{ "cells": [ { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "%matplotlib inline\n", "import pandas as pd\n", "import matplotlib as plt\n", "import isoweek" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "data_url = \"https://www.sentiweb.fr/datasets/incidence-PAY-7.csv\"\n", "data_file = \"varicelles.csv\"\n", "\n", "import os.path\n", "import urllib.request as ureq\n", "if not os.path.exists(data_file):\n", " ureq.urlretrieve(data_url,data_file)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
0202038722867873785315FRFrance
1202037715844052763204FRFrance
220203679191001738102FRFrance
3202035782801694102FRFrance
4202034722723714173306FRFrance
5202033712841772391204FRFrance
6202032726506894611417FRFrance
7202031713031002506204FRFrance
820203071385752695204FRFrance
92020297841101672102FRFrance
10202028772801515102FRFrance
1120202779861491823102FRFrance
12202026769401454102FRFrance
1320202572280597001FRFrance
1420202473880959102FRFrance
15202023755811115102FRFrance
1620202272770633001FRFrance
172020217602361168102FRFrance
182020207824201628102FRFrance
1920201973100753001FRFrance
202020187849981600102FRFrance
2120201772720658001FRFrance
222020167758781438102FRFrance
23202015719186753161315FRFrance
242020147387922275531639FRFrance
25202013773265236941611814FRFrance
262020127812357901045612816FRFrance
27202011710198756812828151119FRFrance
2820201079011669111331141018FRFrance
292020097136311054416718211626FRFrance
.................................
15251991267176081130423912312042FRFrance
15261991257161691070021638281838FRFrance
15271991247161711007122271281739FRFrance
1528199123711947767116223211329FRFrance
1529199122715452995320951271737FRFrance
1530199121714903897520831261636FRFrance
15311991207190531274225364342345FRFrance
15321991197167391124622232291939FRFrance
15331991187213851388228888382551FRFrance
1534199117713462887718047241632FRFrance
15351991167148571006819646261834FRFrance
1536199115713975978118169251832FRFrance
1537199114712265768416846221430FRFrance
153819911379567604113093171123FRFrance
1539199112710864733114397191325FRFrance
15401991117155741118419964271935FRFrance
15411991107166431137221914292038FRFrance
1542199109713741878018702241533FRFrance
1543199108713289881317765231531FRFrance
1544199107712337807716597221529FRFrance
1545199106710877701314741191226FRFrance
1546199105710442654414340181125FRFrance
15471991047791345631126314820FRFrance
15481991037153871048420290271836FRFrance
15491991027162771104621508292038FRFrance
15501991017155651027120859271836FRFrance
15511990527193751329525455342345FRFrance
15521990517190801380724353342543FRFrance
1553199050711079666015498201228FRFrance
15541990497114302610205FRFrance
\n", "

1555 rows × 10 columns

\n", "
" ], "text/plain": [ " week indicator inc inc_low inc_up inc100 inc100_low \\\n", "0 202038 7 2286 787 3785 3 1 \n", "1 202037 7 1584 405 2763 2 0 \n", "2 202036 7 919 100 1738 1 0 \n", "3 202035 7 828 0 1694 1 0 \n", "4 202034 7 2272 371 4173 3 0 \n", "5 202033 7 1284 177 2391 2 0 \n", "6 202032 7 2650 689 4611 4 1 \n", "7 202031 7 1303 100 2506 2 0 \n", "8 202030 7 1385 75 2695 2 0 \n", "9 202029 7 841 10 1672 1 0 \n", "10 202028 7 728 0 1515 1 0 \n", "11 202027 7 986 149 1823 1 0 \n", "12 202026 7 694 0 1454 1 0 \n", "13 202025 7 228 0 597 0 0 \n", "14 202024 7 388 0 959 1 0 \n", "15 202023 7 558 1 1115 1 0 \n", "16 202022 7 277 0 633 0 0 \n", "17 202021 7 602 36 1168 1 0 \n", "18 202020 7 824 20 1628 1 0 \n", "19 202019 7 310 0 753 0 0 \n", "20 202018 7 849 98 1600 1 0 \n", "21 202017 7 272 0 658 0 0 \n", "22 202016 7 758 78 1438 1 0 \n", "23 202015 7 1918 675 3161 3 1 \n", "24 202014 7 3879 2227 5531 6 3 \n", "25 202013 7 7326 5236 9416 11 8 \n", "26 202012 7 8123 5790 10456 12 8 \n", "27 202011 7 10198 7568 12828 15 11 \n", "28 202010 7 9011 6691 11331 14 10 \n", "29 202009 7 13631 10544 16718 21 16 \n", "... ... ... ... ... ... ... ... \n", "1525 199126 7 17608 11304 23912 31 20 \n", "1526 199125 7 16169 10700 21638 28 18 \n", "1527 199124 7 16171 10071 22271 28 17 \n", "1528 199123 7 11947 7671 16223 21 13 \n", "1529 199122 7 15452 9953 20951 27 17 \n", "1530 199121 7 14903 8975 20831 26 16 \n", "1531 199120 7 19053 12742 25364 34 23 \n", "1532 199119 7 16739 11246 22232 29 19 \n", "1533 199118 7 21385 13882 28888 38 25 \n", "1534 199117 7 13462 8877 18047 24 16 \n", "1535 199116 7 14857 10068 19646 26 18 \n", "1536 199115 7 13975 9781 18169 25 18 \n", "1537 199114 7 12265 7684 16846 22 14 \n", "1538 199113 7 9567 6041 13093 17 11 \n", "1539 199112 7 10864 7331 14397 19 13 \n", "1540 199111 7 15574 11184 19964 27 19 \n", "1541 199110 7 16643 11372 21914 29 20 \n", "1542 199109 7 13741 8780 18702 24 15 \n", "1543 199108 7 13289 8813 17765 23 15 \n", "1544 199107 7 12337 8077 16597 22 15 \n", "1545 199106 7 10877 7013 14741 19 12 \n", "1546 199105 7 10442 6544 14340 18 11 \n", "1547 199104 7 7913 4563 11263 14 8 \n", "1548 199103 7 15387 10484 20290 27 18 \n", "1549 199102 7 16277 11046 21508 29 20 \n", "1550 199101 7 15565 10271 20859 27 18 \n", "1551 199052 7 19375 13295 25455 34 23 \n", "1552 199051 7 19080 13807 24353 34 25 \n", "1553 199050 7 11079 6660 15498 20 12 \n", "1554 199049 7 1143 0 2610 2 0 \n", "\n", " inc100_up geo_insee geo_name \n", "0 5 FR France \n", "1 4 FR France \n", "2 2 FR France \n", "3 2 FR France \n", "4 6 FR France \n", "5 4 FR France \n", "6 7 FR France \n", "7 4 FR France \n", "8 4 FR France \n", "9 2 FR France \n", "10 2 FR France \n", "11 2 FR France \n", "12 2 FR France \n", "13 1 FR France \n", "14 2 FR France \n", "15 2 FR France \n", "16 1 FR France \n", "17 2 FR France \n", "18 2 FR France \n", "19 1 FR France \n", "20 2 FR France \n", "21 1 FR France \n", "22 2 FR France \n", "23 5 FR France \n", "24 9 FR France \n", "25 14 FR France \n", "26 16 FR France \n", "27 19 FR France \n", "28 18 FR France \n", "29 26 FR France \n", "... ... ... ... \n", "1525 42 FR France \n", "1526 38 FR France \n", "1527 39 FR France \n", "1528 29 FR France \n", "1529 37 FR France \n", "1530 36 FR France \n", "1531 45 FR France \n", "1532 39 FR France \n", "1533 51 FR France \n", "1534 32 FR France \n", "1535 34 FR France \n", "1536 32 FR France \n", "1537 30 FR France \n", "1538 23 FR France \n", "1539 25 FR France \n", "1540 35 FR France \n", "1541 38 FR France \n", "1542 33 FR France \n", "1543 31 FR France \n", "1544 29 FR France \n", "1545 26 FR France \n", "1546 25 FR France \n", "1547 20 FR France \n", "1548 36 FR France \n", "1549 38 FR France \n", "1550 36 FR France \n", "1551 45 FR France \n", "1552 43 FR France \n", "1553 28 FR France \n", "1554 5 FR France \n", "\n", "[1555 rows x 10 columns]" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "raw_data = pd.read_csv(data_file, skiprows=1)\n", "raw_data" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "len(raw_data[raw_data.isnull().any(axis=1)])" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "data = raw_data\n", "def convert_week(year_and_week_int):\n", " year_and_week_str = str(year_and_week_int)\n", " year = int(year_and_week_str[:4])\n", " week = int(year_and_week_str[4:])\n", " w = isoweek.Week(year, week)\n", " return pd.Period(w.day(0), 'W')\n", "\n", "data['period'] = [convert_week(yw) for yw in data['week']]" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [], "source": [ "sorted_data = data.set_index('period').sort_index()" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [], "source": [ "periods = sorted_data.index\n", "for p1, p2 in zip(periods[:-1], periods[1:]):\n", " delta = p2.to_timestamp() - p1.end_time\n", " if delta > pd.Timedelta('1s'):\n", " print(p1, p2)" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEKCAYAAAD5MJl4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsfXmcHkWZ//d53zly3ycJECDhCkdIQoyAIIISQQUVMJ6sq+CB67q6uz9wcdEVXE9wUYFFcQXlFA+Q03DfiQkCOcgFCeROyDk5ZjIzb/3+6K7u6uqnjn6PmUne/n4+yfRbXV1V3V1dz/0UCSGQI0eOHDlyqCh09wBy5MiRI0fPQ04ccuTIkSNHCjlxyJEjR44cKeTEIUeOHDlypJAThxw5cuTIkUJOHHLkyJEjRwo5cciRI0eOHCnkxCFHjhw5cqSQE4ccOXLkyJFCQ3cPoFwMGzZMjBs3rruHkSNHjhz7FObNm/e2EGK4q94+SxzGjRuHuXPndvcwcuTIkWOfAhG96VMvVyvlyJEjR44UcuKQI0eOHDlSyIlDjhw5cuRIIScOOXLkyJEjhZw45MiRI0eOFHLikCNHjhw5UsiJQ44cOXLkSCEnDjn2e7y2bgfmvbm1u4eRI8c+hX02CC5HDl+8/3+eAQCs/P453TySHDn2HeSSQ44cOXLkSCEnDjly5MiRI4WcOOTIkSNHjhScxIGIehHRHCJ6hYgWEtF3wvJvE9EaIno5/He2cs3lRLSciJYQ0VlK+RQimh+eu46IKCxvJqK7wvLZRDSu+reaI0eOHDl84SM5tAF4jxDieACTAMwgounhuWuFEJPCfw8CABEdDWAmgIkAZgC4noiKYf0bAFwCYEL4b0ZY/jkAW4UQ4wFcC+AHld9ajhw5cuQoF07iIALsDH82hv+E5ZJzAdwphGgTQqwAsBzANCIaDWCAEOIFIYQAcCuA85RrbgmP7wFwhpQqcuTIkSNH18PL5kBERSJ6GcBGALOEELPDU18holeJ6NdENDgsGwNglXL56rBsTHislyeuEUJ0ANgOYCgzjkuIaC4Rzd20aZPXDebIkSNHjuzwIg5CiE4hxCQAYxFIAccgUBEdhkDVtA7AT8LqHMcvLOW2a/Rx3CSEmCqEmDp8uHMjoxw5KsKutg7MWrShu4eRI0e3IJO3khBiG4AnAcwQQmwIiUYJwC8BTAurrQZwoHLZWABrw/KxTHniGiJqADAQwJZMd5IjR5Xx7394FRffOhfLN+50V86RYz+Dj7fScCIaFB73BnAmgMWhDUHiwwAWhMf3AZgZeiAdgsDwPEcIsQ5ACxFND+0JnwFwr3LNReHx+QAeD+0SOXJ0G97cvAsAsGdvZzePJEeOrodP+ozRAG4JPY4KAO4WQtxPRL8lokkI1D8rAXwBAIQQC4nobgCLAHQAuFQIIb+uLwH4DYDeAB4K/wHAzQB+S0TLEUgMM6twbzlyVAXC6n+RI8f+CSdxEEK8CuAEpvzTlmuuBnA1Uz4XwDFMeSuAC1xjyZGjK0GhKSyXYXPUI/II6Rx1hT/MW43P3zLXq650ps5pQ456RJ6VNUdd4Ru/f8W7bh5ok6OekUsOOXLkyJEjhZw45MjhQO44l6MekROHHDlM6MIMLq3tnfjK7S9h3fY9XdZnjhw25MQhRw4HukJueGThetz/6jp878HFXdBbjhxu5MQhRw4DcoN0jnpGThxy5MiRI0cKOXHIkcOB3B6dox6RE4ccOQyI7dE5dchRf8iJQ44cBkjakEsOOeoROXHYh7B+eyuWbmjp7mHUDfLNCHPUM/L0GfsQpv/3YwCAld8/p5tHkiNHjv0dueSQI4cDuVYpRz0iJw45chiQK5Vy1DNy4pAjhwO5QXr/xJpte3DPvNUolfIXzCG3OeTIYUBuj96/8b0HXsMD89fhhIMG4bDh/bp7OD0OueSQI0eOusSra7YBADo6c8mBg5M4EFEvIppDRK8Q0UIi+k5YPoSIZhHRsvDvYOWay4loOREtIaKzlPIpRDQ/PHcdhb6CRNRMRHeF5bOJaFz1bzVHjvKwP6fs7iwJjLvsAfz00aXdPZRuQ75HOA8fyaENwHuEEMcDmARgBhFNB3AZgMeEEBMAPBb+BhEdDWAmgIkAZgC4noiKYVs3ALgEwITw34yw/HMAtgohxgO4FsAPqnBvVYUQAr998U3sauvo7qHk6CJQHZik2ztLAIDrn3i9m0fS9ZDvt1Tq5oH0UDiJgwiwM/zZGP4TAM4FcEtYfguA88LjcwHcKYRoE0KsALAcwDQiGg1ggBDiBRGwYrdq18i27gFwBvWwCKSnlm7Ct/68AFc98Fp3DyVHV6Ge9pDuUV9b10CuMKX9WDKsBF42ByIqEtHLADYCmCWEmA1gpBBiHQCEf0eE1ccAWKVcvjosGxMe6+WJa4QQHQC2Axhazg3VCnv2dgIAtu7a280jydFVyNNn7N/I368dXsRBCNEphJgEYCwCKeAYS3WOBxGWcts1yYaJLiGiuUQ0d9OmTa5h58iRwwG5MNah4BClR8ltDjwyeSsJIbYBeBKBrWBDqCpC+HdjWG01gAOVy8YCWBuWj2XKE9cQUQOAgQC2MP3fJISYKoSYOnz48CxDz7EPoKOz1CO3yezKxaPai3SpJPDnv69Bp8GXX6pUepYSt2sgbzkPc+Dh4600nIgGhce9AZwJYDGA+wBcFFa7CMC94fF9AGaGHkiHIDA8zwlVTy1END20J3xGu0a2dT6Ax0UPdRFZvW03rrp/UR44UwP81/2L8M7/fhzbdvur7v7t96/gD/NWuyuWge5YMKs9q34/bxW+dtfL+M3zK7ukv30Kuc3BCp8guNEAbgk9jgoA7hZC3E9ELwC4m4g+B+AtABcAgBBiIRHdDWARgA4AlwohOsO2vgTgNwB6A3go/AcANwP4LREtRyAxzKzGzdUCC9bswII1O/ChSQfguLGDKm6vtb0TyzfuxDFjBlZhdPs2Hl8cCJ879nRgUJ8mr2t+P281fj9vNT46Zay7crnYB9eOFW/vQkOBsHV3OwBg445Wtl4kOdShYim2OeyDL7gL4CQOQohXAZzAlG8GcIbhmqsBXM2UzwWQslcIIVoREpd9BdWaT1f8eQHumbcaL15+BkYN7FWdRvdRFGqsA5ZOBb7YlxfM03/8JADginOOAgC0GwK9ROjGWY9qJYmcNvDII6TLRLXm0yurgijNHa3tVWpx34VcoGr1sT4wf11tGq4iqr1GNxSCFjsMzvz1bIyVBulcQ8wjJw5lolp6ytzXOo1aPYnejUV3JQZd+Waq3VdDMfjEO4wG6eBvPQoOhfzbsyInDmXC5P2RFVJ1kc/P2i9QvZuyTff9QdUiJYdOg1op9lYK65UELv/jfLyxaSdbf39CFCGdf3wscuJQJvZ2VCfmPpccYkR+5zV6Fr0ySg61VnOxfVa5vWKkVkrfxK62Dqzb1prod9HaHbhjzlv4pzv+XuWR9GDknx6LPGV3mWjryGbcNCEywuYTtOZ+580NGYkDamsg7wo0FM02h49c/zyWyD3JNSZFEpX9GTFj1r3j6KnIJYcy0VmlZF2F8A24iENdxFXs/+uRE1W3ORTMNoeIMCjo1NRM9YBcaueRE4cyUS3Vh6/ec2uGwLB9H7X6WMtrd19eOyJvJQc3o/v8F+uANsTeSvvwC64hcuJQJqo1nSK9dpXa25dR60RoWdvtDua52l0WpEHaIenqbp2FOpAcovnWraPouciJQ5mo1gJWayPsvoQ4EVptUG67+/KbiRd5v7uQXnh1QRwih4N9+Q3XDjlxKBvVmVCF3CgWodaSQ622g/zPexdg6lWzEmXLNrRgwZrtNekvC3znl+41V6iDlSG653yzHxa5t1KZqNYCVsglhwi1ZlY//ssXa9LurS+8mSp777VPAwBWfv+cmvT54Px1GNS7ESeNH5Y6d1bYN+DvKh15ioULZV1IDnmcgxU5cSgTVbM5hH9dnF09TN+e6jraEwn3l297CQBPfFQvpD/9PciK7yuZdtaRK6tEz3u7PQN1IDzWBl0tOdSDKysn5m/bvRfXzFraJfff0VnCk0uCzLBCCDyz7O3guOY91w5zVmwG4J5fuudOXUgOuc3Bipw4lImqcbeeOuE6oA0s/vPehbjusWV4culGd+UKccOTr+Mf/u9veHLJRjy8YH18oouf/ROLN+JXz7xRlbbkuuda/zpLAm0dndFCWQ+CQ77Zjx05cSgT1ZMcwvYcK9D+pBddvH4Hbnr6deN59VnsaQ8i0U0pp6uJNduCXejWbW/Fm1t2s+PpCnz2N3/DVQ+8VpW25Mhd82f7nnYcccXDkctrPUgOyOMcrMiJQ5mo1nTyTZ+xP03gc657Ft97cHGqnLo5lUhjmMG0vbOEbbvjFOr7sjeLfJa+8+fiW+cCiOMj9mfIO+zoFPjpo0vRkqfNTyA3SJeJqkVIe3qT7Ee0wZjRlluOKnVvzfKemhoC4rC3o5RIrNgVj75271eU1X4d0Ibo23tg/jrMWrQBG1va8L0PH9u9g+pByCWHbkY9Sg4mcFlQY+1GefefJbW6lBz2dpYSz7srDZb3vbK2Ju1mJw77P3WQd9ge6tJ2tXV032B6IJzEgYgOJKIniOg1IlpIRP8cln+biNYQ0cvhv7OVay4nouVEtISIzlLKpxDR/PDcdRTqEYiomYjuCstnE9G46t9qdVHt9cK1+NeD0awW65FpkxsOTWFCob0dpQRR6YpHX6u1OKtaSaJaaqVSSWD+6u4PBrRB3mm19mjZX+AjOXQA+IYQ4igA0wFcSkRHh+euFUJMCv89CADhuZkAJgKYAeB6IpK5km8AcAmACeG/GWH55wBsFUKMB3AtgB9Ufmu1RbWMlL4pI7qLk60l9Pvg4hwq3QypPUP6XKlWak9JDuX1XSu89NZW77ryPjIThypRq18/twIf/PmzeOH1zVVpr5qQ315327p6KpzEQQixTgjxUnjcAuA1AGMsl5wL4E4hRJsQYgWA5QCmEdFoAAOEEC+IYFW4FcB5yjW3hMf3ADhDShU9FVX3VsoQ57C/TmIuv36liQnLUSu1dwptMa39A8/yThdmSMshtL++qFZW1tfWBQF5q7buNta5dtZS/Mef5lenwwzQbzGXHJLIZHMI1T0nAJgdFn2FiF4lol8T0eCwbAyAVcplq8OyMeGxXp64RgjRAWA7gKFZxtbVqHYQnMsjRp23+8sUNj3DakpGJrWS3scTSzZi5eZdABi1Ug974Fn4plitlK2PaqmVfPL+/c9jy3Db7Leq0l8WyLHJW+3saS+6m+FNHIioH4A/APiaEGIHAhXRYQAmAVgH4CeyKnO5sJTbrtHHcAkRzSWiuZs2bfIdek1QbVdW18TsiWqlu/+2Cm+GC2o50O/CFpRU7i37qlM++39/wx1zAp4mMEgrfZfXdSZkkZOz1JVz5ZVV2/BsGPHtg2qplWLa0DPmrAqKRicZtJ43xu6EF3EgokYEhOE2IcQfAUAIsUEI0SmEKAH4JYBpYfXVAA5ULh8LYG1YPpYpT1xDRA0ABgLYoo9DCHGTEGKqEGLq8OHD/e6wRqjWAt3UIDdjyUAcqtJzZejoLOHf//AqLvzfF6rXKJNKJFYrlevLmv2S22e/1eWSQ1f08ambZ7srhaiWK2uWfbhveX4ltu/uwlgD7R5zySEJH28lAnAzgNeEENco5aOVah8GsCA8vg/AzNAD6RAEhuc5Qoh1AFqIaHrY5mcA3Ktcc1F4fD6Ax0VPYY9rDDXwygb1aXS1W+uLb2zGx296MfHh7g3Hu31P+R9z2iAdlifKKlulTE/K9QifWBKn6+hpXG+WZ1LuVKlW4r2Cp8MFAFx530J8+y8Lq9KvDXv2duJdP3wcc1YE/GekVsolhwR8guBOBvBpAPOJ6OWw7JsAPk5EkxC895UAvgAAQoiFRHQ3gEUIPJ0uFUJ0htd9CcBvAPQG8FD4DwiIz2+JaDkCiWFmZbeVHbv3duD55Ztx5tEjvepXaxpFvvUdduLQnd4zP3x4MV56axuWb2rBlIOHAADa2oPxNhWrFyoTJ95L32D5QXDlXbdnb2d03NPWjExqpbL7qK7NwZehUZ97rbB8406s2rIn+p1FuqknOImDEOJZ8DaBBy3XXA3gaqZ8LoBjmPJWABe4xlJLfPf+Rbhjzirc/0+n4JgxA90XVGkiRVG5DsmhJyxQ6sfTFhIzOf6y2tN+szaHCr2VyuX61bWxK4TY2sU5lDf26kVIZ2uob7N9SSqVBBavb8HRBwwof0TakKQklksOSeQR0iE27mgDECRd80G1VA1NnpJDd3rPcLEYcrzNDcVE3Qfnr8NOz0hT/T7iftQ4h8pg9IhyXFepOisrsrzTLAv3rjI58WKVJQff++vbXLSev+Gp13H2dc/g5VXbKh6T/ju3OSSRE4cQA3o3AgB2eOrQqzWP1MAre3+qQbp7JrGq7mnrCBYdVXJYuqEFX77tJfy/e14tq31bHqVyOeBqPKmetmZ0BeGqmitr+Nf3/bm8pBauDWI8VlviJtxjSvYRBQrmkkMCOXEIITn4DiXg4IcPL8a4yx7gdeBV6rdRSdlgQ8K1sqslh/CvyllJtVKjEi0lc9Os3hbrc20wEblkbqUKDdKGh5WF2HQFMc50m10g1FRdcqhKa+qmRJW0kfydIYi+rpAThxCSe1C5ipueDjZc4cTNai3Qvt5K3enKyqkGyt0xTN1EJ61WSrZdDVTDW6enSQ5dgWpJDr6JJSVcRFsSrUq4fH3OlptiZH9HThxCyLnGrXWsmqPCJVoIgQdeXRfFN+zNEOfQlZP4ttlv4m8rg1w+1bB7fPF384znuA3fK03ZXS7UtbGnxTl0hTXEh+av274Hjy7aYG8n/OsrqblqFWrAQMh5nWuVksj3cwghF3uVq5CH2/e0p/z5K52bTy7ZhEtvfyn67VIrqf115UL5/YfiTXls0stbm8vXAUdgVBCVajfKNUgLw3G9wEetdN4vnsOGHW1Y+f1zjHV8E0v6Qko0lXgW6dfK3/X4nm3IJYcQchHhvokTr34Ul/0xmRis0om0ZdfexO8saqXumsWmFB4PL1iHU3/0BB5fvFGe9GovpVZi2o7qlnnT5V7X0hp7XPU0V9au2GvBp48NoYefD6rBlbe2d2J96E1oeyUPvLoOM28yR+7rUofcAa5O4m69kUsOITLr0CuYSAvWbMc3fv9KoiyTQborqYNqZyixxZgfZgldtHZHpqaXbWzBcWMHpbtUDdJMWRbMcqg9fNAVT9vkocUZ5OVcHdG/uWbjqX76jOQNbt/djoYipeIabO/5n+74O54PU3/b1EpSIu8sCTbSW7/2lXC/idzmkEQuOYSwSQ5s/Qr6uprZPN4ZBNcDsoSaorTjfRhkgd9D/NDPn0v8LjCeKJV4Kz29dBOuYp41YH6Gx4xJB1d1F0dp4ravmbUUQG0liGKhOkuDaYzH/9df8a4fPpEq1xmfi2+di4n/+TAA4KmlcbJNmyQiu9zTzsd4mFRSOW1IIicOIbh5YfMnr2Qi7WYmbab0GeV3nRlqXybOqlprVLW9lT7z6zmZr+F07d21aJiIkgzU7I59njs6S3h7p786ySb56apVrt6sRRuiQL4BvWIpwxaw1hzG3hxz5SOYuzKVv9M4v3LikEROHEJwE8amvqmEm9zNRBBn2Sa0KzlZta8kw8V5FFVnXNVUK2UF58LZFV1zBNalp++O/bCuvG8hpl71KHbv9YuCX7pxJ4DqqEL7KSoo21zr1RhHWf/iieWp86bnmquVksiJQ4isC1sl04gTa93EwbRIdx2Mrqy6R0qZHxmrn65yEJWEabHqLsmB68M1JxqqtV0bA9PzkXEqu5W0HLZv5+lQFeQd52A5pxJum7dSg6IS4zzE8xxKfsiJQwhpbE362Js/vu/8ZVHZfbHcqWO+9oj0GQbVlm2TniyI4xwqa6cS8JKDr/dV1w68WCBszqDiyYJq34rvO7X1S4ZjppW4X44RMwzGRIwXrNmOW55fae1xf0ROHELIBaArvm+OO3V9PInz3eOsZDRIx1GwlQ2M29gnMnZ30cJbieRQ/QU13WCrYq96Y9MuTLnq0cTeE10FdbH0ue9qMDSUiEHyswdyUoLJXmH6Bj/ws2dx5X3V3Wfi7Z1t2MrYXHoS6p44zF25BYdf8VBkHOuKNYiXHPzVSl1qkDa5sqoSVpW1G0lvpbC/6nZhfM+c66Nv35WMkVs8ucXqk79K7+b28lv+GUqrFan8s8djXb6sK4TAPfNWszE71f6ubHNO/VY4QmAiAl0p+U296lGc8N1ZXdZfOah74nDjU29gb0cpShGRmB41Uuk2lLEA9YQN711qJXk6S3AUh+4MRmJzCnkH9ZU/blOcg455b24tuw/A7TJtHRDsi/J9r6zFv/7+FVz/xOtljCzq2HimnM+Re4YmtZLr7V3/5HIsCGN66gF1Txz0yd4VCxO3ALmMj8kA6a5ZPF96a2vCV9wY56Cpg9bv8NsTQ4c1SVsX0YtyCHfWehxufCq9oOpr2PLQ80dHpp3havAc5TezLdxGlnN19ZZYbDYH5T5tt6w2waqVyoxz+OHDS/CBnz1rr7QfIScO2u+uWIM4JxO3zcFfcvjNcysw7rIHcMmtc6311m7bY93Q/SPXP5/4rS5OCbtA+NW+9Gb5G7AE7QR/2cR7zJupBSHngra6wuawdEN64dfv78xrniq/g6hNz3pZ2vSoU6k0CfjvY6FKBlk8A/P0GUnkxKEbJIcGJvrUbXNQj811N7W04duhJ9VfHakjTvr+4zj1R09Y66h4cH6cbntTS/pjT0gZFbgcsVJJF3233JbY/nr67IPcsmuvUVXke89ZNv/x9eU3VdMTUKp15XPiJJnfvvhmRf2m2vUUl97akk4IaXoGuYdrEk7iQEQHEtETRPQaES0kon8Oy4cQ0SwiWhb+HaxcczkRLSeiJUR0llI+hYjmh+euo5DlJKJmIrorLJ9NROOqf6uG+9M+LC4AqwadpuD6ZrNIDlnAfewmrNm2B398aTUA4J/vfBlAIDVw32lHGV9a7BJbuQqi3Gs5wm27lR2t8fMrZzzf+vMCfPSG59lzvs8hi1qp0kCvdkdqecD+3ZRKwhphXQ2VqdrC1t3t2NiSVHOazC55EFwSPpJDB4BvCCGOAjAdwKVEdDSAywA8JoSYAOCx8DfCczMBTAQwA8D1RCRDFm8AcAmACeG/GWH55wBsFUKMB3AtgB9U4d68kJIcuqpjDa6Pwpd7rXXQ7G2z30r3ySwH5XxoxNgcUnmbMuDCqWMzX9PcwEh1lvpX3V9+vAsQb3vJwZe+Znnl/vYT/yeepe51jy/D1Kse9a6vYvH6Fr/xaMPRt/41ubLmtCEJJ3EQQqwTQrwUHrcAeA3AGADnArglrHYLgPPC43MB3CmEaBNCrACwHMA0IhoNYIAQ4gURrHS3atfItu4BcIaUKroaXTFBuBsrOZxIfLcJrfU+uNzYuTdVThQqZ1+wqZVcPYwe2DvzGJobs6n89rTbX5wrFbvVX1+5w227q+MTLypzVrLW9bkkSuteKSwD7NA+pjYtb1k1to6tB2SyOYTqnhMAzAYwUgixDggICIARYbUxAFYpl60Oy8aEx3p54hohRAeA7QCGMv1fQkRziWjupk2b9NNlIS051H6C8Hl0XDYH1Y3UXNeWkKxW4Ja3stRKkUE6XVYObCMwPcMmzuhgQf9ear6f9PkH56+zXm+7P7W9K/68oKw2dHSF6qQSvs40vB8/siTx2za9WjWCravCjN5K7uHVFby/BCLqB+APAL4mhLAl7udmhrCU265JFghxkxBiqhBi6vDhw11D9oKuEukKoxSnhnF165uyu9Z5Y7jvniV2VTJI2+tV/16blaRtcT/m+uqtl8NYWPXzSsebd1ZJcqhyvcQ1Hhe5yIapiZ9rCfSyvHs943GestsPXsSBiBoREIbbhBB/DIs3hKoihH+lvLgawIHK5WMBrA3LxzLliWuIqAHAQADpXLu1QMqXtTqG3zvmvIVxlz3Auory+1T7eyvZanZ1UjECT+zKkWAkx5nkbqXNoYz7KmMMjYyfsa1v9V2WM19sXLb6Kk17E7jaSLdpH+RHJ4/NLD11x6KaZZrrxMHsrZRTBxU+3koE4GYArwkhrlFO3QfgovD4IgD3KuUzQw+kQxAYnueEqqcWIpoetvkZ7RrZ1vkAHhc1VABeeOML+PnjywDY4xwqUdH85rmVAIC12/d41c8S52CbxNUgDlkffVtHeuEqR3LgUn9XYnOwqpUMJ7PGOaiEkavm2pDHtieD+hxaLcQhC5zBlmXkGKtEFasv3LWIw9jbmXx26tR839Ej2fKuwqurt/VYW4cPi3AygE8DeA8RvRz+OxvA9wG8l4iWAXhv+BtCiIUA7gawCMDDAC4VQsi38yUAv0JgpH4dwENh+c0AhhLRcgBfR+j5VAsIITBn5Rb8+K9LDefj40oWWvnBcItDOZKDb/oMH+5nzbY9xu0zl25owSGXP4jHXvPbXlMA7LMsx+agtulVz1GxLE6ea8dWPyE5pGsSAaf84HG871o+gM13Q6lqEQevZ0IZvZU8DdLc80mpi2qQAdemVmpUpCSfNo8dM9C7Xx986OfP4c6/rXJX7AY495AWQjwLs6rwDMM1VwO4mimfC+AYprwVwAWusVQDLcxGO9pYrOfvvGQ6Zt70orXOuu17oohQVkfPun5am9QWW5unhnuCn/z9x43nXnwj2KPXlOnT95ssy1tJGqSVa2MPpsrw2ZPH4f9Cac5rEAoq4WafWfo2Vm81S4++CeTsaiWf0QVw3ouoXXyPEEgNdmOZqVayEH79m1Cfq7onhs9zrIXDyjImOr4noO4ipDs1zwVdX+ta0w4wuEfu7ShFhOWd//14FFzGcfK1lBwqVSu1tAbEs19zI3tev5/X1vG+CWXFOTAxDRTrmlL11Q913GUP4PD/eCjxHNXzpx4+HB8+YYxyzh9Wm4Naj6l211w7V+ibenrPXgtxyLCce+e9yqRWKr9eantcz8ayzC/9mzBJDpWSxTvmvIULbuQDGm349XMrKuq3Vqg74qBPqay5lYpFwlkTR+LIUf2jsg07WnH4FQ/xFHN9AAAgAElEQVThd0yKgPYOTzHZcb6jU130zHDFS7iwq00Sh7TXDuCvl61IciiTvu3tLGHNtphL16PdfT59Vq2kjWf+6u045spH8PbOtuTiXiU1loS6AOrumYk2Mqxp5/3iOev5YiGIeM9EPIVI/OUkQPW8Cj0GwbvPDHV1QqIOqzGj5GD7vi7/4/wou/P+gPojDtpEyZpbqUCBHUGdcK+HCenufzXt097uuVq7OKFOpR2r5FChcUsuQs0NPHHw1fVWQhx+/ewKPLNsE1a+vSvulx1LukzlRJMSiJ4mhR+fj1R30zNvYGdbB55b/nayXjmurFa1UnzsnWq7QjQUC5kkEYBjuILrt2iBewJIvTTdmcH3CWaTHLRrlQfLpUuxwafXLT18Ex9f1B9x0H5nXcSKRCFxiMsk99OL8ZFvZzgjTpXgmuvtqlrJMkXv+ls6vUU5MC1avk+rEiK1ZtsefPrmOXj3j59UdoLzu9YUSU7Rf3awMSiefS9xpHfY1NKGs659GquUZHB2btWv42raCCQnXQ0PGj06nGuybMkhw/B0CUadm1n34fZ5LpN7+CY+vqg/4qC9W50Dcb17mWguKfIH3E9vhjhwBmI2fQbT7+V/nI9vhZGxKhEzCSNtHZ24Y05tPR84jm1Yv6Z0PWaMrg+LI5rZg23NEoEPR8xKDvpvxtUWAH4/bzVs+PPf12DJhpbEFps2V9fucK2M1EpZbA5a3aeWbsSMnz6NO7W5KCBSD9g3tUW6T/8B2gzSqs2hW/L19GDUH3HQPnVdcnCJq8VCIDkkjIUhcejF5OXh1AG+Buk75rwVpTpO2hz4MV7xJ3OKhWqB025wmTq5Mc537KLVaHH6L2ezGH0M5ZoH1DYfXbQhUh/qxIxjDlzwtTkcOrxv4lzfprivamYhaywWrGNSjfoRtIf5+qZdWLy+Bf/z2DJnf3NWJGNdvY3bGV6gLsUmvOEyPrseGpJQE9QdcdBnn04cXO8+sDkkP1wpPjcykaVcMBg3Hxevb7H6svvYHCrdQtIH3CJty/Gv4t6X16YLFXA75NlcWbk+TB6/utTw9FI+NxcB6NOUXOTlu27r6MTntQ2U1HZ7N9mJA6tq8/RWGt6vGU1Kxtg+zbEXukki+vi0gzBmULbkg3InPNN3wL1/38C5ai6sWaSqlFpJZXAyjqmeoqjrjji4bA6ud18oUMogLQ85FUGWScylw5aoJKismqhkr4VK0nj7QpUWkgbpJFG+ey6vAiIC/mfmCYkyOUd+oe2NTACefz02Sg/oZQ8b4oi/LUJa37O7GD6LYoG8ud8fXXAcW55yIQ3RUCCQJhknx2TuqxrwjynJYpBO1t3dHsc6JXYd9IpzqB/UH3HQJQftt2vSFSn4eFSdupx7vqmrTQteE7OXgERCrWQaomFy/+7FN6ON0SuNg/A3DDMcJnOtS11078trzNcy70p9LwnbAPw+fqI0Hy4JM7dJjbrHwPgR/VPnVXDuqLYh7WpTiIkIiAIQ/PU1+J902DCcN+mAVPmqrekd0sYO7o3Pn3qocUzPLNuEV1ent4L1XtBF+Yn3dJimMTef9Lm4Y09MHNRTPp9GT011UQvUH3HQpl/aF9t+fYEopVaS8LUlmD6QQb35wDMgKTlkdZm84s8L8IGfPYsVb+/C1+9+OdO1Ony5/7IkDOaSrZY9rtn2TM8mSxSx9rsj1EO4Fwb7eU5ysElGF/7vC0rLIiIODQU/Z1PZNCfRdjB2oms/NgkDejVG/en49M1zsHJzmqiI6K/9/n3m7V9esasegfC+DO+CK9YZInX3vsT2ux7UoVLS8PbONoy77IFUea33YSkHzvQZ+xtSkkPGl1IoBL7g7YyB+J55q3H82EGJ+lzzph4HGIjD5p1t3nEONlzx5/l4bvnm8i7O2DdvI+C5OmkCtTXta3NIGKQ1wpPVf19CEmZ9rqzfnow2dk0lljh4jqGkSQ5Fmz4qhLx/1nWaeaJRkw5vpV6NBWtQnms8lYJgkRyYMl3KalP3OlfOeUljFdzDrrYO/G0Fn2y6oyTQ5PFOuxJ1KDkkoU8Il4dFgQjNDYVE8I5sor1T4LI/zre2H9TnZ5hpaky56tFEfp5y5+dAi2Tii5IQWL7RvV0jTwiYeo5rbOdcBEM9314SnmqlZF9D+zZFDge63efqB18z9s1BerWp41C5+pPHD8WQvmm34KBtEdVtCO1evuDWHN42HlR0tXzEqAE4fGS/xNh8UA3a8KPzjwu8BQ2tcRKrTTug7hrnwyj63kMH49Y38cpH8KXbXuLrV5raoAaoP+KgzIxpVz+acqUzGeokikTo1VhEWzsfiWvrTyIL1yOxTuFSTSob10fdr5kXFLdmiOgsCeDMa5521vO1EexJcHHewzD3qxqklfbaO0p+xAGUGGVDkaJFw7UGulRprDeaMqYpBw/BZ08ax14rADQVYwlLlRzM3QYnfNOQ+xKcxgLhka+dqvViHsd7jhwRnvcj0DZMPnhwGGfEn+fegb5OqzUG94mJsZfg4EkI3/fTp51riQrOHby7UYfEIT7e2JI2MKo4cdzgVBlRIFbv7SzFHIllwnDciKm2L+dcrnhuUqucoER0uvTC/jaHdBl36Vdu/3vmtuP27IRXTWjmy5npi1dDIVYhujhL1+g5VYzO1Rsj0wUwJAw2bGntSCzkrnfGuQjb1EqBt5K5zYYiJVRVrtdWdLjHZoF0CDH1ydsc0oF2x40diN9+bhq+/O7x0eZGPpLDys27vTLJvrFpVyoduQ090dBdd8QhC0YM6JUqI6Io75BP6D+/SGafCKpK44455aXIyGLINhlK/T1T/Iji3JVbrOer0S8A7O0U8NXwq000FCkiLE7iUIbkkMhhJYT5uSPmcqcePDghObjWNF9VtiQ4Lu6ei+eRY+TrZ0uBYkMxNMabnrVerHt2rd22B08s2YQ1W/fgXROGo3dTEY//62k4fuxAbw+wOSv9NqnkvNtM6IG0of6IQ6aXYKgrI6Hlx25r0tel09WOKuXcw6RpWL+9Fa9v2pUq9+k3C6otOSTjRcxts8+RqWdqwV+tlGyloUDeMSauR6PnGgKSUdUCZtWOEIG30qNfPw2/umgqjhodu82a3klskPYbq28EeYNGbVxMR5TcrkICDwRjDGwOhmu1MwVNBXVSuJfJZkWVOnZwH5w8fpi3x1AttuLticF19UccMnDPprqSa5Ochm1SceeMY6hgfpz6wydSZYP6VG6A1uHtouq5dCddCW3t+eGGJ19ny9s7S9reCwa7jVLpmDED0FAoRMZFTj2jwvVsuGmip1wxdSFjBMaP6If+vRpxzYWTEuck9EyxQZt+okNBMUjbbqVBlxwcL6chspVUTmRl7ifTN6cX21RQeru+koPvHttZ1vse6Mlah8QhywszLFZS9Pdpy5eDBpIfz2omSMkGLoeTvjFRlvn33fsXseW+maNZKYG5VjXa2RZXl9uqhGn703bPr49A0UZHkw8K1De+nKJrPnAEqaAZls3ZcJMqp76Kc4G6UH7yV7NT4+GIA5dBNlYr2YlJY1GXHJL96YhScgg/xZ5tHhTCIEWfILjGYhCT5KPGlfnSfOrWYh2vxQ5zlcJJHIjo10S0kYgWKGXfJqI12p7S8tzlRLSciJYQ0VlK+RQimh+eu47CGUhEzUR0V1g+m4jGVfcWk7C9ghH9mxMZRk0vLMr3IyUHS6McN+JSAwDAorX8DmuAf4K3khCJyc6po2xj4DDxgAFefbtUSOw1lnOVit2HDO3r7Slz8vihuObC4/HNs49CoRDfi0vtYBqjXBwXcO9UqIfColYyL6xum0PyykVrd+Abv38lVS+pVjI3auKcTddIScP3Ddrup0BBjIf+rFvbO7Hi7V3Rtf8+4wjM//ZZqVQ3JkTaAI8Nirj2Hl6Q3sslC3qgVslLcvgNgBlM+bVCiEnhvwcBgIiOBjATwMTwmuuJSK5kNwC4BMCE8J9s83MAtgohxgO4FsAPyrwXL1i9MAqxCPqrZ97AIwt5LlR+bLIl01aZQDrrZKkk8OpqPjupyUdfxz+eMs5yNolqiauHDuuLxiLhsOH9rPXkR+ZrI0icz/qFeFZ/9Oun4ZQJw7xTdhMRPjJ5LHo1FhOLS7nEbVBoSHZ5rgkBY3BbIFXw54yuzVGEdLJ87TZ+T+vIWwn2xaqP5hLtem2NkeRQiUoyQIECg7huv/m3e17F6T9+MtrJsFdDUXl/7j7lvet1uSF/84/zU+/yi79Lxy9kIRj7pM1BCPE0AD/zPHAugDuFEG1CiBUAlgOYRkSjAQwQQrwgghlyK4DzlGtuCY/vAXAGueTaCmDlSgqxoet/Hg2C4bhvNd7OMqhty+OvpwNYvXUPdhv2A9YXChOaiv6SQ9ZJZ3zyFOplHS6hNrdFd5yA+Vwlrn7jRwQErZxZRcri4iQO4Xl9rDYVtVq3vbOEmScexEpnJUuMgGlUkVpJm8Qm3XoUBOd4Tn00ydWZj6yQTXJw2RwaipRK//HMsiDLrh5oGKigPNRKBqaGu3ZHawfe3Gx3/gCypX7Z32wOXyGiV0O1kwwIGANA3eFjdVg2JjzWyxPXCCE6AGwHMLSCcTlgfgvFguLfHU6uk8cPw4LvnJWoJ7+1ctYruW3oN88+EocOS+bo996CM4PHkIlLLAcEt9FOZg7lPirTvtQSto+Yj66u/hel8yVqHi3XByyHf/OzK7Q2km0mYgSU8tb2Eno3FfGDj/KZVE1rtmneyHelX2dSjxUM49JhkhxMr091ZeX4vl98YnJyfFZvJWIlB/0S1S3XyyBNBrWSoX5fQ0Bpudif4hxuAHAYgEkA1gH4SVjOzV9hKbddkwIRXUJEc4lo7qZNfD5+F6xcieIiJwc1sHdjKrJYqid0nb5f/0H90QN7Y1i/5uQ5j+t9DWyyr2/ftzDT+Mz9BsY9l0G6waJCGKrdrw7bbVXj2/ERHPQ66sZOo5i4FxVyXXnstY2pNlSYAhqlazSnWrIZq02LqbQx6QuyicgRc8Qh66ZGLm8l/XZtRLhYCImDwTYQG+HDvwV7QJ/aLpBmvDZ4BLypBOW0w4c763PogbShPOIghNgghOgUQpQA/BLAtPDUagAHKlXHAlgblo9lyhPXEFEDgIEwqLGEEDcJIaYKIaYOH17mS7CcKyg2B/lBccY3+a0JkX3j91I0ec35YWwj9TWwyfHtsWwgZLqGAyF4Jk61kiXgyeT1Exv2zffFPausH1Q52kpVchjQ284tyjGqebeAIFmj+ZoYrR1y0yg+otlkM3FJNEeMStqJfOaPrYrJW8kENc6BzVKcIg52m0NDgVK5i+QV33/otUSj/jaHkOHTKp/3i+fZ+uoQ1c2ujhnDO2y4CNQ+aXPgENoQJD4MQHoy3QdgZuiBdAgCw/McIcQ6AC1END20J3wGwL3KNReFx+cDeFzUUMZySg5CoKOzFL1wNRpUShCqK+seg/3ABDkJCoy463PXBSJvd9KSEGVlzzSB4N50KFYr8ePh4FJLmNqrBfSFihRi7Gsz0YlQ0UKU1Kkud21rYKiJEGYi41pYzps0Bld+8Gjv+sFw4zodnSX8TElIqUs2rs/Vtbuc/ryEZcoWiLBs4048tGB9kqsPG380lNpU43ol3kqmKGeVWZFGcMASPe6pkuxJcCrOiOgOAO8GMIyIVgO4EsC7iWgSgleyEsAXAEAIsZCI7gawCEAHgEuFEHL1/BICz6feAB4K/wHAzQB+S0TLEUgMM6txYyZYPSFCg/R/KT7+jQ3BpLn98+/AuNBGENkcILJLDmF1YqM8fQxn/mqlkjAkeysDgReP252zaFErmQhLSQiQAJ5lArgilOH9VA7SaqV40Xf2pxD+ZBsW4oBgf+grPzgR7zw0MLVxaqWSMEsOrulARDhOSSVvJNLReJNt/unva/CTWUuj32niYO8/cmU11NOfjyvOQeKlN7fi/ceOZq+Rz4q8JQfZN3/+n94zHmdNHIUP/OxZAJpnoXJs2rDLHSDZ86iDkzgIIT7OFN9sqX81gKuZ8rkAjmHKWwFc4BpHtWB7B5JhenjB+qhMegadNH5YXE+ZSFnfacmwgOhj49oN9q/OEJQF4ZX/yQeEIOGZS3KQXCIrOViiWtscEhh3ZVYB03cnOBUFRZVWruTASSMRRDDvVF01x30KwGgKMD3XI0bGKTbULhesMbteB90kVZctrR2J82Z3W34cjYrNgVPt6bfrUitJ7FLmjH5F0o3XPU/kM+dSnMjzI/rHNjO1RZXhNMeA2LG/eSvtk3CKd0h+SFJyUBHFOXi4iqofKKASh/RCKwzHEkSEoicnBARSSrXywAQ5bdwcTjHSR6fr/e/Tb7DX+HBN1eCsytnsR9VZ+2as1XuxbczDLZgNjM1BEhG+DR5fPv2w6Fi9VvemitoxqDz1jLYmNZkpvUgsTfLj1NVoJlfvOy6enkjd8cSS2PCvz4/mkIMvEFnTskjIjbbUXeJUdJaS70klyOonVq7kUBs5uDLUH3GwvAQKPYHURcSWR6Uk3BQ/bWwL/hYLhFdWJffjVefPl5lNQShsz98gbSZeZ4Q59rOAKO1fLiFz9ptsDrqRNjlOYJElkBAAfvlMckHrLIma5MBPc/nK8/bUG+tqEqtaiVn0ucU3YFpMBml+YOqim8UYr6ti9OesEwGXzcgVIa0Tw6se4FO3vPOwpIf7ph3mrKe9Qo8qH4YGiDfC2maITSgJYcl7FbdvC2K0gVtHXnprK+YbAma7AvVHHDwkBxWciB9/7MKpg9elg4i7ZJlDe1tEwYfpn/zOrHKYwuxVYe+bWONenyb5EQY3ZOISL/tDcoc8FSUh8NU7/m48D6Q3YfrAz57F9P9+zGfoEbzUStrvpORgRyQValPGtjDbXFST9WyLE1+uLlRZZCai5FzUn70pK6tRreSIkNa/sQ2WRV/FqIGxa7HetHS39bU5SGcT1bisorOUTG2SUAEr9fRnI8F9s3O+eYb1/Eeufx4f/PmztmHXFHVHHGyQATMJtZLFldXH5pByuVPUShLTDhkSnnOMD1Kt5Eccgghp/tw5x47mTxjQv7mBtTmccFByz2zJrepjfPEN897VJSEyq79sKUtMUD9b4yNk7AWmyGcJGYEtoUsK1ghpxkWVy6ZbYiSMx79xWniOH5/PPtMqJPesB47penhTu9wr/NH5x0WSBiclAekF1Xfcane6ba05zHarEzoTVPd0Dp1CIw5Km+pzf3MznzCTa7dXUxwv0gN3Ca0/4uCWHERiAn9y+kGpOrHNAdi8y87l6CK5GucgMaBXQ9i3A+TPCcm+fKOpuT1vVYwZ3BtEaRuGvrCZ0mfYVCs+6rlqwIdDf2PTzsRvNa7ErDOXqjS+glOtxBisL37XIdpeD2nbxKHD+2Fo3ybj+FSiZLv34f2b8cLl74mCFAuUDBzTJQeTtxJ3+32bG5xSi86A+dI0m0NC78ZYovX5BOQ8NlUVAqBC8jd3fMCgZCZkCW5u9G1qwNffe3jYb25z6HbYk3oFC6/8CBuLhAG90lycnLslIfCZX8+x9rd7b1JMlWoe9QPw9Sii8DrfTUmEEN7eVK2OMTQ3FEAAnlmWdDeNF52gI5Mrq21xCsZZ+49D7cI0nr+8kkyWphpnTSPUVWkpt0rdVVN5f6Y29SBJE9etMgs2gmwzxgsRROzHdZPEWpccUqkrwr/cAligZFwQB93m4Gsfsc2YrDaHWHLg63aWRMIWpNaSx5e//0h8YlqamQR45qdYIBw1ekDYr3OIXY76Iw6Wl6B7vZkmqTrZdTc/HVt3t2OzEkijujv+5SunAADeNWFY2J59hkw7ZAibrtgEIcxt6otFmyMeolAgr01jTDaHddvNaQgCycF+T32asqVs4KCqxJKcX/xDT3+QWHwNQ4yiayVx0Ois7nykLq5CGOYZJRcUIcBSB5vay1c9o0e96zut7dWk37db9iZ+29Vu8UwzpvQu8JJDJQyDagvLIpWaqqZtDnFNOXcPHNLHvCGUce4k2+hJqD/i4DwfZ780vWfK+EK/pHgeqe6Cx44diMXfnYEzjhppvPaxb5yGl771Xtz/T6fgxk9NyRwh7atWckkOwcbu7nZMKhbOpnDw0D5RXdcHPGGEPVW4D3zsGp89eVzit5rLyri/h1zMwvP6M9cXaTUv0MurtmFTS1o1SaDUZOWIs02yGdE/Ntja3l3KA03jtp9akswVZWqLezqB5BCeZ1RoQDodh3xeTona8jojlVxmyYE/r2fFTRFu8OuFnHNPL+NzwRUcUlV3ov6Ig+Mt+HiP+G67+Ml3BCIm5xMtOYxejUVl86B0G6MG9MKQvk04ZsxA9G1uyBwh7auCckVSFw2SQypVhMOnXUX/0Nbik1q8GjYJn02W9FvUbQ5yzCrUe7735TX4m7YBvf6MejXEUtDbO9vYFA2qIXXVlt1Ys20Pqxgy7TfRp6mII0b1Z65IQ3cyKFCSMK3VpD49K4BNreSjIkrbHAhvbd6NVVvsuyFGxJiZHL1VL7oMNgdTZV1yUOvF952+Vykl6qn7f3zB8cEVueTQc2B9BaE47QqWUm0OEqcdPjzy9pD4REgcTldiCrgI6UhNxYxO5zp9Eu+dOG4w/uGkcdlsDiFx+MNLcWb1DxwXezSZCKJO2Gyb/eiQef5LJR8/8Mo/niwJ2NTf6nU2bxshBP75zpdT96JzlMP6N8EFVSK4NkxdseLt9B4CCVdbpd8pB/u7KuuSTmBzMD+stnbdAy/dfzw+VbLiodschvdvxqk/egLvvfZp27Cj/rgYGpPNQd3pUYWP5KC+R84gzX0ikjjoBFBKzfLbzyOkewBcNgchzJuqSERJJpW23n/MKNz2+Xck6kldKqefVDkqm+TAcVWu2K/2ThF5aQzqmzaoB/0nf0sRXrWhqB9VscBPflkmF5hGRx4dFY0KIXGpfLJ+PGoKlKgNU1ZY5dgWBBfMjfRDiAkiP5asuYiAZAqLheH2ojsZH3xTUGQWN1bdU0318OGe2emGAEru/okUTyDDjTdqNocTDvIjbLI5bu7IeagzU6Z55iJgKZsDU4djoKS3ok4AdceU/Wk/h30Y6Zdw+MhAn33QkD6h5BDWNLwvdT8HtVV9bnCLxiMLg0Ur4UmicS3qREkncUsvBrqr4Y497dGiccTIOIXwV04fHx3rvvScWkn9kDiD9IyJo6JnJevK9AG2ICoJKWn5qJV8Pp5h/ZqjSO3XNZdU2Y8LutSoLpTcOwZUJoBvc0hfbd8OTx24rGXKGJoan3JaN/LaGB69WZXgcM9s0oGDtJKYeOogxVblKzno7Vw4dSwe/fqpqevkHHMxDup5814WdnVoZyn5DEWizZDhY/sOzqUYhPCvvuVwT0LdEQfu5V/8rkPx0rfei3FD+5i9RxSYJnt6x690n3fMWRXWVeppPtbqIsAlgtM/ngfnJ90vh/VrDtQSSHqiqPry/pqLrq4qAIAzFUM5Z5C+8MSx0fik+CyJg/oR6rl5AOA/zj4KM44ZBSD0qkrVSEJdpBav5wPgDhjUiw0ylDAZ5294cnl0bCPGQgQLgFQXSrhUaVd/OJlv0kcKIsTzRi6ePHGIy1WCzO0JYcLPPn5Csm9FVaU/syvOOSp1vckgDqQDD7nEjbp0rEsr7z5iBMaPSNtPIoHH8jz178UkPepOBTqk1HjJqYem6tnUSrI/XTrSr/G1DXYl6o84MGWNxQKG9G2K3pTdNKW6siYniL4gSY6Zm3Cc5CBhy3zKZWXVf1//qcmROK2qoHTuRV1AOMnhgqkH4v3hAl4spC0xaon0eGnS1EqbWtoitYiKmdMOTCyq8lleOHVsqm5QJz6e8dNn2DrqosZFJZu4wh//NU5HbTVIh4FoM088MFHHtm82gFSsjJdaSZljcq60M0Q22NfbzUGb7Gh3XTIdHzz+gESZmsnUJ3JXdsstcAUihcER+Ptb21J10uk4kjDlN7NJN1H/heTzNu6fLfs2SQ7hiclhRgD1uTy0IK0NiMcY/B0xgJceYy2E8Ra6DdXdCHUfAPfyJWeWerWGF8btIS2Qzn1j00VzE0lOGPmxj2GiLYPcSsHxhh2tKAmBXz6TzHY6rF9ztFCqkoP+Ec755plYvL4FH//li2jrKLFqgcNH9sdDC9Yj2CY0PWZZEkkOxTh9RmdJ4MSrH03fPILFT7a3bntrpJvlgg5ley7s2duBV1Ztw6otuw0fqs8XqEt/cVZPKTno71MaXf29yPzUSrJP+d46GWOTup+yaftRtT0fBGql4PiOOW95X2e2OfBjktCZFr0dmQpDR0dEFO3MVDVsDjHDJhmB4HdreydufOp19VQCkqgcou0XH2dKkP32POpQh8Qh/RLkx+f7AXHUXlVHEQE//dgkHC7TdTN9crt6yVpyIv7jKYekr6OYQ3vH98yJ5+RipfqwFzUObHDfpshrorW9k/245cdULBA7+eUzk4FSsc0BuP/VtekL5HXKtY8u2mCsJ+Gz7i7dENgZrpm1FMeMGZg67+etlP4dxzmATSEiCSc3xqNHp7eN1KudfeyoVB1V1SgXT33fZCBgbGK1ktpH+YuNqopRN74yIVYr8ZKDJNQc137kqP4p1an+jRolB+a+dejpZsyExG40l33pquKv3B7HMLEMiUGqk89KZqw12eW6E7laCbFLpS56uzZET3BqiNU0vRuLOHfSmKgu1wqrVpJ63nAmcRkeffeQlq6Qal2uvYgrNRiF5QdtinOQKY57hdxdRByEsMZOEPHGONOdZXFlJfABST56Xc7Gk3QVTdt8CsRnrAXSkd26hNFQoBRXKesFfYqIOHD5r4qFQkQ0XlPUd3qOn0ySA7KpOeKsrHxb8l1w6d51ewfXTnMjHx0fG6TNg9Xfi1NyMKmVJHHQyp9eGqeTsRmk9THKnzKvGueJ1t2oP+LAqZUMkoODyUh+QEJEaiCVayXDYj60b1OiDhBPdmnA5dwRVbWSDZKIqLhGw5sAACAASURBVPYLrj3VzzrpuhqWRy53jNaaYn/6cUODBS4mDnZuX+Uo9Xp/+NI78dd/SXqnZCEOAsB3/pLmeNWFwRjtrI+zoPYtEioXCUk4uRY5G4bu6WKKfJb3EhEHzphboIhofOymFwEA08YNwf+bcSQzmjT4MfP3AvDvVJap70jeEhFFAZ/clrq9mbQo+rvWJYd7vvjOoJ6XQTo+NknHQb3kN2gak54nSvW0Yg3SEWMhtPLgt3QM2bFnHyQORPRrItpIRAuUsiFENIuIloV/ByvnLiei5US0hIjOUsqnENH88Nx1FD5lImomorvC8tlENK66t5gE+/Ip8Uepy4OQnkgCgYj4yNdOxS8/PTXRtDovmhsK+Pwph0QZMNV+ZT275GBfKO+8ZHrUph4hzW0io0pBqpHtwa++CwBw8amH4owjR+AT0w5KxwAA+NezjsBzl70Hl7//SJwyfhgunBoYa0vCrdgw6VunHDwkVsmFcBlGv/+RY6PjPYadxPwkLsbmoEgOhDT3edjwvvBO06CNQ030qPcrxzwkZCSu/ODEVL2GYnoDpnceNjQKAisHUrrx3QfclrVWlRDbFdUJx6jEEfPJcn13tanjhmDaIUMUrtx8L5JJam3vxJHfethYz2UX0SUHOWe5+5h4QKxKNDkLyJ/9I8mB32SoO+EjOfwGwAyt7DIAjwkhJgB4LPwNIjoawEwAE8NrriciOUtvAHAJgAnhP9nm5wBsFUKMB3AtgB+UezNeYDmfpD7RlWOYM0hLHDGqPwYqMQQqR1kqBXs6921Omnp0Y5j82LmJ59rPYXq4Sb1cXNSPmbNzRItQSeCnj8VeOzL1wrB+zbj5H07EwD6NLIfbWCxgzKDeGDGgF373+XdgSJ9gIXOtk0RpLsx2ncvYqz4rE1k6UkknYfLeSXP6is1B8Ibnr54xIZgTLN+RVlNFcoiQUhk7lKjPPk1FjOjfjPOnpD25GgqFlKvwxpZ0ksPmBn9iIaUbTgXDqbZk93xWVoo8x9T09dMPDfYwkQv/rH85NZIW9ffXzGy9qaprnQbpkplhkHCqlcJyPQBWdcPlrjWrlYLf8v73SZuDEOJpAFu04nMB3BIe3wLgPKX8TiFEmxBiBYDlAKYR0WgAA4QQL4jgqdyqXSPbugfAGcSxUlUC9+7lfCdtlTZmNA3rqXvd2lRQcmLI6GOdq9MDcCLJgfFV990Td1OYr0fdE5dbEFX1xew39NdshymbKCDdU+3XZ9mLxqVKGzesb2TzUdevYYqE9tUzJjj92dPSkebKCsJxBw7CuNCQDwQSo1pPxQeOD1KQ/Oj84/CRyWMS8yH2WOEkh/i4VDKnL9nU0oaX3tqW2HKWW9Q5u4YJUrrhDMicUbxTux8gXtBVJkB1xb3+k1Nw80VTo+SAE0b2x9AwWDBlc2CJQ2z7sU0N8pbo0vYvbgx6AKzKlHD9mKSbSC0VqdzMY6zWPvBZUa7NYaQQYh0AhH9lPP0YAKuUeqvDsjHhsV6euEYI0QFgO4DkZrFVBDdPTA/f9ErkfFD3auhtEONJaWjyVbPCunz0amxzkBOP34XOJ9Pq8o2B586qLXtS/STbi20OXLCaCp+Eg4n8Mw7FUmxziOupAWZffvdh0bFptzMg0EGfOG5IpJtW3XdVg2dDsYApjtQMaYM0FE4/eIb9mhvw5L+dnq6nDW3JVTPw6ekHAwhiRq65cFJCwuDybEXjUBYh2/7FSza0AEh6hpnWkncfMTxVxk0lKTlw00HfywEInvf67a2R2+uNn5oc7Q9RIIrUmapaaWDvxlQ24ih9tXYDpt0YZTWbowFR2jHDVA9Izq8tu/ZGTMB/S7WlJuU3qhKrZW3R561MDU9EaFLckfXrAODlVVutY68Vqm2Q5qawsJTbrkk3TnQJEc0lormbNvEpcF3gFqzY2KTVNcwnuYCoouBHJo9h66pqBPnC05JDEjabQ7GQ9pbh8KXTDkuVWQ2fQrDeJIlxMjYHUx82yeGkw4aiqViIRXTlnLrl5snjh0XH8lu5Z57KYwQ4MnQXlX2rqjQ9i6rryen3FMQ5CGxsacV9r6w1ahy5HfqaG4oG76ekqoGTwBauDTaWX7Bmh9EuoWLkgDg9tzEKmCkz2eBMkoOqVvq3s44AEEhqzy2PvXZmHDM6wVlHNgfn/IoZFRXcHglSchBCsIbuRD2kc3dx7sNAPD8eeHUdJn93FlZu3o2PTB4TSaC6bUJ9LxwBioz1Sv8nHTY0cmEFAi9HlXCu396Kr931cvSbYxK7AuX2uiFUFSH8KxO+rwagho+OBbA2LB/LlCeuIaIGAAORVmMBAIQQNwkhpgohpg4fnuaCfGDTC0puzcUgx6KgEmBm8MUmCtIyf/m2eVGZqurgxmb1VmIWIYm+iucHx23Jj1SNjFYXc1tkNuDnDinrlAS/EI8b2ge3Xzw9zLmTtjkk2lKOJUHcxKS3lu9DLiLJ9CPuMavgsrIKAVx86zy0dZSwbQ9vONzZ1oE12+wppoGkm6i8b45ov29isHh1lILgRNP6IFNzqO/OxCX7amultMS1c8HU+POW+4d3lgSTHyn4WySKxs5JHXq/QJpgmbzsSgK48ak3cMZPnrK0SaFUHLf5nx84Gtd/corWnhx48OdZhdipai3SKyqwxQnZPq3GhqTk8K17FyRSfHOOJF2BconDfQAuCo8vAnCvUj4z9EA6BIHheU6oemohoumhPeEz2jWyrfMBPC5qmKKQa1jqY+U7cGW0jDYjYfIR6SAAf3xpDR6cH2cJVbm8qJIyNpvkQGRWg9346XjC88Zn4OvvPRz3XnpKXE/h1ly6TT+1krLgM69R5UblpPcJ2JIL1W0vpiN2ZZ+RP71qhNe9jxz9cAbpkhB4O9yQZ7fFsPnIQncwXyLjqUWtNCqcI6WS2d0VAM4L42lUztPEoPsuMRTGcnASiOpFVlQYCz3Rn+rNI8du4/ABs+TALY6EgGH4/bxVqXPJNuNo/ag9i0t3pNpVxqoa83XJQYVctkYPVKQ4g0FaRWOxkLA5ZNlit5bwcWW9A8ALAI4gotVE9DkA3wfwXiJaBuC94W8IIRYCuBvAIgAPA7hUCCG/pi8B+BUCI/XrAB4Ky28GMJSIlgP4OkLPp1pBffDD+zdjzn+cgYkHBHEJ8h24xDjJJbUyeeR1cB+17poXGYqFwGvrduC6x5aF47CrlXpptgvV7mFKdfHVMybgaMXVLub0RcS9fOQEXkWWZY6aXFlVPXaWXbDkt71m257UOSkJRYTOIjlkVSvJuBLOH78sULxQyAXLpu6Tu+SZiEOssokfrCu5XAKczSHMR6QzC7/6zNTEbzVbbDoldVxH1tu2O7m9qGmMPoujKbgUQCKDa5xGRmEYOOIQ/hUisN/MXhErL9RARt2zUHdLBoCfXDgpylf1q2dWRO2aoNscekqeJWf6DCHExw2nzjDUvxrA1Uz5XADHMOWtAC5wjaNaUJ97kYjdStGgIUpcB/hJDtyKqrevTrhzf/FcZMvQuTEgTLwXzrQJI/pj/prt0bnJirHV5QGT6lv9gMyKdWd7yX120+e5dOQ+34KJ85oxcVTE9cmPXpUcTC6rJtdGXfUiOU+Tw0FWqM8netzcc9Qi103coyxXOU+TBOi7g6H0vLp9dlJKO/NozYCsjJGTcoFgrstT33twsbNvLg2JWb3K6y7VDK6BA4DQpMn0Neo3+JXb/54498IbmxP9AkhJf/HVgbH9zKNG4C+vrMUD89fhF1o9/TU0FknbVzx5Uy51b61Qd7mV1MmkTxK5kLg+IjlZXWJy0CZTZlB1CJE0cnMCjOrKqk64L5x2aIIjchE4tb2g7/gDMnE5Pq6nkSRS4oOo/lcNEMwgORjHpNxnrFYqpcqiPsO/LzHZQYMxae2Hi5Uu7QHA9Z+cnMkdV7ave16Z4lkA+RwzSg4VamUp5Mr/6sh5Fe0XXorVXmMH906MoVgoeBMlgA/yZNVK5A6MDNpLSw68mso8F7fvUd3BA3AuquqxHrdgtTk4JIdOnxutAeqOOKjKDo5LBNzEQXL0PpIDJ8LqkzOZnjmeHLzkwEek6pybv/Ex1vN2MNk9E22mfvMcHRAsLmord1w8HUePHqAFCMojf5uDqT/1WP0ws+prU2olkjr/dN2zjx2dLnQgaXOIy3SoKhubK6u81Ect4Vrs1TEGHlLuekDA2Uqt0nWh63BEHIjPyWVCILVoZSynT6k5xo9ROluoTJdZquaUod/6wNHqAIN6YbVNLbGDhDpHVc+s1Vt3R6rioIlk/43FAvZ2qOqp5BhcXl61Qv0RB+U56xybXFCdBunwS+D2rtXBtZTqV45NjsHCUXKukECa4PAeDnbdtsuV1ecjVzkr9Vn3biomCAPAf6QmZCEOrQminY06cN5KJSGM6qmsIKSNlNxjUIm2zSBdM8lBCOcdq/m3BIV2sNB4G3liZXR5CaQW3ebAz1tTig/92pJIOhKYDNzquFWcfsQIpZ5kftIV1WvVteFTv5qNPUoSykOHJwMSdW8lfQz7WhDcPgsrcZDlTslBEgcPtZKH7l/V+6tDMsU5lESQImHx+paoXF9o/W0OiuQg1UrsnZjHzZXp6mDuidrSkOgwfR/qO5QLkZrhshy1T/J3yMlWhzZEHC9gj3OQ9yIN0iZJUN6fzI4LZFtMuJpFSudr4hBJN4pKUhqmhVLHJ2hTwpT6XIe0i7iqEgIicsGNL6TGnaoID4cFlZPToBLld4cE5bTDh2PzrtgQ/5vPnoj/0HbTa9JtDlrjLhfgWqH+iINybFrsfF1ZbSmpJbim0kQp/q0uArzLXTAJv/fAa8k2dY43w5uVnKIUvc1xBx6Sg6Ii0/sw1b3zb3Z3RK49rl1JEFXiYFIdmsBFSAPZacMvPjHZ0H58L7Y4B/k+121vxaxFGyxqpeDE2zt59UY5aG4sYG9nyamajPZpKImU+7Ua56B7Tz3+jdOMbQa2BPf49R3egOB7kYF56hj1ery3kh+nYqENiUsPGdYXzQ0FHDm6f8IV9rTDh6fyXOk2B9dOj12F+iMOCW8Zg+TgIA5ZJAduWTFJJgJJYsIZvAvhx+aKIrXt2sa2KUSk2/SWHIzthTYH1UPDYp/wgSvVMhA/14RRX+viR+cfb+2HM0gDfh5VEl887TCccxxvj1DTbJgi84H4fX433GzHtkAUKGk05TaJMoFbC3s1FNHW0YlJBw6Kyn6pubECyb2zpaQh7WRCkYr0sQ/sze/2B9iDPFXIVPjq+G/45GRcevr4ZHuFNLE0GbgBH8khSfxUcMF7nZ3CEEQXQ49z0O+/uySH+rM5KMenTkhGWesukSYUMhAHVp9scKFR9wsGgBOUj1NCqpVSE95LrWRWTajN+XDpNsgPd6NirGMXQEd7alpzEze8ydGHTpT0TXDS9Q1jzEAdbM9JTdDnyr6rwrZAFIgiwv7I106NMuqWi+bGAtraS4k9R/o1p5cKOcbOUuxRU9TUSkTpXGA2poDIzzsnUBcBb22Jo9JNcz79rfDtAT6BoMHfaD+G5ga0hJLqyYcNS9QtUqBS4xIHqggM0so9a0OwBV7WEvVHHMIHf9Onp+A9R45InIu9lextROkzfAzS7KJoVnUkd4jjOZzOUjpvkT5mX1dW2Y/6TZg+jxf1rK2G5ySJzdvKwj28fzpliP4cbvnHaYnfR4zqj99/8Z14YvFGXP/k6yzRemppnGPLpIaz/XaNqZwEwbYrVEIs9fSNhuy7KuySQ6yzzvLeAd6w2txQRGt7ZyIDK7sFqLSLlBSbgyJNyLHpY7cTTz+/fm5zJTYrANJcvo1x0onwwUr23aBe8Fc22SkEPn/KIbhC9WiKxhNI+TKX2qA+vMTU1BC/v47OUiKTMgDs6ibiUHdqJflaxw7uk8qHRNpfE4oZJAdOnZJyZZUjE+6+ZcIxnRvyWdRMHIz0/IjgwSX/w0nj8I5D+OS5ktioi0sqZQjSi8TIAWkCcuK4IZGOlhMe1MR6PkZ41/M1q5WyGVXN7ceEWC4IbB4srchq1CVVCqn8k25uLKCto+Tk4KUKqYOxOcQ7CCaTKQJ2glsopIkJB2l7S5QZVJeubyW4NoDuNnrXJe9ka8rvpbMkjGpoaYw/YFAw91WnARUNhULkRv5v97yacDQBgN3dtIVo3REHOU/Y+SnFZMfczBTnwKqV9G7jBcjFqBbDxcUVRaoSoK+cPh5XnHMU3jUhKfbGYww+ILnj2Inj7GmtmxoK+PaHJho/ir0dJbyyalsi34+pXxUmg7cuyqtQkxj6qNLU348sXK9XT41hV/hhvr3Tnfoh7sN+ThIaSRy4eBb92dq8hwqkJGssQ9LR0VwMiIPa54Beaa5XDruTsTlc9eFjMXJAM/o1N2D0wN4486hYSrdJ5gUib8khRRwMqku9NZuEqTJ8px0+HKMGJpkaKeVJNVBJCKMaOpCagOH904yRPkZ5y3/6+5rU+e5SK9UfcQj/chNJcj3cblcq5Fzwya3E+2gny2S/nSUfe0ecUkGFzeYwqE8jPv+uQy02h4DgjB/RD2MH98ZFJ42zjsEnL+ILb2zOvD+E6dYLkaoifU6972OVvbtdbQLAF347L5VGQ39Et4d7FKx4e5e5IQ22N7h66x788aVgAZALKqdW0hd524Kp2hyyCg4HD0lvAsTt+XwM82zVKO4OzebwoeMPwOxvnhlJ5wmXY5vkQH7eOUR+6iKOiGxlcjxJpkBVK+m5ywDgwMGBmknaOjpLwkiQiwWEaiX7Swnyd6XvuaFAaChQ7sraVYgkB+YTjomDw52NgpfmlVuJgWkh/8HDizOoldLlyTGaz+kgSI+TEsYN7WskIjJS1DfXiyuy05RjKjW+sHzem+lNT95xyJDo+Jua/ziQfs96F0f9Z3JfYX0MLkaBhSf3LhdULt27/g58bQ6cFGLDQZpOHVByhzkkPzWKW7c56FDHZZ+PfpJDkDlWK2OaDfbjSJaxnHh4rWoY5vbhHhB6Wu3e24nnX387SIpoUiuFBmk5zo9PO4itZ4rtIArVbBW6JpeLujNI26JSpe63zWNBKBYo+nhMG/0APCdnkhwA94IquXyde9d/qwSI225UBYU662172q1uhjK/kO9cdUkO/TVVhU2yAYAH569LlH/rA0dHO60BvE0lq0FaJyb6QsXt45xuww/tNskhpVYyP0sioKOjPMmBQyQ5uNSCioTxw4eXADATB/V+bO+gQJ5xDrqdDGab03ZtDw51B0d9TCqXLqUEvV8gIIif+OVsAGZVnjRIl4TA4D6N8W5yTJsc8ZdMqM/zqAXqjjhY1UrhR+rSlQOSOAQcyL++7whjPdYgrUsOym+3KibOt6NC34OWSythbLNA+O2LbwIAxg/vZ6zX5CAyOto77JNa3/TI1Lp8PLoXx+Ej+yUS4vGurNmQlhyS9yA318nShgk2g7S+4Dglh1J5kgOHoidxkGN8YvHGuMwoOfgSBz81SoEoZQfimiUkgyIBYMbEdAyKvFbtW7c3AMGCLfM1SZg8xKRB2pb+RNbj1EoFCqPV8yC4rkHMbXBqpeBxSFvCGItPfLFASmpt84s3GcnM4zOfA2L9pD5fdM5SXSNs4wvGE5/nFioJLjOpDVIC+/OlJ7PnfWIz1HLXJjAcIdYfp2/Ur8SRo+OYgUOH901Ft3LwiSTv6CwpRlxGV649arvNIRmRbAIXyMYhVivZbWry/amSqen5+tocpKu2hMn9c8Ha7akgUR9XZoBXpVF0z8rujhYpKJEC3KZWKtnTn8i+SyKdRr6jU0TSR3eg7oiDBPeupHi/astuHD6yH/76L6emK4VoUNRKtojqLMFoQMyRyC0YufaESH+4OreViBx2Eof42KaCshEOFXJnvb0dJZx51MhEpK0NZptDSBy0j6RRI1bcbWZR1/ZtKqae1Q/PP05p308kcMXJAMCe9k67K2sGg7Q6n2yCA+cqzME3yFM+q14eBFO1q9gN0kkdu+n9LVy7wzgeFer1A3s34icX8BHyseSgSgRm4qDORRMRiRi5kjmrLoBIElG3EgaCd97QjTaHuiMOsUE6DTmB2zsFDh/ZH32ZqFAJ1Z/cJsrr/XzjvYdbxxelsDDMB6lWUiODAWCr5kNdzEAc1MXFVrPJkzjIrStb2zud0aEqzJJD8FcXvftou7NxRDdLfMLBQ9OeO6pdxMaVqzl9bDREptUoiXjx5Z6R/s5c6TMk7HPRj7hJ/sDlcCGfxzPL3rbWC8alSg7merrkkCVPlMvT79TDh+OjBptRZHNQJQcDoyQlgqhfk7QUSQ7mWAh5fUmIREBndM4z7qMWqD/iEC4WbI4T1YjrmGjq+aKF29a7ufjUQ32GaYTkRl7flHStPEyzFWSRHHz18jqnboKkIXv2dmZWRXGI1UrJj6RvU4NWL31tFqaLq5pY1CzP8cvvPiw6tkmGU8Ld+oQQEXHgvGIy7YHgKTn4Ninni7oDGgfO5dXVZjAO+/fS0emWHNg+WOYgRi/LXJSEU70XE6HVPYiM6eQLQZyDbZtXAFG+NL3ODz56bIoQdSXqjzh4SA6AO9K06ElIdJWBi+hImOaS7rc9sHcjnvn30/HxaQcmr1e6dauV/D7cZk/JQbbR2tHpLW0A5sU39hBJlvtJDv7g4jeK3hxvNpWTEHFWXx/J4ccGdYg+Lpvk4K0W85yjWSDnvWsIeroNn5gaCVeOqmZLvIGspur9bTYHVa1k8jAsFmTKdXtwq1QVq6rDdx8xHB878aCUfaMrURFxIKKVRDSfiF4morlh2RAimkVEy8K/g5X6lxPRciJaQkRnKeVTwnaWE9F1VE5CG0/YIqRVMdK1pql1bQu+Wu+Kc45ifdpt49QhI6TjegIHDumTWpzUj8JtkPYakrfkEG+6k01yMA3DlAZcd4XlkEWtxT3zxoLKMFRG2INzsRQUq5U4ySE+Hj2wl9WFts2ShTbRpuejKDfK+q5LppvbDL8Dp+ccUcJjz7QsqhHX6rWmfgE/28guxc3VaHMgPztApFZipAIVBUqnR/l6qH7WCVFXohqSw+lCiElCCOkKcRmAx4QQEwA8Fv4GER0NYCaAiQBmALieiOTbugHAJQAmhP9mVGFcLGJfJTuX4ZQcPNU2kpM7YmR/fP5dlamUgLRPtGnaZHFlVQmLjdP3lQLk42htL2UjDhZpCUh+QG9872z0bjJ/7DMmjsLtF78j5S5rA2efUBcXX87bptuP7SdxOm6OoyUiJRGkvV+Zs6ehQHaVjacCsVzJwebMIBkUV9MEYP6a7dFv0xr87Q9N9OpfZYx8JIdditur6X6kuij6bYtzCD0LbWsE58p63NhB0fi7aZfQmqiVzgVwS3h8C4DzlPI7hRBtQogVAJYDmEZEowEMEEK8IALW8FblmqojzjOfPlfIwG376lClB1TWD87UpJ6h0Wi4Vl1ZHfEJal1bqL+vt5L6HLmcPCaY3ETVwCMgGKPpeR43NkjzMLB3I046jM8lZQL3LNV58PKqbV7t+KifVEJkkm4kA+Li+GV/zvfsa3MoU3KwMVTynItAESXVNIMNrqymLXRt9WySgxxXYjtRw/3oGxiZnqtqkHZJk8b9SgrklcK8FqiUOAgAfyWieUR0SVg2UgixDgDCv1L+GwNA3fJrdVg2JjzWy1MgokuIaC4Rzd20KW3Z9x2wCeoL9N0NzgUpOWRNpfyxqQey5Tc/uyLx+6tnjGfrFTJIQau27ImOOeOohK8UoD7HccPSPuUm9Db0rRukbfEncjG3OQmYoNswAH9pSYV9IQj+qoTIGBkecdv2e7kwnCuNjvfsq631ndup6yztRzvEOaxA6r0O7duEu76gZ0U198WNWyXuIyyuvLK53Z42hy1KfibT85KeRsJpkDZHhXenQbrSCOmThRBriWgEgFlEtNhSl3s6wlKeLhTiJgA3AcDUqVPLe2IWm0MWDx8Xl6bXy8KNPfy1d+HIUQOc9a445yijqorbIc0H+ubnKvzVSgq3ZiE2OkxSi76g3n6xWbct+7bd84FDeicIIgAcOqwvbvz0lHR7GRZKIpl23bYQSPuJuz3ZtYs4+D5j31spV63kUp0APpvpxG2cP2UsDhzCMxccoePeuXovNhWjrKUGk9riHGYt2hD9NuVMKob2k05HnINUKw3p24Qtu/amznVT3r3KJAchxNrw70YAfwIwDcCGUFWE8K+MrV8NQGWHxwJYG5aPZcprApsrq8p4OSUHzwVXqmJcXNv/ffbE6NjGGX/z7COjY3UvAx3q8LNwghdM4SUWwF9yULvj8gaZ4Mqt1NZRwphBvdm9IaK6UnKw3PPXmViTKz80EaMH2neJc0GO0yo5hH99/PeLHu0BscTT4sj7rz/fz548ztovAEw5eDDmXXGmY6QBfGwOLiY4MUTHgqqDE5xU7t/mDBKlDFFWYpMaVe/bFA9VDCWHTkf6DKlWOmV8Wg1a3BfVSkTUl4j6y2MA7wOwAMB9AC4Kq10E4N7w+D4AM4momYgOQWB4nhOqnlqIaHropfQZ5Zqqw+bKqr7AbUxa30Q7nv01eCxWaj3ArtuffFC818LQvjYx2V8KUmHjGn0X+qSbb3Vz/bjGEOnfHUFHOmyE1hc+T0f2/YsnlrvreqqVypEcHvjqKbjyg2mjLpBUgY4a0CuxXau9fQtxyOgGDdhzO3HMGb8vhuJt5ligG4uUsHdwakYgmwTWKQJpxPZNy/a4nFKyje5AJV/ESAB/Cl9mA4DbhRAPE9HfANxNRJ8D8BaACwBACLGQiO4GsAhAB4BLhRBSwfclAL8B0BvAQ+G/msCWeE996S2tdi5sp+O8hJwULklDPW+bSOrCO7Rfk7Ge6ZpK4G9zULm1yvuWze3tKDkXmUit5KHiUJHF5dUEKQ3Y3p+8l9tmv+VszzcBnu8zTsSzeHouZXl/dq893zHGx7b7JuYRuyQHF5/SVCygvTO2OZhsYL7fU5HiLVRtz1G+l4cWy4r+OQAAEmFJREFUpDefauhGyaFs4iCEeANAKjJHCLEZwBmGa64GcDVTPheAO91lFWDbz0Fd1FxS/xuem780RN5K9nrqhPNd2HzdNH0/TBfK8Vbyvca0S53a3t7OknMR9yIODKHOYhsxQU4ZW99ZQniki6rcWMaEcgIrbfNRVZNkkfxszIPvgvrm5vhezzk2nT01as/T5pD4rhzPvqmhkPAGNLlK+27FKtVKgcRb3rPZlw3S+xxim0P6XJaUBb6Qk8LVti+Hpk4kua1nlmsqQdY4hyx9/y9jDI7biznofpZ8V0CsirGqlWokOUiGwq7SSv4+b9IBFffru1ipc9D2Lk8cF2+glIWxsKWneNGRikNCptc+dsxAnMTo4CW4eeXaKdA1F3XiZrr319alk/5xWLy+Bau37nHWk6+lgYmGlgSmO5Cnz1BQpTU0Aakjd7vG+r0KlZMz6UR1VCO/EeDvxZKQHDzvq0+TLclh8Leto+SvQskoOfik4vaFXXJI/h7J7BmQFeVIDrY50auxiI9ODnxEsqiVmi3S17rtrd7t+IDjtThmyTc3FpB8Jl887TBv5ssEH8IAxN8LlyYjSJ+xjxmk91VEj98hOfiminBBLuZOycFXj6kMy1dFUQ2uOAvUYVXH5iAlh04nsZFBjrbnyS3evoTWB3bjo9Z3FZhC2aS6Kx4HlSi6GAb5iHzVgoBdcjh6tNs1W8WBQ+yeY75xDllcuqU01a+5AZe9/8hMKsBKYPU63M8ipHs2ZIS0wyDnUl9IfPWMCdbzkY++ox1flZavhKGiGvp0iY9MHoNffGKytU7S5lD5B6baHFzEJtr0xpaATltEBvZutKZnv+id9kVXRxY1XjXVWa4ppBrzm4t+cyIL0bQ5C7i+Ex3fPDu9H7gK7yDURL40+zVyDmR5f9WY3yP7m6XH7twmtO6Ig9VbSZkUo33FfYfl+nfh9ptPM7naVXgH1ZWh+6qm5HDNhZOiPQlMSMaLVMOVNfjb5uGtJG1Ktmo6B/nTmZOsbX7n3Gy+ElncaG2qGF9EKWEc9dQ55pIc5L7LtpiSLLClZeEwltm/WUU50d4uBkzGF+l7TttgM9ifNXGkVxv2eKV9NCvrvghfm8MXTvNLkud6bb7v1ZdbKSd6tZr6dB+oH2E1CFOclTW55wYHP8kh+fv0I9IZPnWcMn5YYs8GG7LsDGh7PqbIWx1ZY24AN3GQ2UkH9rbnxrrxU2ZHAhXVsntlxZSD47gg1zfmO1f/7x/igFUbU/eV0/2kJRuD0J2SQ/15K0WJ9+z6Sd8FdcYxo6oyLl+1Ui0lB5s7aRaUmz7Dpz2XhCXTD9ieUzn2vd99/h3OOsePHYhXVm+3jlHeyuA+jdi6ux0zLQTA91VLbxYX46Byua6FUrbpet6+c8vXMWHBd85yV8qAI0cNwEFD+uCtLbsz5zczQU3pYVsn1Fu+9mPm/Thsz1A1SHeWBP66cD1mHDOqS+wh9Uccwr/co83yvF/7rxnY21HCQEPWyFqhHLdUX2njt59zL4A+UPWwWdUJHBJ7Uzi+8MXrWwAASze0GOvo+29XG1apJbyVvs0NGDWwt9W2JW/btQf3rrbgfvo77GRZ9OOSWXUyI55N+s5BX1ufDpmNl0N8Dw6p07Mv1Q24yZoyJK5nU5PpxKGvYucJ0n4Hx7c8vxL/df8iXHPh8fjIZPP+HtVC/REHz8R7LvRuKlr3EygXBw+161qzpMCe/+33dYs4r34UPhusuKCuK76Sky13kSviuFxIbs6u+opjNmwLS1AzOP/hE9gkxRF2tgU6cptRXR2fD6QqoxrpTyQumDIW7znSrcLLinu++M5EWhkdceLG6qhnGhvi53jTZ6Ya66l8zCHDLAktlW/0r/9yKsYrW/42KHEO63cE7sBfv/sVHDGqPyYeYCaI1cD/b+9cg6SorgD8nd1lF3YXRJCXIA8RCUhAhQIxKEqCEdSghVpGIvioUqo0GmMqal7+sKwYEy0fpKJUhFLzMLHywkRjoRW1TExAgqiID1RKMT5iqQgSQcqTH32bbWamHzP0dPew56uamt47d+7c06e3T997zz2n+605uPdK3kr12AS3NGJzVyXietDa0sScCYPL0oJWonfPHpmvN8CebsBppJzcIxxHFbtTw9hRJ+PgX1tRoxu/W57nVVyIbdduzE1t/uRh9GgW5kbsKK4WP7FS0tDnx48dEFvnx2dMYk6KffRpa2mOvM66Qr5Ht+Of5mtOGR9ZL+jeO2Fo+A26NPx4GMH/0R7Ne+YqKU2b6rPujS1lZWnTDUcO4SvS9dgEN8lNCcTncfbee0VsBvP5WcJFwLxIK1yHT/DcJQ7+F2HoE3uiVcknLvRC1NRIcLd33HnyP4173v3c4D68fN3cpN1MhH8/il0ryMkHP0jcukiXO3myzu7fHr35Len6SdKEYMEMdaXXRHNT5TDnnSkEioyj2xkHn0q6qscij99kXNTP4f3a+dYJhzLv8OgphEbi6NH9U2lnj2mlhMYhSpfTDk6nX6X871PPOERNNwaDCMZN+QW9tLLGf4hKK/RKPYnbqJc0h0aUm3uQnq3e7y2eGe29lnQmIrjmUHp9tzQ37V6QDo4gO9vqPyPQ7YxD1uEz9m9vZfSADq6aE72pR0S4ZFZ1G4WKyme7PcLSaa+WaaU4xg3pkzhGTlIOO7APr7+/nb4R7p/BUAmxIwf3cZLcD9UQNcXh4z+txo3Ukj6N15O4mF8nThjMC29vjQ1UuSthVp22lmZeuPbE2N9N+iATbKfUGLe1NFWcBu1sq78jTPczDlHJfuoUeO+RK45Lvd0i44+C0zqfwf+XpNNKccHK0lqcDHLjmZNYPHM0+0fdfAPd/zQmLsLXjhrBH9e+mepawsPfPDYyD4hPV5KqZO1mFWqiEnE34UtnjeHco0fSN2a66PTJw3jwubf32BsRRhIX7aQJwaIeftpamncbh2AO8w4bOaRP0mQ/Ru18FrGXpBaCO0ST6ijuaftL4wbtdntNi/bWlt1rTGEE+//Exvci644e0MnaH5yQSt98DhnYO1E9P2xGMKdyFHn+58TNvzc1SaxhAPjiuEG89sO5qV23tThjlBq61pYmdu76DFVl9aYPdpfX6vJbDd3XW6nimoP3nvaCatFZcvYR3DB/YmrttbunqsERCd2rYcenXcPqdZs/jKjZFbJgwbToeEiVUoVmQaNcWX6U3Djj4Oc6P+3I/NbK4vZ3VEOaI6Bqcrf7lN57/PWI0qmlLIxDtxs5zJkwmEMHdUbvbOxmI4iTJ+59ToEgU0f144bTJ3JyTAympOwMZOfqiPHmuuOccL/zIE1NQntrc+In47QIXlt7GxK6nlx76mF0tjUz89BoF9UD+/Zi0/UnZdSrPbnutAk8/Pw7uU5pRVHLyKF0cd03DgvvXLVHedyeljTodsZhRP8ORvSvvCHFt9pnT0sW08aojIhw5pT4fRhJCW5aC8t7XAtPXDmLrZ8kD7KWBsH7xePfPj7T366GIfv14uazjsi7G5EsmDYidoSYJx1VbJK954KpNIuEel6t2vT+7uODB3SkGmk5jMIYBxE5EbgFaAZ+rqrXZ92HluamRF4IRnrct3h67EjtyMAC4fCYHeTV0K+jNfun94CoWUwNGPkRt8kxyDFj4jcRAqy8/FjGDEq2brS3FOLqFJFm4KfAbGAzsFpEVqjq81n3JQuLbHQRTEkZxsDePTmgs5X3tu3MoEf1xb++Dh4QHk7B2Hf47UXT9+oBpNS19ZCBnSE106cQxgGYCmxU1VcBROReYB6QuXEwiskDlx3DO1t25N2NveYA50Yat3Zi7BtMHRX/8BPFjJI82lmurxTlCh0KvBH4ezOQTohQY59gYO+eDIzImNUoHNSvF1fMPpRTJqXrBGDsm4wZ1JtN15/Eh9t38nHGzhNFMQ6VzGGZo7qIXAhcCDB8uC0aG42HiPD1KlNmGkbf9lb6prfcloiirLxuBoLuLcOA/5RWUtWlqjpFVacMGJBsAccwDMOonqIYh9XAGBEZJSKtwFnAipz7ZBiG0W0pxLSSqu4SkUuAh/BcWZep6vqcu2UYhtFtKYRxAFDVB4AH8u6HYRiGUZxpJcMwDKNAmHEwDMMwyjDjYBiGYZRhxsEwDMMoQ+qRESsLRGQr8GKFj4YDrydoYj9gSw71qqmblyz1aNNkSaeuyRJOd5Sllt8eq6rx0ftUtSFfwFMh5f9N+P2ledSrss1cZKnT+TFZsu2jydINZKnlt8PunaWvfXFaKTpVWBf351Svmrp5yVKPNk2WdOqaLOF0R1nq8dtAY08rPaWqZWm/wsobEZOlmJgsxcRkSbftRh45LK2yvBExWYqJyVJMTJYU227YkYNhGIZRPxp55GAYhmHUicIbBxFZJiLvishzgbJJIvKkiDwrIveLSB9X3ioiy135OhE5LvCdya58o4jcKlmmVEpflkdF5EURedq9BuYgy0Ei8jcR2SAi60XkMlfeT0RWisjL7n3/wHeuduf/RRH5cqA8V92kLEuuuqlWFhHp7+pvE5ElJW01lF5iZGk0vcwWkTXu/K8RkVmBtrLRS1J3qbxewLHAkcBzgbLVwEx3fD5wrTu+GFjujgcCa4Am9/cqYDpeYqEHgTkNLMujwJSc9TIEONId9wZeAsYDNwBXufKrgB+54/HAOqANGAW8AjQXQTcpy5KrbmqQpQOYASwGlpS01Wh6iZKl0fRyBHCgO54AvJm1Xgo/clDVx4H3S4rHAo+745XAfHc8HnjEfe9dPHewKSIyBOijqk+qd3bvBk6td99LSUOWDLqZCFV9S1X/7Y63Ahvw0r3OA+5y1e6i6zzPA+5V1R2q+hqwEZhaBN2kJUuWfQ6jWllU9WNVfQL4JNhOI+olTJYiUIMsa1XVT3i2HugpIm1Z6qXwxiGE54CvuOMz6Moitw6YJyItIjIKmOw+G4qXbc5nsysrAtXK4rPcDY+/n/VwvxQRGYn3pPMvYJCqvgXePwTeqAcq5wkfSsF0s5ey+BRCNwllCaMR9RJHo+plPrBWVXeQoV4a1TicD1wsImvwhmg7XfkyvJP1FHAz8A9gFwlzVOdEtbIALFDVzwPHuNc5mfY4gIh0Ar8DvqGqH0VVrVCmEeWZk4IsUBDdVCFLaBMVyoqulygaUi8ichjwI+Aiv6hCtbropSGNg6q+oKonqOpk4Nd4c76o6i5VvVxVD1fVeUBf4GW8m+ywQBMVc1TnQQ2yoKpvuvetwK/IaUpDRHrgXei/VNXfu+J33NDXn5p415WH5QkvhG5SkqUQuqlSljAaUS+hNKJeRGQY8Adgoaq+4ooz00tDGgff00BEmoDvAbe7v9tFpMMdzwZ2qerzbri2VUSOcsPJhcCf8un9nlQri5tmOsCV9wBOxpuayrrfAtwJbFDVmwIfrQAWueNFdJ3nFcBZbt50FDAGWFUE3aQlSxF0U4MsFWlQvYS103B6EZG+wF+Aq1X1737lTPVSj1XuNF94T9NvAZ/iWc0LgMvwVvtfAq6nazPfSLxIrRuAh4ERgXam4F0QrwBL/O80mix4HhlrgGfwFqpuwXnKZCzLDLzh7DPA0+41F+iPt5D+snvvF/jOd935f5GAh0XeuklLliLopkZZNuE5Smxz1+X4BtZLmSyNqBe8B8WPA3WfBgZmqRfbIW0YhmGU0ZDTSoZhGEZ9MeNgGIZhlGHGwTAMwyjDjINhGIZRhhkHwzAMowwzDoZRB0RksYgsrKL+SAlE6zWMvGnJuwOGsa8hIi2qenve/TCMvcGMg2FUwAVH+ytecLQj8DYpLgTGATcBncB7wLmq+paIPIoX/+oLwAoR6Q1sU9WfiMjheDvf2/E2Lp2vqh+IyGS8GFrbgSeyk84w4rFpJcMIZyywVFUnAh/h5di4DThdvVhYy4DrAvX7qupMVb2xpJ27gStdO88C17jy5cClqjq9nkIYRi3YyMEwwnlDu+La/AL4Dl7ilZUu4nMzXjgUn9+UNiAi++EZjcdc0V3AfRXK7wHmpC+CYdSGGQfDCKc0tsxWYH3Ek/7HVbQtFdo3jMJg00qGEc5wEfENwVeBfwID/DIR6eHi7YeiqluAD0TkGFd0DvCYqn4IbBGRGa58QfrdN4zasZGDYYSzAVgkInfgRc28DXgIuNVNC7XgJWJaH9POIuB2EWkHXgXOc+XnActEZLtr1zAKg0VlNYwKOG+lP6vqhJy7Yhi5YNNKhmEYRhk2cjAMwzDKsJGDYRiGUYYZB8MwDKMMMw6GYRhGGWYcDMMwjDLMOBiGYRhlmHEwDMMwyvg/rrlH7yy18HEAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "sorted_data['inc'].plot()" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [], "source": [ "first_september_week = [pd.Period(pd.Timestamp(y, 9, 1), 'W')\n", " for y in range(1991,sorted_data.index[-1].year)]" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [], "source": [ "year = []\n", "yearly_incidence = []\n", "for week1, week2 in zip(first_september_week[:-1],\n", " first_september_week[1:]):\n", " one_year = sorted_data['inc'][week1:week2-1]\n", " assert abs(len(one_year)-52) < 2\n", " yearly_incidence.append(one_year.sum())\n", " year.append(week2.year)\n", "yearly_incidence = pd.Series(data=yearly_incidence, index=year)" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZMAAAD8CAYAAACyyUlaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAHgNJREFUeJzt3X+QVeWd5/H3B5uAOmLAgBEQYSLjBswOBqox4242LhPAZEuwRjM9OkplqMIxmElSW5Vo6RaW8sc4lawbytKVxETUiLJsKNmNRFvc1Li7TANGE0HC0BkJIkh3qolgtujY8N0/znPldNt03+57u++P/ryqTt3T33uew3k8Vn/7+XGeo4jAzMysFKMqfQFmZlb7nEzMzKxkTiZmZlYyJxMzMyuZk4mZmZXMycTMzErmZGJmZiVzMjEzs5I5mZiZWckaKn0B5faxj30spk+fXunLMDOrKa+88spvI2LiYMvXXTKZPn06O3furPRlmJnVFEm/KaV8Ud1ckr4habekXZLWSxor6R5Jb0t6LW1fyB1/p6RWSXslLcrF50p6PX23RpJSfIykZ1K8RdL0XJllkvalbVkplTUzs6HRbzKRNAX4O2BeRFwOnAU0pa8fiIg5aXsuHT8rfT8bWAw8JOmsdPzDwApgZtoWp/hy4GhEXAo8ANyfzjUBWAXMBxqBVZLGl1ZlMzMrt2IH4BuAsyU1AOcAh/o4dgnwdER0RsSbQCvQKOkiYFxEbItsqeLHgaW5MuvS/kZgQWq1LAKaI6IjIo4CzZxOQGZmViX6TSYR8TbwbeAAcBh4NyJeSF/fLumXkn6QazFMAd7KneJgik1J+z3j3cpERBfwLnBBH+cyM7MqUkw313iylsMMYDJwrqS/Juuy+gQwhyzJfKdQpJfTRB/xwZbJX+MKSTsl7Wxvb++jNmZmNhSK6eb6c+DNiGiPiPeBHwN/FhFHIuJkRJwCvkc2pgFZ6+HiXPmpZN1iB9N+z3i3Mqkr7Xygo49zdRMRayNiXkTMmzhx0DPbzEastmMn+NIj22g7fqLSl2I1qphkcgC4UtI5aRxjAbAnjYEUXAfsSvubgaY0Q2sG2UD79og4DByXdGU6zy3As7kyhZla1wMvpXGV54GFksanFtLCFDOzMlqzdR879new5sV9lb4Uq1H9PmcSES2SNgI/B7qAV4G1wPclzSHrdtoP3JqO3y1pA/BGOn5lRJxMp7sNeAw4G9iSNoBHgScktZK1SJrSuTok3QfsSMfdGxEdpVTYzE677O4tdHad+uDnJ1sO8GTLAcY0jGLv6msqeGVWa1Rv74CfN29e+KFFs+K0HTvB6uf28MLudzjx/inGjh7Fotkf564vfpJJ542t9OXZMJL0SkTMG2x5r81lNoJNGjeW88Y00Nl1ijENo+jsOsV5YxqcSGzA6m45FTMbmN++18lN8y/hxsZpPLX9AO0ehLdBcDdXTtuxE9y+/lUevPEK/2VmZiOKu7nKyDNazMwGx91ceEaL2UC5FW89uWUCvPzNq7l2zmTGjs7+c4wdPYolcybz8reurvCVmVUnt+KtJ7dM8IwWs2K5FW9n4pZJUpjRsukrV3HT/Etof6+z0pdkVnXcirczccskeeTm05MYVi+9vIJXYla93Iq3M3EyMbMB8XMp1hs/Z2JmZn7OxMzMKs/JxMzMSuZkYmZmJXMyMTOzkjmZmJlZyZxMzMysZE4mZmZWMicTMzMrmZOJmZmVzMnEzMxKVlQykfQNSbsl7ZK0XtJYSRMkNUvalz7H546/U1KrpL2SFuXicyW9nr5bI0kpPkbSMyneIml6rsyy9G/sk7SsfFU3M7Ny6TeZSJoC/B0wLyIuB84CmoA7gK0RMRPYmn5G0qz0/WxgMfCQpLPS6R4GVgAz07Y4xZcDRyPiUuAB4P50rgnAKmA+0AisyictMzOrDsV2czUAZ0tqAM4BDgFLgHXp+3XA0rS/BHg6Ijoj4k2gFWiUdBEwLiK2Rba65OM9yhTOtRFYkFoti4DmiOiIiKNAM6cTkJmZVYl+k0lEvA18GzgAHAbejYgXgAsj4nA65jAwKRWZAryVO8XBFJuS9nvGu5WJiC7gXeCCPs5lZmZVpJhurvFkLYcZwGTgXEl/3VeRXmLRR3ywZfLXuELSTkk729vb+7g0MzMbCsV0c/058GZEtEfE+8CPgT8DjqSuK9JnWzr+IHBxrvxUsm6xg2m/Z7xbmdSVdj7Q0ce5uomItRExLyLmTZw4sYgqmZlZORWTTA4AV0o6J41jLAD2AJuBwuyqZcCzaX8z0JRmaM0gG2jfnrrCjku6Mp3nlh5lCue6Hngpjas8DyyUND61kBammJmZVZF+X9sbES2SNgI/B7qAV4G1wB8BGyQtJ0s4N6Tjd0vaALyRjl8ZESfT6W4DHgPOBrakDeBR4AlJrWQtkqZ0rg5J9wE70nH3RkRHSTU2M7Oy82t7zczMr+01M7PKczIxM7OSOZmYmVnJnEzMzErQduwEX3pkG23HT1T6UirKycTMrARrtu5jx/4O1ry4r9KXUlH9Tg02M7MPu+zuLXR2nfrg5ydbDvBkywHGNIxi7+prKnhlleGWiVkR3JVhPb38zau5ds5kxo7Ofo2OHT2KJXMm8/K3rq7wlVWGk4lZEdyVYT1NGjeW88Y00Nl1ijENo+jsOsV5YxqYdN7YSl9aRbiby6wP7sqwvvz2vU5umn8JNzZO46ntB2gfwS1XPwFv1oe2YydY/dweXtj9DifeP8XY0aNYNPvj3PXFT47Yv0CtPvkJeLMh5K4Ms+K4m8usH+7KMOufu7nMzMzdXGZmVnlOJmZmVjInEzMzK5mTiZmZlczJxEYsL5FiVj5OJlYWtfiL2UukmJWPnzOxssj/Yl593acqfTl98hIpZuXn50ysJD1/MRdU8y9mL5Fi9mF+zsQqqhaX4fYSKWbl128ykXSZpNdy2zFJX5d0j6S3c/Ev5MrcKalV0l5Ji3LxuZJeT9+tkaQUHyPpmRRvkTQ9V2aZpH1pW1be6lupavUXc2GJlE1fuYqb5l9C+3udlb4ks5rW75hJROwF5gBIOgt4G9gEfBl4ICK+nT9e0iygCZgNTAZelPQnEXESeBhYAfwT8BywGNgCLAeORsSlkpqA+4G/lDQBWAXMAwJ4RdLmiDhacs2tbGpx7apHbj7dml+99PIKXsnQaTt2gtvXv8qDN15R9cndat9AB+AXAL+OiN+kRkVvlgBPR0Qn8KakVqBR0n5gXERsA5D0OLCULJksAe5J5TcCD6ZWyyKgOSI6UplmsgS0foDXbUNoJPxirkW1NCnCat9Ak0kT3X+R3y7pFmAn8B9Ti2EKWcuj4GCKvZ/2e8ZJn28BRESXpHeBC/LxXsp8QNIKshYP06ZNG2CVzOqLZ6tZJRQ9AC/pI8C1wH9LoYeBT5B1gR0GvlM4tJfi0Ud8sGVOByLWRsS8iJg3ceLEM9bBbCSoxUkRVvsGMpvrGuDnEXEEICKORMTJiDgFfA9oTMcdBC7OlZsKHErxqb3Eu5WR1ACcD3T0cS4zO4NanRRhtW0gyeSvyHVxSboo9911wK60vxloSjO0ZgAzge0RcRg4LunKNB5yC/Bsrkxhptb1wEuRPQDzPLBQ0nhJ44GFKWZmffBsNRtuRY2ZSDoH+Dxway78D5LmkHU77S98FxG7JW0A3gC6gJVpJhfAbcBjwNlkA+9bUvxR4Ik0WN9BNjZDRHRIug/YkY67tzAYb2Zn5kkRNtz8BLyZmfkJeDMzqzwnEzMzK5mTiZmZlczJxMzMSuZkYmZmJXMyMTOzkjmZmJlZyZxMzMysZE4mZmZWMicTMzMrmZOJmZmVzMnErIa0HTvBlx7ZRlsNvBrZRhYnE7Makn8Vr1k1Gehre82sAvwqXqt2bpmY1QC/iteqnZOJWQ3wq3it2rmby6xGFF7Fe2PjNJ7afoB2D8JbFfGbFs3MzG9aNDOzynMyMTOzkjmZmJlZyfpNJpIuk/Rabjsm6euSJkhqlrQvfY7PlblTUqukvZIW5eJzJb2evlsjSSk+RtIzKd4iaXquzLL0b+yTtKy81Tczs3LoN5lExN6ImBMRc4C5wP8DNgF3AFsjYiawNf2MpFlAEzAbWAw8JOmsdLqHgRXAzLQtTvHlwNGIuBR4ALg/nWsCsAqYDzQCq/JJy8zMqsNAu7kWAL+OiN8AS4B1Kb4OWJr2lwBPR0RnRLwJtAKNki4CxkXEtsimkD3eo0zhXBuBBanVsghojoiOiDgKNHM6AZnZCOZ1yqrLQJNJE7A+7V8YEYcB0uekFJ8CvJUrczDFpqT9nvFuZSKiC3gXuKCPc5nZCOd1yqpL0Q8tSvoIcC1wZ3+H9hKLPuKDLZO/thVk3WdMmzatn8szs1rmdcqq00BaJtcAP4+II+nnI6nrivTZluIHgYtz5aYCh1J8ai/xbmUkNQDnAx19nKubiFgbEfMiYt7EiRMHUCUzqzVep6w6DSSZ/BWnu7gANgOF2VXLgGdz8aY0Q2sG2UD79tQVdlzSlWk85JYeZQrnuh54KY2rPA8slDQ+DbwvTDEzG6G8Tll1KqqbS9I5wOeBW3Phvwc2SFoOHABuAIiI3ZI2AG8AXcDKiDiZytwGPAacDWxJG8CjwBOSWslaJE3pXB2S7gN2pOPujYiOQdTTzOqI1ymrPl6by8zMvDaXmVkxPJV4aDmZmNmI4KnEQ8vvMxlB2o6d4Pb1r/LgjVd4sNJGDE8lHh5umYwg/svMRiJPJR4ebpmMAP7LzEYyTyUeHm6ZjACD+cvMg5VWTwpTiTd95Spumn8J7e91VvqS6o5bJiPAYP4yy3eJrb7uU8N4tWbl98jNp2e8rl56eQWvpH45mYwQxT7k5S4xMxsMP7Ro3bQdO8Hq5/bwwu53OPH+KcaOHsWi2R/nri9+0n3MZnXMDy1aWXmw0swGw91c9iFe98jMBsrdXGZm5m4uMzOrPCcTMzMrmZOJmZmVzMlkGPhpcjOrd04mw8ALLJpZvfPU4CHkp8nNbKRwy2QIeelrMxspnEyGkJ8mN7ORwslkiA106WsP1ptZLSoqmUj6qKSNkn4laY+kz0i6R9Lbkl5L2xdyx98pqVXSXkmLcvG5kl5P362RpBQfI+mZFG+RND1XZpmkfWlbVr6qD49Hbp7H6qWXM2vyOFYvvbzbUti98WC9mdWiopZTkbQOeDkivi/pI8A5wNeB9yLi2z2OnQWsBxqBycCLwJ9ExElJ24GvAf8EPAesiYgtkr4C/OuI+FtJTcB1EfGXkiYAO4F5QACvAHMj4uiZrrVWl1PpOVhf4MF6MxsOQ76ciqRxwGeBRwEi4g8R8bs+iiwBno6Izoh4E2gFGiVdBIyLiG2RZbDHgaW5MuvS/kZgQWq1LAKaI6IjJZBmYPGAa1kDPFhvZrWsmG6uPwbagR9KelXS9yWdm767XdIvJf1A0vgUmwK8lSt/MMWmpP2e8W5lIqILeBe4oI9z1R0P1ptZLSsmmTQAnwYejogrgN8DdwAPA58A5gCHge+k49XLOaKP+GDLfEDSCkk7Je1sb2/voyrVze+pNrNaVcxDiweBgxHRkn7eCNwREUcKB0j6HvA/c8dfnCs/FTiU4lN7iefLHJTUAJwPdKT453qU+VnPC4yItcBayMZMiqhTydqOneD29a/y4I1XlK314PdUm1mt6rdlEhHvAG9JuiyFFgBvpDGQguuAXWl/M9CUZmjNAGYC2yPiMHBc0pVpPOQW4NlcmcJMreuBl9K4yvPAQknjUzfawhSrOM+6MiuOp7uPDMUup/JV4EdpJte/AF8G1kiaQ9bttB+4FSAidkvaALwBdAErI+JkOs9twGPA2cCWtEE2uP+EpFayFklTOleHpPuAHem4eyOiY3BVLQ8vkWI2MPk/vFZf96lKX44NEb9pcYDajp1g9XN7eGH3O5x4/xRjR49i0eyPc9cXP+nBcrMcT3evLX7T4jDzrCuz4ni6+8jiVYMHoTDr6sbGaTy1/QDt7gs2+xD/4TWyOJkMgmddWbkMxazAauI/vEYOj5mYVdDdm17nR9sPcFPjNA9OW0WVOmbilolZBXhWoNUbD8CblVkxz1V4cNrqjZOJWZkV80CrB6et3riby6xMBtp15cHpD6v3CQn1zAPwZmXiB1pL5wkJleMBeLMq4a6rwfOEhNrnMROzMvJrBAbHExJqn1smVtVqrQ/dD7QOjlt1tc8tExt2A1mS3Ev9jxxu1dU2D8DbsCtmkNUrzpoNr1IH4J1MbNgMJEF4ZpTZ8PIS9FYzBjLI6j50s9riAXgbNgNNEH6oz6x2OJnYsBpIgvDMKLPa4TETMzPzmImZmVWek4mZWQ8DeRbKMk4mZmY9+GHZgSsqmUj6qKSNkn4laY+kz0iaIKlZ0r70OT53/J2SWiXtlbQoF58r6fX03RpJSvExkp5J8RZJ03NllqV/Y5+kZeWruplZd5fdvYXpd/yEJ1sOEJEtODn9jp9w2d1bKn1pVa/Ylsl3gZ9GxL8C/hTYA9wBbI2ImcDW9DOSZgFNwGxgMfCQpLPSeR4GVgAz07Y4xZcDRyPiUuAB4P50rgnAKmA+0AisyictM7Ny8oKTg9dvMpE0Dvgs8ChARPwhIn4HLAHWpcPWAUvT/hLg6YjojIg3gVagUdJFwLiI2BbZFLLHe5QpnGsjsCC1WhYBzRHRERFHgWZOJyAzs7Lyw7KDV0zL5I+BduCHkl6V9H1J5wIXRsRhgPQ5KR0/BXgrV/5gik1J+z3j3cpERBfwLnBBH+fqRtIKSTsl7Wxvby+iSmZmvfOCk4NTzEOLDcCnga9GRIuk75K6tM5AvcSij/hgy5wORKwF1kL2nEkf12Zm1ic/LDs4xbRMDgIHI6Il/byRLLkcSV1XpM+23PEX58pPBQ6l+NRe4t3KSGoAzgc6+jiXmZlVkX6TSUS8A7wl6bIUWgC8AWwGCrOrlgHPpv3NQFOaoTWDbKB9e+oKOy7pyjQeckuPMoVzXQ+8lMZVngcWShqfBt4XppiZmVWRYtfm+irwI0kfAf4F+DJZItogaTlwALgBICJ2S9pAlnC6gJURcTKd5zbgMeBsYEvaIBvcf0JSK1mLpCmdq0PSfcCOdNy9EdExyLqamdkQ8dpcZmbmtbnMzKzynEzMzOpApdcTczIxM6sDlV5PzC/HMjOrYZfdvYXOrlMf/PxkywGebDnAmIZR7F19zbBdh1smZmY1rFrWE3MyMTOrYdWynpi7uczMalxhPbEbG6fx1PYDtFdgEN7PmZiZmZ8zMTOzynMyMTOzkjmZmJlZyZxMzMysZE4mZmZWMieTGlfp9XjMzMDJpOZVej0eMzPwQ4s1q1rW4zEzA7dMala1rMdjZgZOJjWrWtbjMTMDd3PVtGpYj8fMDLw2l5mZ4bW5zMysChSVTCTtl/S6pNck7UyxeyS9nWKvSfpC7vg7JbVK2itpUS4+N52nVdIaSUrxMZKeSfEWSdNzZZZJ2pe2ZeWquJnZcKvn58IG0jK5OiLm9GgGPZBicyLiOQBJs4AmYDawGHhI0lnp+IeBFcDMtC1O8eXA0Yi4FHgAuD+dawKwCpgPNAKrJI0fRD3NzCqunp8LG4oB+CXA0xHRCbwpqRVolLQfGBcR2wAkPQ4sBbakMvek8huBB1OrZRHQHBEdqUwzWQJaPwTXbWY2JEbCc2HFtkwCeEHSK5JW5OK3S/qlpB/kWgxTgLdyxxxMsSlpv2e8W5mI6ALeBS7o41xmZjVjJDwXVmwyuSoiPg1cA6yU9FmyLqtPAHOAw8B30rHqpXz0ER9smQ9IWiFpp6Sd7e3tfVbEzGy4jYTnwopKJhFxKH22AZuAxog4EhEnI+IU8D2yMQ3IWg8X54pPBQ6l+NRe4t3KSGoAzgc6+jhXz+tbGxHzImLexIkTi6mSmdmwKjwXtukrV3HT/Etof6+z3zK1NGDfbzKRdK6k8wr7wEJgl6SLcoddB+xK+5uBpjRDawbZQPv2iDgMHJd0ZRoPuQV4NlemMFPreuClyB6AeR5YKGl86kZbmGJmZjXlkZvnsXrp5cyaPI7VSy/nkZv7f6SjlgbsixmAvxDYlGbxNgBPRcRPJT0haQ5Zt9N+4FaAiNgtaQPwBtAFrIyIk+lctwGPAWeTDbxvSfFHgSfSYH0H2WwwIqJD0n3AjnTcvYXBeDOzelWLA/Z+At7MrMq0HTvB6uf28MLudzjx/inGjh7Fotkf564vfnLIxln8BLyZWZ2pxQF7L/RoZlaFam0hV3dzmZmZu7nMzKzynEzMzKxkTiZmZlYyJxMzMyuZk4mZmZXMycTMzErmZGJmZiVzMjEzs5I5mZiZWcmcTKxu1NK7H8zqjZOJ1Y1aeveDWb3xQo9W82rx3Q9m9cYtE6t5L3/zaq6dM5mxo7P/nceOHsWSOZN5+VtXV/jKzEYOJxOrebX47gezeuNuLqsLtfbuB7N64/eZmJmZ32diZmaV52RiZmYlKyqZSNov6XVJr0namWITJDVL2pc+x+eOv1NSq6S9khbl4nPTeVolrZGkFB8j6ZkUb5E0PVdmWfo39klaVq6Km5lZ+QykZXJ1RMzJ9andAWyNiJnA1vQzkmYBTcBsYDHwkKSzUpmHgRXAzLQtTvHlwNGIuBR4ALg/nWsCsAqYDzQCq/JJy8zMqkMp3VxLgHVpfx2wNBd/OiI6I+JNoBVolHQRMC4itkU26v94jzKFc20EFqRWyyKgOSI6IuIo0MzpBGRmZlWi2GQSwAuSXpG0IsUujIjDAOlzUopPAd7KlT2YYlPSfs94tzIR0QW8C1zQx7nMzKyKFPucyVURcUjSJKBZ0q/6OFa9xKKP+GDLnP4HswRXSHLvSdrbx/XVgo8Bv630RQyxeq9jvdcP6r+OI61+l5RysqKSSUQcSp9tkjaRjV8ckXRRRBxOXVht6fCDwMW54lOBQyk+tZd4vsxBSQ3A+UBHin+uR5mf9XJ9a4G1xdSlFkjaWcp871pQ73Ws9/pB/dfR9RuYfru5JJ0r6bzCPrAQ2AVsBgqzq5YBz6b9zUBTmqE1g2ygfXvqCjsu6co0HnJLjzKFc10PvJTGVZ4HFkoanwbeF6aYmZlVkWJaJhcCm9Is3gbgqYj4qaQdwAZJy4EDwA0AEbFb0gbgDaALWBkRJ9O5bgMeA84GtqQN4FHgCUmtZC2SpnSuDkn3ATvScfdGREcJ9TUzsyFQd8up1ANJK1LXXd2q9zrWe/2g/uvo+g3wfE4mZmZWKi+nYmZmJXMyGSaSfiCpTdKuXOxPJW1LS8z8D0njUvwjkn6Y4r+Q9LlcmZ+lZWpeS9ukXv65YSfpYkn/S9IeSbslfS3Fy7bsTiWVuX51cQ8lXZCOf0/Sgz3OVfP3sJ/6Vd09HET9Pq/s2cHX0+e/z51r4PcvIrwNwwZ8Fvg0sCsX2wH8u7T/N8B9aX8l8MO0Pwl4BRiVfv4ZMK/S9emlfhcBn0775wH/DMwC/gG4I8XvAO5P+7OAXwBjgBnAr4Gz0nfbgc+QPWe0BbimzupXL/fwXODfAH8LPNjjXPVwD/uqX9Xdw0HU7wpgctq/HHi7lPvnlskwiYh/JJuplncZ8I9pvxn4i7Q/i2y9MyKiDfgdUNXz3SPicET8PO0fB/aQrVZQzmV3KqZc9Rveqx6YgdYxIn4fEf8b6PYmsnq5h2eqX7UaRP1ejfQMIbAbGKvskY5B3T8nk8raBVyb9m/g9MOevwCWSGpQ9qzOXLo/CPrD1LT+T9XQfdCTslWfrwBaKO+yO1WhxPoV1MM9PJN6uYf9qdp7OIj6/QXwakR0Msj752RSWX8DrJT0Clmz9A8p/gOyG7gT+C/A/yV7Zgfgpoj4FPBv03bzsF5xPyT9EfDfga9HxLG+Du0lVvQSOpVShvpB/dzDM56il1gt3sO+VO09HGj9JM0mW6n91kKol8P6vX9OJhUUEb+KiIURMRdYT9avTkR0RcQ3IlvyfwnwUWBf+u7t9HkceIoq6jqRNJrsf+IfRcSPU/hIajYXuj9KWXanospUv3q6h2dSL/fwjKr1Hg60fpKmApuAWyLi1yk8qPvnZFJBhRkgkkYBdwP/Nf18jrKla5D0eaArIt5I3V4fS/HRwH8g6yqruNTMfxTYExH/OfdVOZfdqZhy1a/O7mGv6ugenuk8VXkPB1o/SR8FfgLcGRH/p3DwoO9fpWYejLSNrOVxGHifLPMvB75GNuPin4G/5/RDpNOBvWQDaC8Cl6T4uWQzu35JNmD2XdIMoUpvZLNeIl3ba2n7AtmrBLaStay2AhNyZe4ia43tJTdbhGyywa703YOF/y71UL86vIf7ySaWvJf+v55VZ/fwQ/Wr1ns40PqR/QH7+9yxrwGTBnv//AS8mZmVzN1cZmZWMicTMzMrmZOJmZmVzMnEzMxK5mRiZmYlczIxM7OSOZmYmVnJnEzMzKxk/x+qftJYVEr3+gAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "yearly_incidence.plot(style='*')" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "2002 516689\n", "2018 542312\n", "2017 551041\n", "1996 564901\n", "2019 584066\n", "2015 604382\n", "2000 617597\n", "2001 619041\n", "2012 624573\n", "2005 628464\n", "2006 632833\n", "2011 642368\n", "1993 643387\n", "1995 652478\n", "1994 661409\n", "1998 677775\n", "1997 683434\n", "2014 685769\n", "2013 698332\n", "2007 717352\n", "2008 749478\n", "1999 756456\n", "2003 758363\n", "2004 777388\n", "2016 782114\n", "2010 829911\n", "1992 832939\n", "2009 842373\n", "dtype: int64" ] }, "execution_count": 24, "metadata": {}, "output_type": "execute_result" } ], "source": [ "yearly_incidence.sort_values()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }