From ef8f2fb8887d35eb2b1ffc0a6888aa8d3ac3ba3c Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Anj=C3=A9lica=20Leconte?= Date: Wed, 13 Jan 2021 10:08:45 +0100 Subject: [PATCH] =?UTF-8?q?modif=20de=20chemin=20d'acc=C3=A8s?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- module2/exo1/toy_document_fr.Rmd | 13 ++++++------- 1 file changed, 6 insertions(+), 7 deletions(-) diff --git a/module2/exo1/toy_document_fr.Rmd b/module2/exo1/toy_document_fr.Rmd index 4161ef3..2d8160c 100644 --- a/module2/exo1/toy_document_fr.Rmd +++ b/module2/exo1/toy_document_fr.Rmd @@ -1,11 +1,10 @@ --- title: "À propos du calcul de pi" -author: "*Arnaud Legrand*" -date: "*25 juin 2018*" +author: "Arnaud Legrand" +date: "25 juin 2018" output: html_document --- - ```{r setup, include=FALSE} knitr::opts_chunk$set(echo = TRUE) ``` @@ -20,7 +19,7 @@ pi ## En utilisant la méthode des aiguilles de Buffon -Mais calculé avec la **méthode** des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme **approximation** : +Mais calculé avec la **méthode** des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme **approximation** : ```{r} set.seed(42) @@ -32,7 +31,7 @@ theta = pi/2*runif(N) ## Avec un argument "fréquentiel" de surface -Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d'appel à la fonction sinus se base sur le fait que si *$X$ $\sim$ $U(0,1)$* et *$Y$ $\sim$ $U(0,1)$* alors *$P$[$X^2$ + $Y^2$ $\le$ $1$] = $\pi$/$4$* (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait: +Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d'appel à la fonction sinus se base sur le fait que si $X\sim U(0,1)$ et $Y\sim U(0,1)$ alors $P[X^2+Y^2\leq 1] = \pi/4$ (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait: ```{r} set.seed(42) @@ -43,8 +42,8 @@ library(ggplot2) ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + theme_bw() ``` -Il est alors aisé d'obtenir une approximation (pas terrible) de $\pi$ en comptant combien de fois, en moyenne, $X^2$ + $Y^2$ est inférieur à 1: +Il est alors aisé d'obtenir une approximation (pas terrible) de $\pi$ en comptant combien de fois, en moyenne, $X^2 + Y^2$ est inférieur à 1: ```{r} 4*mean(df$Accept) -``` \ No newline at end of file +``` -- 2.18.1