{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Traitement du fichier de données\n", "## Chargement de quelques librairies" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "%matplotlib inline\n", "import numpy as np\n", "import matplotlib.pyplot as plt" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Lecture des données" ] }, { "cell_type": "code", "execution_count": 43, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['Year', 'Month', 'Day', 'Number of emails', 'Number that require answers']\n", "['2023', '8', '2', '3', '0']\n", "['2023', '8', '3', '2', '0']\n", "['2023', '8', '4', '2', '0']\n", "['2023', '8', '5', '0', '0']\n", "['2023', '8', '6', '1', '0']\n", "['2023', '8', '7', '2', '2']\n" ] } ], "source": [ "filename = \"Emails_par_jours.csv\"\n", "\n", "file = open(filename,\"r\")\n", "data = file.readlines()\n", "Nlines = len(data)\n", "for line in data :\n", " print(line[0:-1].split(\",\"))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Mettre les données dans des tableaux" ] }, { "cell_type": "code", "execution_count": 44, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[2023 8 2 3 0]\n", " [2023 8 3 2 0]\n", " [2023 8 4 2 0]\n", " [2023 8 5 0 0]\n", " [2023 8 6 1 0]\n", " [2023 8 7 2 2]]\n" ] } ], "source": [ "names = data[0]\n", "names = names[0:-1].split(\",\")\n", "Ncol = len(names)\n", "\n", "\n", "datatab = np.zeros((Nlines-1, Ncol),dtype=int)\n", "for i in range(1,Nlines) :\n", " line = data[i]\n", " line = line[0:-1].split(\",\")\n", " for j in range(Ncol) :\n", " datatab[i-1,j] = int(line[j])\n", "print(datatab)\n", "year = datatab[:,0]\n", "month = datatab[:,1]\n", "day = datatab[:,2]\n", "Nemail = datatab[:,3]\n", "Nanswer = datatab[:,4]" ] }, { "cell_type": "code", "execution_count": 54, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEKCAYAAADn+anLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xd81fW9x/HXJwsIe28IAVSGzBBwgVr3wr1KmAq02tp6e1t7a7Vae6/V1rbaVkDZVpyttS3WWquAimSwh6ywAghhjwAhyff+cX7cG9Oc5ITk5HfOyfv5ePweOeM3Pt8gfvit98+cc4iIiJQnzu8CREQkcqlJiIhIUGoSIiISlJqEiIgEpSYhIiJBqUmIiEhQahIiIhKUmoSIiASlJiEiIkEl+F1AVbVq1cqlpKT4XYaISFTJycnZ55xrXdXloq5JpKSkkJ2d7XcZIiJRxcy2nc1yOtwkIiJBqUmIiEhQahIiIhKUmoSIiASlJiEiIkGFrUmYWX0zyzSzFWa2xsyeKGceM7PnzWyTma00s0HhqkdERKounJfAngIud84dM7NE4BMze88593mpea4FenrTUOBF76eIiESAsO1JuIBj3ttEbyr7rNSRwBxv3s+BZmbWPhz17Dt2iif+soZTRcXhWL2ISEwK6zkJM4s3s+XAXuAD59ySMrN0BHaUep/nfVZ2PRPNLNvMsvPz88+qliW5B5j56Va++/pyikv0XG8RkVCEtUk454qdcwOATkC6mfUtM4uVt1g565nmnEtzzqW1bl3lu8oBuL5fex69vhfzV33Jo++swjk1ChGRytRKLIdz7pCZfQxcA6wu9VUe0LnU+07ArnDVcd8lqRw4XsjvP95M8+Qkvn/NeeHalIhITAjn1U2tzayZ97oBcAXwRZnZ3gVGe1c5DQMOO+d2h6smgP+8+lzuSe/C7z/ezEsLc8O5KRGRqBfOPYn2wGwziyfQjN5wzv3VzCYDOOemAPOB64BNQAEwLoz1AGBmPHVzX46cOM3P5q+jaXIid6Z1rnxBEZE6KGxNwjm3EhhYzudTSr12wAPhqiGY+Djjubv6c+TkaR55eyVNGyRydZ92tV2GiEjEq7N3XNdLiGfKqMH069SMb81bxmeb9/ldkohIxKmzTQKgYb0EZo4dQtcWyUyck8OqvMN+lyQiElHqdJMAaN4wibkThtK0QSJjZmayOf9Y5QuJiNQRdb5JALRrWp9X7huKARkvL2HXoRN+lyQiEhHUJDzdWjVk9vh0jp4sImP6Eg4cL/S7JBER36lJlNK3Y1NeHpNG3sETjJ2ZybFTRX6XJCLiKzWJMoamtuR39w5iza4jTJyTrUBAEanT1CTKcUXvtjxzWz8+27yfh+Ytp6i4xO+SRER8oSYRxG2DO/HjG3rz9zVf8qM/rVYgoIjUSbUS8BetJlzcjUMFhbzwr000a5jID6/t5XdJIiK1Sk2iEg9feQ4HjhcydUEuzZOTmDyiu98liYjUGjWJSpgZT47sy+ETp3n6vS9onpzIXUO6+F2WiEitUJMIQXyc8dydAzhysogf/nEVTRskck3fsDxlVUQkoujEdYiSEuKYMmoQ/Ts349vzlvPpJgUCikjsU5OoguSkQCBgt1YNmTgnmxU7DvldkohIWKlJVFGz5CTmTEinecMkxs7MZNPeo36XJCISNmoSZ6Ftk/q8MmEo8XFxZEzPZKcCAUUkRqlJnKWUVg2ZMz6dY6cCgYD7j53yuyQRkRqnJlENvTs0YfqYIew8eIKxM7M4evK03yWJiNQoNYlqSu/WghdHDWLt7iNMnJPDydMKBBSR2KEmUQMuP68tv7yjP4tz9/PtecsUCCgiMUNNoobcPLAjj9/Ym3+s3cMP/7hKgYAiEhN0x3UNGndRNw4WnOb5DzfSLDmR/7quF2bmd1kiImdNTaKGffeKnhwqKOSlRVto3jCJb17aw++SRETOWtgON5lZZzP7yMzWmdkaM3uonHkuNbPDZrbcmx4LVz21xcz4yY19uKl/B575+3rmZW73uyQRkbMWzj2JIuA/nHNLzawxkGNmHzjn1paZb5Fz7oYw1lHr4uKMX9zRnyMnT/OjPwUCAa87X4GAIhJ9wrYn4Zzb7Zxb6r0+CqwDOoZre5EmKSGOF78+mIFdmvPQa8tYtDHf75JERKqsVq5uMrMUYCCwpJyvLzCzFWb2npn1CbL8RDPLNrPs/Pzo+Z9tg6R4ZowZQvfWjZg0N4dl2w/6XZKISJWEvUmYWSPgbeA7zrkjZb5eCnR1zvUHXgDeKW8dzrlpzrk051xa69atw1twDWuanMic8em0alSPcbOy2LhHgYAiEj3C2iTMLJFAg/iDc+6PZb93zh1xzh3zXs8HEs2sVThr8kMbLxAwMT4QCJh3sMDvkkREQhLOq5sMmA6sc849F2Sedt58mFm6V8/+cNXkpy4tk5kzPp2CwiIypmeyT4GAIhIFwrkncRGQAVxe6hLX68xssplN9ua5HVhtZiuA54G7XQzfqtyrfRNmjB3C7sMnGDMjkyMKBBSRCGfR9v/ktLQ0l52d7XcZ1fLR+r3cPzubQV2bM2d8OvUT4/0uSURinJnlOOfSqrqcspt8cNm5bfjlnf3J2nqAB19VIKCIRC41CZ+MHNCRJ27qwz/X7eEHb6+ipCS69uhEpG5QdpOPRl+QwsHjp/nVPzfQLDmRR69XIKCIRBY1CZ99+2s9OFhQyPRPttCiYRIPXKZAQBGJHGoSPjMzHruhN4cKCnn2/fU0bZDIqGFd/S5LRARQk4gIcXHGs3f058jJIn7859U0S07khn4d/C5LREQnriNFYnwcv7t3EGldm/Pd15ezcEP0ZFSJSOxSk4ggDZLieXnMEHq0acykuTksVSCgiPhMTSLCNG2QyOzxQ2jTpB7jZmaxQYGAIuIjNYkI1KZxIBCwXkIcGdOXsOOAAgFFxB9qEhGqc4tk5k4YyonCYjKmLyH/qAIBRaT2qUlEsHPbNWbmuHT2HDmlQEAR8YWaRIQb3LU5UzIGs3HvUe6blc3J08V+lyQidYiaRBQYcU5rnrtzAFnbDvDAH5ZyWoGAIlJL1CSixI39O/DkyL58+MVevv/WSgUCikit0B3XUSRjWFcOHS/klx8EAgEfu6G3AgFFJKzUJKLMg5f34GDBaWZ8uoUWyUl862s9/S5JRGJYlZqEmTUHOjvnVoapHqmEmfHo9b04VODtUTRMIkOBgCISJpU2CTP7GLjJm3c5kG9mC5xzD4e5NgkiLs74+e39OHLyNI/9eTVNGyRyU38FAopIzQvlxHVT59wR4FZgpnNuMHBFeMuSyiTGx/HbewcxJKUFD7++nI/X7/W7JBGJQaE0iQQzaw/cCfw1zPVIFdRPjOflMWmc07Yxk1/JIWfbAb9LEpEYE0qTeBJ4H9jknMsys1RgY3jLklA1qZ/I7PHptGtSn3Ezs/jiyyN+lyQiMaTSJuGce9M51885903vfa5z7rbwlyahat24HnMnDKVBUjyjp2eyfb8CAUWkZphz5d+UZWYvAEHv2HLOfbvCFZt1BuYA7YASYJpz7jdl5jHgN8B1QAEw1jm3tKL1pqWluezs7IpmqbM27DnKnVMX07RBIm9OvoA2jev7XZKIRAgzy3HOpVV1uYr2JLKBnAqmyhQB/+Gc6wUMAx4ws95l5rkW6OlNE4EXq1S9fMU5bRszc+wQ8o+eYvT0TA6fUCCgiFRP0EtgnXOzq7Ni59xuYLf3+qiZrQM6AmtLzTYSmOMCuzOfm1kzM2vvLStnYWCX5kzNGMz4WVlMmJX1f4ehRETORtAmYWa/ds59x8z+QjmHnZxzN4W6ETNLAQYCS8p81RHYUep9nveZmkQ1XNKzNb++ayAPzlvK3dMWc07bxn6XVKt6d2jCuIu6+V2GSI0pKXH86J1V3Ni/Axd2b1Wr267oZrq53s9fVGcDZtYIeBv4jne/xVe+LmeRf2tIZjaRwOEounTpUp1y6ozr+7XneGE/XvjXRj7dtM/vcmrNyaIS3szJ4+IerehZx5qjxCbnHI+/u4Z5mTtIadmw1ptE0BPXNbJys0QC91a875x7rpzvpwIfO+fmee/XA5dWdLhJJ66lIgeOF3Lh0x9yY78OPHtHf7/LEam25z7YwPMfbmTS8FR+eF2vs15POE5cn1lxTzN7y8zWmlnumSmE5QyYDqwrr0F43gVGW8Aw4LDOR0h1tGiYxN1DuvDO8p3sPnzC73JEqmXmp1t4/sON3JnWiUeuPc+XGkK5mW4mgauOioDLCFzWOrfCJQIuAjKAy81suTddZ2aTzWyyN898IBfYBLwEfLOqAxApa8LF3ShxMPPTrX6XInLW/rQsjyf+spar+7Tlv28537fHAoSSAtvAOfehmZlzbhvwEzNbBDxe0ULOuU8o/5xD6Xkc8EDI1YqEoHOLZK4/vz2vLtnOA5f1oGmDRL9LEqmSD9ft4XtvruTC7i35zd0DSYj37/lwoWz5pJnFARvN7EEzuwVoE+a6RKpl4vBUjp0q4tUl2/0uRaRKMrcc4Jt/WEqfDk2YNjqN+on+XsIeSpP4DpAMfBsYTOAQ0phwFiVSXX07NuWSnq2Y8ekWTp4u9rsckZCs2XWYCbOy6Ni8ATPHDqFRPf+fCxdKdlOWc+6Ycy7POTfOOXerc+7z2ihOpDomj+hO/tFTvLNsp9+liFRqy77jjJmRSeP6CbwyYSgtG9XzuyQgtKub0szsT2a21MxWnplqoziR6riwe0v6dmzCtIW5lJSE71Jvker68vBJMqYvocTBnAlD6dCsgd8l/Z9QDjf9gcAVTrcBN5aaRCKamTFpeHdy9x3ng3V7/C5HpFyHCgoZPWMJB48XMmvcEHq0aeR3SV8RygGvfOfcu2GvRCQMru3bji4tkpmyYDNX9W7r22WEIuUpKCxi3Kwstu4rYNa4IfTr1Mzvkv5NKHsSj5vZy2Z2j5ndemYKe2UiNSAhPo77L+nGsu2HyNp60O9yRP5PYVEJk+bmsGLHIZ6/ZyAX9qjduI1QhdIkxgEDgGv4/0NNN4SzKJGadPvgzrRomMTUBZv9LkUEgOISx3ffWM6ijft4+tZ+XNO3nd8lBRXK4ab+zrnzw16JSJg0SIpnzAUp/OqfG9iw52idS8WVyOKc48d/Xs3fVu7mv647jzuHdPa7pAqFsifxeTkPCxKJKqMv6EqDxHimLqg0dkwkrH75jw28umQ7k0d0Z+Lw7n6XU6lQmsTFwHIzW+9d/rpKl8BKtGneMIm7hnTmzwr+Ex+9vCiX3360ibuHdOYH15zrdzkhCaVJXEPg8aJX8f/nI3QJrESdCRd3wwEzPtnidylSB72dk8dTf1vHtX3b8TMfA/uqKpQ7rrcBnYHLvdcFoSwnEmk6t0jmhn6B4D89/1tq0wdr9/D9t1dyUY+W/PruAcTHRUeDgNDuuH4c+AHwQ++jROCVcBYlEi6ThnfneGExr3y+ze9SpI74PHc/D7y6lL4dmjA1I416CdH1zPlQ9ghuAW4CjgM453YBujxEolLvDk0Yfk5rZn66VcF/Enardx7mvtnZdGmRzMxx6RER2FdVoTSJQu+5Dw7AzBqGtySR8Jo8PJV9x07xJwX/SRjl5h9jzIxMmjZIZO6EdFo0TPK7pLMSSpN4w3sWdTMzux/4J4GnyIlEpQu6t+T8jk15aWEuxQr+kzDYffgEGdMzAZg7IZ32TSMnsK+qQjlx/QvgLeBt4FzgMefcC+EuTCRczIzJI7zgv7Vf+l2OxJiDxwsZPT2TwydOM3t8OqmtIyuwr6pCOkDmnPsA+CDMtYjUmmu84L8XF+RydZ92UXM5okS246eKGDsri20HCpg9Lp2+HZv6XVK16VJWqZPi44z7h6eyYschMrcc8LsciQGnioqZNDeH1TsP89t7BnJB95Z+l1Qj1CSkzrpjcCdaNkxi6kJFdUj1FJc4vvv6cj7ZtI+f39aPq/pEbmBfVQVtEmb2offz57VXjkjtqZ8Yz9gLU/jXF3tZ/+VRv8uRKOWc49F3VjF/1Zc8en0vbh/cye+SalRFexLtzWwEcJOZDTSzQaWn2ipQJJwyzgT/LVSMuJydZ99fz7zMHTxwWXfuuyTV73JqXEUnrh8DHgE6Ac+V+c4Bl4erKJHa0iw5ibvTOzN38Ta+d9W5EfVsYYl8Ly3M5fcfb+beoV343lXREdhXVUH3JJxzbznnrgWecc5dVmaqtEGY2Qwz22tmq4N8f6mZHTaz5d70WDXGIXLWFPwnZ+ON7B38bP46rj+/PT8d2Tdmr5AL5T6Jn5rZTWb2C28K9al0swgkyFZkkXNugDc9GeJ6RWpUp+bJ3NS/A/Myt3O4QMF/Urn313zJI2+v5JKerXjurv5RFdhXVaEE/P0P8BCw1pse8j6rkHNuIaBrCyUqTByeGgj+W6LgP6nYZ5v38a15y+jXqRlTRg2OusC+qgrlEtjrgSudczOcczMI7B1cX0Pbv8DMVpjZe2bWp4bWKVJlvdo3YcQ5rZn56RYF/0lQq/IOM3FODl1bJDNz7BAaRmFgX1WFep9Es1Kva+oWwqVAV+dcf+AF4J1gM5rZRDPLNrPs/Pz8Gtq8yFdNGpHKvmOF/HGpgv/k323OP8aYmWcC+4bSPEoD+6oqlCbxP8AyM5tlZrOBHOC/q7th59wR59wx7/V8INHMWgWZd5pzLs05l9a6devqblqkXBektqR/p6ZMW7hZwX/yFbsOnSDj5SXEGbxy31DaNa3vd0m1JpQT1/OAYcAfvekC59xr1d2wmbUz73IAM0v3atlf3fWKnC0zY9KI7mzdX8A/1ij4TwIOHC8kY/oSjp4sYta4dLq1qltPSwg14G838G5VVmxm84BLgVZmlgc8TuCpdjjnpgC3A98wsyLgBHC399wKEd9c3acdXVsmM2XBZq7pq+C/uu7YqSLGzswk7+AJ5oyPjcC+qgrbWRfn3D2VfP9b4Lfh2r7I2YiPM+6/JJVH31nNki0HGJYaGyFtUnWnioqZOCebNbuOMHXUYIbW0f8WFPAnUsbtgzvRqlESUxYoqqOuKiou4aF5y/ls836evb0fV/Ru63dJvqmwSZhZXLA7pkVi1Zngv4/X57Nu9xG/y5Fa5pzjR39azd/XfMljN/Tm1kGxFdhXVRU2CedcCbDCzLrUUj0iEWHUsK4kJ8XzkmLE65yn//4Fr2fv4FuX92D8xd38Lsd3oRxuag+sMbMPzezdM1O4CxPxU7PkJO4e0oV3V+xi56ETfpcjtWTKgs1MXZDLqGFdePjKc/wuJyKEcuL6ibBXIRKBJlzSjTmLtzJ90RYeu7G33+VImL2etZ2n3/uCG/q154mbYjewr6pCuU9iAbAVSPReZxG4W1okpnVs1oCb+nfgtaztHCoo9LscCaO/r97ND/+4iuHntOa5OwfEdGBfVYUS8Hc/8BYw1fuoIxVEaIjEkokjUikoLOaVzxX8F6s+3bSPb89bzoDOzZgyahBJCbros7RQfhsPABcBRwCccxuBNuEsSiRSnNeuCZee25pZn21V8F8MWrHjEBPnZNOtVUNmjB1CclLsB/ZVVShN4pRz7v/2tc0sgcCT6UTqhMkjurPvWCFv5eT5XYrUoE17jzJ2ZiYtGiUxZ0I6zZLrRmBfVYXSJBaY2X8BDczsSuBN4C/hLUskcgzt1oL+nZvx0qJcBf/FiJ2HTpAxPZP4uDjmjh9K2yZ1J7CvqkJpEo8A+cAqYBIwH3g0nEWJRBIzY/LwVLbtL+B9Bf9Fvf3HTpExfQnHThUxZ3w6KXUssK+qKj0A55wr8SLClxA4zLReQXxS11zVpx3dWjVk6oLNXKvgv6h19ORpxs7MYufBE7xy31B6d2jid0kRL5Srm64HNgPPEwjk22Rm14a7MJFIcib4b0XeYRbnKtE+Gp08XczEOTms232EF0cNYkhKC79LigqhHG76JXCZc+5S59wI4DLgV+EtSyTy3DqoI60aJTF1gaI6ok1RcQnfnreMxbn7+cUd/bn8vLob2FdVoTSJvc65TaXe5wJ7w1SPSMSqnxjPuIu6sWCDgv+iiXOOH/5xFf9Yu4ef3Nibmwd29LukqBK0SZjZrWZ2K4HcpvlmNtbMxhC4simr1ioUiSCjhnalYVI80xT8FxWcc/z3/HW8mZPHQ1/rydiLFNhXVRXtSdzoTfWBPcAIAk+ayweah70ykQjUNDmRe9IDwX95Bwv8Lkcq8eKCzby0aAtjLujKd67o6Xc5USno1U3OuXG1WYhItBh/cTdmfbaV6Z9s4fEb+/hdjgQxL3M7z/x9PTf178DjN/bRFWlnqdJLYM2sG/AtIKX0/M65m8JXlkjk6tCsATcN6MBrmTv49uU9ad5Qd+pGmvmrdvOjP63i0nNb84s7+hOnwL6zFsqJ63cIpMC+QOBKpzOTSJ01aXh3TpxW8F8kWrQxn4deW8bALs158euDFdhXTaGkWZ10zj0f9kpEosi57Rpz+XltmPXZVu4fnkr9xHi/SxJg2faDTJqbQ/fWjZgxZggNkvTnUl2htNjfmNnjZnaBmQ06M4W9MpEIN2l4KvuPF/Kmgv8iwsY9Rxk3K4tWjeoxZ3w6TZMT/S4pJoSyJ3E+kAFcDpR4nznvvUidld6tBQM6N+Olhbncm95FD6rxUd7BAjKmZ5IYH8crE4bSRoF9NSaUPYlbgFTn3Ajn3GXepAYhdZ6ZMXlEKtsPFPD31Qr+88u+Y6fImJ5JQWEgsK9Ly2S/S4opoTSJFUCzqq7YzGaY2V4zWx3kezOz581sk5mt1CEsiUZX9m5HaquGTFmwGeVe1r4jJ08zZkYmuw+fYMbYIfRqr8C+mhZKk2gLfGFm75vZu2emEJabBVxTwffXAj29aSLwYgjrFIko8XHG/cNTWbXzMIs3K/ivNp08Xcx9s7NZ/+VRXhw1mDQF9oVFKOckHj+bFTvnFppZSgWzjATmeLHjn5tZMzNr75zbfTbbE/HLLQM78st/bGDKwlwu7NHK73LqhKLiEh58dRlZWw/w67sGcNm5eqJyuITyPIkFYdp2R2BHqfd53mdqEhJVAsF/KTz7/nrW7jqiZxSEWUmJ4wdvr+Kf6/bw5Mg+jBygwL5wCuV5EkfN7Ig3nTSzYjOriQjM8i4FKfegrplNNLNsM8vOz8+vgU2L1KxRwwLBf1MXbva7lJjmnONn89fx9tI8vnNFT0ZfkOJ3STGv0ibhnGvsnGviTfWB2wg8fKi68oDOpd53AnYFqWGacy7NOZfWunXrGti0SM1q2iCRe4d24a8rd7PjgIL/wuX3H29m+idbGHthCg99TYF9taHK96s7596hZu6ReBcY7V3lNAw4rPMREs3GX9wNA6Z/ssXvUmLSK59v49n313PzgA48dkNvBfbVklAC/m4t9TYOSCPIYaEyy80jEC3eyszyCJwATwRwzk0B5gPXAZuAAkCpsxLV2jdtwMgBHXk9awcPfU3BfzXpryt38eM/r+by89rwrAL7alUoVzfdWOp1EYGwv5GVLeScu6eS7x3wQAjbF4kak0ak8vbSPOYs3sZDen5BjViwIZ/vvr6ctK7N+d29g0iMV2BfbQrl6ib9C18kROe0bczXzmvD7MVbmTg8VQFz1bR0+0Emz82hR5vGvKzAPl8EbRJm9lgFyznn3E/DUI9I1Js0ojt3Tl3MWzk7yNDVN2dt/ZdHGTczizZN6jF7/BCaNlBgnx8q2m87Xs4EMAH4QZjrEolaQ1KaM7BLM15atIWi4pLKF5B/s+NAARnTl1AvwQvsa6zAPr8EbRLOuV+emYBpQAMCJ5dfA1JrqT6RqBMI/uvO9gMFvKfgvyrLP3qKjOlLOFVUwtwJQ+ncQoF9fqrwDJCZtTCzp4CVBA5NDXLO/cA5t7dWqhOJUlf2aktqq4ZMXajgv6o4fOI0o2dksufIKWaMHcK57Rr7XVKdF7RJmNmzQBZwFDjfOfcT59zBWqtMJIrFxRkTh6eyeucRPlPwX0hOFBZz/+xsNu09ypSMwQzu2tzvkoSK9yT+A+gAPArsKhXNcbSGYjlEYtrNAzvSunE9pixQVEdlTheX8OCrS8nadoDn7hzAiHOUrBApKjonEeeca1AmlqPJmfe1WaRINKqfGM/4i7qxaOM+Vu887Hc5EaukxPH9t1by4Rd7+enIvtzYv4PfJUkpuitFJIzuHdqFRvUSmLYw1+9SIpJzjif/upY/LdvJ9646h1HDuvpdkpShJiESRmeC//62SsF/5XnhX5uY9dlWxl/UjQcu6+F3OVIONQmRMBt/UTfiDF5epL2J0uYu3spzH2zg1kEdefT6Xgrsi1BqEiJh1q5pfW4e0JHXs3dw4Hih3+VEhD8v38lj767hil5t+Plt/RTYF8HUJERqwcThqZw8XcKcxVv9LsV3H6/fy3+8sYIhKS34rQL7Ip7+dERqQc+2jbmiVxtmf7aVE4XFfpfjm5xtB5j8Sg7ntmvMy2PSqJ+owL5IpyYhUksmjejOwYLTvJG9o/KZY9AXXx5h3Mws2jdtwOzx6TSpr8C+aKAmIVJLhqS0YHDX5ry0KLfOBf9t319AxvRMkpMSmDM+nVaN6vldkoRITUKkFk0ankrewRPMr0PBf3uPnmTU9CWcLi5h7oR0BfZFGTUJkVp0Ra+2pLZuyNQFdSP47/CJ04yensm+Y6eYOXYIPdsqsC/aqEmI1KK4OGPS8FTW7DrCJ5v2+V1OWJ0oLGbCrCw25x9jasZgBnZRYF80UpMQqWU3D+xIm8b1mLogdm+uO11cwjf/kEPO9oP8+q6BXNJTgX3RSk1CpJbVS4hn/MXd+GRTbAb/lZQ4vvfmCj5an8/Pbj6f6/u197skqQY1CREfnAn+mxpjwX/OOZ74yxr+vHwX/3n1udw7tIvfJUk1qUmI+KBJ/US+PrQLf1u5i+37Yyf47zcfbmT24m3cf0k3vnlpd7/LkRqgJiHik/EXdyM+znj5k9jYm5j16RZ+/c+N3D64E/91nQL7YkVYm4SZXWNm681sk5k9Us73l5rZYTNb7k2PhbMekUjStkl9bhnYkTeyd7D/2Cm/y6mWd5bt5Cd/WcuVvdvy9K3nq0HEkLA1CTOLB34HXAv0Bu4xs97lzLrIOTfAm54MVz0ikej/g/+2+V0Ro0jRAAANB0lEQVTKWfvoi718780VDEttwQv3DCRBgX0xJZx/munAJudcrnOuEHgNGBnG7YlEnR5tGnNFr7bMXryVgsIiv8upsqytgcC+89o35qXRCuyLReFsEh2B0klmed5nZV1gZivM7D0z6xPGekQi0jcuTeVQwWneyIqu4L+1u44wflYWHZs1YNa4dBorsC8mhbNJlHdQsmwOwVKgq3OuP/AC8E65KzKbaGbZZpadn59fw2WK+Gtw1xakdW3OS4u2RE3w37b9xxk9I5NG9RKYe99QBfbFsHA2iTygc6n3nYBdpWdwzh1xzh3zXs8HEs2sVdkVOeemOefSnHNprVvrzk2JPZNGdGfnoRP8bdVuv0up1J4jgcC+4pJAYF/HZg38LknCKJxNIgvoaWbdzCwJuBt4t/QMZtbOvMsgzCzdq2d/GGsSiUhfO68NPdo0YsqC3IgO/jtUUMjo6ZnsP1bIrHHp9GijwL5YF7Ym4ZwrAh4E3gfWAW8459aY2WQzm+zNdjuw2sxWAM8Dd7tI/hsiEiZxccbE4ams232ERRsjM/ivoLCI8bOy2LLvOC+NTqN/52Z+lyS1wKLt/8lpaWkuOzvb7zJEatypomKGP/MRPdo04g/3DfO7nK8oLCrhvjnZfLIxn99/fRDX9FUeU7QxsxznXFpVl9MFzSIRol5CPOMv6sanm/azKi9ygv+KSxwPv7GchRvy+e9bzleDqGPUJEQiyD1Du9C4XgJTFm72uxQgENj3+Lur+evK3Txy7Xncna7AvrpGTUIkgjSpn8jXh3XlvVW72bb/uN/l8KsPNvDK59uZNDyVySMU2FcXqUmIRJhxF6WQEBfHy4u2+FrHjE+28Py/NnFXWmceufY8X2sR/6hJiESYSAj+++PSPJ7861qu7tOWn93SV4F9dZiahEgEun94KoXFJcz+bGutb/ufa/fwn2+t5MLuLfnN3Qrsq+v0py8SgXq0acSVvdoye/E2jp+qveC/Jbn7eeDVpfTp0IRpCuwT1CREItakEd05fOI0b2TXTvDf6p2HuW92Np2aBwL7GtVLqJXtSmRTkxCJUIO7NmdISnNeXrSF02EO/tuy7zhjZ2bSuH4CcycMpUXDpLBuT6KHmoRIBJs03Av+Wxm+4L8vD59k1MtLKHEw976hdFBgn5SiJiESwS4/rw092zRiyoLNYQn+O1RQSMb0JRwqKGT2uHS6t25U49uQ6KYmIRLBzgT/ffHlURbWcPDf8VNFjJ2ZxbYDBbw0Jo3zOzWt0fVLbFCTEIlwIwd0pG2TekxdUHNRHaeKipn8Sg4r8w7xwj0DubD7vz3GRQRQkxCJeEkJcUy4uBufbd7PyrxD1V5fcYnj4ddXsGjjPp6+rR9X92lXA1VKrFKTEIkC96R3oXH9BKYuyK3Wepxz/PjPq/nbqt386Lpe3JnWufKFpE5TkxCJAo3rJzJqWFfeW72brfvOPvjvF/9Yz6tLtvONS7tz//DUGqxQYpWahEiUGHehF/z3ydntTby8KJfffbSZe9I78/2rz63h6iRWqUmIRIk2Tepz66COvJmdx74qBv+9lZPHU39bx3Xnt+Opm89XYJ+ETE1CJIqcTfDfP9Z8yQ/eXsnFPVrxq7sGEB+nBiGhU5MQiSLdWzfiqt5tmRNi8N/izft5cN4y+nZsytSMwdRLUGCfVI2ahEiUORP893pWxcF/q3ce5v452XRpkcyssUNoqMA+OQtqEiJRZlCX5qSntGD6J8GD/3LzjzFmRiZNGyQyd0I6zRXYJ2dJTUIkCk2+NJWdh07w15W7/u273YdPkDE9E4C5E9Jp31SBfXL21CREotCl57ThnLaNmLog9yvBfweOF5IxPZPDJ04ze3w6qQrsk2oKa5Mws2vMbL2ZbTKzR8r53szsee/7lWY2KJz1iMSKQPBfd7748igLNuQDcOxUEeNmZrL9QAEvj0mjb0cF9kn1ha1JmFk88DvgWqA3cI+Z9S4z27VAT2+aCLwYrnpEYs1N/TvQvml9pizYzKmiYibNzWb1riP87t5BDEtt6Xd5EiPCuSeRDmxyzuU65wqB14CRZeYZCcxxAZ8DzcysfRhrEokZZ4L/Ps89wL0vLeHTTft55rZ+XNm7rd+lSQwJZ5PoCJS+Ri/P+6yq84hIEHd7wX852w7y6PW9uG1wJ79LkhgTzguny7uts+yjtUKZBzObSOBwFF26dKl+ZSIxolG9BJ69vT8HCwq5J11/N6TmhbNJ5AGlc4g7AWWv1wtlHpxz04BpAGlpaTX/DEeRKHZNXz0PQsInnIebsoCeZtbNzJKAu4F3y8zzLjDau8ppGHDYORe+J76LiEiVhG1PwjlXZGYPAu8D8cAM59waM5vsfT8FmA9cB2wCCoBx4apHRESqLqxhLs65+QQaQenPppR67YAHwlmDiIicPd1xLSIiQalJiIhIUGoSIiISlJqEiIgEpSYhIiJBWemY4WhgZvnAtrNcvBWwrwbLiQYac92gMdcN1RlzV+dc66ouFHVNojrMLNs5l+Z3HbVJY64bNOa6wY8x63CTiIgEpSYhIiJB1bUmMc3vAnygMdcNGnPdUOtjrlPnJEREpGrq2p6EiIhUQUQ2CTPrbGYfmdk6M1tjZg95n7cwsw/MbKP3s7n3+ZVmlmNmq7yfl5da19/NbIW3nines7fL2+Y93vIrvWValTNPspn9zcy+8Nb3dKyPuSrri6Uxl5r/XTNbXRPjjfQxm9nHZrbezJZ7U5s6MOYkM5tmZhu8v9e3xfKYzaxxqT/f5Wa2z8x+XeFgnHMRNwHtgUHe68bABqA38AzwiPf5I8DPvdcDgQ7e677AzlLrauL9NOBt4O5ytpcA7AVaee+fAX5SznzJwGXe6yRgEXBtLI851PXF2pi9728FXgVWx/p/2953HwNpNTXWKBnzE8BT3uu4M8vE8pjLLJcDDK9onojck3DO7XbOLfVeHwXWEXj29UhgtjfbbOBmb55lzrkzT7RbA9Q3s3red0e8zxMI/I+9vJMw5k0NzcyAJpT/hLwC59xH3utCYCmBp+lVW6SOuQrrq7JIHrOZNQIeBp6qzhjLiuQxh0uEj3k88D/eukucczVyc16EjzmwgFlPoA2Bf+xWOJiInoAUYLs36ENlvjtYzvy3A/8s89n7wEEC/yqMD7Kd24EjwG5gYbD5Ss3fDMgFUuvCmENZXyyNGfgVcItXV43tSUT4mD8GVgHLgR/jXdgSq2P2/g7vAJ4j8A++N4G2sTzmMvM/Bvyi0vpr+hdSw7/cRgR2h2713lf4Cwb6AJuB7uWsqz6BXbUry/kuEfgQ6E6gG/8WeLSCuhKA94Dv1JUxV7a+WBozMAD4i/c6hTA0iUgbszdvR+9nY+AfwOhYHjOBiAsH3Oa9fxiYG8tjLrPMWmBwpWOoyV9IDf9yEwl0z4dLfbYeaO+9bg+sL/VdJwLH/S6qYJ1jvF9ePIF/LS0HngSGAB+Wmm84gSfqfWW+Ut/PAJ6vS2Muu75YHjPwDQK76luBPKAQ+DiWx1zO+sbWgT9nA44Dcd58nYE1sTzmUt/3BzaENI6a+oXU5OT94c0Bfl3m82f56kmfZ7zXzYAVeP8iKDV/o1J/IAnA68CD5WyvA4FdtNbe+58CvwxS21MEunlcXRhzqOuLpTGXWSaFmj1xHZFj9tZx5qRnIvAWMDmWx+x99xpwufd6LPBmrI/Z+/5p4ImQxlJT//HX5ARcTGA3cCX/3wWvA1oS2KXa6P1s4c3/KIF/ESwvNbUB2gJZ3nrWAC8ACUG2OZnAyaWVwF+AluXM08mra12p7dwX42MOeX2xMuYy86dQs00iIscMNCRwWOTM+n5DDZ17itQxe/N1JXD8fqVXQ5dYH7M3by5wXihj0R3XIiISVEReAisiIpFBTUJERIJSkxARkaDUJEREJCg1CRERCUpNQqQSZlbsJWau8dI4HzazCv/umFmKmd1bWzWKhIuahEjlTjjnBjjn+gBXErje/fFKlkkB1CQk6uk+CZFKmNkx51yjUu9TCdzg1IrAzVhzCdyMBoG7YT8zs8+BXsAWAmmfzxO4y/VSoB7wO+fc1FobhMhZUpMQqUTZJuF9dhA4DzgKlDjnTnrRy/Occ2lmdinwPefcDd78E4E2zrmnvAjoT4E7nHNbanUwIlWU4HcBIlHKvJ+JwG/NbABQDJwTZP6rgH5mdrv3vinQk8CehkjEUpMQqSLvcFMxgSeBPQ7sIZCqGQecDLYY8C3n3Pu1UqRIDdGJa5EqMLPWwBQCMdqOwB7BbudcCZBBIJoZAoehGpda9H3gG2aW6K3nHDNriEiE056ESOUamNlyAoeWigicqH7O++73wNtmdgfwEYEkTwgkcRaZ2QpgFoFU1RRgqfd4yXy8R1eKRDKduBYRkaB0uElERIJSkxARkaDUJEREJCg1CRERCUpNQkREglKTEBGRoNQkREQkKDUJEREJ6n8BakNfWO3nHXQAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# Redefine Nlines to not take into account name row\n", "Nlines = len(year)\n", "\n", "# Create labels for figures\n", "datelabels = []\n", "for i in range(Nlines) :\n", " yyyy = str(year[i])\n", " mm = str(month[i])\n", " dd = str(day[i])\n", " date_string = yyyy+\"-\"+mm+\"-\"+dd\n", " datelabels.append(date_string)\n", " \n", "fig, ax = plt.subplots()\n", "\n", "I_x = [i for i in range(Nlines)]\n", "ax.plot(I_x,Nemail)\n", "ax.set_xticks(I_x)\n", "ax.set_xticklabels(datelabels)\n", "plt.xlabel(\"Date\")\n", "plt.ylabel(\"Number of emails\")\n", "\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Some numbers" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Mean" ] }, { "cell_type": "code", "execution_count": 55, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "1.6666666666666667" ] }, "execution_count": 55, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.mean(Nemail)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }