From c3b34a3ea2ea8cc0e1a600ef26dfaa3f23e2af05 Mon Sep 17 00:00:00 2001 From: 0ac1e0d080ea7489a9416a52ce02c9df <0ac1e0d080ea7489a9416a52ce02c9df@app-learninglab.inria.fr> Date: Tue, 1 Dec 2020 16:14:13 +0000 Subject: [PATCH] exercice premier essai --- module3/exo1/analyse-syndrome-grippal.ipynb | 2218 ++++++++++++++++++- 1 file changed, 2169 insertions(+), 49 deletions(-) diff --git a/module3/exo1/analyse-syndrome-grippal.ipynb b/module3/exo1/analyse-syndrome-grippal.ipynb index 8d960bc..c4706d3 100644 --- a/module3/exo1/analyse-syndrome-grippal.ipynb +++ b/module3/exo1/analyse-syndrome-grippal.ipynb @@ -9,7 +9,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ @@ -28,12 +28,12 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 14, "metadata": {}, "outputs": [], "source": [ - "#data_url = \"http://www.sentiweb.fr/datasets/incidence-PAY-3.csv\"\n", - "data_local = \"/Users/cointepm/Documents/incidence-PAY-3.csv\"" + "data_url = \"http://www.sentiweb.fr/datasets/incidence-PAY-3.csv\"\n", + "#data_local = 'incidence-PAY-3.csv'" ] }, { @@ -60,31 +60,979 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 15, "metadata": {}, "outputs": [ { - "ename": "FileNotFoundError", - "evalue": "File b'/Users/cointepm/Documents/incidence-PAY-3.csv' does not exist", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mFileNotFoundError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;31m#raw_data = pd.read_csv(data_url, skiprows=1)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mraw_data\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mread_csv\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata_local\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mskiprows\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3\u001b[0m \u001b[0mraw_data\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/io/parsers.py\u001b[0m in \u001b[0;36mparser_f\u001b[0;34m(filepath_or_buffer, sep, delimiter, header, names, index_col, usecols, squeeze, prefix, mangle_dupe_cols, dtype, engine, converters, true_values, false_values, skipinitialspace, skiprows, nrows, na_values, keep_default_na, na_filter, verbose, skip_blank_lines, parse_dates, infer_datetime_format, keep_date_col, date_parser, dayfirst, iterator, chunksize, compression, thousands, decimal, lineterminator, quotechar, quoting, escapechar, comment, encoding, dialect, tupleize_cols, error_bad_lines, warn_bad_lines, skipfooter, skip_footer, doublequote, delim_whitespace, as_recarray, compact_ints, use_unsigned, low_memory, buffer_lines, memory_map, float_precision)\u001b[0m\n\u001b[1;32m 707\u001b[0m skip_blank_lines=skip_blank_lines)\n\u001b[1;32m 708\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 709\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0m_read\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfilepath_or_buffer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 710\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 711\u001b[0m \u001b[0mparser_f\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__name__\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/io/parsers.py\u001b[0m in \u001b[0;36m_read\u001b[0;34m(filepath_or_buffer, kwds)\u001b[0m\n\u001b[1;32m 447\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 448\u001b[0m \u001b[0;31m# Create the parser.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 449\u001b[0;31m \u001b[0mparser\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mTextFileReader\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfilepath_or_buffer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 450\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 451\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mchunksize\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0miterator\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/io/parsers.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, f, engine, **kwds)\u001b[0m\n\u001b[1;32m 816\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0moptions\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'has_index_names'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mkwds\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'has_index_names'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 817\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 818\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_make_engine\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mengine\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 819\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 820\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mclose\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/io/parsers.py\u001b[0m in \u001b[0;36m_make_engine\u001b[0;34m(self, engine)\u001b[0m\n\u001b[1;32m 1047\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_make_engine\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mengine\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'c'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1048\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mengine\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m'c'\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1049\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_engine\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mCParserWrapper\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mf\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0moptions\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1050\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1051\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mengine\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m'python'\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/io/parsers.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, src, **kwds)\u001b[0m\n\u001b[1;32m 1693\u001b[0m \u001b[0mkwds\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'allow_leading_cols'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mindex_col\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1694\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1695\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_reader\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mparsers\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mTextReader\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msrc\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1696\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1697\u001b[0m \u001b[0;31m# XXX\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32mpandas/_libs/parsers.pyx\u001b[0m in \u001b[0;36mpandas._libs.parsers.TextReader.__cinit__\u001b[0;34m()\u001b[0m\n", - "\u001b[0;32mpandas/_libs/parsers.pyx\u001b[0m in \u001b[0;36mpandas._libs.parsers.TextReader._setup_parser_source\u001b[0;34m()\u001b[0m\n", - "\u001b[0;31mFileNotFoundError\u001b[0m: File b'/Users/cointepm/Documents/incidence-PAY-3.csv' does not exist" - ] + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
020204731918015348.023012.02923.035.0FRFrance
120204632480120503.029099.03831.045.0FRFrance
220204534251636857.048175.06556.074.0FRFrance
320204434456738521.050613.06859.077.0FRFrance
420204334373737523.049951.06657.075.0FRFrance
520204233514529812.040478.05345.061.0FRFrance
620204132787723206.032548.04235.049.0FRFrance
720204032044316381.024505.03125.037.0FRFrance
820203931981015900.023720.03024.036.0FRFrance
920203832556221142.029982.03932.046.0FRFrance
1020203731848514649.022321.02822.034.0FRFrance
112020363103907646.013134.01612.020.0FRFrance
12202035399186842.012994.01510.020.0FRFrance
13202034360843090.09078.094.014.0FRFrance
14202033361063411.08801.095.013.0FRFrance
15202032359183330.08506.095.013.0FRFrance
16202031343512269.06433.074.010.0FRFrance
17202030381795442.010916.0128.016.0FRFrance
18202029386875860.011514.0139.017.0FRFrance
19202028383405701.010979.0139.017.0FRFrance
20202027340662406.05726.063.09.0FRFrance
21202026340392389.05689.063.09.0FRFrance
22202025328531488.04218.042.06.0FRFrance
23202024330581690.04426.053.07.0FRFrance
24202023341682468.05868.063.09.0FRFrance
25202022335801947.05213.053.07.0FRFrance
26202021361144026.08202.096.012.0FRFrance
27202020393156775.011855.01410.018.0FRFrance
282020193116798722.014636.01814.022.0FRFrance
2920201831639812851.019945.02520.030.0FRFrance
.................................
185219852132609619621.032571.04735.059.0FRFrance
185319852032789620885.034907.05138.064.0FRFrance
185419851934315432821.053487.07859.097.0FRFrance
185519851834055529935.051175.07455.093.0FRFrance
185619851733405324366.043740.06244.080.0FRFrance
185719851635036236451.064273.09166.0116.0FRFrance
185819851536388145538.082224.011683.0149.0FRFrance
18591985143134545114400.0154690.0244207.0281.0FRFrance
18601985133197206176080.0218332.0357319.0395.0FRFrance
18611985123245240223304.0267176.0445405.0485.0FRFrance
18621985113276205252399.0300011.0501458.0544.0FRFrance
18631985103353231326279.0380183.0640591.0689.0FRFrance
18641985093369895341109.0398681.0670618.0722.0FRFrance
18651985083389886359529.0420243.0707652.0762.0FRFrance
18661985073471852432599.0511105.0855784.0926.0FRFrance
18671985063565825518011.0613639.01026939.01113.0FRFrance
18681985053637302592795.0681809.011551074.01236.0FRFrance
18691985043424937390794.0459080.0770708.0832.0FRFrance
18701985033213901174689.0253113.0388317.0459.0FRFrance
187119850239758680949.0114223.0177147.0207.0FRFrance
187219850138548965918.0105060.0155120.0190.0FRFrance
187319845238483060602.0109058.0154110.0198.0FRFrance
1874198451310172680242.0123210.0185146.0224.0FRFrance
18751984503123680101401.0145959.0225184.0266.0FRFrance
1876198449310107381684.0120462.0184149.0219.0FRFrance
187719844837862060634.096606.0143110.0176.0FRFrance
187819844737202954274.089784.013199.0163.0FRFrance
187919844638733067686.0106974.0159123.0195.0FRFrance
18801984453135223101414.0169032.0246184.0308.0FRFrance
188119844436842220056.0116788.012537.0213.0FRFrance
\n", + "

1882 rows × 10 columns

\n", + "
" + ], + "text/plain": [ + " week indicator inc inc_low inc_up inc100 inc100_low \\\n", + "0 202047 3 19180 15348.0 23012.0 29 23.0 \n", + "1 202046 3 24801 20503.0 29099.0 38 31.0 \n", + "2 202045 3 42516 36857.0 48175.0 65 56.0 \n", + "3 202044 3 44567 38521.0 50613.0 68 59.0 \n", + "4 202043 3 43737 37523.0 49951.0 66 57.0 \n", + "5 202042 3 35145 29812.0 40478.0 53 45.0 \n", + "6 202041 3 27877 23206.0 32548.0 42 35.0 \n", + "7 202040 3 20443 16381.0 24505.0 31 25.0 \n", + "8 202039 3 19810 15900.0 23720.0 30 24.0 \n", + "9 202038 3 25562 21142.0 29982.0 39 32.0 \n", + "10 202037 3 18485 14649.0 22321.0 28 22.0 \n", + "11 202036 3 10390 7646.0 13134.0 16 12.0 \n", + "12 202035 3 9918 6842.0 12994.0 15 10.0 \n", + "13 202034 3 6084 3090.0 9078.0 9 4.0 \n", + "14 202033 3 6106 3411.0 8801.0 9 5.0 \n", + "15 202032 3 5918 3330.0 8506.0 9 5.0 \n", + "16 202031 3 4351 2269.0 6433.0 7 4.0 \n", + "17 202030 3 8179 5442.0 10916.0 12 8.0 \n", + "18 202029 3 8687 5860.0 11514.0 13 9.0 \n", + "19 202028 3 8340 5701.0 10979.0 13 9.0 \n", + "20 202027 3 4066 2406.0 5726.0 6 3.0 \n", + "21 202026 3 4039 2389.0 5689.0 6 3.0 \n", + "22 202025 3 2853 1488.0 4218.0 4 2.0 \n", + "23 202024 3 3058 1690.0 4426.0 5 3.0 \n", + "24 202023 3 4168 2468.0 5868.0 6 3.0 \n", + "25 202022 3 3580 1947.0 5213.0 5 3.0 \n", + "26 202021 3 6114 4026.0 8202.0 9 6.0 \n", + "27 202020 3 9315 6775.0 11855.0 14 10.0 \n", + "28 202019 3 11679 8722.0 14636.0 18 14.0 \n", + "29 202018 3 16398 12851.0 19945.0 25 20.0 \n", + "... ... ... ... ... ... ... ... \n", + "1852 198521 3 26096 19621.0 32571.0 47 35.0 \n", + "1853 198520 3 27896 20885.0 34907.0 51 38.0 \n", + "1854 198519 3 43154 32821.0 53487.0 78 59.0 \n", + "1855 198518 3 40555 29935.0 51175.0 74 55.0 \n", + "1856 198517 3 34053 24366.0 43740.0 62 44.0 \n", + "1857 198516 3 50362 36451.0 64273.0 91 66.0 \n", + "1858 198515 3 63881 45538.0 82224.0 116 83.0 \n", + "1859 198514 3 134545 114400.0 154690.0 244 207.0 \n", + "1860 198513 3 197206 176080.0 218332.0 357 319.0 \n", + "1861 198512 3 245240 223304.0 267176.0 445 405.0 \n", + "1862 198511 3 276205 252399.0 300011.0 501 458.0 \n", + "1863 198510 3 353231 326279.0 380183.0 640 591.0 \n", + "1864 198509 3 369895 341109.0 398681.0 670 618.0 \n", + "1865 198508 3 389886 359529.0 420243.0 707 652.0 \n", + "1866 198507 3 471852 432599.0 511105.0 855 784.0 \n", + "1867 198506 3 565825 518011.0 613639.0 1026 939.0 \n", + "1868 198505 3 637302 592795.0 681809.0 1155 1074.0 \n", + "1869 198504 3 424937 390794.0 459080.0 770 708.0 \n", + "1870 198503 3 213901 174689.0 253113.0 388 317.0 \n", + "1871 198502 3 97586 80949.0 114223.0 177 147.0 \n", + "1872 198501 3 85489 65918.0 105060.0 155 120.0 \n", + "1873 198452 3 84830 60602.0 109058.0 154 110.0 \n", + "1874 198451 3 101726 80242.0 123210.0 185 146.0 \n", + "1875 198450 3 123680 101401.0 145959.0 225 184.0 \n", + "1876 198449 3 101073 81684.0 120462.0 184 149.0 \n", + "1877 198448 3 78620 60634.0 96606.0 143 110.0 \n", + "1878 198447 3 72029 54274.0 89784.0 131 99.0 \n", + "1879 198446 3 87330 67686.0 106974.0 159 123.0 \n", + "1880 198445 3 135223 101414.0 169032.0 246 184.0 \n", + "1881 198444 3 68422 20056.0 116788.0 125 37.0 \n", + "\n", + " inc100_up geo_insee geo_name \n", + "0 35.0 FR France \n", + "1 45.0 FR France \n", + "2 74.0 FR France \n", + "3 77.0 FR France \n", + "4 75.0 FR France \n", + "5 61.0 FR France \n", + "6 49.0 FR France \n", + "7 37.0 FR France \n", + "8 36.0 FR France \n", + "9 46.0 FR France \n", + "10 34.0 FR France \n", + "11 20.0 FR France \n", + "12 20.0 FR France \n", + "13 14.0 FR France \n", + "14 13.0 FR France \n", + "15 13.0 FR France \n", + "16 10.0 FR France \n", + "17 16.0 FR France \n", + "18 17.0 FR France \n", + "19 17.0 FR France \n", + "20 9.0 FR France \n", + "21 9.0 FR France \n", + "22 6.0 FR France \n", + "23 7.0 FR France \n", + "24 9.0 FR France \n", + "25 7.0 FR France \n", + "26 12.0 FR France \n", + "27 18.0 FR France \n", + "28 22.0 FR France \n", + "29 30.0 FR France \n", + "... ... ... ... \n", + "1852 59.0 FR France \n", + "1853 64.0 FR France \n", + "1854 97.0 FR France \n", + "1855 93.0 FR France \n", + "1856 80.0 FR France \n", + "1857 116.0 FR France \n", + "1858 149.0 FR France \n", + "1859 281.0 FR France \n", + "1860 395.0 FR France \n", + "1861 485.0 FR France \n", + "1862 544.0 FR France \n", + "1863 689.0 FR France \n", + "1864 722.0 FR France \n", + "1865 762.0 FR France \n", + "1866 926.0 FR France \n", + "1867 1113.0 FR France \n", + "1868 1236.0 FR France \n", + "1869 832.0 FR France \n", + "1870 459.0 FR France \n", + "1871 207.0 FR France \n", + "1872 190.0 FR France \n", + "1873 198.0 FR France \n", + "1874 224.0 FR France \n", + "1875 266.0 FR France \n", + "1876 219.0 FR France \n", + "1877 176.0 FR France \n", + "1878 163.0 FR France \n", + "1879 195.0 FR France \n", + "1880 308.0 FR France \n", + "1881 213.0 FR France \n", + "\n", + "[1882 rows x 10 columns]" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" } ], "source": [ - "#raw_data = pd.read_csv(data_url, skiprows=1)\n", - "raw_data = pd.read_csv(data_local, skiprows=1)\n", + "raw_data = pd.read_csv(data_url, skiprows=1)\n", + "#raw_data = pd.read_csv(data_local, skiprows=1)\n", "raw_data" ] }, @@ -97,9 +1045,73 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 16, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
164519891930NaNNaN0NaNNaNFRFrance
\n", + "
" + ], + "text/plain": [ + " week indicator inc inc_low inc_up inc100 inc100_low inc100_up \\\n", + "1645 198919 3 0 NaN NaN 0 NaN NaN \n", + "\n", + " geo_insee geo_name \n", + "1645 FR France " + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "raw_data[raw_data.isnull().any(axis=1)]" ] @@ -113,9 +1125,976 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 17, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
020204731918015348.023012.02923.035.0FRFrance
120204632480120503.029099.03831.045.0FRFrance
220204534251636857.048175.06556.074.0FRFrance
320204434456738521.050613.06859.077.0FRFrance
420204334373737523.049951.06657.075.0FRFrance
520204233514529812.040478.05345.061.0FRFrance
620204132787723206.032548.04235.049.0FRFrance
720204032044316381.024505.03125.037.0FRFrance
820203931981015900.023720.03024.036.0FRFrance
920203832556221142.029982.03932.046.0FRFrance
1020203731848514649.022321.02822.034.0FRFrance
112020363103907646.013134.01612.020.0FRFrance
12202035399186842.012994.01510.020.0FRFrance
13202034360843090.09078.094.014.0FRFrance
14202033361063411.08801.095.013.0FRFrance
15202032359183330.08506.095.013.0FRFrance
16202031343512269.06433.074.010.0FRFrance
17202030381795442.010916.0128.016.0FRFrance
18202029386875860.011514.0139.017.0FRFrance
19202028383405701.010979.0139.017.0FRFrance
20202027340662406.05726.063.09.0FRFrance
21202026340392389.05689.063.09.0FRFrance
22202025328531488.04218.042.06.0FRFrance
23202024330581690.04426.053.07.0FRFrance
24202023341682468.05868.063.09.0FRFrance
25202022335801947.05213.053.07.0FRFrance
26202021361144026.08202.096.012.0FRFrance
27202020393156775.011855.01410.018.0FRFrance
282020193116798722.014636.01814.022.0FRFrance
2920201831639812851.019945.02520.030.0FRFrance
.................................
185219852132609619621.032571.04735.059.0FRFrance
185319852032789620885.034907.05138.064.0FRFrance
185419851934315432821.053487.07859.097.0FRFrance
185519851834055529935.051175.07455.093.0FRFrance
185619851733405324366.043740.06244.080.0FRFrance
185719851635036236451.064273.09166.0116.0FRFrance
185819851536388145538.082224.011683.0149.0FRFrance
18591985143134545114400.0154690.0244207.0281.0FRFrance
18601985133197206176080.0218332.0357319.0395.0FRFrance
18611985123245240223304.0267176.0445405.0485.0FRFrance
18621985113276205252399.0300011.0501458.0544.0FRFrance
18631985103353231326279.0380183.0640591.0689.0FRFrance
18641985093369895341109.0398681.0670618.0722.0FRFrance
18651985083389886359529.0420243.0707652.0762.0FRFrance
18661985073471852432599.0511105.0855784.0926.0FRFrance
18671985063565825518011.0613639.01026939.01113.0FRFrance
18681985053637302592795.0681809.011551074.01236.0FRFrance
18691985043424937390794.0459080.0770708.0832.0FRFrance
18701985033213901174689.0253113.0388317.0459.0FRFrance
187119850239758680949.0114223.0177147.0207.0FRFrance
187219850138548965918.0105060.0155120.0190.0FRFrance
187319845238483060602.0109058.0154110.0198.0FRFrance
1874198451310172680242.0123210.0185146.0224.0FRFrance
18751984503123680101401.0145959.0225184.0266.0FRFrance
1876198449310107381684.0120462.0184149.0219.0FRFrance
187719844837862060634.096606.0143110.0176.0FRFrance
187819844737202954274.089784.013199.0163.0FRFrance
187919844638733067686.0106974.0159123.0195.0FRFrance
18801984453135223101414.0169032.0246184.0308.0FRFrance
188119844436842220056.0116788.012537.0213.0FRFrance
\n", + "

1881 rows × 10 columns

\n", + "
" + ], + "text/plain": [ + " week indicator inc inc_low inc_up inc100 inc100_low \\\n", + "0 202047 3 19180 15348.0 23012.0 29 23.0 \n", + "1 202046 3 24801 20503.0 29099.0 38 31.0 \n", + "2 202045 3 42516 36857.0 48175.0 65 56.0 \n", + "3 202044 3 44567 38521.0 50613.0 68 59.0 \n", + "4 202043 3 43737 37523.0 49951.0 66 57.0 \n", + "5 202042 3 35145 29812.0 40478.0 53 45.0 \n", + "6 202041 3 27877 23206.0 32548.0 42 35.0 \n", + "7 202040 3 20443 16381.0 24505.0 31 25.0 \n", + "8 202039 3 19810 15900.0 23720.0 30 24.0 \n", + "9 202038 3 25562 21142.0 29982.0 39 32.0 \n", + "10 202037 3 18485 14649.0 22321.0 28 22.0 \n", + "11 202036 3 10390 7646.0 13134.0 16 12.0 \n", + "12 202035 3 9918 6842.0 12994.0 15 10.0 \n", + "13 202034 3 6084 3090.0 9078.0 9 4.0 \n", + "14 202033 3 6106 3411.0 8801.0 9 5.0 \n", + "15 202032 3 5918 3330.0 8506.0 9 5.0 \n", + "16 202031 3 4351 2269.0 6433.0 7 4.0 \n", + "17 202030 3 8179 5442.0 10916.0 12 8.0 \n", + "18 202029 3 8687 5860.0 11514.0 13 9.0 \n", + "19 202028 3 8340 5701.0 10979.0 13 9.0 \n", + "20 202027 3 4066 2406.0 5726.0 6 3.0 \n", + "21 202026 3 4039 2389.0 5689.0 6 3.0 \n", + "22 202025 3 2853 1488.0 4218.0 4 2.0 \n", + "23 202024 3 3058 1690.0 4426.0 5 3.0 \n", + "24 202023 3 4168 2468.0 5868.0 6 3.0 \n", + "25 202022 3 3580 1947.0 5213.0 5 3.0 \n", + "26 202021 3 6114 4026.0 8202.0 9 6.0 \n", + "27 202020 3 9315 6775.0 11855.0 14 10.0 \n", + "28 202019 3 11679 8722.0 14636.0 18 14.0 \n", + "29 202018 3 16398 12851.0 19945.0 25 20.0 \n", + "... ... ... ... ... ... ... ... \n", + "1852 198521 3 26096 19621.0 32571.0 47 35.0 \n", + "1853 198520 3 27896 20885.0 34907.0 51 38.0 \n", + "1854 198519 3 43154 32821.0 53487.0 78 59.0 \n", + "1855 198518 3 40555 29935.0 51175.0 74 55.0 \n", + "1856 198517 3 34053 24366.0 43740.0 62 44.0 \n", + "1857 198516 3 50362 36451.0 64273.0 91 66.0 \n", + "1858 198515 3 63881 45538.0 82224.0 116 83.0 \n", + "1859 198514 3 134545 114400.0 154690.0 244 207.0 \n", + "1860 198513 3 197206 176080.0 218332.0 357 319.0 \n", + "1861 198512 3 245240 223304.0 267176.0 445 405.0 \n", + "1862 198511 3 276205 252399.0 300011.0 501 458.0 \n", + "1863 198510 3 353231 326279.0 380183.0 640 591.0 \n", + "1864 198509 3 369895 341109.0 398681.0 670 618.0 \n", + "1865 198508 3 389886 359529.0 420243.0 707 652.0 \n", + "1866 198507 3 471852 432599.0 511105.0 855 784.0 \n", + "1867 198506 3 565825 518011.0 613639.0 1026 939.0 \n", + "1868 198505 3 637302 592795.0 681809.0 1155 1074.0 \n", + "1869 198504 3 424937 390794.0 459080.0 770 708.0 \n", + "1870 198503 3 213901 174689.0 253113.0 388 317.0 \n", + "1871 198502 3 97586 80949.0 114223.0 177 147.0 \n", + "1872 198501 3 85489 65918.0 105060.0 155 120.0 \n", + "1873 198452 3 84830 60602.0 109058.0 154 110.0 \n", + "1874 198451 3 101726 80242.0 123210.0 185 146.0 \n", + "1875 198450 3 123680 101401.0 145959.0 225 184.0 \n", + "1876 198449 3 101073 81684.0 120462.0 184 149.0 \n", + "1877 198448 3 78620 60634.0 96606.0 143 110.0 \n", + "1878 198447 3 72029 54274.0 89784.0 131 99.0 \n", + "1879 198446 3 87330 67686.0 106974.0 159 123.0 \n", + "1880 198445 3 135223 101414.0 169032.0 246 184.0 \n", + "1881 198444 3 68422 20056.0 116788.0 125 37.0 \n", + "\n", + " inc100_up geo_insee geo_name \n", + "0 35.0 FR France \n", + "1 45.0 FR France \n", + "2 74.0 FR France \n", + "3 77.0 FR France \n", + "4 75.0 FR France \n", + "5 61.0 FR France \n", + "6 49.0 FR France \n", + "7 37.0 FR France \n", + "8 36.0 FR France \n", + "9 46.0 FR France \n", + "10 34.0 FR France \n", + "11 20.0 FR France \n", + "12 20.0 FR France \n", + "13 14.0 FR France \n", + "14 13.0 FR France \n", + "15 13.0 FR France \n", + "16 10.0 FR France \n", + "17 16.0 FR France \n", + "18 17.0 FR France \n", + "19 17.0 FR France \n", + "20 9.0 FR France \n", + "21 9.0 FR France \n", + "22 6.0 FR France \n", + "23 7.0 FR France \n", + "24 9.0 FR France \n", + "25 7.0 FR France \n", + "26 12.0 FR France \n", + "27 18.0 FR France \n", + "28 22.0 FR France \n", + "29 30.0 FR France \n", + "... ... ... ... \n", + "1852 59.0 FR France \n", + "1853 64.0 FR France \n", + "1854 97.0 FR France \n", + "1855 93.0 FR France \n", + "1856 80.0 FR France \n", + "1857 116.0 FR France \n", + "1858 149.0 FR France \n", + "1859 281.0 FR France \n", + "1860 395.0 FR France \n", + "1861 485.0 FR France \n", + "1862 544.0 FR France \n", + "1863 689.0 FR France \n", + "1864 722.0 FR France \n", + "1865 762.0 FR France \n", + "1866 926.0 FR France \n", + "1867 1113.0 FR France \n", + "1868 1236.0 FR France \n", + "1869 832.0 FR France \n", + "1870 459.0 FR France \n", + "1871 207.0 FR France \n", + "1872 190.0 FR France \n", + "1873 198.0 FR France \n", + "1874 224.0 FR France \n", + "1875 266.0 FR France \n", + "1876 219.0 FR France \n", + "1877 176.0 FR France \n", + "1878 163.0 FR France \n", + "1879 195.0 FR France \n", + "1880 308.0 FR France \n", + "1881 213.0 FR France \n", + "\n", + "[1881 rows x 10 columns]" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "data = raw_data.dropna().copy()\n", "data" @@ -141,7 +2120,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 18, "metadata": {}, "outputs": [], "source": [ @@ -171,10 +2150,8 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, + "execution_count": 19, + "metadata": {}, "outputs": [], "source": [ "sorted_data = data.set_index('period').sort_index()" @@ -198,9 +2175,17 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 20, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1989-05-01/1989-05-07 1989-05-15/1989-05-21\n" + ] + } + ], "source": [ "periods = sorted_data.index\n", "for p1, p2 in zip(periods[:-1], periods[1:]):\n", @@ -218,9 +2203,32 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 21, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEKCAYAAAA1qaOTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXm8XEWd9//59nbXLDcrIQsJENaAAjGAiCIgRFxgUGaCo+R5xB8/Gdx9ZgbUeXBwWBwdUcYFcUABFzZRUEAMAWRPSFiz72RPbnKT3Jubu3V3PX+cqtN1uk+dOt19eku+79crr9s5S1WdOnXqW9+lqkgIAYZhGIYpl1itC8AwDMMcHLBAYRiGYSKBBQrDMAwTCSxQGIZhmEhggcIwDMNEAgsUhmEYJhJYoDAMwzCRwAKFYRiGiQQWKAzDMEwkJGpdgGoyZswYMXXq1FoXg2EYpqFYvHjxLiHEWNt1h5RAmTp1KhYtWlTrYjAMwzQURPROmOvY5MUwDMNEAgsUhmEYJhJYoDAMwzCRwAKFYRiGiQQWKAzDMEwkWAUKEd1FRDuJaIl2bBQRzSOi1fJvh3buOiJaQ0QriehC7fhpRPS2PHcbEZE83kRE98vjC4hoqnbPXJnHaiKaqx2fJq9dLe9NlV8VDMMwTDmE0VB+BWB23rFrAcwXQkwHMF/+H0R0AoA5AE6U9/yUiOLynp8BuArAdPlPpXklgD1CiKMB3ArguzKtUQCuB3A6gFkArtcE13cB3Crz3yPTYBiGYWqIVaAIIZ4D0JV3+GIAd8vfdwO4RDt+nxBiQAixHsAaALOIaAKA4UKIl4Wz5/A9efeotB4CcJ7UXi4EME8I0SWE2ANgHoDZ8ty58tr8/A96nlvViXd299a6GAzDMAWUOrFxvBBiGwAIIbYR0Th5fCKAV7TrNstjQ/J3/nF1zyaZVpqI9gEYrR/Pu2c0gL1CiLRPWgc9V9y1EETA+ps/UuuiMAzDeIjaKU8+x0TA8VLuCUqrsEBEVxHRIiJa1NnZabqsoRDGp2UYhqkdpQqUHdKMBfl3pzy+GcBk7bpJALbK45N8jnvuIaIEgBFwTGymtHYBGCmvzU+rACHEHUKImUKImWPHWpeiYRiGYUqkVIHyKAAVdTUXwCPa8TkycmsaHOf7Qmke6yGiM6QP5Iq8e1RanwTwtPSzPAngAiLqkM74CwA8Kc89I6/Nz/+gRrBqwjBMHWP1oRDR7wCcA2AMEW2GE3l1C4AHiOhKABsBXAYAQoilRPQAgGUA0gCuEUJkZFJXw4kYawHwhPwHAHcCuJeI1sDRTObItLqI6DsAXpXX3SCEUMEB/wrgPiL6DwCvyzQOetJZFigMw9QvVoEihLjccOo8w/U3ArjR5/giADN8jvdDCiSfc3cBuMvn+Do4ocSHFEOZbK2LwDAMY4RnyjcQQxnWUBiGqV9YoDQQadZQGIapY1igNBCsnzAMU8+wQGEYhmEigQVKA8FRwwzD1DMsUBiGYZhIYIHSQAj2ojAMU8ewQGEYhmEigQVKI8EKCsMwdQwLlAaC5QnDMPUMCxSGYRgmEligNBAcNswwTD3DAoVhGIaJBBYoDQSHDTMMU8+wQGkgGsnk9Z4bn8I//WZxrYvBMEwVYYHCVITOngE8/vb2WheDYZgqwgKlgWggBYVhmEMQFigMwzBMJLBAaSBEIzlRGIY55GCBwjAMw0QCC5QGghUUhmHqGRYoDMMwTCSwQGEYhmEigQVKA8EmL4Zh6hkWKAzDMEwksEBpIHgtL4Zh6hkWKA0Em7wYhqlnWKAwDMMwkcACpYFgBYVhmHqGBcpBxqINXTjmm09g9/6BWheFYZhDjLIEChF9lYiWEtESIvodETUT0SgimkdEq+XfDu3664hoDRGtJKILteOnEdHb8txtRETyeBMR3S+PLyCiqdo9c2Ueq4lobjnP0SiEWcvr9r+tw2Ami8Xv7KlCiRiGYXKULFCIaCKALwGYKYSYASAOYA6AawHMF0JMBzBf/h9EdII8fyKA2QB+SkRxmdzPAFwFYLr8N1sevxLAHiHE0QBuBfBdmdYoANcDOB3ALADX64KLYfMYwzDVp1yTVwJACxElALQC2ArgYgB3y/N3A7hE/r4YwH1CiAEhxHoAawDMIqIJAIYLIV4WzhD8nrx7VFoPAThPai8XApgnhOgSQuwBMA85IXTQEkZIOLodwzBM9SlZoAghtgD4PoCNALYB2CeE+CuA8UKIbfKabQDGyVsmAtikJbFZHpsof+cf99wjhEgD2AdgdEBaBzXFhA1ziDHDMNWmHJNXBxwNYhqAwwG0EdGng27xOSYCjpd6T345ryKiRUS0qLOzM6B4BwesoDAMUyvKMXmdD2C9EKJTCDEE4GEA7wWwQ5qxIP/ulNdvBjBZu38SHBPZZvk7/7jnHmlWGwGgKyCtAoQQdwghZgohZo4dO7bER60XWO1gGKZ+KUegbARwBhG1Sr/GeQCWA3gUgIq6mgvgEfn7UQBzZOTWNDjO94XSLNZDRGfIdK7Iu0el9UkAT0s/y5MALiCiDqkpXSCPMQzDMDUiUeqNQogFRPQQgNcApAG8DuAOAO0AHiCiK+EIncvk9UuJ6AEAy+T11wghMjK5qwH8CkALgCfkPwC4E8C9RLQGjmYyR6bVRUTfAfCqvO4GIURXqc/SKBTnF2FthmGY6lKyQAEAIcT1cMJ3dQbgaCt+198I4Eaf44sAzPA53g8pkHzO3QXgriKL3NBwlBfDMPUMz5RnGIZhIoEFSgPBocAMw9QzLFAOMkgGDrPwYRim2rBAaSDCbLClfCgsTxiGqTYsUJi65e6XNuAH81bVuhgMw4SEBUoDcaiZsa5/dClum7+61sVgGCYkLFAaCF7Li2GYeoYFykEGz0NhGKZWsEBpIMI45RmGYWoFCxSGYRgmEligNBBF+VBYm2EYpsqwQDnI4ImNDMPUChYoBxvslGcYpkawQGkgWOtgGKaeYYFykMKyh2GYasMCpYEItZZXFcrBMAzjBwsUhmEYJhJYoDQQ7ENhGKaeYYHSQBQjTwRLH4ZhqgwLlIMM4sW8GIapESxQGgjWOhiGqWdYoDAMwzCRwAKlgQijnyiDFyszDMNUGxYoDUQYIcEuFIZhagULFIZhGCYSWKA0FGzHymfr3r5aF4FhGAkLlCJYvq0bf1myrdbFCMWhsB/Ko29uxXtveRovrd1V66IwDAMWKEXx4R89j8//+rWa5R/Kh1L5YtQNr72zBwCwYltPjUvCMAzAAqWhOPh1juJQ83I4EIFh6gMWKEzDw/KEYeoDFigNRLiw4UNnC+BD4BEZpqEoS6AQ0UgieoiIVhDRciI6k4hGEdE8Ilot/3Zo119HRGuIaCURXagdP42I3pbnbiPZKxJRExHdL48vIKKp2j1zZR6riWhuOc9xMHEoTWxUz8jrlzFMfVCuhvIjAH8RQhwH4F0AlgO4FsB8IcR0APPl/0FEJwCYA+BEALMB/JSI4jKdnwG4CsB0+W+2PH4lgD1CiKMB3ArguzKtUQCuB3A6gFkArtcF18EKr+XlRUWysTxhmPqgZIFCRMMBvB/AnQAghBgUQuwFcDGAu+VldwO4RP6+GMB9QogBIcR6AGsAzCKiCQCGCyFeFk6PeU/ePSqthwCcJ7WXCwHME0J0CSH2AJiHnBBiDhFcDaW2xWAYRlKOhnIkgE4AvySi14nof4ioDcB4IcQ2AJB/x8nrJwLYpN2/WR6bKH/nH/fcI4RIA9gHYHRAWgc1Re2HUrFS1A/uM7KKwjB1QTkCJQHgVAA/E0KcAqAX0rxlwO+rFwHHS73HmynRVUS0iIgWdXZ2BhQvPLUyPRWT7aFkHmNxwjD1QTkCZTOAzUKIBfL/D8ERMDukGQvy707t+sna/ZMAbJXHJ/kc99xDRAkAIwB0BaRVgBDiDiHETCHEzLFjx5bwmIVk67mvlr1rLYtYLWF2CMlMhmkIShYoQojtADYR0bHy0HkAlgF4FICKupoL4BH5+1EAc2Tk1jQ4zveF0izWQ0RnSP/IFXn3qLQ+CeBp6Wd5EsAFRNQhnfEXyGNVIVMjiVLUciqHRGfLTnmGqScSZd7/RQC/IaIUgHUA/jccIfUAEV0JYCOAywBACLGUiB6AI3TSAK4RQmRkOlcD+BWAFgBPyH+A4/C/l4jWwNFM5si0uojoOwBeldfdIIToKvNZQpNtgKFxLdfyqlb15JzyLFEYph4oS6AIId4AMNPn1HmG628EcKPP8UUAZvgc74cUSD7n7gJwVzHljYp0rWxeRflQKlcMa97Vysedh1KlDBmGCYRnypdA7UxedtRova79PBHhzkOpcTnqiR8+tQpTr32s1sVgDlFYoJRAto57a3Kd8rU0eVU3b9ZQcvzwqdW1LgJzCMMCpQQyDRE2XLlyWPOuVj71K9cjZ2dPP17dEN5NeCiFjTP1AwuUEqhnDUVR/yUsn9xkpYNfRbn4xy/isttfDn09yxOmFrBAKYGaaSghxERucchDJ8rrEJAn2Lavv6jraxmJKITAU8t2YCiTrVkZmNrAAqUEauWUL4bamryqNLGxSk75l9fuxveeXFHhXMIRtu3Vsok+u6oTn7tnEX789JraFYKpCSxQSiBbo4EXL72SR5WWr7/8F6/gJ8+srWgeYQk76q+lhrJtr6NN7eguTqtiGh8WKCWQrpFEaZTFIQ9WWVYPvrPBkAKllu9gMO3MV04lGr97Wb2jB1OvfQwvrtlV66I0BI3/xmtAPc+UV4P1Ouj7Gort+/oxkM4EXtM3FHy+Ggyl619DUUIvFW/87uW1jXsAAI+8saXGJWkMGv+N14Ba+RqLMWMdEiYvSbkGLyEEzrh5Pr78uzcCr6sHgRJWQ6mpQJFC72DQUFpTzmIivQO1f/eNQOO/8RpQz075egihbTRZpjrpect3+J5vkh1jfx0IlHSm/p3ySubFY7Vvi+XSmnI2le0dTNe4JI0BC5QSqNXorygfSoN16rVEjaiTcf8OMCE7xrCdeSUJ+14PJQ21kiihWMdjyLqCBUoJ1ExDCZFtzodSw3kIVQsbjoacQPH/HFSnUk4whhAC85fvKNuxH3YOVC07wINxKRwW0OFggVIESoOv1cTGYuAor/DYnMhK0AymS3+wh1/bgivvXoTfLtxYchpAMfNQSi/rqh09rjO6HBqtHfhR6ZD0g41y90M5pIgRIStEzcJHixn5Hwwfs42oPnWloSQMJi+loZQz83tHjzMnY/OevpLTAMKPlMsRKBfc+hwAYMMtHynpfne1hkNiASBGhzWUIoiRMn2YP5TfL96MheurtteXkZquNlyznEtjwGLySkRg8oqTssVXx+RVywFFvQzqd3b346RvP4nl27prXZRDBhYoRRCTtRWkoXz9wTfx9z8Pv4hfMYTpJNzl62u59Eq19pSPKJ3eASeCR0X05JOIwOSlBiPl+t+qYfKKiloX4dmVnejpT+POF9aXnEadyMaGgQVKEbidQq2/lBCwEzE8BwadcOCWlL8FOAqnfCwWjUAJW4TaOuXroxtuSpYf7s1fUXGwQCmCqEaZpcL7ofhTbv+lNJSWpP/noJIv57XHXM2xTIES1odSB3GuphJs6jqAfX1DFc+/KeFonP1DpQ8EVH3z+CwcLFCKoNYhueFyPfTi5st9HconZvKhIIL3rrSccrVb2/31YPJUmMpw9n8+g3+okFlYp0WaMLvLEV51UI+NBAuUIshpKDUuSAD1sQVwdfLJaQ6VHfVHscdMjKIR9GE1j1r6UILaYJ80L67Y3lPxciif2DtdvSWnUQ++qEaCBUoRuPNQambyCp9vTTWUam2wFVF2YeuqnEWmXYFSrg/FcntUQrYcgpb/GQy5uGUUqCoopypUfXMIdDhYoBRBLKLQz0riFq2Oyxg5ZT6qEtQmZzJF8N6VNa16UV5lZRMNPmWo5rcTRWAKB7cUBwuUIqAQ81AqScgZCABq26FUezRXbn5hTV7l1KlqO+VrUzYfisynLkxehVRToOS0i/LTYMLBAqUI4iHmoVSSMN+iuqa2e4o3Vn5VWXAxojoJHeVVy7DhgHPVLFYUAxv1zllRCQcLlCKoddhwGEQEo7JGIyofiqkjrKdNyxrBh6LwE8DVNXl5/5aURjRFOWRggVIEtomNlddc7OkL1+R16Cy9ElWUl2k+CyEC31lEc/2qsZZXuQTNC6pmsXJ1UHqmPA+lOFigFIE7UjUIjnqYQR/BNxRBGarsQ4nIKW8jik660lVT7/NQqlmuKPKqB620kWCBUgQ2DaXSprBiPpB6MHlEha3Dr7TJK1eO0vOIajGSsEWo17Dh6jrly9cuOMqrOFigFEHMoqHUQydeD1HDUWdtehb3Y4/M5BXc7dfD+7VBdbRSQq2jvKLIKeeTrIMKbQDKFihEFCei14noz/L/o4hoHhGtln87tGuvI6I1RLSSiC7Ujp9GRG/Lc7eR/LKJqImI7pfHFxDRVO2euTKP1UQ0t9znCINt+fpKhxOHST0X5VXRooQqg/O78gWJSkMxEaVTvuyOKeTt9eBDqb3JS2oo5aTBgqQootBQvgxgufb/awHMF0JMBzBf/h9EdAKAOQBOBDAbwE+JSK0X/jMAVwGYLv/NlsevBLBHCHE0gFsBfFemNQrA9QBOBzALwPW64KoUthVjK+2UDxU2DOH5W2ui6EBsSUTlQ7GbvOqjTgOJaBHKKPBrgw3nQ6njZZbqkbIEChFNAvARAP+jHb4YwN3y990ALtGO3yeEGBBCrAewBsAsIpoAYLgQ4mXhfAX35N2j0noIwHlSe7kQwDwhRJcQYg+AecgJoYrhmrxq5EMJRTRWoDKLEF38f/5vnShmsAO5gYBt1eIo6jTIvxCGsHVbD8vX+9VXTSY2lpEnR3kVR7kayg8B/AsAXY6PF0JsAwD5d5w8PhHAJu26zfLYRPk7/7jnHiFEGsA+AKMD0qootsUhK+6UDxU27PCrlzagq3ewouUJQ6k14jGbGa+J5mO3m7yiW3KnXGEbtgi1XL4+SGTWwilfDixHiqNkgUJEHwWwUwixOOwtPsdEwPFS7/FmSnQVES0iokWdnZ2hCmrC1rHUR9hwrgw/empVjQqh/SyxTvS7bEmU70MJam7RLL1Sbeq1rNUsVyTm1jr4pgFgZ08/fvLMmropj4lyNJSzAHyciDYAuA/AuUT0awA7pBkL8u9Oef1mAJO1+ycB2CqPT/I57rmHiBIARgDoCkirACHEHUKImUKImWPHji3tSSW21YbrIWy4HpqbMPwuhmJGl+V+ZKFH/WXkE9X8IFsRolhqP5dXJVpTFaO8InDKR7EeWBR89f438L0nV+LtLftqXJJgShYoQojrhBCThBBT4TjbnxZCfBrAowBU1NVcAI/I348CmCMjt6bBcb4vlGaxHiI6Q/pHrsi7R6X1SZmHAPAkgAuIqEM64y+QxyoK1VqghLmm1i0/j1LL4zV51daUSBE4uqu/YGb5lNqeXdnpu/RKGQUqsRxlpVEn39P+fmdX0brw0wbgv4l2edwC4AEiuhLARgCXAYAQYikRPQBgGYA0gGuEEGqz56sB/ApAC4An5D8AuBPAvUS0Bo5mMkem1UVE3wHwqrzuBiFEVwWexZd6dsrrJSh1b+/t+/qxbNs+nHvc+NLKEIEw0O+zmrwi8qHYqquc1xtV0wibTBT+g6Ayb95zAJM6Wn3PBQneRpvY2Ahzj+qJSASKEOJZAM/K37sBnGe47kYAN/ocXwRghs/xfkiB5HPuLgB3lVrmUlBtyzTfpNKNr1r208t+/hI2dfVh/c0XlSSUihEGxjSKuC+ytbwqmE+1OqYo58yYyvzYW9twzW9fw71XzsLZ081mZL+7Gy1sODd5tvy0DgV4pnwRuJMGazSxMQxRCJ1NXX0A6uN5gMo75cP7UCqfhz2dcAlFo6H4p/Haxj0AgBXb/LfxDcqao7xKww0bKdHqUC1YoBSBeqkDhm1M683kVSoJGX1gek5rGYT/71LTiPJaP8LPQynHKR9N27Cloua5RJGfqTnbVmd2J9f63F8LDaWseSh18E3r1Lc4YYFSFKph7h9I+56vi1m1EbT/pNxJrNT9v71RXhH4UCxplL9jo/PXNumwPJOX87da3VMUbdH0vOpwzCBRgta/qu5aXlFGedWXYKlXWKCUQK9BoKQrLFGKWXqlHFIJp1kMpDOWK+2U2n/oA0Pj4pBl5pHLK6wZqfQ8ItNQLMnkfCgRmHssE3jjsWABXGsNxf0cy3lvkZTk0IEFShGoj6FvyL+jrbhTPsxM+XrQUPRlU0osQxRpFJuXrX4j0VCq1KNGYakxbiQnj8cMAkXk/fW7txpEkVO9TCSsk2JYYYFSBKrDMc9DqWZp/Imi4Ul5UrJT3utDKdXkZU/DncFeZu+Z6+wtZaqLkW5wSlFObDR1/q5AMflQAp3y5ZYqPG7YcBRp1EmHXuc+eRYoxaAalUmg1JvJq9TGp2zjUTgkS9dQKp+HQnUatsctpz7cFY2r1CNUMmxYNfO4yYcS6JSvplc+giTqRJAo6q08+bBAKQL1Lo3zUA4SDUV1E1GsTVZyEsL3p+8lUU1stPVA5U1sVJ1seYW1+1CiW8jS1J4zroYS7JT3PVduoYqg0pM7q4kS0vU+0ZIFShGozsBo8qr4xMbCslQCt1OKQkCWWMyiZsqXvYJvsFnDnX9UVthwybd60wl5XSXnodjChnMU3l/NMNxIl6+PokARwALlIMKmoWS0HrgSHX6YFPVrSt17o9xIoSiWXvFUcQV9G05ewaO/nCZUvlO+0uR8KOWnVXrYsDnz6q7lVd+dbzHkBjW1LYcNFijF4PpQTBMbc7/LffE7uvuDi2IZTQOlf1BlC5RIll7R0jA8RzGrYry5aS++ct/rviNk2xwR4QqcEBkZiGqkG35Wf+VMXiptU9hwbkKhz7kqdvJRzP2pt4mN9TB5OggWKEXgaigZk4aSO17OB/3Sml04/ab5+MuSbd78Q4XSlt/gchuJ1a7xFqONhdEcPnfPIvzxja3YtX+g4JwtksemwdQVVVjLS7UL80x5+dfXKV9+uUIToQ+lXsKH670NskApAqsPJSKBsmxbNwDg1Q17ir5Xz7Zkk5f8W2qn5NWSIkjD0tGHqeoBOXdIzbHxy8vsM/D+LYWoRrrhtwAuPz9TCra0g8OGw5Xr1nmr8LH/fiHUtea87OWxUW9mszqXJxVZvv6gRb1Lk/NdP17Oi1draaXzJrZ43ApCwG9lnyjaW7mRQoXlLCWNENqYa9Kw56HWJfO70vacUURoVasfqMo8FNksTQOr3JInZvOijR/NX+2kIUTJodZRrmdmS+lzdy/CtDGt+OZHTig7Tz9sUxbqBdZQisD2UvVRqOmazp4BrNrhv0qrQtmmgyYW2uz9QOnzUKKaMAiU0ZF6NBRLxxVGQ5ECxa+TtGk6UUR5RWWqCO9DiSKv4IGTLY8o5qEMGczLYYiyDmxpPbV8B37x/PqS8rj58eX40VOrQ13LJq+DCNWBmXwo6RAmr9k/fA4X3PpcYD7xmPNaCoRSiLYUjYbi/C01DFpEoKkJw29vPsHn/fAXKOZz+vEoNtgqtz+w3R7lPBSzgJX1YdJQAt5LscUaLGP5iVwgRBmaZRV8KD9/bh1ufWpVqGtZoBxEFKOhmDqf3b2DgWkAQCLur6GEiZ6Kor3FQs5DWbp1H9Z17i8sg+d3aQUK8+GUsixG0Ki5ok75Kjv2o3HKBx+3h1n73VukhmJZT+6hxZuNq39HQb0EZKjc62HydBAsUIpAtSnjPBTPyDy4AR4YNH8EakmLfB9KGPRcS13kI2zY8Dcefhvf/cuK8AUqgjBO+VJGj36CXB0zCT/1EZfTp0SmoVgSUO8uihG1qT5U+zdpsEGLbRYr6IYCvoHXN+7B/3nwTXzrD2/7no9mC2D5t0468kpPni4XFiglYJqHkg6hobjnAxqotHgVpFHsHJNSm54bNmxpvH1DGRwYLFx5OZIoL89vy0i4iHSDTV6GsoQYpb6weheu/vViY0de7ZFuFP4vUxtVAx1TFq6AjsCHonaH9EO1vR3dhaHgev7l1ES9LXlSL+HLJligFIEtbDiMU14RtJBkmHBfm307CmxppbPC6E/KpRFB3hYNxVbX/dp2A4FmmBJNPABwxV0L8MSS7Ubt1TVZVLhDKDfkW8emoZiElnofQcI7LE+v2Gm9xqhZljLiyE87Is0yKuo8yIsFSjGodxlmHoqtMw4a/dsmjIWldJOXmtgYfF0mKwwmCa0eSvyaw2g5NgGv+NYfl7i//Tq5nDwJNmUGZUOWyaDVXga9kk75nIYS/B3YNJSgb+S0IzoAABNHthqvsbXvKOaQZAOEY1gWbejCc6s6yypH2LZea3geShFYfShFmLzCNIz8K8K06Sg6rNwo16KhZASGfJ4jjP8jCmwCXrFsa7f72+9SWxRXzmkfMAiwlcViVguLrT6VYIui3k3v39VQTAInoBPWj2Sywg1AySdXn6U7L6KogzCapW3w+MnbXwYAbLjlI2WXp15MbyZYQykC6wZb2su2vfhQAiWwERuOR7H0ivLhhDDb2aJwSi1N1jOSNaStRm2WutbXnAoyw5j9H/JvwKMqrdK4tUEIoRSGKGbK/+nNrejpH7LnZUjCNWnZntVSrqDmpd5p4CZvbgCC/2lVvnK+iTCaZTlzZYqFBcpBhK6h+HUMupCwCYyg86aZwcVuAVxq01M+HFtHbTJ56XeVPFPe8xz+abgaiuWD9ggU38UhzR2gfj7oY3brzNjJetOqFDYfyoZdvfji717HV+57w5qWbbVhmwbj9+71cgXVhbqunKimKGra9qxAsD+01G20TdRLtJkJFihFoDcpX9NJEWt5Bc6Ct3Rwzrngjz3/dzHE3LDh4OvSWeH7HMWW4ZYnVuCa377mTcOQnl8+tk4nGdc1FL90gk04OTt6YDYAzJ1LrmOypxGE3eTl/LWZilbtDF6tAbB3yMY950P6UAIFigpNDhgsKCFuGwiUI8PDzJQfSptP9qcLoyDLgcOGDyL0d+nXcaSL0FCCzEluPsJwPADvGlilNT4KuQVwOiMiGYHd/re1eOyt4ldWVh2Gra6tJi/1CJYReaC2pYSwZcn3Smu45Oe1AAAgAElEQVQo6llNZhh1fn+/fTKg6XnJYmoK9KFoh4Lem7o30ORlIYqw4TCaZdBs/qg0lFBtsA5ggVIU2ujKp53ojc4eNmw+b150T/ttGbUDpc9FCDuxMZ3NGkxemjAosf0Xc1vZAiUSk5eDWUOxj5b3HRjCj59eHfg8tvpU500TAt2OOoTd35aXLdrR7/7QPhSloYTQ5M1h5WbTW1jCrBcX1uQV5WKV9QoLlCKwaSgeH0oZTnnTGkTh9kPRrg9xjR/WiCXtvNXkFUXYsEVzsDvlc83cv5NTfw0mnBDmqpypKXgwEFQfNz2+HN//6yo8tXyHOSMLKnvTyDhojogprXxsA45cHsFphtHSAwdelmdQZ8vphMNoKEEmL12wRxHyW+9hwyxQikB/lUFLeJjOm64tyEd4/+YfDyKMFmMjTOipEAJDGeEb5RUmQstGmAUm3ag7y2g7YdFQoljLS9nzbVFeQa4N1fl095kjsELoFZ60Csvh/A1ji7c65a0airmubWVw5/4EfCeu8984sVFvQ6UObOzvPqzJqxzzXX556hUWKEWgv0y/xuGZh2KbFBjiY8q/JNQHoo8AS2x8qv8NKqN61CGfBxURlCHMXe6+HJY89L3Pg+ah2MyIgS4UFTZsEG5hooWaknEA3pn9hekEP6uroRjKEUaw5fIKzsPUP+bWRgtOM4xTPqgTtpl0vRFlgZcaCRNMEbTe2ECaNRTGgEAuYshXQwk5+jLdr7CNDFVZ/MsorNcAwM7u/gJHuMIWAgvkTH62GPySBUqIjsc2L0ihayh+19pNXsWYiUxpOH+DkkgZVpkuBiVwTJ1cMSYv47wcSxpBTnnPXK0AoeYuQBlwUS482XBeq4NS22GY+UNB/qhizODhylN2EhWlZIFCRJOJ6BkiWk5ES4noy/L4KCKaR0Sr5d8O7Z7riGgNEa0kogu146cR0dvy3G0kbS5E1ERE98vjC4hoqnbPXJnHaiKaW+pzFIMQQMK0VwmKM3kFNUK388n3oYQso9/vfD595wJc89vXfFc9DrNire40zR8peoWBvcx+6M9uSsP1odic8lrYsP/ciHBCMUynZPShhDGbhTE1WvJ3NccSBUpR0XUWAex3Ouw22eq6cjQUfbBTukDx/vUjyOSl+1ptptlw5alviVKOhpIG8HUhxPEAzgBwDRGdAOBaAPOFENMBzJf/hzw3B8CJAGYD+CkRxWVaPwNwFYDp8t9sefxKAHuEEEcDuBXAd2VaowBcD+B0ALMAXK8LrkohhAjWUIoJGw6h7hf6ULSP3dTJGq7PZ1NXnzEdm4MZ8H6s+WYvbyRP+RqKzdFtFQieTsycVzlO+dy1wdplpTsEm4ZiM+F4zUTFCwwgWEMJGwkZRpPK+VBM5/UIK/9r7nl5A6Ze+xgGDPNFwry3NzbtNZdR+05smmeYqMygcty3cCPW7Czcn6ialCxQhBDbhBCvyd89AJYDmAjgYgB3y8vuBnCJ/H0xgPuEEANCiPUA1gCYRUQTAAwXQrwsnK/hnrx7VFoPAThPai8XApgnhOgSQuwBMA85IVQxhACScafK/BpHVGHDYUxetlDJguvzrwtYlluZvMKEdQKFZi/9f6XO7A3jL1LHbSGwumM0qJPzFzb2cujYFocMI5QCL7Hcr4o4aIg8spldwi15I9MyPWtIrSJQQwnxbsOsNeemZyiT2np3nyEQwrY7JQB858/LjOeKslqEEijmc9c+/DYuuu15axqVJBIfijRFnQJgAYDxQohtgCN0AIyTl00EsEm7bbM8NlH+zj/uuUcIkQawD8DogLT8ynYVES0iokWdneWt+JkVwhUofrbddBEqduBHJ0/lX+E1AwWP2m1lCOoUcvuxBI0Oc8+fH+kVdjZ0EHr1mjdyCj6vOHJsW2B5giZIFuvYtfpQ7EmUhUrfZvIyEcYkZTMBqrbh70PR07GXI9CPl1Gakv81YUxe6ns2+QLLnW2vL55qa6dB81ls/kLVn0S91EuxlC1QiKgdwO8BfEUI0R10qc8xEXC81Hu8B4W4QwgxUwgxc+zYsQHFs5MV5u15gTynfDkaisHkpd9i62Tzry+4TqXjc1FOQ7F/zEChySusUAsijPM26BlM+BVH3e73QYc139lMSbkJcuY0TNsW+KVjQpXR1LHY3kcYH5xrArSGDfvcG3LErhzq5cxD0d+nKZlkwqn0AUNknbotqN5ScXM3minChzIwZBcGRuFZJ4t8lSVQiCgJR5j8RgjxsDy8Q5qxIP+qHXI2A5is3T4JwFZ5fJLPcc89RJQAMAJAV0BaFUVAuI3HdzRbxGgkKHoljMkrjL01sPMJMboP2g8l0OTl6YSDy2i6r5iRsn3UXXiPX75+H3zYmd25vILfXahIsYCMbLer8yVrKB6nvE1DMaQRMsorSLjaIu/0fExX6IMeU15JqY777TzqLYexGPjgcc5AVV+Rwa8MvgMWLeEDAeHiCtM3WS/hxOVEeRGAOwEsF0L8QDv1KIC58vdcAI9ox+fIyK1pcJzvC6VZrIeIzpBpXpF3j0rrkwCeln6WJwFcQEQd0hl/gTxWUXQNxe8FerYALqKT88vHQeQdtwssYfxP/nXmzjjMAoP6s6Yz+Sav3O9iNBSTQ9gmYIsJgAgya9n3dildGORs8eZ7lWYYFDVkzV9pKJalV2z3A+ayugs3GtIKnikfbtClOt+wIbl+DGbsGopq67alaoLqrUeui+Z3TdoyMNKP9RmEGmAfkFRzCf0gytlg6ywAnwHwNhGptbC/AeAWAA8Q0ZUANgK4DACEEEuJ6AEAy+BEiF0jhFA1eDWAXwFoAfCE/Ac4AuteIloDRzOZI9PqIqLvAHhVXneDEKKrjGcJhdB8KDanvM3BFmQvDWO3NW/kZO+I9ct8fSghdmzUhU3+x6inWMx6YulsFvFYvKBctlBcW8diC1QI0nTChrm611t8KMFhw87f/E60mCV31HmzrT34fv19mfJy/UEmgaKO+9W1Z9BlLkcYH0qQaQ3wThC1r0tn+p4QmAcA7B9Iu9cIITzbT3gGXhYzeXfAHjVWv1UZg5AoKVmgCCFegHkXzvMM99wI4Eaf44sAzPA53g8pkHzO3QXgrrDljYKsgOaUt3Q+RYyaC85ZOlDnGv97heG3Kf/gj9p8Uh8R5UcUhfXjFObn33nbQlxtnYVt4zPXh+LzUYadiOdeb4nyCiqquiZ/sFGK2TDMJnD+ZSgsT+E1wW1HCUS/+9d19lrTB/R5KOZKt5m89BG/KS/V+ZejoXid/4C+CaX+DflpW/rjrdm5H6dO8Z/9YNNQoljWJQp4pnwROFFe0inv0zgyWc3HYhsRhZjYGHQ8jFM+qAjuSDZADX9mpTkqLuMZeUUzDyVtGL3aOjZrfL9FwAV1wpkiJ8fZou/CdKJBPqmwPhRjnRUR5WXbwdI6sdHn3MOvb/HNS0cIoeURrqx+9Gkaiq3eTN9jGIGS8Tj/vdfZIj/1YwcGzFsKuGubGYoRtPxLNWGBUgRC5GbK+zocs8ETH3UCNRTDB6nfYp7sF64DzJm8zGtxvb1ln/F+vRMvMHmFGOX6YQpqMGtswedz14X7qG0miaBc3Hk9Js0xoJNVKEFS4JMKuCcfW6CCPcrLLrxss/6DJjaGKYvX3BmgobimNf90dIFij7osfWO0oH2QijF5BTnlc1qhoc7rxIfCAiUk6iNKJsw+lIzInS/ZZgtzpxDWUT26LQUAeM/UUYFlcPIw5x+E3ukVmLws+8YY0zSYDM0aW0gNRSuD36hbfYy2BT9DTWw0agbyb4iRbn45PFqnRbzkNCFTHhYNJYSp0bYScNCOjZ7rQphvynHK62G4tjZtnoeS+230GXnaiPecbdM9T5TXQIBAsbSfINNgNWGBEhL13lOuBuK3H0rWNXnZRgxhFofMbzz6/4LCUyd1tADwD2MMU44ws9S9I69oNBSTI77cKC9bJ6migTJZUfC8mRCCTceoTYXZqEm2mcIgB7vW4JwT9lnsRfhQTMIrKIoLCN5T3pSXX/r5v03Xma4YzGSRUgM8Q3/rboxmXCXa/v6DzFqZjMWHoh0yhS7r6ZosW/US5cUCJSTqhSYDBEYmK3IN2OYoDhQohmuE/UMT0BYZDCyBOR39kGn0752HEo1A8YzmwmhjIVcbtoUNDwYsMR42yqtfjobLifJSz18Y5WW8xTcPIMApX0SUl63Dt4UN24odJnCgnCivgaEMWuSWAHYNxb9ibGG/+WXMrxPb/fq9fgu15l9njvJigdJQqBeZCJzYCG3iY2Eapol7hen4d5RhInCEEO5+JmF6Ir9OwbPvi6Ghen0o+ZpUuBF1QVn0kV6IUarNOexXBr96GwjYBCmMhvL427ltAMpZbdjdEiAgyCHoSYuZDGqiGO3UZgIq1Y+ot4PgibfB+Qxmsq5AMaVjm4cSpk71NiOy5nO2qQb3vbqp4HzuuuAyHBQz5Q8VNnUdwPzlzoT/pOyt/RpoOptTsf2jp3K/SzN5BTdOBYVZwyOgHPohU0PVfShBGkoxM3g9S32HcA7bHJV+ZfBLK2hXvTAzu59altuy12aeC9wDxDV5mUe5QYQxFRWjORvrXY2WLbO288vw2V8508YmjGgOvD+0D8USgDCYzqI56XyPNvObqY7DrFgcFOVlCzAIq8Hb56HUh4ZSzsTGQ4aLbnvenQ0bNFM+I3ImMb9OTm+cgWsUqZ0IA5yzQZ2oq6AYr9DzCh41hdNQogkbNnWItuVM7GHDAokYIZ0VvuUZTGfd8/nLr4QZoXpmZJtml4cJdHBNXt5EPO8gaMQeot7z6zXfzxZGC3Y3vzLlIY/nryf29ApnUNZs0RpsJsr8c34O6XQmi6zQ8jL6UMi9PiiP/HJ58so60Z1DGVHwTN495YPTB5zvOubj+7T7rVhDaRiUMAFsJq/gsGHPCroBH4pqHPl9eRgNR4hwiwwGpePxoYT40AKXry9i4GSyNweZ94AwYcO5AAW/SwczWbSk4rIM3uf1Tlb1T9/jgzH6e2QaIXwohRpKuM4ijBAO8n0BIVYV8Ggwhjxk+QcMC1Q2WfyMqh6UkDeREyiF16i81XstNcrL2ybN5VCm7qI1FHnomPHtAIB+w74sHDZ8kOKavHw1kJxT3l+DCTfycuP48zUUras2d1wi1M5/Cr8PTe8o/Na30ssI+HRMIUa57nmjVmJPQ11u01Cc+UH+mmMmK5DJCrSmCpd80f9PFGC/9mgowWUNFCjuCrtmDSXoScP4nfTst+7tKyyDZURuC4MFNA3FMBjJRV4FC6SmRMwSZq00On+tE0DOh2JpIyahHVpDSSjTmvecLqiCfChtTY6xyLSel33bZdZQGpKEYSQCAMu3dbvrYPn5HsKGQ6a1MFYdr8nL/14h4DrlS90QymNyMI3cdB9K/n4oISdXAt56KnUeSphNo5KGbQdUx9OaSvieV/WTjMfMNnRdc7RoU0FRVqYorzB+Df3+VCJmnUMCANu7+wvTsAgvjznUMtgwLaGfW5oluIypRCxwjSpVL36akBJmyuRlqjfVVk0ain483+Gul8O0JFPaY/IyDzLbpUCxrXrMYcMHGTkfivf4S2t3yb+7AQBDPjvmBYUX6phmGnuixALs12Hmn/iVSaELK6NTPmvuWLzLpgTnr38IJuembbRtjybKjYrzR3Jq61eloeR35urZkjEya0oGQegtgxIo5g5SdT75Gp/+/929g8b7VR6peCyUyWt/f2GY6pDHCR2soRj3XLEIFFXn5jI696US5ufQy+JnuivQUGxarqFDDnK4A04dBZm8wk5sbJMDmn7DbHlVfmPkXYil+qsBC5QiUfsn5DfQPb25lUJj5N/Iw2sowveaME55R0Mpdx6KJiyMH5rWsQQsFWKNrjFM/Ao1D8US5aNfZ5o/pDqeNldD8Q8wSMTN5pcw79WdjR8wknQ1lPxRrvb/2+avNt6f06YolMO7x0egeDsmnzwy5vfu3CNyGophOK3m7JjDjp2/TYl4qI3o/L41pbU0W0xeJjOje95i8lLppgwmL1sgjjrUZtFQ3LYewuT11fvf8L2mGrBAKRI1+s8UdKK5F52Ix8oyeZkmjoVxymeyTkQTEM6H4j8PJWc2M074CpgBHHa+DeDtdLwOcLtA0ZMOcsxnhHAdwYUaitd5a/KhBJm89AlpNvNc0F4nOaETEOUVgF5W226KgL+pSM/bLwm9/vw0EHVPMk7IZIWvyapX1petc0xZfCjqG/Mrh9KCWlLBYcOqDswmL1t95IQ44GfyCv4W1LH2Jqf99Zk0FNdq4XvaU/4/vlHxvQaNsEApktw8E+9xvb2m4jFfk1fQjGwd1YhLccr7hYIGYdJQUgFrluUfD9wPxdIXmpyWYaKr9M5mX1/QXhJAKqGiuPI0lIzyofif10f9ps5NjS7zy6QTZJ7JXeOcyx+lFhvllUrEjO1Db4MDPhFFehCG37P0e+43D5qUqUkXoOOGNQEA5p451XOtKY2mRCxQQ9HXYMv/VsI65dV1Jl9N32BW23DOrqHk19lQxrLLq/KhNFuc8sJ7fT56+U+dMtL3mmrAAiUEegfdpsIQCzr7HMk4+XYCg5lcYwmzz0N+pxDO5CUiMXnl1iSzR78UmLxCmKsUJqdlKEc3gDHtzkKY63b1+l6jypMybDswWISGYurbRrWlMFx2CLZOMisCzC/yeFeenyT0xEbNhyKE/6hcF2h+I3v9ffjl2ie1i0SMfO93BYqsT/2aYc0JXHTSYbjklIlO+obH0gWKEOa27nmWvDY4mGfyMlVhTkMxCZQ0RrU6bczPv5HW2oeTT56Gks2iKWkXKG6Ul08eYXx0aiAwdXSr+8y1gAVKCOLaxA6349Eazu1/W4sv/e519/+JeCzQrgsER/sMuhqK97hpJrlORgg3cKDUKK90VriN0mQKUM+SiscC156ylUGvJ1P4rSkNIQTGD3dmXXcHaCh6FE6+gBxwo7zU8/rPQ0kEaCiD6SzGtDujb9v6Vn55KFQ97jkw6Hn+Ukxe+Xm6ZdXS8tMwhizOXaU9jWxN+gsUeY+KmsvXypPxmGtOtQlfm5aslzW/TvOjvILeHWDa/lngwFAGI1uTAPzniORrZH6rHKgyBK1mHRTlFWZOVtrVtBPG+T/VgAVKCPRO4r1HjXGOaY3jrhfWu7/vvXKWY/IKiI137je/9D0HBgvyALyRY+aPMeeUD4P/KFUYJ/opegfSSMQIrU3xQJOXbTFCfel7T2SXxw/jf29WwP3Yg0xe6YwjZP0myqlNjZRT3qShpAJ8KAPpbK7jCuG7sK0blRXAXu15wpq83FG5z6BHvyYVjyERI1+Tl2p7gL8GoTq8ES1J3/uV0151sHrnNpQRSMRibvu0mQeVmTLM3Iv8700tXd9mGCgAzrtSgsdPEx9IZyGEo4ECuWACvzLkBEq+/yubm8gZZPIK0FDCfAu6YDJF11UDFighUC/ropMOc0fEeuNIaCaxY8cPQyJOvg34lidWaGn655XNCizZ0u1ck2+PzXpHe36IIsOGBwzRaM0J/zBaRe9AGm1NCSR9tDGPaa4IDcXoQwmIWBopzRFBAmUom0UyHkMiXihQ/u+jSwHkRrSmCKsgDWUgnTH6YPyex1SnQ5msm05X74D1er/7AaA5YMn2Ibmke1Mi5tkvRHHdw2+7v/2et8/VUFIWDaXQh6ICRmKxYIGivq0mq4ZiNt+pfEco7cLnWfWy+dWxetYO2cb8/BvqvTb7mPhUukEaijqUm9hYGHln289Hf5a2privoK8WLFCK4IQJw3NRXtqLjWubSDcl40j6mIEAYMH6Lve3SUP5s7Zybf6IxhnhBe8ImRHCY6KzkT8pEXBGXWpRPdNouncwg7ZU3FcbS1vmMpiu9ewrEUKgCAGMbLFrKKojS8YK38vGrgMAzBqKGzYcM0ccDaSdpVuaEjGjUzWshqIGLFv29nuOh0G9h6C1sgbTWSTjhKZkPDDiDAjWUDpak773uyN2nw42nc0iESe3fZqy1ydoAjBOrg00ecl8R8j20TdU2FF7tCefOlY7KI6Wfjo/k5eyGrT6BCGodJvc1TPMPifV/voGfcyQIUzd/YMZEAHDmv1NkdWCBUoIPnDMWADA1ecc7dp/9Q6PoAmUhGNOCPpYDx/R7DtiAoAV2xztZHhzwld9ttmE9SgvU1+ul92/UxBoChhVATkNJRGngk7Uu+GQfxnc/DWTl3E/FJMTW9ZHczKG/QH7cQ9lBBLxGOI+wRL/+71TAQAfPG5sQRn0/6cMTnkhBF7fuBfd/Wm0NyWM5Uhb6twpZxbHHTYMQK4dqOOKIOUz54g2+1CUhpKK+2soHXJED/i3MRUiPaIlhaFMYXSVql4/k1daaSjKhxLgBwSAprh/qLf+LAqTU35Ei9IufDQUvWw+70RpC0oLHvAxR6lAGxWlVTC40kxevhqKpgE3JWI44Cf4PDtPFpx2yir3fmlKxNiHUu/cdOlJ+Ns/n4N4jEBESMbJ49zUHWnNyThSiUIzkPq4v3r+Mdi6rx9/Wbq9oBEPprP46bNrAQCXnz7FE6IJOI1Vjbj2G7YLFSIXlWbacU9vcL5mi4zulDdrKK1NCbQ3JQoirNIhTHMK72qs/k55k8VnKOv4RoI6csD5qJNxQiJWqE0NpLMY1pxAIubvtNc/eD9ta+lWp+N/c9NetDeby6EL+qDJohNGtIDIEdhu+WUZzj1unLv0jx+qLlsC/DmDGcf815SM+ZpGpoxuc8NO/fp7ZeNXgie/81LvvtVPQ5GCXWkeftoxkNNIgraCALwmqHzhqJ5N+dj8fBN61Jafz1N917koL3OgjfKB+Jm8UomYsxacIQAGcL7ZllTcV8PV35NJ43cFSpIFSt0zcWQLjhjd5v6/vSnhmcw2TI5OrvngUQDkKql5DVRN5lIfGgDsOeA10/zLQ2+6v5sTcQyms55GOJTJYlRbCjEC9hiW4Mhk7XNI9A/JT6AMZbNoSQZvZdw7kEZbKo6jx7Vj/4D3OcLscpe71t+HopsgTB/RUMZxMLemEp4OuDAPxxmciFGB2aF/KINmaaZUafo9i2lOhF609qaE73ImKl2T49a9JiuQTBBak3H0ah2LyrdNOlxtdnSbycv1ofi8+77BtGvP9xuQqE5WmeZ6+r3vPhc2XNjBprPONgFNiULtRUevcz3NfHoH065gyzdHDeSbvHx8E939wYEPrg+lzRw27K600KQ0lEIBm5RBEH7tx9UqE3G0Jv0Fii7ITHXRN+ho66l4nE1ejUZ7s7fjWC9H6F/70LEAnLDNfBV8r1yaZaRmUtAjaoDcDNcPnTDejV3X0+mXo5BpY9rw9pZ9vmXLCE278JlcCeSEW376bhpaqKOpAXf2DGBMexPamhKBJi9b5PKgIXJNRSMBwJa9fZh67WN49M2tnmuFcHwbbU0J9Bo0NsD5yBMxcpzyeQJS1WmbnKmcn47qRNqbk77CNaH5zzbs6sX8FTt9Bcb+gTQ62px371fnBwbT7r4sLSnvgEW1NZNWoFDvQXVufiNiJYSbEnF/gTKUCzDwe/XLpEY2brgTJr23z1+gqOgqvRNW0XZKUJicx+q4MiOZOsgDA5lcBFZeG1R13N6UQDxGvhqK/g37vVvXhyLz8EvDLlCUmY98vyX1DpqSMTSn4m6e3mtyx0wDtP6hjOPHM2ie1YIFSgm0JhN4bnUnAO/oWZk0hjUnC+ZF7JZRO6PbU/jt5053ju3PCZQbH1vm/u4bzLhRVuqD/M2Cd7BgfRf29Q1hxsQRWNu5v6Bcz6/udDsl03piAPC+7z7j/s7/WIUQGMrkorz8lpARQmB7dz8mjGhGi8+oyjO3xBLyqnec+U7WtqY42lJxLFjnBDP8+pV3CvJwTF7xYA0lIGy4byiD5mTM7RDyTVa6ScNPEOjxD0qruFMLIweAXfsHcGAwg9FtTW558vm2jDZLxGI4fGQzNnXllpbf2eM46CeObHHKZPC/fUWu4aRG5X4aylDGmQuSSsR8O+q+wQyGNydlOQvPK6GuOvI/v+ld5iNfg1FagFrjKx6LIRYjx4djEBTq2zlMpuHXke89MIjdvYPuwCf/mt6BNGLk+L6ckX9hXmots9ZUYeg7oEe02SPF1NIp+c+k/HeOduwnUJw8mhIxDGvy17TVICdG/mUAciYvFSSjDyYeXLQJL63Z5Xtf1LBAKYGVO3qwa/8glm7dh+tlR/Deo0a75yePasG6Xb2ezvKZlY4AGt3WhFEyakTXUH7xfK4TisXI/VBUA/3mH5a4eXe0pgqimjJZgc/cudC5n8g3nBfwqvl6+gr1YQ5vkYsl+nR+azv3YzCdxfjhUqAMZbz70GuN2W8BQp3VO3OCUTdHKdPMyNYUtu5zOldlMtLzSMbJ0VB8TBqK/rRj1krEYwWmjf4hxxTVbhQoTn0Mk0ES+euUffzHLwJw3vmt//AuACiIsvvkz14CAIyXo/rOngHk88CizW6ao9pSnve0s2cAo9tSrukl/x3mozSZ/He398Agnl6xEz39Q9LkVdhR9w1mMLwliUSMjAsVArnB021Pr/EcV/ccJrf5VYMm1a6U9hMUEdct28w4JVB8rlNzv5QPK1+gLN/Wg6PHtSMWc9qHX531SFNtR2vK1xy1dud+EAFHjpWbX/kItg3SOjG5oxWA/zyUZJwQN5i8XA0lES+wfChe37gHADCpo7XAxKjoG8z5UICcoBtMZ/HPD72FT/3PAt/7ooYFShn0DWZwz8vOqPmSd090j79n6igMprNY1+k0tu37+t1VYke3p1wnn1qKPN8mHqec/Ti/EX/tQ8dgmHT+6qOQ3ftznVRz0oni8RtRb9x9wPP/vXlmN7Xshxph+nU6Ty519lD/0Anj0ZKKIyvyonlkvsObE9h7wNz5CSHwMxmEAHiDG5TzuKMt6aah+59UHsrkZXKG3zZ/NfYeGJKOdypwvvYPZdAko2MSMSpIp9+dIDWgzGkAABsiSURBVJeAEF6z3LZ9fe4o/4aPz8DHTj684DkAYIOs82ljnI5pxfZumFDL3ujaw87uAYwd1oSxci2snT4CSX9PatZ+vjBXbXXD7gO+PhQ1M7w1FUdLKl7wHPqzHz3OeRbdhAvkggkmdrRgTHsKy2W0miqL8jdOGd2KVTt6fOugu28IzcmY5v8obINqE7kf/L0jxPNH7ht297plnDCy2XczMVWmjrak7+Br674+jGlvwoiWJJoSMd+wYeUHVT7W/ECD/nQGTYk44gYNRX3fTYkY2psSvgOwR6QpfPq4dt/zfYMZvLxuN2IxuGZi9W53+Ox5U0lYoJTAWUc72ojuONU/rCNGO6MVNcfh+39d6Z6bMKLFHWkqx/qf3srNPQEcDUNpKOpDmT6uHecdNw5fPPdoDGt2Ojd9VK5vltSaSiDpE2kGOB+azhNLtru/hRC49vfOxLbJo1qRSsQ8ZjkAeGnNLnzvyZUY1ZbC5FGtrtbgcfTLTntMe5NxSZSBdMaNaAMc4aMHGgzJ6Bg1qQzwaiiqw00mYmg3OOX7hzL4wbxVAJw5D35aW+9gGq2pOIgI7c3edN7YtBfLtnajKaFFJmkCSd+yIBEnJOKOs9ukLY1pT2HCiGZ3oOHHiJak590JIfDU8h3YsqcPY9uVhlPYSazantP0hkmTlT6aHUhnXGF55pGjHR9KQWSUMzO8ORlHayru0bCBXHv75kXHY9ywZkwd3Yr3Tx/ruUYNSDpaUzhsRLOrhX//yZWesp08aYS7d1A+3f1DGN6cdAcQ+dpHd/8QfiQHaLOmjfK/pi/thgyPak35DmyWbNmHVDyGccOafaO8tu/rd7XK5mS8wE8DAPe/uglAbt5Nfjp9g46Ajsf8gzqUpWFYcwLDmpO+A6Pp49vRlorjyLFtvgLlocVOGV5Z1+WG+6sBhi5QqrFPCguUErjxkpMAAG9v3useU5OfgNxo5R05Mn1HduInTxqBeMwxRw1rTmDF9m68vHY3Xlnn/bBisULHZU9/GqPaUiAircPQBMq+XMNpb0ogGSfsOTBU0IhUmU48fLh7TI2cXt2wBy9IW+uothTGtjcVjIaV6qw6DnXvBk3zURFgHW0p7O3zj0Z77K1t+J7sZD51+hSMakuhS/vo+wadkZ2KCFL1olDO4JEtSaNTXv84u3oHMLI16Y4ohRD4xXPrsGRLt+vbaEt5TQ6X/ORFPLV8B1KJmLs8ue4Tyg+qAJxO+Y7n1rn/v+qeRe7vue+dimlj2nwXslRzR/7xjCM82qXqCCd2tGCCNCPNX77Tc++vX3kHH/vxCwCAD884zNUCVPs4MJjGGTfNd8t192dnoSUVL+i8lCbQmopjjM+7V3WjzKF+0XU7pLAbP7wJhw1vxqodjqB7cLFj0lN+kXnLdshn2VFQF919aQxvSboDiHxNSR94qDkiemcvhEB335Cr4QxvSbrmLcVQJosHFm3GSZNGOBF8eQONDbt6sWH3AYwf1izzSRYEIAykM9giNR/VPvKtAr0DjkAxmRj39Q1hWFMCibjSUAoFX1fvIKaPH4bhzUn0DWUKBkVKTn3sXYe7c3fUgOvL9+X2RjEtjR8lLFBKYOqYNkwc2YLv/3WVe2zyqFb3d3tTAqPbUtjY5XQcew8M4cTDh+MP/3SWe83othQef3s7Lv/FKzh+gtO5Xz5rMgDH+dYqnXzbpKDo6R9yBYnqMPQOTR+JTB3Thh3dA3jsrW34yTM5G/ddL6zH955cicOGN+OxL52Nf5l9rJs24N1jfJw0sfjZ+4Gcz0hpRn+Rmo4QAne+sB69gxmMaU95BJ2Orvl85+IZjkCRgQtrdu7HU8t3oL0p7nmuDVpHrDqVUW0p1wS4RSt/OpPF5+9d7P7/yvcdibHtTXhz0168uWkvVu3YjxsfXw4AGDPM6ZSGGeaR9PSn3cUOdSGu139+PW3qOoD/nr8af5Ud58SRLUjGYzhhwnAs29rtGf3/del29A9l8a+zj0N7U8Kz/YHqoL947nSMlhrKg4s3e0yV3/rjEvf3LZeenBMoshN9cc1uV5ASOfM7po5uw9Z9fW45du8fwCnfmQfA0QQnd7RiU5fXPKr8he1NSfm30He1s3sAw5oTaE0lcNoRo7Blb5+nk1QDGdXm87W1vyzZjsfe3oZhzQl31K93hEOZLD7wvWcBON+JWmZGCZ3+oQymXfc4BjNZHCa1i2HNCXT3ecupNKbRbSmMakth694+V6BmswLnfP9ZrN/V6/pxRrelsEszK+89MIgb/pQLpEnFY2hOxjzvpbNnAH1DGYxsTaGtKY4DPoOefQeG3OVhHMGX9ggMIQQWv7MHY9pT7nX52tayrd1oTcXxw394tyvslfasfxNB5ueoaGiBQkSziWglEa0homurmfdn3zfN/X35rCkYJ0cyilFtKfxu4SbsH0hjY9cBnHnkaM8aW/rERNUZnTzJmVAWjxFOndKBka1J/OnNrchkBXoHM25HoUbUH7ntBTz21jYMZbLY0T2AGAELv3GeawYAgIdf3+L+vuHPzgegOlBV5j/JSB2lfp89fQwmd7Ri3LAmj4lMCIFhzQmceeRo3Dn3PQCA/yVnmk8b4wjU3y3c5F5/8qSRWNvZ6xEEO3v68d6b5+PGx5cjRsBb377AdVi+uGY3BtIZfFpqQa9u2INbPnES4jHCtDFtnrKslPb3jtYUPnCsY3Y565anXY3pP59ciUXvOM7M2z99Ko49bBjGSB/ExT95EQvW57TCMUpDCfDFKO3gly+sx1NSSOgj5Y9K/8mDnz8TADD3lwvxX/NyA44jxzpa68ypozCYyeLkb/8VS7bsw7889CaukoLvXZNGAACSidxacCrCTZleFF974E34MaI16Q48VCe6UzORzXmPM2iZPr4dQgAbdjlCQ0UtAo5DffKoFmze0+dquG9s2utqFSpkuLUpXqAZvrx2N4bJAAfVJp6VASkfnnGYG013+6dPA1A4j+Xzv3bq4q3N+3IaivZOvvWHnPC8+7OzkIg7vpbO/c4zrtye88uoehjenMS+viFMvfYxrO3cj319Q/i51NbOOXYcPnjsOPQOZrB0qxOKr2+zrLSc0e1NnkHQD59ajd8s2AgA+OxZ00BEngGYEAJX3v0qAMen2poqFL7fe3IFHn59i2vWnjiyGUJ4rQ3b9vXjwGAGU0e3uY7/d/LM1q9v2oNZ00YhHiNMH++stLD4nS6Pj3XiyBbj9sJR0rAChYjiAH4C4MMATgBwORGdUK38r9QEinKW6ij/yZk3zcdAOutGdimOGd/u/r5t/mqMbku5y268a9JINCfjOHnSSPz5rW046huPA8jt/aGcjQBwzW9fw1X3LMKDizdhTHuTO6J6+bpzATgmhpfW7vJ8uP912bsBAO+f7qyc/G+PLMVbm/diR3c/EjHCL//XexCLESaMaMbmPX34oxRKazt70dOfxkdOnuCOHpWQu+/VTVi4vsvtqP/jkhm44ITxABzzRv9QBv1DGazY1oOt8oP5+gXHuiGqysT35NIdbmf6/mPG4sTDR2DtTRfhH94zGbv2D2LzngNYtrUb//cRZ7Q8qi2FU6d0uM+mOpSF2rppU8c4nbnyQQBw7weAs44e4z5LV+8ghBD46bPe6CUVpPA/L6zH5+5ZhA27et1R/4OfP9P1sZwyeSSScSoYeZ92hFNG1RmnswL/58E33eguADjxcEegtCTj2N07iD+/tdV1XKsRvYrgenrFTlz60xexRJuP9JGTJ7h14pR1HbJZ4Qq+DxwzFl85/xgAOZ/f0yt2QAiBhev3uOl84JixmNTRioF0Fn9+axsG0hlXAwXg1veIliQ27OpFNiuwfV8/Hn5tM1buyL1fVe9flFs76FpcW1MCx44fhieWbEc2K/DXpds9wjyTdRb+HN2WcgcGAHD/otyA5Wzpv5k4sgVb9vQhkxX4/Wu5+ny3nPGv2igAPLVsB/7xf15x/3/5rMluOV/buAeZrMDvFm70nAecb3zL3j4ZVp/Fr17aIOtiJP7to8c717Q3oVNqMUu2dOOtzc67Oe2IDnS0JvH86tx32NU7iJ884/gQB6UpTAVTKIGWzmTduvvIyRPcQYnetn7yzBqs2rEfx0pBctTYdkwe1YJ5y3e4C33++8dPxIvXnutGq1WShP2SumUWgDVCiHUAQET3AbgYwLLAuyLkx586BV/47eu+O6T98Zqz8OEfPY8ezRGq86M5p2DuXQuxTEbBnDhxBE6Z0oEnvny22zjmvGcynluVGzkq38zYYU2498pZbpiwCklWoa+A4/y/7LRJeHDxZry0djdmyg7thotPxLFScI0b3ozjDhuGFdt73PDXI0a3ust7fPG86fjNgo34yv1vuHMcAOCcY3OOWJXn6xv34u9//jIA4Mgxbfj0GUe4dukbH1/umpcU13zwKI9Qvv3Tp+G0/3gKX/rd62hNxXH5rMm4+dKT3fPnHz8OtzyxAmf/5zNol+anCSOa3fDUS0+diIdf24KLbnvesXfLzn5YUwLHHeZ0xmq0qRjZmsTTXz/H7YAPG96MZ1d2Ytp1j7vXJOOEM44c7X7Mbh18/1n393um5jTChM9imV8692h84YNHu3koVmij6ef++YOuScPpsNfjC7993b1HjewXfON8HPOtJwAAr23ci4/+t+M7+cmnTnUFitKEN3X14chv5J7l7s/Ocn8rQf79v65CT38af13qCIzLZ00GEWFShzPn5YvaPj8AsOI7s9303zN1FB55Y6snDwD40RxnwHJUXgemtFrFOceOxc+fW1dwPwD89B9PRTxGmD3jMPxmwUb8+a3HCs67z9KSwDMrO92BFwAs+fcL3bZ53IScv/BmbcXvX1wxE0SEyaOcZ73p8RW46fHc+ZevOxcTRjjnxrQ3oac/jenffAJzpJC55N2H4+ZLT3YjztqaEnh+9S5MvTZX1ktPnYh4jPDhkybgmZWd+Oh/v4DTjuhwB2kAcP3HTgSQE/KX/ORFXPX+I7FqRw8Wv7MH8RjhXZNGuusWXPvwW2iSkZzKD3ne8ePd9GZNHS0FqzO4O1sOHKtBw2ooACYC2KT9f7M8VjU+evLheO3fPoRzjh1XcO74CcPxVTkabEnGcYo2igYcofD7q98LwLFr3/R3M9z7lPP5opMm4NNnTAHgOPT1hnH29LFYfsNsfOaMI9xjaqSk0Ds6NcrTjwHA769+Lz552iT3/0qYAc5H9PULji14tkkdOX9RIh7Dp06f4jmvPrhEPIbPaUJD56vnH+PZWW50exM+/q5c2O3sGRM81x81th0zJg6HEEDPQBrxGOHl685zz9986UmYIv1YSpj86+zj8Na3L3CvOff4cfjEqbln/cSpk1xhAjhrZeWz9N9n494rT0dzMo6F3zyv4Lweeab4yEnesn/l/GNcIX34yBa341d87UPHYMroXJ1+6ITxnvMTRuaEUCoRwyPXnOVqs6ayf0zWpQldy/35c+uwu3cQ/9/Z03DT3zkBJ6fmtVeF/s4uPPGwgvOXnjoRF8sQ+mQ8hkXfOh+zpo7Cw//0XldgKv519nHuO9NZfsNsXCTr8Opzjio4f/unT3XPA8BZR3k7zA/POMwzuDp9mrfNA8BnzjjCrWc98EMx98wjXGECAH8nd5lMZwV+/YqjwXzl/GNcTR0Arnr/kZ7Q9mPGt+MHf+8I18vkN/bO7gN4+LUtzrbU8Rj+8E/vxSfkuaPH5t7pHc+tw7MrOzFr2ij86QvvQyzmzGU5e/oYZIXjbL/6N68BAB79wlkeM/dlM3Nt/GsfOqYqmomCqhFKVgmI6DIAFwohPif//xkAs4QQX8y77ioAVwHAlClTTnvnnXcK0qoU6YxjMjh+wnBXK8jnwGAaLcm4O8ophedWdWLGxBGezhFw7Lj3vvIOhjcncfvf1uKKM6cWdP6Kheu7sK5zPz72rsM9e6Sr50jIuRHJOPmWNZMVWLp1H2YcPsITjQU4UV83P7EcBwYymD3jMHzg2LG+HzHg+HOS8RhmzyjsrPqHMliwvgt/WbIdnzh1ImbmCceu3kFs29eH51btwtHj2gs6ZsWu/QNY/M4enH/8+IK9Y/qHMkjGY3hhzS687+gxvnvLHBhM4+M/fhHnHjcO13zw6ALNB3CcrV974A380wePwmlHFHZofYMZPLe6E129g7j01IkF9bF/II0Nu3rx5ua9eP/0sZ6gDx3lOM8/n8k6ppkX1+zCht0H8I+nT/HdGnbVjh5ccOtzOHXKSPz6c6e7wQeA499Y29mLmx5fjgODadxy6cmYMXGE5/7d+wfw0OLNOGVKB9LZLE6d0lHUFrTZrMAbm/eivSmBe17egC+dO9012+rlWL+rF8+v3oXPnHmEq10phjJZrO3cjzg5bVMXlooF63YjEY9hxfZuHDa82TOiB5xvZc+BIWSyAt39Q5g4ssX3OTbuPoAX1uxC31DGo2HrLN/WjVU7enD+8eM939KTS7djwboujG5P4WMnH462prgbaKFY/M4e/OnNrTj/+PHY1zeE808Y52kbPf1DePTNrVi+rRtTRrXi3ZM7PMJEEfStlgIRLRZCzLRe18AC5UwA3xZCXCj/fx0ACCFuNt0zc+ZMsWjRItNphmEYxoewAqWRTV6vAphORNOIKAVgDoBHa1wmhmGYQ5aGdcoLIdJE9AUATwKIA7hLCLHUchvDMAxTIRpWoACAEOJxAIUhIgzDMEzVaWSTF8MwDFNHsEBhGIZhIoEFCsMwDBMJLFAYhmGYSGCBwjAMw0RCw05sLAUi6gGwMuCSEQD2BZyfAmBjwPkwadjOR5WGrazVKEejlDPMNdV4941SzijSaJRyAgdPGy0nj2OFEP7LfegIIQ6ZfwAWWc7fYTnfGSIPWxqB5yNMI7Cs1ShHo5SzXt59o5QzomdtiHKGKWujtNFy8rD1neofm7y8/Mlyfq/lfJg0bOejSsNW1mqUo1HKGeaaarz7RilnFGk0SjmBg6eNRpFHIIeayWuRCLEeTaXuryaNUlYuZ7RwOaOnUcpayXKGTftQ01DuqPH91aRRysrljBYuZ/Q0SlkrWc5QaR9SGgrDMAxTOQ41DYVhGIapEIe8QCGiu4hoJxEt0Y69i4heJqK3iehPRDRcHk8S0d3y+HK1B4s89ywRrSSiN+S/wu3/qlfOFBH9Uh5/k4jO0e45TR5fQ0S3UVQ78ERfzkrX52Qieka+x6VE9GV5fBQRzSOi1fJvh3bPdbLeVhLRhdrxitVpxOWsWJ0WW04iGi2v309EP85Lq9JtNMqy1lOdfoiIFsu6W0xE52ppVbROXcKEgh3M/wC8H8CpAJZox14F8AH5+7MAviN/fwrAffJ3K4ANAKbK/z8LYGadlPMaAL+Uv8cBWAwgJv+/EMCZAAjAEwA+XKflrHR9TgBwqvw9DMAqACcA+E8A18rj1wL4rvx9AoA3ATQBmAZgLYB4pes04nJWrE5LKGcbgPcB+DyAH+elVek2GmVZ66lOTwFwuPw9A8CWatWp+nfIayhCiOcAdOUdPhbAc/L3PACfUJcDaCOiBIAWAIMAuuuwnCcAmC/v2wknnHAmEU0AMFwI8bJwWtk9AC6pt3JGWR4TQohtQojX5O8eAMsBTARwMYC75WV3I1c/F8MZTAwIIdYDWANgVqXrNKpyRlWeqMophOgVQrwAoF9Pp0ptNJKyVpoSyvm6EGKrPL4UQDMRNVWjThWHvEAxsATAx+XvywBMlr8fAtALYBucGanfF0Lonecvpdr7bxVTKcOV800AFxNRgoimAThNnpsIYLN2/2Z5rN7KqahKfRLRVDijuwUAxgshtgHOBw1HcwKcetqk3abqrmp1WmY5FRWv05DlNFHVNlpmWRX1WKefAPC6EGIAVaxTFij+fBbANUS0GI6qOSiPzwKQAXA4HHPC14noSHnuH4UQJwE4W/77TA3LeRecRrMIwA8BvAQgDUfdzacaYX7FlhOoUn0SUTuA3wP4ihAiSNs01V1V6jSCcgJVqNMiymlMwudYRdpoBGUF6rBOiehEAN8F8P+rQz6XVaROWaD4IIRYIYS4QAhxGoDfwbFDA44P5S9CiCFponkR0kQjhNgi//YA+C2qY2bwLacQIi2E+KoQ4t1CiIsBjASwGk7nPUlLYhKArfnp1kE5q1KfRJSE86H+RgjxsDy8Q5oIlPllpzy+GV7tSdVdxes0onJWvE6LLKeJqrTRiMpad3VKRJMA/AHAFUII1W9V7btngeKDitQgohiAbwG4XZ7aCOBccmgDcAaAFdJkM0bekwTwUThmnpqUk4haZflARB8CkBZCLJPqcQ8RnSFV8ysAPFJv5axGfcrnvxPAciHED7RTjwKYK3/PRa5+HgUwR9qkpwGYDmBhpes0qnJWuk5LKKcv1WijUZW13uqUiEYCeAzAdUKIF9XFVf3uo/byN9o/OCPmbQCG4EjyKwF8GU5ExSoAtyA3AbQdwINwHF7LAPyzyEWBLAbwljz3I8jImhqVcyqcVZWXA3gKwBFaOjPhNPq1AH6s7qmnclapPt8HR+1/C8Ab8t9FAEbDCRRYLf+O0u75pqy3ldCiZCpZp1GVs9J1WmI5N8AJ4Ngv28oJVWqjkZS13uoUzmCtV7v2DQDjqlGn6h/PlGcYhmEigU1eDMMwTCSwQGEYhmEigQUKwzAMEwksUBiGYZhIYIHCMAzDRAILFIapE4jo80R0RRHXTyVtVWeGqTWJWheAYRhnkpwQ4nb7lQxTv7BAYZiIkAv4/QXOAn6nwJnIeQWA4wH8AM7E2F0A/pcQYhsRPQtn/bKzADxKRMMA7BdCfJ+I3g1nRYFWOJPRPiuE2ENEp8FZA+0AgBeq93QMY4dNXgwTLccCuEMIcTKcrQ2uAfDfAD4pnLXM7gJwo3b9SCHEB4QQ/5WXzj0A/lWm8zaA6+XxXwL4khDizEo+BMOUAmsoDBMtm0RuHaVfA/gGnM2O5smVzeNwlqZR3J+fABGNgCNo/iYP3Q3gQZ/j9wL4cPSPwDClwQKFYaIlfy2jHgBLAzSK3iLSJp/0GaZuYJMXw0TLFCJSwuNyAK8AGKuOEVFS7ldhRAixD8AeIjpbHvoMgL8JIfYC2Ef/r707NkEgCKIA+geMrMUS7MRAbEkTTazCxELEzDJMz+A2F2TgDN4LNxgm+8yw7FZtx/muv334nQkFej2T7Kvqkvk12FOSe5LjWFmtMn8m9vhSZ5/kXFXrJK8kh3F+SHKtqveoC3/Da8PQZNzyuk3TtFm4FViElRcALUwoALQwoQDQQqAA0EKgANBCoADQQqAA0EKgANDiAzFq59yBMJe2AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "sorted_data['inc'].plot()" ] @@ -234,9 +2242,32 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 22, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEKCAYAAADTgGjXAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztvXl8XNV5//9+ZtUua7WNZeMVMBgwsQMmodlIgCwNpIHEaRL8S2lJUtImbX9NQpvvlySUNqTN0jQJKQmUJQtQ0hQSIMQsWUjYbDA2XsDCq7zbkixZy4xm5vn+cc+VR9JIGo1G0kh63q/XvGZ05p4z5x7N3M99lnOOqCqGYRiGkQuBie6AYRiGMXkxETEMwzByxkTEMAzDyBkTEcMwDCNnTEQMwzCMnDERMQzDMHLGRMQwDMPIGRMRwzAMI2dMRAzDMIycCU10B/JNbW2tzp8/f6K7YRiGMalYv379UVWtG2m9KSci8+fPZ926dRPdDcMwjEmFiOzOpZ65swzDMIycMRExDMMwciZrERGRoIi8KCK/cH9Xi8haEdnunqvSjr1eRBpF5BURuTStfIWIbHLvfUtExJVHReReV/6siMxPq7PGfcZ2EVmTj5M2DMMw8sNILJFPA1vT/v488LiqLgEed38jImcCq4GzgMuA74pI0NW5BbgWWOIel7nya4AWVV0MfAO42bVVDdwAXACcD9yQLlaGYRjGxJKViIhIA/Bu4AdpxZcDd7rXdwJXpJXfo6oxVd0JNALni8hsoEJVn1ZvE5O7+tXx27ofuNhZKZcCa1W1WVVbgLWcFB7DMAxjgsnWEvkm8FkglVY2U1UPALjnelc+B9ibdlyTK5vjXvcv71NHVRPAcaBmiLb6ICLXisg6EVl35MiRLE/JMAzDGC3DioiIvAc4rKrrs2xTMpTpEOW51jlZoHqrqq5U1ZV1dSNOczYMwzByJBtL5I3Ae0VkF3AP8DYR+SFwyLmocM+H3fFNwNy0+g3AflfekKG8Tx0RCQGVQPMQbRnGlOWJbYdoaumc6G4YRlYMKyKqer2qNqjqfLyA+ROq+hHgQcDPlloDPOBePwisdhlXC/AC6M85l1e7iKxy8Y6r+9Xx27rSfYYCjwKXiEiVC6hf4soMY0qiqnzi7he4++mc5n0ZxrgzmhnrXwHuE5FrgD3AVQCqullE7gO2AAngOlVNujqfBO4AioFH3APgNuBuEWnEs0BWu7aaReRG4Hl33JdVtXkUfTaMgqatO0E8maIjnpjorhhGVoxIRFT118Cv3etjwMWDHHcTcFOG8nXAsgzl3TgRyvDe7cDtI+mnYUxWmjviAHT3pIY50jAKA5uxbhgFxEkRSQ5zpGEUBiYihlFAtJglYkwyTEQMo4Bo7vREJJYwS8SYHJiIGEYBYe4sY7JhImIYBYS5s4zJhomIYRQQZokYkw0TEcMoIFpcTKTbYiLGJMFExDAKiGPmzjImGSYihlFAtJg7y5hkmIgYRgHhx0RiZokYkwQTEcMoEHqSKdq6E4QCQjyZIpkasOuBYRQcJiKGUSD4QfWZFUWATTg0JgcmIoZRILR09ABwygxPRCy4bkwGTEQMo0Dw4yGzK4sBC64bkwMTEcMoEHx31ikzTESMyYOJiGEUCP4cEXNnGZOJYUVERIpE5DkReUlENovIl1z5F0Vkn4hscI93pdW5XkQaReQVEbk0rXyFiGxy733LbZOL20r3Xlf+rIjMT6uzRkS2u8caDGOK0upEZJYLrNusdWMykM3OhjHgbap6QkTCwFMi4m9r+w1V/bf0g0XkTLztbc8CTgEeE5HT3Ba5twDXAs8ADwOX4W2Rew3QoqqLRWQ1cDPwQRGpBm4AVgIKrBeRB1W1ZXSnbRiFRyyRIiBQXhQGzJ1lTA6GtUTU44T7M+weQyWwXw7co6oxVd0JNALni8hsoEJVn1ZVBe4Crkirc6d7fT9wsbNSLgXWqmqzE461eMJjGFOOeDJFJBQgGvZ+ljbh0JgMZBUTEZGgiGwADuNd1J91b31KRDaKyO0iUuXK5gB706o3ubI57nX/8j51VDUBHAdqhmirf/+uFZF1IrLuyJEj2ZySYRQc8USKSDBAUSgImCViTA6yEhFVTarqcqABz6pYhueaWgQsBw4AX3OHS6YmhijPtU56/25V1ZWqurKurm7IczGMQiWWSBEJBSlylojFRIzJwIiys1S1Ffg1cJmqHnLikgK+D5zvDmsC5qZVawD2u/KGDOV96ohICKgEmodoyzCmHJ4lIhSFPUvE3FnGZCCb7Kw6EZnhXhcDbwe2uRiHz/uAl93rB4HVLuNqAbAEeE5VDwDtIrLKxTuuBh5Iq+NnXl0JPOHiJo8Cl4hIlXOXXeLKDGPK0eNiIr6ImDvLmAxkk501G7hTRIJ4onOfqv5CRO4WkeV47qVdwMcBVHWziNwHbAESwHUuMwvgk8AdQDFeVpaf5XUbcLeINOJZIKtdW80iciPwvDvuy6raPIrzNYyCJZ7wRcR3Z5klYhQ+w4qIqm4EzstQ/tEh6twE3JShfB2wLEN5N3DVIG3dDtw+XD8NY7LjZ2dZYN2YTNiMdcMoEPzsrEBAiAQDNmPdmBSYiBhGgRBPpAgHvZ9kNBwwS8SYFJiIGEaB4LuzAIrCQdtPxJgUmIgYRoEQT6SI9oqIubOMyYGJiGEUCH0skVDQ3FnGpMBExDAKBD+wDp47y0TEmAyYiBhGgeDPEwFzZxmTBxMRwygQepIns7OKwkFbO8uYFJiIGEaBkG6JRENBs0SMSYGJiGEUCLFkX3dWzGIixiTARMQwCgBV9VJ8LbBuTDJMRAyjAEikvG1y+gTWbQFGYxJgImIYBUDcCUZvYN3miRiTBBMRwygAfBHpDay7tbO8bXUMo3AxETGMAiCe7CsiRaEgKYWepImIUdiYiBhGAdBriaQF1sH2WTcKn2y2xy0SkedE5CUR2SwiX3Ll1SKyVkS2u+eqtDrXi0ijiLwiIpemla8QkU3uvW+5bXJxW+ne68qfFZH5aXXWuM/YLiJrMIwpSH9LJOp2N+yx4LpR4GRjicSAt6nqucBy4DIRWQV8HnhcVZcAj7u/EZEz8ba3PQu4DPiu21oX4BbgWrx915e49wGuAVpUdTHwDeBm11Y1cANwAXA+cEO6WBnGVKG/JeIH2M2dZRQ6w4qIepxwf4bdQ4HLgTtd+Z3AFe715cA9qhpT1Z1AI3C+iMwGKlT1afWihXf1q+O3dT9wsbNSLgXWqmqzqrYAazkpPIYxZegfWA8FBPCWQjGMQiarmIiIBEVkA3AY76L+LDBTVQ8AuOd6d/gcYG9a9SZXNse97l/ep46qJoDjQM0QbRkTxK82H+Tup3dNdDemHP3dWf5z3ETEKHCyEhFVTarqcqABz6pYNsThkqmJIcpzrXPyA0WuFZF1IrLuyJEjQ3TNGC33rdvLbU/tnOhuTDkGc2clzJ1lFDgjys5S1Vbg13gupUPORYV7PuwOawLmplVrAPa78oYM5X3qiEgIqASah2irf79uVdWVqrqyrq5uJKdkjJDOeJKOuGUM5Zv+lsjJmIhZIkZhk012Vp2IzHCvi4G3A9uABwE/W2oN8IB7/SCw2mVcLcALoD/nXF7tIrLKxTuu7lfHb+tK4AkXN3kUuEREqlxA/RJXZkwQnfEknbHERHdjytF/xno46Bnh5s4yCp1QFsfMBu50GVYB4D5V/YWIPA3cJyLXAHuAqwBUdbOI3AdsARLAdarq37p+ErgDKAYecQ+A24C7RaQRzwJZ7dpqFpEbgefdcV9W1ebRnLAxOrqcJZJKKYFAJm+jkQu+iET7WyKW4msUOMOKiKpuBM7LUH4MuHiQOjcBN2UoXwcMiKeoajdOhDK8dztw+3D9NMaHzh7PCunqSVIazeYexMiG/tlZluJrTBZsxroxIjpjnlHZETeXVj4ZGBNxKb4ps0SMwsZExBgRnS6o7ouJkR/8APqAyYbmzjIKHBMRI2tSKaXLLU9+woLreaW/O8t/NneWUeiYiBhZk74YYKel+eaVWL/sLJuxbkwWTESMrEkXDouJ5JfBJhtaiq9R6JiIGFnTlSYiFhPJLz3JFOGg9KZN++4sm7FuFDomIkbWpFsfHRYTySvxRKrXCgGbsW5MHkxEjKwxd9bYEU+meq0PSEvxNRExChwTESNr+rizLLCeV+KJVK/1ARYTMSYPJiJG1vSxRMydlVfiif6WiD9PxGIiRmFjImJkTafFRMaM/u6sYEAICCRsxrpR4JiIGFnjWyLBgNhy8Hmmf2AdPGvE3FlGoWMiYmSNLyLVpZE+VokxeuLJVO8Kvj6RYMDcWUbBYyJiZE2XE466sigdNk8kr/QPrAOEgmLZWUbBYyJiZE1nPEkoIMwoCVtMJM/0D6yD584yETEKHRMRR3dPkrVbDrHnWOdEd6Vg6YwnKY4EKY2GLCaSZ3qSg4mIubOMwiab7XHnisiTIrJVRDaLyKdd+RdFZJ+IbHCPd6XVuV5EGkXkFRG5NK18hYhscu99y22Ti9tK915X/qyIzE+rs0ZEtrvHGsaIjliCv7hrHU++cnj4g6cpXfEkJZEgpZGgxUTyTCxDYD0SMkvEKHyy2ZouAfydqr4gIuXAehFZ6977hqr+W/rBInIm3va2ZwGnAI+JyGlui9xbgGuBZ4CHgcvwtsi9BmhR1cUishq4GfigiFQDNwArAXWf/aCqtozutAfi79JnS5wPTkc8QWkkREk0ZDGRPNM/xRe8WesmIkahM6wloqoHVPUF97od2ArMGaLK5cA9qhpT1Z1AI3C+iMwGKlT1aVVV4C7girQ6d7rX9wMXOyvlUmCtqjY74ViLJzx5JxoKEAyI3WEPQZfvzooELSaSZzLFREIBs0SMwmdEMRHnZjoPeNYVfUpENorI7SJS5crmAHvTqjW5sjnudf/yPnVUNQEcB2qGaCvviAglkaDdYQ9Bp+/Oiobo6kmSTJm/Pl9knCcSChC3mIhR4GQtIiJSBvwU+IyqtuG5phYBy4EDwNf8QzNU1yHKc62T3rdrRWSdiKw7cuTIkOcxFGXRkN1hD0FnT5LiSIjSiOf683c5NEZPpsB6JCgkzBIxCpysREREwngC8iNV/R8AVT2kqklVTQHfB853hzcBc9OqNwD7XXlDhvI+dUQkBFQCzUO01QdVvVVVV6rqyrq6umxOKSMlkaAtLDgEXfEEpZEgJdEgAJ0muHljsBnr5s4yCp1ssrMEuA3YqqpfTyufnXbY+4CX3esHgdUu42oBsAR4TlUPAO0issq1eTXwQFodP/PqSuAJFzd5FLhERKqcu+wSVzYmlEZDFlgfgo6YHxOxJIR8kzmwbu4so/DJJjvrjcBHgU0issGV/QPwIRFZjude2gV8HEBVN4vIfcAWvMyu61xmFsAngTuAYrysrEdc+W3A3SLSiGeBrHZtNYvIjcDz7rgvq2pzbqc6PKWRkAXWh6Cr52RMBGw5+HyRSik9Sc2cnZUwS8QobIYVEVV9isyxiYeHqHMTcFOG8nXAsgzl3cBVg7R1O3D7cP3MB6XRIPtbe8bjoyYlnfEEJZEQpRHPnWXxo/zgL7LYf9kTc2cZkwGbsZ6GNxPbLoyZSKWU7p4UxeEgJWaJ5JWYszaKwsE+5eFggIRlwBkFjolIGiURm0Q3GH4mVmk02GuJWEwkP8QS3tgWhTPERMydZRQ4JiJplEVtEt1g+FZHcSREZXEYgONd5vrLB7EeTyiiof6WiM1YNwofE5E0SiI2iW4w/ISDknCQGSURAJo74hPZpSmDb4n030/EYiLGZMBEJI2yqE2iGwzfEimJBImEApQXhUxE8kR3z+AxEVvF1yh0TETS8CfRmUtrIN09vt/eG6Oa0gjHTETywqCWSMjcWUbhYyKShj+JzkRkIH4GUdQFf6tLIzR3xCayS1OGkzGRDNvjmogYBY6JSBr+JDrL0BqInyXkB3+rS6McO2GWSD44KdB93VmhQICUYjE6o6AxEUmjdxKdzRUZQO+FLuRbImGLieSJk67Cge4swKwRo6AxEUnj5HIeJiL96e+3ry6N0tIZx1vizBgNsUTmFF9/Qca4iYhRwJiIpFEa9SfRmTurP/3nMtSURuhJKu0WPxo1Q6X4AiQsQ8soYExE0ui1ROzCOIBMgXWAZouLjJqhUnzB3FlGYWMikkaJLXE+KAPcWWWeiFia7+gZzBIJBb2YiC19YhQyJiJp+IF1W1hwIP2zs2pKbdZ6vhgqxRfMEjEKGxORNELBANFQwLKzMuC7s/w9L6p6lz6xuSKjJZZIEQwIoQxLwQO2kq9R0JiI9KPU9lnPSCyRJBQQggHPxVJj7qy80d2TpCg08KcYNnfWiIklkry87/hEd2Nakc32uHNF5EkR2Soim0Xk0668WkTWish291yVVud6EWkUkVdE5NK08hUissm99y23TS5uK917XfmzIjI/rc4a9xnbRWQNY0xpNEinZWcNINaT6uNuKYmEKAoHaDERGTWxRGrAREOAcMjcWSPlx8/u4fLv/N7crONINpZIAvg7VV0KrAKuE5Ezgc8Dj6vqEuBx9zfuvdXAWcBlwHdFxP+F3AJci7fv+hL3PsA1QIuqLga+Adzs2qoGbgAuAM4HbkgXq7GgNGL7rGci04WupjRqlkgeiCWSA+IhAOGALyLmzsqWLfvbSKaUXcc6Jror04ZhRURVD6jqC+51O7AVmANcDtzpDrsTuMK9vhy4R1VjqroTaATOF5HZQIWqPq3eDLW7+tXx27ofuNhZKZcCa1W1WVVbgLWcFJ4xoTQassB6BuKJ1IALnbd+lonIaOnuSQ1I74WT7iyzRLKn8cgJAPY2d05wT6YPI4qJODfTecCzwExVPQCe0AD17rA5wN60ak2ubI573b+8Tx1VTQDHgZoh2hozSiJBC6xnIJZI9gbVfUxE8sOgloi5s0aEqtJ4yBORPcdMRMaLrEVERMqAnwKfUdW2oQ7NUKZDlOdaJ71v14rIOhFZd+TIkSG6NjxlFljPSCyDJVJTGrFFGPNAprGF9BRfc2dlw6G2WO8KCnvMEhk3shIREQnjCciPVPV/XPEh56LCPR925U3A3LTqDcB+V96QobxPHREJAZVA8xBt9UFVb1XVlaq6sq6uLptTGhTbZz0z3oWur8ulobqE/ce7ehcQNHKjuyc5YGzBZqyPlMbDnhUSCQZMRMaRbLKzBLgN2KqqX09760HAz5ZaAzyQVr7aZVwtwAugP+dcXu0issq1eXW/On5bVwJPuLjJo8AlIlLlAuqXuLIxozRq7qxMZHK5LKorRRV2m+tgVHhJCwN/iiGLiYyI7YfbAbhgYbXFRMaRUBbHvBH4KLBJRDa4sn8AvgLcJyLXAHuAqwBUdbOI3Adswcvsuk5V/VvVTwJ3AMXAI+4BnkjdLSKNeBbIatdWs4jcCDzvjvuyqjbneK5ZURwJ2p11BmI9Ay90i+rKANhx5ASnzyqfiG5NCWI9KWpKB1oivav42jyRrGg8fILK4jDnzaviqcajxBOpAXE8I/8MKyKq+hSZYxMAFw9S5ybgpgzl64BlGcq7cSKU4b3bgduH62e+iAYDxBIpVBU3jcXAW468vKjv12VBbSkAr7mMGCM3YolkRkvEZqyPjO2HT7C4voxTq0tQhX2tXb3fUWPsMJnuRzQcRNWCmf3xJhv2vVsujYaYXVnEjiOWkz8auntSFGWMiZg7ayS8dvgEi+vKmFdTAlhwfbwwEemH7/f3V1Y1PAa7W15UV2aWyCgZLCbip/iaO2t4VJWWzjj1FVHmVpmIjCcmIv2I2g83I4OloS6sK2XHkQ7b4XAU2Iz10RNLpEipl11ZXx4lEgpYcH2cMBHpR6TXEjERSSdTii94lkh7LMGRdlvNN1cyuQrB3FkjwZ/bVRoNEggIsyqKONzWPcG9mh6YiPTD/zGbiPRlsEwXP0PrNYuL5EQqpcSTKYoyuLOCAUEEEiYiw+IvVVTslo+pKgnT3NkzkV2aNpiI9MNiIpkZzOWyuN4TkXuf30PSsohGTDzZd7OvdESEcDBA3NxZw+LP7fK3uK4qjdDaaaspjAcmIv3wA5z+bnMGJFNKT1IzXuhmVRbx1xcv4X837Oez92+cgN5Nbvw5SZkEGry5IubOGh5/lYkStztpdYmt6zZemIj0w79Qxu2H20vv1rgZXC4Af/uO0/joqlP5nxeb6LTZ/iMiNszYhoJiIpIFnf0skRklEVrNnTUumIj0ozewbpZIL75rLxIc/OvyxsW1qJ5cv8jIDv97lmmeCHgTDi1TcHj8mEivJVIa5kQsYW7pccBEpB8WExnIcHfLQO+yJ9sOto9Ln6YK3e57NtjYFoUDluSRBb2WSOSkJQKYNTIOmIj0w7KzBtLrzhrkbhlgXnUJ0VCAV01ERoRviQw2tkUhW8stG3pjIlHfEvFEpMWC62OOiUg/zBIZiD8WgwV/wUtHXTKzjFcOmYiMBH9sM6X4grcgaJeJyLD0t0SqnCViwfWxx0SkHxYTGUh3793y0F+X02dW8KqJyIiIDWPlmSWSHb4l0jtPpDQMmDtrPDAR6UfvsieWEdOLf6Ebblnt02eVcagtZvn5I2C4FN9oONAr4sbgdMYTlES82ergpfiCWSLjgYlIP6LuTsYskZOcdGcNHhMBOG2mF1x/xeIiWTNc0kJR2CyRbOiIJymJnNyqwA+st5iIjDkmIv2wmMhAhpsn4uNnaFlcJHt6YyKDCHSxiUhWdMYSvem94FnNZdEQLebOGnOy2R73dhE5LCIvp5V9UUT2icgG93hX2nvXi0ijiLwiIpemla8QkU3uvW+5LXJx2+je68qfFZH5aXXWiMh29/C3zx1TQgEhIJadlc5Jv/3QX5dZFUWUR0NsP2RzRbKlN940RIqvubOGx7NE+gpxVWnYsrPGgWwskTuAyzKUf0NVl7vHwwAicibe1rZnuTrfFRH/P3sLcC3enutL0tq8BmhR1cXAN4CbXVvVwA3ABcD5wA1un/UxRUSIhCw3P53hgr8+IsKi+jKbcDgCYj1DuwqLwsHeuSTG4HTGE72z1X2qSiImIuPAsCKiqr/F2/c8Gy4H7lHVmKruBBqB80VkNlChqk+rt/HEXcAVaXXudK/vBy52VsqlwFpVbVbVFmAtmcUs70RDQZslnEZsmOBvOovry2i0TaqyxhfowVJ8LSaSHZ2ZLJGSiMVExoHRxEQ+JSIbnbvLtxDmAHvTjmlyZXPc6/7lfeqoagI4DtQM0daYEw0FLCaSRrbuLPBE5Eh7jONd5ovOBt9VNdiSMp6IpGzTr2HojCV754j4VJWELSYyDuQqIrcAi4DlwAHga65cMhyrQ5TnWqcPInKtiKwTkXVHjhwZqt9ZEQ0HLDsrjWxmrPssdvuLmEsrO2KJJKGAEBpURGyTtGzoiCd6Z6v7VJWaJTIe5CQiqnpIVZOqmgK+jxezAM9amJt2aAOw35U3ZCjvU0dEQkAlnvtssLYy9edWVV2pqivr6upyOaU+RENB+9Gmkc3aWT7+/iKvmYhkRXdP5m2HffysLXNpDU1nfKAlUl0SoT2WMNf0GJOTiLgYh8/7AD9z60Fgtcu4WoAXQH9OVQ8A7SKyysU7rgYeSKvjZ15dCTzh4iaPApeISJVzl13iysacSNDcWelks4qvz9zqEiKhgMVFsqSrJ0Fxv4tfOkVhX0TsQjgUHbGBlsiMUn8RRrNGxpLBv70OEfkJ8BagVkSa8DKm3iIiy/HcS7uAjwOo6mYRuQ/YAiSA61TVvxp/Ei/Tqxh4xD0AbgPuFpFGPAtktWurWURuBJ53x31ZVbMN8I+KqK2c2odYIkU4KL2zgYciGBAW1pbSePgET75ymGWnVFJXHh2HXk5OMgWE0ymOeMJt62cNTiKZIpZIDbBEap2IHOuIU19RNBFdmxYMKyKq+qEMxbcNcfxNwE0ZytcByzKUdwNXDdLW7cDtw/Ux30QtxbcPsZ5UVvEQn0X1ZTy86QBPbDvM+86bwzc+uHwMeze5GU5EzJ01PJ09ffcS8al1Ny9H2mMsnT2gmpEnbMZ6Biwm0pfB9lcfjPPmzkCAhbWlPLblkLkGh6ArnqR4KBEJm4gMR6dbfLH/PJG6Mk9Ejp6IjXufphMmIhmIhAK9cyMMLztrJCKy5g3zeeYfLub//PGZtMcSPLX96Bj2bnLjLxw4GBYTGZ4Otwz8UJaIMXaYiGQgGrItSdOJJVK9C1NmQzgYoL68iDcuqqW8KMTDmw6OYe8mN109KYrDQwXWvZ+oWSKD41siJf1iIqWRIMXhoFkiY4yJSAbMndWXWCKZVWZWfyKhAO84cyZrtxykx5bWz0hX1paIichgdPRuSNV3HEWE2vKIWSJjjIlIBiw7qy+eJZLbV+XChTW0dSdoaunKc6+mBsMG1n0RsbjSoHTF/a1xB1p0dWVRjpglMqaYiGTAlj3pS3dPctClyodjXnUJAHubO/PZpSnDcIH1YouJDMtglghAbVmUo+02T2QsMRHJgK3i25fOeHLARK5smVfjicgeE5EBqCqdPcNZIm6eSNxuagajNyaSyRIpN0tkrDERyYC/iq8teufREUsMmMiVLTPLi4gEA+xtMRHpTzyZIpnSAQHhdMydNTxDWSJ15VFaOuMWkxtDTEQyYPus92U4v/1QBAJCQ1WxubMy4FsXRUNkvvnfRXNnDU5HzBORTG7B2rIoqrbX+lhiIpKBk1vk2g8XnCWSwVWQLQ3VJexttsB6fzrjmWdapyMiFIVt3tJQtHUnKAoHMq6qUGdzRcYcE5EM+HMibDl4j9FYIgDzqostJpKBbEQEPEvF1s4anOOdPcwojmR8r9bNWre4yNhhIpKBaNC3ROyHG0+kSKR0VJbI3KoSjnf12EZV/fDdWcXDTOQsCtnuhkPR2hWnsjic8b16s0TGHBORDERtI6BeOl3QcrgL3VBYmm9munoyz7TuT1E4YDGRIWjt7KGyJLOI1Nr6WWOOiUgGemMi9sOlI+4vbpe7iMx1ItJkGVp96BXoLNxZZokMzvGuHmYMYokUR4KURUNmiYwhJiIZ8AN0lp0FnTF/cbtRuLOqba5IJrosJpIXjnf1MGMQSwRgZkWUbQfax7FH0wsTkQxEei0R++HmwxJ84uleAAAgAElEQVSpLA5TWRxm9zETkXSyD6wHzCoegtbOnkFjIgAfWDmXp3cc45kdxwDoSaa4++ldfP6nG/nZi03j1Mupy7AiIiK3i8hhEXk5raxaRNaKyHb3XJX23vUi0igir4jIpWnlK0Rkk3vvW26bXNxWuve68mdFZH5anTXuM7aLiL+F7phjKb4nyYclAnDGrHI272/LR5emDP5mSlm5syzJIyPdPUm6epLMKMmcnQXe1gSzKoq4+ZfbUFVue2on/+eBzdy3bi//+Zsd49jbqUk2lsgdwGX9yj4PPK6qS4DH3d+IyJl429ue5ep8V0T8X8gtwLV4+64vSWvzGqBFVRcD3wBudm1V423FewFwPnBDuliNJb47y0QkzRIZpYic01DJlgNtNnM4ja54dgJdbDGRQWlzGX9DWSJF4SB/844lvLinlX96aCvfebKRi8+o5wMr53LMJiGOmmFFRFV/i7f3eTqXA3e613cCV6SV36OqMVXdCTQC54vIbKBCVZ9Wby2Ru/rV8du6H7jYWSmXAmtVtVlVW4C1DBSzMeFkdpb9cP3gb65rZ/mc3TCDeCLFq4fMN+3TmW2Kr8VEBsVPGx8qJgKeS+sDKxu47amddMQSfO6dZ1BTFqGlI04qZcsbjYZcby9nquoBAFU9ICL1rnwO8EzacU2urMe97l/u19nr2kqIyHGgJr08Q50xpXfZE7NEei90o7ZE5lQC8PK+45x1SuWo+zUV6IoniYQCBAMy5HGW4js4rVlYIuDN/P/n951NNBSkrjzKaTPLqSmNkkgpbd09Q7rDjKEZ3ZVhIJl+DTpEea51+n6oyLV4rjLmzZs3fC+HIWIxkV6GWpdoJJxaU0J5UYiNTcf54Ovz0bPJT7YrAViK7+C0djpLZJAZ6+mEggFuvGJZ7981ZV6doyfiJiKjINfsrEPORYV7PuzKm4C5acc1APtdeUOG8j51RCQEVOK5zwZrawCqequqrlTVlXV1dTme0kl6YyL2w806g2g4RISz51Syad/xfHRrStAZT1KSxSTOonDQsrMGobXTi2kM587KRE2pNxHRFmccHbmKyIOAny21BnggrXy1y7hagBdAf865vtpFZJWLd1zdr47f1pXAEy5u8ihwiYhUuYD6Ja5szLHsrJN0xBNEQgHCOWyP25+zGyrZeqDNYk2O7p6hN6TyKQoFe5eNN/rix0QGm7E+FNWlnvVxzGazj4ph3Vki8hPgLUCtiDThZUx9BbhPRK4B9gBXAajqZhG5D9gCJIDrVNW/YnwSL9OrGHjEPQBuA+4WkUY8C2S1a6tZRG4EnnfHfVlV+wf4x4SicJCAwAnnypnOdMaSGfdpyIUzZ1fQk1T2NneyuL48L21OZjrjiaxSp/2Nqbp7kqNaw2wqcryrh2BAKM9hXGqdO8sytEbHsCOvqh8a5K2LBzn+JuCmDOXrgGUZyrtxIpThvduB24frY74JBoTq0oitt4NniYx2jojPrIoiAA4ej5mI4LmzsrFE/GNMRAbS2tlDRVEIN+1sRFT1WiImIqPBZqwPQm1ZlCO2NzNd8eSoZqunM7uyGIADx21vEfAWYMwqsO5idJbmO5DWrtwzq8LBAJXFYY512M3iaDARGYTasqhZIniTDfNlidRXeIHMQ23deWlvspNtdlZFsTf+bV3mXu1Pa+fgy8BnQ01ZxNxZo8REZBBqyyJ2h4K37MloM7N8isJBqksjHDhuIgKelVccHl6gqy2LaFDahll8cThqSiMWWB8lJiKDUFsW5ai5s/JqiQDMrCjioIkI4AfWhxfo6lLvItncad/H/rR2Db344nDUlEZNnEeJicgg1JZH6epJ9k62m650xhN5i4kAzK4s4qC5s4Ds3VlVzuffYhe7AbR2Dr6XSDbUlEUssD5KTEQGwXZE8+iImSUyFiRTSiyRoiiLyYaVxWFEzJ3Vn6RbsmR0lkiE5s64zcEZBSYig1DbuyTC9BaRzngib/NEwLNEjnXEp/2Ew5Nb4w4/tiGXRWQi0pfD7d2owszKopzbqCmLonpy5rsxckxEBsG3RKZzmm8qpV4aah7nJvhzRQ63TW9x9mdaV2R5F13t7piNkzS1eKnic2YU59xG76x1E+icMREZBHNnQXciiSp5tURmubvG6R4X2ecugKdkeQGsLolYTKQf/hg2VJXk3Ia/CKPFRXLHRGQQasydRUfMuVzyaYk4EZnuab77Wr2tgrO9i64qjZg7qx/7WkdvifR6HKbx73y0mIgMQjgYYEZJeFqLSO+GVFkEf7NlpnNnHZruIjJCV0x1SYQWc2f1oamlk9qyyKi2KZhZ7rtXp/f3cTSYiAzBdJ8r4lsi+UzxrSgKURIJmiXS2k1NafYXQN8S8Ra4NsCLiYzGCgFvNYBIKMDh9ul7szhaTESGoLZsei/C2JnlHuAjQUQ4ZUYxu4915K3Nyci+1i7mVGV/AawuDdOTVFtZOo19LSMbw0yICDMromaJjAITkSGY7utntXRmt/XoSDm3YQYv7m2d1nfV+1o6OaVyJCLi+e5bOnrGqkuTClVlX2vXqILqPvXlRRya5tmCo8FEZAhqy6LTOmtjf+vIMoiy5fXzq2juiLPj6PS0RvwL4EgtEbClT3yOnIgRS6RG7c4CPEuk3SyRXDERGYK68ijtsQRd8ek5MW5/axeRUICa0vzuP71yfhUA63e15LXdyUJzR5zunpFdAP2lT5ptUVBg5IkJQ1FfXjTt5y2NhlGJiIjsEpFNIrJBRNa5smoRWSsi291zVdrx14tIo4i8IiKXppWvcO00isi33Ba6uG1273Xlz4rI/NH0d6T4mUTT9S5l//FuZlcWEQiMfMOfoVhUV0ZVSZjnd43LRpUFR29q6ogsEV9EzJ0FJ8ewoToPIlLh3Sz6MUBjZOTDEnmrqi5X1ZXu788Dj6vqEuBx9zcicibe1rdnAZcB3xURPzXlFuBavD3Zl7j3Aa4BWlR1MfAN4OY89DdrZvbufzE971L2t3aNyG+fLSLCilOrWL97eloiudxF+7vw2YRDj3zMVvepL7dVFEbDWLizLgfudK/vBK5IK79HVWOquhNoBM4XkdlAhao+rV6k9a5+dfy27gcullz2wcyR3jkN0zRzY39rV97jIT4r51ez42jHtExc6L2LHoElUh4NEQ6KxUQcu452UFUSprxo9Ekf/s2ipfnmxmhFRIFfich6EbnWlc1U1QMA7rnelc8B9qbVbXJlc9zr/uV96qhqAjgO1Iyyz1njT0SajiKSSKY41NbNnBm5L243FOc0VAKw7UD7mLRfyDS1dFEaCY4o601EqCqJ0DyNEz3S2XqwnTNmVeSlrfpp/DvPB6MVkTeq6uuAdwLXicibhjg2kwWhQ5QPVadvwyLXisg6EVl35MiR4fqcNRXFIaLTdCLSofYYKYXZY2SJLK4vA6Dx8PQTkY1NrZwxu4KRGtX1FVH22/70JFPKKwfbWDo7XyJilshoGJWIqOp+93wY+BlwPnDIuahwz4fd4U3A3LTqDcB+V96QobxPHREJAZXAgGisqt6qqitVdWVdXd1oTqkP3kSkomk5EWms0nt96sqilBeFeO3I9Erz7Ywn2Nh0nAsWVI+47pL6crYfOjEGvZpc7D7WQXdPiqWzy/PS3oySMJFgYFr+zvNBziIiIqUiUu6/Bi4BXgYeBNa4w9YAD7jXDwKrXcbVArwA+nPO5dUuIqtcvOPqfnX8tq4EntBxnqE2syI6LQPr+3sXtxsbd5aIsKiujNeOTK+L4gu7W0mklAsWjtwru2RmGQfbunuXkZ+ubHUu0HxZIiJCXXl00lgia7cc4sM/eIY3fuUJfvjM7gmftDua9SxmAj9zJnkI+LGq/lJEngfuE5FrgD3AVQCqullE7gO2AAngOlX1J2B8ErgDKAYecQ+A24C7RaQRzwJZPYr+5kR9RRFbD7SN98dOOPtbvbuy2WOQneWzuL6M376aP/fjZODZnccIBrzstJFyWr135914uJ0Vp47ckpkqbD3QRjAgvS7RfODdLBa+JdIZT/Dpe16kujTCzIooX/jfl9l1tIMvvOfMCetTziKiqjuAczOUHwMuHqTOTcBNGcrXAcsylHfjRGiimFlexG9emV4XOvAskcriMKV5XAa+P4vqyrh/fRNt3T1U5CHLppBp7ojT0hnn2R3NLDulgrIcxvW0mZ6IbD90YlqLyLaDbSysLc1qa+FsmVVZ1GvhFDKPbT1MZzzJbWvOZdXCaj52x/M8se3whIqIzVgfhpkVUU7EEtNu4buxTO/1WVRXCsCOaRAX+dxPN3Lx137Dc7uac3JlgZcSXBwO8uo0j4tsPdCeN1eWz+K6MhdrKezVKR54cR+zK4u4YEE1IsK5DTPYNcH9NhEZhno/h3wSmLr5pPHICeblYTbwUJzM0JraF8V4IsXvG49y9pxKzm2o5L3nnpJTOwHnwtk+DTPafI6eiLGvtSvvIrJ0dgUppaATF5o74vzm1SO899xTeleROH1WOSmd2N+QicgwnJwrMjmCbvngUFs3u4918vr5Y+symVtdQjgoUz64vmFvK53xJNe9dTEPfOoils2pzLmtJTPLePXQ9BGR+9c3cfMvt/UGjx/ZdACAt56RvyxMgDOcKG09WLjxzwc37CORUt67/ORNiO/inMjvhInIMNRPw/WzntvpZVGfn0Ma6kgIBwOcWlPKqwen9kXxqcajBAQuzNGNlc5pM8s51BabFhlaqZTyb4++wi2/fo0HNnhZ/w++tJ/TZ5bnbaKhz7zqEorDwYJNolFVfvjsHs5tqOSsU07ehMyvKSESDPCKiUjhcnL9rOklIqWRIGfm2WWQifMXVPP0jmMF74seDb9vPMrZDTOoLBl98oD/P3lhGqw79szOYxxs66aqJMz/feBlHttyiOd3tfS5E88XwYBw2qzygl1B4ekdx2g8fIKPrDq1T3koGGBRfdmE3oiZiAxDWTREeTTE3ubpM1P4uZ3NrJhfTSg49l+PdyydSWc8yTM7jo35Z00E7d09bNjbykWL87NazwULqymPhvjlywfz0l4h88CL+ymNBPnJtasIBQP8+V3rAPjjc/IvIgBLZ5Wz7WDbhM+7yMQPn9nNjJIwf5whnnb6zLIJTbYwERkGEeGM2eUFa+bmm5aOOK8cas9pRnUuXLiohuJwkMe3Hh7+4EnIY1sPkUwpbz6tfviDsyAaCvK2pfX8astBEslUXtosRLp7kjz88gEuXTaLM2ZV8OTfvYVPvmURH3/TQubVjH43w0wsnV1BS2fPhE869APoPofaunl08yE+sHJuxrTm02aVs6+1i/buiXFxmohkwdLZFWw72E4qVXh3KPnmObfHx1gH1X2KwkHedFotj209VJB3gKPlv9c1Mbe6mJU5TC4cjHcum0VLZw/P7pya+7EkU8rf3fcS7d0JPrDSWympsiTM5y47g+vftXTMPveMWV6QevP+42P2GdnwTw9tYc3tz7FhbysAP3luD8mU8uEL5mU8/nQXXJ+orRVMRLLgzNkVnIgl2NvSOdFdGXP+0HiU4nCQ5XNnjNtnvn3pTA4c7+790UwV9jZ38ofXjnHl6+bmdWOvN59WT3E4yEMuU2mq8aWfb+ahTQf4x3ctZVUekhGy5eyGSiqLw/z42b3DHzxGHGmP8YuXvP/rvz66jZ5kip88t4c3n1bHqTWlGeu8cXEtsyqK+PfHt0/IjZiJSBb4OenTwaX1VONRXr+gmkho/L4aly6bRXlRiFt/u2PcPnMs6UmmeGDDPv754a2IwPtXzBm+0ggojgR5zzmzuX99U+8aZ1OFu5/exV1P7+bjb1rIX7xp4bh+dkkkxJ9ftIDHth5iU9PEWCM/eW4P8WSKj646ld83HuMD//k0h9pifLRfQD2donCQv33Haby4p3VCYmUmIllw+qxyAgJb9k9tETl4vJvXjnTkLQicLRVFYdZcOJ9fbj446ZeGV1W+8LOX+fQ9G3jk5YO8c9ksGqry78P/9NuXgMI3H3s1721PFA9s2McXf76Fi8+o57OXnTEhfVjzxvlUFoe58aEt475hWk8yxQ+f2c2bT6vjC+9ZyjkNlZzoTnDtmxby1jOGjqm9f0UDp80s4+trXx13a8REJAuKwkEW1pWxpUDT/4ZCVYklskuf/cNrRwF4w6LasexSRv7sogUUhYJ87zeT2xr5/u92cO+6vfzlWxax5cuX8t0PrxiTz2moKuGjF57K/eub2Ng0+d2Atz+1k0/fs4EVp1bxzdXLCebR/TcSKorCfP6dZ7B+dwtv+ddf87vt47du3m9eOcLh9hgfvmAe0VCQBz91EWv/9s38w7uWDjsewYDw1SvP5T8/umLE+9SMFhORLDlzdsWkc2elUspn7t3A6//pMR4ewn++t7mTL/zvJu5+ZjdVJeFxmR/Sn+rSCO8+Zza/2nyQ5CRNYNiyv42v/vIV3rlsFv//JadTEhm7xSsB/upti5ldWcwnf/gCxybxNsP7W7v4yiPbePvSeu6+5vy8bHk7Gj50/jx+9TdvYlZlEZ+9f+O4ZT3dv76J2rLIsFbHYCyfO4OFdflb2ThbTESy5Ny5M9jX2sWHf/AML++b2OyNbEillH95ZCsPbNhPeVGYv/zRC6y4cS0f+cGzvXt8+3zxwc388Jk9vLinlbeeXp/XIPBI+KMltbR1JyY8O2akdMYTvLzvOJ/76UZmlIT55/edPS5jOKMkwvc+soIjJ2J87qebxvzzxopvP9mIonzxvWcRDeVvZd7RsKiujH+98hwOtnXzzw9vHXMXUXNHnMe3HeKK5XMIj8P8rHwytrdKU4iPrjqV7p4k//X7XXzsjud56K8v6t2budB49VA7f//fL/FS03GuvvBU/s97zuRHz+zmlUMn+MVL+7n827/n+1ev4Lx5Vfyh8SiPbzvMZy87nfe/rmFE+37nG9+N9lTjUc5pGL/ssNHQ3t3De/7jKXYf8zL3vvOnr6OqNDJun392QyV/9dbFfG3tq7xysJ3TZ+Vnt7+xpK27h63721hxahWb97dx3/N7+dML5o1J7Gg0nDevir/4o4Xc+tsdnIgl+cqfnJ33rRESyRS3/Po1Ht92mJ6kcuXKhuErFRgy1XLzV65cqevWrRuz9rcdbOOK7/yeU2YU0xFLUFUS4cMXzOMjq04dd1/kYFzxnd+zp7mTL7x7KVcsn9Pnrnj7oXb+7M7nOdwW45qLFvSuSfT43705r/sz5Mpl3/wtNWURfvTnqya0H+3dPWxqOk5xJEhXPElTSxcvOwtpblUJ711+CjMrivjc/Rv57/V7+Zc/OZtzGmbkfXXZbGjtjHPhvzzBu8+Zzb9dNWCLnwkjmVIe2nSAnzy7h4aqYt5z7ilsO9DGrb/dwbGOOAtqS9nX2kVNaYQHrntj7zp1hUQqpdzym9f42q9eYeX8au782PkUR4b/nfz7Y9t5YMM+jnXEmVtdzJ+c18CfXbRgwHH/8vBW/vO3OzhjVjmXnjWLv3nHaWNxGlkhIutVdeWI600GERGRy4B/B4LAD1T1K4MdO9YiAvC/L+7jy7/YwqqF1exr6eKlpuN8+0/P4z15Xo4hlkiy9UA7FUUht+Lt8Gbu+t0tvP+WP/Cl957FmjfMz3jMsRMxPvHD9Ty/q4UzZpXzpfeelfMeF/nmxl9s4e5ndrPxhksmTNS2Hmjj43evZ09z33lBZdEQwYBwvKuHYECoLYtwqC3GX75l0YRlE/nc8MDL/Pi5PfzyM29i0QT4xfuzt7mTz9y7gfW7W5hXXcLh9m66e7wZ9ufPr+aK8+Zwxx92MreqhH+96lyqx9F6y4UHX9rPp+95kYsW1/K9j6wY0iJ5aOMBrvvxC1ywoJrF9WVs3t/Ghr2tfOOD5xIQYf3uFuKJFO3dCR7adICPrJrHP11x9jieTWamrIiISBB4FXgH0AQ8D3xIVbdkOn48RCSdZEp5x9d/Q0k0yM8/dVFGa6QnmeK5nc3Mqy5hbvXQJnsypTy78xi/bzzKfeuaOOKWYKgti/L+FXM4Z84MFtSWMr+2JGPg9rofvcDvth/h6esvHvKLHk+k2HWsgyX1ZQVjQQE8ue0wH7vjeT7x5kX8+R8tYPP+Nl4/v6rPuSZTyr6WLmbPKCIcDPDakRP84Hc7WL+7hdfNq+K8eTM465TKES+5fiKW4Hu/fo3v/24HM0rCfPGPzyIaDlAcDjGzIsr8mlICAWH3sQ7+2/1vZlYWcd1bF024L39vcyfv/tbvSKSUT7x5EW9cXMt5c2cQCAh7mztR9fbGGWth7ogluPPpXXz3ydcQ4IvvPYv3nTeH4109bNx3nNNnljOzIlpQ37lsuW/dXj7/042cNrOcN51WR3NHnHecOZPXzaviRCzBz17cR1NLJ49tOcSCujLu/8SFhIMBepIpPvz9Z3tXgyiPhiiOBImEAiyfO4Ovf2D5uM7LGoypLCIXAl9U1Uvd39cDqOq/ZDp+vEUE4L7n9/LZn27kjo+9nrecXu9mKh/lhd2tdPUkeW5nMwfdKsBnzCrn7y89ndmVxRw43sXBtm5UoaokwsK6Ur708808s6OZgMBFS+q4akUDsUSKX758gCe2HSY9cWlWRREVxSE640n3SNDdk+Ljb1o4pstDjCXJlPL397/E/7ywr7fsjFnlXLmigTv+sIvunhTdPUlOxBKcPrOci5bUcscfdhFy+5ZvajpOu9uF8g2Lali1sIbmjjipDN/zgAiL6suYVVHEnuZObvn1axw9EePy5afwj+9eWrAxr8HY39rF5366kd9t91K1l8+dwfyaEv7XuSwBKopCzKwoor4iyszyIs5fUM0bFtWy7WAb+1q72N/axcam48yqLOLSs2bxUlMrR9vjREIBDh7voigc5HXzqiiKBHuXAVpcX0Z7d4KfPLeHp187RjyZ4u1LZ3LDH5857E3TZOO3rx7hUz9+ge6eFEXhAG3dJ3c8DQjMriymtizCv68+j/m1J2eYH27v5isPb+PipTN557JZE5a8MhRTWUSuBC5T1T93f38UuEBVP5Xp+IkQkXgixZv/9UkOHO+mujRCc0ccgKqSMBXFYU6tKWX16+dypD3Gf/1+J7uODb58SlE4wP99z1m859zZA/Yd74wn2HW0k51HO9h59AQ7jnTQEU9QGglREg1SEglRURTiI6tOZUZJYbsHhuOhjQfYfridU2YUc+MvttDeneD186tYXF9OJCjMrS7h+7/bwaG2GH/yujn8w7uWUlsWJZlSmlo6eXzrYb7zZCPHOuKUF4UIZfjRxhMpOuIn59C8fn4V//juM8d1yZex4Eh7jMe3HuJra1+ltTPONRctZFFdKYfbYxxu6+ZQW4zD7d3sa+0asNlaJBhg6exydhztoL07QTgo1JVFiSVSzKwooq27h6aWzLPkT6ks4t3nzOayZbOm9B7wsUSSgLOk/vDaMXYf60AVLjlrJrMrx3Y30LFkKovIVcCl/UTkfFX9q7RjrgWuBZg3b96K3bt3j3s/dx3t4KFNB9h5tINlp1TwhsW1GV1F8USKRzcfJBgQZlcWMauyiGBAOHi8m41Nx1m1sJrF9YWfYTOe7G3uZG9zJxcuqukznm3dPew51jmo2yqRTJFUHdTVpKrsa+2iuSNORVGYU2tKJqWbZTC64kniidSg+5ioKhv2tvLyvuMsnV3BwroyZhSHCQSEzniCjU3HWTankrJ+btFjJ2IkU0owICRTytaD7aRU+aPFteOyfYAxNkxlESl4d5ZhGMZkJ1cRmQy3Dc8DS0RkgYhEgNXAgxPcJ8MwDINJMNlQVRMi8ingUbwU39tVdfMEd8swDMNgEogIgKo+DDw80f0wDMMw+jIZ3FmGYRhGgWIiYhiGYeSMiYhhGIaRMyYihmEYRs6YiBiGYRg5U/CTDUeKiLQDr2RxaC1wNE8fWwnkcyelQm/PJ19jOBnON99t5vP7B4U/htNp/Cbj2NUCpapaN+LWVHVKPYB1+Twuy7ZuzfM5FHR7+R7DyXC+Y9DHvH3/JsMYTqfxm4xjN5rxNHdWfvj5NGsv30yG87UxLKz28k0++zetxm4qurPWaRbrv2R7nDE4Noa5Y2M3Omz8cifT2I1mPKeiJXJrno8zBsfGMHds7EaHjV/uZBq7nMdzylkihmEYxvgxFS0RwzAMY5yYMiIiInNF5EkR2Soim0Xk0668WkTWish291zlymvc8SdE5Ntp7ZSLyIa0x1ER+eZEndd4kq8xdO99SEQ2ichGEfmliNROxDmNF3keuw+6cdssIl+diPMZb3IYv3eIyHr3HVsvIm9La2uFK28UkW/JVNppLAN5HrubRGSviJzIugP5TB2byAcwG3ide10OvAqcCXwV+Lwr/zxws3tdClwEfAL49hDtrgfeNNHnN5nGEG916MNArfv7q3gbi034OU6CsasB9gB17u87gYsn+vwKcPzOA05xr5cB+9Laeg64EBDgEeCdE31+k2jsVrn2TmT7+VPGElHVA6r6gnvdDmwF5gCX4/0Qcc9XuGM6VPUpoHuwNkVkCVAP/G4Mu14w5HEMxT1K3V1gBbB/7M9g4sjj2C0EXlXVI+7vx4D3j3H3J5wcxu9FVfW/U5uBIhGJishsoEJVn1bvqniXX2eqkq+xc+89o6oHRvL5U0ZE0hGR+Xhq+yww0x8U91w/gqY+BNzrvozTitGMoar2AJ8ENuGJx5nAbWPY3YJilN+/RuAMEZkvIiG8H/7csett4ZHD+L0feFFVY3gXz6a095pc2bRglGOXE1NORESkDPgp8BlVbRtlc6uBn4y+V5OL0Y6hiITxROQ84BRgI3B9XjtZoIx27FS1BW/s7sWzgHcBiXz2sZAZ6fiJyFnAzcDH/aIMh02Lm8A8jF1OTCkRcRevnwI/UtX/ccWHnImLez6cZVvnAiFVXT8mnS1Q8jSGywFU9TVnxd0HvGGMulww5Ov7p6o/V9ULVPVCvHXgto9VnwuJkY6fiDQAP9BxlCgAAALMSURBVAOuVtXXXHET0JDWbANT3JUKeRu7nJgyIuJ877cBW1X162lvPQisca/XAA9k2eSHmGZWSB7HcB9wpoj4i7m9A89PO2XJ5/dPROrdcxXwl8AP8tvbwmOk4yciM4CHgOtV9ff+wc5t0y4iq1ybV5P9b35Skq+xy5mJzizI1wMv00XxXCcb3ONdeNkuj+PdzT0OVKfV2QU0Ayfw7mDOTHtvB3DGRJ/XZB1DvKyjra6tnwM1E31+k2jsfgJscY/VE31uhTh+wBeAjrRjNwD17r2VwMvAa8C3cZOqp+ojz2P3VfddTLnnLw73+TZj3TAMw8iZKePOMgzDMMYfExHDMAwjZ0xEDMMwjJwxETEMwzByxkTEMAzDyBkTEcMYZ0TkEyJy9QiOny8iL49lnwwjV0IT3QHDmE6ISEhVvzfR/TCMfGEiYhgjxC1y90u8Re7Ow1t6+2pgKfB1oAw4Cvx/qnpARH4N/AF4I/CgiJTjLbX9byKyHPgeUII3Oe7PVLVFRFYAtwOdwFPjd3aGMTLMnWUYuXE6cKuqngO0AdcB/wFcqaq+ANyUdvwMVX2zqn6tXzt3AZ9z7WwCbnDl/wX8tXrrZxlGwWKWiGHkxl49ue7QD4F/wNvgZ63bSC8IpO/LcG//BkSkEk9cfuOK7gT+O0P53cA7838KhjF6TEQMIzf6rxfUDmwewnLoGEHbkqF9wyhIzJ1lGLkxT0R8wfgQ8AxQ55eJSNjt1zAoqnocaBGRP3JFHwV+o6qtwHERuciVfzj/3TeM/GCWiGHkxlZgjYj8J94qqf8BPAp8y7mjQsA38bYfHYo1wPdEpARv5eiPufKPAbeLSKdr1zAKElvF1zBGiMvO+oWqLpvgrhjGhGPuLMMwDCNnzBIxDMMwcsYsEcMwDCNnTEQMwzCMnDERMQzDMHLGRMQwDMPIGRMRwzAMI2dMRAzDMIyc+X/Zr5ZHIacimQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "sorted_data['inc'][-200:].plot()" ] @@ -271,10 +2302,8 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, + "execution_count": 23, + "metadata": {}, "outputs": [], "source": [ "first_august_week = [pd.Period(pd.Timestamp(y, 8, 1), 'W')\n", @@ -293,7 +2322,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 24, "metadata": {}, "outputs": [], "source": [ @@ -317,9 +2346,32 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 25, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZcAAAD8CAYAAAC7IukgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3X+w1fV95/HnC0GwiSgQMPxQYSPJBE0Xyx10x+5uxC2QHxOwNQ2rVWbqDIniju1mVqTJjqnSmZhpYsu6ISE1FbWK1MSRTaF4jTq1XQJcgr+Q0Hu7UkSIXOaiYmegXnjvH9/Pqd97cjmcc/lyftz7esycOd/7OZ/P53zul8N9n8+P7/ejiMDMzKxIwxrdADMzG3wcXMzMrHAOLmZmVjgHFzMzK5yDi5mZFc7BxczMCufgYmZmhXNwMTOzwjm4mJlZ4YY3ugH19JGPfCSmTp3a6GaYmbWU7du3H4qI8bWUGVLBZerUqXR0dDS6GWZmLUXSP9daxsNiZmZWOAcXMzMrnIOLmZkVrqrgImmPpFckvSipI6V9Q9KbKe1FSZ/N5V8uqUvSbknzcumzUj1dklZKUkofKenxlL5F0tRcmcWSOtNjcS59Wsrbmcqeffqnw8zMilBLz+XqiJgZEW25tPtS2syI2AAgaQawCLgUmA98V9JZKf8qYAkwPT3mp/SbgcMRcQlwH3BvqmsscBdwBTAbuEvSmFTm3vT+04HDqQ4zM2sCZ2JYbAGwNiKORcTrQBcwW9JEYHREbI5sh7KHgIW5MmvS8RPANalXMw9oj4ieiDgMtAPz02tzUl5S2VJdLe/gu0f53e9v5uCRo41uipnZgFQbXAJ4WtJ2SUty6bdJelnSD3M9isnAG7k8+1La5HRcnt6nTET0Au8A4yrUNQ54O+Utr6vlrfxpJ9v29LDymc5GN8XMbECqvc7lqojYL2kC0C7pF2RDXPeQBZ57gG8Dvw+on/JRIZ0BlKlUVx8pGC4BuOiii/rL0jQ+8fWNHOs98W8/P7JlL49s2cvI4cPYveIzDWyZmVltquq5RMT+9HwQeBKYHRFvRcTxiDgB/IBsTgSyXsSFueJTgP0pfUo/6X3KSBoOnAf0VKjrEHB+ylteV3nbV0dEW0S0jR9f0wWmdffCHVfzhZmTGDUi+2cZNWIYC2ZO4oVlVze4ZWZmtTllcJH0IUnnlo6BucCraQ6l5Frg1XS8HliUVoBNI5u43xoRB4Ajkq5McyY3AU/lypRWgl0HPJvmZTYBcyWNScNuc4FN6bXnUl5S2VJdLWvC6FGcO3I4x3pPMHL4MI71nuDckcOZcO6oRjfNzKwm1QyLXQA8mVYNDwcejYi/lfSwpJlkw1F7gC8DRMROSeuA14BeYGlEHE913QI8CJwDbEwPgAeAhyV1kfVYFqW6eiTdA2xL+e6OiJ50vAxYK2kFsCPV0fIOvXeMG664mOtnX8SjW/fS7Ul9M2tByjoBQ0NbW1v43mJmZrWRtL3sMpRT8hX6ZmZWOAcXMzMrnIOLmZkVzsHFzMwK5+BiZmaFc3BpUb7/mJk1MweXFuX7j5lZM6v23mLWJHz/MTNrBe65tBjff8zMWoGDS4vx/cfMrBV4WKwF+f5jZtbsfG+xKhx89yi3PbaD+6+/3D0EMxtyfG+xM8Qrs8zMauNhsQq8MsvMbGDcc6nAK7PMzAbGwaUCr8wyMxuYqoKLpD2SXpH0oqSOlDZWUrukzvQ8Jpd/uaQuSbslzculz0r1dElambY7Jm2J/HhK3yJpaq7M4vQenZIW59KnpbydqezZp386flVpZdaTt17FDVdcTPd7x87E25iZDSpVrRaTtAdoi4hDubRvAT0R8U1JdwJjImKZpBnAY8BsYBLwDPDxiDguaStwO/AzYAOwMiI2SroV+PWI+IqkRcC1EfElSWOBDqCNbDvl7cCsiDictlL+cUSslfQ94KWIWFXp9/BOlGZmtav3arEFwJp0vAZYmEtfGxHHIuJ1oAuYLWkiMDoiNkcW0R4qK1Oq6wngmtSrmQe0R0RPRBwG2oH56bU5KW/5+5uZWYNVG1wCeFrSdklLUtoFEXEAID1PSOmTgTdyZfeltMnpuDy9T5mI6AXeAcZVqGsc8HbKW16XmZk1WLVLka+KiP2SJgDtkn5RIa/6SYsK6QMpU6muvo3JguESgIsuuqi/LGZmVrCqei4RsT89HwSeJJtPeSsNdZGeD6bs+4ALc8WnAPtT+pR+0vuUkTQcOA/oqVDXIeD8lLe8rvK2r46ItohoGz9+fDW/rpmZnaZTBhdJH5J0bukYmAu8CqwHSqu3FgNPpeP1wKK0AmwaMB3YmobOjki6Ms2Z3FRWplTXdcCzaV5mEzBX0pi0Gm0usCm99lzKW/7+ZmbWYNUMi10APJlWDQ8HHo2Iv5W0DVgn6WZgL/BFgIjYmVZyvQb0Aksj4niq6xbgQeAcYGN6ADwAPCypi6zHsijV1SPpHmBbynd3RPSk42XAWkkrgB2pDjMzawK+caWZmVXkG1eamVlTcHAxM7PCObiYmVnhHFzMzKxwDi5mZlY4BxczMyucg4uZmRXOwcXMzArn4GJmZoVzcDEzs8I5uJiZWeEcXMzMrHAOLmZmVjgHFzMzK5yDi5mZFc7BxczMCufgYmZmhas6uEg6S9IOST9JP39D0puSXkyPz+byLpfUJWm3pHm59FmSXkmvrVTaO1nSSEmPp/QtkqbmyiyW1Jkei3Pp01LezlT27NM7FWZmVpRaei63A7vK0u6LiJnpsQFA0gxgEXApMB/4rqSzUv5VwBJgenrMT+k3A4cj4hLgPuDeVNdY4C7gCmA2cJekManMven9pwOHUx1mZtYEqgoukqYAnwP+oorsC4C1EXEsIl4HuoDZkiYCoyNic0QE8BCwMFdmTTp+Argm9WrmAe0R0RMRh4F2YH56bU7KSypbqsvMzBqs2p7LnwF3ACfK0m+T9LKkH+Z6FJOBN3J59qW0yem4PL1PmYjoBd4BxlWoaxzwdspbXpeZmTXYKYOLpM8DByNie9lLq4CPATOBA8C3S0X6qSYqpA+kTKW6+pC0RFKHpI7u7u7+spiZWcGq6blcBXxB0h5gLTBH0iMR8VZEHI+IE8APyOZEIOtFXJgrPwXYn9Kn9JPep4yk4cB5QE+Fug4B56e85XX1ERGrI6ItItrGjx9fxa9rZman65TBJSKWR8SUiJhKNlH/bET8XppDKbkWeDUdrwcWpRVg08gm7rdGxAHgiKQr05zJTcBTuTKllWDXpfcIYBMwV9KYNOw2F9iUXnsu5SWVLdVlZmYNNvzUWU7qW5Jmkg1H7QG+DBAROyWtA14DeoGlEXE8lbkFeBA4B9iYHgAPAA9L6iLrsSxKdfVIugfYlvLdHRE96XgZsFbSCmBHqsPMzJqAsk7A0NDW1hYdHR2NboaZWUuRtD0i2mop4yv0zcyscA4uZmZWOAcXMzMrnIOLmZkVzsHFzMwK5+BiZmaFc3AxM7PCObiYmVnhHFzMbMg7+O5Rfvf7mzl45GijmzJoOLiY2ZC38qedbNvTw8pnOhvdlEHjdO4tZmbW0j7x9Y0c6/1gm6pHtuzlkS17GTl8GLtXfKaBLWt97rmY2ZD1wh1X84WZkxg1IvtTOGrEMBbMnMQLy65ucMtan4OLmTWdes2BTBg9inNHDudY7wlGDh/Gsd4TnDtyOBPOHXVG33cocHAxs6ZTzzmQQ+8d44YrLubJW6/ihisupvu9Y2f8PYcC33LfzJpG+RxIiedAGsu33DezluY5kMHDwcXMmobnQAaPqoOLpLMk7ZD0k/TzWEntkjrT85hc3uWSuiTtljQvlz5L0ivptZWSlNJHSno8pW+RNDVXZnF6j05Ji3Pp01LezlT27NM7FWbWDDwHMjhUPeci6b8DbcDoiPi8pG8BPRHxTUl3AmMiYpmkGcBjwGxgEvAM8PGIOC5pK3A78DNgA7AyIjZKuhX49Yj4iqRFwLUR8SVJY4GO9L4BbAdmRcRhSeuAH0fEWknfA16KiFWVfgfPuZiZ1e6MzblImgJ8DviLXPICYE06XgMszKWvjYhjEfE60AXMljSRLDBtjiyiPVRWplTXE8A1qVczD2iPiJ6IOAy0A/PTa3NS3vL3NzOzBqt2WOzPgDuA/DKOCyLiAEB6npDSJwNv5PLtS2mT03F5ep8yEdELvAOMq1DXOODtlLe8rj4kLZHUIamju7u7yl/XzMxOxymDi6TPAwcjYnuVdaqftKiQPpAylerqmxixOiLaIqJt/Pjx/WUxM7OCVdNzuQr4gqQ9wFpgjqRHgLfSUBfp+WDKvw+4MFd+CrA/pU/pJ71PGUnDgfOAngp1HQLOT3nL6zKrie+Ia1a8UwaXiFgeEVMiYiqwCHg2In4PWA+UVm8tBp5Kx+uBRWkF2DRgOrA1DZ0dkXRlmjO5qaxMqa7r0nsEsAmYK2lMWo02F9iUXnsu5S1/f7Oa+I64ZsU7nbsifxNYJ+lmYC/wRYCI2JlWcr0G9AJLI+J4KnML8CBwDrAxPQAeAB6W1EXWY1mU6uqRdA+wLeW7OyJ60vEyYK2kFcCOVIdZ1XxHXLMzx7d/sSHr4LtHWbFhF0/v/CVH3z/BqBHDmHfpR/na5z7pi/bMcnz7F7Ma1HI1eKvOy7Rqu631ObjYkFbt1eCtOi/Tqu221udhMbMKWvUuva3abmtOHhYzK1ir3qW3Vdttg4eDi1kFrXqX3lZttw0ep7MU2WxIKM3LXD/7Ih7dupfuFpkcb9V22+DgORczM6vIcy5mZtYUHFzMzKxwDi5mZgXyhasZBxczswL5wtWMV4tZSzr47lFue2wH919/uZfXWlPwjVD7cs/FWpK/HVqz8YWrfbnnYi3F3w4/4N5bc/GFq32552Itxd8OP+DeW/Op9kaoQ4F7LtZ0Kn0j97dD996a2fdv/OA6wxULL2tgSxrvlD0XSaMkbZX0kqSdkv44pX9D0puSXkyPz+bKLJfUJWm3pHm59FmSXkmvrUzbHZO2RH48pW+RNDVXZrGkzvRYnEuflvJ2prJnF3NKbKCKWoJ5qm/kQ/3boXtv1gqq6bkcA+ZExHuSRgB/L6m0PfF9EfGn+cySZpBtU3wpMAl4RtLH01bHq4AlwM+ADcB8sq2ObwYOR8QlkhYB9wJfkjQWuAtoAwLYLml9RBxOee6LiLWSvpfqWDXwU2GnKx8UVlz7qZrLV/uNfKh/O3TvzVrBKXsukXkv/TgiPSrdkGwBsDYijkXE60AXMFvSRGB0RGyO7IZmDwELc2XWpOMngGtSr2Ye0B4RPSmgtAPz02tzUl5S2VJdVmef+PpGpt75NzyyZS8RWVCYeuff8Imvbzx14Rx/I6/eUO+9WfOras5F0lnAduAS4H9HxBZJnwFuk3QT0AF8NQWAyWQ9k5J9Ke39dFyeTnp+AyAieiW9A4zLp5eVGQe8HRG9/dRldfbCHVefdC/6WvgbefWGeu/Nml9Vq8Ui4nhEzASmkPVCLiMbgvoYMBM4AHw7ZVd/VVRIH0iZSnX1IWmJpA5JHd3d3f1lsdNUZFDwN/LBz7dHGRpqWi0WEW9Leh6Yn59rkfQD4Cfpx33AhbliU4D9KX1KP+n5MvskDQfOA3pS+qfLyjwPHALOlzQ89V7ydZW3eTWwGrJb7tfy+1r1ito7xN/IB7/TnZuz1nDK/VwkjQfeT4HlHOBpssn07RFxIOX5Q+CKiFgk6VLgUWA22YT+T4HpEXFc0jbgvwFbyCb0/1dEbJC0FPhURHwlTej/dkT8bprQ3w78RmrOz4FZEdEj6a+BH+Um9F+OiO9W+l28n4tZ45Qv2CjxEurmN5D9XKrpuUwE1qR5l2HAuoj4iaSHJc0kG47aA3wZICJ2SloHvAb0AkvTSjGAW4AHgXPIVomVZnwfAB6W1EXWY1mU6uqRdA+wLeW7OyJ60vEyYK2kFcCOVIeZNami5uasNZwyuETEy8Dl/aTfWKHMnwB/0k96B/ArYx0RcRT44knq+iHww37S/x9Z78jMWoAXbAwtvkLfzOqmqLk5a36nnHMZTDznYmZWu4HMufjGlWZmVjgHFzMzK5yDi5mZFc7BxczMCufgYmZmhXNwMTOzwjm4mJlZ4RxczMyscA4uZmZWOAcXszrzfiY2FDi4mNVZfj8Ts8HKN640q5Py/Uwe2bKXR7bs9X4mNii552JWJy/ccTVfmDmJUSOy/3ajRgxjwcxJvLDs6ga3zKx4Di5mdeL9TGwocXCxQa3ZJs9L+5k8eetV3HDFxXS/d6zRTTI7I04ZXCSNkrRV0kuSdkr645Q+VlK7pM70PCZXZrmkLkm7Jc3Lpc+S9Ep6baUkpfSRkh5P6VskTc2VWZzeo1PS4lz6tJS3M5U9u5hTYoNJs02ef//GNlYsvIwZk0azYuFlfP/GmrbIMGsZp9wsLAWAD0XEe5JGAH8P3A78NtATEd+UdCcwJiKWSZoBPEa2BfEk4Bng4xFxXNLWVPZnwAZgZURslHQr8OsR8RVJi4BrI+JLksYCHUAbEMB2YFZEHJa0DvhxRKyV9D3gpYhYVel38WZhQ0f55HmJJ8/NandGNguLzHvpxxHpEcACYE1KXwMsTMcLgLURcSwiXge6gNmSJgKjI2JzZBHtobIypbqeAK5JQW0e0B4RPRFxGGgH5qfX5qS85e9v5snzBmm2YUhrnKrmXCSdJelF4CDZH/stwAURcQAgPU9I2ScDb+SK70tpk9NxeXqfMhHRC7wDjKtQ1zjg7ZS3vK7yti+R1CGpo7u7u5pf1wYBT543RrMNQ1rjVHWdS0QcB2ZKOh94UtJlFbKrvyoqpA+kTKW6+iZGrAZWQzYs1l8eG5xKk+fXz76IR7fupdvfps8YX8Nj5Wq6iDIi3pb0PDAfeEvSxIg4kIa8DqZs+4ALc8WmAPtT+pR+0vNl9kkaDpwH9KT0T5eVeR44BJwvaXjqveTrMgPoM1m+YmGl70N2ul6442pWbNjF0zt/ydH3TzBqxDDmXfpRvva5Tza6adYg1awWG596LEg6B/gvwC+A9UBp9dZi4Kl0vB5YlFaATQOmA1vT0NkRSVemOZObysqU6roOeDbNy2wC5koak1ajzQU2pdeeS3nL39/M6szDkFaump7LRGCNpLPIgtG6iPiJpM3AOkk3A3uBLwJExM60kus1oBdYmobVAG4BHgTOATamB8ADwMOSush6LItSXT2S7gG2pXx3R0RPOl4GrJW0AtiR6jCzBvEwpOWdcinyYHImlyIffPcotz22g/uvv9zf1szqpFX/37Vau8/IUmSrjlfJmNVfq/6/a9V218I9l9Pki/XM6q9V/9+1arvdc2kAX6xnVn+t+v+uVds9EA4up6mWVTK+etlaWTN9flt1dVqrtnsgHFwKUO2dbofCOKsNXs32+W3VO0y3artr5TmXOmjVcVYz8OfXPOfStIbSOKsNPv78Nq9mGqos5+BSB4NhnLWZP8R2Zg2Gz+9g1WxDlXk13VvMBq7Vr17Of4hXXPupRjfH6qzVP7+DTSvcKNRzLlaRx9vNms/Bd4+e9EahZ6JH6TkXK5zH282aTysMVXpYzCpqhQ+x2VDU7EOVDi52Ss3+ITYbipp9vyLPuQxxrXZ3VjOrP8+5WM2aeSmjmbUuD4sNUa2wlLHVuBdo9oFqtjm+UNJzknZJ2inp9pT+DUlvSnoxPT6bK7NcUpek3ZLm5dJnSXolvbYybXdM2hL58ZS+RdLUXJnFkjrTY3EufVrK25nKnl3MKRkavAqseO4Fmn2gmp5LL/DViPi5pHOB7ZLa02v3RcSf5jNLmkG2TfGlwCTgGUkfT1sdrwKWAD8DNgDzybY6vhk4HBGXSFoE3At8SdJY4C6gDYj03usj4nDKc19ErJX0vVTHqoGfiqHFq8CK416g2a86Zc8lIg5ExM/T8RFgFzC5QpEFwNqIOBYRrwNdwGxJE4HREbE5slUEDwELc2XWpOMngGtSr2Ye0B4RPSmgtAPz02tzUl5S2VJdVqWhcnfWM829QLNfVdOcSxquuhzYAlwF3CbpJqCDrHdzmCzw/CxXbF9Kez8dl6eTnt8AiIheSe8A4/LpZWXGAW9HRG8/dVmVmn0pY6twL9DsV1W9WkzSh4EfAX8QEe+SDUF9DJgJHAC+XcraT/GokD6QMpXqKm/3Ekkdkjq6u7v7y2J22twLNOurqp6LpBFkgeWvIuLHABHxVu71HwA/ST/uAy7MFZ8C7E/pU/pJz5fZJ2k4cB7Qk9I/XVbmeeAQcL6k4an3kq+rj4hYDayG7DqXan5fs1q5F2jWVzWrxQQ8AOyKiO/k0ifmsl0LvJqO1wOL0gqwacB0YGtEHACOSLoy1XkT8FSuTGkl2HXAs2leZhMwV9IYSWOAucCm9NpzKS+pbKkuMzNrsGp6LlcBNwKvSHoxpf0R8F8lzSQbjtoDfBkgInZKWge8RrbSbGlaKQZwC/AgcA7ZKrGNKf0B4GFJXWQ9lkWprh5J9wDbUr67I6InHS8D1kpaAexIdZiZWRPw7V/MzKwi3/7FzMyagoOLmVkTavWtxR1czKzl/5ANRq1+OyHfuNLM+vwhW3HtpxrdnCFtsNxOyBP6ZkNY+R+yklb7QzaYHHz3KCs27OLpnb/k6PsnGDViGPMu/Shf+9wnB3TXhyLu1u0JfTOrie+L1nyKvp1Qo4bXPCxm1oTqtTeM74vWnIrYWrzRw2sOLmZNqJ5zIEX8IbNiFXE7oRfuuPqkw2v14OBi1kQa8W3T90UbnBrdK/Wci1kT8RxI8YbyMutG3q3bPRezJtLob5uD0VBeZt3IXqmDi1mT8RxIMRo9oT3U+ToXMxuUir5eZCjzdS5mZomHGBvLw2JmNmh5iLFxPCxmZmYVeVjMzMyawimDi6QLJT0naZeknZJuT+ljJbVL6kzPY3JllkvqkrRb0rxc+ixJr6TXVkpSSh8p6fGUvkXS1FyZxek9OiUtzqVPS3k7U9mzizklZmZ2uqrpufQCX42ITwJXAkslzQDuBH4aEdOBn6afSa8tAi4F5gPflXRWqmsVsASYnh7zU/rNwOGIuAS4D7g31TUWuAu4ApgN3JULYvcC96X3P5zqMDOzJnDK4BIRByLi5+n4CLALmAwsANakbGuAhel4AbA2Io5FxOtAFzBb0kRgdERsjmyi56GyMqW6ngCuSb2aeUB7RPRExGGgHZifXpuT8pa/v5mZNVhNcy5puOpyYAtwQUQcgCwAARNStsnAG7li+1La5HRcnt6nTET0Au8A4yrUNQ54O+Utr8vMzBqs6uAi6cPAj4A/iIh3K2XtJy0qpA+kTKW6+jZGWiKpQ1JHd3d3f1nMzKxgVQUXSSPIAstfRcSPU/JbaaiL9Hwwpe8DLswVnwLsT+lT+knvU0bScOA8oKdCXYeA81Pe8rr6iIjVEdEWEW3jx4+v5tc1M7PTVM1qMQEPALsi4ju5l9YDpdVbi4GncumL0gqwaWQT91vT0NkRSVemOm8qK1Oq6zrg2TQvswmYK2lMmsifC2xKrz2X8pa/v5mZNVg1V+hfBdwIvCLpxZT2R8A3gXWSbgb2Al8EiIidktYBr5GtNFsaEcdTuVuAB4FzgI3pAVnwelhSF1mPZVGqq0fSPcC2lO/uiOhJx8uAtZJWADtSHWZm1gR8hb6ZmVXkK/St6Q3ljZvMhhIHF6ur/MZNZjZ4+a7IVhfeuMlsaHHPxerCe8ObDS0OLlYX3rjJbGjxsJjVjTduMhs6vBTZzMwq8lJkMzNrCg4uZmZWOAeXQcwXLJpZozi4DGK+YNHMGsWrxQYhX7BoZo3mnssg5AsWzYrnYebaOLgMQr5g0ax4HmaujYfFBilfsGhWDA8zD4wvojQzq+Dgu0dZsWEXT+/8JUffP8GoEcOYd+lH+drnPjlkRgPOyEWUkn4o6aCkV3Np35D0pqQX0+OzudeWS+qStFvSvFz6LEmvpNdWpq2OSdshP57St0iamiuzWFJneizOpU9LeTtT2bNr+aXNzKrlYeaBqWbO5UFgfj/p90XEzPTYACBpBtkWxZemMt+VdFbKvwpYAkxPj1KdNwOHI+IS4D7g3lTXWOAu4ApgNnCXpDGpzL3p/acDh1MdZmZnRGmY+clbr+KGKy6m+71jjW5S0zvlnEtE/F2+N3EKC4C1EXEMeF1SFzBb0h5gdERsBpD0ELAQ2JjKfCOVfwK4P/Vq5gHtEdGTyrQD8yWtBeYA16cya1L5VVW20cysJt+/8YMRoRULL2tgS1rH6awWu03Sy2nYrNSjmAy8kcuzL6VNTsfl6X3KREQv8A4wrkJd44C3U97yuszMrAkMNLisAj4GzAQOAN9O6eonb1RIH0iZSnX9CklLJHVI6uju7j5ZNjMzK9CAgktEvBURxyPiBPADsjkRyHoRF+ayTgH2p/Qp/aT3KSNpOHAe0FOhrkPA+SlveV39tXV1RLRFRNv48eNr/VXNzGwABhRcJE3M/XgtUFpJth5YlFaATSObuN8aEQeAI5KuTPMpNwFP5cqUVoJdBzwb2froTcBcSWPSsNtcYFN67bmUl1S2VJeZmTWBU07oS3oM+DTwEUn7yFZwfVrSTLLhqD3AlwEiYqekdcBrQC+wNCKOp6puIVt5dg7ZRP7GlP4A8HCa/O8hW21GRPRIugfYlvLdXZrcB5YBayWtAHakOszMrEn4IkozM6toIBdRDqngIqkb+Od+XvoI2VxOq3G768vtrq9WbTe0bttP1u6LI6KmSeshFVxORlJHrVG5Gbjd9eV211erthtat+1Fttt3RTYzs8I5uJiZWeEcXDKrG92AAXK768vtrq9WbTe0btsLa7fnXMzMrHDuuZiZWeEGZXA5yR40/17S5rSnzP+RNDqlj5C0JqXvkrQ8V+b5tC9Nad+aCU3U7rMl/WVKf0nSp3Nl+t07pwXaXe/zfaGk59K/+05Jt6f0sZLa035B7bkbs9a8X1ELtLtu57zWdksal/K/J+n+srrq/Rkvsu3NfM5/S9L2dG63S5qTq6u2cx4Rg+4B/CfgN4BXc2nbgP+cjn8fuCcdX0+2TQDAr5HdcWBq+vl5oK1J270U+Mt0PAHYDgxLP28F/gPZTT43Ap9pkXbX+3xPBH4jHZ8L/CMwA/jPDIkDAAADj0lEQVQWcGdKvxO4Nx3PAF4CRgLTgH8Czqr3OS+43XU75wNo94eA3wS+AtxfVle9P+NFtr2Zz/nlwKR0fBnw5kDP+aDsuUTE35HdSibvE8DfpeN24HdK2YEPKbsR5jnAvwLv1qOd5Wps9wzgp6ncQeBtoE3Zfd9GR8TmyD4Rpb1zmrrdZ7J9JxMRByLi5+n4CLCLbPuGBWT7BJGeS+fv3/YriojXgdJ+RXU950W1+0y172RqbXdE/EtE/D1wNF9Pgz7jhbS93gbQ7h0RUboR8E5glLJ7RdZ8zgdlcDmJV4EvpOMv8sEdl58A/oVs64C9wJ/GB/cwA/jL1HX9n2e6630SJ2v3S8ACScOV3SR0Vnqt0t459VRru0sacr6VbYh3ObAFuCCym62SnkvDFgPZr+iMOs12l9T9nFfZ7pNp6Gf8NNte0grn/HeAHZFt/ljzOR9KweX3gaWStpN1D/81pc8GjgOTyIYMvirp36XXboiITwH/MT1urG+TgZO3+4dk/8AdwJ8B/5fsZqE17XdzBtXabmjQ+Zb0YeBHwB9ERKVeayF7DBWlgHZDA855De0+aRX9pNXlM15A26EFzrmkS8m2k/9yKamfbBXP+ZAJLhHxi4iYGxGzgMfIxp0hm3P524h4Pw3T/ANpmCYi3kzPR4BHacxQQr/tjojeiPjDiJgZEQuA84FOKu+d08ztbsj5ljSC7D/dX0XEj1PyW2kYoDQEczClD2S/omZud93PeY3tPpmGfMYLanvTn3NJU4AngZsiovR3suZzPmSCS2lFhqRhwNeB76WX9gJzlPkQcCXwizRs85FUZgTweT7Yt6bh7Zb0a6m9SPotoDciXovKe+c0bbsbcb7T+XkA2BUR38m9lN9jKL9f0ED2K2radtf7nA+g3f1qxGe8qLY3+zmXdD7wN8DyiPiHUuYBnfNKs/2t+iD7pnwAeJ8s4t4M3E62UuIfgW/ywQWkHwb+mmzy6jXgf8QHqz22Ay+n1/6ctMKmSdo9FdhNNkH3DNldS0v1tJF9YP8JuL9Uppnb3aDz/ZtkXfuXgRfT47PAOLJFB53peWyuzNfSed1NbrVMPc95Ue2u9zkfYLv3kC0WeS99tmY06DNeSNub/ZyTfRH8l1zeF4EJAznnvkLfzMwKN2SGxczMrH4cXMzMrHAOLmZmVjgHFzMzK5yDi5mZFc7BxczMCufgYmZmhXNwMTOzwv1/q4MdzlEclD8AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "yearly_incidence.plot(style='*')" ] @@ -333,9 +2385,54 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 26, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "2014 1600941\n", + "1991 1659249\n", + "1995 1840410\n", + "2012 2175217\n", + "2003 2234584\n", + "2019 2254386\n", + "2006 2307352\n", + "2017 2321583\n", + "2001 2529279\n", + "1992 2574578\n", + "1993 2703886\n", + "2018 2705325\n", + "1988 2765617\n", + "2007 2780164\n", + "1987 2855570\n", + "2016 2856393\n", + "2011 2857040\n", + "2008 2973918\n", + "1998 3034904\n", + "2002 3125418\n", + "2009 3444020\n", + "1994 3514763\n", + "1996 3539413\n", + "2004 3567744\n", + "1997 3620066\n", + "2015 3654892\n", + "2000 3826372\n", + "2005 3835025\n", + "1999 3908112\n", + "2010 4111392\n", + "2013 4182691\n", + "1986 5115251\n", + "1990 5235827\n", + "1989 5466192\n", + "dtype: int64" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "yearly_incidence.sort_values()" ] @@ -350,9 +2447,32 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 27, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAEKCAYAAAAGvn7fAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAGalJREFUeJzt3X2UJXV95/H3h5kBhmkYjAONDsr4QAhIqzgXXWQ13WhcdNCcGE5QQcVIGo0PRCdnM8v6sLrLOj5MsphgkklUiAodw8PZyBjUE2hQNEgPqA2OEBdmlSEMAjLSMAuMfPePX7XctP1wq+69XcXPz+ucPn3vrbpVn/rdut9b9auqexURmJlZPvaqO4CZmfWWC7uZWWZc2M3MMuPCbmaWGRd2M7PMuLCbmWXGhd3MLDMu7GZmmXFhNzPLzNJ+TnzVqlWxZs2aWYc9+OCDrFixop+zr6zJ2aDZ+Zytuibnc7bqyubbunXrPRFxUFczjYi+/a1duzbmctVVV805rG5NzhbR7HzOVl2T8zlbdWXzARPRZe11V4yZWWZc2M3MMuPCbmaWGRd2M7PMuLCbmWWmVGGX9B5JN0u6SdJFkvbtVzAzM6um48IuaTXwbqAVEUcDS4DX9SuYmZlVU7YrZimwXNJSYD/gzt5HMjOzbihK/OappLOAc4DdwFcj4tRZxhkFRgEGBwfXjo2NzTqtqakpBgYGqmTuuyZng97nm9yxq2fTGlwOO3d3Pv7Q6pU9m/dCftVe115yturK5hsZGdkaEa1u5tlxYZf0JOAS4BTgfuAfgIsj4vNzPafVasXExMSsw8bHxxkeHi6bd1E0ORv0Pt+aDVt6Nq31Q3vYNNn5N1Vs37iuZ/NeyK/a69pLzlZd2XySui7sZbpiXg7cHhE/iYhHgUuBF3czczMz670yhf1HwH+QtJ8kAS8DtvUnlpmZVdVxYY+I64CLgRuAyeK5m/uUy8zMKir1tb0R8UHgg33KYmZmPeArT83MMuPCbmaWGRd2M7PMuLCbmWXGhd3MLDMu7GZmmXFhNzPLjAu7mVlmXNjNzDLjwm5mlhkXdjOzzLiwm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy03Fhl3SEpO+0/f1M0h/1M5yZmZXX8U/jRcQtwPMBJC0BdgCX9SmXmZlVVLUr5mXA/4mI/9vLMGZm1j1FRPknSZ8BboiIv5hl2CgwCjA4OLh2bGxs1mlMTU0xMDBQet6LocnZoPf5Jnfs6tm0BpfDzt2djz+0emXP5r2Q9nbr5TKXMd/yNnm9c7bqyuYbGRnZGhGtbuZZurBL2hu4E3hOROycb9xWqxUTExOzDhsfH2d4eLjUvBdLk7NB7/Ot2bClZ9NaP7SHTZMd9/CxfeO6ns17Ie3t1stlLmO+5W3yeuds1ZXNJ6nrwl6lK+aVpK31eYu6mZnVo0phfz1wUa+DmJlZb5Qq7JL2A34LuLQ/cczMrFudd4YCEfEQ8OQ+ZTEzsx7wladmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsMy7sZmaZcWE3M8uMC7uZWWZc2M3MMuPCbmaWGRd2M7PMuLCbmWXGhd3MLDMu7GZmmSn703gHSrpY0g8kbZN0XL+CmZlZNaV+Gg84F7giIk6WtDewXx8ymZlZFzou7JIOAF4KnA4QEY8Aj/QnlpmZVaWI6GxE6fnAZuD7wPOArcBZEfHgjPFGgVGAwcHBtWNjY7NOb2pqioGBgerJ+6jJ2aD3+SZ37OrZtAaXw87dnY8/tHplz+a9kPZ26+UylzHf8jZ5vXO26srmGxkZ2RoRrW7mWaawt4B/AY6PiOsknQv8LCLeP9dzWq1WTExMzDpsfHyc4eHh8okXQZOzQe/zrdmwpWfTWj+0h02Tnffwbd+4rmfzXkh7u/VymcuYb3mbvN45W3Vl80nqurCXOXh6B3BHRFxX3L8YeEE3Mzczs97ruLBHxF3AjyUdUTz0MlK3jJmZNUjZs2LeBXyhOCPmNuAtvY9kZmbdKFXYI+I7QFd9P2Zm1l++8tTMLDMu7GZmmXFhNzPLjAu7mVlmXNjNzDLjwm5mlhkXdjOzzLiwm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsM6V+QUnSduAB4OfAnm5/SdvMzHqv7G+eAoxExD09T2JmZj3hrhgzs8woIjofWbod+CkQwF9HxOZZxhkFRgEGBwfXjo2NzTqtqakpBgYGqmTuq8kduxhcDjt3L/68h1av7Gi8Xrfd5I5dPZtW2bbrdJl7ob3dernMZcy3vE19T4CzdaNsvpGRka3ddnOXLexPjYg7JR0MfA14V0RcM9f4rVYrJiYmZh02Pj7O8PBwybj9t2bDFtYP7WHTZJVequ5s37iuo/F63XZrNmzp2bTKtl2ny9wL7e3Wy2UuY77lbep7ApytG2XzSeq6sJfqiomIO4v/dwOXAS/sZuZmZtZ7HRd2SSsk7T99G3gFcFO/gpmZWTVl+hsGgcskTT/vwoi4oi+pzMysso4Le0TcBjyvj1nMzKwHfLqjmVlmXNjNzDLjwm5mlhkXdjOzzLiwm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsMy7sZmaZcWE3M8uMC7uZWWZKF3ZJSyTdKOnyfgQyM7PuVNliPwvY1usgZmbWG6UKu6RDgXXA3/YnjpmZdUsR0fnI0sXAR4D9gT+OiJNmGWcUGAUYHBxcOzY2Nuu0pqamGBgYqJK5ryZ37GJwOezcXXeSuTU5X9lsQ6tX9i/MDO3r3OSOXYs233bzLW9T3xPgbN0om29kZGRrRLS6mefSTkeUdBJwd0RslTQ813gRsRnYDNBqtWJ4ePZRx8fHmWtYnU7fsIX1Q3vYNNlx0yy6Jucrm237qcP9CzND+zp3+oYtizbfdvMtb1PfE+Bs3agjX5mumOOB10jaDowBJ0j6fF9SmZlZZR0X9oj4LxFxaESsAV4HXBkRp/UtmZmZVeLz2M3MMlOpozYixoHxniYxM7Oe8Ba7mVlmXNjNzDLjwm5mlhkXdjOzzLiwm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsMy7sZmaZcWE3M8tMx4Vd0r6Svi3pu5JulvShfgYzM7NqyvyC0sPACRExJWkZ8A1J/xQR/9KnbGZmVkHHhT0iApgq7i4r/qIfoczMrDqlet3hyNISYCvwbOC8iPiTWcYZBUYBBgcH146Njc06rampKQYGBuac1+SOXR3n6rXB5bBzd22zX1CT85XNNrR6Zf/CzNC+ztW1fs23vAu9J+r0RM3WhNe5bNuNjIxsjYhWN/MvVdh/8STpQOAy4F0RcdNc47VarZiYmJh12Pj4OMPDw3POY82GLaVz9cr6oT1smqz0O9+Losn5ymbbvnFdH9P8e+3rXF3r13zLu9B7ok5P1GxNeJ3Ltp2krgt7pbNiIuJ+YBw4sZuZm5lZ75U5K+agYksdScuBlwM/6FcwMzOrpsz+/FOAC4p+9r2AL0bE5f2JZWZmVZU5K+Z7wDF9zGJmZj3gK0/NzDLjwm5mlhkXdjOzzLiwm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsMy7sZmaZcWE3M8uMC7uZWWZc2M3MMlPmN0+fJukqSdsk3SzprH4GMzOzasr85ukeYH1E3CBpf2CrpK9FxPf7lM3MzCroeIs9Iv4tIm4obj8AbANW9yuYmZlVo4go/yRpDXANcHRE/GzGsFFgFGBwcHDt2NjYrNOYmppiYGBgznlM7thVOlevDC6Hnbtrm/2CmpzP2arrd76h1SsrP3eh92ud5stWVx1pb+uybTcyMrI1IlrdzL90YZc0AFwNnBMRl843bqvViomJiVmHjY+PMzw8POdz12zYUipXL60f2sOmyTK9VIuryfmcrbp+59u+cV3l5y70fq3TfNnqqiPtbV227SR1XdhLnRUjaRlwCfCFhYq6mZnVo8xZMQI+DWyLiD/tXyQzM+tGmS3244E3AidI+k7x96o+5TIzs4o67tCLiG8A6mMWMzPrAV95amaWGRd2M7PMuLCbmWXGhd3MLDMu7GZmmXFhNzPLjAu7mVlmXNjNzDLjwm5mlhkXdjOzzLiwm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpaZMr95+hlJd0u6qZ+BzMysO2W22M8HTuxTDjMz65GOC3tEXAPc18csZmbWA4qIzkeW1gCXR8TR84wzCowCDA4Orh0bG5t1vKmpKQYGBuac1+SOXR3n6rXB5bBzd22zX1CT8zlbdf3ON7R6ZeXnLvR+rdN82eqqI+1tXbbtRkZGtkZEq5v597ywt2u1WjExMTHrsPHxcYaHh+d87poNWzrO1Wvrh/awaXJpbfNfSJPzOVt1/c63feO6ys9d6P1ap/my1VVH2tu6bNtJ6rqw+6wYM7PMuLCbmWWmzOmOFwHfAo6QdIekt/YvlpmZVdVxh15EvL6fQczMrDfcFWNmlhkXdjOzzLiwm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsMy7sZmaZcWE3M8uMC7uZWWZc2M3MMuPCbmaWmVKFXdKJkm6R9ENJG/oVyszMqivzm6dLgPOAVwJHAa+XdFS/gpmZWTVltthfCPwwIm6LiEeAMeC3+xPLzMyqUkR0NqJ0MnBiRJxR3H8j8KKIeOeM8UaB0eLuEcAtc0xyFXBPldCLoMnZoNn5nK26JudzturK5jssIg7qZoZLS4yrWR77pU+FiNgMbF5wYtJERLRKzH/RNDkbNDufs1XX5HzOVl0d+cp0xdwBPK3t/qHAnb2NY2Zm3SpT2K8HDpf0DEl7A68D/rE/sczMrKqOu2IiYo+kdwJfAZYAn4mIm7uY94LdNTVqcjZodj5nq67J+ZytukXP1/HBUzMze2LwladmZplxYTczy4wLu5lZZp6QhV3Sakmr684xG0nPlPQeSSfUnWWmJmeDZudztuqanK/J2aB6vidUYZe0RtLVwBXAxyW9pO5M7ST9R+BrpO/SeZukt9cc6ReanA2anc/ZqmtyviZngy7zRUSj/4B9226/FvhEcfvNwD8AQ8V91ZDtBOAZ0/MHPgCcVtx/EfAlYLiOfE3O1vR8zpZnviZn63W+Rm6xSzpA0l9JuhX4hKTDikG/A/youD0G/BA4Y/ppi5jvKEnfA/4b8FlJJ0Rq7aOAQwAi4jrgm8BbFjNfk7M1PZ+z5Zmvydn6la+RhR04EdiXtGCPAB+QtJy0W/JqgIh4GLgYeElx/7F+hZF0qKQD2h46BbgkIl5K+oB5g6TDgQun8xUuA46WtE+/8jU5W9PzOVue+ZqcbbHy1VbYlSyV9FZJX5d0lqRnFYOfDTwSEXuAPwN+CpwGfBV4iqRfK8a7FfixpOP6lPFISV8GvgF8WNL01xT/P2C/4vYXgbuAdaRP1Ce37WHcR/p2y+f9KmVrej5nyzNfk7Mtdr7aCnuxq/GbwJuAjwH7AH9TDL4LuLv4ZPoxaWGeRWqA7/P41wIvA+4tHu8JSSva7j4fuCMi1gBXAp8oHr8PeFjS/hFxH/CvwFOLHN8E3luMtzfwc2B77tmans/Z8szX5Gx15lu0wi7pOEkflXR6cV/AkcAVEfGliPgYcJikFwM7SJ9gRxZP3wYMFI/9BfAqSa8mfSgMAt/tMtuTJJ0v6Xpgo6SDinxDwLWSFBH/CNwvaR1pT2H/YjjF/YOBx0h7GAdL+hvgImBPRNydY7am53O26pqcr8nZmpJvUQq7pOcAfwk8APyepPcW814NPFAsNMD5wBtIhXoP8OLi8RtIR4wfiohrgA3A6cDxwH+PiMfaplHFS4v5vYp0UOJs4ADSl50dUuxdAFxQ5Pt2sSyvBIiIbxXTWBoR24AzgZuB/xkRb6E7Tc7W9HzOlme+JmdrRr65Tpep+kfasj6DtNuxtHjsT4Gzitst4JPAycDLga+0PfdppF0VSIX8RtKvMB0D/G/gKW3jlj4dqWjYM4GrSd05q4rHvwi8u7j9DGBjMfxYUn/YkrZl+0kxndWkPYl3Ap8FPgWs6KLdGput6fmcza+r2+7f//V0i13S80kHOH8b+CDwvmLQDtJvpkL65LkW+F3gn4FDJD1X0rJI/ek7JL0kIq4kfd3lR4FLgYsi4t+m5xVFy5R0EvAa4EPAcaS+fUhn20zvHfwY+Drwyoi4nvSJO1LMcwq4Djg2InYAbyR1Bd0FvC8iHiwbqG1P49VNyzaD266axrUbuO26yfZEaLsyP433SyS9EDgc+GpE/IS0NX5rRJwu6QXAOZJawDjwnyTtFxEPSfou8HukczQvBP4A+KSk3cAkcHsxi78CLoyIXSUyKSJC0rGk3ZyvA1sinR7568BtEXGlpNtJV6++AtgK/I6kVRFxj6R/BR6U9HTgz4HTJB1M+tWoe0m7TkTEBDBRod1apL2aB4CPA3cDz6w7m9uuWrYnQru57fJru/mU2mJXskzSmyTdSOrYPxCYLrw/B7YXW983kHYtjgMe4vFTeAAeJe2CHELaKr+J1L9+NXBPRNwBaau8YlF/KfAZ0lHllwMfKUZ5DLhV0vKIuL3I91zSi3Un6XzS6eVYQmqfS4qMpwJrgc1R8RxXSSslfbaY5u3AuRFxt6S9SJ/kdWZbUrTdb5J2BRvTdsV6NyDpfBrWdsU8Q9IwzVzn9pG0oqFtd0DD225A0r6SLqBhbbegTvprgBXAi4vbBxbBPjnLeGeRLoNdXdw/mdSffhjpKwCuLh7fl9QNs6rtuccAe3eSZ8Y89wPexuNb/suAPwLeUQx/EvC9YvqnkPq71hTDTiqWZVVxexJYSerf/3J7HmCvLrJdRLpibIDUtXRm2zjTxyHeCfyPxcrW9rqeQVrZ1pMO8DSl7aazXVqsVwc1rO32B7aQfkkM4D1NaLcZ+b4M/HVx/2PA2+puO9J74s2k9/8lTWu7tnxXAn9fPNaY9a7TvwW32CWdDdwGbJE0GBH3k/qF7iz6xl+jxy8Q+hbpAOj0hUbXkg6iPhQRFwA/lfQ50kHRW4Bf9CFFxI0R8chCeWZkOwS4HBgGPkc6QPFa0l7CnmK6PyUdeH03qe/rYB4/jfIa0rn0j0TE5cCnSVeznkc6Yv1oW75Sn6ozsv0d8PYi263AEZI2FltRv690wdUVpD2Yvmcr8q0gvblOIF0/8ArScY9jSVtKdbZde7bNpLMFXku6huE36m67wnLStRfPkrSKtM4vKaZZS7vNkm9v0rr2VFIXx9GSPlJX20laRjrGdjLw8Yj43WLQMW3TrK3tZuT7WERMb3FPAkfV2XaldfAJNkzavfhb4D3FY8eSitYdRfALgU3FsHOAD7c9/3rgmOL2PqRTgI7txacSaeV9Udv900lbJm8Gvt32+FOBO4vb7yBdtvuk4vlfAp7eNu6qPmV7E+lI968Df1/8vR74X6Rz+RctW9v0Dmy7/Z9Jb6ZT6267WbL9MemUsWc2qO3eTOprfT/wVtKBtOvrbrdZ8r2PtMezqgltR9oDO3XGY6cA1zWh7ebI9/QiQ+3rXcfL0cGCTp+acwowXtxeRtqaWlncP4y0tX4saRfwYtKW1j+RPqn26Uv41Mcl+MVvt76Ax7t77iWdMzo97tcoCi1p9+mrxTh/skjZjgG+Mb3ito23jHRw+YTi/jn9zjYj5wGk4xs7gQ8X9+8FButqu1my3VXMdwVFN19dbdf2er6F1M32WuALxWP31N1uc+QbKx5rP124lvWO1EVxK7CpmP8HivpxH3BwA9a59nxXkb6Y69C617vSy1FigZ9MulDoOcX9pTOGnw+cPL0CkboezqRPRX2OlfkCHj9f/nPAR4vbv0ba43h62wtzNG1fCbxI2d7R/lhx+5Ci7Z672NnaMvwh6XzbzaR+7W8WbzjV2XYzsp1HOq3s2U1oO9JXRi8h9aFeTdoyvgl4f93r3Cz5/pl0htkLGtJ2XyHtgT2NtBV8FmnDsCnrXHu+L5Au/T+8CW3X6d900emIpE8BP4uIDcX9vUjnXb4DeA5wSpTsJ+8VSYeS+rTeFRG3Kn2h2GiRazXwnejNVWXdZHt7RNxWPHYMqVtqXZHtD+vI1k7pOoQzSW+yI0kr66HU2HZt2Y4mvdn+nHSW1UnU1HaSBkjdHPuQ2uk3SBeenE3aUj6cGtttlnyHk45P/BbpmNfLSO1Xy3qn4rTn4vbzSO/Ta0mX1Ne+zs3IdzTpSvdzSd80W9t6V0bZ89g3A+cWBxmOJK3Ex5NelLPrKuqFYyjOgZd0Bqn//2xSF9IPIp1+WXe2HxXZbietHHtIW/E31pit3b2kg4Dvi4i/k3QacHND8t1P6ie+ifS6LqO+tttDOnviUdKW+s9J6/8k8N4GtNtc+R6W9BpSwa9tvZsumoX7Sced3h8RFzag7Wbme4C08boN+K/Uu951rOwW++tIB0ofJn3j2JURcUufspUi6VrSwbXtpHNIPxQR36s1VGFGtruADQ1qt5WkLbg3kL7/fjNwXkQ8Ou8TF8Es2T4dEZvqTfXLigtPpvuy76o7z0xFvpOBz0Y666TuPPuQfnPhjaQ96r8EPhXpa7prN0u+zRHxZ/WmKqfjwi7puaTzOS8mHSzq2VfldqvYg/ggaUv485GuWmuEJmcDkLSU1P3yMClfk17XxmaDdFEX8FiU2TpaRE3OJ+lM0mm1n2va6wrNz7eQUlvsZmbWfE39aTwzM6vIhd3MLDMu7GZmmXFhNzPLjAu7mVlmXNjNzDLjwm5mlpn/D0QBdzhJVkBDAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "yearly_incidence.hist(xrot=20)" ] -- 2.18.1