp8+ffr06VOgUQAAyEVGYderV68dndXY2Lhx\n48b8zQMAQJYyCrtjjz12qy0ffPDBq6++Onjw4OOPP74AUwEA0GIZhd0DDzyw7cZVq1Z96Utf\nGjNmTL5HAgAgGxm9K3a7+vbtO3PmzOnTp+dxGgAAspZ92EVRtNdee7322mv5GgUAgFxkH3ap\nVGr+/Pk9e/bM4zQAAGQto9fYHXLIIVttSSQSq1atWrNmzZQpUwowFQAALdayz7FrVlpaOnz4\n8NNOO23y5Mn5HQgAgOxkFHYvvfRSoecAACBHOb15AgCA3UdGj9iVlpaWlZXFYrFdXrKuri7n\nkQAAyEZGYTdx4sS//OUvb7311hFHHNGvX79kMrlkyZKXX355xIgRQ4cOTaVShZ4SAIBdyijs\nTjjhhCeeeGLp0qX9+vVr3vjGG298/vOfP+ecc0499dSCjQcAQKYyeo3d1VdffdVVV21ZdVEU\nDR069JJLLpk2bVphBgMAoGUyCru33367W7du227v2bPnG2+8ke+RAADIRkZh16tXrwULFmz1\nWrpEInHnnXf26NGjMIMBANAyGb3G7qtf/eq11177zDPPnHTSSX369ImiaM2aNX/+859fe+21\nqVOnFnhCAAAyklHYTZ8+vby8fPbs2XPmzGne2Lt37+nTp1955ZUFmw0AgBbIKOyKioqmTp36\n3e9+d/ny5atWrUqlUr179957772Liny+MQDA7qIFZbZ58+YPP/xw5cqVgwcPHjRoUDKZLNxY\nAAC0VKZhN3PmzD59+hx11FFf+MIX3nnnnSiKpk+ffsEFFzQ1NRVyPAAAMpVR2N12221Tpkw5\n4YQTbr311uaNQ4YMueuuu2688caCzQYAQAtkFHY333zz5MmTH3zwwfHjxzdvHDdu3KWXXjpv\n3ryCzQYAQAtkFHZvvfXWf/zHf2y7ffTo0e+9916+RwIAIBsZhV3Xrl0bGhq23b5hw4bOnTvn\neyQAALKRUdgNHz78hhtu2LRp05Yb165de+21144cObIwgwEA0DIZfY7dFVdc8elPf3r48OFj\nx46Noui222679dZb77///k2bNm35dgoAANpQRo/YjR49+tFHH62qqrrpppuiKJo/f/7tt98+\ndOjQP/zhD8ccc0yBJwQAICMZPWIXRdGJJ574wgsvfPTRR++//34URQMHDuzevXshBwMAoGUy\nesRu1KhRjzzySBRFffr0OeSQQw455BBVBwCwu8ko7JYvX/7GG28UehQAAHKRUdjdcsst8+bN\ne+CBB+LxeKEHAgAgOxm9xu6GG24oKSk5/fTTy8rKevXqVVpauuW5S5YsKchoAAC0REZhl0wm\ne/fufeKJJxZ6GgAAspZR2D355JOFngMAgBzt7DV2P/rRj1544YUtt2zevPkvf/lLTU1NgacC\nAKDFdhZ2U6dOfeqpp7bcsnr16hNOOGHRokUFngoAgBbL6F2xAADs/oQdAEAghB0AQCCEHQBA\nIIQdAEAgdvE5dkuWLHn66aebT65evTqKojfffLNXr17NG0eOHFmg4QAAyNwuwm7mzJkzZ87c\nauOUKVO2PJlKpfI8FAAALbezsJs+fXqrzQEAQI52FnZXX311a40BAECuvHkCACAQwg4AIBDC\nDgAgEMIOACAQu/i4k91EKpVav3597uskk8l4PB6LxXJfirRkMhlFUV1dnaOaodra2rYeAVpV\nQ0PDunXr2nqKdiOVSiUSCUcsv5LJZEiHtKioqLq6ekfnto+wi8Vi3bt3z32d2tra8vLy0tLS\n3Jcirb6+vr6+vrKysqysrK1naR+qqqraegRoVeXl5Xn5Ad5B1NTUFBcXd+vWra0HCcratWs7\nzp3QU7EAAIFoH4/YwW7ikUceefXVV3NZYfny5fkaBgC2IuygBcaPH79mzZq2ngIAtk/YQQvE\n4/Fufff6j+mzsl7hraf+9MSdP8vjSADQTNhBy5R1rtj3k8dnvfv6VSvyOAwAbMmbJwAAAiHs\nAAACIewAAAIh7AAAAiHsAAACIewAAAIh7AAAAiHsAAACIewAAAIh7AAAAiHsAAACIewAAAJR\n0tYDABCmTbUboiiaN2/e/fffn8s6lZWVv/vd7/baa688zQUhE3YAFMSGVSujKNqcSK3fnMh6\nkU21GzYtXvzPf/5T2EEmhB0ABXTk6eee8q1rst79jz+//rGf/ziP80DYvMYOACAQwg4AIBDC\nDgAgEMIOACAQwg4AIBDCDgAgEMIOACAQwg4AIBDCDgAgEMIOACAQwg4AIBDCDgAgEMIOACAQ\nwg4AIBDCDgAgEMIOACAQwg4AIBDCDgAgEMIOACAQwg4AIBAlbT0AtJK33nrr/vvvz3GRzZs3\nd8rLNABQAMKOjuKaa665++67c1+na+5LAEBhCDs6ing8HkXR57/344rqHlkvcvflX83fRACQ\nZ8KOjmXop06q3qN/9vt/N3+jAEC+efMEAEAghB0AQCCEHQBAIIQdAEAghB0AQCCEHQBAIIQd\nAEAghB0AQCCEHQBAIIQdAEAghB0AQCCEHQBAIIQdAEAghB0AQCCEHQBAIIQdAEAghB0AQCCE\nHQBAIIQdAEAghB0AQCCEHQBAIIQdAEAghB0AQCCEHQBAIIQdAEAghB0AQCCEHQBAIIQdAEAg\nhB0AQCCEHQBAIIQdAEAghB0AQCCEHQBAIIQdAEAghB0AQCCEHQBAIIQdAEAghB0AQCCEHQBA\nIIQdAEAghB0AQCCEHQBAIIQdAEAgStp6ANi1lStXfu9739u0aVMuiyxatChf8wDty29+85t7\n7703x0XKysrOPvvsU045JS8jQYEIO9qB//mf/7njjjvaegqgvZo5c2Ze/mm3Zs0aYcduTtjR\nDiSTySiKPnPRlQefdFrWi9x6wSm1az7K31BAu5FKpaIouvS3z2W9QmP9xzd96fj0OrA7E3a0\nG1269ezRf2DWuxcVu7dDh5bLD5DNH9fmcRIonNb4Vbd27dr58+e//PLLjY2NgwYNuuCCC/bf\nf/8oii666KIlS5Y0X6y8vHzhwoWtMA8AQJBaI+y+//3vl5WVXXPNNZ07d7777ruvvfbaefPm\nlZeX19XVTZw4ceTIkemLFRV5iy4AQPYKHna1tbW9e/c+99xzBwwYEEXRuHHj/vrXvy5fvny/\n/farra3t27dvr169Cj0DAEBHUPCwq6qqmjp1avPJmpqaoqKiXr16xePxzZs3L1q06K677qqt\nrd13333HjRvXv3//Qs8DABCqVn05eW1t7ezZsz//+c937959w4YN3bp1a2pq+trXvhZF0T33\n3DN16tQ5c+Z06dJl2x1TqdT69etzHyCZTMbj8VgslvtSpKXfr1pXV1fQo1pfX1+4xYHdX11d\n3bp167LevampKS9jxOPxXMbIRCqVSiQShb6WjiaVSoV0SIuKiqqrq3d0buuF3YoVK2bMmHHI\nIYeMHz8+iqLq6uotP5nssssuGz9+/FNPPXXSSSdtu28qlUoHRI7S71T3fvU8aj6kBT2qvmTQ\nwSWTybz8FshdK4yRr195NAvskO78kZRWCruXX375+uuv//KXv3zqqadu9wKdO3fu3bv3mjVr\ntntuUVFRz549cx+jtra2vLy8tLQ096VIq6+vr6+vr6qqKisrK9y1bPdxXKDj6Nq1ay6/BUpK\n8vPLrrS0NC+/jHaipqamuLi4W7duBb2Wjmbt2rU9evRo6ylaSWu8EfW11177r//6r29/+9tb\nVt3SpUtvvvnm5ofHGxoaVq9e3bdv31aYBwAgSAV/xK6xsXHWrFmf+9znBg4c2PyAXGVlZY8e\nPRYtWtTU1HTWWWclEok77rijsrJy1KhRhZ4HACBUBQ+7119/fdWqVXfffffdd9/dvHHSpElj\nx46dMWPGggULLrnkktLS0iFDhlx33XWdOnUq9DwAAKEqeNiNGDHioYce2u5ZgwYNmjFjRqEH\nAADoIPyxBwCAQAg7AIBACDsAgEAIOwCAQAg7AIBACDsAgEAIOwCAQAg7AIBACDsAgEAIOwCA\nQAg7AIBACDsAgEAIOwCAQAg7AIBACDsAgEAIOwCAQJS09QAAsEPxzQ1RFC1cuPCll17KepH3\n338/fxPBbk3YAbD7WvnPl6Iomj9/flsPAu2DsANg95VMJqIo+revfrvvfgdmvcjCq77WtHlz\n/oaC3ZewA2B3t/ehI/c7+oSsd//NNRc1RcKODsGbJwAAAiHsAAACIewAAAIh7AAAAiHsAAAC\nIewAAAIh7AAAAiHsAAACIewAAAIh7AAAAiHsAAACIewAAAIh7AAAAiHsAAACIewAAAIh7AAA\nAiHsAAACIewAAAIh7AAAAiHsAAACIewAAAIh7AAAAiHsAAACIewAAAIh7AAAAiHsAAACIewA\nAAIh7AAAAiHsAAACIewAAAIh7AAAAiHsAAACIewAAAIh7AAAAiHsAAACIewAAAIh7AAAAiHs\nAAACIewAAAIh7AAAAiHsAAACIewAAAIh7AAAAlHS1gOwW1u4cOFjjz22kws0NTU1NTWVlZUV\nFe3sHwnjxo075phj8j0dAPAvhB07c80117z22mu5r7Nx40ZhBwCFJuzYmWQy2ami8sLbHsh6\nhdo1H91+8dnJZDKPUwEA2yXs2IVYcXH/YSOy3n39qhV5HAYA2AlvngAACISwAwAIhLADAAiE\nsAMACISwAwAIhLADAAiEsAMACISwAwAIhLADAAiEsAMACISwAwAIhLADAAiEsAMACISwAwAI\nhLADAAiEsAMACISwAwAIhLADAAiEsAMACERJWw8AAB3F66+/Xl9fv5MLbNiwoaioqKqqaieX\n6dGjxz777JPv0QiEsAOA1vDXv/519OjRua9TUlKyePHiAQMG5L4U4RF2ANAaVq9eHUXRJw4+\nou9+B2S9yJIXn/7ovbfWrVsn7NguYQcAreegE0/91LivZ737/d//zkfvvZXHeQiMN08AAASi\nfTxil0ql1q9fn/s6yWQyHo/HYrHcl+ogEolEXtZpbGxct25d1rvv/LXGAK0jHo/n8qPs448/\nztckGzduzGWSjiaZTIZ0uIqKiqqrq3d0bvsIu1gs1q1bt9zXqaur69SpU2lpae5LdRDFxcV5\nWaesrCyXr2Dnzp3zMgZALkpLS3P5UVZRUZGvSaqqqvLya7GDWLduXcc5XO0j7KIoytfDbLFY\nzCN2bSKXw+5LBuwmdpMfZX6XtVTHOVztJuxo1xYvXjx37tysd3/iiSfyOAxAdlasWJHLj7IX\nXnghj8PAdgk7Cuvj9TVRFD333HPPPfdcW88CkKX45oYoil577bVJkya19SywM8KOwkrE41EU\n9R824qj/GJf1Is8/eM+yV3Uh0GaSTU1RFPUZNOSYsydmvcg//vjbt5/+S95mgu0RdrSGnnvt\nfdQXsg+7pS/+XdgBba56j365/Chbs/RdYUeh+Rw7AIBACDsAgEAIOwCAQAg7AIBACDsAgEAI\nOwCAQAg7AIBACDsAgEAIOwCAQAg7AIBACDsAgEAIOwCAQAg7AIBACDsAgEAIOwCAQAg7AIBA\nCDsAgEAIOwCAQAg7AIBACDsAgEAIOwDoWL7whS/Ecta5c+ebbrqprW8KWytp6wEAgFb1wgsv\nFJeU9t3vgKxXaGrc/OG7b7z44ot5nIq8EHYA0OFUdOvxjf/vj1nvvnrJOz/5wtF5nId88VQs\nAEAghB0AQCCEHQBAIIQdAEAgvHkCANqNVCoVRdFrr70Wj8ezXqSxsTF/E7F7EXYA0G6sfP3l\nKIq+/OUv57hOVa898jEOux1hBwDtRtPmhiiKDvr0Zyu6ds96kWfvvzN/E7F7EXYA0M6ceOGU\nXD5e+LkH787jMOxWvHkCACAQwg4AIBDCDgAgEMIOACAQwg4AIBDCDgAgEMIOACAQwg4AIBDC\nDgAgEMIOACAQwg4AIBDCDgAgEMIOACAQwg4AIBDCDgAgEMIOACAQwg4AIBDCDgAgEMIOACAQ\nwg4AIBAlbT0AhfLYY49NmzYtHo/nssiSJUui0k75GgmAMCTi8SiKHn744SOOOCKXdbp16zZv\n3ry99947P2Mh7AL20EMPPf3007mvUy7sAPhXG1d/EEVRTU1NTU1Njks99dRTwi6PhF3gvnbH\nowMOOizr3ad9sn8ehwEgEKkoiqLDPnvWGdfMznqNp34577fXT02lUnmbCq+xAwAIhrADAAiE\nsAMACISwAwAIhLADAAiEsMuzVCp1xBFHxHJWUVHx8MMPt/WtAQDaEx93kmfxePz5558vq+jS\ne+C+WS/SULexZvl7L7300qmnnprH2QCAsAm7gug/dPjEeQ9lvfsbT/y/2y8+J4/zAAAdgadi\nAQACIewAAAIh7AAAAiHsAAACIewAAAIh7AAAAiHsAAACIewAAAIh7AAAAiHsAAACIewAAAIh\n7AAAAlHS1gOwPalUFEX/+Mc/fvWrX2W9xttvv52/gQCAdkDY7Y4+ePu1KIruvffee++9t61n\nAQDaDWG3O0rEG6MoOmD0mCHHfjrrRf5028wNH76fv6EAgN2dsNt99T/gkKO+MC7r3Z9euEDY\nAUCH4s0TAACBEHYAAIEQdgAAgRB2AACB8OaJf/H4448/8sgjuayQSCTyNQwA0Aruuuuuf/zj\nHzkuEovFLrzwwkGDBuVlpKwJu38xY8aMP/7xj209BQDQeiZNmlRfX5/7OkVFRT/4wQ9yXycX\nwu5fpB9vm7zgkZKysuxWaNrccOtXTs3rUABAASUSid577/ulH9ya9Qrvv/7Kfd//9u7wrJ2w\n245+Qw8u7VSe3b6Nm/KQ/ABAayot79x/2Iisd2+s/ziPw+SiLcOurq5u7ty5r7zySjweHzJk\nyOTJk/v06dOG8wAAtGtt+a7YWbNmffTRR9OnT//xj39cUVFx7bXXJpPJNpwHAKBda7OwW7Nm\nzbPPPjtx4sR99tmnX79+kydPXrly5auvvtpW8wAAtHdtFnZvv/12aWnpPvvskz5ZWVm51157\nvfnmm201DwBAexdLpVJtcsWPPvroL3/5ywULFjRvmTZt2sCBAy+88MJtL5xKpTZu3Jj7lSYS\niaKiolgstqMLfPazn33iiScGH/mpWFGWyZtMJhc/+0R5VfVeBxyS7ZjR2hVL1q5c2nOvvbv3\nH5j1Istefb6xvm7AQYd16lKV9SLvPvNErKho0BHHZL1CQ+3GFa+9WNmzd999D8h6kQ/ffaN2\nzYd9Bg3p2rtv1ossefHppsbNex/yyZJs3xkTRdE7f/9rWeeKTww/MusVNq7+4KPFb1Xv0b/3\n3vtmvcj7r79cv3H9nkMO6tKtZ9aLLH7ub8lE0+CjjtvJd8TOJZri7z3/VEV1935Dh2c9Rs3y\n99a9v6zngH269/tE1osse/W5xvqPBxx0eKculVkv8u4zjxcVl+xz+KisV9i0cf3K11+u6tln\nj32HZb3Iqnder6v5aI/BQ6t67ZH1IkteXNTU2Lj3oSNLyjplvcg7f/9rWUWXTxx8RNYrbPzw\n/Y+WvN1tzwG9PpH9J3utfO2lTbUb+g09uKK6R9aLLH7uyWQise8nj896habGzUtefLqiuke/\noQdnvciaZe+u/2BFr08M6rbngKwXWfbKs42b6j9x8BFlFV2yXuSdZx4vKS3d+9Cjs16hfsPa\n9994tarXHnsMHpr1ImtXvLd25bJhw4btsUf29/aPPvpo3bp1Q4YM2cllUqnUzn/QPf7446Xl\nFQMOPjzrMdLf/pdccsnVV1+d9SIZKioqqqra4W/2tgy7e++9d/78+c1bdhJ2yWRy7dq1rTDV\n1KlT582b1wpXBACEJBaL/fSnPz3rrLMKfUXFxcXdu3ff0blt9q7Ybt26bdy4ccuI3rBhw44G\nLSoq6tWrV+5XWltbW15eXlpauqML3HbbbbfddlvuV9Rx1NfX19fXd+3atSzbT/5jWw0NDclk\nsqKioq0HCUdTU9P69es7d+7cpUv2D3KwlUQiUVdXV11d3daDBKWmpqa4uLhbt25tPUhQ1q5d\n26NH9o/4ti9t9hq7/fbbLx6Pv/vuu+mTGzduXL58+bBh2T9/AQDQwbVZ2PXo0ePoo4++5ZZb\n3nvvvZUrV954442DBw8+4IDsX4YFANDBteUHFF900UVz5869+uqrE4nEgQceOG3atKxfxA0A\nQFuGXUVFxSWXXNKGAwDA/9/evYc09fcBHD+K16XzkoqJKZqlmZFYmIXdkC5k6SCoDEw0bxAI\nlRCC9kcYoRCkEYGIocVSym4QRSSSKAkma9pNupClZrakbWYytf3+OP32WPYEPs7W89379df2\nPXL2OWMc3uy4DRCJLX95AgAAAFZE2AEAAAiCsAMAABAEYQcAACAIwg4AAEAQhB0AAIAgCDsA\nAABBEHYAAACCIOwAAAAEQdgBAAAIgrADAAAQBGEHAAAgCMIOAABAEIQdAACAIAg7AAAAQRB2\nAAAAgiDsAAAABEHYAQAACIKwAwAAEARhBwAAIAjCDgAAQBCEHQAAgCAIOwAAAEEQdgAAAIIg\n7AAAAARB2AEAAAiCsAMAABAEYQcAACAIB7PZbOsZ/hyz2ezg4GDrKYQizHjBaQAABxJJREFU\nv354Vq2LZ3Uu8KzOBU6qVscLdS7Y1QvVvsIOAABAYFyKBQAAEARhBwAAIAjCDgAAQBCEHQAA\ngCAIOwAAAEEQdgAAAIJwsvUA+L83PDxcU1Oj1WpNJlN4eHhmZuaSJUtsPRTwHyMjI1VVVV1d\nXePj45GRkfn5+QEBAbYeCvgZ51JYBd9jh9k6fPiwi4tLbm6uu7u7Wq3WaDTV1dVubm62ngv4\nrrS0dGRkJC8vz9XVVa1Wv3nzprKy0tGR6xX4u3AuhVVwasOsGI1Gf3//gwcPhoeHL1iwYP/+\n/QaD4d27d7aeC/hOp9N1dHTk5uaGhYUFBQXl5+f39/d3d3fbei7gB5xLYS1cisWseHp6FhUV\nWe5++vTJ0dHRz8/PhiMBU7148cLZ2TksLEy+6+HhERwc3NPTs2LFCtsOBkzFuRTWwjt2sBqj\n0XjmzBmVSuXj42PrWYDvDAaDp6fn1J+J9PLy0uv1NhwJ+D3OpZgNwg4z09raqvrXs2fPLOt9\nfX2FhYUxMTEZGRk2HA+Yzn5+/BsC4FyKWeJSLGYmLi6uoqJCvh0YGCjf0Gq15eXlaWlpO3bs\nsN1owC94e3sbDAaz2WzJO71ezxsh+DtxLsXsEXaYGYVCERoaOnXl6dOnZWVlR44cWblypa2m\nAv6bxYsXj4+Pv3r1KiIiQpIk+R/Sly5dauu5gJ9xLoVVEHaYFZPJdPr06ZSUlNDQUJ1OJy96\neHjwEX38JXx9fdesWXP27NmCggIXF5fq6upFixZFR0fbei7gB5xLYS18jx1mRavVlpSU/LSY\nl5eXnJxsk3mA6UZHR6uqqjQazeTk5LJly/Lz87kUi78N51JYC2EHAAAgCD4VCwAAIAjCDgAA\nQBCEHQAAgCAIOwAAAEEQdgAAAIIg7AAAAARB2AEAAAiCsAMAABAEYQcAACAIwg6AvdiyZYuL\ni8vHjx9/uTUqKiogIMBkMv1mD4mJiVFRUXMzHQBYAWEHwF7k5uaOj49fuHBh+qYHDx709PRk\nZGS4uLj8+cEAwFoIOwD2IjU1NSAg4Pz589M3yYvZ2dl/fCgAsCbCDoC9cHZ2zsjIePz4cUdH\nx9T1r1+/NjQ0rF+/PjIyUpKk+vr6+Ph4hUKhVCpXrVpVX1//y73FxsbGxsZOXVGpVH5+fpa7\n9+/f37x5s1KpVCgUcXFxNTU1c3BMAPADwg6AHcnJyZEk6afGamxsNBgM8qaGhoa0tLTg4ODL\nly9funTJ398/LS3t1q1bM32gpqampKQkk8mkVqtv3LixevXqAwcOnDp1yloHAgC/5GA2m209\nAwD8OZs2bdJoNO/fv3d3d5dXkpKSNBrNwMCAm5vbyZMn7927d/v2bfmf7QwGw/z58/fs2XPx\n4kVJkhITE3U63fPnzyVJkt+ue/TokWXPKpWqtbVVp9NJkhQXF2c0GrVarUKhkLempqY2NzcP\nDQ25ubn92SMGYEd4xw6AfcnJydHr9deuXZPv9vb2Njc3p6eny71VVFTU1NRk+QiFUqkMDAx8\n+/btjB5iaGhIo9EkJyc7OjqO/Wv79u1Go7G7u9u6hwMAUxF2AOzLrl27fH19LVdja2trzWaz\nfB1WkiSDwXDs2LHly5d7eXk5OTk5OTn19fV9+/ZtRg8xMDAgSVJFRYX7FPn5+ZIk9fX1WfVo\nAOAHTrYeAAD+KFdX1/T09MrKyt7e3pCQkNra2oSEhJiYGHnrzp0729rajh49um3bNm9vbwcH\nh61bt/5vD5SVlWXpRYuIiIhZTQ8Av0XYAbA7ubm5FRUVarV63bp1r1+/Li4ultdfvnzZ0tKS\nk5Nz4sQJeWViYmJ4eDgsLGz6ThwdHcfHx6euDA4OyjdCQkIkSZqcnExISJjDwwCAabgUC8Du\nREdHr127trGx8cqVK0qlcvfu3fK6HGrBwcGWvzx37tzY2Njk5OT0nfj4+AwODlo+fzY0NNTV\n1SXf9vX1jY+Pv379+ufPny1/X1dXV1xcPDExMUcHBQASYQfAPuXk5HR2dtbV1e3bt2/evHny\nYkRExMKFC6uqqm7evNnW1lZYWHj16tWNGzc+efKkubn5y5cvU/eQkpKi0+nKyso+fPig0Wj2\n7t0bHh5u2VpeXj46Orphw4a6urq7d++WlJRkZ2f39/c7OXGdBMAc4utOANij0dHRoKAgvV7f\n2dkZFxdnWX/48GFBQYFWq/X09FSpVOXl5S0tLZmZmZOTk+3t7VlZWZavOzGZTEVFRQ0NDTqd\nLioqqrS09M6dO3V1dQaDQd5Va2vr8ePH29vbx8bGwsLCsrOzDx06RNgBmFOEHQAAgCC4FAsA\nACAIwg4AAEAQhB0AAIAgCDsAAABBEHYAAACCIOwAAAAEQdgBAAAIgrADAAAQBGEHAAAgCMIO\nAABAEIQdAACAIAg7AAAAQRB2AAAAgvgHFys+XBknlaIAAAAASUVORK5CYII=",
"text/plain": [
"plot without title"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Load necessary library\n",
"library(ggplot2)\n",
"\n",
"# Generate random data\n",
"set.seed(123) # for reproducibility\n",
"data <- data.frame(values = rnorm(1000, mean = 0, sd = 1))\n",
"\n",
"# Create a histogram\n",
"ggplot(data, aes(x = values)) +\n",
" geom_histogram(binwidth = 0.2, fill = \"skyblue\", color = \"black\") +\n",
" labs(title = \"Histogram of Random Normal Data\",\n",
" x = \"Value\",\n",
" y = \"Frequency\") +\n",
" theme_minimal()\n",
"geom_histogram"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"c=5"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[1] 5\n"
]
}
],
"source": [
"print(c)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAMAAADKOT/pAAACzVBMVEUAAAABAQECAgIDAwME\nBAQFBQUGBgYHBwcICAgJCQkKCgoLCwsMDAwNDQ0ODg4PDw8QEBARERESEhITExMUFBQVFRUW\nFhYXFxcYGBgZGRkaGhobGxscHBwdHR0eHh4fHx8gICAhISEiIiIjIyMkJCQlJSUmJiYoKCgp\nKSkqKiosLCwtLS0uLi4vLy8wMDAxMTEyMjIzMzM0NDQ3Nzc4ODg5OTk6Ojo7Ozs8PDw9PT0+\nPj5AQEBCQkJDQ0NERERFRUVGRkZHR0dISEhJSUlKSkpLS0tMTExNTU1OTk5PT09QUFBRUVFS\nUlJTU1NVVVVWVlZXV1dYWFhZWVlaWlpbW1tcXFxdXV1eXl5fX19gYGBhYWFiYmJjY2NkZGRl\nZWVmZmZnZ2doaGhpaWlqampra2tsbGxtbW1ubm5vb29wcHBxcXFycnJzc3N0dHR1dXV3d3d4\neHh5eXl6enp7e3t8fHx9fX1+fn5/f3+AgICBgYGCgoKDg4OFhYWGhoaHh4eIiIiJiYmKioqL\ni4uMjIyNjY2Ojo6Pj4+QkJCRkZGSkpKTk5OUlJSVlZWWlpaXl5eYmJiZmZmampqbm5udnZ2f\nn5+goKChoaGioqKjo6OlpaWmpqanp6eoqKipqamqqqqrq6usrKytra2urq6vr6+wsLCxsbGy\nsrKzs7O0tLS1tbW2tra4uLi5ubm7u7u8vLy9vb2+vr6/v7/AwMDBwcHFxcXGxsbHx8fIyMjJ\nycnKysrLy8vMzMzNzc3Ozs7Pz8/Q0NDR0dHS0tLT09PU1NTV1dXW1tbX19fY2NjZ2dna2trb\n29vc3Nzd3d3e3t7f39/g4ODh4eHi4uLj4+Pk5OTl5eXm5ubn5+fo6Ojp6enq6urr6+vs7Ozt\n7e3u7u7v7+/w8PDx8fHy8vLz8/P09PT19fX29vb39/f4+Pj5+fn6+vr7+/v8/Pz9/f3+/v7/\n//8BsQpVAAAACXBIWXMAABJ0AAASdAHeZh94AAAbH0lEQVR4nO3d/Z+ddX3n8e8wTEJIMAIl\n3AkBCrvWAg1d5S5NoS6KoFbutMRk1VXA1IIRDUarjYX1DssuarEiugrRFkVZCKKUkEUNApqA\nW7SAUBI1xJCQzPkbdm5zMzcnCec91zlX8nz+cJ0r1/nOzMfLeT2Yc851ZkoDaFlp9wCwJxAS\nBAgJAoQEAUKCACFBgJAgQEgQICQIEBIECAkChAQBQoIAIUGAkCBASBAgJAgQEgQICQKEBAFC\nggAhQYCQIEBIECAkCBASBAgJAoQEAUKCACFBgJAgQEgQICQIEBIECAkChAQBQoIAIUGAkCBA\nSBAgJAgQEgQICQKEBAFCggAhQYCQIEBIECAkCBASBAgJAoQEAUKCACFBgJAgQEgQICQIEBIE\nCAkChAQBQoIAIUGAkCBASBAgJAgQEgQICQKEBAFCggAhQYCQIEBIECAkCBASBAgJAoQEAUKC\nACFBgJAgQEgQICQIEBIECAkChAQBQoIAIUGAkCBASBAgJAgQEgQICQKEBAFCggAhQYCQIEBI\nEFBBSD96AGrlR7v/XT7xIS0vUDPLd/vbfOJDurdsnPCvAUEby727/TFCghGEBAFCggAhQYCQ\nIEBIECAkCKg6pN7H7ly69K4ndrJKSNRMtSGtuXLG4KvAR//t75utExI1U2lITx5bTpi7+Npr\nF110RDlpTZOFQqJmKg1pfs/Xh/Y239C1oMlCIVEzlYZ02Lxt+xcc1WShkKiZSkPq+fi2/Y9M\narJQSNRMpSHNfMu2/fOOabJQSNRMpSEt6LruhcG95z9cFjZZKCRqptKQ1s4qB8yZe/lll87e\nv5yxrslCIVEz1b6OtPFTJ3f3v4zU8+ovbG62Tkh0oh8vPOechT8e867KLxHa8PMVK1btLBMh\n0YGWdJ/5/vef2b1krPtcawe75huTlvbfLJ106xh3Cgl2zZ9cNXh71awx7mxXSKvnzBlxZMuy\nO7f6jJDoNOvKDwd3ftD1/Oh72xXSg2XkZ3n8kAO32r+MMSq005PlZ4M7j5YnR9/brpA2rFzZ\n5N4bS7Mnx6ENNu33ncGdb++3afS9nfkYSUh0njef3dt/s+WsN49xZztC2vyTe3fyzj4h0Xke\nnX7xU43GUxdP/9kYd1Yb0r2X9W1uPrSUctL3m60TEh1oxavKMceUV60Y675KQ1o2aVpv4xtl\n2l++56x9Jj/QZKGQ6ERbVnzpSw9sGfOuSkOaPWNVo3HszP7nPO6bcm6ThUKiZioN6WVXNRq/\nKZ8d2H/Hy5ssFBI1U2lIU69pNF7oum1g/6P7NVkoJGqm0pBOO2F9o3HqwIUWL5x0UpOFQqJm\nKg3p9jLrey+uOPyf1m+678/K55ssFBI1U+3T31+cWqb80czS3V26/qa3yTohUTMVvyD79HV/\nMfOAyQef8t4xn4vfSkjUjEuEIEBIECAkCBASBAgJAoQEAUKCACFBgJAgQEgQICQIEBIECAkC\nhAQBQoIAIUGAkCBASBAgJAgQEgQICQKEBAFCggAhQYCQIEBIECAkCBASBAgJAoQEAUKCACFB\ngJAgQEgQICQIEBIECAkChAQBQoIAIUGAkCBASBAgJAgQEgQICQKEBAFCggAhQYCQIEBIECAk\nCBASBAgJAoQEAUKCACFBgJAgQEgQICQIEBIECAkChAQBQoIAIUGAkCBASBAgJAgQEgQICQKE\nBAFCggAhQYCQIEBIECAkCBASBAgJAoQEAUKCACFBgJAgQEgQICQIEBIECAkChAQBQoIAIUGA\nkCBASBAgJAgQEgQICQKEBAFCggAhQYCQIEBIECAkCBASBAgJAoQEAUKCACFBgJAgQEgQICQI\nEBIECAkChAQBQoIAIUGAkCBASBAgJAgQEgQICQLaEdLG++9+vPkKIVEzlYb0sbv7tzceWEo5\n5cFmC4VEzVQaUlnYt/l2mfzGd51Wpq9uslBI1Ez1IZ0w/eG+7W1db2+yUEjUTOUhPVM+OLB/\n/pFNFgqJmqk8pCfKzQP7i3qaLBQSNVN5SJunLxnYn3dQk4VComaqDemi5auevfr49X27j0w9\nt8lCIVEz1YY06NZG4ytT97m/yUIhUTOVhnTTpxcvuPT82Xc1GjcceXuzhUKiZtp0idC6LU3v\nFhI141o7CBASBLQrpNVz5ow48vghB261f/ld4GtAZdoV0oNl5GfZsuzOrRb4LxL10q6QNqxc\n2eReP9pRMx4jQYA39kGAN/ZBgDf2QYA39kGAN/ZBgDf2QYA39kGAN/ZBgDf2QYA39kGAN/ZB\ngGvtIEBIECAkCBASBAgJAoQEAUKCACFBgJAgQEgQICQIEBIECAkChAQBQoIAIUGAkCBASBAg\nJAgQEgQICQKEBAFCggAhQYCQIEBIECAkCBASBAgJAoQEAUKCACFBgJAgQEgQICQIEBIECAkC\nhAQBQoIAIUGAkCBASBAgJAgQEgQICQKEBAFCggAhQYCQIEBIECAkCBASBAgJAoQEAUKCACFB\ngJAgQEgQICQIEBIECAkChAQBQoIAIUGAkCBASBAgJAgQEgQICQKEBAFCggAhQYCQIEBIECAk\nCBASBAgJAoQEAUKCACFBgJAgQEgQICQIEBIECAkChAQBQoIAIUGAkCBASBDQeki/uPOrN371\nzl+E5hkkJGqmxZAeu+L4Muj49z6em0pI1ExLIT0zb98y44JF13/5+kUXHFL2nfdMaiohUTOt\nhLRsRvclK3qH/tG74pLuGfeEphISNdNKSD1nrt7h+KozewIT9RMSNdNKSNdsHnHH5mtanmeQ\nkKiZxNPfm39y7xOZaYYJiZppLaR7L+vb3HxoKeWk7weHEhJ101JIyyZN6218o0z7y/ectc/k\nB4JTCYmaaSmk2TNWNRrHznyyb/e+KecGpxISNdNSSC+7qtH4TfnswP47Xp4bSkjUTUshTb2m\n0Xih67aB/Y/ulxtKSNRNSyGddsL6RuPUq/p3XzjppOBUQqJmWgrp9jLrey+uOPyf1m+678/K\n54NTCYmaae3p7y9OLVP+aGbp7i5df9Pb5CN2l5ComRZfkH36ur+YecDkg09574rgTEKidryx\nDwKEBAFCggAhQYCQIEBIECAkCBASBAgJAlIhrTrtzPOuW7vzj+197M6lS+/a2TvThUTNpEJ6\nsJR/fNNHdvaRa66cMfjrJI/+2983WyckaiYV0sZVqxqNpnH0efLYcsLcxddeu+iiI8pJa5os\nFBI1U+ljpPk9Xx/a23xD14ImC4VEzSRC2nj/3bv2e78Pm7dt/4KjmiwUEjXTUkgfu7t/e+OB\nfQ96TnlwFz6w5+Pb9j8yqclCIVEzLYVUFvZtvl0mv/Fdp5Xpq5t8xJCZb9m2f94xTRYKiZpp\nPaQTpj/ct72t6+07/8AFXde9MLj3/IcHPnY8QqJmWg7pmfLBgf3zj9z5B66dVQ6YM/fyyy6d\nvX85o1kqQpoo65zYidFySE+Umwf2F+3KX6LY+KmTu/tfRup59RdG/gL+HQhpQmxYfFxX13GL\nN7R7jj1RyyFtnr5kYH/eQbv2wRt+vmLFqo07WSSkibD+1Fdcf//91x956vp2T7IHai2ki5av\nevbq4/v/f3lkql9Z3Ok+dPTT/TdPHfWhdk+yB2otpEG3NhpfmbrP/cGphDQBeg8b+tWDNx6W\n/NVpDGgppJs+vXjBpefPvqvRuOHI23fvc6yeM2fEkTXveedWZwgp79mycnBnZXm2vZPsiUKX\nCK3bspuf48Ey8rMIaYIJaSK16/1IG1aubHKvH+0mwNYf7T5/uB/t4ryxb+/hyYYJ1I6Qdn6R\nq5AmwvpTX/E5T39PkEpD2uWLXIU0IbwgO3EqDWmXL3IV0kRxidAEqT6kXbnIVUjUTOUh7dJF\nrkKiZioPaZcuchUSNVPpr+Pa5YtchUTNVPrruHb5IlchUTOV/jquXb7IVUjUTKWPkXb5Ilch\nUTOZkH678JHd+xQ7uchVSNRMJqRflt18F8VOCImaaSmk+cMuKmfPnx+cSkjUTOIdskOCUwmJ\nmmkppPd1n/zdtf1+Wr62dhf+pssuExI109pjpOUnd737Nw2Pkdjrtfhkw4ufmHLErUJir9fy\ns3ar55RznxASe7nA0983HTRtsZDYuyVeR/r1hUVI7N0yL8jeceXDiWG2EhI100pID4y6Z/SR\nl0ZI1EwrIU26fsQd1zf7K3y7Q0jUTCshXV5ec8d2h+94TbksMpOQqJ2WHiPdcnB55YJvPfT0\nhqcf+taCV5aDb0lNJSRqprUnG9YtOXTrpXaHfSL3zS8kaqbVZ+223L9k3htmv2HekuW7+2v0\nmxESNeN3f0NA6yE91P83Qh76v6F5BgmJmmk1pE3zyrK+m8+VuU3/uvJuEhI102pInyyv6//L\nEo9eUD4Tm0lI1E6rIf3x64d2zjk+Ms8gIVEzrYY05ZNDO9c2+xXEu0tI1EyrIR16xdDOew6N\nzDNISNRMqyHN2/87/TebvrDv21IjNYRE7bQa0pOHl6PPev3pB5XD/y03lJCom5ZfR3r6vx9c\nSjnkHb+KjdQQErUTuLKh999XPx+aZpiQqBmXCEGAkCBASBAgJAgQEgQICQKEBAFCggAhQYCQ\nIEBIECAkCBASBAgJAoQEAUKCACFBgJAgQEgQICQIEBIECAkChAQBQoIAIUGAkCBASBAgJAgQ\nEgQICQKEBAFCggAhQYCQIEBIECAkCBASBAgJAoQEAUKCACFBgJAgQEgQICQIEBIECAkChAQB\nQoIAIUGAkCBASBAgJAgQEgQICQKEBAFCggAhQYCQIEBIECAkCBASBAgJAoQEAUKCACFBgJAg\nQEgQICQIEBIECAkChAQBQoIAIUGAkCBASBAgJAgQEgQICQKEBAFCggAhQYCQIEBIECAkCBAS\nBAgJAoQEAUKCgHaEtPH+ux9vvkJI1EylIX3s7v7tjQeWUk55sNlCIVEzlYZUFvZtvl0mv/Fd\np5Xpq5ssFBI1U31IJ0x/uG97W9fbmywUEjVTeUjPlA8O7J9/ZJOFQqJmKg/piXLzwP6iniYL\nhUTNVB7S5ulLBvbnHdRkoZComWpDumj5qmevPn593+4jU89tslBI1Ey1IQ26tdH4ytR97m+y\nUEjUTKUh3fTpxQsuPX/2XY3GDUfe3myhkKiZNl0itG5L07uFRM241g4ChAQB7Qpp9Zw5I45s\nWXbnVguERL20K6QHy8jP8vghB261f/ld4GtAZdoV0oaVK5vc60c7asZjJAhoT0i/XfhI0/uF\nRM20J6RflqavxwqJuqk0pPnDLipnz5/fZKGQqJl2XGs3pMlCIVEzlYb0vu6Tv7u230/L19au\nbbJQSNRMtY+Rlp/c9e7fNDxGYo9T8ZMNL35iyhG3Cok9TuXP2q2eU859QkjsYdrw9PdNB01b\nLCT2LO14HenXFxYhsWdpzwuyd1z5cNP7hUTNuNYOAoQEAUKCACFBgJAgQEgQICQIEBIECAkC\nhAQBQoIAIUGAkCBASBAgJAgQEgQICQKEBAFCggAhQYCQIEBIECAkCBASBAgJAoQEAUKCACFB\ngJAgQEgQICQIEBIECAkChAQBQoIAIUGAkCBASBAgJAgQEgQICQKEBAFCggAhQYCQIEBIECAk\nCBASBAgJAoQEAUKCACFBgJAgQEgQICQIEBIECAkChAQBQoIAIUGAkCBASBAgJAgQEgQICQKE\nBAFCggAhQYCQIEBIECAkCBASBAgJAoQEAUKCACFBgJAgQEgQICQIEBIECAkChAQBQoIAIUGA\nkCBASBAgJAgQEgQICQKEBAFCggAhQYCQIEBIECAkCBASBAgJAoQEAUKCACFBgJAgQEgQICQI\nEBIECAkChAQBQoIAIUGAkCBASBAgJAgQEgQICQKEBAFCggAhQUDVIfU+dufSpXc9sZNVQqJm\nqg1pzZUzyoCj//b3zdYJiZqpNKQnjy0nzF187bWLLjqinLSmyUIhUTOVhjS/5+tDe5tv6FrQ\nZKGQqJlKQzps3rb9C45qslBI1EylIfV8fNv+RyY1WSgkaqbSkGa+Zdv+ecc0WSgkaqbSkBZ0\nXffC4N7zHy4LmywUEjVTaUhrZ5UD5sy9/LJLZ+9fzmiWynghbXngS196YMtL/fIwYap9HWnj\np07u7n8ZqefVX9jcbN04Ia14VTnmmPKqFS/568MEqfwSoQ0/X7Fi1cadLBo7pEenX/xUo/HU\nxdN/1soAMAHqdK3dm87u7b/ZcvabJ3wA2D01CmnTft8e3Ll9v00TPgHslnaFtHrOnBFHHj/k\nwK32L8+P/pAny9CPdI+WJwMTQFC7QnqwjPwsW5bdudVnyhiPotaVHw7u/KBrjMygndoV0oaV\nK5vce+9YITVmvX/w9qpZgQEgqTMfI40d0jcmLe2/WTrp1gkfAHZPe0L67cJHmt4/dkiNJd1n\nvv/9Z3YvafnrQ1h7Qvplub3p/eOE1PjxwnPOWfjjlr88pFX7fqRhF5Wz589vsnC8kKBDVRpS\n2UGThUKiZioN6X3dJ393bb+flq+tXdtkoZComWofIy0/uevdv2m89MdI0KEqfrLhxU9MOeJW\nIbHHqfxZu9VzyrlPCIk9TBue/r7poGmLhcSepR2vI/36wiIk9izteUH2jisfbnq/kKiZOl1r\nBx1LSBAgJAgQEgQICQKEBAFCggAhQUBnhrS8QM0s3+1v84kPqfGjB8bx2jNv7mhnmq8lHT/f\na8f7zvzR7n+XVxDSuObObeMX3wXma81eNZ+Qxme+1uxV8wlpfOZrzV41n5DGZ77W7FXzCWl8\n5mvNXjWfkMZnvtbsVfMJaXzma81eNZ+Qxme+1uxV8wlpfOZrzV41n5DGZ77W7FXztTOkd76z\njV98F5ivNXvVfO0Mac2aNn7xXWC+1uxV87UzJNhjCAkChAQBQoIAIUGAkCBASBAgJAgQEgQI\nCQKEBAFCggAhQYCQIEBIECAkCKg+pE0f2OeU7f+9dsHMnsPnP1n5HOMZMd9NQ3+f4GNtG2hH\na648etIx5/1w24EOO38j5+u08/fYO46b9Afn/eu2A6HzV3lID886YIdv1I2zyps/Pq/n2E55\nN+XI+T5dLlrY7+62TbSD544pr7vmkn33+8nwgQ47f6Pm67Dz9+jBk966+JKenh8MH0idv6pD\n+u2UP101eftv1E+Vv+/b/u9yZcWDjGPUfItfwt/KmUCXlc/1bW8r5wwf6LDzN2q+Djt/Z3V9\nv2+7tLxl+EDq/FUd0nNXbmrs8I168gEv9N8cP6O34knGNmq+BWVV24YZw1/P2dS37Z0yc/hA\nh52/UfN12PlbdHX/dnPPScMHUuevHU82bP+NuqF7zsDt3PJYGyYZ2w4hXVqe3fzLZ9s2y9he\n6DltaK8Tz9/283Xm+ftVOX9oL3b+2h3Sz8vgLxdbXO5swyRj2yGk88uHDizlP32lbdOM5bMD\nP0D168Tzt/18nXj+1i878YDhnzdj56/dIa0olw3cXleWtmGSse0Q0uxy3JIvX/2ycmPbxhnt\nnkmnvzi024nnb/v5OvD8TS/lrVv/8xM7f+0P6fKB22vLN9swydh2COmuW5/v2/508kGd87fZ\nb5k867nh/U48f9vP14Hn7wPvPHWf04dLip2/doe0qlw6cLuo/J82TDK2HUIa8sZyf/WDjKn3\nw+W1v9v6r847fzvON6xzzl+/ZVNP3DK4Fzt/7Q5p476zB24vKv/WhknGNlZI7yod8kJI77xy\nxeZt/+y48zdivmEdc/4GXVweHtyJnb92h9T4L/uv79tuOeKoNgwyju3nW/c/bxm4Pb1TnhVb\nUP5uh3932vkbMV+Hnb9fnfi2gds3bX11K3X+2hjShgdX922/UD7St/1f5aNtGGQc28+35chp\nj/Ttf6v8SXtnGnZbWTC825Hnb+R8nXb+XjHpvr7tz6ZN2xA+f1WHdM/ChQu7D+vb/EdjZel/\nCn/zGeW8j17Y9cfrKx5kHKPm++euqfOveWPXy1a0e7JBf1iuGLjiZuGazjx/o+brsPP3ze6e\nCz80d2r5h0b4/FUd0pKhaxjLqqH/IY11V83sOfKy53b2gRUZPd8P/uvL9z3irzrl5fnh8cov\nOvP8jZ6vs85f477zD+l++Z//S6MRPn/eRgEBQoIAIUGAkCBASBAgJAgQEgQICQKEBAFCggAh\nQYCQIEBIECAkCBASBAgJAoQEAUKCACFBgJAgQEgQICQIEBIECAkChAQBQoIAIUGAkCBASBAg\nJAgQEgQICQKEBAFC6niXTXrgJX/sNT33BCdhfELqdLeU6/tvNn1gn1NG37nmyqMnHXPeD0ce\nfuwdx036g/P+tdHYfOaMZyZ+RITU8dYd/Or+m4dnHTBGSM8dU153zSX77veTHQ8/evCkty6+\npKfnB43Gqu55lYy51xNSh/tE+U7f9rdT/nTV5NEhXVY+17e9rZyz4+Gzur7ft11a3tK3vXjf\nxyuYEiF1pKfmH7H/iZ95sdHYcth/7v/3c1duaowR0l/P2dS37Z0yc8fDi67u327uOalv+0B5\n74RPi5A60zNHTr/if7y+zG80lm/rYIyQBr3Qc9pYh39Vzu/b9h5y/ERMyAhC6kTvLt/r276u\nPNRYUr41fHDckD478APeCOuXnXjA8v6dC8ovJmBCRhBSB+o9+KjevpvH7n62Ma8vpiHjhXTP\npNNfHHVweilvfWxgb1G5c0KGZAdC6kD/Xs4a3n1DeXp4d5yQbpk867nRRz/wzlP3OX2gpOvL\nV+MDMoqQOtDq8vrh3dllw/DumCH1fri89ndjf5ZlU0/c0nfz5XJjej5GE1IHer6cPry7k/8i\n9c4rV2we79NcXB5u+C9SRYTUiQ45uP9p7Uc/91DfY6SfDh8cK6QF5e9GH/zViW8buH1T6X+2\n4RqPkaogpE7038oX+7YXlhWNJeWfhw8OhbTxwVVb191WFgzvbn/4FZPu69v+bNq0DQOf5RcT\nPi9C6ki/PGzfy697ffmrRuP+wVTuWbhwYfdhfZv/aKwq2141+sNyxcIBa3Y4/M3ungs/NHdq\n+Ye+/d4ZXkeqgpA60v9764ye4z7Z9+hny6Gv7P/3kjJkVV8xZ2xdNny07z862x9u3Hf+Id0v\n//N/6d9dUa6oePa9k5A63JJyx4gj/3jemAvHOXzJvo+FJ2IsQupw6w5+zYgjb752zIVjH17t\n6u9qCKnTDb0faavff3TtWMvGPuz9SFURUse7vKV3yC4LTsL4hAQBQoIAIUGAkCBASBAgJAgQ\nEgQICQKEBAFCggAhQYCQIEBIECAkCBASBAgJAoQEAUKCACFBgJAgQEgQICQIEBIECAkChAQB\nQoIAIUHA/wdC4bCxp+lYfwAAAABJRU5ErkJggg==",
"text/plain": [
"plot without title"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plot(c(1, 2, 3), c(4, 5, 6))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
...
...
@@ -7,19 +100,14 @@
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.3"
"codemirror_mode": "r",
"file_extension": ".r",
"mimetype": "text/x-r-source",
"name": "R",
"pygments_lexer": "r",
"version": "3.4.1"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment