sujet6

parent a7fefca9
...@@ -37,7 +37,7 @@ ...@@ -37,7 +37,7 @@
"hidePrompt": false "hidePrompt": false
}, },
"source": [ "source": [
"## Étape 1 : Calcul des effectifs vivants et décédés par statut de fumeur" "## Étape 1 : Importation des bibliothèques et des données"
] ]
}, },
{ {
...@@ -47,12 +47,12 @@ ...@@ -47,12 +47,12 @@
"hidePrompt": false "hidePrompt": false
}, },
"source": [ "source": [
"Représentez dans un tableau le nombre total de femmes vivantes et décédées sur la période en fonction de leur habitude de tabagisme. Calculez dans chaque groupe (fumeuses / non fumeuses) le taux de mortalité (le rapport entre le nombre de femmes décédées dans un groupe et le nombre total de femmes dans ce groupe). Vous pourrez proposer une représentation graphique de ces données et calculer des intervalles de confiance si vous le souhaitez. En quoi ce résultat est-il surprenant ?" "La première étape consiste à importer les bibliothèques nécessaires (Pandas pour la gestion des données, Statsmodels pour la régression logistique, Seaborn et Matplotlib pour les visualisations), puis à charger les données depuis un fichier CSV."
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 1, "execution_count": 71,
"metadata": { "metadata": {
"hideCode": false, "hideCode": false,
"hidePrompt": false "hidePrompt": false
...@@ -60,18 +60,905 @@ ...@@ -60,18 +60,905 @@
"outputs": [], "outputs": [],
"source": [ "source": [
"%matplotlib inline\n", "%matplotlib inline\n",
"import matplotlib.pyplot as plt\n", "import matplotlib.pyplot as plt # Pour afficher les graphiques\n",
"import seaborn as sns # Pour la visualisation\n",
"import pandas as pd\n", "import pandas as pd\n",
"import isoweek" "import isoweek\n",
"import statsmodels.api as sm # Pour la régression logistique"
]
},
{
"cell_type": "markdown",
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"source": [
"### Charger les données depuis un fichier CSV"
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": 72,
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"outputs": [],
"source": [
"df = pd.read_csv('Subject6_smoking.csv')"
]
},
{
"cell_type": "markdown",
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"source": [
"On affiche les 5 premières lignes du fichier pour vérifier si tout fonctionne bien"
]
},
{
"cell_type": "code",
"execution_count": 73,
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Smoker</th>\n",
" <th>Status</th>\n",
" <th>Age</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Yes</td>\n",
" <td>Alive</td>\n",
" <td>21.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>Yes</td>\n",
" <td>Alive</td>\n",
" <td>19.3</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>No</td>\n",
" <td>Dead</td>\n",
" <td>57.5</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>No</td>\n",
" <td>Alive</td>\n",
" <td>47.1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>Yes</td>\n",
" <td>Alive</td>\n",
" <td>81.4</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Smoker Status Age\n",
"0 Yes Alive 21.0\n",
"1 Yes Alive 19.3\n",
"2 No Dead 57.5\n",
"3 No Alive 47.1\n",
"4 Yes Alive 81.4"
]
},
"execution_count": 73,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.head()"
]
},
{
"cell_type": "markdown",
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"source": [
"## Étape 2 : Calcul des effectifs vivants et décédés par statut de fumeur"
]
},
{
"cell_type": "markdown",
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"source": [
"Dans cette étape, nous voulons calculer combien de femmes sont vivantes ou décédées en fonction de leur statut de fumeur (fumeuse ou non). On utilise ```groupby()``` pour regrouper les données par ```Smoker``` et ```Status```, puis on utilise ```size()``` pour compter le nombre d'éléments dans chaque groupe."
]
},
{
"cell_type": "markdown",
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"source": [
"### Groupement des données par statut de fumeur et statut de vie/mort"
]
},
{
"cell_type": "code",
"execution_count": 74,
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"outputs": [],
"source": [
"grouped = df.groupby(['Smoker', 'Status']).size().unstack(fill_value=0)"
]
},
{
"cell_type": "markdown",
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"source": [
"Affichage du tableau des effectifs"
]
},
{
"cell_type": "code",
"execution_count": 75,
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th>Status</th>\n",
" <th>Alive</th>\n",
" <th>Dead</th>\n",
" </tr>\n",
" <tr>\n",
" <th>Smoker</th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>No</th>\n",
" <td>502</td>\n",
" <td>230</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Yes</th>\n",
" <td>443</td>\n",
" <td>139</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
"Status Alive Dead\n",
"Smoker \n",
"No 502 230\n",
"Yes 443 139"
]
},
"execution_count": 75,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"grouped"
]
},
{
"cell_type": "markdown",
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"source": [
"## Étape 3 : Calcul du taux de mortalité"
]
},
{
"cell_type": "markdown",
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"source": [
"Le taux de mortalité est défini comme le nombre de décès divisé par le nombre total de personnes dans chaque groupe (vivantes + décédées)."
]
},
{
"cell_type": "markdown",
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"source": [
"### Calcul du taux de mortalité par groupe de fumeur"
]
},
{
"cell_type": "code",
"execution_count": 76,
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"outputs": [],
"source": [
"grouped['Mortality Rate'] = grouped['Dead'] / (grouped['Alive'] + grouped['Dead'])"
]
},
{
"cell_type": "markdown",
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"source": [
"Affichage des résultats avec le taux de mortalité"
]
},
{
"cell_type": "code",
"execution_count": 77,
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th>Status</th>\n",
" <th>Alive</th>\n",
" <th>Dead</th>\n",
" <th>Mortality Rate</th>\n",
" </tr>\n",
" <tr>\n",
" <th>Smoker</th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>No</th>\n",
" <td>502</td>\n",
" <td>230</td>\n",
" <td>0.314208</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Yes</th>\n",
" <td>443</td>\n",
" <td>139</td>\n",
" <td>0.238832</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
"Status Alive Dead Mortality Rate\n",
"Smoker \n",
"No 502 230 0.314208\n",
"Yes 443 139 0.238832"
]
},
"execution_count": 77,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"grouped"
]
},
{
"cell_type": "markdown",
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"source": [
"## Étape 4 : Introduction des classes d'âge"
]
},
{
"cell_type": "markdown",
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"source": [
"Les classes d'âge sont divisées en intervalles (18-34, 34-54, 55-64, 65+), et ces catégories sont ajoutées à notre DataFrame à l'aide de la fonction ```pd.cut()```."
]
},
{
"cell_type": "markdown",
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"source": [
"Définition des tranches d'âge"
]
},
{
"cell_type": "code",
"execution_count": 78,
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"outputs": [],
"source": [
"bins = [0, 34, 54, 64, 100] # Tranches d'âge\n",
"labels = ['18-34', '34-54', '55-64', '65+']"
]
},
{
"cell_type": "markdown",
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"source": [
"Ajouter une colonne 'Age Group' à df"
]
},
{
"cell_type": "code",
"execution_count": 79,
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"outputs": [],
"source": [
"df['Age Group'] = pd.cut(df['Age'], bins=bins, labels=labels, right=False)"
]
},
{
"cell_type": "markdown",
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"source": [
"Groupement par statut de fumeur, groupe d'âge et statut de vie/mort"
]
},
{
"cell_type": "code",
"execution_count": 80,
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"outputs": [],
"source": [
"grouped_age = df.groupby(['Smoker', 'Age Group', 'Status']).size().unstack(fill_value=0)"
]
},
{
"cell_type": "markdown",
"metadata": { "metadata": {
"hideCode": false, "hideCode": false,
"hidePrompt": false "hidePrompt": false
}, },
"source": [
"Calcul du taux de mortalité par groupe d'âge et statut de fumeur"
]
},
{
"cell_type": "code",
"execution_count": 81,
"metadata": {},
"outputs": [],
"source": [
"grouped_age['Mortality Rate'] = grouped_age['Dead'] / (grouped_age['Alive'] + grouped_age['Dead'])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
" Affichage des effectifs et du taux de mortalité par groupe d'âge et statut de fumeur"
]
},
{
"cell_type": "code",
"execution_count": 82,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Status</th>\n",
" <th>Alive</th>\n",
" <th>Dead</th>\n",
" <th>Mortality Rate</th>\n",
" </tr>\n",
" <tr>\n",
" <th>Smoker</th>\n",
" <th>Age Group</th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th rowspan=\"4\" valign=\"top\">No</th>\n",
" <th>18-34</th>\n",
" <td>213</td>\n",
" <td>6</td>\n",
" <td>0.027397</td>\n",
" </tr>\n",
" <tr>\n",
" <th>34-54</th>\n",
" <td>180</td>\n",
" <td>19</td>\n",
" <td>0.095477</td>\n",
" </tr>\n",
" <tr>\n",
" <th>55-64</th>\n",
" <td>80</td>\n",
" <td>39</td>\n",
" <td>0.327731</td>\n",
" </tr>\n",
" <tr>\n",
" <th>65+</th>\n",
" <td>29</td>\n",
" <td>166</td>\n",
" <td>0.851282</td>\n",
" </tr>\n",
" <tr>\n",
" <th rowspan=\"4\" valign=\"top\">Yes</th>\n",
" <th>18-34</th>\n",
" <td>174</td>\n",
" <td>5</td>\n",
" <td>0.027933</td>\n",
" </tr>\n",
" <tr>\n",
" <th>34-54</th>\n",
" <td>198</td>\n",
" <td>41</td>\n",
" <td>0.171548</td>\n",
" </tr>\n",
" <tr>\n",
" <th>55-64</th>\n",
" <td>64</td>\n",
" <td>51</td>\n",
" <td>0.443478</td>\n",
" </tr>\n",
" <tr>\n",
" <th>65+</th>\n",
" <td>7</td>\n",
" <td>42</td>\n",
" <td>0.857143</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
"Status Alive Dead Mortality Rate\n",
"Smoker Age Group \n",
"No 18-34 213 6 0.027397\n",
" 34-54 180 19 0.095477\n",
" 55-64 80 39 0.327731\n",
" 65+ 29 166 0.851282\n",
"Yes 18-34 174 5 0.027933\n",
" 34-54 198 41 0.171548\n",
" 55-64 64 51 0.443478\n",
" 65+ 7 42 0.857143"
]
},
"execution_count": 82,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"grouped_age"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Étape 5 : Régression logistique"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Ici, nous analysons la probabilité de décès en fonction de l'âge et du statut de fumeur à l'aide d'une régression logistique."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Création de la variable binaire 'Death' où 1 = mort, 0 = vivant"
]
},
{
"cell_type": "code",
"execution_count": 83,
"metadata": {},
"outputs": [],
"source": [
"df['Death'] = df['Status'].apply(lambda x: 1 if x == 'Dead' else 0)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Modèle de régression logistique : 'Death' ~ 'Age' + 'Smoker'"
]
},
{
"cell_type": "code",
"execution_count": 84,
"metadata": {},
"outputs": [],
"source": [
"X = pd.get_dummies(df[['Age', 'Smoker']], drop_first=True) # Convertir 'Smoker' en variables binaires\n",
"y = df['Death']"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Ajouter une constante pour l'interception"
]
},
{
"cell_type": "code",
"execution_count": 85,
"metadata": {},
"outputs": [],
"source": [
"X = sm.add_constant(X)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Création du modèle logistique"
]
},
{
"cell_type": "code",
"execution_count": 93,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Optimization terminated successfully.\n",
" Current function value: 0.381244\n",
" Iterations 7\n"
]
}
],
"source": [
"model = sm.Logit(y, X)\n",
"result = model.fit()"
]
},
{
"cell_type": "code",
"execution_count": 94,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<table class=\"simpletable\">\n",
"<caption>Logit Regression Results</caption>\n",
"<tr>\n",
" <th>Dep. Variable:</th> <td>Death</td> <th> No. Observations: </th> <td> 1314</td> \n",
"</tr>\n",
"<tr>\n",
" <th>Model:</th> <td>Logit</td> <th> Df Residuals: </th> <td> 1311</td> \n",
"</tr>\n",
"<tr>\n",
" <th>Method:</th> <td>MLE</td> <th> Df Model: </th> <td> 2</td> \n",
"</tr>\n",
"<tr>\n",
" <th>Date:</th> <td>Sun, 10 Nov 2024</td> <th> Pseudo R-squ.: </th> <td>0.3579</td> \n",
"</tr>\n",
"<tr>\n",
" <th>Time:</th> <td>20:08:45</td> <th> Log-Likelihood: </th> <td> -500.95</td> \n",
"</tr>\n",
"<tr>\n",
" <th>converged:</th> <td>True</td> <th> LL-Null: </th> <td> -780.16</td> \n",
"</tr>\n",
"<tr>\n",
" <th> </th> <td> </td> <th> LLR p-value: </th> <td>5.534e-122</td>\n",
"</tr>\n",
"</table>\n",
"<table class=\"simpletable\">\n",
"<tr>\n",
" <td></td> <th>coef</th> <th>std err</th> <th>z</th> <th>P>|z|</th> <th>[0.025</th> <th>0.975]</th> \n",
"</tr>\n",
"<tr>\n",
" <th>const</th> <td> -6.3519</td> <td> 0.360</td> <td> -17.637</td> <td> 0.000</td> <td> -7.058</td> <td> -5.646</td>\n",
"</tr>\n",
"<tr>\n",
" <th>Age</th> <td> 0.0998</td> <td> 0.006</td> <td> 17.290</td> <td> 0.000</td> <td> 0.089</td> <td> 0.111</td>\n",
"</tr>\n",
"<tr>\n",
" <th>Smoker_Yes</th> <td> 0.2787</td> <td> 0.165</td> <td> 1.689</td> <td> 0.091</td> <td> -0.045</td> <td> 0.602</td>\n",
"</tr>\n",
"</table>"
],
"text/plain": [
"<class 'statsmodels.iolib.summary.Summary'>\n",
"\"\"\"\n",
" Logit Regression Results \n",
"==============================================================================\n",
"Dep. Variable: Death No. Observations: 1314\n",
"Model: Logit Df Residuals: 1311\n",
"Method: MLE Df Model: 2\n",
"Date: Sun, 10 Nov 2024 Pseudo R-squ.: 0.3579\n",
"Time: 20:08:45 Log-Likelihood: -500.95\n",
"converged: True LL-Null: -780.16\n",
" LLR p-value: 5.534e-122\n",
"==============================================================================\n",
" coef std err z P>|z| [0.025 0.975]\n",
"------------------------------------------------------------------------------\n",
"const -6.3519 0.360 -17.637 0.000 -7.058 -5.646\n",
"Age 0.0998 0.006 17.290 0.000 0.089 0.111\n",
"Smoker_Yes 0.2787 0.165 1.689 0.091 -0.045 0.602\n",
"==============================================================================\n",
"\"\"\""
]
},
"execution_count": 94,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"result.summary()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Cette section vous donnera les coefficients du modèle et vous permettra d'interpréter l'effet de l'âge et du tabagisme sur la probabilité de décès."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Étape 6: Visualisation des résultats"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Dans cette étape, nous créons un graphique pour visualiser le taux de mortalité par groupe d'âge et statut de fumeur. Nous utilisons Seaborn pour créer un diagramme à barres."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Calcul du taux de mortalité par statut de fumeur et groupe d'âge"
]
},
{
"cell_type": "code",
"execution_count": 96,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"mortality_by_group = df.groupby(['Age Group', 'Smoker'])['Death'].mean().reset_index()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Renommer la colonne 'Death' en 'Mortality Rate'"
]
},
{
"cell_type": "code",
"execution_count": 97,
"metadata": {},
"outputs": [],
"source": [
"mortality_by_group.rename(columns={'Death': 'Mortality Rate'}, inplace=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Graphique des taux de mortalité par groupe d'âge et statut de fumeur"
]
},
{
"cell_type": "code",
"execution_count": 98,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.axes._subplots.AxesSubplot at 0x7fcb88ee6828>"
]
},
"execution_count": 98,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEKCAYAAAD9xUlFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAH89JREFUeJzt3X2YVWW9//H3h0HAEDJlQuVB+HlQQ0COTlN28hkVLSUrQyjxqcOPEk0rzTQV9Oo6KnY6kRYXv8SHjkX8AhMVHyoln4gGFHkMnUOJE/ULKDQsgsHv74+9ZrndzOzZwF6zYebzuq59udda97r3d99yzXff91rrvhURmJmZAXSqdABmZrbncFIwM7OUk4KZmaWcFMzMLOWkYGZmKScFMzNLZZoUJI2UtFpSvaRrmzn+PkkPSloq6TeShmQZj5mZFZdZUpBUBdwFnAkMBsZIGlxQ7DpgSUQMA8YB38kqHjMza12WPYVaoD4i1kTEVmAmMKqgzGDglwAR8VtggKTeGcZkZmZFdM6w7j7A63nbDcCHCsq8DHwSeE5SLXAo0Bf4f/mFJI0HxgN079792COPPDKrmM3M2qXFixdviIjq1splmRTUzL7COTVuBb4jaQmwDHgJaNzhpIjpwHSAmpqaWLRoUZlDNTNr3yS9Vkq5LJNCA9Avb7svsC6/QES8CVwMIEnA75KXmZlVQJbXFOqAQZIGSuoCnA/MzS8gaf/kGMDngWeSRGFmZhWQWU8hIholTQSeAKqAGRGxQtKE5Pg04APA/ZK2AyuBS7OKx8zMWpfl8BERMQ+YV7BvWt77BcCg3f2cbdu20dDQwJYtW3a3qj1Gt27d6Nu3L/vss0+lQzGzDiTTpNBWGhoa6NGjBwMGDCB3aWLvFhFs3LiRhoYGBg4cWOlwzKwDaRfTXGzZsoUDDzywXSQEAEkceOCB7arnY2Z7h3aRFIB2kxCatLfvY2Z7h3aTFMzMbPd1qKTwzW9+k6OOOophw4YxfPhwFi5cuFv1zZ8/n49//ONlis7MrPLaxYXmUixYsIBHHnmEF198ka5du7Jhwwa2bt1asXgaGxvp3LnDNL9Zu7X25qGVDgGA/jcuK0s9Heav0h//+Ed69epF165dAejVqxcAAwYMYOzYsTz99NNs27aN6dOn8/Wvf536+nquvvpqJkyYQERwzTXX8NhjjyGJb3zjG4wePfpd9dfV1TF+/Hhmz55N7969ufzyy1m2bBmNjY1MmjSJUaNGce+99/Loo4+yZcsW3nrrLZ566qk2bwez9uTYq++vdAg82KPSEZRXh0kKp59+OjfffDOHH344I0aMYPTo0Zx44okA9OvXjwULFnDVVVdx0UUX8fzzz7NlyxaOOuooJkyYwJw5c1iyZAkvv/wyGzZs4IMf/CAnnHBCWvcLL7zA5ZdfzkMPPUT//v257rrrOOWUU5gxYwabNm2itraWESNGALkey9KlSznggAMq0g5mZsV0mKSw3377sXjxYp599lmefvppRo8eza233grAOeecA8DQoUPZvHkzPXr0oEePHnTr1o1Nmzbx3HPPMWbMGKqqqujduzcnnngidXV19OzZk1WrVjF+/HiefPJJDjnkEACefPJJ5s6dyx133AHkbpldu3YtAKeddpoTgpntsTpMUgCoqqripJNO4qSTTmLo0KHcd999AOmQUqdOndL3TduNjY1EFE7u+o6DDz6YLVu28NJLL6VJISKYPXs2RxxxxLvKLly4kO7du5f7a5mZlU2Hufto9erVvPrqq+n2kiVLOPTQQ0s694QTTuAnP/kJ27dvZ/369TzzzDPU1tYCsP/++/Poo49y3XXXMX/+fADOOOMMvvvd76bJ5KWXXirvlzEzy0iHSQqbN2/mwgsvZPDgwQwbNoyVK1cyadKkks4999xzGTZsGEcffTSnnHIKt99+OwcddFB6vHfv3jz88MNcdtllLFy4kBtuuIFt27YxbNgwhgwZwg033JDRtzIzKy8VGxrZEzW3yM6qVav4wAc+UKGIstNev5dZuewZdx9NqXQIQOu3pEpaHBE1rdXTYXoKZmbWOicFMzNLZZoUJI2UtFpSvaRrmzn+XkkPS3pZ0gpJF2cZj5mZFZdZUpBUBdwFnAkMBsZIGlxQ7DJgZUQcDZwEfCtveU4zM2tjWfYUaoH6iFgTEVuBmcCogjIB9FBunuj9gL8AjRnGZGZmRWSZFPoAr+dtNyT78t1Jbp3mdcAy4EsR8XaGMZmZWRFZPtHc3Coxhfe/ngEsAU4BDgN+LunZiHjzXRVJ44HxAP3792/1g8t9m9riKeNaLSOJL3/5y3zrW98C4I477mDz5s0lPwthZrYnyLKn0AD0y9vuS65HkO9iYE7k1AO/A44srCgipkdETUTUVFdXZxbw7ujatStz5sxhw4YNlQ7FzGyXZZkU6oBBkgYmF4/PB+YWlFkLnAogqTdwBLAmw5gy07lzZ8aPH8+3v/3tHY699tprnHrqqQwbNoxTTz01nRzPzGxPk1lSiIhGYCLwBLAKmBURKyRNkDQhKXYL8BFJy4BfAl+LiL32p/Zll13GAw88wBtvvPGu/RMnTmTcuHEsXbqUz372s1xxxRUVitDMrLhMZ0mNiHnAvIJ90/LerwNOzzKGttSzZ0/GjRvH1KlT2XfffdP9CxYsYM6cOQBccMEFXHPNNZUK0cysKD/RXGZXXnkld999N2+99VaLZXJ34JqZ7XmcFMrsgAMO4DOf+Qx33313uu8jH/kIM2fOBOCBBx7gox/9aKXCMzMrql0uslPKLaRZ+spXvsKdd96Zbk+dOpVLLrmEKVOmUF1dzT333FPB6MzMWtYuk0IlbN68OX3fu3dv/v73v6fbAwYM4KmnnqpEWGZmO8XDR2ZmlnJSMDOzlJOCmZmlnBTMzCzlpGBmZiknBTMzS7XLW1LX3jy0rPX1v3FZ0eMRwfHHH8/111/PmWeeCcCsWbOYMWMGjz/+eFljMTPLUrtMCm1NEtOmTeO8887j5JNPZvv27Vx//fVOCGa21/HwUZkMGTKEs88+m9tuu43Jkyczbtw4DjvsMO677z5qa2sZPnw4X/ziF3n77bdpbGzkggsuYOjQoQwZMoSpU6dWOnwzM8A9hbK66aabOOaYY+jSpQuLFi1i+fLlPPjgg7zwwgvpegszZ87ksMMOY8OGDSxblhuW2rRpU4UjNzPLcVIoo+7duzN69Gj2228/unbtyi9+8Qvq6uqoqakB4B//+Af9+vXjjDPOYPXq1XzpS1/irLPO4vTT283s4Wa2l3NSKLNOnTrRqVNuVC4iuOSSS7jlllt2KLd06VIee+wxpk6dyuzZs5k+fXpbh2pmtoNMrylIGilptaR6Sdc2c/xqSUuS13JJ2yUdkGVMbWnEiBHMmjUrXbd548aNrF27lvXr1xMRnHfeeUyePJkXX3yxwpGameVk1lOQVAXcBZwGNAB1kuZGxMqmMhExBZiSlD8buCoi/rK7n93aLaRtZejQodx0002MGDGCt99+m3322Ydp06ZRVVXFpZdeSkQgidtuu63SoZqZAdkOH9UC9RGxBkDSTGAUsLKF8mOAH2cYT5uYNGnSu7bHjh3L2LFjdyj30ksvtVFEZmaly3L4qA/wet52Q7JvB5LeA4wEZrdwfLykRZIWrV+/vuyBmplZTpZJobmFiKOFsmcDz7c0dBQR0yOiJiJqqquryxagmZm9W5ZJoQHol7fdF1jXQtnz2c2ho4iW8s3eqb19HzPbO2SZFOqAQZIGSupC7g//3MJCkt4LnAg8tKsf1K1bNzZu3Nhu/pBGBBs3bqRbt26VDsXMOpjMLjRHRKOkicATQBUwIyJWSJqQHJ+WFD0XeDIi3trVz+rbty8NDQ20p+sN3bp1o2/fvpUOw8w6mEwfXouIecC8gn3TCrbvBe7dnc/ZZ599GDhw4O5UYWZmeEI8MzPL46RgZmYpJwUzM0s5KZiZWcpJwczMUk4KZmaWclIwM7OUk4KZmaWcFMzMLOWkYGZmKScFMzNLOSmYmVnKScHMzFJOCmZmlnJSMDOzVKZJQdJISasl1Uu6toUyJ0laImmFpF9lGY+ZmRWX2SI7kqqAu4DTyK3XXCdpbkSszCuzP/A9YGRErJX0/qziMTOz1mXZU6gF6iNiTURsBWYCowrKjAXmRMRagIj4c4bxmJlZK7JMCn2A1/O2G5J9+Q4H3idpvqTFksY1V5Gk8ZIWSVrUntZhNjPb02SZFNTMvijY7gwcC3wMOAO4QdLhO5wUMT0iaiKiprq6uvyRmpkZkOE1BXI9g355232Bdc2U2RARbwFvSXoGOBp4JcO4zMysBa32FCT1lnS3pMeS7cGSLi2h7jpgkKSBkroA5wNzC8o8BBwvqbOk9wAfAlbt3FcwM7NyKWX46F7gCeCQZPsV4MrWToqIRmBicu4qYFZErJA0QdKEpMwq4HFgKfAb4AcRsXxnv4SZmZVHKcNHvSJilqSvQ+6PvaTtpVQeEfOAeQX7phVsTwGmlBivmZllqJSewluSDiS5SCzpw8AbmUZlZmYVUUpP4cvkrgUcJul5oBo4L9OozMysIkpJCiuAE4EjyN1muhrPmWRm1i6V8sd9QUQ0RsSKiFgeEduABVkHZmZmba/FnoKkg8g9gbyvpH/lnYfRegLvaYPYzMysjRUbPjoDuIjcQ2f/mbf/b8B1GcZkZmYV0mJSiIj7gPskfSoiZrdhTGZmViGtXmiOiNmSPgYcBXTL239zloGZmVnbK2Wai2nAaOByctcVzgMOzTguMzOrgFLuPvpIRIwD/hoRk4HjePdEd2Zm1k6UkhT+kfz375IOAbYBA7MLyczMKqWUh9ceSZbNnAK8SG66ix9kGpWZmVVEKReab0nezpb0CNAtIjz3kZlZO7RT01VExD+BWkk/zygeMzOroBaTgqRTJL0iabOk/04W11kE3Ap8v+1CNDOztlKsp/AtYDxwIPBT4NfADyPi2IiYU0rlkkZKWi2pXtK1zRw/SdIbkpYkrxt35UuYmVl5FLumEBExP3n/M0nrI+I7pVYsqQq4CziN3FrMdZLmRsTKgqLPRsTHdyZoMzPLRrGksL+kT+ZtK3+7hN5CLVAfEWuSk2cCo4DCpGBmZnuIYknhV8DZLWwH0FpS6AO8nrfdAHyomXLHSXoZWAd8NSJWFBaQNJ7cUBb9+/dv5WPNzGxXFZsQ7+LdrFvN7IuC7ReBQyNis6SzgJ8Bg5qJZTowHaCmpqawDjMzK5MsV1Br4N3TYfQl1xtIRcSbEbE5eT8P2EdSrwxjMjOzIrJMCnXAIEkDJXUBzie31nNK0kGSlLyvTeLZmGFMZmZWRCnTXOySiGiUNBF4AqgCZkTECkkTkuPTgE8DX5DUSG6OpfMjwsNDZmYV0mpSSB5Yuwf4UUT8dWcqT4aE5hXsm5b3/k7gzp2p08zMslPK8NH5wCHknjOYKemMpiEfMzNrX1pNChFRHxHXA4cDPwJmAGslTZZ0QNYBmplZ2ynpQrOkYeSmvZgCzCZ3LeBN4KnsQjMzs7ZWyjWFxcAm4G7g2mSmVICFkv4ty+DMzKxtlXL30XlNU1U0kTQwIn4XEZ9s6SQzM9v7lDJ89NMS95mZ2V6uxZ6CpCOBo4D3FkyM1xPolnVgZmbW9ooNHx0BfBzYn3dPjPc34N+zDMrMzCqj2IR4DwEPSTouIha0YUxmlqG1Nw+tdAgA9L9xWaVDsGYUGz66JiJuB8ZKGlN4PCKuyDQyMzNrc8WGj1Yl/13UFoGYmVnlFRs+ejj5731tF46ZmVVSseGjh9lxUZxURJyTSURmZlYxxYaP7mizKMzMbI9QbPjoV20ZiJmZVV6rTzRLGiTpp5JWSlrT9CqlckkjJa2WVC/p2iLlPihpu6RP70zwZmZWXqVMc3EP8H2gETgZuB/4YWsnSaoC7gLOBAYDYyQNbqHcbeRWaDMzswoqJSnsGxG/BBQRr0XEJOCUEs6rBeojYk1EbAVmAqOaKXc5uem4/1xizGZmlpFSksIWSZ2AVyVNlHQu8P4SzusDvJ633ZDsS0nqA5wLTKMISeMlLZK0aP369SV8tJmZ7YpSksKVwHuAK4Bjgc8B40o4r7klOwtvcf0v4GsRsb1YRRExPSJqIqKmurq6hI82M7NdUcp6CgMiog7YDFwMIOk8YGEr5zUA/fK2+wLrCsrUADOTJZ97AWdJaoyIn5UQl5mZlVkpPYWvl7ivUB0wSNJASV2A84G5+QUiYmBEDIiIAeTWaPiiE4KZWeUUe6L5TOAsoI+kqXmHepK7E6moiGiUNJHcXUVVwIyIWCFpQnK86HUEMzNre8WGj9aRmwzvHGBx3v6/AVeVUnlEzAPmFexrNhlExEWl1GlmZtkp9kTzy5KWA6d7Ujwzs46h6DWF5K6gA5NrAmZm1s6VcvfRa8DzkuYCbzXtjIj/zCwqMzOriFKSwrrk1QnokW04ZmZWSa0mhYiYDCCpR24zNmcelZmZVUQps6QOkfQSsBxYIWmxpKOyD83MzNpaKQ+vTQe+HBGHRsShwFeA/5NtWGZmVgmlJIXuEfF000ZEzAe6ZxaRmZlVTCkXmtdIuoF31lD4HPC77EIyM7NKKaWncAlQDcwBHkzeX5xlUGZmVhml3H30V3LTZpuZWTtXbEK8uS0dA4iIc8ofjpmZVVKxnsJx5FZO+zG5tROaWzTHzHbCsVffX+kQeNCPoFoRxZLCQcBpwBhgLPAo8OOIWNEWgZmZWdtr8UJzRGyPiMcj4kLgw0A9MF/S5W0WnZmZtamidx9J6irpk8B/A5cBU8ndhVQSSSMlrZZUL+naZo6PkrRU0hJJiyR9dGe/gJmZlU+xC833AUOAx4DJEbF8ZyqWVAXcRW4IqgGokzQ3IlbmFfslMDciQtIwYBZw5E5+BzMzK5Ni1xQuIDdV9uHAFVJ6nVnkJsbr2UrdtUB9RKwBkDQTGAWkSaFgcr3uQOxU9GZmVlbFVl4r5cG2YvqQu3upSQPwocJCks4F/gN4P/Cx5iqSNB4YD9C/f//dDMvMzFqyu3/4i2nuFtYdegIR8WBEHAl8AriluYoiYnpE1ERETXV1dZnDNDOzJlkmhQagX952X3KL9TQrIp4BDpPUK8OYzMysiCyTQh0wSNLAZI3n84F3PSUt6V+UXKyQdAzQBdiYYUxmZlZEKbOk7pKIaJQ0EXgCqAJmRMQKSROS49OATwHjJG0D/gGMjghfbDYzq5DMkgJARMwD5hXsm5b3/jbgtixjMDOz0mU5fGRmZnsZJwUzM0s5KZiZWcpJwczMUk4KZmaWclIwM7OUk4KZmaWcFMzMLOWkYGZmKScFMzNLOSmYmVnKScHMzFJOCmZmlnJSMDOzlJOCmZmlMk0KkkZKWi2pXtK1zRz/rKSlyesFSUdnGY+ZmRWXWVKQVAXcBZwJDAbGSBpcUOx3wIkRMQy4BZieVTxmZta6LHsKtUB9RKyJiK3ATGBUfoGIeCEi/pps/hrom2E8ZmbWiiyTQh/g9bzthmRfSy4FHmvugKTxkhZJWrR+/foyhmhmZvmyTApqZl80W1A6mVxS+FpzxyNiekTURERNdXV1GUM0M7N8nTOsuwHol7fdF1hXWEjSMOAHwJkRsTHDeMzMrBVZ9hTqgEGSBkrqApwPzM0vIKk/MAe4ICJeyTAWMzMrQWY9hYholDQReAKoAmZExApJE5Lj04AbgQOB70kCaIyImqxiMjOz4rIcPiIi5gHzCvZNy3v/eeDzWcZgZmal8xPNZmaWyrSnYFYua28eWukQ6H/jskqHYJY59xTMzCzlpGBmZiknBTMzSzkpmJlZyknBzMxSTgpmZpZyUjAzs5STgpmZpZwUzMws5aRgZmYpJwUzM0s5KZiZWcpJwczMUpkmBUkjJa2WVC/p2maOHylpgaR/SvpqlrGYmVnrMps6W1IVcBdwGrn1muskzY2IlXnF/gJcAXwiqzjMzKx0WfYUaoH6iFgTEVuBmcCo/AIR8eeIqAO2ZRiHmZmVKMuk0Ad4PW+7IdlnZmZ7qCyTgprZF7tUkTRe0iJJi9avX7+bYZmZWUuyXI6zAeiXt90XWLcrFUXEdGA6QE1NzS4lFts1x159f6VDAODBHpWOwKxjyLKnUAcMkjRQUhfgfGBuhp9nZma7KbOeQkQ0SpoIPAFUATMiYoWkCcnxaZIOAhYBPYG3JV0JDI6IN7OKy8zMWpbl8BERMQ+YV7BvWt77P5EbVjIzsz2An2g2M7OUk4KZmaWcFMzMLOWkYGZmKScFMzNLOSmYmVnKScHMzFJOCmZmlnJSMDOzlJOCmZmlnBTMzCzlpGBmZqlMJ8SrlD1hDYAHe0ypdAgA9L9xWaVDMLO9iHsKZmaWclIwM7OUk4KZmaUyTQqSRkpaLale0rXNHJekqcnxpZKOyTIeMzMrLrOkIKkKuAs4ExgMjJE0uKDYmcCg5DUe+H5W8ZiZWeuy7CnUAvURsSYitgIzgVEFZUYB90fOr4H9JR2cYUxmZlZElrek9gFez9tuAD5UQpk+wB/zC0kaT64nAbBZ0uryhlp+h0IvYEOl4+AmVTqCstgj2tNtWV5uz/JqvT0PLaWaLJNCcxHGLpQhIqYD08sRVFuRtCgiaiodR3vh9iwft2V5tbf2zHL4qAHol7fdF1i3C2XMzKyNZJkU6oBBkgZK6gKcD8wtKDMXGJfchfRh4I2I+GNhRWZm1jYyGz6KiEZJE4EngCpgRkSskDQhOT4NmAecBdQDfwcuziqeCtirhrv2Am7P8nFblle7ak9F7DCEb2ZmHZSfaDYzs5STgpmZpZwUSiBphqQ/S1qet2+4pF9LWiJpkaTaFs69JZnCY4mkJyUdUnC8v6TNkr6a9ffYE0jqJuk3kl6WtELS5ILjX5UUknq1cP4kSX9I2nOJpLMKjneo9gSQ9HtJy5r+LSb7irZTwfmXJ9PRrJB0e8GxDtee+STtL+mnkn4raZWk43ambfdGTgqluRcYWbDvdmByRAwHbky2mzMlIoYl5R5Jyub7NvBYGWPd0/0TOCUijgaGAyOTO8+Q1A84DVjbSh3fjojhyWte4TE6Vns2OTlpj/z75Yu1EwCSTiY3s8CwiDgKuKOgSEdtzybfAR6PiCOBo4FVyf6ibZskjovaMM6yaZeL7JRbRDwjaUDhbqBn8v69tPB8RUS8mbfZnbyH8yR9AlgDvFWuWPd0kbuzYXOyuU/yamqTbwPXAA/tSt0dsT3L4AvArRHxT4CI+HPTgY7enpJ6AicAFwEk0/VsldrHk9gtcU9h110JTJH0OrlfV19vqaCkbyblPkvSU5DUHfgaMLml89orSVWSlgB/Bn4eEQslnQP8ISJeLqGKicmQ3AxJ70vq7LDtSS6pPilpcTIlTJMd2qkZhwPHS1oo6VeSPggdvj2b/C9gPXCPpJck/SBpFyitbfdKTgq77gvAVRHRD7gKuLulghFxfVLuAWBisnsyuS7o5pbOa68iYnsynNYXqJU0DLieHYfWmvN94DByQ09/BL6V7O+w7Qn8W0QcQ27W4csknUDL7VSoM/A+4MPA1cAs5X4Kd+T2bNIZOAb4fkT8K7ke07W00LaShjZdZwAmADfnXXc4sCLfYFdEhF8lvIABwPK87Td45zkPAW8m7+8BlgDzmqnj0KY6gGeB3yevTcBfgImV/p4VaNebgBvI9Rqa2qOR3HWFg1ppzwFuzx3aZBLw1SLt9K72BB4HTsor+z9AtdszSP79/T5v+3jg0Zbatpn/DxdV+jvsysvXFHbdOuBEYD5wCvAqQES866lsSYMi4tVk8xzgt0m54/PKTAI2R8SdmUddYZKqgW0RsUnSvsAI4LaIeH9emd8DNRGxgYKn3CUdHO9MhXIusBw6dHt2BzpFxN+S96eT+4XaUjsVzhrwM3L/fudLOhzoAmzoqO2ZLyL+JOl1SUdExGrgVGBlS23bXjgplEDSj4GTgF6SGsj9uv134DuSOgNbeGdq70K3SjoCeBt4jVy3siM7GLhPuUWYOgGzIuKRnTj/dknDyY2j/x743+UPca/SG3gwufjZGfhRRDwu6YclttMMYIZyt1tvBS6M5KeuAXA58IBy87etIfcjZWp7/jfoaS7MzCzlC81mZpZyUjAzs5STgpmZpZwUzMws5aRgZmYpJwXrMCSdm8zAemSZ6/1cMuXBimT21x9I2r+cn2HWVpwUrCMZAzxHbr3wspA0ktw0J2dGbpbRY4AXyD0/UFi2qlyfa5YVJwXrECTtB/wbcCl5SUFSJ0nfS37lPyJpnqRPJ8eOTSaJWyzpCUkHN1P19eSmlfgDpPM6zUiegG1a6+BGSc8B5+mddTiWSnowb0K/+ZJqkve9kqe6kXSRpIckPa7cmgc3ZdZIZjgpWMfxCXLz4r8C/EXSMcn+T5Kbv2Yo8HngOABJ+wDfBT4dEceSe/L3m83UexTwYiufvSUiPhoRM4H7ga9FxDBgGbmn41tTS26G3eHkEktNK+XNdpmTgnUUY4CZyfuZyTbAR4H/GxFvR8SfgKeT/UcAQ4CfJ7NefoPcrK4typsl838kjc479JPk+HuB/SPiV8n++8jN19+an0fExoj4BzAnidksE577yNq9ZNriU4AhkgKoAkLSNeRmuG32NGBFRBzXSvUryF1HeDoilgHDJd0J7JtXppRFahp550dat4JjhXPReG4ay4x7CtYRfBq4PyIOjYgBkVvb4nfkfnE/B3wqubbQm9zEhwCrgWpJ6XCSpKOaqfs/gDsk5fci9m2mHBHxBvBXSU0zkF4ANPUafg8cmxdvvtMkHZDMKvsJ4PlSvrTZrnBPwTqCMcCtBftmA2OBy8hNibwceAVYCLwREVuTC85Tk2GfzsB/kesZpCJiXjId+GPJ3UWbkrqeaCGWC4Fpkt7DO7NuQm71vlmSLgCeKjjnOeCHwL+QmwV10c58ebOd4VlSrcOTtF9EbE6GmX5DbiWzP1U6LsjdfURubYmJrZU1Kwf3FMzgkeRhsy7ALXtKQjCrBPcUzMws5QvNZmaWclIwM7OUk4KZmaWcFMzMLOWkYGZmqf8PpCCNSx333E4AAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"sns.barplot(data=mortality_by_group, x='Age Group', y='Mortality Rate', hue='Smoker')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Titre et affichage du graphique"
]
},
{
"cell_type": "code",
"execution_count": 101,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAFtCAYAAAAgWJxxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xl8VOX1+PHPmSUbS1gMiLKqILK4gTsiVttq3bCu+P21VqtI64q2Ym2rVmsrbi0oCmq1LlW04IILWlBHVLQuyCKQRsQFBAwgEiCQbc7vj3snmYSZOzdkJut5v168kpn7zDNnJkNOnl1UFWOMMaahAk0dgDHGmNbBEooxxpi0sIRijDEmLSyhGGOMSQtLKMYYY9LCEooxxpi0sIQSR0RuEpEndvGxvxCRdzyuzxaR8xOVFZGtIrKXj+fIFZH5IvKTdMVVH8neHxHpLyKLRaSfz3qGi8gCEemajrgyxX2/V4rIrU0dS2vRkM+jiHQXkXkiskVE7kp3bKbhWnxCEZEvRWS7+0v5WxF5RETaN3Vcdanqiar6aJJr7VV1JYCI/FNE/pykmmnAnar6SqbirC8RyQceBM5U1S/8PEZVPwIuBx4VkXAm42ug3wB3AkeISN+mCMD9fB/fGI9N8dlLVH6UiKzeldh20VhgA9BRVa9pxOc1PrX4hOI6RVXbAwcDhwB/qFtAHC369arqz1X12aaOI56qblbVUapaVM/HvauqJ6tqRaZi80tEQkkubQDuB8YBezdeRCaJPsAybearsT0+T61ei/4FW5eqfgPMBoYAiEhERG4VkXeBUmAvEdlDRGaJyHciskJELq5TTY6IPO02qxeIyAGxCyJynYh87l5bJiKn13msiMg9IrJZRApF5Li4CxERuShR3CKiIrKPiIwF/g+41m1xvehe30NEZorIehH5QkSuSPYeiEhX9/WViMgH1PlFKCIDRWSO+/r/JyJne9TVT0Tecl/vHGC3OtcPd7vgvheRRSIyKu5aF7e1uEZENonI83HXThaRhe7j3hORA+OuTRCRb9zn/F/8e1jnuf8pIlPd17LFjbNP3PVJIrLKfR8+FpGj467dJCIzROQJESkBfpGg/pNw/iLeDLwOHF3n+s9F5CsR2Sgif4xvDYhIIO6zslFEnhGRLh7vc/z7MV9E9nfvfxzoDbzofh6uTfDY3UTkJfex34nI2+7zJ3ysiPxbRNa5n9F5IjLYvT/ZZ09FZJ867/ufRaQdzv+1PdzyW0VkjwTxpeXzKCL/BM6Pi+94qdOikjotJvdn8ltxumO3icg/xOk2m+1+ZuaKSOe48l6f51qtPYnr/hWRvu779EsR+Rp4I9FraBNUtUX/A74Ejne/7wUsBW5xb0eAr4HBQAgIA28B9wE5wIHAeuA4t/xNQAVwplv2N8AXQNi9fhawB04iPgfYBvRwr/0CqATGu489B+eXUZe4WC6KK/tO3GtQYB/3+38Cf467FgA+Bm4AsoC9gJXAj5O8H9OBZ4B2OIn1m9hzufetAi5w34+Dcf4KH5ykrveAu4FsYCSwBXjCvbYnsBH4iRvjD93bBe71l4Gngc7u+3GMe//B7nt+BBAELnR/RjnAvm58e7hl+wJ7J4ntn248I934JtV5T/8f0NV9ndcA64CcOj/n0W7suQnqHwUMda/vD3wLjHavDQK2AiPcn8mdbn2xz+FVwPtATze2acBTSV7HwUAxcJj7fpyP85nOrvv5TvL4vwJT3fc4jJP4JNlj3fe7gxvX34GFdd7TP9cpX/3ZrFvGfY9Wp/j/mc7PY634EtyuFY/7+t8HuuN8XouBBcBB7ut/A7jR5+e51nvpfoZi/xf6uu/TY+5r2unz1Fb+tZYWyvMi8j3wDk7C+EvctX+q6lJVrQR2x/klMEFVd6jqQuAh4Gdx5T9W1RnqdMXcjfOL7nAAVf23qq5R1aiqPg18Bhwa99hi4O+qWuFe/x9wUgNf2yE4H+qbVbVcnbGWB4Fz6xYUkSBwBnCDqm5T1U+B+HGbk4EvVfURVa1U1QXATJwEWreu3u5z/1FVy1R1HvBiXJH/B7yiqq+478cc4CPgJyLSAzgRGKeqm9z34y33cRcDD6jqe6papaoPAztw3uMqnP/og0QkrKpfqurnHu/Ny6o6T1XLgN/jjHX0AlDVJ1R1o/s673Lr3Tfuse+p6vNu7NvrVqyqEVVd4l5fDDwFHONePhN4UVXfUdVynGQf3w1zCfB7VV3txnYTcKYk7gq5GJimqv91349HgTL3/fCjAugB9HHf57fV/S2XiKo+rKpb4uI6QJxxsLRL5+exAe5R1W/V6b14G/ivqn7ivv7ncJILeHye6/FcN7mvc6fPU1vRWhLKaFXtpKp9VPXXdX6gq+K+3wP4TlW3xN33Fc5fJzuVV9UosNp9XKybI9Y18T3OX1zx3UDf1PnP/FXssQ3QB6db4fu4570e56+uugpw/tKLf81f1anrsDp1/R9Ooq1rD2CTqm7zqOusOnWNwPnl1gvnfd6U5PVcKE6XYKGIFOL8xdxNVVfg/HV/E1AsItMTdaPEif9ZbQW+o+ZndY2ILHe7dr4H8qn9s1qFBxE5TETeFKebcTPOOErs8XvUee5SnL9m41/jc3Hvy3KcZJnoZ9YHuKbO+9gL/5+bO4AVwH/EmZF2ncdrCorIbW5XXAnOX91QpyszjdL5edxV38Z9vz3B7dgEHq/Ps1+en6m2oC0MHsX/gl8DdBGRDnFJpTdOMzymV+wbcQbxewJrxOmffxA4Duev2yoRWQhI3GP3FBGJSyq9gVkNiBecD+kXqtrfx2PX43S79QIK42KIr+stVf2hj7rWAp1FpF1cUukdF98q4HFVrTsGhdtC6SIinVT1+wSv5z1VvSXRk6rqk8CTItIRp6toIrVbkPHif1btgS44P6ujgQk4P6ulqhoVkU3U/lmlGth9ErgXOFFVd4jI36n5xbuWuNaOiOTidK/Fv8YLVfXdFM8RK3urqiabmuwZp/s5vgYnKQ0G3hSRD1X19QSPPQ84DTgeJ5nkA/HvS6LnKgXy4m7vjvNHVsrYSO/nMZFtCWLbVUk/z/V4rmY9WaAxtJYWii+qugqYD/xVRHLEGfz8JfCvuGLDROSnbvfEVTjdD+/j9I0qzn8SROQC3MH/ON2AK0QkLCJnAfsB9Z3i+y3OOEnMB0CJOIPVue5fmUNE5JAEr68KeBa4SUTyRGQQTp98zEvAABH5mRtjWEQOEZH9EtT1FU6T/08ikiUiI4BT4oo8AZwiIj92Y8pxB0V7qupanAHb+0Sks/s8I93HPQiME5EjxBk8biciJ4lIBxHZV0R+ICLZON1g23H+sk/mJyIyQkSygFtwujNW4bR4KnF+ViERuQHo6FFPIh1wWlk7RORQnF/GMTPc136k+9x/onaymgrc6v4RgogUiMhpSZ4n9n4cJo7q98O9XvfzUIs4A/r7iIgAJTjvV1WSx3bA+TxvxPnlGN81nOy5FgLnuT/jE6jp9ouV75qsyyydn8ckFuJ8BrqIyO44/193VdLPc9xznevGOJz0dsu1Gm0qobjG4AyircHpQ73R7S+NeQFnQH0Tzl/GP3X7ppcBd+EMVH+LM2Bb9y/Q/wL9cQYWb8VZm7GR+vkHzhjC9yLyvPuf8hScCQRfuHU/hPPXZSKX4TTj1+EMWj4Su+D+NfsjnPGXNW6ZiTjjC4mchzNY/B1wI86gY6yuVTh/7V6P84t7FfBbaj5TP8Pp3y/EGVu6yn3cRzhJfLJb7wpqZlllA7e5r3EdToK+Pkls4LQibnTrGYbTXQLwGk5CK8LpYtlB/bsjfg3cLCJbcMZInol77Utx1tFMx2mtbHFfY5lbZBJOy/Q/7uPfx3kfd+K+HxfjtIY2Ufv9AGfQ/Q/u5+E3CaroD8zFmSTwHnCfqkaSPPYxnPfjG2CZG1e8Wp89974rcT5/se6o6tl6qlqIM7a00n1Mom66dH4e63ocWITT2voPziSQXeLj8/xHnBlqm3D+gHhyV5+rNYvNBjGmRRFnGulqVd1pzVETxNIe5xduf/W5uNOY1qgttlCMaTAROcXtxmmHM214CTWD3Ma0SZZQjNk1p+F006zB6XY612u6rjFtgXV5GWOMSQtroRhjjEkLSyjGGGPSosUtbDzhhBP01VdfbeowjDHGL0ldpHVocS2UDRs2NHUIxhhjEmhxCcUYY0zzZAnFGGNMWlhCMcYYkxaWUIwxxqSFJRRjjDFpYQnFGGNMWlhCMcYYkxaWUIwxxqSFJRRjjDFp0eK2XjHGmMYQKSxm2ryVrNpUSq/OeVwyci9GDezW1GE1a5ZQjDEGJ4HcNns5n2/YRmWVokA4AHt0yqV4yw5umLWUm8GSigdLKMaYNi1SWMw1z3zCxtLKna5VRGHVpu306pxHOChMm7fSEooHSyjGmDYrUljM5U8tYEtZVdIyR8tCfr3tZfoEN/DNtgIougkG/LDxgmxBLKEYY9qc2PjIgq83UVYZTVjmmMBC/h6cTKfADgA0Ch0ogdm/Ae60pJKAJRRjTJsSKSzmhllLCQeFqujOyeSYwEImhKazr3xdaxqsAHlsh60bYP4kSygJWEIxxrQp0+atJBwU8rJCZIeCVJbXdHe9GL6WIYHVOz9I4r5UbIXvv26UWFsaSyjGmFYr0dTfVZtK6ZQbBqCgQzalG0u5IzSF04Pv7rwwT2p9qdGpd4Yjb5ksoRhjWp3YFODP1m8lHAjQvWN29dTf9llBtldUkZcV4hhZxO9zbiKsWrsCSXFu75FXZjL8FssSijGm1YgUFvPHFz5l1abt1fcFRFm7uYw9OuUQDgoiwkFlHzJu62PspV85iSNZSySRPiNt/CQJSyjGmFYhUljMb2csYv3W8lr3V1Qp4SCs31JGv93acer3T3CR/hvR2lOFfSeTC15MX9CtjCUUY0yLFyks5orpn1Cyw1mcKEB8J1ZVVPllYAaXfTeTMFF/ySNGQtDnCKeby1omniyhGGNarPixkqq4GcB1RkR4NHQLIwLL6/8E1iKpF0soxpgWJ1JYzMRXCykq3oqqEhAQgbpj6wBvhi+nb2Bj/cZJcgtgwop0htwmWEIxxrQok+cWMSXyOWWV0equrahCUCB+VKTWmpJUs7biWatkl1lCMca0GJPnFvG3uZ9Vd2nFN0hiuwNXRmFx+Oe0D1TWr1Uy6noYNSGt8bY1dsCWMaZFmDy3iL+9/tlO4yMxUYWRgUUsyTqf9sHK6lZJ6mQStGSSJtZCMcY0a7GB98Jvt3qWGxVYyF+C02gnFYBNA24KllCMMc1WbLykPMmOwDGXBZ9lfHgGAeoxVmKtkrSzhGKMaZbqjpckckxgIZNC95IfKPWfSAqGwKXvpiFCU5clFGNMs5NqvATgztAUfhp8F6nPDK7zZtjixAyyhGKMaVYihcVMiXyecE1JzJ2hKZwRfNf/dGBrlTQKSyjGmGZl2ryVVEajBMSZuVXXnaEpnBFykkPKZCIBGPOMtUoaiU0bNsY0K6s2lZIdDBAQ2SlhxJKJv+nAAsdcZ8mkEVkLxRjTpOoegtUhO0RVNMrGrRUQgKgqUYXHw7cwIrjcXxeXBOGYCTaLq5FZQjHGNJn489075YYp3rKDzdsrEKBr+zCbSysoq1JeDk1gUHCVv2Qy9Bw444EMR24SsYRijGky8ee7A9VfwwGhc7tsVgdKebRsPP2iPpNJwRBLJk3IEooxplFFCov5w/NL+GbzDlSdsZCC9ll0z88FIDccZPP2Cl4dfzg8cgp89aW/im0mV5OzhGKMaTSRwmKueGoBJWU1+wIrUOyestg9P5ftFVX07JwHM8fCV/P8VWyr3psFm+VljGk00+atZGu5k0zqLkjcsK2c0vJKKqqUW7u8Akue8Vfp0HMsmTQTllCMMY0iUljMgq831awtUWotTIwqdOuQwz3DN7DXsnvZ+dzFugJOy8TGTJoN6/IyxmRcbDaXxDVJFJC4nNExJ8RTA96Cd+6GaNVOddRi4yXNkiUUY0zGxNaYLPh6EyLQITtEeUU5sb2DY/kkIHDzoLUQ+UvqSm3L+WbLuryMMRkRa5UUb9lBVTRKNKp8v72Cru2zCMf95skLB7n7oPWMXnZ1ihrFGS+xZNJsWQvFGJMR8WtMskNBKqOKKJSWVzGwRz6l5ZV065DjdHPNu4PaJ8LXEQjCSFv53txZQjHGZMSqTaV0yg0DUNAhmzXf7wCU8iqtPZsrMil1Zec+bXtytQDW5WWMyYhenfPYXuG0OjrkhNmjUw4BEQIicbO57vNRk1gyaSGshWKMSavYQHzRtyVsLauiS7swXdtlEwwI3TrmcPOpgxk1sBvcfw1EK1JXOPTszAdt0sISijEmbeI3e+yRn8uGrWV8t62Ciiqlf7cOXDJyLyeZPHIKfPtp6gpto8cWxRKKMSZt6m72WNAhh3bZIWfwfezhTqEpR8H6FMlEgjDGxk1aGksoxpgGi3VzffDld+SEAuzWPpuO7oB8bjjI6k2lTsGZY1MnEwLOWSaWTFqcjA7Ki8gJIvI/EVkhItcluJ4vIi+KyCIRWSoiF2QyHmNM+sWvN8kOCuVVUdZs3k7Jdmd8pHqzx6I5qffnCufBec/Y9OAWKmMtFBEJAlOAHwKrgQ9FZJaqLosrdimwTFVPEZEC4H8i8i9VLc9UXMaY9IkUFnPF9E8oLa8iOxSgfXaI77dXoigbtpYRCgoVVcolI/eCGcNIuT/XWY9Zy6QFy2QL5VBghaqudBPEdOC0OmUU6CAiArQHvgMqMxiTMSZNYi2TbeWVBANQWaVs2l5Bp9wQ4YCwozJaPT141LPDoLzEu8I+Iy2ZtHCZHEPZE1gVd3s1cFidMvcCs4A1QAfgHFWNYoxp9mID8DnuKvhAQCAK28qr6NEp1xmIH7UFZl6TOpkUDLEtVVqBTCaURCd21m3v/hhYCPwA2BuYIyJvq2qtT5+IjAXGAvTu3TsDoRpj6mPy3CLeX7nR2TFYnK6OUDAAopRVak031/NHQtlm78ryCmzn4FYik11eq4Fecbd74rRE4l0APKuOFcAXwMC6FanqA6o6XFWHFxQUZCxgY0xqY6bN5+65n1X/dagKVQpRVSqjSl5W0Fm8uO4RKF2fusLR92c0XtN4MplQPgT6i0g/EckCzsXp3or3NXAcgIh0B/YFVmYwJmNMA0yeW8R7X2xKeK2yStmzUx6Tzz3IWbw4747UFdq4SauSsS4vVa0UkcuA14Ag8LCqLhWRce71qcAtwD9FZAlOF9kEVd2QqZiMMQ3z0DtfJL2mULOtyiOnpN5Wxc41aXUyurBRVV8BXqlz39S479cAP8pkDMaY9NlWnnyL+Y45oZpk8tU874pGXW9rTVoh223YGONbu6wggUTTbYCLRvRzVsKnSiYELZm0UpZQjDG+XTSiHyKyU1I5ol9nrlh1DSx5OnUllkxaLdvLyxjj2xXHDwCcsZRt5VW0ywpy0Yh+XBF6DiKpWiY4uwdbQmm1RDXFVgjNzPDhw/Wjjz5q6jCMMfFu3QMqtnmXabuD8Ek6CVsf6/IyxjRM0ZzUySQ7v60mkzbFuryMMTuJbUe/alMpvTrn1RyMlcjTP/OuLNwOzvhH+oM0zY61UIwxtcRvR98pN0zxlh3cMGspkcLinQvPHAtV25NXlp0PZz1qixfbCGuhGGNqmfhqIcUlO6hSJSsYoKBDNuGgMG3eytqtFD/nm/zu68wGa5oVa6EYY6pFCospKt5KVJVgQKiMKmu+30FlVbTm1MWYl6/B83wTsV8vbY39xI0x1W6bvRxVpbxKKa+MEo0qIvBtSZlz6mJM0RzY/JV3ZUPOymywptmxLi9jDOC0Tj5bv5WAQFRj/5SgKgjOdvTgJJNn/s+7soIhcMYDmQ/aNCvWQjHGVB/lWxV1tqIPCtWr4RXoX9DeGT8pmgP//jlUliWvzM43abMsoRjTxsUf5RsO1JxvEhTICgoiwnUn7ucUfvkaqChNXlkgbOebtGGWUIxp4+KP8g0EAmQFAwhQGYWACAO6xbVOUo2bjPytTRFuwyyhGNPGrdpUSm44SEGHbFSdI32zQkIwIHTrmMOEE9xDVJ//lXdF4Tzbp6uNs4RiTBvXq3Me2yuq6JATZo9OOYTc6cLVR/kO7AZ375/6ON+jrmqcgE2zZQnFmDbukpF7UVGllJZX0j47xO75ObWP8p05FkpSdHXZLsIGSyjGtHmjBnbj5lMH061DDpu3V9CtQ05NywTg03+nqOB6myJsAFuHYozBSSoJN3+MTASNJn+gBKxlYqpZC8UYk1jRHJh3h3cZWw1v4lhCMcYk9vpNEK1Ifr1jH+vqMrVYQjHG7KxoDny7NPn1vAK4enHjxWNaBEsoxpjaiubA7N8kuBB3kq2thjcJ2KC8Maa2l6+GktXsvDW9ezu/j62GNwmlbKGIyJ0iMrgxgjHGNLGZY2Hz10lmdgm06wYn3dXoYZmWwU+XVyHwgIj8V0TGiUh+poMyxjSBVCcw5nSE0+6z1olJKmVCUdWHVPUo4OdAX2CxiDwpIsdmOjhjTCNKdQLjT/9hycR48jWGIiJBYKD7bwOwCLhaRC5R1XMzGJ8xpgEihcVMm7eSVZtK6dU5j0tG7pV8AaPXTsLhdpZMTEp+xlDuxun2+gnwF1UdpqoTVfUU4KBMB2iM2TWxc06Kt+ygU26Y4i07uGHWUiKFxTsXnpdiXOSoKzMTpGlV/IyhfAocoKqXqOoHda4dmoGYjDFpEDvnJC8rhIjzNRwUps1bWbtgZCJEPU5gBNtexfjiJ6H8n6rWOqJNRF4HUNXNGYnKGNNgsXNO4uWGg6zeVOfExXcneVeUY/NwjD9Jx1BEJAfIA3YTkc7UrGrqCOzRCLEZYxqgV+c8irfsIC+r5r/59ooqenbOqykUmQgV27wrOvzSDEVoWhuvFsolwMc4A/EL3O8/Bl4ApmQ+NGNMQ8Sfc6LqfK2oUi4ZuZdToGgOvHO3dyWd+lh3l/EtaQtFVScBk0TkclW9pxFjMsY0QPzMrg7ZIVSVzdsr6Fl3ltf8SRCtxPm7MsFCxux8+IktYjT+eXV5/UBV3wC+EZGf1r2uqs9mNDJjTL3FZnaFg0Kn3DDbK6qoqFJuOW3IztOFv/8KQjlQVeH8i08qgWw4w9admPrxWodyDPAGcEqCawpYQjGmmblt9nKKt+ygKqpkBQPs1j67embXTgmlUx+orITtGyAYBhGIVkEgCGc/YcnE1JtXl9eN7tcLGi8cY8yuihQW89n6rQRFCIpQWaWs2bydPfJzdp7ZBXDkle6uwrtBeQlU7oBACEZcbcnE7BKvLq+rvR6oqilG84wxjSVSWMwV0z+hKgpRUcIBIRgQiMK3W8o4qFfnuMIT4f0pULbV6fLK2w3yukKn3k6SsWRidpFXl1eHRovCGLPLYuMmpeVVhANQEYXyqihZ7kz/yipqZnbNHAtLnnYfKU6rZMs3MPJam81lGsyry+tPjRmIMWbXxFbEZ4cCVFYpWUGoqIpSUaVkhwLsXdDOGT/ZaTdhBa0Cgk6LxRKKaSCvLq9rVfV2EbmHBFuQquoVGY3MGOPLZ8VbKC2rZEdlFFUIBoSskFAZVbp1zGHCCQOdgq/fRMLdhLXK6f4ypoG8uryWu18/aoxAjDH1FyksZsuOSqKqZIUCVFZFqYoqqtAuO8TNpw6umd1VXJi8ouz2jROwadW8urxedL8+CiAiHZ2buqWRYjPGpPCH5xZTXhlFgYoqJQCEgkJAhMnnHlSTTIrmgFYmr8i2VzFp4Gf7+uEisgRYDHwqIotEZFjmQzPGeJk8t4jVm8tqdWJFAVWlQ3aw9rqT+ZMgmJW4orwCGz8xaeFnt+GHgV+ral9V7QNcCjyS2bCMMalMrbMNfWz31qhC/+4daxf+/ivouKezzgSpKS0BGH1/pkM1bYSfExu3qOrbsRuq+o6IWLeXMU1o8twiSsurat0Xa6lENW6aMDjdXTs2Q/k2J6EEQqBRkCB03dvWnZi08ZrldbD77QciMg14Cuczew4QyXxoxphEIoXFTH7js6TX87LiurtmjoVP/+0kEHC3VglB+27OdivH3ZT5gE2b4dVCqbvN6I1x3yeYe2iMaQy3zV5OZYLNgWPGxVonkYlxixhj1NlhuHwr/NQ2fzTp5TXL69jGDMQY488XG0urx0vq/mXXMz+bK44f4NzY6SRGcR4hAjmdLJmYtPMzhoKInAQMBnJi96nqzZkKyhjjLSDOWEndxPLn0/d3vimak+AkRreURp19u4xJMz/ThqfijJtcjvP5PQvo46dyETlBRP4nIitE5LokZUaJyEIRWSoib9UjdmPapL12a4eIs/mjSE0y6dU5t2bs5PlfJa9AAs4mkMakmZ9pw0eq6s+BTe7+XkcAvVI9SESCOEcFnwgMAsaIyKA6ZToB9wGnqupgnGRljPEw4YSBdM4LEwoIAYGcUICC9lncctoQp8Ajp0Dp+uQVDDnLurtMRvhJKNvdr6UisgdQAfTz8bhDgRWqulJVy4HpwGl1ypwHPKuqXwOoarG/sI1pu0YN7MYdZx7AQb070yM/l4N6d+aOMw+o2QDyq3nJH5zfB854oPGCNW2KnzGUl9yWxB3AApwW9oM+HrcnsCru9mrgsDplBgBhEYngbJc/SVUf81G3MW3aqIHddj6BEWDujTvfF+8kOyPeZE7KhKKqt7jfzhSRl4AcVd3so25JcF/dSSkhYBhwHJALvCci76tqUa2KRMYCYwF697bBRGOSWr88+TUJWFeXySg/g/I5InK1iDwLPAlcKCI5qR6H0yKJH2vpCaxJUOZVVd2mqhuAecABdStS1QdUdbiqDi8oKPDx1Ma0QTPH1ixgTGSIDVGazPIzhvIYzpThe4B7gf2Ax3087kOgv4j0E5Es4FxgVp0yLwBHi0hIRPJwusQ8/sQyxiRUNMdZEe/Fxk5MhvkZQ9lXVeNbDW+KyKJUD1LVShG5DHgNCAIPq+pSERnnXp+qqstF5FWcnYyjwEOq+mn9X4YxbdzcG71bJ90GN14sps3yk1A+EZHDVfV9ABE5DHjXT+Wq+grwSp37pta5fQfOgL8xJk6ksJhp81ayalMpvTrnccnIvRIPxBfNgeJl3pUdbyd6m8zz2hw0eK9mAAAgAElEQVRyCc4gehj4uYh87V7qDaT49BpjGiJSWMwNs5YSDgqdcsMUb9nBDbOWcjPsnFRe+DWe2+sNPccG402j8GqhnNxoURhjavnDc4tZU1JGVJ1tVrq2y6Jjbphp81bWTiiRibDNY/nW0HNs7MQ0Gq/NIb+KfS8iBwBHuzffVtWUYyjGmF0TO4kxJqqwfms5oJTHbzNcNAcif/GuzJKJaUR+pg1fCfwL6Ob+e0JELs90YMa0VXfPTXzWyfqtFfTsnFdzx/y6uwnXEc7zvm5MmvkZlP8lcJiqbgMQkYnAezjTiI0xaTRm2nzP67VOYly32Luyo65KQ0TG+OdnHYoA8WeNVpF4FbwxpgEmzy3ivS82eZapHj+JTHSO9fUsPCFNkRnjj58WyiPAf0XkOff2aOAfmQvJmLZp6ryVntcl/s+4VGMnfUY2PCBj6snPXl53u5s3jsBpmVygqp9kOjBj2prS8irP66MP6OF888gp3hX1GQkXvJimqIzxzzOhiEgAWKyqQ3B2GjbGZMDkuUWe13NC8LdzD3ZueG1Pj1gyMU3GcwxFVaPAIhGxLX6NyaCpb3l3d039f4c430QmeldkR/uaJuRnDKUHsFREPgCqD6lW1VMzFpUxbcgJf4tQWpG8u6tnfnbN4VmR27wr+4mdd2Kajp+EYpsAGZMhY6bNp/DbbUmvC/Dn0/d3bsy9EWcP1SQKhtgWK6ZJpRpDGQ3sAyxR1dcaJyRj2o5U04RHH9ijZqrwBu9xFi71tWerMRmTdAxFRO4DxgNdgVtE5I+NFpUxbUCqgfienXJqBuIBopXJC3cfkqaojNl1Xi2UkcABqlrlHn71NnCLR3ljTD3c/9bnntf/PHpo7TsCIYhWJC583E3pCcqYBvBKKOWqWgWgqqUiYqvjjUmj7RUe4yEk2KZ+twGwvhC0zgB+fh8bO2kBPv74426hUOghYAj+dilpzqLAp5WVlRcNGzasertrr4QyUERimwUJsLd7WwBV1f0zF6sxrVuq7q6Ejv+Tc/ZJ2Ran+ysQguwOcJLN7GoJQqHQQ7vvvvt+BQUFmwKBgMcBNs1fNBqV9evXD1q3bt1DQPWMX6+Esl/mwzKm7YkUFnPPmys8yxzRr/POdw74IZx2n7PL8PdfO2tOjrzSWictx5DWkEwAAoGAFhQUbF63bl2twTtf56EYY9Jn4quFVFR5/0556pIjnW8iE+H9KVC2FbLbw+GXwi9eaoQoTQYEWkMyiXFfS62uOz/rUIwxafS/b7d4Xj/9QHfPrpljYcnT7r3iJJV5tzs3bSdh0wy19IEhY1qUMdPmE/X4G/WIfp2dqcJFc+KSCYA6g/GqTovFtEoTJkzYfZ999hk8YMCAQQMHDhz0xhtvtGtIfS+99FKHY489dp90xZeKtVCMaSSRwmLPhYw9O+XUdHU9Py5xIa1yWiqm1Zk7d2671157rdOSJUuW5ebm6tq1a0NlZWVNNru2oqKCcDhcr8f4OQL4KBGZIyJFIrJSRL4QEe+d7IwxO5n4aqHn9VrrTko3JC+Y3T5NEZnm5Jtvvgl36dKlMjc3VwF69OhR2bdv34o999xz6GWXXbbngQceOHDIkCH7vfPOO3kjRozo36tXryG33357AUA0GuWSSy7p2b9//8EDBgwY9OCDD+40q+Ott97K22+//QYtW7Ysq6SkJHDWWWf1HTJkyH777bffoCeeeKITwOTJk7ueeOKJe/3gBz/Y5+ijjx5Q39fgp4XyD5wV8x9T++RGY4xPkcJiCtd5j51UrztJdd7J4ZemKSrTnIwePbrkr3/96x59+/YdMmLEiJIxY8Z8d9JJJ20F6NWrV/nChQsLf/nLX/a68MIL+/73v/8t3L59e2DIkCGDr7322vWPPfZYpyVLluQuX7586dq1a0OHHnrofj/60Y+qm7Jz5sxpd9VVV/WeNWvWiv79+5dfdtllex577LEl//73v7/csGFDcPjw4fudeuqpJQALFixov3jx4qXdu3ev9+97Pwlls6rOrm/Fxpga1zyzEK/pPbX6NVKdd2ID8q1Sfn5+9NNPP1326quvdnj99dc7nH/++XvfcMMNqwHOPvvs7wGGDh1aum3btkDnzp2jnTt3jmZnZ0c3bNgQfPvttzucffbZ34VCIXr16lV52GGHbX3nnXfy8vPzoytWrMj59a9/3XfOnDlFffv2rQCIRCIdX3vttU6TJ0/eHaCsrExWrFiRBXD00UeX7EoyAY+EIiKxTYTeFJE7gGeBsth1VbUDt4zxaWNpki1TXKNjM7umHOVd0dCz0xSRaY5CoRAnn3zylpNPPnnL/vvvv/3xxx/vCpCTk6MAgUCArKys6r9NAoEAFRUVopr8z5Vu3bpVlJWVBd5///28vn37bgZQVWbMmLHigAMOKIsv+84777TLy8vz3sLBg9cYyl3uv8OA4cBf4u67c1ef0Ji2Zvx077+9Tj+whzOzKzIR1n/qXdkZD6QxMtOcLFq0KHvJkiXZsduffPJJbs+ePcv9PPaYY47ZMmPGjC6VlZWsWbMm9MEHH7Q/+uijtwF07Nixavbs2Z/deOONe7700ksdAI499tiSu+66q3s06uSOd999Nzcdr8FrYeOxACKyl6rWGoQXkb3S8eTGtHaRwmKeW7g26fWAxB3t++4k78r6jExjZKa5KSkpCV5xxRW9S0pKgsFgUPv27Vv26KOPfjV8+PD8VI/92c9+9v38+fPb77fffoNFRP/0pz+t7t27d+Xixc7uWb169ap86aWXVpx44on98/LyvrztttvWjB07tvfAgQMHqar07Nmz7M03U2zf4INnUwlARBao6sF17vtYVYc19Ml3xfDhw/Wjjz5qiqc2pt6G3fwfz+6u6tZJ0Rx48kzvym7anOboTCMRgEWLFn15wAEHeEzfa3kWLVq02wEHHNA3dttrDGUgMBjIF5Gfxl3qCORkLEJjWolIYbFnMgkF4lonT43xrmzoOWmMzJjM8JrltS9wMtAJiJ/HuAW4OJNBGdMa/OG5xZ7Xr/hBf+ebKUeBegzaFwyxsRPTIniNobwAvCAiR6jqe40YkzEtXqSwmNWby5JeDweFK44f4OzXlWog3o72NS2En3Uon4jIpTjdX9VdXap6YcaiMqaFu/wp75ldl8e2V1ryTCNEY0zj8LM55OPA7sCPgbeAnjjdXsaYBCbPLWJLWfJ1YV3zwk7rBMBzuSM2s8u0KH4Syj6q+kdgm6o+CpwEDE3xGGPapEhhMXfP/cyzzF1nH+h8UzQndYUXvJiGqIxpHH4SSmy08HsRGQLkA30zFpExLViqgXghbs+uuTd6V2Yzu0yaRKNRhg0btu8zzzzTMXbfQw891Pnoo4/un87n8ZNQHhCRzsAfgVnAMuD2dAZhTGvhNRAPcVusRCZC8dLkBbM62swukzaBQICpU6d+dd111/UqLS2VkpKSwC233LLn1KlTv07n86QclFfVh9xv3wJshbwxSYyZNt/zevusQM0WK5HbvCs78+E0RmZaopcXr+n44Ntf7L528/bsHvm5ZRcf3W/dSfvvUbKr9R1yyCE7fvSjH23+4x//uPu2bduCZ5999sbBgweX3XPPPV0feOCBbhUVFTJ8+PCtjz766NfRaJSzzjqr37Jly3JVVc4///z1f/jDH4pTPUfKhCIi3XH28dpDVU8UkUHAEar6j119Yca0NpPnFnkengVw73nu5hKR2wGP/fc69YEBP0xfcKbFeXnxmo63vLy8dzgg2iE7VLlxa1n4lpeX9wa+bkhSuf3229fsv//+g7KysqKLFi1a/uGHH+a88MILnRYsWLA8HA4zZsyYPg8++GCXAQMGlH333XehoqKiZQAbNmwI+qnfT5fXP4HXgD3c20XAVbvyYoxprSa/4T0QXz12EpkIVCYv2K47/OSutMZmWp4H3/5i93BANCccjIoIOeFgNBwQffDtL3ZvSL0dO3aMjh49+ruzzz57Y25urs6ePbvj4sWL2w0dOnTQwIEDB7333nsdPv/88+xBgwbtWLlyZc4FF1zQa+bMmR27dOniazt7P+tQdlPVZ0TkdwCqWikidtCWMa5IYTGVKTb8rh47SXUe/GlTrHViWLt5e3aH7FCtvzyyQ4Ho2s3bs5M9xq9AIEAg4LQlVJUxY8ZsmDRp0pq65ZYuXbp05syZ+ffcc0+3GTNmdH7qqae+Slm3j+ffJiJdcSfMi8jhgO1SZ4zrmmc+8bw+sHu7mj27dnj0VkjQkokBoEd+bllZZbTW7+eyymigR36u96yPejrxxBO3vPDCC13Wrl0bAli3bl3ws88+y1qzZk0oGo1y4YUXbrr55pvXLFmyJM9PfX5aKFfjzO7aW0TeBQqAFNuiGtM2TJ5bxMZSjy4s4NXxo5xvIhPxXMhYMDBtcZmW7eKj+6275eXlvamoCmSHAtGyymigIqpy8dH91qXzeQ499NDt11133Zpjjz12QDQaJRwO63333fdVMBjk4osv7quqiAi33nrraj/1+ZnltUBEjsHZLFKA/6l67WRnTNtxb4ojJHp2cncrKpoDkb8mLxjKg+P/lMbITEvmDrx/nc5ZXjF33313re6tcePGfTdu3Ljv6pZbvnz5svrW7ZlQ3K6u84DYn07LgTXATk9uTFsTKSymvMp765Q/j3Y3lZhxIUlbJxKEsx+z7i5Ty0n771GSjgTSmJKOoYjIfsCnwDCcmV2fAYcAn7pnpRjTpl3+1Mee17ODUrMqvtzj90KfIy2ZmFbBq4VyC3ClqtbaDlVEzgBuBc7IZGDGNGeRwmK2lHlP7bo0tqPwI6d4luPIK9MUlTFNy2uW19C6yQRAVWcCQzIXkjHNX6qZXacf2KPmvJOv5nlXZq0T00p4JZRtu3jNmFbNOdrXe2ZX9TThJU97V2bb05tWxKvLq5uIXJ3gfsGZOpySiJwATAKCwEOqmnADIxE5BHgfOEdVZ/ip25im8scXvE9YPD22iHHKUakrs+3pTSvi1UJ5EOiQ4F974CGPxwEgIkFgCnAiMAgY4+4DlqjcRJztXYxp1iKFxazatD3p9aDEtU5SHe3b3XqOTeMSkWEXX3xxz9jtG264ofvVV1+9h9dj6sPrTPmGToo/FFihqisBRGQ6cBrO9vfxLgdm4swgM6ZZG/fER57XrzyuHsdLHHdTw4Ixpp6ysrL0lVde6bx27dp1PXr08O633QV+tl7ZVXsCq+Jur3bvqyYiewKnA1MzGIcxaTFm2nx2VCZfd7Jbu7ijfWeO9a5s1PU2GG+8LX2uIw8eN4C7Bg7lweMGsPS5jqkf5C0YDOrPf/7z9X/5y1+6171WVFSUdcQRRwwYMGDAoCOOOGLAZ599llXf+jOZUCTBfXX/N/4dmKCqnptNishYEflIRD5av3592gI0pj5SbU9/51kH1tz49N/JC3bsA6MmpCkq0yotfa4jr17fm23rw2R3rGTb+jCvXt87HUnlt7/9bfGzzz7bZePGjbW2pB83blzv8847b2NRUdGyc845Z+OvfvWrXvWtO5MJZTUQH1BPnFX28YYD00XkS5z9we4TkdF1K1LVB1R1uKoOLyjwNR/AmLSaPLfI83rP/OyaRYyRiaAea1Su9j4m2Bjm37s7wbASzo0iAuHcKMGwMv/eBm1fD9ClS5foWWedtfG2227rFn//J5980m7s2LHfAfzqV7/67uOPP25f37qTjqEkmeFVTVXvTlH3h0B/EekHfAOci7ONS3wd/eKe75/AS6r6fIp6jWlUkcJi/v6693knfz59f7fwRO89uwK+zikybV3JN9lkd6w9xhHKiVLyTYO3rwf43e9+9+3BBx886Nxzz92QjvpivFoosVldw4Ff4Yx/7AmMw5m15UlVK4HLcGZvLQeeUdWlIjJORMY1NHBjGstvZiwi6rFlV/XhWUVz4J278dxReLBt1G186LhnGZU7av9+rtwRoOOeadm+vnv37lWnnHLKpieffHK32H0HHXTQtoceeqgzwLRp07oMHz58a33rTTnLS0T+Axysqlvc2zcBHh3Etep4BXilzn0JB+BV9Re+IjamkW3YWu55ffzx7syu58dB5Y7kBfMK4IwH0hiZabWOvGwdr17fGwgQyolSuSNAVYVw5GVp277+97///bpHH320egzh/vvv//r888/vO2nSpN27du1a+dhjj31Z3zr9nIfSG4j/H1UO9K3vExnTEo2fvsDzeq0tVko9eg9COTD6/jRHZ1qtwaeXAF8z/97dKfkmm457lnHkZevc+3dZaWlp9Z5BvXr1qty+fXv17X333bf8/fff9x4sTMFPQnkc+EBEnsNpy58OPNaQJzWmJZg8t4jnFq71LONvixWBEVfbNGFTP4NPL2loAmlsfg7YulVEZgNHu3ddoKreO+MZ0wr8fa73QHz1Fisp15z8zqYJmzbB77ThPKBEVScBq92ZW8a0WpPnFuG9OX09NoC0ZGIc0Wg0mmh9XovkvpZa/01SJhQRuRGYAPzOvSsMPJH26IxpRlJNEw7Efi0Uzcl8MKa1+HT9+vX5rSGpRKNRWb9+fT7OIYzV/IyhnA4cBCwAUNU1ItIh/SEa0zyMn77Ac5owwGkH9HCSycxfehccek76AjMtWmVl5UXr1q17aN26dUPI7KLyxhAFPq2srLwo/k4/CaVcVVVEFEBE2mUiOmOai1mLvWdmDuzezunuun0fKNvsXZlNEzauYcOGFQOnNnUcmeQnSz4jItOATiJyMTAXH9vXG9NSVXk0TwLAq+NHOSviS1PsK2eHZ5k2xs8srztF5IdACbAvcIOqWsexabWCAUmaVK6KLWKcd4d3JVkd7fAs0+b4GZSfqKpzVPW3qvobVZ0jIhMbIzhjmsKp+yfef29g93bOIsbIRIhWeFdy5sMZiMyY5s1Pl1ei1VgnpjsQY5qLv517MKcf2IOgO5UrGBBOP7CH09UFELndu4L8PraI0bRJXrsN/wr4NbC3iMTvt90BmJ/pwIxpSn8792D+dm6CC5GJQIqD7k66KxMhGdPseY2hPAnMBv4KXBd3/xZV/S6jURnTyMZPX8CsxeuoiirBgHDq/rvXLFyM93aKZGEnMZo2zGu34c3AZhGZBHwXt9twBxE5TFX/21hBGpNJw25+jY2lNa2Oqqi6e3gtqJ1UiuZAlcfu4XkFtiretGl+xlDuB+L3xd/m3mdMizdm2vxaySRerfUoRXNg+nkJy1Wz3YRNG+dnYaOoavUcSlWNioifxxnT7HmdE19r6vCTKQ7GkpB1dZk2z08LZaWIXCEiYffflcDKTAdmTKalOic+NsuLifukruyYa9MQkTEtm5+EMg44Eudc+NXAYUCK/bqNad4mzy3i7hTb01evR9meYkV8KNvGTozB30r5YiDRBEpjWqRIYTH3vLnCs0zXvJAzIP/IKakrHHFNmiIzpmXzWodyrareLiL34JzUWIuqXpHRyIzJkNtmL6eiKvl+XR2yA3x8w4+dG1/N866sz0hrnRjj8mqhLHe/ftQYgRjTGCKFxfzv262eZe4ZM8z55qbOqSu0/bqMqea1DuVF9+ujjReOMZl1yeMf7tzcjtOzUw6jBnZzB+JTnNk46vp0hmZMi+fV5fUiCbq6YlS1Ve/rb1qfE/4Woawq+fWO2UH+PHqocyPVQHzHPtbVZUwdXl1ed7pffwrsTs2xv2OALzMYkzFpFykspvDbbUmvCzB5zMFO62Smj0mMVy9OXcaYNsary+stABG5RVXjTwp6UURSjFQa07xc9OiHntcH7t7BSSYAS2d4V2YHZxmTkJ91KAUislfshoj0AwoyF5Ix6TVm2nwqU5wRP+GEgTU3oh79YmAD8cYk4WcLlfFARERiq+P7ApdkLCJj0sxrexWA7CA1rROAQDB5UjkvRevFmDbMz8LGV0WkPxD7E65QVT22XDWm+Ui1vQrAtJ8dUvuOwWfCkqd3LthnpO3XZYwHP0cA5wG/BS5T1UVAbxE5OeORGZMG97/1uef1I/p1rt06ATjjARh6jtNSAefr0HOsq8uYFPx0eT0CfAwc4d5eDfwbeClTQRmTDuOnL2B7RfK1JAHgqUuOdLamnz8Jvv8KOvWBI690ksoZDzResMa0An4G5fdW1duBCgBV3Y4zy9KYZmvy3CL3kKzkHv7FIU4ymf0b2PIt5HR2vs7+jXO/MaZe/CSUchHJxV3kKCJ7AzaGYpq1VDsJn35gD6era/4kCGRBVh6IOF8DWc79xph68dPldSPwKtBLRP4FHAX8IpNBGdMQI/461/N6r865NUf7fvMxVJTWXMzuBJ37wPdfZzBCY1onz4QiIgIU4qyWPxynq+tKVd3QCLEZU2+T5xaxerN3A/qW04Y430w5qnYyASj7HjZWwp4HZShCY1ovz4Siqioiz6vqMODlRorJmF02+XXvrq4A7pqTu/eHkq8SF6rY6gzMG2Pqxc8YyvsickjqYsY0rfHTF6RcEX/V8f2dQ7OSJZMYW29iTL35SSjH4iSVz0VksYgsERHbGc80K5HC4pSzunrmZ3PF8QNSH5oVW39ijKkXP4PyJ2Y8CmMaIFJYzK//9bFnmZ752bzzu+OdcZNUBp+ZpsiMaVu8zkPJAcYB+wBLgH+oamVjBWaMXxc/9iEe6xcBnGTiNW4SUzDEFjQas4u8urweBYbjJJMTgbsaJSJj6mHYza+lTCZd80IQmZg6mQSy4NJ30xecMW2MV5fXIFUdCiAi/wA+aJyQjPFn/PQFbCxN3Wi+6+yDYPq5qSs898k0RGVM2+XVQqmIfWNdXaY5mrV4XcoyVx/fn1FL/0DK8+E79bGZXcY0kFcL5QARKXG/FyDXvS04S1Q6Zjw6Y5KYPLeIqqj3HOHTD+zBFaHnEm9FX4vAT6xH15iG8joC2OZOmmZp8twiJr2xwrNMz/xsZ3uVm320Okb9zlonxqSBn2nDxjQrqTZ+7JoXcmZ1RSZCNEVvbZ+RMGpCGqMzpu3ys7DRmGYj1caPpx/Yg49v+LGz/fzbd3hX1mekHZplTBpZQjEtRqqNHzvmhGp2EX7lGqiqSFqWQNiSiTFpZl1epkUYP31Byq1VLhrRz/lmylHO6YteRv42TZEZY2KshWKaPT/7dAHOPl1TjoL1n3oXzNvNxk2MyQBLKKbZ+82MRSnL9MzPdgbhUyWT7HwYPTVNkRlj4mU0oYjICSLyPxFZISLXJbj+f+4OxotFZL6IHJDJeEzLM376AjZsLfcsExJ3r653Ux3bK3DGP2yKsDEZkrExFBEJAlOAHwKrgQ9FZJaqLosr9gVwjKpuEpETgQeAwzIVk2lZxkybz3tfbEpZ7qHzD4GZY6Fim3dBW29iTEZlclD+UGCFqq4EEJHpwGlAdUJR1flx5d8HemYwHtOC+E0mpx/Yg1Hv/TL1GScFQ2zcxJgMy2SX157Aqrjbq937kvklMDuD8ZgWIlJY7DuZ/G33Of6Sie0ibEzGZbKFIgnuS7j5kogci5NQRiS5PhYYC9C7d+90xWeaqdtmL09ZpjqZRP7iXTC/tyUTYxpJJlsoq4Fecbd7AmvqFhKR/YGHgNNUdWOiilT1AVUdrqrDCwoKMhKsaR4mzy2i8NutnmVqkslfvSuTAJx0dxqjM8Z4yWRC+RDoLyL9RCQLOBeYFV9ARHoDzwI/U9WiDMZiWoDJc4v42+ve+3QFwFkNH7mNJA3eGkPOskF4YxpRxrq8VLVSRC4DXgOCwMOqulRExrnXpwI3AF2B+0QEoFJVh2cqJtN8+R2Ev+r4/vDIKaQ834SAHeVrTCPL6NYrqvoK8Eqd+6bGfX8RcFEmYzDN3wl/i1D4rfeU34DAVcf154pV16QehAcYtdOyJ2NMhtleXqZJjZ++IGUyyQ4FmPb/hjHq9dNTr4QHGHqOTRE2pglYQjFNxu8eXZeO2ptRLxwJ29enrnTU9ZZMjGkillBMk/CzezA4rZMrPv6Jv2Rih2UZ06Rsc0jT6PwmE4D/dL7DfzKx802MaVKWUEyj85tMnt7tYfps+Th1QUsmxjQL1uVlGo3fqcEAH/eaTNf176cuWDDEkokxzYQlFNMo6pNMPswbT9f136YumFtg26oY04xYl5dpFH6TyRt511MQ9ZFMCMKEFQ0LyhiTVpZQTEZFCosZcP3LvsreGZrCXtEvUxcMZMF5TzcsMGNM2llCMRkTKSxm7OMfUZ5qlxScZHJmyEf3VSAE5z5pe3QZ0wzZGIrJiMlzi7h7rvdGjzGz2t/G/pWLUxcMZFkyMaYZs4Ri0q4+yeTJrD+zf+Wy1AUlbMnEmGbOEopJq0hhccot6GPeDF9Ov0DCI3BqC+XBH/ytXTHGNB1LKCZtIoXFXPn0J2iKY0oA3s65kl74SCbhPDjrsYYHZ4zJOBuUN2kRKSzmiumfsHl7Zcqyb+RdTy98bKeSV+AkE+vmMqZFsBaKabB9f/8yZVWpyx0TWMjkrHvJj5amLmzbqRjT4lhCMbssUljML/75oa+yd4am8NPQu/6axJZMjGmRLKGYXVKfrVTuDE3hjNC7iJ/CHftYMjGmhbKEYupt/PQFvpLJMYGF3BGaSkGgxH8yudrHehRjTLNkCcXUi9+zTB4P38KI4HJ/iQScXYNto0djWjRLKMYXv4nksuCzXB2agYD/ZGJjJsa0CpZQTEpDbpjNVh8bcr0Zvpy+7kJF8ZtNhp4DZzzQgOiMMc2FJRSTVH22UKlOJuK3ZRKCUdfaGfDGtCKWUExCflsllwWf5fLQs2QR9Z9MrFViTKtkCcXU4nes5JjAQiaF7iVfSuvRKsEZL7FkYkyrZAnFAPXr3oofeId6JJNR11sXlzGtmCWUNq4+iQTgxfC1DAmsdm7Up2Vy0+Z6x2aMaVksobRhI/46l9Wby1KWOyawkJtDD9NLNtS0SvxmElusaEybYQmlDarPtinxU4EBG3g3xiRlCaUNiRQW86t/fcz2itSztx4P38KIwPLad/pJJtn5cMY/bGgl5n4AAAncSURBVMt5Y9ogSyhtwPjpC3h+4Vp8nHsFwPvhsXQPbK25w2+rJLcAJqzYhQiNMa2BJZRWzO8U4DtDUzg9mGBr+foMutteXMa0eZZQWqEGjZHE+E0mtg+XMcZlCaWViBQWc8njH1FWlbpj687QFH4aTHI+iSUSY8wusoTSwvkdaL8s+CxXhWYSTDaS4rt7KwCjrrMFisaYnVhCaYEmzy1iypsrfLVGai1ETMZPMrEBd2NMCpZQWpBIYTEXP/YhqWb91tqw0YuvVonA0LNtTYkxJiVLKM2c3wH2x8O3cFTAxwmJ9Zm5ZXtvGWPqwRJKMxMpLOa22csp/HZryrK+kwjUI5FYi8QYs2ssoTQDk+cWce8bKyiPeo+JXBZ8lsuDz5ElVf4rt1lbxphGYgmlCUyeW8TkN1ZQmSKBgM9B9UT8JhLr1jLGpIkllEbiZyzkmMBCJgSfYp/AGkJU+R/riPGVRAJw3jO215YxJu0soaRZpLCYPzy32Ne28JcFn+XS4HPk1KcLKxFrjRhjmgFLKA1Qn00Xk+6XtavqM1vLtpI3xjQCSyg+jJ++gOcXrUVTZI47Q1MYHXyXYKYC8ZtE2nWD0+6zbi1jTKOyhOLyuzPvTlu7Z5qfJBLMhqOvse4sY0yTalMJZdjNr7GxtDLhtWMCC1mRdQdB8XtqSIbYehFjTAvVZhLKsJtfY8iOj7g9fD/dAluaOpzabK2IMaYVaDMJZciOj7g39HfaS3nTBuI3eXTsA1cvznQ0xhiTNhlNKCJyAjAJCAIPqeptda6Le/0nQCnwC1VdkIlYLgm+RLumSCY2pdcY00ZkLKGISBCYAvwQWA18KCKzVHVZXLETgf7uv8OA+92vaddT1td/oWB92HG5xpg2LpMtlEOBFaq6EkBEpgOnAfEJ5TTgMVVV4H0R6SQiPVQ19XSrevo20I2emoakYuMdxhiTUCYTyp7Aqrjbq9m59ZGozJ5A2hPKIef9ia1Pnkc7TdHt5TdhhNvBUVdaN5UxxrgymVAS/V6uOyfXTxlEZCwwFqB37967Fs2AH9L+vCfh+XFQusG7rAThmAmWLIwxph4ymVBWA73ibvcE1uxCGVT1AeABgOHDh+/6QpEBP4RrP9/lhxtjjEkubVtLJfAh0F9E+olIFnAuMKtOmVnAz8VxOLA5E+MnxhhjMi9jLRRVrRSRy4DXcKYNP6yqS0VknHt9KvAKzpThFTjThi/IVDzGGGMySzTVjofNzPDhw/Wjjz5q6jCMMcavjK5YaE4y2eVljDGmDbGEYowxJi0soRhjjEkLSyjGGGPSwhKKMcaYtLCEYowxJi0soRhjjEkLSyjGGGPSwhKKMcaYtGhxK+VFZD3wVQafYjcgxXbETcLi8q85xgTNM67mGBO0rrg2qOoJmQimuWlxCSXTROQjVR3e1HHUZXH51xxjguYZV3OMCSyulsq6vIwxxqSFJRRjjDFpYQllZw80dQBJWFz+NceYoHnG1RxjAourRbIxFGOMMWlhLRRjjDFp0aYTioj0EpE3RWS5iCwVkSvd+7uIyBwR+cz92rkRY8oRkQ9EZJEb05+aOqY68QVF5BMReam5xCUiX4rIEhFZKCIfNYe4RKSTiMwQkUL383VEM4hpX/c9iv0rEZGrmkFc493P+qci8pT7f6A5fK6udGNaKiJXufc1eVzNWZtOKEAlcI2q7gccDlwqIoOA64DXVbU/8Lp7u7GUAT9Q1QOAA4ETROTwJo4p3pXA8rjbzSWuY1X1wLgpnU0d1yTgVVUdCByA8541aUyq+j/3PToQGIZz7PZzTRnX/2/v3kKlquI4jn9/akJHi8pUzEsmhEEWpWGZIaIVFWI3JQ8EEV0eIyKCgh4qfAgigqAItCi6oSkUEpV0o3ooqJTsYkFFWV4KyaiXJH89rOUFMx9iOGvr/D4wzJ6158CPPWfzZ601s5akicBtwHm2Z1C2C1/WMlPNNQO4BZhN+fwWSTq9da7Os51HfQAvA5cAm4EJtW0CsLlRngHgE+D8LmQCJlFuogXAutrWhVzfAycf1NYsF3A88B11jrILmQ6R8VLgg9a5gInAj8BJwAhgXc3W9FoBS4EVB7y+F7irda6uP/q9h7KPpKnAucCHwHjbWwHq87ghzjJc0gZgB7DedvNM1SOUm2rPAW1dyGXgDUkfS7q1A7mmAb8AT9XhwRWSRjXOdLBlwAv1uFku2z8BDwE/AFuBXbbfaJmp2gTMkzRG0gBwBTC5A7k6LQUFkDQaWAPcbvv31nls/+0yLDEJmF27301JWgTssP1x6yyHMNf2TOByyrDlvMZ5RgAzgcdtnwv8SYeGRiSNBBYDqzuQ5UTgSuA04BRglKTr26YC218CDwLrgdeAjZQh8jiMvi8oko6hFJPnbK+tzdslTajnJ1B6CkPO9m/AO8BlHcg0F1gs6XvgRWCBpGc7kAvbP9fnHZQ5gdmNc20BttSeJcBLlALT/FpVlwOf2N5eX7fMdTHwne1fbO8G1gIXNs4EgO2VtmfangfsBL7pQq4u6+uCIknASuBL2w8fcOoV4IZ6fANlbmWoMo2VdEI9PpZyw33VMhOA7bttT7I9lTJc8pbt61vnkjRK0nF7jynj75ta5rK9DfhR0vTatBD4omWmgwyyf7gL2ub6AbhA0kC9HxdSvsDQ/FpJGlefpwDXUK5Z81xd1tc/bJR0EfAe8Bn75wXuocyjrAKmUP7hl9reOUSZzgaepnzbZRiwyvb9ksa0ynSIjPOBO20vap1L0jRKrwTKUNPztpd3INc5wApgJPAtcCP182yVqeYaoEyCT7O9q7a1vlb3AddRhpQ+BW4GRrfMVHO9B4wBdgN32H6z9bXqur4uKBER0Tt9PeQVERG9k4ISERE9kYISERE9kYISERE9kYISERE9kYISfUPS1ZIs6YzWWSKORiko0U8GgfcpP8yMiB5LQYm+UNdrmwvcRC0okoZJeqzud7FO0quSltRzsyS9WxecfH3vchsR8d9SUKJfXEXZn+RrYKekmZTlNKYCZ1F+nT0H9q3v9iiwxPYs4ElgeYvQEUeSEa0DRAyRQcry+1AWtxwEjgFW294DbJP0dj0/HZgBrC/LSzGcsrR6RBxGCkoc9er6SwuAGZJMKRBm/xpg//oT4HPbc4YoYsRRIUNe0Q+WAM/YPtX2VNuTKTsq/gpcW+dSxgPz6/s3A2Ml7RsCk3Rmi+ARR5IUlOgHg/y7N7KGsqHTFspy909QVpneZfsvShF6UNJGYANlj46IOIysNhx9TdJo23/UYbGPKLs/bmudK+JIlDmU6Hfr6oZmI4EHUkwi/r/0UCIioicyhxIRET2RghIRET2RghIRET2RghIRET2RghIRET2RghIRET3xD6/tAb4Uz7LtAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 413.359x360 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"sns.lmplot(data=df, x='Age', y='Predicted Death Probability', hue='Smoker', logistic=True)\n",
"\n",
"plt.title(\"Probabilité de décès par âge et statut de fumeur\")\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [], "outputs": [],
"source": [] "source": []
} }
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment