{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# toy_notebook_fr\n", "## March 28, 2019" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "1. **A propos du calcul de** $\\pi$\n", " 1. **En demandant à la lib maths**\n", " Mon ordinateur m'ndique que $\\pi$ vaut _approximativement_" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from math import *\n", "print(pi)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " 2. **En utilisant la méThode des aiguilles de Buffon**\n", " Mais calculé avec la **méthode** des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme **approximation**:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "np.random.seed(seed=42)\n", "N = 10000\n", "x = np.random.uniform(size=N, low=0, high=1)\n", "theta = np.random.uniform(size=N, low=0, high=pi/2)\n", "2/(sum((x+np.sin(theta))>1)/N)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " 3. **Avec un argument \"fréquentiel\" de surface**\n", " Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d'appel à la fonction sinus se base sur le fait que si \\X $\\sim U(0,1) et \\Y $\\sim U(0,1) alors \\P$[\\X^2 $\\oplus$ \\Y^2]$ = $\\pi$ $\\div$ 4 ( voir [méthode de MOnte Carlo sur Wikipedia] (https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)).Le code suivant illustre ce fait : " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "%matplotlib inline\n", "import matplotlib.pyplot as plt\n", "np.random.seed(seed=42)\n", "N = 1000\n", "x = np.random.uniform(size=N, low=0, high=1)\n", "y = np.random.uniform(size=N, low=0, high=1)\n", "1\n", "accept = (x*x+y*y) <= 1\n", "reject = np.logical_not(accept)\n", "fig, ax = plt.subplots(1)\n", "ax.scatter(x[accept], y[accept], c='b', alpha=0.2, edgecolor=None)\n", "ax.scatter(x[reject], y[reject], c='r', alpha=0.2, edgecolor=None)\n", "ax.set_aspect('equal')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Il est alors aisé d'obtenir une approximation (pas terrible) de \\$pi$ en comptant combien de fois, en moyenne,\\X^2 $\\oplus$ \\Y^2 est inférieur à 1 :" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "4*np.mean(accept)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }