From 071fc0a9d9941bfdcddbb564d60b248378cbb45f Mon Sep 17 00:00:00 2001 From: 06295db534a9872198b1363b8b12f920 <06295db534a9872198b1363b8b12f920@app-learninglab.inria.fr> Date: Thu, 6 Mar 2025 14:44:25 +0000 Subject: [PATCH] test --- module2/exo1/toy_notebook_en.ipynb | 32 +++++++++++------------------- 1 file changed, 12 insertions(+), 20 deletions(-) diff --git a/module2/exo1/toy_notebook_en.ipynb b/module2/exo1/toy_notebook_en.ipynb index c027cbf..7580ee9 100644 --- a/module2/exo1/toy_notebook_en.ipynb +++ b/module2/exo1/toy_notebook_en.ipynb @@ -70,7 +70,7 @@ "## 1.3 Using a surface fraction argument\n", "\n", "A method that is easier to understand and does not make use of the sin function is based on the\n", - "fact that if *X ∼ U(0, 1)* and *Y ∼ U(0, 1)* then P[X^2 + Y^2 ≤ 1] = π/4 (see [\"Monte Carlo method\"\n", + "fact that if *X ∼ U(0, 1)* and *Y ∼ U(0, 1)* then P[X2 + Y2 ≤ 1] = π/4 (see [\"Monte Carlo method\"\n", "on Wikipedia](https://en.wikipedia.org/wiki/Monte_Carlo_method)). The following code uses this approach:" ] }, @@ -108,6 +108,16 @@ "ax.set_aspect('equal')\n" ] }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "It is then straightforward to obtain a (not really good) approximation to π by counting how\n", + "many times, on average, X2 + Y2 is smaller than 1:" + ] + }, { "cell_type": "code", "execution_count": 4, @@ -125,25 +135,7 @@ } ], "source": [ - "4*np.mean(accept)\n" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "ename": "SyntaxError", - "evalue": "invalid syntax (, line 1)", - "output_type": "error", - "traceback": [ - "\u001b[0;36m File \u001b[0;32m\"\"\u001b[0;36m, line \u001b[0;32m1\u001b[0m\n\u001b[0;31m 4*np.mean(accept.5f)\u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m invalid syntax\n" - ] - } - ], - "source": [ - "\n" + "4*np.mean(accept)" ] }, { -- 2.18.1