Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
M
mooc-rr
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
0ac65f62d21d982ba39b93c80cd9db24
mooc-rr
Commits
4ce5ca64
Commit
4ce5ca64
authored
Aug 07, 2023
by
0ac65f62d21d982ba39b93c80cd9db24
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Lecture et affichage des données
parent
b021b495
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
385 additions
and
6 deletions
+385
-6
exercice.ipynb
module2/exo2/exercice.ipynb
+198
-3
exercice.ipynb
module2/exo4/exercice.ipynb
+187
-3
No files found.
module2/exo2/exercice.ipynb
View file @
4ce5ca64
{
"cells": [],
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Module 2\n",
"## Exercice 2 - 2ème partie\n"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"table = np.array([14.0, 7.6, 11.2, 12.8, 12.5, 9.9, 14.9, 9.4, 16.9, 10.2, 14.9, 18.1, 7.3, 9.8, 10.9,12.2, 9.9, 2.9, 2.8, 15.4, 15.7, 9.7, 13.1, 13.2, 12.3, 11.7, 16.0, 12.4, 17.9, 12.2, 16.2, 18.7, 8.9, 11.9, 12.1, 14.6, 12.1, 4.7, 3.9, 16.9, 16.8, 11.3, 14.4, 15.7, 14.0, 13.6, 18.0, 13.6, 19.9, 13.7, 17.0, 20.5, 9.9, 12.5, 13.2, 16.1, 13.5, 6.3, 6.4, 17.6, 19.1, 12.8, 15.5, 16.3, 15.2, 14.6, 19.1, 14.4, 21.4, 15.1, 19.6, 21.7, 11.3, 15.0, 14.3, 16.8, 14.0, 6.8, 8.2, 19.9, 20.4, 14.6, 16.4, 18.7, 16.8, 15.8, 20.4, 15.8, 22.4, 16.2, 20.3, 23.4, 12.1, 15.5, 15.4, 18.4, 15.7, 10.2, 8.9, 21.0])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Mean"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"14.113000000000001"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"mean_tab = np.mean(table)\n",
"mean_tab"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Min and max"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Min_tab = 2.8\n",
"Max_tab = 23.4\n"
]
}
],
"source": [
"min_tab = np.min(table)\n",
"max_tab = np.max(table)\n",
"print(\"Min_tab = \",min_tab)\n",
"print(\"Max_tab = \",max_tab)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Median"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"14.5"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"median_tab = np.median(table)\n",
"median_tab"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Standard Deviation"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"4.312369534258399"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"std_tab = np.std(table)\n",
"std_tab"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Pour cet exercice, le système de correction automatique a bugué sur l'écart-type\n",
"\n",
"## Exercice 2 - 3ème partie"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztvXmYJGd95/l9MzIj8qyrq7r6qD4ltS5AEghJ3Ie51wN4vNgGDPjEO+PZwYN3Z/HMzq7x7Dzr8T0z9ngsGwzLADMe47GwGWMwh8UlgQQCXS211Oru6u6qrjOr8o7IiHf/iHjjfCMy6og8It/P8/TTVVlZlfFmRvzi935/F6GUQiAQCASjT2bQByAQCASC/UEYdIFAIEgJwqALBAJBShAGXSAQCFKCMOgCgUCQEoRBFwgEgpQgDLpAIBCkBGHQBQKBICUIgy4QCAQpIdvPF5udnaUnT57s50sKBALByPPwww+vUUrnej2vrwb95MmTeOihh/r5kgKBQDDyEEIuxnmekFwEAoEgJQiDLhAIBClBGHSBQCBICcKgCwQCQUoQBl0gEAhSgjDoAoFAkBKEQRcIBIKUIAy6QCAYa75zYQNPLm0P+jD2BWHQBQLBWPOhz/wAv/vFpwd9GPuCMOgCgWCsWd5qo6Xpgz6MfUEYdIFAMLbUO100VB1q1xj0oewLwqALBIKxZXmrDQDoCIMuEAgEo83KtmnQhYcuEAgEI84yM+i6MOgCgUAw0lzb7gAQHrpAIBCMPNe2mYYuslwEAoFgpLkmNHSBQCAYfnSD4r0f/Ta+8cxa6HOWhUEXCASC4afW1nD/06v4zoWN0OesMA1dBEUFAoFgeKl3ugCAhvW/H8OgWKmZHrqmUxgG7duxJYUw6AKBIJU0VTPQWQ8x6BtNFZpOcWgiDyAdXrow6AKBIJUwQ17v8DNYWED02EwBQDqqRYVBFwgEqaRpGfIwycUx6EUA6QiMCoMuEAhs1uudQR/CvuF46GEG3VzrccugpyEXXRh0gUAAAHjg/Dru/Dd/h0vrzUEfyr7QVC2D3uYb9OWtNggBjk6Zkovw0AUCQWr4/mIVlAKr9fagD2VfaFhB0YbKN+grtTYOlBSUlCwAERQVCAQjQqPTxfnVeuRzzq82AAAdbfQNG+Bo52Ea+vJWG/MTCpSsaQbTsG5h0AWCMeCjX38Ob/uDb4DS8Fzr82umwU9DtgcANGNo6Icm8pAtgy48dIFAMBKs1juotbuRxtr20FMQHAScdMW2ZqDLMdbXtts4OJGHLFkGPQU3MmHQBYIxgBXZhMkP1aaK9YYKIEUeuks7b/hy0dWugfWG6vXQU7BuYdAFgjGAGTe/YWM8a3nnQDq0ZMArtdR9gdFVKz3T1NAlAMntTJa32vj9L5/DxfVG7yfvEWHQBYIxgBnyMD3ZHTDtpEBLBpxdCRDcmbBZovOTjoee1M7k8mYTv/WFp3GxD+mgwqALBGNAq0cK3/k1t4eeDg3dbcRrvlx0Nkt0vpK3s1ySklxYsDUnJW9uhUEXCMYAZsijPPSF6fT0NAHMNU/kzRzzgIduGfRDky6DntDOhN0o2E4gSYRBFwjGgF5B0fOrDdx0qAIgPQa92dExb3VS9K/72nYHspTBdDHnSC4JxQ6YQVeEQRcIBsN9j1zBl568NujD2Deiimx0g+LiehPXzZWhZDMpSlvs4uCEYn/txkxZVEAISTwPnf1d4aELBAPi97/8DD72zQuDPox9o2X3Bg8a68ubTai6gdNzJdOg9ynL5W8eXcK99z+757/T1nT8i//+KNZ8jcWaqo75SpiH3ra996Tz0NnfHQoNnRByjBDyFULIk4SQxwkhH7AenyGEfJEQcs76fzrxoxUI+sRqvZMa6YFSamvoPA+dFRSdnitDyUl9WffiRhO//N++j498/bk9/63Hr27jUw9e8swOZWueC/HQl7fNsn8AyEoZSBmSmEHXhsxD7wL4ZUrpzQDuAfCLhJBbAHwIwJcopTcA+JL1vUAw8qhdA9WmlhqD3ukaYNPVeAb9WStl8fRsCbKUvORCKcW//MvH0FT10E6IO2GrpVr/a/ZjLU0HpcB0UYYsZQI7k/W6itmyYn+f5LrtoOgweOiU0iVK6Xetr2sAngRwFMDbAHzcetrHAbw9qYMUCPrJesMaHJwSg+7Ox+ZluZxfa2CykMNMSYaSyyR+I7vvkau4/+lVHJ0qoKHq0Pc4y7PaNA35VtMx6GydJVlCSZE8N7KubmCrpWGmJNuPydlMYp93Z1izXAghJwHcAeBBAPOU0iXANPoADu73wQkEg2Ctxkrg0xEcdBszrkFfreP0XAmEEChZKdEb2Xq9gw//1eO44/gU3vuSE+bxheTGx4V55lWXh86mFZWULMr5rOc9YM8LGPSEg6JDleVCCCkD+AyAX6KUbu/g995PCHmIEPLQ6urqbo5RINg3KKV470e/ja+cXQl9DusHnpYS+KiKScDU0K+bKwOAleWS3Lr/3ZfOod7p4t/+6AswWcgBCB9AERfmoVddHjq7SRTlLEpyFjXXujetnjXTRcegJ7lurWvuQIYiKAoAhJAcTGP+SUrpX1gPXyOEHLZ+fhgA9wqhlN5LKb2TUnrn3NzcfhyzQLBrGqqO+59exXcubIQ+x/HQ02HQ3R6w30OvtTWs1Do4PVcCYBm2BCtFz6828LyjkzgzX0HZKvrxV3HuFOahMy0dcFodlJUsyorXQ9+wDLrfQ0/q81Z1HVKGQMqQRP6+mzhZLgTARwA8SSn9HdePPgvgfdbX7wNw3/4fnkCwvzR69MgGnMZNakokF5ayWJKlQHOu56yS/9OzloeecJaL2jXs4GAlb3noHS3qV3pSbarW/xwPXZFQ8hn0zWbQQ5el5DR095qTJs6rvAzAewC8lhDyiPXvLQB+HcDrCSHnALze+l4gGGp6DQ4GgNWaadBT46Fba52rKAHJxTbobg89wXV3dMMODpaV/fHQqxwNna2Teeh1j4ce1NCVBIOiatfoS0AUALK9nkAp/TqAsL3CD+3v4QgEydJrLBkAu0Cl0zVAKYW5SR1dmIZ+sJLHBV8L17W6av3MTOFLulJU7Rp2cLBiSS5RN9c42FkunKBoUZYCBp156FPFnP1YksFgVad90c8BUSkqGDPqtkEPN1rMQwcATd9bSt0wwAz63ETQQ99qqiAEmLDkDyUrJRoMVrt6wEPfa1B0u+WkLbIRe07aYtaSXJzPe6OhoiRLyOck+zE5wRuZ+yaWNMKgC8aKXn3BAXhKyNOQusiGWxysKGioOgxX3ne1pWGykEPGCtglGRwEzBQ+pieX98tDtwy6qhtoWQFdtuaSkkVZkdBQu7ax32yomHbJLUDyaYv9klyEQReMFbGCorUOspaB65eOfnmzuecCG8BcF0vLY7Cb2JwlqzRdWSzVpoapglt6yCQaDHbrySV57xq6YVBUm07VJ5NfGqqOnGQ23iopWVDq7FQ2mqpHPweSDorqQxUUFQhSQ72Hht7p6thud3F4Km99n7xBv7zZxKt/86v4wuPLe/5bH/7s4/i5/+8hz2NNtQslm7FlFX+RzaQ7HzvhSlG3QZcyBGUluyeDXle7MChw4kARgMugd7ooWZKOfyew2VA9GS6Aue40BEWFQReMFb08dBYkPDplDnvoR/n/wxc30TWoPXRhL1zaaOLypnfUWVPV7eAg4F17tali2hccZMHgJDBT+Bzt2gxY7j5tkZX72wbdykVvdHR7B+Bfd5iHnlhhkU6Rk/oTWBcGXTBWuLNceEZrzQqIHp0yDUQ/NPTvXap6jm0vbLU0Tz42YOZkF63goP91eJILkGxvcLe3Ws5n96Shs7WePGCmXbIAqemhmzcOZtgbtoeuBTz0JHu5CA9dMDQYBsVXnlpJzGPrN6zrnkFhB9DcsIDoUTaOrQ/l/9+/XPUc215gXSLbrrU1OzpKimQbOL+HPuUrgQeSkZoMg0LTqdeg95BcWqruaYvrh6UqBiQX6yYGwL6R1TtddLo66p0uZko5z99JtDmXbkDOSr2fuA8Igy6I5O/PreKn//Q7ePTK1qAPZV/o1aiKpSwuTPVnvqbaNfD41e3Ase0WJjlsu3OyNR1FOWtLDyxIqhsU2+2u3VMFMCtFgWRuZLwmVZUeHvp//c4lvPtPHgzISAy2XuahV10eOluvOz2SGXx/louSldBJcKaoCIoKhoLnrOEHe63mGxbqrr4mvFx0v4eetIb+5NK2/Rp7Td9razraliH2dh7soihLAcmFebfeAhvmoe+/1GSPYpO8HnpUHvqz1vn31HKN+3NmoA9N5iFLGft7FjcAnKBoQ+06fVxCJJckdqKabkDOCg1dMAQsWp5RGvKxAa8XzPOIV2sdVPJZu4ox6XUzuWWqmNu3iknAWzXZUL0eOnudKqenSZKSiz3owSe5RK374oZ5/j19rc79OVvnZCGHyWLObtBVd2W5OFKT7nRaDHjo8WMHlzeb+JtHl3o+jyE8dMHQsLjRApCeVrKNThes6R1v17FWVzFXUaBYmmfSkssjl6qYqyi4bq68Z8ml6uo26DbuTbVraeheD5158ZM8Dz0JyYVj0Cv5XOTu76LVquDpa2Eeuop8LoN8TsJUIWcb+Kaq24a87Fr3RjPYaRHY2VzRj3/zAv7xp77riVNEIYKigqGBaZftlHjo9Y5uF6GEeeizZSVR6cHNI4tV3LYwFegIuBvCPHQmPxQtfdyWXKzne7NczOckkeXCG8XGslwMTlGVphu4smk6FOEGXcNUwTTOU8WcNw/dCooWchIyxNTQNzmtcwEzD919jFFc3WqDUmB5K16aqagUHVL+9vFlfPnstUEfRt+glOLyZvo89EOT1iR4zqSctXoHcxXFvgCT1NC3mhrOrzVwx/EplBVpXyUXJqcATEPPIpMhKMmSnU3DPHpulksCPdFVzrDkiuLo236uVlvoGhTTxRyeWalzK2m3WpodA5gsyKg2NXR1A52uYe9ICCEoWdIO67TovokBzk0mzo7smmXIr1RbPZ8LBHPvk0QY9B3we393Dvfef37Qh9E3qk3NNjKj1kpW0w382l894enLApgG/WDFNOjcLJd6B3MeDz25dTP9/PZjUyjJWW6Qdie4jTjLcjEMiqamo2QFCN07gU3LuHkKi3J91tAj+rlcWDd3h6+9aR6droHFjWCmC+tFA5g6+lZLQ0N1Oi3ar2Ote7OpYrKQQ9anae/kBr60U4OuG8iJoOjwsVprj5xhi+LRy1v4zb89G/rzRVeqWFy9cFg4u1TDR7/xHL76lHfsYb3TxfyEKbn4syvamo5au2tq6Amm7zEeWayCEOD5C5P7I7lYRlzOZuyv210dlAJFVwofy/SptjQQ4gyaAJBo7IA3LDmq4+IlSz9//S3zAPiyy1bT8dBNyUX19EJnlJSsneXil1vcx9RLajIMipWaadCvxjDolFKz26IIig4Xmm5gra6mZhI8AHzu0SX8wVeeDdWJWUAUGD0PfdOeYuN4rWwrzppU+Q0o8+Zny7ITJEsoNxkAvr9YxXVzZUzkc6YHqfKrV+NSbWrISQSHJ/Oe4CDgeKvuG8dWU8VEPucZjZZo2qJ1DilS0EOvhXjo+VwGL7v+AADg3Eow06XaUm0PfaqQQ0PV7bUXfQa91jY9dPeOhGHHDnqc5xtN1W6pzPT9KNhzhYY+ZKRtig1gzpM0/+d7hqPsodtTbNxjyXxzJv2VmewznqsoyEkEhCSjJQOm5/bIYhW3H5sCYBqcsOrVuGy1zKrPqYITHHQGPTgpfO4slymfcbM99AQLi9zGbSIf7qFfXG/gxEwJlXwOR6cK3Fz0alOzYwBsLcxzLituycVcdy8PvdeNzB0IvbrV26Dz1pwkwqDHZKXG5kymyaBbjapCDPrlzSYmC6b3OGo3MuaZb7o8dCY1lJWsx7AxWGOu2bICQkii49iuVFtYb6i4zTLo+9EbnPVlmXCl77FgI9PQ3TeyTZcxZPRdQ1dMI8xzKi6uN+2S/hvmywHJpa3p6HQNR0O31sIMOruJma9jxih4nRaB+EFRZtAXpgu4Wu2d5aJZf09MLBoyrlmd8NJSYAM4HnqYEVncaOHYTCHxsWRJwAJ+bg+d3bhKitmoqu7LrHB76IDTeTAJ2M2DtRhg3uReAqObTRVTxRymirIdFGWSSyFEcgnP9khOcuEHRb0NxQyD4uJGEydnzZL+G+crOL/aQNclgbHP1slyMf+/bBn0kuyVXOpWHnqkht7LoFt24EUnpnGl2uKmW3rWLDz04WTF+iDT5KEzQ77d5rcvXdxs4th0EfmcZJeUjwosJc9dbMPWW85nuSXnTEM/UDINepLTe5iU4x/2sJfAaLWpYbIgY7KQtSUn9+Qe9n+k5JKkh65ba5aCQVG/h7683YbaNXB8hnnoFai6YVeOAq7WBSwPvcAkF/NaLSneLJe1egdtzQhUiQLxK2SXt9qQMgS3LUxB7RpY9w0TCayZk3ufJMKgx2QllRp6uORiGGYO+rGZYuKT4JOAeW/MUweCk+B5QdGpYs42sknuTPyNqni9ynfKVkvDdDFnp+9RSm2Pv+iRXFjpvxbqoSfhuISV/gPBdV+0UhZZ060z82UAwDmX7FL1DXv2a+glX1CUncP+Pi6Aq/Q/hoc+V1ZwzLrR9Mp04WX2JIkw6DFxJJfRMmxRMIPO0y9X6x2oXQML0wXTUx21oCgny4UZcDY42G9EWJUoI8kbmd+48XqV75SqlcI3VZChGxT1Ttfx0FlQVDYNmzmZKaihZ6UMshnSN8lFyhAUZSngVLCSf6ahX3/QNOhPLTuZLlVXHxfA8dR5Bt2dwsjz0ONKLte225ifzNsDUHrlotuZPcKgDxfMQ9cN6tHxRpntCA2dFXHYksuI3cg2LQ/d3XWw7vfQ1aCHPlt2V01KieWh+z230h499Lamo6XpmCrKtoHbammctEXz/2WrfN0vuQDWjSyBdbM1K76qSV6DrosbTeQkgiOW4SzKWRybKeDpFcdDZ60L2Hor+SwIcZwv1uqAvQbD3wsdiJ+HvrTVxuEJx6D38tA1XQRFB0Knq0cGOK5tOxWHSeYm9wvD8uAAvhFhJf92UDRBD103qO1J7hfMM2+quu1t2h66NezB7xX6PfREJ8Hbnpu/gdTu3md/10HA9NjZ++ouLAKcz5dr0HPJBIPDAoSVfDaQh35xvYFj00VPjvyZgxWv5NLySi6ZDMFkIQeDmjewjOt33d46L8vFSdeMfv+vbbVxaDKPiUIWJVnq7aGLoGj/oZTi1b/5VXzy25dCn7PimveYhsCoWcRifs0LijIPfWG6mNgFzvi/7nsML/jVL+A9H3kQn/jWBTvbZC9UW5qtB7snwQNOlovfeK7UOnZbAACJ3siCkou3cdZOsQc3uDz07ZZmr7GQc7JcAKcohskUbnYSO9hua9weKzx4kgsAlDkdFy+sOSmLjBvmK3hurWF7vdWmZg+aZrC1u1MWAW9O+m4rReudLmqdLuYn8iCE4Oh0oWdxkQiKDgBVN7C01caFtQb355puRrMPWulsadDR3RcQLyi6uNnEXEVBPichn80kWli0tNVGScni8mYL/+q+x/ET935rT39PNyi2WhqO+8aS1TtdZDNmfnlFyULVDfuCa3S6aKo6Dk64NPQEb2TMYLILnWncu5Vc3AFC5rFWWxpamo58LmN7uraHXo3w0GPGDjTdwKt+4yv4xLcuxDpGtWsgmyEerxswG3TVXU4FpRSXNpo4YQVEGTcdqkDTqV1gtNUyg7qEOH+PBXndGS7m9+a6MwSYyHMklxjBYJaDfthq7nZkqtCzuCjsJpYUwqDDnFsIIHTbzzxGlkKVhs6DboPOC4oubrRwzJrao+SkRHclatfA9QfL+PIvvwo/ec9xj7y1G7ZbGih1MiRYcVHDGnrAuu+xxwAnRsJu2kCyQVFbT7bSBDNWcHDXHrpbcnFp6O42sgDHQw+RH+Kc48tbbWw2NZwNmSbkJ6wvuF9DX2+oqHe6AQ/95TfMghDgi0+YHU+rLc3Tyx1wiotKAQ/d/H66KHukGEZOIvYxhsG0+fkJ06AfnepdXKQKDb3/sMBRmH7JLnaWqsTyaUeZWjsYLHSzuNm015u0h67qhlVqT3CgpKDe6cbexvNgxu3ULPPQnSk27ML2ByGZpOaWXMyxZMmmLbq34iVOoDYuW64iG2bQTQ1dR9HlrTLPlfW596ctAiz/vve6mSy3k66DXIOe99YEsAyXkz4Pfbas4MUnZ/C3jy8DsBpz+Y4/zEO3DTpHbgEQqzKYeeiHXB76RkONjP+ILJcB4Bh0/gfD7szMYx21IhsezCvP5zIByaVrSVALtoeebB66phu2B1PZhxJ45pGfmjVT3TxDD3xTbOp+D32iTx66FjJfc5dB0U3XOLlCToIsZbgeOls3M8ITHIOuxAwGs14/S3EHPYSMYisr3qAoy0H3e+gA8KZbD+Hscg0X1hqexlwMJiG5g6Du73k56IxehWSsSvSQy0MHEOmlC8llADDJJcw7Yt7bgu2hj75BZ4HQI5OFQFB0aasN3aA4Nm2uN8kSeMA86ZkHw/TNWkj1ahyYt3rS8tA3bYOueyomzceiJJfk1q3qpnHzZmJESy6PX92yW7f6qbbMTotFWQIhxO7n0tJ0u+zffA1z3ctbbUzkswE9G7Bu4DGcFtaNc6naitUlMkxymbCmFrG/cX61ASlDsDAdNOhvfN4hAOawmSqnFw0z8H7JpWR76MEbGKPXjWx5q43JQs5+P9kg8ajURZHlMgDYlol56n5Wah1kiGn8gHRp6EemCgFvmHletuSSS1Zy4XnoUXMme8G81cOTZlEUT3IJeuhtyFLG4/ElneXiv8hLcvjA5Fpbwzv+07fw4c8+wf05K/tnAcIpa2BymIfeNWio/BD3RsbOk4aqY7vV+/PqREgulDrX39nlGk7NlrjPPTpVwAsWJvH5x5ex1dQCHvpkD8mFl+HCkKVMdFB0u2175wDsHPkoyUnjSGtJIgw6gKbWW3KZqyj2nXnUGlXxYAbz8GQ+YESWrC0k21IqWQndBAuqNJ26DHp49724bNopfDlMh8yZ9Od9r9bM0XPujIm40gMArNc7uP/p1d5PtOh09WD6XsSQi7985Cqaqo6/f3rVNhJuzNa5jnFj5f9snihDyToZLzz9nD0nzjl+2ZWyF6uVbKjk4v3Mn7q2jZsOVUL/zhtvPYTvXaqi1ukGsnSYx+5PW5QyBNcfLOOmQxOhf7dXVtOylYPOmK8okDIk2kNn3RaFh94/Wj2Cote2zfzkuP0eho1nVmp48Py657Fa28zhnasoqLW9gxU2rIZDB6yqSSVGju5ecHurjoe+F8lFBbHS06aLciDLBXA8ONbljxl0N0xDjyMnfOybF/BTf/rt2AVSPOMWNrWIUopPPXgJSjaDeqeL71zYCDyn2tQ8gxtYT3S/QSeE2K10J0P05Lixg8WNJm6wSvKXYhp0XnDQ3XGx3ulicaOFmw+HG943WbILELwpse/LPg0dAP7ug6/C+156MvTvmh56+I3M76FnpQwOTeQjPXS7Ilh46P2jp4Ze62B+oj9zJpPgd//uHP63P/++57F6p4tKPotKPgfdoJ5A73pDRU5yCjbyVlFKUsFgdd8lF3MrzioH3Xno5UBQ1PzsV7Y7Hv0cMD02Sp2pM1Fc2WzBoPGm2ACWccsFDTovKPr9y1t4cmkbH3z9GchSJjBWD2Brdgy046F3PZN7AGft4R5677TFtqZjpdbBXadmAABXYvQGD9PQ2aDoWrtr55jfOB/uoV83V7ZvJH4NnXnsRZ/kEgczq4m/bnNiWQfzLg8dAI5M5SM/c1FYNACY5NJUda43trLdxlwlH3tM1bCxXu9gZbvjWVutzQx60CPetKa6MPkhybFkgHmxyFYecGUfgqLmmDHzQp8uyqi2VLPzoBoVFG17MlwA7GgMHcv0uBwzha/D8dDLIUHRTz14EYWchHfdfRx3n57Bl8+uBJ6z1fRKLhOFHLaaZqVoSeYX2fBGsQEsqyn6s2ZyywuPTyObIViKse6otEXAvOGeXd4GANx0ONygA46X7s9Dt7Nc5KCH3osoiW2l1gGlTlER42iP4iKWksvLfU8CYdABtCzPXDdowPtmVaLzE4prTFXyBr3R6eJ3vvBU7BzfKKpNDZ2u4dHKa20NFSXnGHRfYYe73wXzJJPy0DWO5LId4aGvbLfxH750LjRXfcs1CX6qmMOmtX7doLYxy0kZKNkMGp0u1K6BzabmyUEHXL3BYwRGmeRweQceeiAoqmTR0nTPurbbGv7q+0t4621HUMnn8OobD+KZlbqdA86otrw52VPFHGqdrpXlws/4CJNcZKm35MICoicOFDE/kY+VuhimoVdcY+ieWq6homTt+E0YP/rCBdxyeAI3+zTxo1NFvOjENO44PtXzePzIEU3J7Bz0Cb+HXsCylRXGQ+safSsqAoRBB+DNbvF7SKxKdH4in7inythqavjJjzyIf//lZ/BFq4hiLzANeb3utJLd9nno7lz0zaZq6+cAkM8mGwx2Sy55K4c6SnL55IOX8NtffBpPXN3m/tw9CHiqKGOrqXk6LTJY/vNqPZiyCMQfekAptQ1abMlFD+rJdqDWJf3d970raGk63nX3cQDAa286CAD4ylOOl97p6miquidrxZ394ffQe0ouMeoOLm84mVBHpvI9uw4C0ZWigOlUnF2q4cZDFU9wmsfJ2RL+xwde4QlSAuZkps/8o5fiBQu7M+hhHrq/SpRxsKJA06ndHM1P2K4kKYRBh6OhA8HUxWt2BaFie2xJSi4rtTZ+/N5v4bErWwD2VmADmMaGZX2wiTwAk1xy3JmOGyEeehLpmpRST5YLYFUOdsIllwesAO8TS1vcn5sBQia55KDqhn1j9g89aHS6gdFzDLsDX4/Pm+2AAKcCsxcdje+hA16n4tPfXsQthyfwgoVJAMCp2RJOHijiKy7Zxd9GFvD2aPFr6CwgzOvjApjr7tUm+vJmC3I2g7mygsOTvXuaAMy4BbXtiuscfHJ5u6fckhT+tMUvPXkN/+dfPoovn72GC1b1ql9y6SURhu1KkkIYdPg8dF9gdMXloccdJLtb2pqOH/+jB3DfdbZYAAAgAElEQVRxvYmP/tSLTU91jwa9pen2Seo16Boq1ig2wDvTcaOh4kDJ2xecHd9+wwKObuNWyWdDPfS2puN7i1UAwOMhHnq16fT4YEaLSSFlxVtk0+h0uWX/7mPqdQN3yw1xJbIOx7j5DXpb0/HE0jbe9LxDHo/1NTcdxDefXbcdEdbqwJ+2aP/dUA09PMsFiI4dLG42sTBVQCZDbNmh53zNEOPGbjDnrtVQa3dxY0RqYZL4exZ94oGL+M8PXMLPfOwh/Mbnn4KczQRugr2C+GG7kqTo+UqEkI8SQlYIIY+5HvtVQsgVQsgj1r+3JHuYyeKVXHwtVV0eelYyc3iT8tDPrzbw3FoDH37rrXjFDXMo58PzkuPCvHMAWHVJLv6gKNOsNd0wR5m5DHo+0TmTwSyAKIP+/cUq1K4ZaOJJLqoVK2DGimVBMM/Z7aFXrKZQvLJ/IH4wmOnnZ+bLO9LQg5ILS6U0X4/JGMdmvHrya248iE7XsHcq9rBkT5aL83UxRHLxBxQZ9rojdmSLGy27cvrIVB6aTrHWiG6q1gkxblkpg0JOstMxb47IQU8Sf+xgtdbBK26Yxcd/5i68++7j+F9eeTogBTEPPWwu7zBKLh8D8CbO479LKb3d+vc/9vew+ktLc4yH34Be2zarRA9Ygw/MDz3Zhk2zFatjHGcIw07ZdA2xXbMMF6XUlbbo1dCZcZjheOhJGHSNFV5IzoVSUXKhW9gHn9sAIcBbnn8YTy5tB7xCpmUyDZ0ZdqZteyUXyTbohMCzKwHir5t56HeenMFqrRNrJ8MrLPIPimbePqtQZtx9egaFnIQvsK6DvtmagNdD9xfZlHpq6L3XbQ4QN4/r8GTvniYAoHb10CZV5XwWz66assaZQRn0bNCgH50q4FVn5vBvfuT5+OAbbgz8TiwPfZgkF0rp/QCClQwpoqnq9pvuLwxZqZlVoqy6LslGVf5xVWUlt2cNvery0NctD6qpmpkUpobuLYFnRUUzHA89GcklWEkX5aE/+Nw6bpyv4KXXHUBD1XHJn+1hGbdJ20P3Sy5+DV3Haq2NAyVzB+ZGjuGpAs4k+DuOmYG4uAFChVNYBDifBfs7R3wZH0pWwj+47TA+893LuFJt9ZZcQsrgea1zzb8fvTOptTVUm5rdGoLpyr1SF6O8VZaLfnSqwO1X3g8UV3dN3aBYb6iBuIqfiR6VzcPooYfxTwghP7Akmel9O6IB0FR1e5akX3JhVaIMJaL4YK/4ixCYJLAXWIZLTiJYq5lfs5Ovks/a213mEdsGvdgfD51XSVfhTLABzPfn4YubuOf0Adxy2AwS+nV0d9k/4DLo1aDkwvpw84qKALeW3EtyaeNgRbH75ceRXXiFRWWfhn5ls4UMQSCTAwA+8LozAAV+74tPuzx0fpZLIef10N962xH8yptvCs9D933etbaGt//BN/C9S5sAnKZcrHmb3XWwR+pilLfKPN2bBxQQBbx56BsNFbpBexr0XpXNQ+ehh/CHAK4DcDuAJQC/HfZEQsj7CSEPEUIeWl2N3+siCeqdLn74P3zNziBhtFQds9YHF/TQvRd7rxabe0H1eavl/P4Z9FOzJTsoyk4+pv+5X8c26J5hycl76P6gKE+TfPRKFW3NwD2nZ3DDfBnZDAlkulRdbWQBR1dmkktZDma5rHDK/oH42T1LWy0cnszbmnKcwCivsMgfFL1SbWN+Is/NYz46VcB7XnICn/nuZXznwiayGeIJfsrZTGAwNOPYTBG/8KrrQlMD/Rr6s6sNPLJYxe988WkATjyCtVeeKuaQz2UidyZd3YBBw7sOsuKiGwcktwDOtU0pdTKfytEGvTxqQVEelNJrlFKdUmoA+GMAd0U8915K6Z2U0jvn5uZ2e5z7wqX1Jh67so1HrCwJRlPt2sOB/aXXrGqSoWSTm97j99BLSnYfNHTTMF43V7YN+rbLQ2f/s8c2mhwPPYamultYlovbaLF2qn59/IHzpvJ316kDyOckXH+wHAiMVn0pfHI2g5Is2Z6727iVlSyaqo7l7XaIhx5v3ctbbRyeLNjNmuKkLvIudH87gqvVVmSBzS++5nqU5Cy++MQ1TBXlgIFmGrlfQ++F7JNcWOzla+fW8MTVbSzaA8TNGxghBEcmC5H9XHq1kWVrj2qelTSylAGlZidKVpvQy0PP+Xa4ftydRPvBrl6JEHLY9e2PAHgs7LnDBPP6/HfTlqpjuiiDkKCHvtXSPNrkTgbo7hS/t7qXgQeMzaaKipLF/EQea3UmuZjvwwQz6K4bx4b1nOlS0ENPYt28XheVfA6UBlNIH3xuA2fmy/YN9pbDE3hiyWfQW8HjZ1KEks14dHJmRFZrnUCGCxA0bDxYUdGhyTyyUgaHJ6N7ezDMwiKv55zPZZAh3qCoXz93M1OS8f5XnrbWGJRPJkJayfbCX1DFYi9ShuCPv3YeixtNlGTJI9kc6TGOrVdPE1YPEdVlMWncaaphtQk8omI+YZk9SREnbfHTAL4F4EZCyGVCyM8C+A1CyKOEkB8AeA2Af5bwce4LLAPCfzdtajpKioSS7J0E3+nqaGm6R49MVHLxa+g9CmziUG2qmCrlMFcxR7u1Nd2loQcll82miko+6/EqHMml97oppXjtb30Vn3zwYqzj88tM5nEFt7GabuDhCxu4+9QB+7Fbjkzg2nbHk1+/2TQHPbjlBzbUwN+Bz62n+3PQAZeGHvF5b7fM8noWGFyYLvTU0Lu62YbAf6GzWadsd7K0FW3QAeBnXn4Ks2UlkKEDOEY+zynmiYLtyJz6BfMm+eMvPoa/+v5VPHRxA8dmip4dweHJfLSH3mNyz7Ql25yaLXF/3g+UBAx6v4OiPfdilNJ3ch7+SALHkjjbLb6H3lTNqS4lRfJ46OwGMFn0equJZ7lYJ0BJzqKtGejqRiADIy6bVtUkC/qu1Tu28bYlFyWH1VodgNnHxW8cnHmLvT301XoH59caePjCJt5994mez3cye1xpi5zMgceubKGh6rj79Iz92C1Wi9Unrm7jlWdMOa/aVD2DHgBHRw+OJXMMXVRQNOrzZhWSLHXv6FQR33x2LfT5QLT8wHqir9Y70HRqT8UJo6Rk8YmfvQs8OXyykENRlnbcGMq/I1uvqyjJEv7xq6/Df/3OIh67so3X3XzQ8zuHpwpYqXVCNeNOD4P+8688jTc+79Cuz/P9QHZJbKu1DspKNpZcVc7nwvPQOdlMSTJWlaI8D103KNSugWIua3roriIjXkm1nORYMp+HzgIuYX3a41BtqpgqynaMYK2u8oOilvHcbKjcSTZKROMiNywDYjFmCTwz6O785DInc+C7l8y4B2vXCpgeOgCP7OLvCw6Ez5l0e+w8ySWOhu4fHLwwXcDydjvSq48aHMwGRbPA6tGp4M7Bz82HJ7ja8/xEPnJCTxg8yWW2omBhuoh/8AJTbfWPhzs6lQelTqsMPyrnc/Yf64tPznB/1i88kkudHyjnMRHhoWsjlLY4crDAnztzhHnkRVlC0de+1PbQfWPJEguKsjJ4V9oiANT2ILtsWgbONui1DmrtLghxSsLdW0aehw6waS5xptg0rf/jV0wC3qAorwPk1WoLJVnySCNTRRlHpwqewKi7dS6DfV8OyccG+JIL2zVEGXRWVMQkl6PTBVDqGHoeUd4q64keloO+E37pdWfwsZ8OzVcIxQ6Ca07LCHZO/Lyl2V9n9SNnsB1KWNfFfvcF3w22Qdd1s2V2jwwXRiUiG00V3RaTg0ku7tasLSsVryBLKMreUnunpLo/QVG/zugvNNkNzMCx7onrDdOgl5WsLUtUlCzqqqnbbjaCBhEwA3ZxPHRmyJe327HeJ38xFeAEa91ez/J2O9DpDjC9U7+HHtojO0JD53ljcaSm5S0zV5xJNiyVLyrTJcq4sZ7oLLDaq41sFDMlGdf7DG8ceJILq5S+9cgk/uYDr8A7XrTg+Z0j1k4iLHWxl4Y+DLh3Jjvx0KMqm0cibbHfnF3e9nSX2y08DZ01OCrKkp3GxuB56FE9k/eKX092JJfdGfSubqDWNucuuiWX7bbmqcZjQ3obahcbDdWTg86IPTjYqtyktHcpOODsSnK+LBfAK7msbAcHUACm7HJ+te40quJKLnwNnXnolXzWnsrkp5fUdHWrjYOVvK39Lkz1Li5i76PCec2S5VRcrbbsiVL9xi+5rNVVOwYDmDdR//tll/+HBEZ7pS0OA+55B7yRhGEMU1B0eN9dF5984BI++GeP7PnvOGmLjqFougx6UZY8qXK8kmolKyU6WzNDYBsHu0/0LnPRq3ZfExn5nISKksWqJbkwWQNwDOi17TZU3fDkoDOUbCZWYdHiZhNZKwjnH8LAg6cn87Jc/PMcGXccm4JBgU88cAFAmORixQpCeprwAqKMnQ4OPjSZR4ZETy5ini/fQze371eq7T1553vBbdgMg2Kj0cGBUrRxKylmX6CVbX6DrlGQXFjwstbuotbu7sCg59BU9UC7YcMwW0OPQqVoX2E9N/bKFsdDZwa9IGdt78j/fLeXZHpsyeWh5zh50ruVXPxNm2YrCtbqHbt1rv91Lq6bBpgXSMv3MGyMy5st3G71NIkTGOVJLoWcBClD7BsvpRTXtjtcyeXVN87hTbcewq//zVn83RPX0OkasSUX9h7w9HOGv0e2HzO10Pl9OZvB/EQ+luQSGhTtmEHRgRl01iZa01FtaTAoPANPwohqVTEKkgs7NiZ37URDB4LXqWb0f83D++66KCumV7zXYOR2ywmKsvmabKteyJlB0abrxrHd0jCRz9qNuYDouYN7xV+EsFfJZdPXOXG2LFsGveu5SbETkjW64hn0OB66blBcrbbwopPTyEkkVmCUl7ZICPFsY6tNDWrX4Bp0Qgh+68duw3VzZfyvn/4egGCf76mQoKiSNdsh86Qc+zkR8zXtoqIJr+FdmC7EGhwcZtDrluSyl4DoXrBjB9ZgZAC2ZBdFQZY8w2Lc9EpbHAZYVtMVq+/PTiQXILiTHsSuZHjfXRcsF9RfxblTmOSiG9T2zN1ZLmUrZYwZ+2pTDXh7LA+dN0x6r5jDkoMe+m4lF9Y6lxm4AyUF63WVI7nsj4e+vN2GplOcmCnh6FRhR5KL/0J3G/RrNf74L0ZZyeKP33unfVPwa+jTIRo6IQQ3Harg+UcnQ48vKnaw3e6iqercwcFxNHR+HrpkjzTrlYOeJCx2wAx6HA+9KGdDr9FeaYvDAPs82Ge3E8kFCPZEH8SuZHjfXRd7lR4YWy3NbljEjIU/y8WgzgW31dI8QwMA88Oh1OlBsp/4I+IsrXC3694MSC5yiORi/ryXh94ra2XRnjNZwMJ00e75EYXKkVwAb+aAk+sdfoGdnC3h37/zDkwVc4HMjkMTeRybKeDmw8Fc7c/901fg515xOvTvRlUGs+M67MsVX5guYnm7HTrCLepCd990BuWhA07sgM2hjeOhmzEo/jnieKs7q1rtJ37JJSq24oaXlQUMJhA8Egbd6UK3e+1a0w00Vd1OK2PGwh0ULSleA1p1TY9nsG1ZErKLX0NnrW33KrkwD3W2rGCzqVkDooOSy0VrbmK45NJjEvwG68JXxLGZgj1IOAqt6829dx8TSy9lgbYorRsAXn3jQXzvX70e1x/09gMpyBK+9s9fa1eT7gR3j2w/S3aVqPe45icU6Aa1O1f6cbxVTpaLy6DHKSpKCnYDX2ceeowCpWKE5DJKGvrlzRYI4V8HPMI6Load20kyvO+uC7+h3Q0sZZEFmpixsA16zinzZTr6ViuY0+wMPUigURUnxWkvLXQ3mypkyWmjyrwsc7iFy0O3vl7cbCEnkUDPE4BJLtFrZhfCkak8FqaLWG+oPW9Gqq4jmyGB8nS35LLMxgBGaN2MXtPid0pUq4cle+fg9aSZUfYPHGfYWS4hpf+Mo1PFwM/7BVv3ekNFhoQPw3ATKblErHlYYHLQtVobB0py7DYEYYOiWR/9nPDQvfgb/+8GZsBZyTJ781vWCViQJTtoxlIXt5o8D51VkyUwX7NLA9JDWeHnuOoGxbef28BvfP5saO+QasPsFMmMnHvb7PbQWTqf2jUwUwq2YQXi9bBZ3Gzi0EQeSlayW6v26g2u6cE1s+Njn9G17TZmSjLXo00aJSuF5qEvbbVBSHBrzm6gYQY9juSSzZDYGm4SsHWv1VXMlBRPYkAYRVkKX/MI5aFTGk9iYoQFRXnDW5JmZ42SB8R+BEVtD92WXBwPPZsh1kAA53UoNQNTAYMec+jBbuB66EpwUPRvf+EpfOrBS1i3tvRfeWoVf/OBVwT+nj8n210cMuHy0DMZYuc/h06Cz0k9s1wub7TsKTZs3uTiRhNn5sNborKBz348QdGQfuX9ICx2QCnFFx5fxo3zlcANqdf5GpXlwpyKw1P5WEY0KVh2z1q94zlvoog06COQh+4+tp3cTMOmFkV9zkkxvO+uC3/j/92w5ZNcmIzBOi0CbmlHR0PV0TVoYJAuC+okNTBZ9hm3si+31zAo/uNXn8WxmSJ+/1134H9/4414cmkbT1+rBf5etent5e72OvyyCvs+LJshHyO7Z3GziQVrQj3bCfXKdAlrXsT6Y7AcdN4Ytn4Qlqb6tXNrOLtcw8+8/FTgZ7089OgsF/Pz8g+G7jfmMHQD6/VOrAwXACgqUZJLMD112NitQVeyEuRsJqihs95MwqB7YYZ2b5KLadD9QdGWqtsXoKOhd7ll/0C8Htm7heehl3ySy0bTnHX4I3ccxQ+/4Ah+7M5jkDIEf/m9K4G/F/DQK3zJxfzeXHuUh05puNTU6ZqTf5iHPluWUchJPTNdwmYuVvI56AZFSzP/7nyPgGhSKCE9bO69/zwOVhS87fYjgZ8V4hp0zrrZuT6ooiKGneXSUHtWiTKKOTPlUuOcIx3r3N7vGMd+kskQ+zPZqdw1kc96mskB/MZzSTMiBr132uLF9QZ+8VPfxaV1vkfIDPThyQIyxCW5aLptyG2tXtXt1rn+STBxptjsFt64qko+62lH4G+8P1dR8LLrZ3HfI1cDI9s2m5o93AEw0yDzOWd4hhsWGA3LZujVG3yp2galzg2TEIKF6d656JpucING7Pg2mxrW6h3MD8xDD+ahP3ZlC19/Zg0/8/JT/EyVPUku5u8OMgcdcLqKmo254nnoUTeyfvcF3y3s+u6VUeWHN9icBUWFh+5DyWaQzZBID/2zj1zF536whP/5P30TTy0H5QdWJTpZyHkCjS21i0KOeejshOzao8wm+umhc7zVsm+uKG+SyttvP4Ir1RYetqayA6bGy3qhMwghtrflN+jMY+f1QgeCLVX9sDJ/FgxlX/eqFo0KigLAc6sNUGqmAg4CmdMu+d77z6OsZPGuu49zfyeO5CJLfG91spDDP3r1dXjrbUHPv58o2Qy2WxrqnW7sAKGT3RO8TvvddXC3sGPcqYduxnxCCouEh+6FEBIZcAGAR69s4WBFASHAj9/7rcAg6O22BlnKIJ/LoOKaMNJ0SS7unQALovoLi5IcmBwmubh3Jrxp5G+49RDyuYxHdql3uugaNFA1yWSXgOSixPPQwwKjbLCF26AvTBd69nPphEou5vGcWzFvzgOTXKygKIsdXN5s4nOPLuGddx3zdKx0U4wwbEC0cSOE4P940024ISKQ3A+UrGSni+4kKAqEe+gjYdCZ5LKDLBeA33FxEO0Ohv8dtvAHB/08emUL95w+gP/2Cy/FRD6Hd//xA57pKVstDROFbKBPiDsoqmTNIb3Nju5Mj/dLLlJykgvPQ6/ks9B0ar8ebxp5WcniDbccwuceXbK9AruXu08TnyvL9u+4Yd+Heej5Hjeyxc0mchLxdEQ8Nl1Erd215SseYZILy8J5ZsUcjTfIoKhhTYIHgE986yIIgJ9+WTAYymA7vvAUPn2oS+ABM3agW2uOq6Hb6+YkL/S7jexuYVlsO/bQOT3RWVBUZLlwKHHS9xhr9Q6Wttp4wcIkjh8o4nd+7DY0VB0/uLxlP8dstGUaZ/f2qK05Hjob0ttQnaCoP8vFTltMIsslJG0RgC27rNY6KMlSoC/J2+84gmpTw/1PrwJwyv79Qc65ioKKr+EY4HjEYdVx/qEHfi5vms2k3H/3mJXxEuWlm/1reGmL5vt+zjLocYqKkkD2xQ4ev7qNW49ORpblSxmzuVVooypt+I2b2wjF1dB7Si6joKHvMiha5njoIigagV96cPPoFdNwP89qsnTigDk5/IrLkJgeOjPoOY+H7h4EW5Kzpofe0pDNENvYMxwPPRkN3f/h+wPCYY33X3HDHGZKMv7soUUA7rJ/7w3p515xGr/1jtsCv1+OadDDyv8XN5p2hgsjTupi2Fac3WCeXalDyhDMxvQS9xu71YP1eV+ptuzAbxTMMeAxCt6qO9gbV0O3g6IcWW5kJJdsBnI246nTiANPchlEdezwv8MWvAIbxmOWJ36rNTR4tixDyWY8Abntdtdl0PmSCwAUFQl1y0N3V1kymIceJyh63yNX8Mrf+ErsAKqm03APvYdBz0kZvOeeE/jCE9fwg8tVu9OiX3K5bq6MN956KPD77n4vPBzJJcxDbwYMHdPTowKjvMwewFn3ekPFwYqy48n1+4V7Z2IYFFc24xn0Qi66yGbYJRd5Nx66r3WGm1G4iQHmuufKyo7TKyv5HOqdri1TAaI5VyRFWQptzvWDK1s4PVeyt+mEEBydLnjKzmtWb3PAK7m4s1wA5qGbuq8/wwWINwme8dc/WMKljWbksAM3PA/dbp7PGlXV2qHbwZ97xSnMlGT828+fdUku8UaYvf2Oo/iT994ZatBtw+bz0DXdwB9+9Vms1VV7Z8SYLORQyWejhz2EZLmU5CzYNRXWNrcfuCuD1+odqLqBhRg54iUlujf4sBs39nkXrS6kcXBnifkJC34PG2UlG2i2FgdmW9wqgqb3vznXSJT+A7B7lfN47MoW7jo143lsYdqbMucu42eSC6XUykN3GXTFbAGq6cEqUaC3lswwDIrvXNgAYPYZPz0XPayXUhqa5QI4/WVWax28/PpZ7t+o5HP4J6+5Hr/210+goxkgJFgYFcZkIYfX3TIf+nPnRuas++GLm/gXf/EonrpWwxtvnce77gqm8U1w8nPdqF2de8KzdgS1dndgKYuAtzKYtVpYmO7dNKsgZyNbyQ67cWPneVzvHHAkl1aI5OJPlR1GfvWtt+5q1oG7/J9dc51u/6tjh/uschEWFGUBUf+QggWXh04pNQcjuySXrmH2aqEUHsmlZHWMq7ZUrjFkF2IvGeWpazU70+SC1ZY2CuduHiz9B8xCqLamY7vHrMN333McR6cKeOjiJibyudgd43qR9wWD1+odvPOPH8B2W8O973kR/ug9dwYyggDzBhmVbsqTmRgsiM2bJdov3HUH7HyKU/RTzEl24zc/puQyvH3BASc9N26GC+BILryd9CjITIApSfrbL8fB6bjofObsxt3P6tjhf4ctwuaK+gOijKNTBWw0VDTVLlqa6XG7PXQAuGb12S7m3Bq6+Tq8xlyA6TnmJNJTcnnw/DoAs2vexZDqVTdhept7XuEaJ2XRj5KV8MHXnwEQX26JA7vAWR76hbUG1K6B//cfPh9v4GjyjIKc5QbJGKaGzj/h7ZmfwyC5dHVbOopTll9SwiXCTlcfGcklbg46YN70CQH3RjYqGvpu4XVcHEQgeGTe4bC5oo9e3gIhTkCUwQJXVzZbdpUo8/iY3rVijTbzZrmYAyW2mlpoD2glK/X00B98bgNHpwo4M1+xB0dEoYWkODnDPbrcKlEeb7/jKG46VNnXiTf+0n9WdHK4RxOpKE8VCA+KAs5FMlAN3RUzubzZwnQxF0gZ5VGQs1zpgf2tYTdutuSyAw+dEIJijj+1aBRkpr3A64mu6v2/cQ+/qGVRlB3DJmcdQ/volS2cmi0FKh+ZQTfzo83HJgpOUBRwPHSP5GLpti1N5wZFgd7j2Cg1e5W/6sY5tFSd24rAT5iHXsxJIMQMijKD3qvPhJQh+PTP3wN9H+ee5n2l//ZYuB7GtihLWN4OLyyKMm6VIZBc3L17zAyXeEMnSrIUOV9z2OUHdiObrcT30AFrRzbClaK7heeha13a95vYyLzDYXNFH7uyxR3yyy68y9WWXeYflFyYh+7W0CXbs+IFRQFrzmREP/RnVupYb6i459QBnDhQwuJm05POxCOsCCGTISjLZic3XpVoGNMleUdN+nvhL/1f3mqjkJPsm2QYUZPggeBgbDeOhz7IQQ+Ohn55sxm7C2JBlrjpe8CIFBbldu6hA2wM3RhLLi77pOoGctn+ptuOzDvMG+u1WuMHRAGzF4MsZXB5s2n3ZXFXigLAimXQvXnojoEKyxAJ65HNeOA5M7vl7tMzOHmgCE2nuNpjck/UVHQWEF6tdXY063A/yWYIMsQruRyazPcM+PTqwRPWnAtwGfQBlf0D3oKquEVFgLVuTedmTIyGh77zLBcgfFC0KbkMdyB4L1QUjuQyAJlpuM8qF7y5oo9ZAVGeQc9kCI5M5XFlsxXobc68fTso6tPQGf7WuYxeHvqD59dxaCKP4zNFHD9g7hR6BUZZD2lukY017GGl1sFMUe5rKTGDEOKZK7q81Y7lOUfNmdQNCt0Iz3K5fq6M4zNFu3HYIGDHdnWrhbZmxG5rW5Sz0A3KDZ6PQpbLwlQRspTBjYd2lvERNig67ZJLPmd2hHVLLqac2N/PeWQ0dN5cUdaJ76bDE9zfYbnotoful1xqHMkllocuhXrolFI8cH4DL7v+AAghOGkV21zcaODl4OePA9GtNlk+tqbTAc+ZzNil/8vbbbz45EyP37Akl5DgYNRNDADe99KTeO9LTg50KAIzvOdXzcB2XA2dnVMtVbfjD4xRyHI5fqCIs//6TTuu0C3KwXqRsBqLNOE0/XM89LBpXEkyMu+wOyjKWKuryOfC+y4cnSrg8mYLW1aWC9V5E4kAABfHSURBVNvCs5vDCguKutMWXd56mIceFRQ9v9bAWr2Du08dAGAG9ORsJr6HHjL0gEkugzTozEM3DIqV7U6s7BM2xYaXFaTq0YUXhJCBlfwzmJZ8ftVsEhZXcrHL4MP6moxAxsdu3nuehx4lJ6YJ/5ALlTNSMmlG5h3mBUXXah3MRvRdWJguYK3ewUqtjZIs2Z6gZFUhrnA9dOfrsCyXKMnlwfOOfg6YF8XxmSIurEWnLkaNJWOtg1drnR33ad5PmIe+0VSh6gYOxZBcCi5P1c8ghujuFHZsz1oeelzJxW5U5Qvid3UDBh3uNe8FXsxkFAZE7wf+Bl2D2JWMzDvMDK0nKFrv4ECEgWMX39nlWsA4sz7jgNcrd3+9m6DoN55Zw8GKgtOzTl+TkweKuNRzFBsbKBu8OZXz5tSi1fpgPXRzHJvupCzGGGRsz2nVgjp6L8llGGBGaMvqBRQ21MJP2LCHQQw96Ce8QdFqytfM8EsuIigaAW+u6FpdtQc28GB659ml7YBxZvILIU5ZO+DsBAo5KTRwFeaha7qB+59exWtuPOjZNRyfKeHCeiOyR4TjxQRf09xNdKB2jQFLLuYkeMeg95ZceDdihtY1349hNuiEENsQHY2pnwMuiXDMjFuR02VyEF0HBwFXchEeOh/eXNG1eicy15p56A1VD3hWLDBayEke48s8q6imVmFB0YcubKLW6eI1Nx30PH5ytoi2ZmDFKgzi4WjoHA9dydoTcwbtobc13a4SjVPww+ITXMnFGqLLixsME0weiaufA96gqBtHTx7uLJfdUrSC4O6B5eMquZhB0f5+ziPzDtvThCyDbhgUGw010qDPVxRkrcCOvwCGeegFXwYC2wmEBUQBKyjKCXZ99akV5CSCl9/gzWZhbWWjAqORWS6uoO9ADbrloV/bbkPKkFjHYksuXA29/+1FdwMzvnGLioDwnQnb2aXVWy0qWVAKtF1JA2nflTAmXLOKAVNe62enRWCEDDpg5ojXreq7akuDbtDIwoeslMHhKdOLDGrolofum0jEPKuwgChgSS6crI0vn13BXadmAvM6T1iDHqK6LqoRerI7lfLgoDV0zcDSVhtzZSUwxo6HHRzk5KJr9lZ8sJksvdiNh16wb2Q+yUXv/xSbfsKLHaQ9bsCoWPUibHcyiAKynq9GCPkoIWSFEPKY67EZQsgXCSHnrP+nkz1ME7eHzjoP9ipvZ15VUHIxLzj/iDkm7YSV/ZvPCTbnWtxo4txKHa+58WDg+UenzVmbl2J46LwTwF1YM1cebOfBdlfHNatKNA5h0gMQfRMbJnYluYQMio7KZkoDvEHR46Khl63dCYubDGtQ9GMA3uR77EMAvkQpvQHAl6zvE8c9p3GtFs+gs8BoWFC04JvGQog5RzRKQ+d56F99agUAAvo5YBqshelCpIceWSlqGXRZyvTsnZIkihUMXt5qx26YFZbtATgdJofduMm2Qd9BUDRMcmE37txwr3m32C06NG9wEACUIf+c9wrb9W9bOvpQFhZRSu8HsOF7+G0APm59/XEAb9/n4+Liniu6Zk2PmevRDc720H0GmnnsxVwwaPGhN9+Md99zIvRvsrRFd9bKV55axYkDRU+6opvjM8V4GnpILxfA1M8HWTXJCouWt+J76JGDgyOKqYYJ1gt+Jxq6LGUgZUhoCl9ajVuBcwMfFw399Jx57T95dRsAf6Rk0uz21eYppUsAYP0fdEsTwD00IL6HziQXflDUL7kAwLvuPo7bj02F/k3FN72nren45rNrgXRFNycPRKcuRnno7FhnB6ifA+aNbKulodbp7kByMY+d14FvEDMXd4MiZVCSpchAuR/WGzy0yCalxo03KDrta2bcfmwKcjaDB59bh2FQdCP6FCVF4q9GCHk/IeQhQshDq6ure/pbJTlr56Gv1TvIZkjPQg+2TfYPq7DzzTkGvRf2GDrLCH/r2XW0NYMrtzBOHCii1u7aY+n8OO1z+WmLwGADooDpoTMjHFdyKYRoycDoXOh5WcLCdHHHu6OiEmyha0suKU5bBLzB4HHR0PM5Cbcfm8KDz20MbM27fbVrhJDDAGD9vxL2RErpvZTSOymld87Nze3y5Uw8Gnq9gwNluWe/ibtOzeBfv+1WvPKMN5WQ6V08D70Xim/Yw98/vYp8LoO7T4U3q2Itb1nnRz+qTkPnD7oll0HiDtjGnSIkZQiUbIavoY9IUPSDrz+DX3vbrTv+vSJn/N6o3MR2S6TkMuSf835wz6kZPHZlyx4oPoxBUR6fBfA+6+v3Abhvfw4nGm+WS3QOOkPKELznJScDHpEjuew8yMj0T9ag69nVOs7MVwJd9dyEVQ4yoqrKKvksMmSwk3sAr1d5eAc9yosh03t6NecaFm4/NoW7Tx/Y8e/xhj2kPW2xxKk7SPtNzM3dpw/AoOauHeh/z56e1owQ8mkArwYwSwi5DOD/BvDrAP6MEPKzAC4BeEeSB8koK07nvvUeVaK9cLJcduOhO1NsAHPM3S0hLXwZUdkeQPSw5HxOwsd++i5u3/d+4m6REFdDB1hP9AjJJaWeW1EODopmu7q0Nufi1R10xkRyAYAXHp9GTiL42jlTXu737rOnQaeUvjPkRz+0z8fSE/fA5LW6iusOlnf9t6KyXHrhHphsGBRXNlt4wy3zkb8T1dME6N334ZVn9iZX7QfMQ58s5CJ3I37Chh5oKb/QC3I2ILGlXU/mOS5OZk864wZuCrKE2xam8PVzawBGR0MfCGw7V7fma+6llexUMYecRDCzwxFbgPMhqV2zP4uqG1iYic5RtkvgO3zJxfTQh/vjYDeyncgtQPgYulHR0HdLSZYCn3fa5YeclIEsZcZWcgHM1tm2hi4MejjMQ7+23YbaNfYoueRw3y++HD/6woUd/y7zVDtdA4ubZm75sR5VhCVbQw8ZHDwCE12YVx43IMoIGxQdNhg7LRQ4NzInyyWdawbY5x0sLBr283u/YMNtgP7LiSMzgg5wZIsLVoHObI+iol7cciRa9w5DzjpB0VUrH/5YDw89qqcJYFZNDruWzIzQToOzRdkZJuJG1Vn73OEOiu6WkpwNjN9Le+k/YO5M3I6LquvIZkis3j9p4EUnpiFlCHSD9r1obqTOKpaPfckqod+Lh74XFJfksrjRAtC7irCnhj4CHjoLBu8kIArwPVXAKo0OSdVMA2ZQNCi5pHnNQHBHlvYB0X5KStZOYOh3RfBIvctMcrloTf85UBqUQXckl8ubTRysKD2DhPmsBEJGW0Nna9ypQS/mwiWXtHrngGnYOl0Duqs3eKerp1puAYKDosfNoAPOCEqhoUfAdOj9klx2izsourjZ7Cm3AOZs0UJOCtXQR2Fw8OHJPLIZgpt7pGj6iQqKpvlCL3Fa6I6DcfN/3qo+/Of2fvO6m+eRzZAdx5v2ykhq6BfXGyAEmCkOxqArLg19caOFF5+M1z04LB8bMPXkgjzcJ/3CdBGPffiNO0pZBMz0vbC0xWHflewF94BsVpk8LgZ9ra7a33fGYM1+XnxyZlfXyl4ZqXeZSS7VpoaZoozsgIwBOzkbHR1LW61YHjpg3pDCgqKj4KED2NUJWpTNkX0sTZGhdmmqDTovbtLp9n/oQb8pKkJyAXZ3reyVkXqX2fAJAJGTivpxHIA5gcigwLGYfbKLcjZQOcgw5Yd06slhVbKjEAjeC4VcsN3DOBg3f8xkVJyVNDBS7zKbKwoMLsMFcIKiz67WAcSfZBPW0wRI90nvlh7cjEKq5l7gTWtK+00MCGb3DGIU27gycu9yybpIBmnQWWbGsytm+mRcySUsOAikW0/mBQcBa80p3ZUAYZKLntrWuYyi4s2/H4ddybAwcu/yMHjohJgtYZe325AyJHYpfEnORnvoKT3peS1VAdNzS+tNDHAkl0CWS4rXDJiSC2uiB6T73B42Ru5dtg36gFIWGe6+JnGDs7zue4w0GzdbeuD0Bk+zceN56ONg3NwSG6UUi5vNPfVdEsRnpNIWAadadHZARUUMOSsB6MYOiALmBBu/UWOoKc5+CAuKarph36DTCDNsjTHLcnEPiq51NFzb7uBFJ+Kl9gr2xshdTczrGRYPPW5AFDAlF38pOCPNGjqTHoLDHgxMpXTNAH+e6jh46O4b+GNXtgAALxQGvS+M3JnFAmyD1NABx6DHDYgC5gXuLwUHgK5uwKDp7UYX6qF3aaolF9481XEosim6BkU/dGETJVnCTYd21whPsDNG7swahqAo4BjfYzPxPXTeAF3APYpt5D6OWERJLv3uRtdPpAxBPpfhFBalPMvFdZ4/fHETdxyfHptOi4Nm5K6msjU6jg1dHhRsUPRONXSA76kC6fXQw/LQOylvzgUEM5vUMWjOxT7vlVoHZ5e3hX7eR0ZOQ3/HixZwfKY4kLJaN6wt5k4kF3vIhU9H77DBwSk1bkXO4GDA9NDHwbg1O+NVWMTO828+uw6DQhj0PjJyBv30XBmn53Y/S3S/UHIZyNnMjtKxwqWHdHvoUoZAzmb4hUUplZkY7mIySulYZLmw8/xr51aRIcAdx6cGfETjQ7rPrAQpyhKOTReQ2YE2GOapjsOILl6VrKanuzkXYHXYtFJVuwYFpemeVgQ4Bv3yZgs3HpqwO00KkmfkPPRh4ZffcCPqISmIYTANvcHxVIH0BkUBpiUHb2RpXjNg3cis82QcbtyA47gAwItOCO+8nwiDvkvOzFd2/DslVzqXG/tCT7FxK8gSWppzI6OUjoWeXJSzqDbNMYXjMCAaAPK5DAgBKAXuPDEz6MMZK9J9Zg0ZPdMWU3yh+yWXrpWLn9ZAMKMoO9XBjoee7rRFQgiKVtKCCIj2F+Gh95HQvuDMc0uzh56TAj1NgHTLTIC3ley4SC6AOaWqpGR3VEkt2DvCoPcRVhQVqqGn+EL3jyVja067cSu6xu91uub/aZdcAGCuouDMfBmEpHsHNmwIg95HlGwGGRIssBkHDd2cp9q0v097dSyjKEtoqF07ZRFI/00MAP70p15sFxgJ+ocw6H2EEMIdQzcOWS4FOTiWDEj3TQwwM5sMagZE1THZlQDAoZgzAgT7S/rPrCGDN4ZuHDy3oizZ+dhA+oupGCw42FJ1bFiS0zhILoLBIDz0PlNSsp7+2IDLuKXYWy34slzGYVcCODnZ7/ijb+GZlToIgRj2IEgMYdD7TCEnBfuCj4OHnstC7Rro6gayUsaV5ZLuoNmpuRKkDMFEPosPvfkmvPHWQzg1Wxr0YQlSijDofaakBMfQOd5qeo2bnbKp6ZiQMmORew8ALz45g6f/nzeL9rGCvpDuq2kIKXIGRY+Dh+5voauNQe49QxhzQb9I/9U0ZJSUYJOqcUjh8w9MZnGDtHvoAkE/EVdTnynk+E2qgJQHRXOs06RVNWn1gE/zTUwg6DfiauozJUXiVopmM2RHrXhHjaJPclG76c/sEQj6jbia+kxRznK7LaZZPweCfWyc0v/03sQEgn6TbisyhJRkCapu2AYNGI/JPQWfQR+X5lwCQT8RV1Of8Rs2YDzmTLICG9YTfVyacwkE/WRPeeiEkAsAagB0AF1K6Z37cVBphnVcbKpdTBbM0Vxql6ZeSw6TXISHLhDsH/tRWPQaSunaPvydsYDXE30cPHR/HnpHSC4Cwb4jrqY+U+SModO6RqqrRAGnSZU/Dz3tOxOBoJ/s9WqiAL5ACHmYEPL+/TigtFOSg4Oix8FDz0oZyFKGk+WS7nULBP1kr5LLyyilVwkhBwF8kRByllJ6v/sJlqF/PwAcP358jy83+hQtDb3l6zw4DtJDwdU6WO0ayBBRFi8Q7Cd7siKU0qvW/ysA/juAuzjPuZdSeiel9M65ubm9vFwq4Hnona4xFtJDydVCd1xuYgJBP9n1FUUIKRFCKuxrAG8A8Nh+HVhasdMWO14PfRykh5KSxUbDHPIwDjKTQNBv9nJFzQP4OiHk+wC+DeBzlNLP789hpZeSHBwUrY6Jh/6y62fxtXOrWK93zJvYGKxZIOgnu9bQKaXnAdy2j8cyFhSVYNriuMgP77r7OD72zQv484cvQ+2Ox5oFgn4irqg+I0sZSBni6Yk+Dr1cAODMfAV3npjGp799aWzWLBD0E3FF9RlCCIqyd2qRptOx8VbfdfdxXFhv4pvPrqc+914g6DfjYUWGjJKc9aQtdsbIW33L8w9jspDDSq0zNjcxgaBfiCtqABR9PdHNAOF4eKv5nIR/+MKjAABlTG5iAkG/EFfUACjK3jF046Ynv+sus8BMeOgCwf6yH825BDukKGfR6Hg99HEybjfMV/CqM3OYKuYGfSgCQaoQBn0AlGQJ61aBjWFQdA06Vh46APzJ++6ERMZDZhII+sV4WZEhoag4Hro6pn3Bc1Im1TNUBYJBMF5WZEgo5hwNnRl0ESAUCAR7RViRAVBSsmK2pkAg2HeEFRkARVcbWdEXXCAQ7BfCigyAoixB0ynUriE8dIFAsG8IKzIA2Bi6lqoLD10gEOwbwooMgJLiDLlgw5LHpVJUIBAkh8hDHwDMQ//o15/DmfkKAOGhCwSCvSMM+gC48+Q07jo1g4984zlQaj4mNHSBQLBXhEEfAIcnC/izX3gJ1uodfOnJa3j86jbuOD496MMSCAQjjjDoA2S2rODHX3x80IchEAhSgtjnCwQCQUoQBl0gEAhSgjDoAoFAkBKEQRcIBIKUIAy6QCAQpARh0AUCgSAlCIMuEAgEKUEYdIFAIEgJhLLa8368GCGrAC7u8tdnAazt4+GMCuO47nFcMzCe6x7HNQM7X/cJSulcryf11aDvBULIQ5TSOwd9HP1mHNc9jmsGxnPd47hmILl1C8lFIBAIUoIw6AKBQJASRsmg3zvoAxgQ47jucVwzMJ7rHsc1Awmte2Q0dIFAIBBEM0oeukAgEAgiGAmDTgh5EyHkKULIM4SQDw36eJKAEHKMEPIVQsiThJDHCSEfsB6fIYR8kRByzvo/dZMwCCESIeR7hJC/tr4fhzVPEUL+nBBy1vrMX5L2dRNC/pl1bj9GCPk0ISSfxjUTQj5KCFkhhDzmeix0nYSQX7Fs21OEkDfu5bWH3qATQiQAfwDgzQBuAfBOQsgtgz2qROgC+GVK6c0A7gHwi9Y6PwTgS5TSGwB8yfo+bXwAwJOu78dhzf8OwOcppTcBuA3m+lO7bkLIUQD/FMCdlNLnAZAA/ATSueaPAXiT7zHuOq1r/CcA3Gr9zn+0bN6uGHqDDuAuAM9QSs9TSlUA/wXA2wZ8TPsOpXSJUvpd6+sazAv8KMy1ftx62scBvH0wR5gMhJAFAP8TgD9xPZz2NU8AeCWAjwAApVSllFaR8nXDnJBWIIRkARQBXEUK10wpvR/Ahu/hsHW+DcB/oZR2KKXPAXgGps3bFaNg0I8CWHR9f9l6LLUQQk4CuAPAgwDmKaVLgGn0ARwc3JElwu8B+OcADNdjaV/zaQCrAP7Ukpr+hBBSQorXTSm9AuC3AFwCsARgi1L6BaR4zT7C1rmv9m0UDDrhPJba1BxCSBnAZwD8EqV0e9DHkySEkB8GsEIpfXjQx9JnsgBeCOAPKaV3AGggHVJDKJZm/DYApwAcAVAihPzkYI9qKNhX+zYKBv0ygGOu7xdgbtVSByEkB9OYf5JS+hfWw9cIIYetnx8GsDKo40uAlwF4KyHkAkwp7bWEkP+MdK8ZMM/py5TSB63v/xymgU/zul8H4DlK6SqlVAPwFwBeinSv2U3YOvfVvo2CQf8OgBsIIacIITLMAMJnB3xM+w4hhMDUVJ+klP6O60efBfA+6+v3Abiv38eWFJTSX6GULlBKT8L8XL9MKf1JpHjNAEApXQawSAi50XrohwA8gXSv+xKAewghRetc/yGYcaI0r9lN2Do/C+AnCCEKIeQUgBsAfHvXr0IpHfp/AN4C4GkAzwL4l4M+noTW+HKYW60fAHjE+vcWAAdgRsXPWf/PDPpYE1r/qwH8tfV16tcM4HYAD1mf918CmE77ugF8GMBZAI8B+AQAJY1rBvBpmHECDaYH/rNR6wTwLy3b9hSAN+/ltUWlqEAgEKSEUZBcBAKBQBADYdAFAoEgJQiDLhAIBClBGHSBQCBICcKgCwQCQUoQBl0gEAhSgjDoAoFAkBKEQRcIBIKU8P8DRKN2O9aFL9kAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"%matplotlib inline\n",
"import matplotlib.pyplot as plt\n",
"\n",
"plt.plot(table)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAACmRJREFUeJzt3UGIXId9x/Hfv3F6SXKw8dqY1KraYEp8qVKECbgUh5Dgxgc7h0B9KDoElIMNCeQickkuBfeQ5FQCCjbWIXEJJK4NNm2MCLiFEioHE8uowSGoqWMhyfgQ91Rs/3vYMai25J3dHe1o//p8QMzM2zd6f56evjze7put7g4A+98frHsAAFZD0AGGEHSAIQQdYAhBBxhC0AGGEHSAIQQdYAhBBxjihr3c2M0339wHDx7cy00C7HsvvPDC6929sdV6exr0gwcP5tSpU3u5SYB9r6r+a5n1XHIBGELQAYYQdIAhBB1gCEEHGELQAYYQdIAhBB1gCEEHGGJP7xQF3u/gsWfWst2zj9y3lu1y9ThDBxhC0AGGEHSAIQQdYAhBBxhC0AGGEHSAIQQdYAhBBxhC0AGGEHSAIQQdYAhBBxhC0AGG2DLoVXV7Vf2sqs5U1ctV9dXF8puq6rmqemXxeOPVHxeAK1nmDP2tJF/v7k8m+XSSh6rqziTHkpzs7juSnFy8BmBNtgx6d5/r7l8snr+Z5EySjye5P8mJxWonkjxwtYYEYGvbuoZeVQeTfCrJz5Pc2t3nks3oJ7ll1cMBsLylfwVdVX00yY+TfK27f19Vy77vaJKjSXLgwIGdzAhX3bp+DRys0lJn6FX14WzG/Afd/ZPF4vNVddvi67cluXC593b38e4+3N2HNzY2VjEzAJexzE+5VJJHk5zp7u9c8qWnkxxZPD+S5KnVjwfAspa55HJ3kr9N8lJVvbhY9o0kjyT5UVV9Oclvk3zp6owIwDK2DHp3/1uSK10w/+xqxwFgp9wpCjCEoAMMIegAQwg6wBCCDjCEoAMMIegAQwg6wBCCDjCEoAMMIegAQwg6wBCCDjCEoAMMIegAQwg6wBCCDjCEoAMMIegAQwg6wBCCDjCEoAMMIegAQwg6wBCCDjCEoAMMIegAQwg6wBCCDjCEoAMMIegAQwg6wBA3rHsAuNTBY8+sewTYt5yhAwwh6ABDCDrAEIIOMISgAwyxZdCr6rGqulBVpy9Z9q2q+l1Vvbj484WrOyYAW1nmDP3xJPdeZvl3u/vQ4s+zqx0LgO3aMujd/XySN/ZgFgB2YTfX0B+uql8uLsncuLKJANiRnQb9e0k+keRQknNJvn2lFavqaFWdqqpTFy9e3OHmANjKjoLe3ee7++3ufifJ95Pc9QHrHu/uw919eGNjY6dzArCFHQW9qm675OUXk5y+0roA7I0tP5yrqp5Ick+Sm6vq1STfTHJPVR1K0knOJvnKVZwRgCVsGfTufvAyix+9CrMAsAvuFAUYQtABhhB0gCEEHWAIQQcYQtABhhB0gCEEHWAIQQcYQtABhhB0gCEEHWAIQQcYQtABhhB0gCEEHWAIQQcYQtABhhB0gCEEHWAIQQcYQtABhhB0gCEEHWAIQQcYQtABhhB0gCEEHWAIQQcYQtABhhB0gCEEHWAIQQcYQtABhhB0gCEEHWAIQQcYQtABhtgy6FX1WFVdqKrTlyy7qaqeq6pXFo83Xt0xAdjKMmfojye59z3LjiU52d13JDm5eA3AGm0Z9O5+Pskb71l8f5ITi+cnkjyw4rkA2KadXkO/tbvPJcni8ZbVjQTATlz1b4pW1dGqOlVVpy5evHi1Nwdw3dpp0M9X1W1Jsni8cKUVu/t4dx/u7sMbGxs73BwAW9lp0J9OcmTx/EiSp1YzDgA7tcyPLT6R5N+T/FlVvVpVX07ySJLPVdUrST63eA3AGt2w1Qrd/eAVvvTZFc8CwC64UxRgCEEHGELQAYYQdIAhtvymKNefg8eeWfcI7IF1/juffeS+tW17MmfoAEMIOsAQgg4whKADDCHoAEMIOsAQgg4whKADDOHGImDPreumpuk3NDlDBxhC0AGGEHSAIQQdYAhBBxhC0AGGEHSAIQQdYAhBBxhC0AGGEHSAIQQdYAhBBxhC0AGGEHSAIQQdYAhBBxhC0AGGEHSAIQQdYAhBBxhC0AGGEHSAIQQdYIgbdvPmqjqb5M0kbyd5q7sPr2IoALZvV0Ff+Ex3v76CvweAXXDJBWCI3Qa9k/y0ql6oqqOrGAiAndntJZe7u/u1qrolyXNV9Z/d/fylKyxCfzRJDhw4sMvNXV8OHntm3SMA+8iuztC7+7XF44UkTya56zLrHO/uw919eGNjYzebA+AD7DjoVfWRqvrYu8+TfD7J6VUNBsD27OaSy61Jnqyqd/+eH3b3P69kKgC2bcdB7+7fJPnzFc4CwC74sUWAIQQdYAhBBxhC0AGGWMVnueyJdd5kc/aR+9a2bWB1pnfEGTrAEIIOMISgAwwh6ABDCDrAEIIOMISgAwwh6ABDCDrAEPvmTtF18qvggP3AGTrAEIIOMISgAwwh6ABDCDrAEIIOMISgAwwh6ABDCDrAEIIOMISgAwwh6ABDCDrAEIIOMISgAwwh6ABDCDrAEIIOMISgAwwh6ABDCDrAEIIOMISgAwyxq6BX1b1V9auq+nVVHVvVUABs346DXlUfSvIPSf46yZ1JHqyqO1c1GADbs5sz9LuS/Lq7f9Pd/5vkH5Pcv5qxANiu3QT940n++5LXry6WAbAGN+zivXWZZf2+laqOJjm6ePk/VfWrXWxz3W5O8vq6h9gH7Ket2UfLGbOf6u939fY/Xmal3QT91SS3X/L6j5K89t6Vuvt4kuO72M41o6pOdffhdc9xrbOftmYfLcd+2p7dXHL5jyR3VNWfVNUfJvmbJE+vZiwAtmvHZ+jd/VZVPZzkX5J8KMlj3f3yyiYDYFt2c8kl3f1skmdXNMt+MOLS0R6wn7ZmHy3HftqG6n7f9zEB2Ifc+g8whKAvoarOVtVLVfViVZ1a9zzXiqp6rKouVNXpS5bdVFXPVdUri8cb1znjteAK++lbVfW7xTH1YlV9YZ0zXguq6vaq+llVnamql6vqq4vljqklCfryPtPdh/wI1f/zeJJ737PsWJKT3X1HkpOL19e7x/P+/ZQk310cU4cW34+63r2V5Ovd/ckkn07y0OLjRBxTSxJ0dqy7n0/yxnsW35/kxOL5iSQP7OlQ16Ar7Cfeo7vPdfcvFs/fTHImm3efO6aWJOjL6SQ/raoXFne+cmW3dve5ZPM/aJJb1jzPtezhqvrl4pKMywiXqKqDST6V5OdxTC1N0Jdzd3f/RTY/WfKhqvqrdQ/Evve9JJ9IcijJuSTfXu84146q+miSHyf5Wnf/ft3z7CeCvoTufm3xeCHJk9n8pEku73xV3ZYki8cLa57nmtTd57v77e5+J8n345hKklTVh7MZ8x90908Wix1TSxL0LVTVR6rqY+8+T/L5JKc/+F3XtaeTHFk8P5LkqTXOcs16N1ALX4xjKlVVSR5Ncqa7v3PJlxxTS3Jj0Raq6k+zeVaebN5Z+8Pu/rs1jnTNqKonktyTzU/EO5/km0n+KcmPkhxI8tskX+ru6/obglfYT/dk83JLJzmb5CvvXie+XlXVXyb51yQvJXlnsfgb2byO7phagqADDOGSC8AQgg4whKADDCHoAEMIOsAQgg4whKADDCHoAEP8H8IJKtNnWIm7AAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plt.hist(table)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
...
...
@@ -16,10 +212,9 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.
3
"
"version": "3.6.
4
"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
module2/exo4/exercice.ipynb
View file @
4ce5ca64
{
"cells": [],
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Traitement du fichier de données\n",
"## Chargement de quelques librairies"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"%matplotlib inline\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Lecture des données"
]
},
{
"cell_type": "code",
"execution_count": 43,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"['Year', 'Month', 'Day', 'Number of emails', 'Number that require answers']\n",
"['2023', '8', '2', '3', '0']\n",
"['2023', '8', '3', '2', '0']\n",
"['2023', '8', '4', '2', '0']\n",
"['2023', '8', '5', '0', '0']\n",
"['2023', '8', '6', '1', '0']\n",
"['2023', '8', '7', '2', '2']\n"
]
}
],
"source": [
"filename = \"Emails_par_jours.csv\"\n",
"\n",
"file = open(filename,\"r\")\n",
"data = file.readlines()\n",
"Nlines = len(data)\n",
"for line in data :\n",
" print(line[0:-1].split(\",\"))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Mettre les données dans des tableaux"
]
},
{
"cell_type": "code",
"execution_count": 44,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[[2023 8 2 3 0]\n",
" [2023 8 3 2 0]\n",
" [2023 8 4 2 0]\n",
" [2023 8 5 0 0]\n",
" [2023 8 6 1 0]\n",
" [2023 8 7 2 2]]\n"
]
}
],
"source": [
"names = data[0]\n",
"names = names[0:-1].split(\",\")\n",
"Ncol = len(names)\n",
"\n",
"\n",
"datatab = np.zeros((Nlines-1, Ncol),dtype=int)\n",
"for i in range(1,Nlines) :\n",
" line = data[i]\n",
" line = line[0:-1].split(\",\")\n",
" for j in range(Ncol) :\n",
" datatab[i-1,j] = int(line[j])\n",
"print(datatab)\n",
"year = datatab[:,0]\n",
"month = datatab[:,1]\n",
"day = datatab[:,2]\n",
"Nemail = datatab[:,3]\n",
"Nanswer = datatab[:,4]"
]
},
{
"cell_type": "code",
"execution_count": 54,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEKCAYAAADn+anLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xd81fW9x/HXJwsIe28IAVSGzBBwgVr3wr1KmAq02tp6e1t7a7Vae6/V1rbaVkDZVpyttS3WWquAimSwh6ywAghhjwAhyff+cX7cG9Oc5ITk5HfOyfv5ePweOeM3Pt8gfvit98+cc4iIiJQnzu8CREQkcqlJiIhIUGoSIiISlJqEiIgEpSYhIiJBqUmIiEhQahIiIhKUmoSIiASlJiEiIkEl+F1AVbVq1cqlpKT4XYaISFTJycnZ55xrXdXloq5JpKSkkJ2d7XcZIiJRxcy2nc1yOtwkIiJBqUmIiEhQahIiIhKUmoSIiASlJiEiIkGFrUmYWX0zyzSzFWa2xsyeKGceM7PnzWyTma00s0HhqkdERKounJfAngIud84dM7NE4BMze88593mpea4FenrTUOBF76eIiESAsO1JuIBj3ttEbyr7rNSRwBxv3s+BZmbWPhz17Dt2iif+soZTRcXhWL2ISEwK6zkJM4s3s+XAXuAD59ySMrN0BHaUep/nfVZ2PRPNLNvMsvPz88+qliW5B5j56Va++/pyikv0XG8RkVCEtUk454qdcwOATkC6mfUtM4uVt1g565nmnEtzzqW1bl3lu8oBuL5fex69vhfzV33Jo++swjk1ChGRytRKLIdz7pCZfQxcA6wu9VUe0LnU+07ArnDVcd8lqRw4XsjvP95M8+Qkvn/NeeHalIhITAjn1U2tzayZ97oBcAXwRZnZ3gVGe1c5DQMOO+d2h6smgP+8+lzuSe/C7z/ezEsLc8O5KRGRqBfOPYn2wGwziyfQjN5wzv3VzCYDOOemAPOB64BNQAEwLoz1AGBmPHVzX46cOM3P5q+jaXIid6Z1rnxBEZE6KGxNwjm3EhhYzudTSr12wAPhqiGY+Djjubv6c+TkaR55eyVNGyRydZ92tV2GiEjEq7N3XNdLiGfKqMH069SMb81bxmeb9/ldkohIxKmzTQKgYb0EZo4dQtcWyUyck8OqvMN+lyQiElHqdJMAaN4wibkThtK0QSJjZmayOf9Y5QuJiNQRdb5JALRrWp9X7huKARkvL2HXoRN+lyQiEhHUJDzdWjVk9vh0jp4sImP6Eg4cL/S7JBER36lJlNK3Y1NeHpNG3sETjJ2ZybFTRX6XJCLiKzWJMoamtuR39w5iza4jTJyTrUBAEanT1CTKcUXvtjxzWz8+27yfh+Ytp6i4xO+SRER8oSYRxG2DO/HjG3rz9zVf8qM/rVYgoIjUSbUS8BetJlzcjUMFhbzwr000a5jID6/t5XdJIiK1Sk2iEg9feQ4HjhcydUEuzZOTmDyiu98liYjUGjWJSpgZT47sy+ETp3n6vS9onpzIXUO6+F2WiEitUJMIQXyc8dydAzhysogf/nEVTRskck3fsDxlVUQkoujEdYiSEuKYMmoQ/Ts349vzlvPpJgUCikjsU5OoguSkQCBgt1YNmTgnmxU7DvldkohIWKlJVFGz5CTmTEinecMkxs7MZNPeo36XJCISNmoSZ6Ftk/q8MmEo8XFxZEzPZKcCAUUkRqlJnKWUVg2ZMz6dY6cCgYD7j53yuyQRkRqnJlENvTs0YfqYIew8eIKxM7M4evK03yWJiNQoNYlqSu/WghdHDWLt7iNMnJPDydMKBBSR2KEmUQMuP68tv7yjP4tz9/PtecsUCCgiMUNNoobcPLAjj9/Ym3+s3cMP/7hKgYAiEhN0x3UNGndRNw4WnOb5DzfSLDmR/7quF2bmd1kiImdNTaKGffeKnhwqKOSlRVto3jCJb17aw++SRETOWtgON5lZZzP7yMzWmdkaM3uonHkuNbPDZrbcmx4LVz21xcz4yY19uKl/B575+3rmZW73uyQRkbMWzj2JIuA/nHNLzawxkGNmHzjn1paZb5Fz7oYw1lHr4uKMX9zRnyMnT/OjPwUCAa87X4GAIhJ9wrYn4Zzb7Zxb6r0+CqwDOoZre5EmKSGOF78+mIFdmvPQa8tYtDHf75JERKqsVq5uMrMUYCCwpJyvLzCzFWb2npn1CbL8RDPLNrPs/Pzo+Z9tg6R4ZowZQvfWjZg0N4dl2w/6XZKISJWEvUmYWSPgbeA7zrkjZb5eCnR1zvUHXgDeKW8dzrlpzrk051xa69atw1twDWuanMic8em0alSPcbOy2LhHgYAiEj3C2iTMLJFAg/iDc+6PZb93zh1xzh3zXs8HEs2sVThr8kMbLxAwMT4QCJh3sMDvkkREQhLOq5sMmA6sc849F2Sedt58mFm6V8/+cNXkpy4tk5kzPp2CwiIypmeyT4GAIhIFwrkncRGQAVxe6hLX68xssplN9ua5HVhtZiuA54G7XQzfqtyrfRNmjB3C7sMnGDMjkyMKBBSRCGfR9v/ktLQ0l52d7XcZ1fLR+r3cPzubQV2bM2d8OvUT4/0uSURinJnlOOfSqrqcspt8cNm5bfjlnf3J2nqAB19VIKCIRC41CZ+MHNCRJ27qwz/X7eEHb6+ipCS69uhEpG5QdpOPRl+QwsHjp/nVPzfQLDmRR69XIKCIRBY1CZ99+2s9OFhQyPRPttCiYRIPXKZAQBGJHGoSPjMzHruhN4cKCnn2/fU0bZDIqGFd/S5LRARQk4gIcXHGs3f058jJIn7859U0S07khn4d/C5LREQnriNFYnwcv7t3EGldm/Pd15ezcEP0ZFSJSOxSk4ggDZLieXnMEHq0acykuTksVSCgiPhMTSLCNG2QyOzxQ2jTpB7jZmaxQYGAIuIjNYkI1KZxIBCwXkIcGdOXsOOAAgFFxB9qEhGqc4tk5k4YyonCYjKmLyH/qAIBRaT2qUlEsHPbNWbmuHT2HDmlQEAR8YWaRIQb3LU5UzIGs3HvUe6blc3J08V+lyQidYiaRBQYcU5rnrtzAFnbDvDAH5ZyWoGAIlJL1CSixI39O/DkyL58+MVevv/WSgUCikit0B3XUSRjWFcOHS/klx8EAgEfu6G3AgFFJKzUJKLMg5f34GDBaWZ8uoUWyUl862s9/S5JRGJYlZqEmTUHOjvnVoapHqmEmfHo9b04VODtUTRMIkOBgCISJpU2CTP7GLjJm3c5kG9mC5xzD4e5NgkiLs74+e39OHLyNI/9eTVNGyRyU38FAopIzQvlxHVT59wR4FZgpnNuMHBFeMuSyiTGx/HbewcxJKUFD7++nI/X7/W7JBGJQaE0iQQzaw/cCfw1zPVIFdRPjOflMWmc07Yxk1/JIWfbAb9LEpEYE0qTeBJ4H9jknMsys1RgY3jLklA1qZ/I7PHptGtSn3Ezs/jiyyN+lyQiMaTSJuGce9M51885903vfa5z7rbwlyahat24HnMnDKVBUjyjp2eyfb8CAUWkZphz5d+UZWYvAEHv2HLOfbvCFZt1BuYA7YASYJpz7jdl5jHgN8B1QAEw1jm3tKL1pqWluezs7IpmqbM27DnKnVMX07RBIm9OvoA2jev7XZKIRAgzy3HOpVV1uYr2JLKBnAqmyhQB/+Gc6wUMAx4ws95l5rkW6OlNE4EXq1S9fMU5bRszc+wQ8o+eYvT0TA6fUCCgiFRP0EtgnXOzq7Ni59xuYLf3+qiZrQM6AmtLzTYSmOMCuzOfm1kzM2vvLStnYWCX5kzNGMz4WVlMmJX1f4ehRETORtAmYWa/ds59x8z+QjmHnZxzN4W6ETNLAQYCS8p81RHYUep9nveZmkQ1XNKzNb++ayAPzlvK3dMWc07bxn6XVKt6d2jCuIu6+V2GSI0pKXH86J1V3Ni/Axd2b1Wr267oZrq53s9fVGcDZtYIeBv4jne/xVe+LmeRf2tIZjaRwOEounTpUp1y6ozr+7XneGE/XvjXRj7dtM/vcmrNyaIS3szJ4+IerehZx5qjxCbnHI+/u4Z5mTtIadmw1ptE0BPXNbJys0QC91a875x7rpzvpwIfO+fmee/XA5dWdLhJJ66lIgeOF3Lh0x9yY78OPHtHf7/LEam25z7YwPMfbmTS8FR+eF2vs15POE5cn1lxTzN7y8zWmlnumSmE5QyYDqwrr0F43gVGW8Aw4LDOR0h1tGiYxN1DuvDO8p3sPnzC73JEqmXmp1t4/sON3JnWiUeuPc+XGkK5mW4mgauOioDLCFzWOrfCJQIuAjKAy81suTddZ2aTzWyyN898IBfYBLwEfLOqAxApa8LF3ShxMPPTrX6XInLW/rQsjyf+spar+7Tlv28537fHAoSSAtvAOfehmZlzbhvwEzNbBDxe0ULOuU8o/5xD6Xkc8EDI1YqEoHOLZK4/vz2vLtnOA5f1oGmDRL9LEqmSD9ft4XtvruTC7i35zd0DSYj37/lwoWz5pJnFARvN7EEzuwVoE+a6RKpl4vBUjp0q4tUl2/0uRaRKMrcc4Jt/WEqfDk2YNjqN+on+XsIeSpP4DpAMfBsYTOAQ0phwFiVSXX07NuWSnq2Y8ekWTp4u9rsckZCs2XWYCbOy6Ni8ATPHDqFRPf+fCxdKdlOWc+6Ycy7POTfOOXerc+7z2ihOpDomj+hO/tFTvLNsp9+liFRqy77jjJmRSeP6CbwyYSgtG9XzuyQgtKub0szsT2a21MxWnplqoziR6riwe0v6dmzCtIW5lJSE71Jvker68vBJMqYvocTBnAlD6dCsgd8l/Z9QDjf9gcAVTrcBN5aaRCKamTFpeHdy9x3ng3V7/C5HpFyHCgoZPWMJB48XMmvcEHq0aeR3SV8RygGvfOfcu2GvRCQMru3bji4tkpmyYDNX9W7r22WEIuUpKCxi3Kwstu4rYNa4IfTr1Mzvkv5NKHsSj5vZy2Z2j5ndemYKe2UiNSAhPo77L+nGsu2HyNp60O9yRP5PYVEJk+bmsGLHIZ6/ZyAX9qjduI1QhdIkxgEDgGv4/0NNN4SzKJGadPvgzrRomMTUBZv9LkUEgOISx3ffWM6ijft4+tZ+XNO3nd8lBRXK4ab+zrnzw16JSJg0SIpnzAUp/OqfG9iw52idS8WVyOKc48d/Xs3fVu7mv647jzuHdPa7pAqFsifxeTkPCxKJKqMv6EqDxHimLqg0dkwkrH75jw28umQ7k0d0Z+Lw7n6XU6lQmsTFwHIzW+9d/rpKl8BKtGneMIm7hnTmzwr+Ex+9vCiX3360ibuHdOYH15zrdzkhCaVJXEPg8aJX8f/nI3QJrESdCRd3wwEzPtnidylSB72dk8dTf1vHtX3b8TMfA/uqKpQ7rrcBnYHLvdcFoSwnEmk6t0jmhn6B4D89/1tq0wdr9/D9t1dyUY+W/PruAcTHRUeDgNDuuH4c+AHwQ++jROCVcBYlEi6ThnfneGExr3y+ze9SpI74PHc/D7y6lL4dmjA1I416CdH1zPlQ9ghuAW4CjgM453YBujxEolLvDk0Yfk5rZn66VcF/Enardx7mvtnZdGmRzMxx6RER2FdVoTSJQu+5Dw7AzBqGtySR8Jo8PJV9x07xJwX/SRjl5h9jzIxMmjZIZO6EdFo0TPK7pLMSSpN4w3sWdTMzux/4J4GnyIlEpQu6t+T8jk15aWEuxQr+kzDYffgEGdMzAZg7IZ32TSMnsK+qQjlx/QvgLeBt4FzgMefcC+EuTCRczIzJI7zgv7Vf+l2OxJiDxwsZPT2TwydOM3t8OqmtIyuwr6pCOkDmnPsA+CDMtYjUmmu84L8XF+RydZ92UXM5okS246eKGDsri20HCpg9Lp2+HZv6XVK16VJWqZPi44z7h6eyYschMrcc8LsciQGnioqZNDeH1TsP89t7BnJB95Z+l1Qj1CSkzrpjcCdaNkxi6kJFdUj1FJc4vvv6cj7ZtI+f39aPq/pEbmBfVQVtEmb2offz57VXjkjtqZ8Yz9gLU/jXF3tZ/+VRv8uRKOWc49F3VjF/1Zc8en0vbh/cye+SalRFexLtzWwEcJOZDTSzQaWn2ipQJJwyzgT/LVSMuJydZ99fz7zMHTxwWXfuuyTV73JqXEUnrh8DHgE6Ac+V+c4Bl4erKJHa0iw5ibvTOzN38Ta+d9W5EfVsYYl8Ly3M5fcfb+beoV343lXREdhXVUH3JJxzbznnrgWecc5dVmaqtEGY2Qwz22tmq4N8f6mZHTaz5d70WDXGIXLWFPwnZ+ON7B38bP46rj+/PT8d2Tdmr5AL5T6Jn5rZTWb2C28K9al0swgkyFZkkXNugDc9GeJ6RWpUp+bJ3NS/A/Myt3O4QMF/Urn313zJI2+v5JKerXjurv5RFdhXVaEE/P0P8BCw1pse8j6rkHNuIaBrCyUqTByeGgj+W6LgP6nYZ5v38a15y+jXqRlTRg2OusC+qgrlEtjrgSudczOcczMI7B1cX0Pbv8DMVpjZe2bWp4bWKVJlvdo3YcQ5rZn56RYF/0lQq/IOM3FODl1bJDNz7BAaRmFgX1WFep9Es1Kva+oWwqVAV+dcf+AF4J1gM5rZRDPLNrPs/Pz8Gtq8yFdNGpHKvmOF/HGpgv/k323OP8aYmWcC+4bSPEoD+6oqlCbxP8AyM5tlZrOBHOC/q7th59wR59wx7/V8INHMWgWZd5pzLs05l9a6devqblqkXBektqR/p6ZMW7hZwX/yFbsOnSDj5SXEGbxy31DaNa3vd0m1JpQT1/OAYcAfvekC59xr1d2wmbUz73IAM0v3atlf3fWKnC0zY9KI7mzdX8A/1ij4TwIOHC8kY/oSjp4sYta4dLq1qltPSwg14G838G5VVmxm84BLgVZmlgc8TuCpdjjnpgC3A98wsyLgBHC399wKEd9c3acdXVsmM2XBZq7pq+C/uu7YqSLGzswk7+AJ5oyPjcC+qgrbWRfn3D2VfP9b4Lfh2r7I2YiPM+6/JJVH31nNki0HGJYaGyFtUnWnioqZOCebNbuOMHXUYIbW0f8WFPAnUsbtgzvRqlESUxYoqqOuKiou4aF5y/ls836evb0fV/Ru63dJvqmwSZhZXLA7pkVi1Zngv4/X57Nu9xG/y5Fa5pzjR39azd/XfMljN/Tm1kGxFdhXVRU2CedcCbDCzLrUUj0iEWHUsK4kJ8XzkmLE65yn//4Fr2fv4FuX92D8xd38Lsd3oRxuag+sMbMPzezdM1O4CxPxU7PkJO4e0oV3V+xi56ETfpcjtWTKgs1MXZDLqGFdePjKc/wuJyKEcuL6ibBXIRKBJlzSjTmLtzJ90RYeu7G33+VImL2etZ2n3/uCG/q154mbYjewr6pCuU9iAbAVSPReZxG4W1okpnVs1oCb+nfgtaztHCoo9LscCaO/r97ND/+4iuHntOa5OwfEdGBfVYUS8Hc/8BYw1fuoIxVEaIjEkokjUikoLOaVzxX8F6s+3bSPb89bzoDOzZgyahBJCbros7RQfhsPABcBRwCccxuBNuEsSiRSnNeuCZee25pZn21V8F8MWrHjEBPnZNOtVUNmjB1CclLsB/ZVVShN4pRz7v/2tc0sgcCT6UTqhMkjurPvWCFv5eT5XYrUoE17jzJ2ZiYtGiUxZ0I6zZLrRmBfVYXSJBaY2X8BDczsSuBN4C/hLUskcgzt1oL+nZvx0qJcBf/FiJ2HTpAxPZP4uDjmjh9K2yZ1J7CvqkJpEo8A+cAqYBIwH3g0nEWJRBIzY/LwVLbtL+B9Bf9Fvf3HTpExfQnHThUxZ3w6KXUssK+qKj0A55wr8SLClxA4zLReQXxS11zVpx3dWjVk6oLNXKvgv6h19ORpxs7MYufBE7xy31B6d2jid0kRL5Srm64HNgPPEwjk22Rm14a7MJFIcib4b0XeYRbnKtE+Gp08XczEOTms232EF0cNYkhKC79LigqhHG76JXCZc+5S59wI4DLgV+EtSyTy3DqoI60aJTF1gaI6ok1RcQnfnreMxbn7+cUd/bn8vLob2FdVoTSJvc65TaXe5wJ7w1SPSMSqnxjPuIu6sWCDgv+iiXOOH/5xFf9Yu4ef3Nibmwd29LukqBK0SZjZrWZ2K4HcpvlmNtbMxhC4simr1ioUiSCjhnalYVI80xT8FxWcc/z3/HW8mZPHQ1/rydiLFNhXVRXtSdzoTfWBPcAIAk+ayweah70ykQjUNDmRe9IDwX95Bwv8Lkcq8eKCzby0aAtjLujKd67o6Xc5USno1U3OuXG1WYhItBh/cTdmfbaV6Z9s4fEb+/hdjgQxL3M7z/x9PTf178DjN/bRFWlnqdJLYM2sG/AtIKX0/M65m8JXlkjk6tCsATcN6MBrmTv49uU9ad5Qd+pGmvmrdvOjP63i0nNb84s7+hOnwL6zFsqJ63cIpMC+QOBKpzOTSJ01aXh3TpxW8F8kWrQxn4deW8bALs158euDFdhXTaGkWZ10zj0f9kpEosi57Rpz+XltmPXZVu4fnkr9xHi/SxJg2faDTJqbQ/fWjZgxZggNkvTnUl2htNjfmNnjZnaBmQ06M4W9MpEIN2l4KvuPF/Kmgv8iwsY9Rxk3K4tWjeoxZ3w6TZMT/S4pJoSyJ3E+kAFcDpR4nznvvUidld6tBQM6N+Olhbncm95FD6rxUd7BAjKmZ5IYH8crE4bSRoF9NSaUPYlbgFTn3Ajn3GXepAYhdZ6ZMXlEKtsPFPD31Qr+88u+Y6fImJ5JQWEgsK9Ly2S/S4opoTSJFUCzqq7YzGaY2V4zWx3kezOz581sk5mt1CEsiUZX9m5HaquGTFmwGeVe1r4jJ08zZkYmuw+fYMbYIfRqr8C+mhZKk2gLfGFm75vZu2emEJabBVxTwffXAj29aSLwYgjrFIko8XHG/cNTWbXzMIs3K/ivNp08Xcx9s7NZ/+VRXhw1mDQF9oVFKOckHj+bFTvnFppZSgWzjATmeLHjn5tZMzNr75zbfTbbE/HLLQM78st/bGDKwlwu7NHK73LqhKLiEh58dRlZWw/w67sGcNm5eqJyuITyPIkFYdp2R2BHqfd53mdqEhJVAsF/KTz7/nrW7jqiZxSEWUmJ4wdvr+Kf6/bw5Mg+jBygwL5wCuV5EkfN7Ig3nTSzYjOriQjM8i4FKfegrplNNLNsM8vOz8+vgU2L1KxRwwLBf1MXbva7lJjmnONn89fx9tI8vnNFT0ZfkOJ3STGv0ibhnGvsnGviTfWB2wg8fKi68oDOpd53AnYFqWGacy7NOZfWunXrGti0SM1q2iCRe4d24a8rd7PjgIL/wuX3H29m+idbGHthCg99TYF9taHK96s7596hZu6ReBcY7V3lNAw4rPMREs3GX9wNA6Z/ssXvUmLSK59v49n313PzgA48dkNvBfbVklAC/m4t9TYOSCPIYaEyy80jEC3eyszyCJwATwRwzk0B5gPXAZuAAkCpsxLV2jdtwMgBHXk9awcPfU3BfzXpryt38eM/r+by89rwrAL7alUoVzfdWOp1EYGwv5GVLeScu6eS7x3wQAjbF4kak0ak8vbSPOYs3sZDen5BjViwIZ/vvr6ctK7N+d29g0iMV2BfbQrl6ib9C18kROe0bczXzmvD7MVbmTg8VQFz1bR0+0Emz82hR5vGvKzAPl8EbRJm9lgFyznn3E/DUI9I1Js0ojt3Tl3MWzk7yNDVN2dt/ZdHGTczizZN6jF7/BCaNlBgnx8q2m87Xs4EMAH4QZjrEolaQ1KaM7BLM15atIWi4pLKF5B/s+NAARnTl1AvwQvsa6zAPr8EbRLOuV+emYBpQAMCJ5dfA1JrqT6RqBMI/uvO9gMFvKfgvyrLP3qKjOlLOFVUwtwJQ+ncQoF9fqrwDJCZtTCzp4CVBA5NDXLO/cA5t7dWqhOJUlf2aktqq4ZMXajgv6o4fOI0o2dksufIKWaMHcK57Rr7XVKdF7RJmNmzQBZwFDjfOfcT59zBWqtMJIrFxRkTh6eyeucRPlPwX0hOFBZz/+xsNu09ypSMwQzu2tzvkoSK9yT+A+gAPArsKhXNcbSGYjlEYtrNAzvSunE9pixQVEdlTheX8OCrS8nadoDn7hzAiHOUrBApKjonEeeca1AmlqPJmfe1WaRINKqfGM/4i7qxaOM+Vu887Hc5EaukxPH9t1by4Rd7+enIvtzYv4PfJUkpuitFJIzuHdqFRvUSmLYw1+9SIpJzjif/upY/LdvJ9646h1HDuvpdkpShJiESRmeC//62SsF/5XnhX5uY9dlWxl/UjQcu6+F3OVIONQmRMBt/UTfiDF5epL2J0uYu3spzH2zg1kEdefT6Xgrsi1BqEiJh1q5pfW4e0JHXs3dw4Hih3+VEhD8v38lj767hil5t+Plt/RTYF8HUJERqwcThqZw8XcKcxVv9LsV3H6/fy3+8sYIhKS34rQL7Ip7+dERqQc+2jbmiVxtmf7aVE4XFfpfjm5xtB5j8Sg7ntmvMy2PSqJ+owL5IpyYhUksmjejOwYLTvJG9o/KZY9AXXx5h3Mws2jdtwOzx6TSpr8C+aKAmIVJLhqS0YHDX5ry0KLfOBf9t319AxvRMkpMSmDM+nVaN6vldkoRITUKkFk0ankrewRPMr0PBf3uPnmTU9CWcLi5h7oR0BfZFGTUJkVp0Ra+2pLZuyNQFdSP47/CJ04yensm+Y6eYOXYIPdsqsC/aqEmI1KK4OGPS8FTW7DrCJ5v2+V1OWJ0oLGbCrCw25x9jasZgBnZRYF80UpMQqWU3D+xIm8b1mLogdm+uO11cwjf/kEPO9oP8+q6BXNJTgX3RSk1CpJbVS4hn/MXd+GRTbAb/lZQ4vvfmCj5an8/Pbj6f6/u197skqQY1CREfnAn+mxpjwX/OOZ74yxr+vHwX/3n1udw7tIvfJUk1qUmI+KBJ/US+PrQLf1u5i+37Yyf47zcfbmT24m3cf0k3vnlpd7/LkRqgJiHik/EXdyM+znj5k9jYm5j16RZ+/c+N3D64E/91nQL7YkVYm4SZXWNm681sk5k9Us73l5rZYTNb7k2PhbMekUjStkl9bhnYkTeyd7D/2Cm/y6mWd5bt5Cd/WcuVvdvy9K3nq0HEkLA1CTOLB34HXAv0Bu4xs97lzLrIOTfAm54MVz0ikej/g/+2+V0Ro0jRAAANB0lEQVTKWfvoi718780VDEttwQv3DCRBgX0xJZx/munAJudcrnOuEHgNGBnG7YlEnR5tGnNFr7bMXryVgsIiv8upsqytgcC+89o35qXRCuyLReFsEh2B0klmed5nZV1gZivM7D0z6xPGekQi0jcuTeVQwWneyIqu4L+1u44wflYWHZs1YNa4dBorsC8mhbNJlHdQsmwOwVKgq3OuP/AC8E65KzKbaGbZZpadn59fw2WK+Gtw1xakdW3OS4u2RE3w37b9xxk9I5NG9RKYe99QBfbFsHA2iTygc6n3nYBdpWdwzh1xzh3zXs8HEs2sVdkVOeemOefSnHNprVvrzk2JPZNGdGfnoRP8bdVuv0up1J4jgcC+4pJAYF/HZg38LknCKJxNIgvoaWbdzCwJuBt4t/QMZtbOvMsgzCzdq2d/GGsSiUhfO68NPdo0YsqC3IgO/jtUUMjo6ZnsP1bIrHHp9GijwL5YF7Ym4ZwrAh4E3gfWAW8459aY2WQzm+zNdjuw2sxWAM8Dd7tI/hsiEiZxccbE4ams232ERRsjM/ivoLCI8bOy2LLvOC+NTqN/52Z+lyS1wKLt/8lpaWkuOzvb7zJEatypomKGP/MRPdo04g/3DfO7nK8oLCrhvjnZfLIxn99/fRDX9FUeU7QxsxznXFpVl9MFzSIRol5CPOMv6sanm/azKi9ygv+KSxwPv7GchRvy+e9bzleDqGPUJEQiyD1Du9C4XgJTFm72uxQgENj3+Lur+evK3Txy7Xncna7AvrpGTUIkgjSpn8jXh3XlvVW72bb/uN/l8KsPNvDK59uZNDyVySMU2FcXqUmIRJhxF6WQEBfHy4u2+FrHjE+28Py/NnFXWmceufY8X2sR/6hJiESYSAj+++PSPJ7861qu7tOWn93SV4F9dZiahEgEun94KoXFJcz+bGutb/ufa/fwn2+t5MLuLfnN3Qrsq+v0py8SgXq0acSVvdoye/E2jp+qveC/Jbn7eeDVpfTp0IRpCuwT1CREItakEd05fOI0b2TXTvDf6p2HuW92Np2aBwL7GtVLqJXtSmRTkxCJUIO7NmdISnNeXrSF02EO/tuy7zhjZ2bSuH4CcycMpUXDpLBuT6KHmoRIBJs03Av+Wxm+4L8vD59k1MtLKHEw976hdFBgn5SiJiESwS4/rw092zRiyoLNYQn+O1RQSMb0JRwqKGT2uHS6t25U49uQ6KYmIRLBzgT/ffHlURbWcPDf8VNFjJ2ZxbYDBbw0Jo3zOzWt0fVLbFCTEIlwIwd0pG2TekxdUHNRHaeKipn8Sg4r8w7xwj0DubD7vz3GRQRQkxCJeEkJcUy4uBufbd7PyrxD1V5fcYnj4ddXsGjjPp6+rR9X92lXA1VKrFKTEIkC96R3oXH9BKYuyK3Wepxz/PjPq/nbqt386Lpe3JnWufKFpE5TkxCJAo3rJzJqWFfeW72brfvOPvjvF/9Yz6tLtvONS7tz//DUGqxQYpWahEiUGHehF/z3ydntTby8KJfffbSZe9I78/2rz63h6iRWqUmIRIk2Tepz66COvJmdx74qBv+9lZPHU39bx3Xnt+Opm89XYJ+ETE1CJIqcTfDfP9Z8yQ/eXsnFPVrxq7sGEB+nBiGhU5MQiSLdWzfiqt5tmRNi8N/izft5cN4y+nZsytSMwdRLUGCfVI2ahEiUORP893pWxcF/q3ce5v452XRpkcyssUNoqMA+OQtqEiJRZlCX5qSntGD6J8GD/3LzjzFmRiZNGyQyd0I6zRXYJ2dJTUIkCk2+NJWdh07w15W7/u273YdPkDE9E4C5E9Jp31SBfXL21CREotCl57ThnLaNmLog9yvBfweOF5IxPZPDJ04ze3w6qQrsk2oKa5Mws2vMbL2ZbTKzR8r53szsee/7lWY2KJz1iMSKQPBfd7748igLNuQDcOxUEeNmZrL9QAEvj0mjb0cF9kn1ha1JmFk88DvgWqA3cI+Z9S4z27VAT2+aCLwYrnpEYs1N/TvQvml9pizYzKmiYibNzWb1riP87t5BDEtt6Xd5EiPCuSeRDmxyzuU65wqB14CRZeYZCcxxAZ8DzcysfRhrEokZZ4L/Ps89wL0vLeHTTft55rZ+XNm7rd+lSQwJZ5PoCJS+Ri/P+6yq84hIEHd7wX852w7y6PW9uG1wJ79LkhgTzguny7uts+yjtUKZBzObSOBwFF26dKl+ZSIxolG9BJ69vT8HCwq5J11/N6TmhbNJ5AGlc4g7AWWv1wtlHpxz04BpAGlpaTX/DEeRKHZNXz0PQsInnIebsoCeZtbNzJKAu4F3y8zzLjDau8ppGHDYORe+J76LiEiVhG1PwjlXZGYPAu8D8cAM59waM5vsfT8FmA9cB2wCCoBx4apHRESqLqxhLs65+QQaQenPppR67YAHwlmDiIicPd1xLSIiQalJiIhIUGoSIiISlJqEiIgEpSYhIiJBWemY4WhgZvnAtrNcvBWwrwbLiQYac92gMdcN1RlzV+dc66ouFHVNojrMLNs5l+Z3HbVJY64bNOa6wY8x63CTiIgEpSYhIiJB1bUmMc3vAnygMdcNGnPdUOtjrlPnJEREpGrq2p6EiIhUQUQ2CTPrbGYfmdk6M1tjZg95n7cwsw/MbKP3s7n3+ZVmlmNmq7yfl5da19/NbIW3nines7fL2+Y93vIrvWValTNPspn9zcy+8Nb3dKyPuSrri6Uxl5r/XTNbXRPjjfQxm9nHZrbezJZ7U5s6MOYkM5tmZhu8v9e3xfKYzaxxqT/f5Wa2z8x+XeFgnHMRNwHtgUHe68bABqA38AzwiPf5I8DPvdcDgQ7e677AzlLrauL9NOBt4O5ytpcA7AVaee+fAX5SznzJwGXe6yRgEXBtLI851PXF2pi9728FXgVWx/p/2953HwNpNTXWKBnzE8BT3uu4M8vE8pjLLJcDDK9onojck3DO7XbOLfVeHwXWEXj29UhgtjfbbOBmb55lzrkzT7RbA9Q3s3red0e8zxMI/I+9vJMw5k0NzcyAJpT/hLwC59xH3utCYCmBp+lVW6SOuQrrq7JIHrOZNQIeBp6qzhjLiuQxh0uEj3k88D/eukucczVyc16EjzmwgFlPoA2Bf+xWOJiInoAUYLs36ENlvjtYzvy3A/8s89n7wEEC/yqMD7Kd24EjwG5gYbD5Ss3fDMgFUuvCmENZXyyNGfgVcItXV43tSUT4mD8GVgHLgR/jXdgSq2P2/g7vAJ4j8A++N4G2sTzmMvM/Bvyi0vpr+hdSw7/cRgR2h2713lf4Cwb6AJuB7uWsqz6BXbUry/kuEfgQ6E6gG/8WeLSCuhKA94Dv1JUxV7a+WBozMAD4i/c6hTA0iUgbszdvR+9nY+AfwOhYHjOBiAsH3Oa9fxiYG8tjLrPMWmBwpWOoyV9IDf9yEwl0z4dLfbYeaO+9bg+sL/VdJwLH/S6qYJ1jvF9ePIF/LS0HngSGAB+Wmm84gSfqfWW+Ut/PAJ6vS2Muu75YHjPwDQK76luBPKAQ+DiWx1zO+sbWgT9nA44Dcd58nYE1sTzmUt/3BzaENI6a+oXU5OT94c0Bfl3m82f56kmfZ7zXzYAVeP8iKDV/o1J/IAnA68CD5WyvA4FdtNbe+58CvwxS21MEunlcXRhzqOuLpTGXWSaFmj1xHZFj9tZx5qRnIvAWMDmWx+x99xpwufd6LPBmrI/Z+/5p4ImQxlJT//HX5ARcTGA3cCX/3wWvA1oS2KXa6P1s4c3/KIF/ESwvNbUB2gJZ3nrWAC8ACUG2OZnAyaWVwF+AluXM08mra12p7dwX42MOeX2xMuYy86dQs00iIscMNCRwWOTM+n5DDZ17itQxe/N1JXD8fqVXQ5dYH7M3by5wXihj0R3XIiISVEReAisiIpFBTUJERIJSkxARkaDUJEREJCg1CRERCUpNQqQSZlbsJWau8dI4HzazCv/umFmKmd1bWzWKhIuahEjlTjjnBjjn+gBXErje/fFKlkkB1CQk6uk+CZFKmNkx51yjUu9TCdzg1IrAzVhzCdyMBoG7YT8zs8+BXsAWAmmfzxO4y/VSoB7wO+fc1FobhMhZUpMQqUTZJuF9dhA4DzgKlDjnTnrRy/Occ2lmdinwPefcDd78E4E2zrmnvAjoT4E7nHNbanUwIlWU4HcBIlHKvJ+JwG/NbABQDJwTZP6rgH5mdrv3vinQk8CehkjEUpMQqSLvcFMxgSeBPQ7sIZCqGQecDLYY8C3n3Pu1UqRIDdGJa5EqMLPWwBQCMdqOwB7BbudcCZBBIJoZAoehGpda9H3gG2aW6K3nHDNriEiE056ESOUamNlyAoeWigicqH7O++73wNtmdgfwEYEkTwgkcRaZ2QpgFoFU1RRgqfd4yXy8R1eKRDKduBYRkaB0uElERIJSkxARkaDUJEREJCg1CRERCUpNQkREglKTEBGRoNQkREQkKDUJEREJ6n8BakNfWO3nHXQAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"# Redefine Nlines to not take into account name row\n",
"Nlines = len(year)\n",
"\n",
"# Create labels for figures\n",
"datelabels = []\n",
"for i in range(Nlines) :\n",
" yyyy = str(year[i])\n",
" mm = str(month[i])\n",
" dd = str(day[i])\n",
" date_string = yyyy+\"-\"+mm+\"-\"+dd\n",
" datelabels.append(date_string)\n",
" \n",
"fig, ax = plt.subplots()\n",
"\n",
"I_x = [i for i in range(Nlines)]\n",
"ax.plot(I_x,Nemail)\n",
"ax.set_xticks(I_x)\n",
"ax.set_xticklabels(datelabels)\n",
"plt.xlabel(\"Date\")\n",
"plt.ylabel(\"Number of emails\")\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Some numbers"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Mean"
]
},
{
"cell_type": "code",
"execution_count": 55,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"1.6666666666666667"
]
},
"execution_count": 55,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"np.mean(Nemail)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
...
...
@@ -16,10 +201,9 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.
3
"
"version": "3.6.
4
"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment