From 40497ee8b27949496356d814e9bc21d5c8859241 Mon Sep 17 00:00:00 2001 From: Ana BENDEJACQ-SEYCHELLES Date: Thu, 3 Oct 2024 15:35:50 +0200 Subject: [PATCH] To know how to use notebook: final test with model about Pi --- module2/exo1/toy_document_fr.Rmd | 27 ++++----------------------- 1 file changed, 4 insertions(+), 23 deletions(-) diff --git a/module2/exo1/toy_document_fr.Rmd b/module2/exo1/toy_document_fr.Rmd index da22f4a..09f594e 100644 --- a/module2/exo1/toy_document_fr.Rmd +++ b/module2/exo1/toy_document_fr.Rmd @@ -12,7 +12,7 @@ knitr::opts_chunk$set(echo = TRUE) ## En demandant à la lib maths -Mon ordinateur m’indique que π vaut *approximativement* +Mon ordinateur m'indique que $\pi$ vaut *approximativement* ```{r} pi ``` @@ -28,7 +28,7 @@ theta = pi/2*runif(N) ``` ## Avec un argument "fréquentiel" de surface -Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si X∼U(0,1) et Y∼U(0,1) alors P[X2+Y2≤1]=π/4(voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait: +Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si $X∼U(0,1)$ et $Y∼U(0,1)$ alors $P[X^2 + Y^2\leq 1]=\pi/4$ (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait: ```{r} set.seed(42) N = 1000 @@ -38,26 +38,7 @@ library(ggplot2) ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + theme_bw() ``` -Il est alors aisé d’obtenir une approximation (pas terrible) de π en comptant combien de fois, en moyenne, X2+Y2 est inférieur à 1: +Il est alors aisé d’obtenir une approximation (pas terrible) de $\pi$ en comptant combien de fois, en moyenne, $X2 + Y2$ est inférieur à 1: ```{r} 4*mean(df$Accept) -``` - - -Lorsque vous cliquerez sur le bouton **Knit** ce document sera compilé afin de ré-exécuter le code R et d'inclure les résultats dans un document final. Comme nous vous l'avons montré dans la vidéo, on inclue du code R de la façon suivante: - -```{r cars} -summary(cars) -``` - -Et on peut aussi aisément inclure des figures. Par exemple: - -```{r pressure, echo=FALSE} -plot(pressure) -``` - -Vous remarquerez le paramètre `echo = FALSE` qui indique que le code ne doit pas apparaître dans la version finale du document. Nous vous recommandons dans le cadre de ce MOOC de ne pas utiliser ce paramètre car l'objectif est que vos analyses de données soient parfaitement transparentes pour être reproductibles. - -Comme les résultats ne sont pas stockés dans les fichiers Rmd, pour faciliter la relecture de vos analyses par d'autres personnes, vous aurez donc intérêt à générer un HTML ou un PDF et à le commiter. - -Maintenant, à vous de jouer! Vous pouvez effacer toutes ces informations et les remplacer par votre document computationnel. +``` \ No newline at end of file -- 2.18.1