From fe9d1c7a3f228b4d050d4ddf760f5f246cfb131b Mon Sep 17 00:00:00 2001
From: 036332d1e8a8fad18eace193f300e27a
<036332d1e8a8fad18eace193f300e27a@app-learninglab.inria.fr>
Date: Tue, 24 Jun 2025 14:38:57 +0000
Subject: [PATCH] Completed
---
.../exo2/Module 3_Completed_exercise.ipynb | 1416 ++++++++++++++
module3/exo2/exercice.ipynb | 1638 +++++++++--------
2 files changed, 2255 insertions(+), 799 deletions(-)
create mode 100644 module3/exo2/Module 3_Completed_exercise.ipynb
diff --git a/module3/exo2/Module 3_Completed_exercise.ipynb b/module3/exo2/Module 3_Completed_exercise.ipynb
new file mode 100644
index 0000000..6c9ef0d
--- /dev/null
+++ b/module3/exo2/Module 3_Completed_exercise.ipynb
@@ -0,0 +1,1416 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## The incidence of chickenpox in France"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "The data on the incidence of chickenpox-like illness are available from the Web site of the [Réseau Sentinelles](http://www.sentiweb.fr/). We download them as a file in CSV format, in which each line corresponds to a week in the observation period. "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Requirement already satisfied: isoweek in /opt/conda/lib/python3.6/site-packages (1.3.3)\r\n"
+ ]
+ }
+ ],
+ "source": [
+ "!pip install isoweek"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%matplotlib inline\n",
+ "import matplotlib.pyplot as plt\n",
+ "import pandas as pd\n",
+ "import isoweek \n",
+ "import os"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "data_url = \"http://www.sentiweb.fr/datasets/incidence-PAY-3.csv\" \n",
+ "filename = \"inc-7-PAY-ds3.csv\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "1. Download -> if there is not a local file already"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "if not os.path.exists(filename):\n",
+ " raw_data = pd.read_csv(data_url, encoding = 'iso-8859-1' , skiprows= 1 )\n",
+ "else:\n",
+ " raw_data = pd.read_csv(filename)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "2. Remove rows with missing values"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " week | \n",
+ " indicator | \n",
+ " inc | \n",
+ " inc_low | \n",
+ " inc_up | \n",
+ " inc100 | \n",
+ " inc100_low | \n",
+ " inc100_up | \n",
+ " geo_insee | \n",
+ " geo_name | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 1883 | \n",
+ " 198919 | \n",
+ " 3 | \n",
+ " - | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " - | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " week indicator inc inc_low inc_up inc100 inc100_low inc100_up \\\n",
+ "1883 198919 3 - NaN NaN - NaN NaN \n",
+ "\n",
+ " geo_insee geo_name \n",
+ "1883 FR France "
+ ]
+ },
+ "execution_count": 7,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "raw_data[raw_data.isnull(). any (axis= 1 )] "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " week | \n",
+ " indicator | \n",
+ " inc | \n",
+ " inc_low | \n",
+ " inc_up | \n",
+ " inc100 | \n",
+ " inc100_low | \n",
+ " inc100_up | \n",
+ " geo_insee | \n",
+ " geo_name | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 202524 | \n",
+ " 3 | \n",
+ " 22816 | \n",
+ " 17621.0 | \n",
+ " 28011.0 | \n",
+ " 34 | \n",
+ " 26.0 | \n",
+ " 42.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 202523 | \n",
+ " 3 | \n",
+ " 24564 | \n",
+ " 19382.0 | \n",
+ " 29746.0 | \n",
+ " 37 | \n",
+ " 29.0 | \n",
+ " 45.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 202522 | \n",
+ " 3 | \n",
+ " 18755 | \n",
+ " 14333.0 | \n",
+ " 23177.0 | \n",
+ " 28 | \n",
+ " 21.0 | \n",
+ " 35.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 202521 | \n",
+ " 3 | \n",
+ " 23760 | \n",
+ " 18671.0 | \n",
+ " 28849.0 | \n",
+ " 35 | \n",
+ " 27.0 | \n",
+ " 43.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 202520 | \n",
+ " 3 | \n",
+ " 20265 | \n",
+ " 15814.0 | \n",
+ " 24716.0 | \n",
+ " 30 | \n",
+ " 23.0 | \n",
+ " 37.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " | 5 | \n",
+ " 202519 | \n",
+ " 3 | \n",
+ " 16264 | \n",
+ " 12394.0 | \n",
+ " 20134.0 | \n",
+ " 24 | \n",
+ " 18.0 | \n",
+ " 30.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " | 6 | \n",
+ " 202518 | \n",
+ " 3 | \n",
+ " 18115 | \n",
+ " 13975.0 | \n",
+ " 22255.0 | \n",
+ " 27 | \n",
+ " 21.0 | \n",
+ " 33.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " | 7 | \n",
+ " 202517 | \n",
+ " 3 | \n",
+ " 22150 | \n",
+ " 17291.0 | \n",
+ " 27009.0 | \n",
+ " 33 | \n",
+ " 26.0 | \n",
+ " 40.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " | 8 | \n",
+ " 202516 | \n",
+ " 3 | \n",
+ " 28564 | \n",
+ " 22550.0 | \n",
+ " 34578.0 | \n",
+ " 43 | \n",
+ " 34.0 | \n",
+ " 52.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " | 9 | \n",
+ " 202515 | \n",
+ " 3 | \n",
+ " 35721 | \n",
+ " 29592.0 | \n",
+ " 41850.0 | \n",
+ " 53 | \n",
+ " 44.0 | \n",
+ " 62.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " | 10 | \n",
+ " 202514 | \n",
+ " 3 | \n",
+ " 37579 | \n",
+ " 31232.0 | \n",
+ " 43926.0 | \n",
+ " 56 | \n",
+ " 47.0 | \n",
+ " 65.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " | 11 | \n",
+ " 202513 | \n",
+ " 3 | \n",
+ " 39673 | \n",
+ " 33686.0 | \n",
+ " 45660.0 | \n",
+ " 59 | \n",
+ " 50.0 | \n",
+ " 68.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " | 12 | \n",
+ " 202512 | \n",
+ " 3 | \n",
+ " 52543 | \n",
+ " 45627.0 | \n",
+ " 59459.0 | \n",
+ " 78 | \n",
+ " 68.0 | \n",
+ " 88.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " | 13 | \n",
+ " 202511 | \n",
+ " 3 | \n",
+ " 59469 | \n",
+ " 52154.0 | \n",
+ " 66784.0 | \n",
+ " 89 | \n",
+ " 78.0 | \n",
+ " 100.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " | 14 | \n",
+ " 202510 | \n",
+ " 3 | \n",
+ " 60334 | \n",
+ " 53048.0 | \n",
+ " 67620.0 | \n",
+ " 90 | \n",
+ " 79.0 | \n",
+ " 101.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " | 15 | \n",
+ " 202509 | \n",
+ " 3 | \n",
+ " 84531 | \n",
+ " 74994.0 | \n",
+ " 94068.0 | \n",
+ " 126 | \n",
+ " 112.0 | \n",
+ " 140.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " | 16 | \n",
+ " 202508 | \n",
+ " 3 | \n",
+ " 136020 | \n",
+ " 124824.0 | \n",
+ " 147216.0 | \n",
+ " 203 | \n",
+ " 186.0 | \n",
+ " 220.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " | 17 | \n",
+ " 202507 | \n",
+ " 3 | \n",
+ " 208952 | \n",
+ " 195988.0 | \n",
+ " 221916.0 | \n",
+ " 312 | \n",
+ " 293.0 | \n",
+ " 331.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " | 18 | \n",
+ " 202506 | \n",
+ " 3 | \n",
+ " 273519 | \n",
+ " 258159.0 | \n",
+ " 288879.0 | \n",
+ " 408 | \n",
+ " 385.0 | \n",
+ " 431.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " | 19 | \n",
+ " 202505 | \n",
+ " 3 | \n",
+ " 334395 | \n",
+ " 318416.0 | \n",
+ " 350374.0 | \n",
+ " 499 | \n",
+ " 475.0 | \n",
+ " 523.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " | 20 | \n",
+ " 202504 | \n",
+ " 3 | \n",
+ " 350043 | \n",
+ " 332885.0 | \n",
+ " 367201.0 | \n",
+ " 522 | \n",
+ " 496.0 | \n",
+ " 548.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " | 21 | \n",
+ " 202503 | \n",
+ " 3 | \n",
+ " 252772 | \n",
+ " 238917.0 | \n",
+ " 266627.0 | \n",
+ " 377 | \n",
+ " 356.0 | \n",
+ " 398.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " | 22 | \n",
+ " 202502 | \n",
+ " 3 | \n",
+ " 257247 | \n",
+ " 242991.0 | \n",
+ " 271503.0 | \n",
+ " 384 | \n",
+ " 363.0 | \n",
+ " 405.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " | 23 | \n",
+ " 202501 | \n",
+ " 3 | \n",
+ " 231549 | \n",
+ " 214627.0 | \n",
+ " 248471.0 | \n",
+ " 345 | \n",
+ " 320.0 | \n",
+ " 370.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " | 24 | \n",
+ " 202452 | \n",
+ " 3 | \n",
+ " 201726 | \n",
+ " 185870.0 | \n",
+ " 217582.0 | \n",
+ " 302 | \n",
+ " 278.0 | \n",
+ " 326.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " | 25 | \n",
+ " 202451 | \n",
+ " 3 | \n",
+ " 201697 | \n",
+ " 187843.0 | \n",
+ " 215551.0 | \n",
+ " 302 | \n",
+ " 281.0 | \n",
+ " 323.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " | 26 | \n",
+ " 202450 | \n",
+ " 3 | \n",
+ " 136694 | \n",
+ " 126369.0 | \n",
+ " 147019.0 | \n",
+ " 205 | \n",
+ " 190.0 | \n",
+ " 220.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " | 27 | \n",
+ " 202449 | \n",
+ " 3 | \n",
+ " 108487 | \n",
+ " 99037.0 | \n",
+ " 117937.0 | \n",
+ " 163 | \n",
+ " 149.0 | \n",
+ " 177.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " | 28 | \n",
+ " 202448 | \n",
+ " 3 | \n",
+ " 87381 | \n",
+ " 78687.0 | \n",
+ " 96075.0 | \n",
+ " 131 | \n",
+ " 118.0 | \n",
+ " 144.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " | 29 | \n",
+ " 202447 | \n",
+ " 3 | \n",
+ " 76286 | \n",
+ " 67626.0 | \n",
+ " 84946.0 | \n",
+ " 114 | \n",
+ " 101.0 | \n",
+ " 127.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " | ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " | 2090 | \n",
+ " 198521 | \n",
+ " 3 | \n",
+ " 26096 | \n",
+ " 19621.0 | \n",
+ " 32571.0 | \n",
+ " 47 | \n",
+ " 35.0 | \n",
+ " 59.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " | 2091 | \n",
+ " 198520 | \n",
+ " 3 | \n",
+ " 27896 | \n",
+ " 20885.0 | \n",
+ " 34907.0 | \n",
+ " 51 | \n",
+ " 38.0 | \n",
+ " 64.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " | 2092 | \n",
+ " 198519 | \n",
+ " 3 | \n",
+ " 43154 | \n",
+ " 32821.0 | \n",
+ " 53487.0 | \n",
+ " 78 | \n",
+ " 59.0 | \n",
+ " 97.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " | 2093 | \n",
+ " 198518 | \n",
+ " 3 | \n",
+ " 40555 | \n",
+ " 29935.0 | \n",
+ " 51175.0 | \n",
+ " 74 | \n",
+ " 55.0 | \n",
+ " 93.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " | 2094 | \n",
+ " 198517 | \n",
+ " 3 | \n",
+ " 34053 | \n",
+ " 24366.0 | \n",
+ " 43740.0 | \n",
+ " 62 | \n",
+ " 44.0 | \n",
+ " 80.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " | 2095 | \n",
+ " 198516 | \n",
+ " 3 | \n",
+ " 50362 | \n",
+ " 36451.0 | \n",
+ " 64273.0 | \n",
+ " 91 | \n",
+ " 66.0 | \n",
+ " 116.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " | 2096 | \n",
+ " 198515 | \n",
+ " 3 | \n",
+ " 63881 | \n",
+ " 45538.0 | \n",
+ " 82224.0 | \n",
+ " 116 | \n",
+ " 83.0 | \n",
+ " 149.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " | 2097 | \n",
+ " 198514 | \n",
+ " 3 | \n",
+ " 134545 | \n",
+ " 114400.0 | \n",
+ " 154690.0 | \n",
+ " 244 | \n",
+ " 207.0 | \n",
+ " 281.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " | 2098 | \n",
+ " 198513 | \n",
+ " 3 | \n",
+ " 197206 | \n",
+ " 176080.0 | \n",
+ " 218332.0 | \n",
+ " 357 | \n",
+ " 319.0 | \n",
+ " 395.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " | 2099 | \n",
+ " 198512 | \n",
+ " 3 | \n",
+ " 245240 | \n",
+ " 223304.0 | \n",
+ " 267176.0 | \n",
+ " 445 | \n",
+ " 405.0 | \n",
+ " 485.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " | 2100 | \n",
+ " 198511 | \n",
+ " 3 | \n",
+ " 276205 | \n",
+ " 252399.0 | \n",
+ " 300011.0 | \n",
+ " 501 | \n",
+ " 458.0 | \n",
+ " 544.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " | 2101 | \n",
+ " 198510 | \n",
+ " 3 | \n",
+ " 353231 | \n",
+ " 326279.0 | \n",
+ " 380183.0 | \n",
+ " 640 | \n",
+ " 591.0 | \n",
+ " 689.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " | 2102 | \n",
+ " 198509 | \n",
+ " 3 | \n",
+ " 369895 | \n",
+ " 341109.0 | \n",
+ " 398681.0 | \n",
+ " 670 | \n",
+ " 618.0 | \n",
+ " 722.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " | 2103 | \n",
+ " 198508 | \n",
+ " 3 | \n",
+ " 389886 | \n",
+ " 359529.0 | \n",
+ " 420243.0 | \n",
+ " 707 | \n",
+ " 652.0 | \n",
+ " 762.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " | 2104 | \n",
+ " 198507 | \n",
+ " 3 | \n",
+ " 471852 | \n",
+ " 432599.0 | \n",
+ " 511105.0 | \n",
+ " 855 | \n",
+ " 784.0 | \n",
+ " 926.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " | 2105 | \n",
+ " 198506 | \n",
+ " 3 | \n",
+ " 565825 | \n",
+ " 518011.0 | \n",
+ " 613639.0 | \n",
+ " 1026 | \n",
+ " 939.0 | \n",
+ " 1113.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " | 2106 | \n",
+ " 198505 | \n",
+ " 3 | \n",
+ " 637302 | \n",
+ " 592795.0 | \n",
+ " 681809.0 | \n",
+ " 1155 | \n",
+ " 1074.0 | \n",
+ " 1236.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " | 2107 | \n",
+ " 198504 | \n",
+ " 3 | \n",
+ " 424937 | \n",
+ " 390794.0 | \n",
+ " 459080.0 | \n",
+ " 770 | \n",
+ " 708.0 | \n",
+ " 832.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " | 2108 | \n",
+ " 198503 | \n",
+ " 3 | \n",
+ " 213901 | \n",
+ " 174689.0 | \n",
+ " 253113.0 | \n",
+ " 388 | \n",
+ " 317.0 | \n",
+ " 459.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " | 2109 | \n",
+ " 198502 | \n",
+ " 3 | \n",
+ " 97586 | \n",
+ " 80949.0 | \n",
+ " 114223.0 | \n",
+ " 177 | \n",
+ " 147.0 | \n",
+ " 207.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " | 2110 | \n",
+ " 198501 | \n",
+ " 3 | \n",
+ " 85489 | \n",
+ " 65918.0 | \n",
+ " 105060.0 | \n",
+ " 155 | \n",
+ " 120.0 | \n",
+ " 190.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " | 2111 | \n",
+ " 198452 | \n",
+ " 3 | \n",
+ " 84830 | \n",
+ " 60602.0 | \n",
+ " 109058.0 | \n",
+ " 154 | \n",
+ " 110.0 | \n",
+ " 198.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " | 2112 | \n",
+ " 198451 | \n",
+ " 3 | \n",
+ " 101726 | \n",
+ " 80242.0 | \n",
+ " 123210.0 | \n",
+ " 185 | \n",
+ " 146.0 | \n",
+ " 224.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " | 2113 | \n",
+ " 198450 | \n",
+ " 3 | \n",
+ " 123680 | \n",
+ " 101401.0 | \n",
+ " 145959.0 | \n",
+ " 225 | \n",
+ " 184.0 | \n",
+ " 266.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " | 2114 | \n",
+ " 198449 | \n",
+ " 3 | \n",
+ " 101073 | \n",
+ " 81684.0 | \n",
+ " 120462.0 | \n",
+ " 184 | \n",
+ " 149.0 | \n",
+ " 219.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " | 2115 | \n",
+ " 198448 | \n",
+ " 3 | \n",
+ " 78620 | \n",
+ " 60634.0 | \n",
+ " 96606.0 | \n",
+ " 143 | \n",
+ " 110.0 | \n",
+ " 176.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " | 2116 | \n",
+ " 198447 | \n",
+ " 3 | \n",
+ " 72029 | \n",
+ " 54274.0 | \n",
+ " 89784.0 | \n",
+ " 131 | \n",
+ " 99.0 | \n",
+ " 163.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " | 2117 | \n",
+ " 198446 | \n",
+ " 3 | \n",
+ " 87330 | \n",
+ " 67686.0 | \n",
+ " 106974.0 | \n",
+ " 159 | \n",
+ " 123.0 | \n",
+ " 195.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " | 2118 | \n",
+ " 198445 | \n",
+ " 3 | \n",
+ " 135223 | \n",
+ " 101414.0 | \n",
+ " 169032.0 | \n",
+ " 246 | \n",
+ " 184.0 | \n",
+ " 308.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " | 2119 | \n",
+ " 198444 | \n",
+ " 3 | \n",
+ " 68422 | \n",
+ " 20056.0 | \n",
+ " 116788.0 | \n",
+ " 125 | \n",
+ " 37.0 | \n",
+ " 213.0 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
2119 rows × 10 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " week indicator inc inc_low inc_up inc100 inc100_low \\\n",
+ "0 202524 3 22816 17621.0 28011.0 34 26.0 \n",
+ "1 202523 3 24564 19382.0 29746.0 37 29.0 \n",
+ "2 202522 3 18755 14333.0 23177.0 28 21.0 \n",
+ "3 202521 3 23760 18671.0 28849.0 35 27.0 \n",
+ "4 202520 3 20265 15814.0 24716.0 30 23.0 \n",
+ "5 202519 3 16264 12394.0 20134.0 24 18.0 \n",
+ "6 202518 3 18115 13975.0 22255.0 27 21.0 \n",
+ "7 202517 3 22150 17291.0 27009.0 33 26.0 \n",
+ "8 202516 3 28564 22550.0 34578.0 43 34.0 \n",
+ "9 202515 3 35721 29592.0 41850.0 53 44.0 \n",
+ "10 202514 3 37579 31232.0 43926.0 56 47.0 \n",
+ "11 202513 3 39673 33686.0 45660.0 59 50.0 \n",
+ "12 202512 3 52543 45627.0 59459.0 78 68.0 \n",
+ "13 202511 3 59469 52154.0 66784.0 89 78.0 \n",
+ "14 202510 3 60334 53048.0 67620.0 90 79.0 \n",
+ "15 202509 3 84531 74994.0 94068.0 126 112.0 \n",
+ "16 202508 3 136020 124824.0 147216.0 203 186.0 \n",
+ "17 202507 3 208952 195988.0 221916.0 312 293.0 \n",
+ "18 202506 3 273519 258159.0 288879.0 408 385.0 \n",
+ "19 202505 3 334395 318416.0 350374.0 499 475.0 \n",
+ "20 202504 3 350043 332885.0 367201.0 522 496.0 \n",
+ "21 202503 3 252772 238917.0 266627.0 377 356.0 \n",
+ "22 202502 3 257247 242991.0 271503.0 384 363.0 \n",
+ "23 202501 3 231549 214627.0 248471.0 345 320.0 \n",
+ "24 202452 3 201726 185870.0 217582.0 302 278.0 \n",
+ "25 202451 3 201697 187843.0 215551.0 302 281.0 \n",
+ "26 202450 3 136694 126369.0 147019.0 205 190.0 \n",
+ "27 202449 3 108487 99037.0 117937.0 163 149.0 \n",
+ "28 202448 3 87381 78687.0 96075.0 131 118.0 \n",
+ "29 202447 3 76286 67626.0 84946.0 114 101.0 \n",
+ "... ... ... ... ... ... ... ... \n",
+ "2090 198521 3 26096 19621.0 32571.0 47 35.0 \n",
+ "2091 198520 3 27896 20885.0 34907.0 51 38.0 \n",
+ "2092 198519 3 43154 32821.0 53487.0 78 59.0 \n",
+ "2093 198518 3 40555 29935.0 51175.0 74 55.0 \n",
+ "2094 198517 3 34053 24366.0 43740.0 62 44.0 \n",
+ "2095 198516 3 50362 36451.0 64273.0 91 66.0 \n",
+ "2096 198515 3 63881 45538.0 82224.0 116 83.0 \n",
+ "2097 198514 3 134545 114400.0 154690.0 244 207.0 \n",
+ "2098 198513 3 197206 176080.0 218332.0 357 319.0 \n",
+ "2099 198512 3 245240 223304.0 267176.0 445 405.0 \n",
+ "2100 198511 3 276205 252399.0 300011.0 501 458.0 \n",
+ "2101 198510 3 353231 326279.0 380183.0 640 591.0 \n",
+ "2102 198509 3 369895 341109.0 398681.0 670 618.0 \n",
+ "2103 198508 3 389886 359529.0 420243.0 707 652.0 \n",
+ "2104 198507 3 471852 432599.0 511105.0 855 784.0 \n",
+ "2105 198506 3 565825 518011.0 613639.0 1026 939.0 \n",
+ "2106 198505 3 637302 592795.0 681809.0 1155 1074.0 \n",
+ "2107 198504 3 424937 390794.0 459080.0 770 708.0 \n",
+ "2108 198503 3 213901 174689.0 253113.0 388 317.0 \n",
+ "2109 198502 3 97586 80949.0 114223.0 177 147.0 \n",
+ "2110 198501 3 85489 65918.0 105060.0 155 120.0 \n",
+ "2111 198452 3 84830 60602.0 109058.0 154 110.0 \n",
+ "2112 198451 3 101726 80242.0 123210.0 185 146.0 \n",
+ "2113 198450 3 123680 101401.0 145959.0 225 184.0 \n",
+ "2114 198449 3 101073 81684.0 120462.0 184 149.0 \n",
+ "2115 198448 3 78620 60634.0 96606.0 143 110.0 \n",
+ "2116 198447 3 72029 54274.0 89784.0 131 99.0 \n",
+ "2117 198446 3 87330 67686.0 106974.0 159 123.0 \n",
+ "2118 198445 3 135223 101414.0 169032.0 246 184.0 \n",
+ "2119 198444 3 68422 20056.0 116788.0 125 37.0 \n",
+ "\n",
+ " inc100_up geo_insee geo_name \n",
+ "0 42.0 FR France \n",
+ "1 45.0 FR France \n",
+ "2 35.0 FR France \n",
+ "3 43.0 FR France \n",
+ "4 37.0 FR France \n",
+ "5 30.0 FR France \n",
+ "6 33.0 FR France \n",
+ "7 40.0 FR France \n",
+ "8 52.0 FR France \n",
+ "9 62.0 FR France \n",
+ "10 65.0 FR France \n",
+ "11 68.0 FR France \n",
+ "12 88.0 FR France \n",
+ "13 100.0 FR France \n",
+ "14 101.0 FR France \n",
+ "15 140.0 FR France \n",
+ "16 220.0 FR France \n",
+ "17 331.0 FR France \n",
+ "18 431.0 FR France \n",
+ "19 523.0 FR France \n",
+ "20 548.0 FR France \n",
+ "21 398.0 FR France \n",
+ "22 405.0 FR France \n",
+ "23 370.0 FR France \n",
+ "24 326.0 FR France \n",
+ "25 323.0 FR France \n",
+ "26 220.0 FR France \n",
+ "27 177.0 FR France \n",
+ "28 144.0 FR France \n",
+ "29 127.0 FR France \n",
+ "... ... ... ... \n",
+ "2090 59.0 FR France \n",
+ "2091 64.0 FR France \n",
+ "2092 97.0 FR France \n",
+ "2093 93.0 FR France \n",
+ "2094 80.0 FR France \n",
+ "2095 116.0 FR France \n",
+ "2096 149.0 FR France \n",
+ "2097 281.0 FR France \n",
+ "2098 395.0 FR France \n",
+ "2099 485.0 FR France \n",
+ "2100 544.0 FR France \n",
+ "2101 689.0 FR France \n",
+ "2102 722.0 FR France \n",
+ "2103 762.0 FR France \n",
+ "2104 926.0 FR France \n",
+ "2105 1113.0 FR France \n",
+ "2106 1236.0 FR France \n",
+ "2107 832.0 FR France \n",
+ "2108 459.0 FR France \n",
+ "2109 207.0 FR France \n",
+ "2110 190.0 FR France \n",
+ "2111 198.0 FR France \n",
+ "2112 224.0 FR France \n",
+ "2113 266.0 FR France \n",
+ "2114 219.0 FR France \n",
+ "2115 176.0 FR France \n",
+ "2116 163.0 FR France \n",
+ "2117 195.0 FR France \n",
+ "2118 308.0 FR France \n",
+ "2119 213.0 FR France \n",
+ "\n",
+ "[2119 rows x 10 columns]"
+ ]
+ },
+ "execution_count": 8,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data = raw_data.dropna().copy()\n",
+ "data "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "3. Convert 'week' to period "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def convert_week ( year_and_week_int ):\n",
+ " year_and_week_str = str (year_and_week_int)\n",
+ " year = int (year_and_week_str[: 4 ])\n",
+ " week = int (year_and_week_str[ 4 :])\n",
+ " w = isoweek.Week(year, week)\n",
+ " return pd.Period(w.day( 0 ), 'W' )\n",
+ "\n",
+ "data[ 'period' ] = [convert_week(yw) for yw in data[ 'week' ]] "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "4. Set 'period' as index and sort the dataset"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 44,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "sorted_data = data.set_index( 'period' ).sort_index() \n",
+ "# Ensure the 'inc' column is numeric\n",
+ "sorted_data['inc'] = pd.to_numeric(sorted_data['inc'], errors='coerce')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 45,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "1989-05-01/1989-05-07 1989-05-15/1989-05-21\n"
+ ]
+ }
+ ],
+ "source": [
+ "periods = sorted_data.index\n",
+ "for p1, p2 in zip (periods[:- 1 ], periods[ 1 :]):\n",
+ " delta = p2.to_timestamp() - p1.end_time\n",
+ " if delta > pd.Timedelta( '1s' ):\n",
+ " print (p1, p2) "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "5. Choose September 1st as the beginning of each annual period"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 46,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "[Period('1985-08-26/1985-09-01', 'W-SUN'),\n",
+ " Period('1986-09-01/1986-09-07', 'W-SUN'),\n",
+ " Period('1987-08-31/1987-09-06', 'W-SUN'),\n",
+ " Period('1988-08-29/1988-09-04', 'W-SUN'),\n",
+ " Period('1989-08-28/1989-09-03', 'W-SUN'),\n",
+ " Period('1990-08-27/1990-09-02', 'W-SUN'),\n",
+ " Period('1991-08-26/1991-09-01', 'W-SUN'),\n",
+ " Period('1992-08-31/1992-09-06', 'W-SUN'),\n",
+ " Period('1993-08-30/1993-09-05', 'W-SUN'),\n",
+ " Period('1994-08-29/1994-09-04', 'W-SUN'),\n",
+ " Period('1995-08-28/1995-09-03', 'W-SUN'),\n",
+ " Period('1996-08-26/1996-09-01', 'W-SUN'),\n",
+ " Period('1997-09-01/1997-09-07', 'W-SUN'),\n",
+ " Period('1998-08-31/1998-09-06', 'W-SUN'),\n",
+ " Period('1999-08-30/1999-09-05', 'W-SUN'),\n",
+ " Period('2000-08-28/2000-09-03', 'W-SUN'),\n",
+ " Period('2001-08-27/2001-09-02', 'W-SUN'),\n",
+ " Period('2002-08-26/2002-09-01', 'W-SUN'),\n",
+ " Period('2003-09-01/2003-09-07', 'W-SUN'),\n",
+ " Period('2004-08-30/2004-09-05', 'W-SUN'),\n",
+ " Period('2005-08-29/2005-09-04', 'W-SUN'),\n",
+ " Period('2006-08-28/2006-09-03', 'W-SUN'),\n",
+ " Period('2007-08-27/2007-09-02', 'W-SUN'),\n",
+ " Period('2008-09-01/2008-09-07', 'W-SUN'),\n",
+ " Period('2009-08-31/2009-09-06', 'W-SUN'),\n",
+ " Period('2010-08-30/2010-09-05', 'W-SUN'),\n",
+ " Period('2011-08-29/2011-09-04', 'W-SUN'),\n",
+ " Period('2012-08-27/2012-09-02', 'W-SUN'),\n",
+ " Period('2013-08-26/2013-09-01', 'W-SUN'),\n",
+ " Period('2014-09-01/2014-09-07', 'W-SUN'),\n",
+ " Period('2015-08-31/2015-09-06', 'W-SUN'),\n",
+ " Period('2016-08-29/2016-09-04', 'W-SUN'),\n",
+ " Period('2017-08-28/2017-09-03', 'W-SUN'),\n",
+ " Period('2018-08-27/2018-09-02', 'W-SUN'),\n",
+ " Period('2019-08-26/2019-09-01', 'W-SUN'),\n",
+ " Period('2020-08-31/2020-09-06', 'W-SUN'),\n",
+ " Period('2021-08-30/2021-09-05', 'W-SUN'),\n",
+ " Period('2022-08-29/2022-09-04', 'W-SUN'),\n",
+ " Period('2023-08-28/2023-09-03', 'W-SUN'),\n",
+ " Period('2024-08-26/2024-09-01', 'W-SUN')]"
+ ]
+ },
+ "execution_count": 46,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "first_sept_week = [pd.Period(pd.Timestamp(y, 9 , 1 ), 'W' )\n",
+ " for y in range ( 1985 ,\n",
+ " sorted_data.index[- 1 ].year)] \n",
+ "first_sept_week"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "6. Collect the incidence per year information"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 47,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "2021 772545\n",
+ "2014 1601698\n",
+ "1991 1663610\n",
+ "1995 1828304\n",
+ "2020 2017296\n",
+ "2022 2057596\n",
+ "2012 2183912\n",
+ "2003 2234514\n",
+ "2019 2254363\n",
+ "2006 2297262\n",
+ "2017 2322818\n",
+ "2001 2540826\n",
+ "1992 2590314\n",
+ "1993 2699482\n",
+ "2018 2701716\n",
+ "1988 2759663\n",
+ "2007 2786458\n",
+ "2011 2852504\n",
+ "2016 2859019\n",
+ "1987 2867464\n",
+ "2023 2908672\n",
+ "2008 2984311\n",
+ "1998 3047298\n",
+ "2002 3115484\n",
+ "1994 3514133\n",
+ "1996 3540251\n",
+ "2009 3558474\n",
+ "2004 3572810\n",
+ "1997 3624129\n",
+ "2015 3647492\n",
+ "2024 3691245\n",
+ "2000 3808190\n",
+ "2005 3831409\n",
+ "1999 3914003\n",
+ "2010 3992174\n",
+ "2013 4176872\n",
+ "1986 5050543\n",
+ "1990 5214494\n",
+ "1989 5461328\n",
+ "dtype: int64"
+ ]
+ },
+ "execution_count": 47,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "year = []\n",
+ "yearly_incidence = []\n",
+ "for week1, week2 in zip (first_sept_week[:- 1 ],first_sept_week[ 1 :]):\n",
+ " one_year = sorted_data[ 'inc' ][week1:week2- 1 ]\n",
+ " assert abs ( len (one_year)- 52 ) < 2 \n",
+ " yearly_incidence.append(one_year. sum ())\n",
+ " year.append(week2.year)\n",
+ "yearly_incidence = pd.Series(data=yearly_incidence, index=year) \n",
+ "yearly_incidence.sort_values()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 48,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEWCAYAAABrDZDcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAGfpJREFUeJzt3X2cXVV97/HP1wRIYEIIBqYxPAwILyqSimZQkV47w0OLgtrbcgEvKig0LRaNEusNAhWtD7QWX2rbeyFViwTKoDwowvUBkQGtPE0QDAiRCAESYiIiCYNRSPz1j73G7Bzn4ZzMnLNnZn3fr9d5zZ61915rnTUz5zt77XP2VkRgZmb5elHVHTAzs2o5CMzMMucgMDPLnIPAzCxzDgIzs8w5CMzMMucgyIykiyWdP0Z17SOpX9KU9H2vpDPGou5U3zcknTpW9TXQ7sckPSXpZ61uu6YfUyWFpI6K2p+Sfr77DLH+DEm9Le6WNYGDYBKRtErSJknPSnpG0g8k/Y2k3/2cI+JvIuIf6qzr6OG2iYjHI6ItIraMQd8vkHR5Tf1viIgvjbbuBvuxN7AIODgi/qBmXXsKiK6a8v+QdGULuzkiSZdLumA0dUTElvTzfXyMumXjlINg8nlTRMwA9gUuBP4P8IWxbkTS1LGuc5zYF/hFRKyvXRER64D3A/8uaTqApKOA44D3jmUnJvH42jjkIJikImJDRFwPnAScKukQAEmXSvpYWp4t6YZ09PC0pO9JepGkpcA+wNfT1MAHJXWkaYrTJT0OfLdUVn7ReqmkuyRtkPQ1SbuntrokrS73ceCoQ9KxwIeAk1J796X1v5tqSv06T9JjktZLukzSzLRuoB+nSno8/dd+7lBjI2lm2v/nqb7zUv1HAzcBL0n9uHSQcV0KrAA+msLgEuC9EfHzVPdekq5LdT8q6W9L7R4u6Y403mslfU7SDmndwDTQuyWtBB6q6fPhkp4sH91JOklS31DPs7TdAanud0hanfq2uLR+qqTzJf1U0kZJfZJeUjs1JWmP9PuyUdIdwH417Rws6Tvpd+khSX9ZWnd5er7fSEest0var7R+Xmnfn0n6YCp/kaQPpb49JalH0qyRnrM1KCL8mCQPYBVw9CDljwNnpuVLgY+l5U8CFwM7pMf/ADRYXUAHEMBlwC7A9FLZ1LRNL7AGOCRtcw1weVrXBaweqr/ABQPbltb3Amek5XcBK4H9gTbgWmBpTd/+PfXrFcBvgJcNMU6XAV8DZqR9fwKcPlQ/B9l/L+AXqY6vlsqnAPdShNqOwAHpOR6V1h8GvAaYmp7HT4Cz0rqp6Tl8E5iVnsdAWUfaZgVwTKm9rwMLh+jj5cAFafmAVM/FwDTgVWl8DkzrzwHuAw6k+OfwUGD3Qdq/GrgS2Bn4I2At0JvWzUg/+3ek/eanMTqo1J+ngE6K37WrSr8bM4F1wEJgJ2BX4NVp3QeA/wLmpr5/YeDn7sfYPXxEkIcnKf6wa70AzAH2jYgXIuJ7kf76hnFBRDwXEZuGWL80Iu6PiOeA84ETlU4mj9IpwKcj4pGI6Kd48Tq55mjkIxGxKSLuo3hhe0VtJakvJwHnRMSzEbEKuAh4e70diYjVwN8DRwNnlla9Ftg1Ij4REc9HxEqKF66T0353R8SdEbE5Ih4BlgB/UlP9JyLil0OM72XA29LzmA0cRfHCXK8LIuLXEXEP8ABbx+cM4EMR8XBE/DYi7o2Ip8s7piOXPwfOj4hfRcSPgKWlTd4M/CQiLkvPbxnwVeCE0jZXR0RfRLwAXEEROAP7PhERn42I30TExoi4K63769S3NRHxa4p/GE4sHxnZ6HkeMg9zgacHKf8UxR/WtyUBLImIC0eo64kG1j9G8d/f7Pq6OayXpPrKdU8F2ktl5Xf5/IriyKHWbIr/1mvrmttgfx4AfhkRa0tl+wL7SHqmVDaF4sgGSX9IETrzKf6rngrcWVPvcOO7FFguaWeKcLklBjmXMZSIGGp89gZ+OsLu7RTPpfbn++q0vC9wRM1zn0pxBDpguPZXDtHuwBTlb0tlAexZU5+NglN1kpN0GMWL3Pdr16X/iBdFxP7Am4CzVZz8hOKPbTAjHTHsXVreh+Ko4yngOYoXv4F+TQH2aKDeJylebMp1b6aYUmjEU6lPtXWtabCewTwBPBwRu5UeMyLiTWn9JcD9wAERsSvFUYVq6hhyHKJ4904f8BaKI5ilQ227Hf1+6QjbrAN+y+//fMt13Fzz3Nsi4qxRtr+aYjqsXO+0mlCzUXIQTFKSdpV0PNBDMRe7fJBtjk8nEgVsBLakBxR/+PtvR9NvSycNdwY+SjEdsIViPnyapOPSNMN5FPPBA9YBHcMc8l8JvF/SfpLagE8AV0XE5kY6l/ryZeDjkmZI2hc4m2IOe7RuB56XtEjSNBXvw58naX5aPwPYADwn6WUU0x6NuoxiWuwPKc5RjIXPAx+T9FIVDlU6yT8gTed8FfiIpOkq3nxQnk67Hni5pP8taYf0eLWkg+po/3qKI6mzJO2YfncHjjQuBj6h9FkGSXtKevNon7Bty0Ew+Xxd0rMU/2WdC3waeOcQ2x4IfAfop3gR+78R0ZvWfRI4L73D5QMNtL+UYjrgZxQn994LxbuYgHdTvOisoThCKL+L6Cvp6y8k3TNIvV9Mdd8GPAr8GnhPA/0qe09q/xGKI6X/TPWPSgqlN1JMl6yiOPq4hOLkJxSfTzgVeDaVX7UdzVxDEdBXD3OeplGfoniRv5niH4IlFD+7WmdSnMheR3Hu4z8GVqSf759RnMNYS/Hz/yTbhv2g0r7HAH8JrKf4p2Hg3MmnKU6g35x+r39AcdLdxtDAO0TMbAJIR2+PAqeVQttsVHxEYDaxnEjx1s9bq+6ITR5+15DZBCHp+xTTeafU8TZfs7p5asjMLHOeGjIzy9yEmBqaPXt2dHR0tLzd5557jl122aXl7Y4nHgOPAXgMYGKOwbJly56KiD1G2m5CBEFHRwd9fSNeW2vM9fb20tXV1fJ2xxOPgccAPAYwMcdA0mMjb+WpITOz7DkIzMwy5yAwM8ucg8DMLHMOAjOzzDkIzMwy5yAwM8ucg8DMLHMOAjOzzE2ITxabjaRj8Y1Nq3vRvM2cNkT9qy48rmntmrWKjwjMzDLnIDAzy5yDwMwscw4CM7PMOQjMzDLnIDAzy5yDwMwscw4CM7PMOQjMzDLnIDAzy5yDwMwscw4CM7PMOQjMzDLnIDAzy1zTgkDSFyWtl3R/qWx3STdJejh9ndWs9s3MrD7NPCK4FDi2pmwxcHNEHAjcnL43M7MKNS0IIuI24Oma4rcAX0rLXwL+vFntm5lZfVp9jqA9ItYCpK97trh9MzOroYhoXuVSB3BDRBySvn8mInYrrf9lRAx6nkDSAmABQHt7+/yenp6m9XMo/f39tLW1tbzd8WSijMHyNRuaVnf7dFi3afB18+bObFq748lE+T1opok4Bt3d3csionOk7Vp9z+J1kuZExFpJc4D1Q20YEUuAJQCdnZ3R1dXVoi5u1dvbSxXtjicTZQyGuqfwWFg0bzMXLR/8T2XVKV1Na3c8mSi/B800mceg1VND1wOnpuVTga+1uH0zM6vRzLePXgncDhwkabWk04ELgWMkPQwck743M7MKNW1qKCLeOsSqo5rVppmZNc6fLDYzy5yDwMwscw4CM7PMOQjMzDLnIDAzy5yDwMwscw4CM7PMOQjMzDLnIDAzy5yDwMwscw4CM7PMOQjMzDLnIDAzy5yDwMwscw4CM7PMOQjMzDLnIDAzy5yDwMwscw4CM7PMOQjMzDLnIDAzy5yDwMwscw4CM7PMOQjMzDLnIDAzy5yDwMwscw4CM7PMOQjMzDLnIDAzy1wlQSDp/ZIekHS/pCslTauiH2ZmVkEQSJoLvBfojIhDgCnAya3uh5mZFaqaGpoKTJc0FdgZeLKifpiZZU8R0fpGpYXAx4FNwLcj4pRBtlkALABob2+f39PT09pOAv39/bS1tbW83fFkoozB8jUbmlZ3+3RYt2nwdfPmzmxau+PJRPk9aKaJOAbd3d3LIqJzpO1aHgSSZgHXACcBzwBfAa6OiMuH2qezszP6+vpa1MOtent76erqanm748lEGYOOxTc2re5F8zZz0fKpg65bdeFxTWt3PJkovwfNNBHHQFJdQVDF1NDRwKMR8fOIeAG4FnhdBf0wMzOqCYLHgddK2lmSgKOAByvoh5mZUUEQRMSdwNXAPcDy1Iclre6HmZkVBp/4bLKI+DDw4SraNjOzbfmTxWZmmXMQmJllzkFgZpY5B4GZWeYcBGZmmXMQmJllzkFgZpY5B4GZWeYcBGZmmXMQmJllzkFgZpY5B4GZWeYcBGZmmavk6qM2OTXzLmH2+1o53ovmbea01F4ud2XLiY8IzMwy5yAwM8ucg8DMLHMOAjOzzDkIzMwy5yAwM8ucg8DMLHMOAjOzzDkIzMwy5yAwM8tcXUEg6Yh6yszMbOKp94jgX+osMzOzCWbYi85JOhx4HbCHpLNLq3YFpjSzY2Zm1hojXX10R6AtbTejVL4ROKFZnTIzs9YZNggi4lbgVkmXRsRjLeqTmZm1UL33I9hJ0hKgo7xPRBy5PY1K2g34PHAIEMC7IuL27anLzMxGp94g+ApwMcWL95YxaPezwDcj4gRJOwI7j0GdZma2HeoNgs0R8f/GokFJuwKvB04DiIjngefHom4zM2ucImLkjaQLgPXAdcBvBsoj4umGG5QOBZYAPwZeASwDFkbEczXbLQAWALS3t8/v6elptKlR6+/vp62treXtjieNjMHyNRua3JtqtE+HdZsGXzdv7szWdqakleNdHoMqn3OVJuLrQXd397KI6Bxpu3qD4NFBiiMi9m+0Y5I6gTuAIyLiTkmfBTZGxPlD7dPZ2Rl9fX2NNjVqvb29dHV1tbzd8aSRMZis9yxeNG8zFy0f/OC5yvv3tvqexQNjkOs9iyfi64GkuoKgrqmhiNhv9F36ndXA6oi4M31/NbB4DOs3M7MG1BUEkt4xWHlEXNZogxHxM0lPSDooIlYAR1FME5mZWQXqPVl8WGl5GsWL9z1Aw0GQvAe4Ir1j6BHgndtZj5mZjVK9U0PvKX8vaSawdHsbjYh7gRHnrczMrPm29zLUvwIOHMuOmJlZNeo9R/B1ik8AQ3GxuZcBX25Wp8zMrHXqPUfwz6XlzcBjEbG6Cf0xM7MWq2tqKF187iGKK5DOwp8ENjObNOq9Q9mJwF3A/wJOBO6U5MtQm5lNAvVODZ0LHBYR6wEk7QF8h+LDYGZmNoHV+66hFw2EQPKLBvY1M7NxrN4jgm9K+hZwZfr+JOD/N6dLZmbWSiPds/gAoD0i/k7SXwB/DAi4HbiiBf0zM7MmG2l65zPAswARcW1EnB0R76c4GvhMsztnZmbNN1IQdETEj2oLI6KP4raVZmY2wY0UBNOGWTd9LDtiZmbVGCkI7pb0V7WFkk6nuLOYmZlNcCO9a+h9wHWSTmHrC38nsCPwP5vZMTMza41hgyAi1gGvk9QNHJKKb4yI7za9Z2Zm1hL13o/gFuCWJvfFzMwq4E8Hm5llzkFgZpY5B4GZWeYcBGZmmXMQmJllzkFgZpY5B4GZWeYcBGZmmXMQmJllzkFgZpY5B4GZWeYcBGZmmassCCRNkfRDSTdU1QczM6v2iGAh8GCF7ZuZGRUFgaS9gOOAz1fRvpmZbaWIaH2j0tXAJ4EZwAci4vhBtlkALABob2+f39PT09pOAv39/bS1tbW83fGkkTFYvmZDk3tTjfbpsG5T1b2oVnkM5s2dWW1nKjIRXw+6u7uXRUTnSNvVdWOasSTpeGB9RCyT1DXUdhGxBFgC0NnZGV1dQ27aNL29vVTR7njSyBictvjG5namIovmbeai5S3/UxlXymOw6pSuajtTkcn8elDF1NARwJslrQJ6gCMlXV5BP8zMjAqCICLOiYi9IqIDOBn4bkS8rdX9MDOzgj9HYGaWuUonPiOiF+itsg9mZrnzEYGZWeYcBGZmmXMQmJllzkFgZpY5B4GZWeYcBGZmmXMQmJllzkFgZpY5B4GZWeYcBGZmmXMQmJllzkFgZpY5B4GZWebyvu3SJNUxhncKWzRv86S985hZvToW31jZ38KqC49rehs+IjAzy5yDwMwscw4CM7PMOQjMzDLnIDAzy5yDwMwscw4CM7PMOQjMzDLnIDAzy5yDwMwscw4CM7PMOQjMzDLnIDAzy5yDwMwscw4CM7PMtTwIJO0t6RZJD0p6QNLCVvfBzMy2quLGNJuBRRFxj6QZwDJJN0XEjyvoi5lZ9lp+RBARayPinrT8LPAgMLfV/TAzs4IiorrGpQ7gNuCQiNhYs24BsACgvb19fk9PT8v719/fT1tb23bvv3zNhjHsTTXap8O6TVX3oloeg23HYN7cmdV2pgLL12yo7PdgNOPd3d29LCI6R9qusiCQ1AbcCnw8Iq4dbtvOzs7o6+trTcdKent76erq2u79x/LewVVZNG8zFy3P+9bWHoNtx6AV99AdbwbuWVzF78FoxltSXUFQybuGJO0AXANcMVIImJlZc1XxriEBXwAejIhPt7p9MzPbVhVHBEcAbweOlHRveryxgn6YmRkVvH00Ir4PqNXtmpnZ4PzJYjOzzDkIzMwy5yAwM8ucg8DMLHMOAjOzzDkIzMwy5yAwM8ucg8DMLHMOAjOzzDkIzMwy5yAwM8ucg8DMLHMOAjOzzE362y6N5i5hi+Zt5rRJcJcxs7FU5Z33crw7Wiv4iMDMLHMOAjOzzDkIzMwy5yAwM8ucg8DMLHMOAjOzzDkIzMwy5yAwM8ucg8DMLHMOAjOzzDkIzMwy5yAwM8ucg8DMLHMOAjOzzDkIzMwyV0kQSDpW0gpJKyUtrqIPZmZWaHkQSJoC/BvwBuBg4K2SDm51P8zMrFDFEcGrgZUR8UhEPA/0AG+poB9mZgYoIlrboHQCcGxEnJG+fzvwmog4q2a7BcCC9O1BwIqWdrQwG3iqgnbHE4+BxwA8BjAxx2DfiNhjpI2quGexBin7vTSKiCXAkuZ3Z2iS+iKis8o+VM1j4DEAjwFM7jGoYmpoNbB36fu9gCcr6IeZmVFNENwNHChpP0k7AicD11fQDzMzo4KpoYjYLOks4FvAFOCLEfFAq/tRp0qnpsYJj4HHADwGMInHoOUni83MbHzxJ4vNzDLnIDAzy9ykCQJJX5S0XtL9pbLdJd0k6eH0dVZp3TnpEhcrJP1ZqXy+pOVp3eckKZXvJOmqVH6npI7SPqemNh6WdGqpfL+07cNp3x2b+Pz3lnSLpAclPSBpYYZjME3SXZLuS2PwkdzGoNTmFEk/lHRDjmMgaVXq+72S+nIcg4ZExKR4AK8HXgXcXyr7J2BxWl4M/GNaPhi4D9gJ2A/4KTAlrbsLOJzi8w7fAN6Qyt8NXJyWTwauSsu7A4+kr7PS8qy07svAyWn5YuDMJj7/OcCr0vIM4CfpeeY0BgLa0vIOwJ3Aa3Mag9JYnA38J3BDbn8LqY1VwOyasqzGoKHxqroDY/zD72DbIFgBzEnLc4AVafkc4JzSdt9KP+w5wEOl8rcCl5S3SctTKT5hqPI2ad0lqUxpm6mp/HDgWy0ci68Bx+Q6BsDOwD3Aa3IbA4rP5twMHMnWIMhtDFbx+0GQ1Rg08pg0U0NDaI+ItQDp656pfC7wRGm71alsblquLd9mn4jYDGwAXjxMXS8Gnknb1tbVVOkw9ZUU/xFnNQZpSuReYD1wU0RkNwbAZ4APAr8tleU2BgF8W9IyFZergfzGoG5VXGJiPBjqMhfDXf6i0X3qupTGWJPUBlwDvC8iNqYpzUE3HaRswo9BRGwBDpW0G3CdpEOG2XzSjYGk44H1EbFMUlc9uwxSNqHHIDkiIp6UtCdwk6SHhtl2so5B3Sb7EcE6SXMA0tf1qXyoy1ysTsu15dvsI2kqMBN4epi6ngJ2S9vW1tUUknagCIErIuLaVJzVGAyIiGeAXuBY8hqDI4A3S1pFcWXfIyVdTl5jQEQ8mb6uB66juOpxVmPQkKrnpsZ4XrCDbc8RfIptTw79U1p+OdueHHqErSeH7qY4wThwcuiNqfxv2fbk0JfT8u7AoxQnhmal5d3Tuq+w7cmhdzfxuQu4DPhMTXlOY7AHsFtang58Dzg+pzGoGY8utp4jyGYMgF2AGaXlH1D8Q5DNGDQ8ZlV3YAx/+FcCa4EXKFL5dIp5uZuBh9PX3Uvbn0vx7oAVpHcCpPJO4P607l/Z+unraekHuZLinQT7l/Z5VypfCbyzVL5/2nZl2nenJj7/P6Y41PwRcG96vDGzMfgj4IdpDO4H/j6VZzMGNePRxdYgyGYMUlv3pccDwLm5jUGjD19iwswsc5P9HIGZmY3AQWBmljkHgZlZ5hwEZmaZcxCYmWXOQWCTnqT+7dyvU9Lnhli3StLs0fXMbHzI9RITZiOKiD6gr+p+mDWbjwgsG5K6JPVKulrSQ5KuKF1f/jBJP1BxL4O7JM1I2w9cz//Fkr6drvF/CaVrx0h6W9rnXkmXSJqSyvslfTzVeYek9lTeLum6VH6fpNcNV49ZszkILDevBN5HcQ36/YEj0g1CrgIWRsQrgKOBTTX7fRj4fkS8Erge2AdA0suAkygucnYosAU4Je2zC3BHqvM24K9S+eeAW1P5q4AHRqjHrKk8NWS5uSsiVgOky1V3UFxCeG1E3A0QERvT+vJ+rwf+Iq2/UdIvU/lRwHzg7rT9dLZezOx54Ia0vIzi/hBQ3CfgHamuLcAGSW8fph6zpnIQWG5+U1reQvE3IOq7JPBg2wj4UkScM8i6F2LrNVwG2hrKcPWYNZWnhszgIeAlkg4DSOcHal+0byNN1Uh6A8WVJaG4eNkJ6br3A/fF3XeE9m4GzkzbT5G063bWYzYmHASWvYh4nmJ+/l8k3QfcRHF1ybKPAK+XdA/wp8Djad8fA+dR3A3rR2nfOSM0uRDolrScYsro5dtZj9mY8NVHzcwy5yMCM7PMOQjMzDLnIDAzy5yDwMwscw4CM7PMOQjMzDLnIDAzy9x/A9dYlpQpAPBYAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "yearly_incidence.hist()\n",
+ "plt.title(\"Distribution of Yearly Incidence\")\n",
+ "plt.xlabel(\"Incidence\")\n",
+ "plt.ylabel(\"Count\")\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 50,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Strongest epidemic year: 1989\n",
+ "Weakest epidemic year: 2021\n"
+ ]
+ }
+ ],
+ "source": [
+ "strongest = yearly_incidence.idxmax()\n",
+ "weakest = yearly_incidence.idxmin()\n",
+ "print(f\"Strongest epidemic year: {strongest}\")\n",
+ "print(f\"Weakest epidemic year: {weakest}\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.6.4"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/module3/exo2/exercice.ipynb b/module3/exo2/exercice.ipynb
index 898cf8b..d90c1e0 100644
--- a/module3/exo2/exercice.ipynb
+++ b/module3/exo2/exercice.ipynb
@@ -4,19 +4,19 @@
"cell_type": "markdown",
"metadata": {},
"source": [
- "## The incidence of chickenpox in France (2016-2024)"
+ "## The incidence of chickenpox in France"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
- "The data on the incidence of chickenpox-like illness are available from the Web site of the [Réseau Sentinelles](http://www.sentiweb.fr/). We download them as a file in CSV format, in which each line corresponds to a week in the observation period. The dataset used is starting in 2016 and ends with 2024."
+ "The data on the incidence of chickenpox-like illness are available from the Web site of the [Réseau Sentinelles](http://www.sentiweb.fr/). We download them as a file in CSV format, in which each line corresponds to a week in the observation period. "
]
},
{
"cell_type": "code",
- "execution_count": 25,
+ "execution_count": 8,
"metadata": {},
"outputs": [
{
@@ -33,7 +33,7 @@
},
{
"cell_type": "code",
- "execution_count": 26,
+ "execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
@@ -41,18 +41,17 @@
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
"import os\n",
- "from isoweek import Week\n",
- "from datetime import datetime, timedelta"
+ "from isoweek import Week"
]
},
{
"cell_type": "code",
- "execution_count": 27,
+ "execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
- "data_url = \"https://www.sentiweb.fr/datasets/all/inc-7-RDD-ds2.csv\"\n",
- "filename = \"inc-7-PAY-ds2.csv\""
+ "data_url = \"http://www.sentiweb.fr/datasets/incidence-PAY-3.csv\" \n",
+ "filename = \"inc-7-PAY-ds3.csv\""
]
},
{
@@ -64,7 +63,7 @@
},
{
"cell_type": "code",
- "execution_count": 28,
+ "execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
@@ -83,8 +82,10 @@
},
{
"cell_type": "code",
- "execution_count": 30,
- "metadata": {},
+ "execution_count": 13,
+ "metadata": {
+ "scrolled": true
+ },
"outputs": [
{
"data": {
@@ -108,376 +109,407 @@
" \n",
" | \n",
" week | \n",
- " geo_insee | \n",
" indicator | \n",
" inc | \n",
- " inc100 | \n",
- " inc_up | \n",
" inc_low | \n",
- " inc100_up | \n",
+ " inc_up | \n",
+ " inc100 | \n",
" inc100_low | \n",
+ " inc100_up | \n",
+ " geo_insee | \n",
+ " geo_name | \n",
"
\n",
" \n",
" \n",
" \n",
" | 0 | \n",
- " 201601 | \n",
- " 44 | \n",
- " 7 | \n",
- " 574 | \n",
- " 10 | \n",
- " 861 | \n",
- " 287 | \n",
- " 15 | \n",
- " 5 | \n",
+ " 202524 | \n",
+ " 3 | \n",
+ " 22816 | \n",
+ " 17621.0 | \n",
+ " 28011.0 | \n",
+ " 34 | \n",
+ " 26.0 | \n",
+ " 42.0 | \n",
+ " FR | \n",
+ " France | \n",
"
\n",
" \n",
" | 1 | \n",
- " 201601 | \n",
- " 75 | \n",
- " 7 | \n",
- " 1513 | \n",
- " 25 | \n",
- " 2099 | \n",
- " 927 | \n",
- " 35 | \n",
- " 15 | \n",
+ " 202523 | \n",
+ " 3 | \n",
+ " 24564 | \n",
+ " 19382.0 | \n",
+ " 29746.0 | \n",
+ " 37 | \n",
+ " 29.0 | \n",
+ " 45.0 | \n",
+ " FR | \n",
+ " France | \n",
"
\n",
" \n",
" | 2 | \n",
- " 201601 | \n",
- " 84 | \n",
- " 7 | \n",
- " 2363 | \n",
- " 30 | \n",
- " 2958 | \n",
- " 1768 | \n",
- " 37 | \n",
- " 22 | \n",
+ " 202522 | \n",
+ " 3 | \n",
+ " 18755 | \n",
+ " 14333.0 | \n",
+ " 23177.0 | \n",
+ " 28 | \n",
+ " 21.0 | \n",
+ " 35.0 | \n",
+ " FR | \n",
+ " France | \n",
"
\n",
" \n",
" | 3 | \n",
- " 201601 | \n",
- " 27 | \n",
- " 7 | \n",
- " 686 | \n",
- " 24 | \n",
- " 1058 | \n",
- " 314 | \n",
- " 36 | \n",
- " 11 | \n",
+ " 202521 | \n",
+ " 3 | \n",
+ " 23760 | \n",
+ " 18671.0 | \n",
+ " 28849.0 | \n",
+ " 35 | \n",
+ " 27.0 | \n",
+ " 43.0 | \n",
+ " FR | \n",
+ " France | \n",
"
\n",
" \n",
" | 4 | \n",
- " 201601 | \n",
- " 53 | \n",
- " 7 | \n",
- " 532 | \n",
- " 16 | \n",
- " 874 | \n",
- " 190 | \n",
- " 26 | \n",
- " 6 | \n",
+ " 202520 | \n",
+ " 3 | \n",
+ " 20265 | \n",
+ " 15814.0 | \n",
+ " 24716.0 | \n",
+ " 30 | \n",
+ " 23.0 | \n",
+ " 37.0 | \n",
+ " FR | \n",
+ " France | \n",
"
\n",
" \n",
" | 5 | \n",
- " 201601 | \n",
- " 24 | \n",
- " 7 | \n",
- " 394 | \n",
- " 15 | \n",
- " 625 | \n",
- " 163 | \n",
+ " 202519 | \n",
+ " 3 | \n",
+ " 16264 | \n",
+ " 12394.0 | \n",
+ " 20134.0 | \n",
" 24 | \n",
- " 6 | \n",
+ " 18.0 | \n",
+ " 30.0 | \n",
+ " FR | \n",
+ " France | \n",
"
\n",
" \n",
" | 6 | \n",
- " 201601 | \n",
- " 94 | \n",
- " 7 | \n",
- " 38 | \n",
- " 12 | \n",
- " 82 | \n",
- " 0 | \n",
- " 25 | \n",
- " 0 | \n",
+ " 202518 | \n",
+ " 3 | \n",
+ " 18115 | \n",
+ " 13975.0 | \n",
+ " 22255.0 | \n",
+ " 27 | \n",
+ " 21.0 | \n",
+ " 33.0 | \n",
+ " FR | \n",
+ " France | \n",
"
\n",
" \n",
" | 7 | \n",
- " 201601 | \n",
- " 11 | \n",
- " 7 | \n",
- " 3030 | \n",
- " 25 | \n",
- " 3788 | \n",
- " 2272 | \n",
- " 31 | \n",
- " 19 | \n",
+ " 202517 | \n",
+ " 3 | \n",
+ " 22150 | \n",
+ " 17291.0 | \n",
+ " 27009.0 | \n",
+ " 33 | \n",
+ " 26.0 | \n",
+ " 40.0 | \n",
+ " FR | \n",
+ " France | \n",
"
\n",
" \n",
" | 8 | \n",
- " 201601 | \n",
- " 76 | \n",
- " 7 | \n",
- " 842 | \n",
- " 14 | \n",
- " 1307 | \n",
- " 377 | \n",
- " 22 | \n",
- " 6 | \n",
+ " 202516 | \n",
+ " 3 | \n",
+ " 28564 | \n",
+ " 22550.0 | \n",
+ " 34578.0 | \n",
+ " 43 | \n",
+ " 34.0 | \n",
+ " 52.0 | \n",
+ " FR | \n",
+ " France | \n",
"
\n",
" \n",
" | 9 | \n",
- " 201601 | \n",
- " 32 | \n",
- " 7 | \n",
- " 2100 | \n",
- " 34 | \n",
- " 2711 | \n",
- " 1489 | \n",
- " 44 | \n",
- " 24 | \n",
+ " 202515 | \n",
+ " 3 | \n",
+ " 35721 | \n",
+ " 29592.0 | \n",
+ " 41850.0 | \n",
+ " 53 | \n",
+ " 44.0 | \n",
+ " 62.0 | \n",
+ " FR | \n",
+ " France | \n",
"
\n",
" \n",
" | 10 | \n",
- " 201601 | \n",
- " 28 | \n",
- " 7 | \n",
- " 418 | \n",
- " 12 | \n",
- " 687 | \n",
- " 149 | \n",
- " 20 | \n",
- " 4 | \n",
+ " 202514 | \n",
+ " 3 | \n",
+ " 37579 | \n",
+ " 31232.0 | \n",
+ " 43926.0 | \n",
+ " 56 | \n",
+ " 47.0 | \n",
+ " 65.0 | \n",
+ " FR | \n",
+ " France | \n",
"
\n",
" \n",
" | 11 | \n",
- " 201601 | \n",
- " 52 | \n",
- " 7 | \n",
- " 1029 | \n",
- " 27 | \n",
- " 1577 | \n",
- " 481 | \n",
- " 42 | \n",
- " 13 | \n",
+ " 202513 | \n",
+ " 3 | \n",
+ " 39673 | \n",
+ " 33686.0 | \n",
+ " 45660.0 | \n",
+ " 59 | \n",
+ " 50.0 | \n",
+ " 68.0 | \n",
+ " FR | \n",
+ " France | \n",
"
\n",
" \n",
" | 12 | \n",
- " 201601 | \n",
- " 93 | \n",
- " 7 | \n",
- " 1053 | \n",
- " 21 | \n",
- " 1457 | \n",
- " 649 | \n",
- " 29 | \n",
- " 13 | \n",
+ " 202512 | \n",
+ " 3 | \n",
+ " 52543 | \n",
+ " 45627.0 | \n",
+ " 59459.0 | \n",
+ " 78 | \n",
+ " 68.0 | \n",
+ " 88.0 | \n",
+ " FR | \n",
+ " France | \n",
"
\n",
" \n",
" | 13 | \n",
- " 201602 | \n",
- " 44 | \n",
- " 7 | \n",
- " 772 | \n",
- " 14 | \n",
- " 1122 | \n",
- " 422 | \n",
- " 20 | \n",
- " 7 | \n",
+ " 202511 | \n",
+ " 3 | \n",
+ " 59469 | \n",
+ " 52154.0 | \n",
+ " 66784.0 | \n",
+ " 89 | \n",
+ " 78.0 | \n",
+ " 100.0 | \n",
+ " FR | \n",
+ " France | \n",
"
\n",
" \n",
" | 14 | \n",
- " 201602 | \n",
- " 75 | \n",
- " 7 | \n",
- " 657 | \n",
- " 11 | \n",
- " 1016 | \n",
- " 298 | \n",
- " 17 | \n",
- " 5 | \n",
+ " 202510 | \n",
+ " 3 | \n",
+ " 60334 | \n",
+ " 53048.0 | \n",
+ " 67620.0 | \n",
+ " 90 | \n",
+ " 79.0 | \n",
+ " 101.0 | \n",
+ " FR | \n",
+ " France | \n",
"
\n",
" \n",
" | 15 | \n",
- " 201602 | \n",
- " 84 | \n",
- " 7 | \n",
- " 1486 | \n",
- " 19 | \n",
- " 1928 | \n",
- " 1044 | \n",
- " 24 | \n",
- " 13 | \n",
+ " 202509 | \n",
+ " 3 | \n",
+ " 84531 | \n",
+ " 74994.0 | \n",
+ " 94068.0 | \n",
+ " 126 | \n",
+ " 112.0 | \n",
+ " 140.0 | \n",
+ " FR | \n",
+ " France | \n",
"
\n",
" \n",
" | 16 | \n",
- " 201602 | \n",
- " 27 | \n",
- " 7 | \n",
- " 442 | \n",
- " 15 | \n",
- " 727 | \n",
- " 157 | \n",
- " 25 | \n",
- " 5 | \n",
+ " 202508 | \n",
+ " 3 | \n",
+ " 136020 | \n",
+ " 124824.0 | \n",
+ " 147216.0 | \n",
+ " 203 | \n",
+ " 186.0 | \n",
+ " 220.0 | \n",
+ " FR | \n",
+ " France | \n",
"
\n",
" \n",
" | 17 | \n",
- " 201602 | \n",
- " 53 | \n",
- " 7 | \n",
- " 444 | \n",
- " 13 | \n",
- " 744 | \n",
- " 144 | \n",
- " 22 | \n",
- " 4 | \n",
+ " 202507 | \n",
+ " 3 | \n",
+ " 208952 | \n",
+ " 195988.0 | \n",
+ " 221916.0 | \n",
+ " 312 | \n",
+ " 293.0 | \n",
+ " 331.0 | \n",
+ " FR | \n",
+ " France | \n",
"
\n",
" \n",
" | 18 | \n",
- " 201602 | \n",
- " 24 | \n",
- " 7 | \n",
- " 402 | \n",
- " 15 | \n",
- " 627 | \n",
- " 177 | \n",
- " 24 | \n",
- " 7 | \n",
+ " 202506 | \n",
+ " 3 | \n",
+ " 273519 | \n",
+ " 258159.0 | \n",
+ " 288879.0 | \n",
+ " 408 | \n",
+ " 385.0 | \n",
+ " 431.0 | \n",
+ " FR | \n",
+ " France | \n",
"
\n",
" \n",
" | 19 | \n",
- " 201602 | \n",
- " 94 | \n",
- " 7 | \n",
- " 12 | \n",
- " 4 | \n",
- " 42 | \n",
- " 0 | \n",
- " 13 | \n",
- " 0 | \n",
+ " 202505 | \n",
+ " 3 | \n",
+ " 334395 | \n",
+ " 318416.0 | \n",
+ " 350374.0 | \n",
+ " 499 | \n",
+ " 475.0 | \n",
+ " 523.0 | \n",
+ " FR | \n",
+ " France | \n",
"
\n",
" \n",
" | 20 | \n",
- " 201602 | \n",
- " 11 | \n",
- " 7 | \n",
- " 1745 | \n",
- " 14 | \n",
- " 2317 | \n",
- " 1173 | \n",
- " 19 | \n",
- " 10 | \n",
+ " 202504 | \n",
+ " 3 | \n",
+ " 350043 | \n",
+ " 332885.0 | \n",
+ " 367201.0 | \n",
+ " 522 | \n",
+ " 496.0 | \n",
+ " 548.0 | \n",
+ " FR | \n",
+ " France | \n",
"
\n",
" \n",
" | 21 | \n",
- " 201602 | \n",
- " 76 | \n",
- " 7 | \n",
- " 1101 | \n",
- " 19 | \n",
- " 1644 | \n",
- " 558 | \n",
- " 28 | \n",
- " 10 | \n",
+ " 202503 | \n",
+ " 3 | \n",
+ " 252772 | \n",
+ " 238917.0 | \n",
+ " 266627.0 | \n",
+ " 377 | \n",
+ " 356.0 | \n",
+ " 398.0 | \n",
+ " FR | \n",
+ " France | \n",
"
\n",
" \n",
" | 22 | \n",
- " 201602 | \n",
- " 32 | \n",
- " 7 | \n",
- " 1249 | \n",
- " 20 | \n",
- " 1720 | \n",
- " 778 | \n",
- " 28 | \n",
- " 13 | \n",
+ " 202502 | \n",
+ " 3 | \n",
+ " 257247 | \n",
+ " 242991.0 | \n",
+ " 271503.0 | \n",
+ " 384 | \n",
+ " 363.0 | \n",
+ " 405.0 | \n",
+ " FR | \n",
+ " France | \n",
"
\n",
" \n",
" | 23 | \n",
- " 201602 | \n",
- " 28 | \n",
- " 7 | \n",
- " 1064 | \n",
- " 31 | \n",
- " 1519 | \n",
- " 609 | \n",
- " 44 | \n",
- " 18 | \n",
+ " 202501 | \n",
+ " 3 | \n",
+ " 231549 | \n",
+ " 214627.0 | \n",
+ " 248471.0 | \n",
+ " 345 | \n",
+ " 320.0 | \n",
+ " 370.0 | \n",
+ " FR | \n",
+ " France | \n",
"
\n",
" \n",
" | 24 | \n",
- " 201602 | \n",
- " 52 | \n",
- " 7 | \n",
- " 408 | \n",
- " 11 | \n",
- " 708 | \n",
- " 108 | \n",
- " 19 | \n",
+ " 202452 | \n",
" 3 | \n",
+ " 201726 | \n",
+ " 185870.0 | \n",
+ " 217582.0 | \n",
+ " 302 | \n",
+ " 278.0 | \n",
+ " 326.0 | \n",
+ " FR | \n",
+ " France | \n",
"
\n",
" \n",
" | 25 | \n",
- " 201602 | \n",
- " 93 | \n",
- " 7 | \n",
- " 1570 | \n",
- " 31 | \n",
- " 2099 | \n",
- " 1041 | \n",
- " 42 | \n",
- " 21 | \n",
+ " 202451 | \n",
+ " 3 | \n",
+ " 201697 | \n",
+ " 187843.0 | \n",
+ " 215551.0 | \n",
+ " 302 | \n",
+ " 281.0 | \n",
+ " 323.0 | \n",
+ " FR | \n",
+ " France | \n",
"
\n",
" \n",
" | 26 | \n",
- " 201603 | \n",
- " 44 | \n",
- " 7 | \n",
- " 985 | \n",
- " 17 | \n",
- " 1442 | \n",
- " 528 | \n",
- " 25 | \n",
- " 9 | \n",
+ " 202450 | \n",
+ " 3 | \n",
+ " 136694 | \n",
+ " 126369.0 | \n",
+ " 147019.0 | \n",
+ " 205 | \n",
+ " 190.0 | \n",
+ " 220.0 | \n",
+ " FR | \n",
+ " France | \n",
"
\n",
" \n",
" | 27 | \n",
- " 201603 | \n",
- " 75 | \n",
- " 7 | \n",
- " 2070 | \n",
- " 34 | \n",
- " 2769 | \n",
- " 1371 | \n",
- " 46 | \n",
- " 23 | \n",
+ " 202449 | \n",
+ " 3 | \n",
+ " 108487 | \n",
+ " 99037.0 | \n",
+ " 117937.0 | \n",
+ " 163 | \n",
+ " 149.0 | \n",
+ " 177.0 | \n",
+ " FR | \n",
+ " France | \n",
"
\n",
" \n",
" | 28 | \n",
- " 201603 | \n",
- " 84 | \n",
- " 7 | \n",
- " 2258 | \n",
- " 28 | \n",
- " 2810 | \n",
- " 1706 | \n",
- " 35 | \n",
- " 21 | \n",
+ " 202448 | \n",
+ " 3 | \n",
+ " 87381 | \n",
+ " 78687.0 | \n",
+ " 96075.0 | \n",
+ " 131 | \n",
+ " 118.0 | \n",
+ " 144.0 | \n",
+ " FR | \n",
+ " France | \n",
"
\n",
" \n",
" | 29 | \n",
- " 201603 | \n",
- " 27 | \n",
- " 7 | \n",
- " 1009 | \n",
- " 35 | \n",
- " 1538 | \n",
- " 480 | \n",
- " 53 | \n",
- " 17 | \n",
+ " 202447 | \n",
+ " 3 | \n",
+ " 76286 | \n",
+ " 67626.0 | \n",
+ " 84946.0 | \n",
+ " 114 | \n",
+ " 101.0 | \n",
+ " 127.0 | \n",
+ " FR | \n",
+ " France | \n",
"
\n",
" \n",
" | ... | \n",
@@ -490,511 +522,542 @@
" ... | \n",
" ... | \n",
" ... | \n",
+ " ... | \n",
"
\n",
" \n",
- " | 6379 | \n",
- " 202522 | \n",
- " 32 | \n",
- " 7 | \n",
- " 30 | \n",
- " 0 | \n",
- " 195 | \n",
- " 0 | \n",
+ " 2090 | \n",
+ " 198521 | \n",
" 3 | \n",
- " 0 | \n",
+ " 26096 | \n",
+ " 19621.0 | \n",
+ " 32571.0 | \n",
+ " 47 | \n",
+ " 35.0 | \n",
+ " 59.0 | \n",
+ " FR | \n",
+ " France | \n",
"
\n",
" \n",
- " | 6380 | \n",
- " 202522 | \n",
- " 28 | \n",
- " 7 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
+ " 2091 | \n",
+ " 198520 | \n",
+ " 3 | \n",
+ " 27896 | \n",
+ " 20885.0 | \n",
+ " 34907.0 | \n",
+ " 51 | \n",
+ " 38.0 | \n",
+ " 64.0 | \n",
+ " FR | \n",
+ " France | \n",
"
\n",
" \n",
- " | 6381 | \n",
- " 202522 | \n",
- " 52 | \n",
- " 7 | \n",
- " 198 | \n",
- " 5 | \n",
- " 528 | \n",
- " 0 | \n",
- " 13 | \n",
- " 0 | \n",
+ " 2092 | \n",
+ " 198519 | \n",
+ " 3 | \n",
+ " 43154 | \n",
+ " 32821.0 | \n",
+ " 53487.0 | \n",
+ " 78 | \n",
+ " 59.0 | \n",
+ " 97.0 | \n",
+ " FR | \n",
+ " France | \n",
"
\n",
" \n",
- " | 6382 | \n",
- " 202522 | \n",
- " 93 | \n",
- " 7 | \n",
- " 1254 | \n",
- " 24 | \n",
- " 3098 | \n",
- " 0 | \n",
- " 59 | \n",
- " 0 | \n",
+ " 2093 | \n",
+ " 198518 | \n",
+ " 3 | \n",
+ " 40555 | \n",
+ " 29935.0 | \n",
+ " 51175.0 | \n",
+ " 74 | \n",
+ " 55.0 | \n",
+ " 93.0 | \n",
+ " FR | \n",
+ " France | \n",
"
\n",
" \n",
- " | 6383 | \n",
- " 202523 | \n",
- " 44 | \n",
- " 7 | \n",
- " 413 | \n",
- " 7 | \n",
- " 1090 | \n",
- " 0 | \n",
- " 19 | \n",
- " 0 | \n",
+ " 2094 | \n",
+ " 198517 | \n",
+ " 3 | \n",
+ " 34053 | \n",
+ " 24366.0 | \n",
+ " 43740.0 | \n",
+ " 62 | \n",
+ " 44.0 | \n",
+ " 80.0 | \n",
+ " FR | \n",
+ " France | \n",
"
\n",
" \n",
- " | 6384 | \n",
- " 202523 | \n",
- " 75 | \n",
- " 7 | \n",
- " 442 | \n",
- " 7 | \n",
- " 1117 | \n",
- " 0 | \n",
- " 18 | \n",
- " 0 | \n",
+ " 2095 | \n",
+ " 198516 | \n",
+ " 3 | \n",
+ " 50362 | \n",
+ " 36451.0 | \n",
+ " 64273.0 | \n",
+ " 91 | \n",
+ " 66.0 | \n",
+ " 116.0 | \n",
+ " FR | \n",
+ " France | \n",
"
\n",
" \n",
- " | 6385 | \n",
- " 202523 | \n",
- " 84 | \n",
- " 7 | \n",
- " 1148 | \n",
- " 14 | \n",
- " 2156 | \n",
- " 140 | \n",
- " 26 | \n",
- " 2 | \n",
+ " 2096 | \n",
+ " 198515 | \n",
+ " 3 | \n",
+ " 63881 | \n",
+ " 45538.0 | \n",
+ " 82224.0 | \n",
+ " 116 | \n",
+ " 83.0 | \n",
+ " 149.0 | \n",
+ " FR | \n",
+ " France | \n",
"
\n",
" \n",
- " | 6386 | \n",
- " 202523 | \n",
- " 27 | \n",
- " 7 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
+ " 2097 | \n",
+ " 198514 | \n",
+ " 3 | \n",
+ " 134545 | \n",
+ " 114400.0 | \n",
+ " 154690.0 | \n",
+ " 244 | \n",
+ " 207.0 | \n",
+ " 281.0 | \n",
+ " FR | \n",
+ " France | \n",
"
\n",
" \n",
- " | 6387 | \n",
- " 202523 | \n",
- " 53 | \n",
- " 7 | \n",
- " 143 | \n",
- " 4 | \n",
- " 394 | \n",
- " 0 | \n",
- " 11 | \n",
- " 0 | \n",
+ " 2098 | \n",
+ " 198513 | \n",
+ " 3 | \n",
+ " 197206 | \n",
+ " 176080.0 | \n",
+ " 218332.0 | \n",
+ " 357 | \n",
+ " 319.0 | \n",
+ " 395.0 | \n",
+ " FR | \n",
+ " France | \n",
"
\n",
" \n",
- " | 6388 | \n",
- " 202523 | \n",
- " 24 | \n",
- " 7 | \n",
- " 272 | \n",
- " 10 | \n",
- " 667 | \n",
- " 0 | \n",
- " 25 | \n",
- " 0 | \n",
+ " 2099 | \n",
+ " 198512 | \n",
+ " 3 | \n",
+ " 245240 | \n",
+ " 223304.0 | \n",
+ " 267176.0 | \n",
+ " 445 | \n",
+ " 405.0 | \n",
+ " 485.0 | \n",
+ " FR | \n",
+ " France | \n",
"
\n",
" \n",
- " | 6389 | \n",
- " 202523 | \n",
- " 94 | \n",
- " 7 | \n",
- " 37 | \n",
- " 10 | \n",
- " 104 | \n",
- " 0 | \n",
- " 29 | \n",
- " 0 | \n",
+ " 2100 | \n",
+ " 198511 | \n",
+ " 3 | \n",
+ " 276205 | \n",
+ " 252399.0 | \n",
+ " 300011.0 | \n",
+ " 501 | \n",
+ " 458.0 | \n",
+ " 544.0 | \n",
+ " FR | \n",
+ " France | \n",
"
\n",
" \n",
- " | 6390 | \n",
- " 202523 | \n",
- " 11 | \n",
- " 7 | \n",
- " 905 | \n",
- " 7 | \n",
- " 1763 | \n",
- " 47 | \n",
- " 14 | \n",
- " 0 | \n",
+ " 2101 | \n",
+ " 198510 | \n",
+ " 3 | \n",
+ " 353231 | \n",
+ " 326279.0 | \n",
+ " 380183.0 | \n",
+ " 640 | \n",
+ " 591.0 | \n",
+ " 689.0 | \n",
+ " FR | \n",
+ " France | \n",
"
\n",
" \n",
- " | 6391 | \n",
- " 202523 | \n",
- " 76 | \n",
- " 7 | \n",
- " 75 | \n",
- " 1 | \n",
- " 435 | \n",
- " 0 | \n",
- " 7 | \n",
- " 0 | \n",
+ " 2102 | \n",
+ " 198509 | \n",
+ " 3 | \n",
+ " 369895 | \n",
+ " 341109.0 | \n",
+ " 398681.0 | \n",
+ " 670 | \n",
+ " 618.0 | \n",
+ " 722.0 | \n",
+ " FR | \n",
+ " France | \n",
"
\n",
" \n",
- " | 6392 | \n",
- " 202523 | \n",
- " 32 | \n",
- " 7 | \n",
- " 527 | \n",
- " 9 | \n",
- " 1226 | \n",
- " 0 | \n",
- " 20 | \n",
- " 0 | \n",
+ " 2103 | \n",
+ " 198508 | \n",
+ " 3 | \n",
+ " 389886 | \n",
+ " 359529.0 | \n",
+ " 420243.0 | \n",
+ " 707 | \n",
+ " 652.0 | \n",
+ " 762.0 | \n",
+ " FR | \n",
+ " France | \n",
"
\n",
" \n",
- " | 6393 | \n",
- " 202523 | \n",
- " 28 | \n",
- " 7 | \n",
- " 108 | \n",
+ " 2104 | \n",
+ " 198507 | \n",
" 3 | \n",
- " 321 | \n",
- " 0 | \n",
- " 9 | \n",
- " 0 | \n",
+ " 471852 | \n",
+ " 432599.0 | \n",
+ " 511105.0 | \n",
+ " 855 | \n",
+ " 784.0 | \n",
+ " 926.0 | \n",
+ " FR | \n",
+ " France | \n",
"
\n",
" \n",
- " | 6394 | \n",
- " 202523 | \n",
- " 52 | \n",
- " 7 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
+ " 2105 | \n",
+ " 198506 | \n",
+ " 3 | \n",
+ " 565825 | \n",
+ " 518011.0 | \n",
+ " 613639.0 | \n",
+ " 1026 | \n",
+ " 939.0 | \n",
+ " 1113.0 | \n",
+ " FR | \n",
+ " France | \n",
"
\n",
" \n",
- " | 6395 | \n",
- " 202523 | \n",
- " 93 | \n",
- " 7 | \n",
- " 336 | \n",
- " 6 | \n",
- " 1130 | \n",
- " 0 | \n",
- " 22 | \n",
- " 0 | \n",
+ " 2106 | \n",
+ " 198505 | \n",
+ " 3 | \n",
+ " 637302 | \n",
+ " 592795.0 | \n",
+ " 681809.0 | \n",
+ " 1155 | \n",
+ " 1074.0 | \n",
+ " 1236.0 | \n",
+ " FR | \n",
+ " France | \n",
"
\n",
" \n",
- " | 6396 | \n",
- " 202524 | \n",
- " 44 | \n",
- " 7 | \n",
- " 196 | \n",
+ " 2107 | \n",
+ " 198504 | \n",
" 3 | \n",
- " 741 | \n",
- " 0 | \n",
- " 13 | \n",
- " 0 | \n",
+ " 424937 | \n",
+ " 390794.0 | \n",
+ " 459080.0 | \n",
+ " 770 | \n",
+ " 708.0 | \n",
+ " 832.0 | \n",
+ " FR | \n",
+ " France | \n",
"
\n",
" \n",
- " | 6397 | \n",
- " 202524 | \n",
- " 75 | \n",
- " 7 | \n",
- " 144 | \n",
- " 2 | \n",
- " 516 | \n",
- " 0 | \n",
- " 8 | \n",
- " 0 | \n",
+ " 2108 | \n",
+ " 198503 | \n",
+ " 3 | \n",
+ " 213901 | \n",
+ " 174689.0 | \n",
+ " 253113.0 | \n",
+ " 388 | \n",
+ " 317.0 | \n",
+ " 459.0 | \n",
+ " FR | \n",
+ " France | \n",
"
\n",
" \n",
- " | 6398 | \n",
- " 202524 | \n",
- " 84 | \n",
- " 7 | \n",
- " 824 | \n",
- " 10 | \n",
- " 1745 | \n",
- " 0 | \n",
- " 21 | \n",
- " 0 | \n",
+ " 2109 | \n",
+ " 198502 | \n",
+ " 3 | \n",
+ " 97586 | \n",
+ " 80949.0 | \n",
+ " 114223.0 | \n",
+ " 177 | \n",
+ " 147.0 | \n",
+ " 207.0 | \n",
+ " FR | \n",
+ " France | \n",
"
\n",
" \n",
- " | 6399 | \n",
- " 202524 | \n",
- " 27 | \n",
- " 7 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
+ " 2110 | \n",
+ " 198501 | \n",
+ " 3 | \n",
+ " 85489 | \n",
+ " 65918.0 | \n",
+ " 105060.0 | \n",
+ " 155 | \n",
+ " 120.0 | \n",
+ " 190.0 | \n",
+ " FR | \n",
+ " France | \n",
"
\n",
" \n",
- " | 6400 | \n",
- " 202524 | \n",
- " 53 | \n",
- " 7 | \n",
- " 164 | \n",
- " 5 | \n",
- " 430 | \n",
- " 0 | \n",
- " 12 | \n",
- " 0 | \n",
+ " 2111 | \n",
+ " 198452 | \n",
+ " 3 | \n",
+ " 84830 | \n",
+ " 60602.0 | \n",
+ " 109058.0 | \n",
+ " 154 | \n",
+ " 110.0 | \n",
+ " 198.0 | \n",
+ " FR | \n",
+ " France | \n",
"
\n",
" \n",
- " | 6401 | \n",
- " 202524 | \n",
- " 24 | \n",
- " 7 | \n",
- " 710 | \n",
- " 27 | \n",
- " 1423 | \n",
- " 0 | \n",
- " 54 | \n",
- " 0 | \n",
+ " 2112 | \n",
+ " 198451 | \n",
+ " 3 | \n",
+ " 101726 | \n",
+ " 80242.0 | \n",
+ " 123210.0 | \n",
+ " 185 | \n",
+ " 146.0 | \n",
+ " 224.0 | \n",
+ " FR | \n",
+ " France | \n",
"
\n",
" \n",
- " | 6402 | \n",
- " 202524 | \n",
- " 94 | \n",
- " 7 | \n",
- " 28 | \n",
- " 8 | \n",
- " 94 | \n",
- " 0 | \n",
- " 26 | \n",
- " 0 | \n",
+ " 2113 | \n",
+ " 198450 | \n",
+ " 3 | \n",
+ " 123680 | \n",
+ " 101401.0 | \n",
+ " 145959.0 | \n",
+ " 225 | \n",
+ " 184.0 | \n",
+ " 266.0 | \n",
+ " FR | \n",
+ " France | \n",
"
\n",
" \n",
- " | 6403 | \n",
- " 202524 | \n",
- " 11 | \n",
- " 7 | \n",
- " 913 | \n",
- " 7 | \n",
- " 1946 | \n",
- " 0 | \n",
- " 16 | \n",
- " 0 | \n",
+ " 2114 | \n",
+ " 198449 | \n",
+ " 3 | \n",
+ " 101073 | \n",
+ " 81684.0 | \n",
+ " 120462.0 | \n",
+ " 184 | \n",
+ " 149.0 | \n",
+ " 219.0 | \n",
+ " FR | \n",
+ " France | \n",
"
\n",
" \n",
- " | 6404 | \n",
- " 202524 | \n",
- " 76 | \n",
- " 7 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
+ " 2115 | \n",
+ " 198448 | \n",
+ " 3 | \n",
+ " 78620 | \n",
+ " 60634.0 | \n",
+ " 96606.0 | \n",
+ " 143 | \n",
+ " 110.0 | \n",
+ " 176.0 | \n",
+ " FR | \n",
+ " France | \n",
"
\n",
" \n",
- " | 6405 | \n",
- " 202524 | \n",
- " 32 | \n",
- " 7 | \n",
- " 146 | \n",
- " 2 | \n",
- " 507 | \n",
- " 0 | \n",
- " 8 | \n",
- " 0 | \n",
+ " 2116 | \n",
+ " 198447 | \n",
+ " 3 | \n",
+ " 72029 | \n",
+ " 54274.0 | \n",
+ " 89784.0 | \n",
+ " 131 | \n",
+ " 99.0 | \n",
+ " 163.0 | \n",
+ " FR | \n",
+ " France | \n",
"
\n",
" \n",
- " | 6406 | \n",
- " 202524 | \n",
- " 28 | \n",
- " 7 | \n",
- " 140 | \n",
- " 4 | \n",
- " 441 | \n",
- " 0 | \n",
- " 13 | \n",
- " 0 | \n",
+ " 2117 | \n",
+ " 198446 | \n",
+ " 3 | \n",
+ " 87330 | \n",
+ " 67686.0 | \n",
+ " 106974.0 | \n",
+ " 159 | \n",
+ " 123.0 | \n",
+ " 195.0 | \n",
+ " FR | \n",
+ " France | \n",
"
\n",
" \n",
- " | 6407 | \n",
- " 202524 | \n",
- " 52 | \n",
- " 7 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
+ " 2118 | \n",
+ " 198445 | \n",
+ " 3 | \n",
+ " 135223 | \n",
+ " 101414.0 | \n",
+ " 169032.0 | \n",
+ " 246 | \n",
+ " 184.0 | \n",
+ " 308.0 | \n",
+ " FR | \n",
+ " France | \n",
"
\n",
" \n",
- " | 6408 | \n",
- " 202524 | \n",
- " 93 | \n",
- " 7 | \n",
- " 319 | \n",
- " 6 | \n",
- " 995 | \n",
- " 0 | \n",
- " 19 | \n",
- " 0 | \n",
+ " 2119 | \n",
+ " 198444 | \n",
+ " 3 | \n",
+ " 68422 | \n",
+ " 20056.0 | \n",
+ " 116788.0 | \n",
+ " 125 | \n",
+ " 37.0 | \n",
+ " 213.0 | \n",
+ " FR | \n",
+ " France | \n",
"
\n",
" \n",
"\n",
- "6409 rows × 9 columns
\n",
+ "2119 rows × 10 columns
\n",
""
],
"text/plain": [
- " week geo_insee indicator inc inc100 inc_up inc_low inc100_up \\\n",
- "0 201601 44 7 574 10 861 287 15 \n",
- "1 201601 75 7 1513 25 2099 927 35 \n",
- "2 201601 84 7 2363 30 2958 1768 37 \n",
- "3 201601 27 7 686 24 1058 314 36 \n",
- "4 201601 53 7 532 16 874 190 26 \n",
- "5 201601 24 7 394 15 625 163 24 \n",
- "6 201601 94 7 38 12 82 0 25 \n",
- "7 201601 11 7 3030 25 3788 2272 31 \n",
- "8 201601 76 7 842 14 1307 377 22 \n",
- "9 201601 32 7 2100 34 2711 1489 44 \n",
- "10 201601 28 7 418 12 687 149 20 \n",
- "11 201601 52 7 1029 27 1577 481 42 \n",
- "12 201601 93 7 1053 21 1457 649 29 \n",
- "13 201602 44 7 772 14 1122 422 20 \n",
- "14 201602 75 7 657 11 1016 298 17 \n",
- "15 201602 84 7 1486 19 1928 1044 24 \n",
- "16 201602 27 7 442 15 727 157 25 \n",
- "17 201602 53 7 444 13 744 144 22 \n",
- "18 201602 24 7 402 15 627 177 24 \n",
- "19 201602 94 7 12 4 42 0 13 \n",
- "20 201602 11 7 1745 14 2317 1173 19 \n",
- "21 201602 76 7 1101 19 1644 558 28 \n",
- "22 201602 32 7 1249 20 1720 778 28 \n",
- "23 201602 28 7 1064 31 1519 609 44 \n",
- "24 201602 52 7 408 11 708 108 19 \n",
- "25 201602 93 7 1570 31 2099 1041 42 \n",
- "26 201603 44 7 985 17 1442 528 25 \n",
- "27 201603 75 7 2070 34 2769 1371 46 \n",
- "28 201603 84 7 2258 28 2810 1706 35 \n",
- "29 201603 27 7 1009 35 1538 480 53 \n",
- "... ... ... ... ... ... ... ... ... \n",
- "6379 202522 32 7 30 0 195 0 3 \n",
- "6380 202522 28 7 0 0 0 0 0 \n",
- "6381 202522 52 7 198 5 528 0 13 \n",
- "6382 202522 93 7 1254 24 3098 0 59 \n",
- "6383 202523 44 7 413 7 1090 0 19 \n",
- "6384 202523 75 7 442 7 1117 0 18 \n",
- "6385 202523 84 7 1148 14 2156 140 26 \n",
- "6386 202523 27 7 0 0 0 0 0 \n",
- "6387 202523 53 7 143 4 394 0 11 \n",
- "6388 202523 24 7 272 10 667 0 25 \n",
- "6389 202523 94 7 37 10 104 0 29 \n",
- "6390 202523 11 7 905 7 1763 47 14 \n",
- "6391 202523 76 7 75 1 435 0 7 \n",
- "6392 202523 32 7 527 9 1226 0 20 \n",
- "6393 202523 28 7 108 3 321 0 9 \n",
- "6394 202523 52 7 0 0 0 0 0 \n",
- "6395 202523 93 7 336 6 1130 0 22 \n",
- "6396 202524 44 7 196 3 741 0 13 \n",
- "6397 202524 75 7 144 2 516 0 8 \n",
- "6398 202524 84 7 824 10 1745 0 21 \n",
- "6399 202524 27 7 0 0 0 0 0 \n",
- "6400 202524 53 7 164 5 430 0 12 \n",
- "6401 202524 24 7 710 27 1423 0 54 \n",
- "6402 202524 94 7 28 8 94 0 26 \n",
- "6403 202524 11 7 913 7 1946 0 16 \n",
- "6404 202524 76 7 0 0 0 0 0 \n",
- "6405 202524 32 7 146 2 507 0 8 \n",
- "6406 202524 28 7 140 4 441 0 13 \n",
- "6407 202524 52 7 0 0 0 0 0 \n",
- "6408 202524 93 7 319 6 995 0 19 \n",
+ " week indicator inc inc_low inc_up inc100 inc100_low \\\n",
+ "0 202524 3 22816 17621.0 28011.0 34 26.0 \n",
+ "1 202523 3 24564 19382.0 29746.0 37 29.0 \n",
+ "2 202522 3 18755 14333.0 23177.0 28 21.0 \n",
+ "3 202521 3 23760 18671.0 28849.0 35 27.0 \n",
+ "4 202520 3 20265 15814.0 24716.0 30 23.0 \n",
+ "5 202519 3 16264 12394.0 20134.0 24 18.0 \n",
+ "6 202518 3 18115 13975.0 22255.0 27 21.0 \n",
+ "7 202517 3 22150 17291.0 27009.0 33 26.0 \n",
+ "8 202516 3 28564 22550.0 34578.0 43 34.0 \n",
+ "9 202515 3 35721 29592.0 41850.0 53 44.0 \n",
+ "10 202514 3 37579 31232.0 43926.0 56 47.0 \n",
+ "11 202513 3 39673 33686.0 45660.0 59 50.0 \n",
+ "12 202512 3 52543 45627.0 59459.0 78 68.0 \n",
+ "13 202511 3 59469 52154.0 66784.0 89 78.0 \n",
+ "14 202510 3 60334 53048.0 67620.0 90 79.0 \n",
+ "15 202509 3 84531 74994.0 94068.0 126 112.0 \n",
+ "16 202508 3 136020 124824.0 147216.0 203 186.0 \n",
+ "17 202507 3 208952 195988.0 221916.0 312 293.0 \n",
+ "18 202506 3 273519 258159.0 288879.0 408 385.0 \n",
+ "19 202505 3 334395 318416.0 350374.0 499 475.0 \n",
+ "20 202504 3 350043 332885.0 367201.0 522 496.0 \n",
+ "21 202503 3 252772 238917.0 266627.0 377 356.0 \n",
+ "22 202502 3 257247 242991.0 271503.0 384 363.0 \n",
+ "23 202501 3 231549 214627.0 248471.0 345 320.0 \n",
+ "24 202452 3 201726 185870.0 217582.0 302 278.0 \n",
+ "25 202451 3 201697 187843.0 215551.0 302 281.0 \n",
+ "26 202450 3 136694 126369.0 147019.0 205 190.0 \n",
+ "27 202449 3 108487 99037.0 117937.0 163 149.0 \n",
+ "28 202448 3 87381 78687.0 96075.0 131 118.0 \n",
+ "29 202447 3 76286 67626.0 84946.0 114 101.0 \n",
+ "... ... ... ... ... ... ... ... \n",
+ "2090 198521 3 26096 19621.0 32571.0 47 35.0 \n",
+ "2091 198520 3 27896 20885.0 34907.0 51 38.0 \n",
+ "2092 198519 3 43154 32821.0 53487.0 78 59.0 \n",
+ "2093 198518 3 40555 29935.0 51175.0 74 55.0 \n",
+ "2094 198517 3 34053 24366.0 43740.0 62 44.0 \n",
+ "2095 198516 3 50362 36451.0 64273.0 91 66.0 \n",
+ "2096 198515 3 63881 45538.0 82224.0 116 83.0 \n",
+ "2097 198514 3 134545 114400.0 154690.0 244 207.0 \n",
+ "2098 198513 3 197206 176080.0 218332.0 357 319.0 \n",
+ "2099 198512 3 245240 223304.0 267176.0 445 405.0 \n",
+ "2100 198511 3 276205 252399.0 300011.0 501 458.0 \n",
+ "2101 198510 3 353231 326279.0 380183.0 640 591.0 \n",
+ "2102 198509 3 369895 341109.0 398681.0 670 618.0 \n",
+ "2103 198508 3 389886 359529.0 420243.0 707 652.0 \n",
+ "2104 198507 3 471852 432599.0 511105.0 855 784.0 \n",
+ "2105 198506 3 565825 518011.0 613639.0 1026 939.0 \n",
+ "2106 198505 3 637302 592795.0 681809.0 1155 1074.0 \n",
+ "2107 198504 3 424937 390794.0 459080.0 770 708.0 \n",
+ "2108 198503 3 213901 174689.0 253113.0 388 317.0 \n",
+ "2109 198502 3 97586 80949.0 114223.0 177 147.0 \n",
+ "2110 198501 3 85489 65918.0 105060.0 155 120.0 \n",
+ "2111 198452 3 84830 60602.0 109058.0 154 110.0 \n",
+ "2112 198451 3 101726 80242.0 123210.0 185 146.0 \n",
+ "2113 198450 3 123680 101401.0 145959.0 225 184.0 \n",
+ "2114 198449 3 101073 81684.0 120462.0 184 149.0 \n",
+ "2115 198448 3 78620 60634.0 96606.0 143 110.0 \n",
+ "2116 198447 3 72029 54274.0 89784.0 131 99.0 \n",
+ "2117 198446 3 87330 67686.0 106974.0 159 123.0 \n",
+ "2118 198445 3 135223 101414.0 169032.0 246 184.0 \n",
+ "2119 198444 3 68422 20056.0 116788.0 125 37.0 \n",
"\n",
- " inc100_low \n",
- "0 5 \n",
- "1 15 \n",
- "2 22 \n",
- "3 11 \n",
- "4 6 \n",
- "5 6 \n",
- "6 0 \n",
- "7 19 \n",
- "8 6 \n",
- "9 24 \n",
- "10 4 \n",
- "11 13 \n",
- "12 13 \n",
- "13 7 \n",
- "14 5 \n",
- "15 13 \n",
- "16 5 \n",
- "17 4 \n",
- "18 7 \n",
- "19 0 \n",
- "20 10 \n",
- "21 10 \n",
- "22 13 \n",
- "23 18 \n",
- "24 3 \n",
- "25 21 \n",
- "26 9 \n",
- "27 23 \n",
- "28 21 \n",
- "29 17 \n",
- "... ... \n",
- "6379 0 \n",
- "6380 0 \n",
- "6381 0 \n",
- "6382 0 \n",
- "6383 0 \n",
- "6384 0 \n",
- "6385 2 \n",
- "6386 0 \n",
- "6387 0 \n",
- "6388 0 \n",
- "6389 0 \n",
- "6390 0 \n",
- "6391 0 \n",
- "6392 0 \n",
- "6393 0 \n",
- "6394 0 \n",
- "6395 0 \n",
- "6396 0 \n",
- "6397 0 \n",
- "6398 0 \n",
- "6399 0 \n",
- "6400 0 \n",
- "6401 0 \n",
- "6402 0 \n",
- "6403 0 \n",
- "6404 0 \n",
- "6405 0 \n",
- "6406 0 \n",
- "6407 0 \n",
- "6408 0 \n",
+ " inc100_up geo_insee geo_name \n",
+ "0 42.0 FR France \n",
+ "1 45.0 FR France \n",
+ "2 35.0 FR France \n",
+ "3 43.0 FR France \n",
+ "4 37.0 FR France \n",
+ "5 30.0 FR France \n",
+ "6 33.0 FR France \n",
+ "7 40.0 FR France \n",
+ "8 52.0 FR France \n",
+ "9 62.0 FR France \n",
+ "10 65.0 FR France \n",
+ "11 68.0 FR France \n",
+ "12 88.0 FR France \n",
+ "13 100.0 FR France \n",
+ "14 101.0 FR France \n",
+ "15 140.0 FR France \n",
+ "16 220.0 FR France \n",
+ "17 331.0 FR France \n",
+ "18 431.0 FR France \n",
+ "19 523.0 FR France \n",
+ "20 548.0 FR France \n",
+ "21 398.0 FR France \n",
+ "22 405.0 FR France \n",
+ "23 370.0 FR France \n",
+ "24 326.0 FR France \n",
+ "25 323.0 FR France \n",
+ "26 220.0 FR France \n",
+ "27 177.0 FR France \n",
+ "28 144.0 FR France \n",
+ "29 127.0 FR France \n",
+ "... ... ... ... \n",
+ "2090 59.0 FR France \n",
+ "2091 64.0 FR France \n",
+ "2092 97.0 FR France \n",
+ "2093 93.0 FR France \n",
+ "2094 80.0 FR France \n",
+ "2095 116.0 FR France \n",
+ "2096 149.0 FR France \n",
+ "2097 281.0 FR France \n",
+ "2098 395.0 FR France \n",
+ "2099 485.0 FR France \n",
+ "2100 544.0 FR France \n",
+ "2101 689.0 FR France \n",
+ "2102 722.0 FR France \n",
+ "2103 762.0 FR France \n",
+ "2104 926.0 FR France \n",
+ "2105 1113.0 FR France \n",
+ "2106 1236.0 FR France \n",
+ "2107 832.0 FR France \n",
+ "2108 459.0 FR France \n",
+ "2109 207.0 FR France \n",
+ "2110 190.0 FR France \n",
+ "2111 198.0 FR France \n",
+ "2112 224.0 FR France \n",
+ "2113 266.0 FR France \n",
+ "2114 219.0 FR France \n",
+ "2115 176.0 FR France \n",
+ "2116 163.0 FR France \n",
+ "2117 195.0 FR France \n",
+ "2118 308.0 FR France \n",
+ "2119 213.0 FR France \n",
"\n",
- "[6409 rows x 9 columns]"
+ "[2119 rows x 10 columns]"
]
},
- "execution_count": 30,
+ "execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
- "raw_data[raw_data.isnull().any(axis=1)]\n",
- "raw_data = raw_data.dropna()\n",
- "raw_data"
+ "raw_data[raw_data.isnull(). any (axis= 1 )] \n",
+ "data = raw_data.dropna().copy()\n",
+ "data "
]
},
{
@@ -1006,16 +1069,32 @@
},
{
"cell_type": "code",
- "execution_count": 40,
+ "execution_count": 22,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "ename": "NameError",
+ "evalue": "name 'isoweek' is not defined",
+ "output_type": "error",
+ "traceback": [
+ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
+ "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
+ "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mpd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mPeriod\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mw\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mday\u001b[0m\u001b[0;34m(\u001b[0m \u001b[0;36m0\u001b[0m \u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'W'\u001b[0m \u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 8\u001b[0;31m \u001b[0mdata\u001b[0m\u001b[0;34m[\u001b[0m \u001b[0;34m'period'\u001b[0m \u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mconvert_week\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0myw\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0myw\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mdata\u001b[0m\u001b[0;34m[\u001b[0m \u001b[0;34m'week'\u001b[0m \u001b[0;34m]\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
+ "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mpd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mPeriod\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mw\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mday\u001b[0m\u001b[0;34m(\u001b[0m \u001b[0;36m0\u001b[0m \u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'W'\u001b[0m \u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 8\u001b[0;31m \u001b[0mdata\u001b[0m\u001b[0;34m[\u001b[0m \u001b[0;34m'period'\u001b[0m \u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mconvert_week\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0myw\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0myw\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mdata\u001b[0m\u001b[0;34m[\u001b[0m \u001b[0;34m'week'\u001b[0m \u001b[0;34m]\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
+ "\u001b[0;32m\u001b[0m in \u001b[0;36mconvert_week\u001b[0;34m(year_and_week_int)\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0myear\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mint\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0myear_and_week_str\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;36m4\u001b[0m \u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0mweek\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mint\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0myear_and_week_str\u001b[0m\u001b[0;34m[\u001b[0m \u001b[0;36m4\u001b[0m \u001b[0;34m:\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 5\u001b[0;31m \u001b[0mw\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0misoweek\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mWeek\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0myear\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mweek\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 6\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mpd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mPeriod\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mw\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mday\u001b[0m\u001b[0;34m(\u001b[0m \u001b[0;36m0\u001b[0m \u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'W'\u001b[0m \u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;31mNameError\u001b[0m: name 'isoweek' is not defined"
+ ]
+ }
+ ],
"source": [
- "def convert_week(yw):\n",
- " y = int(str(yw)[:4])\n",
- " w = int(str(yw)[4:])\n",
- " return pd.Period(Week(y, w).monday(), 'W')\n",
+ "def convert_week ( year_and_week_int ):\n",
+ " year_and_week_str = str (year_and_week_int)\n",
+ " year = int (year_and_week_str[: 4 ])\n",
+ " week = int (year_and_week_str[ 4 :])\n",
+ " w = isoweek.Week(year, week)\n",
+ " return pd.Period(w.day( 0 ), 'W' )\n",
"\n",
- "raw_data['period'] = raw_data['week'].apply(convert_week)"
+ "data[ 'period' ] = [convert_week(yw) for yw in data[ 'week' ]] "
]
},
{
@@ -1027,11 +1106,41 @@
},
{
"cell_type": "code",
- "execution_count": 43,
+ "execution_count": 15,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "ename": "KeyError",
+ "evalue": "'period'",
+ "output_type": "error",
+ "traceback": [
+ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
+ "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)",
+ "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/core/indexes/base.py\u001b[0m in \u001b[0;36mget_loc\u001b[0;34m(self, key, method, tolerance)\u001b[0m\n\u001b[1;32m 2524\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2525\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_engine\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2526\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mKeyError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;32mpandas/_libs/index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc\u001b[0;34m()\u001b[0m\n",
+ "\u001b[0;32mpandas/_libs/index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc\u001b[0;34m()\u001b[0m\n",
+ "\u001b[0;32mpandas/_libs/hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001b[0;34m()\u001b[0m\n",
+ "\u001b[0;32mpandas/_libs/hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001b[0;34m()\u001b[0m\n",
+ "\u001b[0;31mKeyError\u001b[0m: 'period'",
+ "\nDuring handling of the above exception, another exception occurred:\n",
+ "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)",
+ "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0msorted_data\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdata\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mset_index\u001b[0m\u001b[0;34m(\u001b[0m \u001b[0;34m'period'\u001b[0m \u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msort_index\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
+ "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/core/frame.py\u001b[0m in \u001b[0;36mset_index\u001b[0;34m(self, keys, drop, append, inplace, verify_integrity)\u001b[0m\n\u001b[1;32m 3144\u001b[0m \u001b[0mnames\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3145\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 3146\u001b[0;31m \u001b[0mlevel\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mframe\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mcol\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_values\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3147\u001b[0m \u001b[0mnames\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcol\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3148\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mdrop\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/core/frame.py\u001b[0m in \u001b[0;36m__getitem__\u001b[0;34m(self, key)\u001b[0m\n\u001b[1;32m 2137\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_getitem_multilevel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2138\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2139\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_getitem_column\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2140\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2141\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_getitem_column\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/core/frame.py\u001b[0m in \u001b[0;36m_getitem_column\u001b[0;34m(self, key)\u001b[0m\n\u001b[1;32m 2144\u001b[0m \u001b[0;31m# get column\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2145\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcolumns\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mis_unique\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2146\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_get_item_cache\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2147\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2148\u001b[0m \u001b[0;31m# duplicate columns & possible reduce dimensionality\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/core/generic.py\u001b[0m in \u001b[0;36m_get_item_cache\u001b[0;34m(self, item)\u001b[0m\n\u001b[1;32m 1840\u001b[0m \u001b[0mres\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mcache\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mitem\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1841\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mres\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1842\u001b[0;31m \u001b[0mvalues\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_data\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mitem\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1843\u001b[0m \u001b[0mres\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_box_item_values\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mitem\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalues\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1844\u001b[0m \u001b[0mcache\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mitem\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mres\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/core/internals.py\u001b[0m in \u001b[0;36mget\u001b[0;34m(self, item, fastpath)\u001b[0m\n\u001b[1;32m 3841\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3842\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0misna\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mitem\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 3843\u001b[0;31m \u001b[0mloc\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mitems\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mitem\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3844\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3845\u001b[0m \u001b[0mindexer\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0marange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mitems\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0misna\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mitems\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/core/indexes/base.py\u001b[0m in \u001b[0;36mget_loc\u001b[0;34m(self, key, method, tolerance)\u001b[0m\n\u001b[1;32m 2525\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_engine\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2526\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mKeyError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2527\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_engine\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_maybe_cast_indexer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2528\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2529\u001b[0m \u001b[0mindexer\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_indexer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmethod\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mmethod\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtolerance\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mtolerance\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;32mpandas/_libs/index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc\u001b[0;34m()\u001b[0m\n",
+ "\u001b[0;32mpandas/_libs/index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc\u001b[0;34m()\u001b[0m\n",
+ "\u001b[0;32mpandas/_libs/hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001b[0;34m()\u001b[0m\n",
+ "\u001b[0;32mpandas/_libs/hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001b[0;34m()\u001b[0m\n",
+ "\u001b[0;31mKeyError\u001b[0m: 'period'"
+ ]
+ }
+ ],
"source": [
- "sorted_data = raw_data.set_index('period').sort_index()\n"
+ "sorted_data = data.set_index( 'period' ).sort_index() \n"
]
},
{
@@ -1043,7 +1152,7 @@
},
{
"cell_type": "code",
- "execution_count": 44,
+ "execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -1059,33 +1168,9 @@
},
{
"cell_type": "code",
- "execution_count": 45,
+ "execution_count": null,
"metadata": {},
- "outputs": [
- {
- "ename": "TypeError",
- "evalue": "Cannot compare type 'Period' with type 'int'",
- "output_type": "error",
- "traceback": [
- "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
- "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)",
- "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0mtotals\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mw1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mw2\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mzip\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mstart_weeks\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mstart_weeks\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m \u001b[0mseason_data\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0msorted_data\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'inc'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mw1\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0mw2\u001b[0m \u001b[0;34m-\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 5\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mabs\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mseason_data\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m-\u001b[0m \u001b[0;36m52\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m<\u001b[0m \u001b[0;36m3\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0mtotals\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mseason_data\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msum\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/core/series.py\u001b[0m in \u001b[0;36m__getitem__\u001b[0;34m(self, key)\u001b[0m\n\u001b[1;32m 662\u001b[0m \u001b[0mkey\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mcheck_bool_indexer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mindex\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 663\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 664\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_get_with\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 665\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 666\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_get_with\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/core/series.py\u001b[0m in \u001b[0;36m_get_with\u001b[0;34m(self, key)\u001b[0m\n\u001b[1;32m 667\u001b[0m \u001b[0;31m# other: fancy integer or otherwise\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 668\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mslice\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 669\u001b[0;31m \u001b[0mindexer\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mindex\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_convert_slice_indexer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkind\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'getitem'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 670\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_get_values\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mindexer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 671\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mABCDataFrame\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/core/indexes/base.py\u001b[0m in \u001b[0;36m_convert_slice_indexer\u001b[0;34m(self, key, kind)\u001b[0m\n\u001b[1;32m 1462\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1463\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1464\u001b[0;31m \u001b[0mindexer\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mslice_indexer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mstart\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mstop\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mstep\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkind\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mkind\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1465\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mException\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1466\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mis_index_slice\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/core/indexes/base.py\u001b[0m in \u001b[0;36mslice_indexer\u001b[0;34m(self, start, end, step, kind)\u001b[0m\n\u001b[1;32m 3455\u001b[0m \"\"\"\n\u001b[1;32m 3456\u001b[0m start_slice, end_slice = self.slice_locs(start, end, step=step,\n\u001b[0;32m-> 3457\u001b[0;31m kind=kind)\n\u001b[0m\u001b[1;32m 3458\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3459\u001b[0m \u001b[0;31m# return a slice\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/core/indexes/base.py\u001b[0m in \u001b[0;36mslice_locs\u001b[0;34m(self, start, end, step, kind)\u001b[0m\n\u001b[1;32m 3656\u001b[0m \u001b[0mstart_slice\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3657\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mstart\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 3658\u001b[0;31m \u001b[0mstart_slice\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_slice_bound\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mstart\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'left'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkind\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3659\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mstart_slice\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3660\u001b[0m \u001b[0mstart_slice\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/core/indexes/base.py\u001b[0m in \u001b[0;36mget_slice_bound\u001b[0;34m(self, label, side, kind)\u001b[0m\n\u001b[1;32m 3586\u001b[0m \u001b[0;31m# we need to look up the label\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3587\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 3588\u001b[0;31m \u001b[0mslc\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_get_loc_only_exact_matches\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlabel\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3589\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mKeyError\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0merr\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3590\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/core/indexes/base.py\u001b[0m in \u001b[0;36m_get_loc_only_exact_matches\u001b[0;34m(self, key)\u001b[0m\n\u001b[1;32m 3555\u001b[0m \u001b[0mget_slice_bound\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3556\u001b[0m \"\"\"\n\u001b[0;32m-> 3557\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3558\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3559\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mget_slice_bound\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlabel\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mside\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkind\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/core/indexes/period.py\u001b[0m in \u001b[0;36mget_loc\u001b[0;34m(self, key, method, tolerance)\u001b[0m\n\u001b[1;32m 810\u001b[0m \"\"\"\n\u001b[1;32m 811\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 812\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_engine\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 813\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mKeyError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 814\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mis_integer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;32mpandas/_libs/index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc\u001b[0;34m()\u001b[0m\n",
- "\u001b[0;32mpandas/_libs/index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc\u001b[0;34m()\u001b[0m\n",
- "\u001b[0;32mpandas/_libs/index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine._get_loc_duplicates\u001b[0;34m()\u001b[0m\n",
- "\u001b[0;32mpandas/_libs/period.pyx\u001b[0m in \u001b[0;36mpandas._libs.period._Period.__richcmp__\u001b[0;34m()\u001b[0m\n",
- "\u001b[0;31mTypeError\u001b[0m: Cannot compare type 'Period' with type 'int'"
- ]
- }
- ],
+ "outputs": [],
"source": [
"years = []\n",
"totals = []\n",
@@ -1100,26 +1185,9 @@
},
{
"cell_type": "code",
- "execution_count": 46,
+ "execution_count": null,
"metadata": {},
- "outputs": [
- {
- "ename": "TypeError",
- "evalue": "Empty 'DataFrame': no numeric data to plot",
- "output_type": "error",
- "traceback": [
- "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
- "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)",
- "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0myearly_incidence\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mstyle\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'o-'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtitle\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'Annual Chickenpox Incidence'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mylabel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Total incidence\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mxlabel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Year\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgrid\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshow\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/plotting/_core.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, kind, ax, figsize, use_index, title, grid, legend, style, logx, logy, loglog, xticks, yticks, xlim, ylim, rot, fontsize, colormap, table, yerr, xerr, label, secondary_y, **kwds)\u001b[0m\n\u001b[1;32m 2501\u001b[0m \u001b[0mcolormap\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcolormap\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtable\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mtable\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0myerr\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0myerr\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2502\u001b[0m \u001b[0mxerr\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mxerr\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlabel\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mlabel\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msecondary_y\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0msecondary_y\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2503\u001b[0;31m **kwds)\n\u001b[0m\u001b[1;32m 2504\u001b[0m \u001b[0m__call__\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__doc__\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mplot_series\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__doc__\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2505\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/plotting/_core.py\u001b[0m in \u001b[0;36mplot_series\u001b[0;34m(data, kind, ax, figsize, use_index, title, grid, legend, style, logx, logy, loglog, xticks, yticks, xlim, ylim, rot, fontsize, colormap, table, yerr, xerr, label, secondary_y, **kwds)\u001b[0m\n\u001b[1;32m 1925\u001b[0m \u001b[0myerr\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0myerr\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mxerr\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mxerr\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1926\u001b[0m \u001b[0mlabel\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mlabel\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msecondary_y\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0msecondary_y\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1927\u001b[0;31m **kwds)\n\u001b[0m\u001b[1;32m 1928\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1929\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/plotting/_core.py\u001b[0m in \u001b[0;36m_plot\u001b[0;34m(data, x, y, subplots, ax, kind, **kwds)\u001b[0m\n\u001b[1;32m 1727\u001b[0m \u001b[0mplot_obj\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mklass\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msubplots\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0msubplots\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0max\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0max\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkind\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mkind\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1728\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1729\u001b[0;31m \u001b[0mplot_obj\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgenerate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1730\u001b[0m \u001b[0mplot_obj\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1731\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mplot_obj\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mresult\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/plotting/_core.py\u001b[0m in \u001b[0;36mgenerate\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 248\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mgenerate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 249\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_args_adjust\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 250\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_compute_plot_data\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 251\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_setup_subplots\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 252\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_make_plot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/plotting/_core.py\u001b[0m in \u001b[0;36m_compute_plot_data\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 363\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mis_empty\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 364\u001b[0m raise TypeError('Empty {0!r}: no numeric data to '\n\u001b[0;32m--> 365\u001b[0;31m 'plot'.format(numeric_data.__class__.__name__))\n\u001b[0m\u001b[1;32m 366\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 367\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdata\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnumeric_data\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;31mTypeError\u001b[0m: Empty 'DataFrame': no numeric data to plot"
- ]
- }
- ],
+ "outputs": [],
"source": [
"yearly_incidence.plot(style='o-', title='Annual Chickenpox Incidence')\n",
"plt.ylabel(\"Total incidence\")\n",
@@ -1130,22 +1198,9 @@
},
{
"cell_type": "code",
- "execution_count": 47,
+ "execution_count": null,
"metadata": {},
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEWCAYAAABBvWFzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAGndJREFUeJzt3X28pWVd7/HP1xkJFRQMmHAGGNQ5JpkWjmBanUmggEysPIKpcEzj+IBZWopPZWXmeXWOx0OZ42SmoEc0H0cbRUS35lEUMEAJkQkVRkYQLHDAwsFff9z3ljW7/bD23tdey+3+vF+v9Zq17uu6r/t3rbVnfdf9sNdOVSFJ0mLdbdwFSJJ+OBgokqQmDBRJUhMGiiSpCQNFktSEgSJJasJA0YIk2Zzk5Y3GOjTJriSr+scTSZ7RYux+vA8lOa3VePPY7iuT3JTkG6Pe9pQ6ViepJOvHtP1V/et76Aztz0gyMeKytAQMFP0nSb6a5DtJvp3kX5N8Oskzk3z/56WqnllVfzLkWMfO1qeqrq2qfarqzga1vyLJW6eMf0JVvWWxY8+zjkOAFwBHVNWPTWlb0wfNpinL/zbJ20dY5pySvDXJKxYzRlXd2b++1zYqSz+gDBTN5Feqal/gMODVwIuAv2m9kSSrW4/5A+Iw4OaqunFqQ1XdAPwu8NdJ7gGQ5Bjgl4HfblnED/Hzqx9ABopmVVW3VNVW4GTgtCQPAUjy5iSv7O8fkOSD/d7Mt5L8Q5K7JTkHOBT4QH/I44VJ1veHX56e5FrgYwPLBt/8HpDkc0luSfL+JPftt7UpyY7BGif3gpIcD7wEOLnf3mV9+/cPofV1vSzJ15LcmOTsJPfp2ybrOC3Jtf1exEtnem6S3Kdf/5v9eC/rxz8WOB+4X1/Hm6d5Xs8BrgL+uA+VNwC/XVXf7Mdel+S9/dhfSfKcge3+TJIL++d7Z5Kzkty9b5s8vPXsJNuBL02p+WeSXD+4t5nk5CQXzzTPgX4P7Mc+NcmOvrYzB9pXJ3l5kn9OcmuSi5Pcb+ohtyQH9j8vtya5EDh8ynaOSPLR/mfpS0l+faDtrf18P9TvQX8myeED7T85sO43krywX363JC/pa7spyblJ9p9rzpqnqvLmbY8b8FXg2GmWXws8q7//ZuCV/f0/AzYDd+9vPwdkurGA9UABZwP3Au4xsGx132cC+DrwkL7Pu4G39m2bgB0z1Qu8YrLvQPsE8Iz+/m8C24H7A/sA7wHOmVLbX/d1PQz4d+DBMzxPZwPvB/bt1/0y8PSZ6pxm/XXAzf0Y7xtYvgq4lC4c9wIe2M/xmL79EcDRwOp+Hl8GzujbVvdz+DCwfz+PyWXr+z5XAccNbO8DwPNmqPGtwCv6+w/sx9kM7A0c2T8/G/r2FwOXARvoPqz+FHDfabb/LuDtwD2BhwI7gYm+bd/+tT+1X+/h/XP0oIF6bgI20v2svWPgZ+M+wA3A84AfAe4NHNW3/R7w/4G1fe1/M/m6e2t3cw9F83E93RvEVN8FDgYOq6rvVtU/VP+/eBavqKrbquo7M7SfU1VfrKrbgJcDT0x/0n6Rngy8pqquqapddG+Cp0zZO/qjqvpOVV1G9wb5sKmD9LWcDLy4qr5dVV8F/jfw1GELqaodwB8AxwLPGmh6JHDvqnpVVd1RVdvp3gBP6de7qKo+W1W7q+oaYAvwX6cM/6qq+pcZnt+zgaf08zgAOIbuDX5Yr6iqf6uqzwNXcNfz8wzgJVV1dVV9r6ourapvDa7Y70k9Hnh5Vd1eVZcD5wx0eRzw5ao6u5/fJcD7gCcM9HlXVV1cVd8F3kYXXJPrXldV/7eq/r2qbq2qz/Vt/6Ov7etV9W90HzyeOLinpsXz+KrmYy3wrWmW/zndf9CPJAHYUlWvnmOs6+bR/jW6T6MHDFfmrO7Xjzc49mpgzcCywauybqfbk5nqALq9h6ljrZ1nPVcA/1JVOweWHQYcmuRfB5atotvTIsmP04XXw+k+5a8GPjtl3Nme33OALyS5J11IfbymOdczk6qa6fk5BPjnOVZfQzeXqa/vUf39w4BHT5n7aro94kmzbX/7DNudPPT6vYFlBRw0ZTwtgumsoSR5BN2b5aemtvWf0F9QVfcHfgV4frqTzND9p53OXHswhwzcP5RuL+gm4Da6N9HJulYBB85j3Ovp3rQGx95Nd6hkPm7qa5o61tfnOc50rgOurqr9Bm77VtWv9O1vAL4IPLCq7k23l5MpY8z4PFR3tdXFwEl0e1TnzNR3AXU/YI4+NwDf4z+/voNjXDBl7vtU1RmL3P4OusN8g+PuPSUctUgGimaV5N5JHgucS3es+gvT9Hlsf8I2wK3Anf0NujeQ+y9g00/pT87eE/hjusMcd9KdL9g7yS/3h09eRne8fNINwPpZDmW8HfjdJIcn2Qd4FfCOqto9n+L6Wt4J/GmSfZMcBjyf7hj/Yn0GuCPJC5Lsne73OH4yycP79n2BW4DbkjyY7nDOfJ1Nd7jvx+nO4bTwRuCVSR6Qzk+lv5hiUn+Y6n3AHyW5R7qLPAYPE24FfiLJbyS5e387KsmDhtj+Vro9uzOS7NX/7E7u+WwGXpX+d2GSHJTkcYudsPZkoGgmH0jybbpPfS8FXgM8bYa+G4CPArvo3gz/qqom+rY/A17WX5H0e/PY/jl0hzm+QXcS9behu+oMeDbdm9fX6fZYBq/6+rv+35uTfH6acd/Uj/1J4CvAvwHPnUddg57bb/8auj23/9ePvyh9uJ1Idxjoq3R7Q2+gO8kM3e+3nAZ8u1/+jgVs5t10Qf+uWc5jzdef04XFBXQfLLbQvXZTPYvugoEb6M4N/e1kQ//6/hLdOZ6ddK//n7Hnh4Zp9eseB/w6cCPdh4/Jc0uvobtQ4YL+5/rTdBc3qKHJK3EkrSD93uRXgP8+EP7SoriHIq1MT6S75PcT4y5EPzy8yktaYZJ8iu4w5ZOHuLxbGpqHvCRJTXjIS5LUxIo65HXAAQfU+vXrF7Tubbfdxr3uda+2Bf2Ac84rg3NeGRYz50suueSmqjpwrn4rKlDWr1/PxRfP+R1405qYmGDTpk1tC/oB55xXBue8Mixmzkm+NncvD3lJkhoxUCRJTRgokqQmDBRJUhMGiiSpCQNFktSEgSJJasJAkSQ1YaBIkpowUCRJTRgokqQmDBRJUhMGiiSpCQNFktSEgSJJasJAkSQ1YaBIkpowUCRJTRgokqQmDBRJUhMGiiSpCQNFktSEgSJJasJAkSQ1YaBIkpoYa6AkOT7JVUm2JzlzmvYkOatvvzzJkVPaVyX5xyQfHF3VkqTpjC1QkqwCXgecABwBPCnJEVO6nQBs6G+nA6+f0v484MolLlWSNIRx7qEcBWyvqmuq6g7gXOCkKX1OAs6uzoXAfkkOBkiyDvhl4I2jLFqSNL3VY9z2WuC6gcc7gKOH6LMW2Am8FnghsO9sG0lyOt3eDWvWrGFiYmJBxe7atWvB6y5XznllcM4rwyjmPM5AyTTLapg+SR4L3FhVlyTZNNtGqmoLsAVg48aNtWnTrN1nNDExwULXXa6c88rgnFeGUcx5nIe8dgCHDDxeB1w/ZJ9HA49L8lW6Q2WPSfLWpStVkjSXcQbKRcCGJIcn2Qs4Bdg6pc9W4NT+aq9HArdU1c6qenFVrauq9f16H6uqp4y0eknSHsZ2yKuqdic5AzgPWAW8qaquSPLMvn0zsA04EdgO3A48bVz1SpJmN85zKFTVNrrQGFy2eeB+Ac+ZY4wJYGIJypMkzYO/KS9JasJAkSQ1YaBIkpowUCRJTRgokqQmDBRJUhMGiiSpCQNFktSEgSJJasJAkSQ1YaBIkpowUCRJTRgokqQmDBRJUhMGiiSpCQNFktSEgSJJasJAkSQ1YaBIkpowUCRJTRgokqQmDBRJUhMGiiSpCQNFktSEgSJJasJAkSQ1YaBIkpowUCRJTRgokqQmDBRJUhNjDZQkxye5Ksn2JGdO054kZ/Xtlyc5sl9+SJKPJ7kyyRVJnjf66iVJg8YWKElWAa8DTgCOAJ6U5Igp3U4ANvS304HX98t3Ay+oqgcDjwSeM826kqQRGuceylHA9qq6pqruAM4FTprS5yTg7OpcCOyX5OCq2llVnweoqm8DVwJrR1m8JGlP4wyUtcB1A4938J9DYc4+SdYDPw18tnmFkqShrR7jtjPNsppPnyT7AO8Gfqeqbp12I8npdIfLWLNmDRMTEwsqdteuXQted7lyziuDc14ZRjHncQbKDuCQgcfrgOuH7ZPk7nRh8raqes9MG6mqLcAWgI0bN9amTZsWVOzExAQLXXe5cs4rg3NeGUYx53Ee8roI2JDk8CR7AacAW6f02Qqc2l/t9UjglqramSTA3wBXVtVrRlu2JGk6Y9tDqardSc4AzgNWAW+qqiuSPLNv3wxsA04EtgO3A0/rV3808FTgC0ku7Ze9pKq2jXIOkqS7jPOQF30AbJuybPPA/QKeM816n2L68yuSpDHxN+UlSU0YKJKkJgwUSVITBookqQkDRZLUhIEiSWrCQJEkNWGgSJKaMFAkSU0YKJKkJgwUSVITBookqQkDRZLUhIEiSWrCQJEkNWGgSJKaMFAkSU0YKJKkJgwUSVITBookqQkDRZLUhIEiSWpiqEBJ8uhhlkmSVq5h91D+YshlkqQVavVsjUl+BngUcGCS5w803RtYtZSFSZKWl1kDBdgL2Kfvt+/A8luBJyxVUZKk5WfWQKmqTwCfSPLmqvraiGqSJC1Dc+2hTPqRJFuA9YPrVNVjlqIoSdLyM2yg/B2wGXgjcOfSlSNJWq6GDZTdVfX6Ja1EkrSsDXvZ8AeSPDvJwUnuO3lb0sokScvKsIFyGvD7wKeBS/rbxYvdeJLjk1yVZHuSM6dpT5Kz+vbLkxw57LqSpNEa6pBXVR3eesNJVgGvA44DdgAXJdlaVf800O0EYEN/Oxp4PXD0kOtKkkZoqEBJcup0y6vq7EVs+yhge1Vd02/jXOAkYDAUTgLOrqoCLkyyX5KD6a42m2tdSdIIDXtS/hED9/cGjgE+DywmUNYC1w083kG3FzJXn7VDrgtAktOB0wHWrFnDxMTEgordtWvXgtddrpzzyuCcV4ZRzHnYQ17PHXyc5D7AOYvcdqbb1JB9hlm3W1i1BdgCsHHjxtq0adM8SrzLxMQEC113uXLOK4NzXhlGMedh91Cmup3uvMZi7AAOGXi8Drh+yD57DbGuJGmEhj2H8gHu2gNYBTwYeOcit30RsCHJ4cDXgVOA35jSZytwRn+O5GjglqrameSbQ6wrSRqhYfdQ/tfA/d3A16pqx2I2XFW7k5wBnEcXUm+qqiuSPLNv3wxsA04EttPtFT1ttnUXU48kaXGGPYfyiSRruOvk/NUtNl5V2+hCY3DZ5oH7BTxn2HUlSeMz7F9sfCLwOeC/AU8EPpvEr6+XJH3fsIe8Xgo8oqpuBEhyIPBR4F1LVZgkaXkZ9qtX7jYZJr2b57GuJGkFGHYP5cNJzgPe3j8+Gc9fSJIGzPU35R8IrKmq30/ya8DP0v1S4WeAt42gPknSMjHXYavXAt8GqKr3VNXzq+p36fZOXrvUxUmSlo+5AmV9VV0+dWFVXUz3BY2SJAFzB8res7Tdo2UhkqTlba5AuSjJb01dmOTpdH9kS5IkYO6rvH4HeG+SJ3NXgGyk+3LGX13KwiRJy8usgVJVNwCPSvILwEP6xX9fVR9b8sokScvKsN/l9XHg40tciyRpGfO33SVJTRgokqQmDBRJUhMGiiSpCQNFktSEgSJJasJAkSQ1YaBIkpowUCRJTRgokqQmDBRJUhMGiiSpCQNFktSEgSJJasJAkSQ1YaBIkpowUCRJTRgokqQmxhIoSe6b5PwkV/f/7j9Dv+OTXJVke5IzB5b/eZIvJbk8yXuT7De66iVJ0xnXHsqZwAVVtQG4oH+8hySrgNcBJwBHAE9KckTffD7wkKp6KPBl4MUjqVqSNKNxBcpJwFv6+28BHj9Nn6OA7VV1TVXdAZzbr0dVfaSqdvf9LgTWLXG9kqQ5jCtQ1lTVToD+34Om6bMWuG7g8Y5+2VS/CXyoeYWSpHlZvVQDJ/ko8GPTNL102CGmWVZTtvFSYDfwtlnqOB04HWDNmjVMTEwMufk97dq1a8HrLlfOeWVwzivDKOa8ZIFSVcfO1JbkhiQHV9XOJAcDN07TbQdwyMDjdcD1A2OcBjwWOKaqihlU1RZgC8DGjRtr06ZN85rHpImJCRa67nLlnFcG57wyjGLO4zrktRU4rb9/GvD+afpcBGxIcniSvYBT+vVIcjzwIuBxVXX7COqVJM1hXIHyauC4JFcDx/WPSXK/JNsA+pPuZwDnAVcC76yqK/r1/xLYFzg/yaVJNo96ApKkPS3ZIa/ZVNXNwDHTLL8eOHHg8TZg2zT9HrikBUqS5s3flJckNWGgSJKaMFAkSU0YKJKkJgwUSVITBookqQkDRZLUhIEiSWrCQJEkNWGgSJKaMFAkSU0YKJKkJgwUSVITBookqQkDRZLUhIEiSWrCQJEkNWGgSJKaMFAkSU0YKJKkJgwUSVITBookqQkDRZLUhIEiSWrCQJEkNWGgSJKaMFAkSU0YKJKkJgwUSVITBookqQkDRZLUxFgCJcl9k5yf5Or+3/1n6Hd8kquSbE9y5jTtv5ekkhyw9FVLkmYzrj2UM4ELqmoDcEH/eA9JVgGvA04AjgCelOSIgfZDgOOAa0dSsSRpVuMKlJOAt/T33wI8fpo+RwHbq+qaqroDOLdfb9L/AV4I1FIWKkkazuoxbXdNVe0EqKqdSQ6aps9a4LqBxzuAowGSPA74elVdlmTWDSU5HTgdYM2aNUxMTCyo4F27di143eXKOa8MznllGMWclyxQknwU+LFpml467BDTLKsk9+zH+MVhBqmqLcAWgI0bN9amTZuG3PyeJiYmWOi6y5VzXhmc88owijkvWaBU1bEztSW5IcnB/d7JwcCN03TbARwy8HgdcD3wAOBwYHLvZB3w+SRHVdU3mk1AkjQv4zqHshU4rb9/GvD+afpcBGxIcniSvYBTgK1V9YWqOqiq1lfVerrgOdIwkaTxGlegvBo4LsnVdFdqvRogyf2SbAOoqt3AGcB5wJXAO6vqijHVK0maw1hOylfVzcAx0yy/Hjhx4PE2YNscY61vXZ8kaf78TXlJUhMGiiSpCQNFktSEgSJJasJAkSQ1YaBIkpowUCRJTRgokqQmDBRJUhMGiiSpCQNFktSEgSJJasJAkSQ1YaBIkpowUCRJTRgokqQmDBRJUhMGiiSpCQNFktSEgSJJasJAkSQ1YaBIkpowUCRJTRgokqQmUlXjrmFkknwT+NoCVz8AuKlhOcuBc14ZnPPKsJg5H1ZVB87VaUUFymIkubiqNo67jlFyziuDc14ZRjFnD3lJkpowUCRJTRgow9sy7gLGwDmvDM55ZVjyOXsORZLUhHsokqQmDBRJUhMGyhRJjk9yVZLtSc6cpj1JzurbL09y5DjqbGmIOT+5n+vlST6d5GHjqLOlueY80O8RSe5M8oRR1tfaMPNNsinJpUmuSPKJUdfY2hA/1/dJ8oEkl/Vzfto46mwpyZuS3JjkizO0L+37V1V562/AKuCfgfsDewGXAUdM6XMi8CEgwCOBz4677hHM+VHA/v39E1bCnAf6fQzYBjxh3HUv8Wu8H/BPwKH944PGXfcI5vwS4H/29w8EvgXsNe7aFznvnweOBL44Q/uSvn+5h7Kno4DtVXVNVd0BnAucNKXPScDZ1bkQ2C/JwaMutKE551xVn66qf+kfXgisG3GNrQ3zOgM8F3g3cOMoi1sCw8z3N4D3VNW1AFW1EuZcwL5JAuxDFyi7R1tmW1X1Sbp5zGRJ378MlD2tBa4beLyjXzbfPsvJfOfzdLpPOMvZnHNOshb4VWDzCOtaKsO8xv8F2D/JRJJLkpw6suqWxjBz/kvgwcD1wBeA51XV90ZT3tgs6fvX6lYD/ZDINMumXlc9TJ/lZOj5JPkFukD52SWtaOkNM+fXAi+qqju7D7DL2jDzXQ08HDgGuAfwmSQXVtWXl7q4JTLMnH8JuBR4DPAA4Pwk/1BVty51cWO0pO9fBsqedgCHDDxeR/fpZb59lpOh5pPkocAbgROq6uYR1bZUhpnzRuDcPkwOAE5Msruq3jeaEpsa9uf6pqq6DbgtySeBhwHLNVCGmfPTgFdXd3Jhe5KvAD8OfG40JY7Fkr5/echrTxcBG5IcnmQv4BRg65Q+W4FT+6slHgncUlU7R11oQ3POOcmhwHuApy7jT6yD5pxzVR1eVeuraj3wLuDZyzRMYLif6/cDP5dkdZJ7AkcDV464zpaGmfO1dHtkJFkDPAi4ZqRVjt6Svn+5hzKgqnYnOQM4j+4qkTdV1RVJntm3b6a74udEYDtwO92nnGVryDn/AfCjwF/1n9h31zL+ptYh5/xDY5j5VtWVST4MXA58D3hjVU176elyMORr/CfAm5N8ge5Q0Iuqall/pX2StwObgAOS7AD+ELg7jOb9y69ekSQ14SEvSVITBookqQkDRZLUhIEiSWrCQJEkNWGgSENKsmuB621MctYMbV9NcsDiKpN+MPh7KNISq6qLgYvHXYe01NxDkeap/7shE0neleRLSd7Wf2Pt5N9P+XT/NzY+l2Tfvv8H+/YfTfKRJP+Y5A0MfLdSkqf061ya5A1JVvXLdyX5037MC/vf6ibJmiTv7ZdfluRRs40jLTUDRVqYnwZ+BziC7m9uPLr/io930H1r7cOAY4HvTFnvD4FPVdVP030NxqEASR4MnAw8uqp+CrgTeHK/zr2AC/sxPwn8Vr/8LOAT/fIjgSvmGEdaUh7ykhbmc1W1AyDJpcB64BZgZ1VdBDD5rbVTvq3454Ff69v/Psnk35k5hu7bfi/q+9+Du/4Oyx3AB/v7lwDH9fcfA5zaj3UncEuSp84yjrSkDBRpYf594P6ddP+XwnBfBT5dnwBvqaoXT9P23brrO5ImtzWT2caRlpSHvKR2vgTcL8kjAPrzJ1Pf/D9JfwgqyQnA/v3yC4AnJDmob7tvksPm2N4FwLP6/quS3HuB40hNGChSI/2fmj0Z+IsklwHnA3tP6fZHwM8n+Tzwi3RfoU5V/RPwMuAjSS7v153rT7M+D/iF/ttyLwF+YoHjSE34bcOSpCbcQ5EkNWGgSJKaMFAkSU0YKJKkJgwUSVITBookqQkDRZLUxH8A0dQ3qqwEZkUAAAAASUVORK5CYII=\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {
- "needs_background": "light"
- },
- "output_type": "display_data"
- }
- ],
+ "outputs": [],
"source": [
"yearly_incidence.hist()\n",
"plt.title(\"Distribution of Yearly Incidence\")\n",
@@ -1156,24 +1211,9 @@
},
{
"cell_type": "code",
- "execution_count": 48,
+ "execution_count": null,
"metadata": {},
- "outputs": [
- {
- "ename": "ValueError",
- "evalue": "attempt to get argmax of an empty sequence",
- "output_type": "error",
- "traceback": [
- "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
- "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)",
- "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mstrongest\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0myearly_incidence\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0midxmax\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0mweakest\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0myearly_incidence\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0midxmin\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34mf\"Strongest epidemic year: {strongest}\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34mf\"Weakest epidemic year: {weakest}\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/core/series.py\u001b[0m in \u001b[0;36midxmax\u001b[0;34m(self, axis, skipna, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1367\u001b[0m \"\"\"\n\u001b[1;32m 1368\u001b[0m \u001b[0mskipna\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnv\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mvalidate_argmax_with_skipna\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mskipna\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1369\u001b[0;31m \u001b[0mi\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnanops\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnanargmax\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0m_values_from_object\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mskipna\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mskipna\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1370\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mi\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1371\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnan\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/core/nanops.py\u001b[0m in \u001b[0;36m_f\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 75\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 76\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0merrstate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0minvalid\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'ignore'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 77\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mf\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 78\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mValueError\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 79\u001b[0m \u001b[0;31m# we want to transform an object array\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/core/nanops.py\u001b[0m in \u001b[0;36mnanargmax\u001b[0;34m(values, axis, skipna)\u001b[0m\n\u001b[1;32m 521\u001b[0m \"\"\"\n\u001b[1;32m 522\u001b[0m \u001b[0mvalues\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmask\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0m_\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_get_values\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvalues\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mskipna\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfill_value_typ\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'-inf'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 523\u001b[0;31m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mvalues\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0margmax\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0maxis\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 524\u001b[0m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_maybe_arg_null_out\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mresult\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmask\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mskipna\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 525\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mresult\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;31mValueError\u001b[0m: attempt to get argmax of an empty sequence"
- ]
- }
- ],
+ "outputs": [],
"source": [
"strongest = yearly_incidence.idxmax()\n",
"weakest = yearly_incidence.idxmin()\n",
--
2.18.1