"Mon ordinateur m’indique que π vaut approximativement"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"3.141592653589793\n"
]
}
],
"source": [
"from math import *\n",
"print(pi)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**1.2 En utilisant la méthode des aiguilles de Buffon**\n",
"\n",
"Mais calculé avec la **méthode** des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme **approximation** :"
"**1.3 Avec un argument \"fréquentiel\" de surface**\n",
"\n",
"Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction\n",
"sinus se base sur le fait que si X ∼ U(0, 1) et Y ∼ U(0, 1) alors P[X\n",
"2 + Y\n",
"2 ≤ 1] = π/4 (voir\n",
"[méthode de Monte Carlo sur Wikipedia)](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80). Le code suivant illustre ce fait:"
"Il est alors aisé d’obtenir une approximation (pas terrible) de π en comptant combien de fois, en moyenne, X<sup>2</sup> + Y<sup>2</sup> est inférieur à 1 :"