From d2c1da96cff73d49075f0d5859b76c9d39dc425f Mon Sep 17 00:00:00 2001
From: 082aa0aa9507b80b621099010e33de9d
<082aa0aa9507b80b621099010e33de9d@app-learninglab.inria.fr>
Date: Wed, 26 Jun 2024 08:51:11 +0000
Subject: [PATCH] 4th
---
module2/exo1/toy_notebook_en.ipynb | 32 +++++++-----------------------
1 file changed, 7 insertions(+), 25 deletions(-)
diff --git a/module2/exo1/toy_notebook_en.ipynb b/module2/exo1/toy_notebook_en.ipynb
index 03ff4bc..03a6626 100644
--- a/module2/exo1/toy_notebook_en.ipynb
+++ b/module2/exo1/toy_notebook_en.ipynb
@@ -4,21 +4,15 @@
"cell_type": "markdown",
"metadata": {},
"source": [
- "# 1 On the computation of $\\pi$"
+ "# On the computation of $\\pi$"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
- "## 1.1 Asking the maths library"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "My computer tells me that $\\pi$ is approximatively"
+ "## Asking the maths library\n",
+ "My computer tells me that $\\pi$ is *approximatively*"
]
},
{
@@ -43,14 +37,8 @@
"cell_type": "markdown",
"metadata": {},
"source": [
- "## 1.2 Buffon's needle"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "Applying the method of [Buffon’s needle](https://en.wikipedia.org/wiki/Buffon%27s_needle_problem), we get the approximation"
+ "## Buffon's needle\n",
+ "Applying the method of [Buffon's needle](https://en.wikipedia.org/wiki/Buffon%27s_needle_problem), we get the __approximation__"
]
},
{
@@ -82,14 +70,8 @@
"cell_type": "markdown",
"metadata": {},
"source": [
- "## 1.3 Using a surface fraction argument"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "A method that is easier to understand and does not make use of the sin function is based on the fact that if $X ∼ U(0, 1)$ and $Y ∼ U(0, 1)$, then $P[X^2 + Y^2 ≤ 1] = π/4$ (see [\"Monte Carlo method\" on Wikipedia](https://en.wikipedia.org/wiki/Monte_Carlo_method). The following code uses this approach:"
+ "## Using a surface fraction argument\n",
+ "A method that is easier to understand and does not make use of the $\\sin$ function is based on the fact that if $X\\sim U(0,1)$ and $Y\\sim U(0,1)$, then $P[X^2+Y^2\\leq 1] = \\pi/4$ (see [\"Monte Carlo method\" on Wikipedia](https://en.wikipedia.org/wiki/Monte_Carlo_method)). The following code uses this approach:"
]
},
{
--
2.18.1