Introduction de code R

parent 1376cd92
......@@ -2,14 +2,20 @@
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"source": [
"# Analyse du risque de défaillance des joints toriques de la navette Challenger"
]
},
{
"cell_type": "markdown",
"metadata": {},
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"source": [
"Le 27 Janvier 1986, veille du décollage de la navette *Challenger*, eu\n",
"lieu une télé-conférence de trois heures entre les ingénieurs de la\n",
......@@ -32,7 +38,10 @@
},
{
"cell_type": "markdown",
"metadata": {},
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"source": [
"## Chargement des données\n",
"Nous commençons donc par charger ces données:"
......@@ -42,7 +51,8 @@
"cell_type": "code",
"execution_count": 1,
"metadata": {
"hideCode": true
"hideCode": false,
"hidePrompt": false
},
"outputs": [
{
......@@ -303,7 +313,10 @@
},
{
"cell_type": "markdown",
"metadata": {},
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"source": [
"Le jeu de données nous indique la date de l'essai, le nombre de joints\n",
"toriques mesurés (il y en a 6 sur le lançeur principal), la\n",
......@@ -313,7 +326,10 @@
},
{
"cell_type": "markdown",
"metadata": {},
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"source": [
"## Inspection graphique des données\n",
"*Est-on certain de cette phrase ?* Je dirais plutôt de limiter à une valeur de pression unique. *Ne faut-il pas distinguer les cas de pression ? 50 psi, environ 3,4 atmosphère, 200 Psi 13,6 atm*"
......@@ -321,33 +337,44 @@
},
{
"cell_type": "markdown",
"metadata": {},
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"source": [
"Nous cherchons ici à simplement visualiser le nombres d'erreurs sur les joints en fonction de le température, quelque soit la pression"
]
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": null,
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\n",
"data.plot(x=\"Temperature\",y=\"Malfunction\",kind=\"scatter\",ylim=[0,1])\n",
"plt.grid(True)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEKCAYAAAD9xUlFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAFsRJREFUeJzt3X+cXXV95/HXZxJ+JCYCgkbLDw0SsawgwhBAW01AbbBbsxZcwS24bNksq6mVR+vi7mO3ItpH/d1KF4mRRcXHo6QVqGBNRYVOFRUlWOSXQqcBIYSCREDCr2SSz/5xznx7M5nMvTPMmTtzeT0fj3nMPed875nP956Z+57z63sjM5EkCaCv2wVIkqYPQ0GSVBgKkqTCUJAkFYaCJKkwFCRJRWOhEBGXRMRDEXHbLpZHRFwQEYMRcUtEHNVULZKkzjS5p/BFYNkYy08CFtVfK4CLGqxFktSBxkIhM78D/HKMJsuBS7NyA7B3RLykqXokSe3N7uLP3h+4r2V6Qz3vgZENI2IF1d4Ec+bMOfrAAw+ckgI7tX37dvr6JidftydsGdpG633mAew+exZ9MfG2E65nEvvW8c/s0X41Zdv2ZMu27QDMDhiqX7jdZ/Uxa7JesGmgl7ZZq6nq11133fVwZr6wXbtuhsJov62jjrmRmauB1QD9/f25bt26Jusat4GBAZYsWTIp69q0+Rle97HreHrr9jJvz936+N65J7DvvD0m3HaiJrNvnerVfjVl8MHHeeOffweAcw4f4lO3Vn/W3zjn9RyyYH43S5tUvbTNWk1VvyLi552062bsbgBa/+U/ANjYpVqmjX3n7cHHTz6CPXfrY/4es9lztz4+fvIRo74ZjqftTNKr/WrKIQvmc8bxB+0w74zjD+qpQNDU6eaewtXAyohYAxwLPJaZOx06ei5665H787pD9mPDI09xwD5zxnwzHE/bmaRX+9WU85cfzhnHvYxbb7qBb59znIGgCWssFCLiMmAJsF9EbAA+COwGkJmrgLXAW4BB4EngzKZqmYn2nbdHx2+E42k7k/Rqv5pyyIL5bJi7m4GgZ6WxUMjM09osT+A9Tf18SdL49d6pfEnShBkKkqTCUJAkFYaCJKkwFCRJhaEgSSoMBUlSYShIkgpDQZJUGAqSpMJQkCQVhoIkqTAUJEmFoSBJKgwFSVJhKEiSCkNBklQYCpKkwlCQJBWGgiSpMBQkSYWhIEkqDAVJUmEoSJIKQ0GSVBgKkqTCUJAkFYaCJKkwFCRJhaEgSSoMBUlSYShIkgpDQZJUGAqSpMJQkCQVjYZCRCyLiDsjYjAiPjDK8r0i4msR8ZOIuD0izmyyHknS2BoLhYiYBVwInAQcBpwWEYeNaPYe4I7MfDWwBPhUROzeVE2SpLE1uaewGBjMzPWZuQVYAywf0SaB+RERwDzgl8BQgzVJksYQmdnMiiNOAZZl5ln19OnAsZm5sqXNfOBq4JXAfOAdmfn1Uda1AlgBsGDBgqPXrFnTSM0TtXnzZubNm9ftMhrRq32zXzNPr/Ztqvq1dOnSmzKzv1272Q3WEKPMG5lAvwXcDJwAvBz4VkR8NzN/tcOTMlcDqwH6+/tzyZIlk1/tszAwMMB0q2my9Grf7NfM06t9m279avLw0QbgwJbpA4CNI9qcCVyZlUHgbqq9BklSFzQZCjcCiyJiYX3y+FSqQ0Wt7gVOBIiIBcChwPoGa5IkjaGxw0eZORQRK4FrgFnAJZl5e0ScXS9fBXwY+GJE3Ep1uOnczHy4qZokSWNr8pwCmbkWWDti3qqWxxuBNzdZgySpc97RLEkqDAVJUmEoSJIKQ0GSVBgKkqTCUJAkFYaCJKkwFCRJhaEgSSoMBUlSYShIkgpDQZJUGAqSpMJQkCQVhoIkqTAUJEmFoSBJKgwFSVJhKEiSCkNBklQYCpKkwlCQJBWGgiSpMBQkSYWhIEkqDAVJUmEoSJIKQ0GSVBgKkqTCUJAkFYaCJKkwFCRJhaEgSSpmd9IoIl4BvB94aetzMvOEhuqSJHVBR6EAfAVYBXwe2NbpyiNiGfAZYBZwcWZ+dJQ2S4C/AHYDHs7MN3S6fknS5Oo0FIYy86LxrDgiZgEXAm8CNgA3RsTVmXlHS5u9gc8CyzLz3oh40Xh+hiRpcnV6TuFrEfHuiHhJRLxg+KvNcxYDg5m5PjO3AGuA5SPavBO4MjPvBcjMh8ZVvSRpUkVmtm8UcfcoszMzDx7jOadQ7QGcVU+fDhybmStb2gwfNvp3wHzgM5l56SjrWgGsAFiwYMHRa9asaVvzVNq8eTPz5s3rdhmN6NW+2a+Zp1f7NlX9Wrp06U2Z2d+uXUeHjzJz4QRqiNFWNcrPPxo4EZgD/CAibsjMu0b8/NXAaoD+/v5csmTJBMppzsDAANOtpsnSq32zXzNPr/ZtuvWr06uPdgP+O/D6etYA8LnM3DrG0zYAB7ZMHwBsHKXNw5n5BPBERHwHeDVwF5KkKdfpOYWLqP6j/2z9dXQ9byw3AosiYmFE7A6cClw9os1VwG9GxOyImAscC/y00+IlSZOr06uPjsnMV7dMXxcRPxnrCZk5FBErgWuoLkm9JDNvj4iz6+WrMvOnEfEN4BZgO9Vlq7eNvxuSpMnQaShsi4iXZ+a/AETEwXRwv0JmrgXWjpi3asT0J4BPdFiHJKlBnYbC+4F/iIj1VCeQXwqc2VhVkqSu6PTqo2sjYhFwKFUo/Cwzn2m0MknSlBszFCLihMy8LiJ+d8Sil0cEmXllg7VJkqZYuz2FNwDXAb8zyrIEDAVJ6iFjhkJmfrB+eH5m7nBXc0RM5IY2SdI01ul9CleMMu/yySxEktR97c4pvJJqXKK9RpxXeD6wZ5OFSZKmXrtzCocC/x7Ymx3PKzwO/NemipIkdUe7cwpXAVdFxPGZ+YMpqkmS1CWdnlM4u/5AHAAiYp+IuKShmiRJXdJpKByRmY8OT2TmI8BrmilJktQtnYZCX0TsMzxRf+pap0NkSJJmiE7f2D8FfD8ihi9DfTvwp82UJEnqlk7HPro0Im4CllKNffS7mXlHo5VJkqbceA4B/Qx4ZPg5EXFQZt7bSFWSpK7o9OM4/wD4IPAg1ecoBNXYR0c0V5okaap1uqfwh8ChmbmpyWIkSd3V6dVH9wGPNVmIJKn7Ot1TWA8MRMTXgfLhOpn56UaqkiR1RaehcG/9tXv9JUnqQZ1ekvqhpguRJHVfp1cf/QPV1UY7yMwTJr0iSVLXdHr46I9bHu8JnAwMTX45kqRu6vTw0U0jZn0vIv6xgXokSV3U6eGjF7RM9gFHAy9upCJJUtd0evjoJqpzCkF12Ohu4PebKkqS1B3tPqP57Zn5FeDEzFw/RTVJkrqk3R3N/7P+fvmYrSRJPaHd4aNN9eWoCyPi6pELM/OtzZQlSeqGdqHw28BRwJepPmhHktTDxgyFzNwC3BARr83MX0xRTZKkLml3ovlr1HcyR8ROyz18JEm9pd3ho09OSRWSpGmh3eEj71qWpOeQTu9oXgT8GXAY1dhHAGTmwQ3VJUnqgk4/ee0LwEVUdzMvBS6luiJpTBGxLCLujIjBiPjAGO2OiYhtEXFKh/VIkhrQaSjMycxrgcjMn2fmecCYw2ZHxCzgQuAkqj2M0yLisF20+xhwzXgKlyRNvk5D4emI6AP+OSJWRsTbgBe1ec5iYDAz19eXtq4Blo/S7g+AK4CHOi1aktSMTgfEex8wF3gv8GGqvYR3tXnO/sB9LdMbgGNbG0TE/sDb6vUds6sVRcQKYAXAggULGBgY6LDsqbF58+ZpV9Nk6dW+2a+Zp1f7Nt361ennKdxYP9wMnNnhune+sWHnT2/7C+DczNw22n0QLT9/NbAaoL+/P5csWdJhCVNjYGCA6VbTZOnVvtmvmadX+zbd+tXu5rWdxjtq1ebmtQ3AgS3TBwAbR7TpB9bUgbAf8JaIGMrMr471cyVJzWi3p3A81SGgy4AfMvp//7tyI7AoIhYC9wOnAu9sbZCZC4cfR8QXgb8zECSpe9qFwouBNwGnUb2hfx24LDNvb7fizByKiJVUVxXNAi7JzNsj4ux6+apnVbkkadK1u6N5G/AN4BsRsQdVOAxExPmZ+ZftVp6Za4G1I+aNGgaZ+Z87LVqS1Iy2J5rrMPhtqkB4GXABcGWzZUmSuqHdieYvAa8C/h74UGbeNiVVSZK6ot2ewunAE8ArgPe2XDYaQGbm8xusTZI0xdqdU+j0jmdJUg/wTV+SVBgKkqTCUJAkFYaCJKkwFCRJhaEgSSoMBUlSYShIkgpDQZJUGAqSpMJQkCQVhoIkqTAUJEmFoSBJKgwFSVJhKEiSCkNBklQYCpKkwlCQJBWGgiSpMBQkSYWhIEkqDAVJUmEoSJIKQ0GSVBgKkqTCUJAkFYaCJKkwFCRJhaEgSSoaDYWIWBYRd0bEYER8YJTl/ykibqm/vh8Rr26yHknS2BoLhYiYBVwInAQcBpwWEYeNaHY38IbMPAL4MLC6qXokSe01uaewGBjMzPWZuQVYAyxvbZCZ38/MR+rJG4ADGqxHktRGZGYzK444BViWmWfV06cDx2bmyl20/2PglcPtRyxbAawAWLBgwdFr1qxppOaJ2rx5M/Pmzet2GY3o1b7Zr5mnV/s2Vf1aunTpTZnZ367d7AZriFHmjZpAEbEU+H3gN0ZbnpmrqQ8t9ff355IlSyapxMkxMDDAdKtpsvRq3+zXzNOrfZtu/WoyFDYAB7ZMHwBsHNkoIo4ALgZOysxNDdYjSWqjyXMKNwKLImJhROwOnApc3dogIg4CrgROz8y7GqxFktSBxvYUMnMoIlYC1wCzgEsy8/aIOLtevgr4E2Bf4LMRATDUyTEvSVIzmjx8RGauBdaOmLeq5fFZwE4nliVJ3eEdzZKkwlCQJBWGgiSpMBQkSYWhIEkqDAVJUmEoSJIKQ0GSVBgKkqTCUJAkFYaCJKkwFCRJhaEgSSoMBUlSYShIkgpDQZJUGAqSpMJQkCQVhoIkqTAUJEmFoSBJKgwFSVJhKEiSCkNBklQYCpKkwlCQJBWGgiSpMBQkSYWhIEkqDAVJUmEoSJIKQ0GSVBgKkqTCUJAkFYaCJKloNBQiYllE3BkRgxHxgVGWR0RcUC+/JSKOarIeabw2bX6Gn9z3KJs2P9O27bq7N/Hpb97Jurs3Tdo6x9N28MHHeeTJrQw++HjbtuPRVL3jreGprdvarnfwwce5fN19PfsaNLHekWY3teKImAVcCLwJ2ADcGBFXZ+YdLc1OAhbVX8cCF9Xfpa676ub7OfeKW9itr4+t27fz8ZOP4K1H7j9q29+7+AauH6zC4ILrBvnNQ/bly2cd96zWOZ62f/LVW7n0hnv5o8OHOOfPv8MZxx/E+csPn2DPm693IjW899e3cs7Hrtvleodfg2G9+BpM9npH0+SewmJgMDPXZ+YWYA2wfESb5cClWbkB2DsiXtJgTVJHNm1+hnOvuIWnt27n8WeGeHrrdv7HFbeM+l/aurs3lUAY9t3BTTvtMYxnneNpO/jg4zu8GQJc+oN7n/V/y03VO9EatmXucr3PlddgMte7K5GZzaw44hRgWWaeVU+fDhybmStb2vwd8NHMvL6evhY4NzPXjVjXCmBFPXkocGcjRU/cfsDD3S6iIb3atzH7FbvNmTt7n5e8Ivr6Zg3Py+3btw098sBdufWpJ1vbzpq/36/Net7eO/0zs+2JRx/Y9vjDGyeyzvG07Zu7176zn//ClwFse/IxZs3dC4ChX/3inu1PPjb2sawxNFXvRGsY7tto6219DVrNkNdg0n4X23hpZr6wXaPGDh8BMcq8kQnUSRsyczWwejKKakJErMvM/m7X0YRe7Vsv92vosYd6rl/Qu32bbr+LTR4+2gAc2DJ9ALBxAm0kSVOkyVC4EVgUEQsjYnfgVODqEW2uBs6or0I6DngsMx9osCZJ0hgaO3yUmUMRsRK4BpgFXJKZt0fE2fXyVcBa4C3AIPAkcGZT9TRs2h7amgS92jf7NfP0at+mVb8aO9EsSZp5vKNZklQYCpKkwlCYgIi4JyJujYibI2JdPe+8iLi/nndzRLyl23WOV0TsHRGXR8TPIuKnEXF8RLwgIr4VEf9cf9+n23WO1y761Qvb69CW+m+OiF9FxPtm+jYbo1+9sM3OiYjbI+K2iLgsIvacbtvLcwoTEBH3AP2Z+XDLvPOAzZn5yW7V9WxFxJeA72bmxfUVY3OB/wX8MjM/Wo9ftU9mntvVQsdpF/16HzN8e7Wqh5W5n2qYmPcww7fZsBH9OpMZvM0iYn/geuCwzHwqIv6G6mKbw5hG28s9BQEQEc8HXg/8P4DM3JKZj1INRfKlutmXgP/QnQonZox+9ZoTgX/JzJ8zw7fZCK396gWzgTkRMZvqn5ONTLPtZShMTALfjIib6iE4hq2sR3u9pNu7gBNwMPAL4AsR8U8RcXFEPA9YMHzvSP39Rd0scgJ21S+Y2dtrpFOBy+rHM32btWrtF8zgbZaZ9wOfBO4FHqC6L+ubTLPtZShMzOsy8yiqUV7fExGvpxrh9eXAkVQb/FNdrG8iZgNHARdl5muAJ4CdhjufgXbVr5m+vYr6kNhbga90u5bJNEq/ZvQ2q0NsObAQ+DXgeRHxe92tameGwgRk5sb6+0PA3wKLM/PBzNyWmduBz1ONEjuTbAA2ZOYP6+nLqd5MHxweubb+/lCX6puoUfvVA9ur1UnAjzPzwXp6pm+zYTv0qwe22RuBuzPzF5m5FbgSeC3TbHsZCuMUEc+LiPnDj4E3A7fFjkN+vw24rRv1TVRm/itwX0QcWs86EbiDaiiSd9Xz3gVc1YXyJmxX/Zrp22uE09jxEMuM3mYtduhXD2yze4HjImJuRATV7+JPmWbby6uPxikiDqbaO4Dq0MRfZeafRsSXqXZrE7gH+G8zbRyniDgSuBjYHVhPdbVHH/A3wEFUv9Rvz8xfdq3ICdhFvy5ghm8vgIiYC9wHHJyZj9Xz9mXmb7PR+tULf2MfAt4BDAH/BJwFzGMabS9DQZJUePhIklQYCpKkwlCQJBWGgiSpMBQkSUVjn7wmTbX6Usxr68kXA9uohriA6gbDLV0pbAwR8V+AtfX9FFLXeUmqetJ0GrU2ImZl5rZdLLseWJmZN49jfbMzc2jSCpRaePhIzwkR8a6I+FE9Dv9nI6IvImZHxKMR8YmI+HFEXBMRx0bEP0bE+uHx+iPirIj423r5nRHxvztc70ci4kfA4oj4UETcWI+jvyoq76C6Geuv6+fvHhEbImLvet3HRcS368cfiYjPRcS3qAb3mx0Rn65/9i0RcdbUv6rqRYaCel5EvIpqWITXZuaRVIdNT60X7wV8sx7gcAtwHtXwA28Hzm9ZzeL6OUcB74yIIztY748zc3Fm/gD4TGYeAxxeL1uWmX8N3Ay8IzOP7ODw1muA38nM04EVwEOZuRg4hmpgxoMm8vpIrTynoOeCN1K9ca6rhpxhDtUQCgBPZea36se3Ug1nPBQRtwIva1nHNZn5CEBEfBX4Daq/n12tdwv/NhwKwIkR8X5gT2A/4Cbg78fZj6sy8+n68ZuBX4+I1hBaRDVMgjRhhoKeCwK4JDP/zw4zqw86af3vfDvwTMvj1r+PkSffss16n8r6hF09js//pRqd9f6I+AhVOIxmiH/bgx/Z5okRfXp3Zl6LNIk8fKTngm8D/zEi9oPqKqUJHGp5c1Sf9TyXakz8741jvXOoQubheoTdk1uWPQ7Mb5m+Bzi6ftzabqRrgHfXATT8ucZzxtknaSfuKajnZeat9eiU346IPmArcDbVRyF26nrgr6g+5OXLw1cLdbLezNwU1edE3wb8HPhhy+IvABdHxFNU5y3OAz4fEf8K/GiMej5HNarmzfWhq4eowkp6VrwkVWqjvrLnVZn5vm7XIjXNw0eSpMI9BUlS4Z6CJKkwFCRJhaEgSSoMBUlSYShIkor/D0YfFPekkf+sAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
"name": "stdout",
"output_type": "stream",
"text": [
"The rpy2.ipython extension is already loaded. To reload it, use:\n",
" %reload_ext rpy2.ipython\n"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"import matplotlib.pyplot as plt\n",
"data.plot(x=\"Temperature\",y=\"Malfunction\",kind=\"scatter\",ylim=[0,1])\n",
"plt.grid(True)"
"%load_ext rpy2.ipython"
]
},
{
......@@ -355,6 +382,26 @@
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%R \n",
"install.packages(\"ggplot2\")\n",
"library(\"ggplot2\")\n",
"data_R <- read.csv(file = 'shuttle.csv')\n",
"\n",
"ggplot(data_R, aes(x=Temperature,y=Malfunction)) + geom_point(alpha=.3,size=3) + \n",
" theme_bw() +\n",
" geom_smooth(method = \"glm\",\n",
" method.args =list(family = \"binomial\")) + xlim(20,150)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"outputs": [],
"source": [
"data = data[data.Pressure>100]\n",
"data"
......@@ -362,7 +409,10 @@
},
{
"cell_type": "markdown",
"metadata": {},
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"source": [
"\n",
"Très bien, nous avons une variabilité de température importante mais\n",
......@@ -375,7 +425,10 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"outputs": [],
"source": [
"%matplotlib inline\n",
......@@ -390,7 +443,10 @@
},
{
"cell_type": "markdown",
"metadata": {},
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"source": [
"À première vue, ce n'est pas flagrant mais bon, essayons quand même\n",
"d'estimer l'impact de la température $t$ sur la probabilité de\n",
......@@ -399,7 +455,10 @@
},
{
"cell_type": "markdown",
"metadata": {},
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"source": [
"## Estimation de l'influence de la température\n",
"\n",
......@@ -415,7 +474,10 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"outputs": [],
"source": [
"import statsmodels.api as sm\n",
......@@ -430,7 +492,10 @@
},
{
"cell_type": "markdown",
"metadata": {},
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"source": [
"L'estimateur le plus probable du paramètre de température est -0.0990 \t\n",
"et l'erreur standard de cet estimateur est de 0.110, autrement dit on\n",
......@@ -440,7 +505,10 @@
},
{
"cell_type": "markdown",
"metadata": {},
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"source": [
"## Estimation de la probabilité de dysfonctionnant des joints toriques\n",
"La température prévue le jour du décollage est de 31°F. Essayons\n",
......@@ -451,7 +519,10 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"outputs": [],
"source": [
"%matplotlib inline\n",
......@@ -479,7 +550,10 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"outputs": [],
"source": [
"data = pd.read_csv(\"shuttle.csv\")\n",
......@@ -488,7 +562,10 @@
},
{
"cell_type": "markdown",
"metadata": {},
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"source": [
"Cette probabilité est donc d'environ $p=0.065$, sachant qu'il existe\n",
"un joint primaire un joint secondaire sur chacune des trois parties du\n",
......@@ -512,6 +589,7 @@
],
"metadata": {
"celltoolbar": "Hide code",
"hide_code_all_hidden": false,
"kernelspec": {
"display_name": "Python 3",
"language": "python",
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment