{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Traitement du fichier de données\n", "## Chargement de quelques librairies" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "%matplotlib inline\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "import pandas as pd" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Lecture des données" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['Date', 'Number of emails', 'Number that require answers']\n", "['2023-08-02', '3', '0']\n", "['2023-08-03', '2', '0']\n", "['2023-08-04', '2', '0']\n", "['2023-08-05', '0', '0']\n", "['2023-08-06', '1', '0']\n", "['2023-08-07', '3', '2']\n", "['2023-08-08', '5', '3']\n" ] } ], "source": [ "filename = \"Emails_par_jours.csv\"\n", "\n", "file = open(filename,\"r\")\n", "data = file.readlines()\n", "Nlines = len(data)\n", "for line in data :\n", " print(line[0:-1].split(\",\"))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Mettre les données dans des tableaux" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[2023 8 2 3 0]\n", " [2023 8 3 2 0]\n", " [2023 8 4 2 0]\n", " [2023 8 5 0 0]\n", " [2023 8 6 1 0]\n", " [2023 8 7 3 2]\n", " [2023 8 8 2 0]]\n" ] } ], "source": [ "names = data[0]\n", "names = names[0:-1].split(\",\")\n", "Ncol = len(names)\n", "\n", "\n", "datatab = np.zeros((Nlines-1, Ncol),dtype=int)\n", "for i in range(1,Nlines) :\n", " line = data[i]\n", " line = line[0:-1].split(\",\")\n", " for j in range(Ncol) :\n", " datatab[i-1,j] = int(line[j])\n", "print(datatab)\n", "year = datatab[:,0]\n", "month = datatab[:,1]\n", "day = datatab[:,2]\n", "Nemail = datatab[:,3]\n", "Nanswer = datatab[:,4]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Afficher les données" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEKCAYAAADn+anLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xl8VPW9//HXJwsJEAKEBAhJIIDsW0gCYlUquIILyhJU7HbvrxaU1rr01i5q1fZ6ba2tiEu9t7a1oJKACyru+1I1k5CwI8iWECBhS8ISEpLv7485sTFmkslycubMfJ6Px3lkMnPmzOdriJ+cc77nfcQYg1JKKdWUMKcLUEopFbi0SSillPJJm4RSSimftEkopZTySZuEUkopn7RJKKWU8kmbhFJKKZ+0SSillPJJm4RSSimfIpwuoLXi4+NNamqq02UopZSr5OXlHTTGJLT2fa5rEqmpqXg8HqfLUEopVxGR3W15nx5uUkop5ZM2CaWUUj5pk1BKKeWTNgmllFI+aZNQSinlk21NQkSiReRzESkUkY0icncT64iILBGR7SKyTkTS7apHKaVU69k5BfYUMN0Yc0xEIoGPRORVY8ynDdaZAQyzljOBx6yvSimlAoBtexLG65j1baS1NL5X6izgKWvdT4FeIpJoRz2lFVXc/dJGqk/X2bF5pVQA2lRSwac7DjldhqvZek5CRMJFpAAoBd40xnzWaJUkoKjB98XWc423c72IeETEU1ZW1qZa8vcc4W8f7+K+Vze36f1KKXcxxrD46Xyu+7/PyNt9xOlyXMvWJmGMqTXGpAHJwGQRGdtoFWnqbU1s5wljTKYxJjMhodVXlQNwydhEfnB2Kn/7eBcvrytp0zaUUu7h2X2EHQePExYmLH46n0PHTjldkit1yuwmY8xR4D3gkkYvFQMpDb5PBmz7P/gvZowifWAvfr5yHdtLj7X8BqWUa63ILSImKoLl/+9MDh2v5qZnC6it+8bfoKoFds5uShCRXtbjrsAFwJZGq60GvmvNcpoClBtj9tlVU5eIMB5ZkE5UZDg3LM/jRPVpuz5KKeWgY6dO88q6fVw+IZFJqXHcc8UYPtp+kIfe+sLp0lzHzj2JROBdEVkH5OI9J/GyiCwUkYXWOmuAHcB24H+BG2ysx1tUz64suXoi20qP8cvn1mOM/mWhVLB5ubCEkzW1zMv0HqiYPymFuRnJLHlnO+9uLXW4OnexbQqsMWYdMLGJ5x9v8NgAN9pVgy/nDIvnlguG88c3vyAjNY7vTBnU2SUopWyU7SliWN8YJqb0AkBEuHfWWDaWVHDzigJe/vE5JPfu5nCV7hCyV1zfOO0Mpo1I4N6XNlFQdNTpcpRSHWR7aSX5e44yf1IKIv+eG9O1SziPLUinttZww/J8Tp2udbBK9wjZJhEWJvxpfhoJPaK4cXk+R45XO12SUqoDrMgtIiJMuHLiN2bTkxrfnQeyJrCuuJx7X97kQHXuE7JNAqBXty48dl06ZZWn+OmKAup05oNSrlZTW8dz+Xu5YFQ/4mOimlzn4jH9+dHUISz7dA/Pry3u5ArdJ6SbBMD45F7ceflo3v+ijIff2e50OUqpdnh7cymHjleTNSm52fV+dvEIJg+O4xfPrWfr/spOqs6dQr5JACw4cyCzJybx57e/4IMv2nZFt1LKeTmeIvrFRjF1WPMX3UaEh7H0monEREWyaFkelVU1nVSh+2iTwDvz4XdXjWN43x7c9OxaSo6edLokpVQrHaio4t2tpcxJTyYivOX/tfWNjWbptRPZffgEP1+1TqfD+6BNwtK1SziPXZdOjTXzQYMAlXKXVfnF1BnIykxpeWXLlCF9+NnFI1izfj9PfrzLvuJcTJtEA0MSYvj93PEUFB3lv9doEKBSbmGMIcdTzOTBcaTGd2/Ve380dQgXju7HfWs249l12KYK3UubRCMzxyXyn+cM5u+f7GJ1oQYBKuUGubuOsPPgcea3Yi+inojwwLwJJPXuyo1P53NQgwC/RptEE26fMZLMQb25fdU6tpfqzAelAl19mN+Mcf3b9P6eXSN5dEE6R0/UcNOzazUIsAFtEk2IDA9j6bXpdOsSzsJl+Rw/pUGASgWqyqoa1qzfx+UTBtCtS9uThsYM6Mm9s8by8fZD/OlNDQKsp03Ch/49o1ly9UR2lB3jFxoEqFTAenndPk7W1JKV2fy1Ef7ImpTC/MwUlr67nXe2HOiA6txPm0QzvnVGPLdeNILVhSU89a/dTpejlGpCtqeI4f1iSLPC/Nrr7lljGJ0Yy80rCik6fKJDtulm2iRasOjbQzl/ZF9++8om8vfoLRCVCiTbDlSyds9RsjK/HubXHtGR4Tx+XQZ1xjsdvqomtIMAtUm0ICxMeDArjX6x0Sxens9hDQJUKmCsyC0iMly4qokwv/YY2KcbD2alsX5vOXe/FNpBgNok/NCzWySPLcjg4LFqnfmgVICoPl3H82u9YX59fIT5tceFo/ux8NtDeebzPazKC90gQG0SfhqX3JPfXDGGD7cdZMnb25wuR6mQ986WA94wvzZcG+Gv2y4azpQhcfzqhfVs2V9h2+cEMm0SrXDN5BRmpyex5J1tvKe3QFTKUdmeYvrHRjN1ePNhfu0RER7GkmsmEhsdyaJl+VSEYBCgNolWEBF+d+U4RvTrwU9XFLBXgwCVcsT+8ire21rKnIwkwsM65oS1L317RLP02nT2HD7Bf+WEXhCgNolW8gYBZugtEJVyUH2Y37wM+w41NTR5cBw/v2QEr23cz18/2tkpnxkotEm0weD47vxh3ngKi47yu1c0CFCpzuQN8yvizDaE+bXHD88dwsVj+nHfq1vIDaEgQG0SbXTJ2ER+eO5gnvrXbl4s2Ot0OUqFjM93HmbXoRPMn9Q5exH1RIQ/zJtASu+u3Lg8n7LK0AgC1CbRDv91yUgmpfbm9lXr+eKABgEq1RlWeIroERXBjLGJnf7ZsdGRPLogg/KTNfzkmbWcrg3++85ok2iH+iDA7lERLFyWxzENAlTKVl+F+aUNoGuXcEdqGD0glt9dNY5/7TjEgyEQBGhbkxCRFBF5V0Q2i8hGEbmpiXXOE5FyESmwljvtqscu/WKjefiaiew6eFxvgaiUzV4q3EdVTZ2t10b4Y25GMtdMTuHR977krU3BHQRo557EaeBWY8woYApwo4iMbmK9D40xadZyj4312OasoX247eIRvLJuH3//ZJfT5SgVtLI9RYzo14MJyT2dLoW7Lh/D2KRYbskuYM+h4A0CtK1JGGP2GWPyrceVwGagYwNWAsjCqUO5YFRffvfKZvJ2axCgUh3tiwOVFBQdJWtSx4X5tUd0ZDiPLcgAYNHyvKANAuyUcxIikgpMBD5r4uWzRKRQRF4VkTE+3n+9iHhExFNWVmZjpW0XFib8cV4aib2iWfx0Pof0FohKdSi7wvzaIyWuG3+an8bGkgp+s3qj0+XYwvYmISIxwCrgp8aYxuEn+cAgY8wE4GHghaa2YYx5whiTaYzJTEiw7xL89qoPAjx0vJqbni3QIEClOkh9mN+Fo/sR172L0+V8zfmj+nHDeUN5NreIHE+R0+V0OFubhIhE4m0Qy40xzzV+3RhTYYw5Zj1eA0SKSLydNdltbFJP7rliDB9tP8hDbwX/zAelOsPbmw9w+Hg18xw+Ye3LLRcO56whffj1CxvYVBJcQYB2zm4S4K/AZmPMgz7W6W+th4hMtuo5ZFdNnWX+pBTmZiSz5J3tvKtBgEq1W7anyBvmNywwjyTUBwH27BrJDcvzgioI0M49ibOB7wDTG0xxnSkiC0VkobXOXGCDiBQCS4CrTRDMIRUR7p01lpH9e3DzigKKjwTvzAel7La/vIr3vyhjbkay7WF+7ZHQI4pHFqRTdOQkt2UXBs10eDtnN31kjBFjzPgGU1zXGGMeN8Y8bq2z1BgzxhgzwRgzxRjziV31dLauXby3QNQgQKXa56swv8xkp0tp0aTUOH4xYyRvbDrA/364w+lyOoRecW2j1PjuPJA1gXXF5dwT4rdAVKot6uoM2Z4ipgyJY1Cfzgvza4//PGcwM8b25/7XtvLZDtcfPdcmYbeLx/TnR1OHsPyzPTy/NnRvgahUW3y+6zC7HQjzaw8R4fdzxzMwrhuLn1lLaWWV0yW1izaJTvCzi0cweXAcv3huPVv3axCgUv7KzvWG+V0ypvPD/NqjR3Qkj12XTmVVDT9+2t1BgNokOkFEeBhLr5lITFQki5blURlEMx+UsktFVQ1rNuzjCgfD/NpjZP9Y/vuqcXy28zAPvOHe6fDaJDpJ39holl47kd2HT2gQoFJ+eKmwhKqaOlcdampsdnoy1545kMff/5I3Nu53upw20SbRiaYM6cPPLh7BmvX7efLjXU6Xo1RAy/YUM7J/D8YlOR/m1x53XjaacUk9uTWnkN2HjjtdTqtpk+hkP5o6hAtH9+O+NZvxhNAtEJVqja37KyksOkpWZmCE+bVHdGQ4jy5IJ0yEhcvyXRcEqE2ik4kID8ybQFLvrtz4dD4HNQhQqW+oD/O7MoDC/NrDGwQ4gc37KrjzxQ1Ol9Mq2iQc0LNrJI8uSOfoiRpuenatBgEq1YA3zK+Yi0b3D7gwv/aYPrIfi6edQbanmOxc9wQBapNwyJgBPbl31lg+3n6IP4XALRCV8tdbmw9w5ESNK66wbq2bLxzO2Wf04Y4XN7CxpNzpcvyiTcJBWZNSyMpMZum723l7c3DfAlEpf2V7ikjsGc25ARrm1x7hYcJDV0+kd7cuLFqWT/nJwJ8Or03CYffMGsvoxFhuXlFA0WENAlShbV/5ST5wQZhfe8THRPHIgomUHD3JbTmBHwSoTcJh0ZHhPHZdOobgvgWiUv5YlWeF+WW499oIf2QMiuMXM0fx5qYD/OWDwA4C1CYRAAb16c4f501gw94K7tYgQBWivGF+xZw1pA8D+3Rzuhzb/cfZqVw6LpHfv7aFTwM4CFCbRIC4aEx/Fn57KM98vodVeRoEqELPZzsPs+ewu8L82kNE+J8540jt053FT6+ltCIwgwC1SQSQ2y4azpQhcfzqhfVs2R9ct0BUqiXZniJ6REdwydj+TpfSabxBgBkcP3Waxc8EZhCgNokAUn8LxNjoSBYtyw+qWyAq1ZyKqhrWrN/HrLQBREe6L8yvPUb078F9s8fx+c7D/OH1rU6X8w2tahIi0ltExttVjIK+PaJZem06ew6f4L9yNAhQhYbVBSWcOl3H/MyBTpfiiCsnJnHdlIH85YMdvLYhsIIAW2wSIvKeiMSKSBxQCPxNRB60v7TQNXlwHD+/ZASvbdzPXz/a6XQ5Stkux1PEyP49GJsU63QpjrnjstFMSO7Jz3IK2XkwcIIA/dmT6GmMqQBmA38zxmQAF9hblvrhuUO4eEw/7nt1C7kaBKiC2Jb9FRQWlzN/kvvD/NojKiKcRxakEx4uLFqWx8nqwJgO70+TiBCRRCALeNnmepRFRPjDvAmk9O7KjcvzKavUIEAVnFbkFtElPIwr04IjzK89knt340/z09h6oJI7XtwQEIeb/WkS9wCvA9uNMbkiMgTYZm9ZCiA2OpJHF2RQfrKGHz+TH5AzH5Rqj1Ona3lh7V4uHNOP3kEU5tce00b05cfTzmBlXjErAiAIsMUmYYzJMcaMN8bcYH2/wxgzx/7SFMDoAbH89sqxfLrjMH/UIEAVZN7aVMqREzVkZYbGtRH+uumC4Zw7LJ47V29kw15ngwAjfL0gIg8DPvd1jDE/aW7DIpICPAX0B+qAJ4wxDzVaR4CHgJnACeD7xph8v6sPEfMyU8jbfYTH3vuS9IG9uXB0P6dLUqpDZHuKGNAzmnPOiHe6lIASHib8eX4alz38EYuW5/Hy4nPp2S3SkVqa25PwAHnNLC05DdxqjBkFTAFuFJHRjdaZAQyzluuBx1pVfQj5zRVjGDMglluyC9hzSIMAlfuVHD3JB9uCO8yvPfrERLH02nT2Ha3i1pwC6hy674zPJmGM+UdzS0sbNsbsq98rMMZUApuBxmemZgFPGa9PgV7WSXLVSHRkOI8tyEDQIEAVHFblFWOMd09ZNS1jUG9+deko3tpcyuMffOlIDc0dbvqzMeanIvISTRx2MsZc4e+HiEgqMBH4rNFLSUDDMzPF1nP7/N12KBnYpxsPZqXx/57y8N2/fs6gIAlBm52ezFlD+zhdhupEdXWG7LwivjW0DylxwfHv2C7f/1Yqnt1HeOD1raSl9OJbQzv30JzPJgH80/r6QHs+QERigFXAT63rLb72chNv+UZDEpHr8R6OYuDA0Lwis94Fo/vxy5kj+ccnuyk+4v7DTkdO1LB+bzmv3nRuSM+RDzWf7jxE0eGT3HbRCKdLCXgiwv1zxrN1fyWFReWB0ySMMXnW1/fbunERicTbIJYbY55rYpVioOG+ZjJQ0kQtTwBPAGRmZjo/cdhh108dyvVThzpdRodY9ulufv3CBtbvLWd8ci+ny1GdJDvXG+Z38ZjQCfNrj5ioCF5afA5du3R+rpU/sRzDRGSliGwSkR31ix/vE+CvwGZjjK8Yj9XAd8VrClBujNFDTSHkirQBREWEBcR8cNU5yk/W8OqG/VyZlhRyYX7t4USDAP8upvsb3llHp4FpeKe1/rPZd3idDXwHmC4iBdYyU0QWishCa501wA5gO/C/wA2tHYByt9joSGaOS2R1QUnAxBAoe60utML8QuS+EW7X3DmJel2NMW+LiBhjdgO/EZEPgbuae5Mx5iOaPufQcB0D3Oh3tSooZWWm8Pzavby2cR9XTUx2uhxlsxxPEaMSYxkzIHTD/NzEnz2JKhEJA7aJyGIRuQroa3NdKoScOTiOgXHdyM7VO/IFu837KlhXXM78zGSdqOAS/jSJnwLdgJ8AGXgPIX3PzqJUaAkLE7Iyk/nXjkPsPhQ4Ecmq49WH+c3SMD/X8Ce7KdcYc8wYU2yM+YExZrZ14ZtSHWZORjJhAiv1/t5B69TpWl4o2MtFGubnKv7MbsoUkedFJF9E1tUvnVGcCh2JPbsydXgCK/OKqXUofkDZ681NBziqYX6u48/hpuV4ZzjNAS5vsCjVobIyU9hXXsWH28qcLkXZINtTTFKvrpytYX6u4k+TKDPGrDbG7DTG7K5fbK9MhZwLRvUjrnsXsj16zUSw2Xv0JB9uK2OOhvm5jj9TYO8Skf8D3ga+uj2ajyuolWqzLhHeu5P989NdHD5eTZwetw4aX4X5ZegUZ7fxZ0/iB0AacAn/PtR0mZ1FqdA1f1IKNbWG59fudboU1UHq6gzZniLOPkPD/NzInz2JCcaYcbZXohQwon8PJiT3JMdTxH+cnapz6YPApzsOUXzkJD+7WMP83MifPYlPm7hZkFK2yZqUwpb9lawrdva2japjrPAUEathfq7lT5M4BygQka3W9Nf1OgVW2enyCQOIjgxjhZ7Adr3yE1aY30QN83Mrfw43XWJ7FUo1EBsdycyxibxUUMIdl452LP1Std/qwr1Un67TayNczJ8rrnfjvefDdOvxCX/ep1R7ZE1KofLUaV7doMnxbpbtKWZ0Yixjk3o6XYpqI3+uuL4L+DnwC+upSGCZnUUpdebgOAb16abXTLjYppIK1u8t10hwl/Nnj+Aq4ArgOIAxpgToYWdRSokIWZkpfLrjsIb+uVS2p4guEWHMShvgdCmqHfxpEtXWfR8MgIh0t7ckpbzmpHtD/3I8GvrnNlU1tTy/di8Xj+lPr256UaSb+dMkskXkL0AvEfkh8Bbeu8gpZav+PaP5tob+udKbmw5QfrKGrEy9wtrt/Dlx/QCwElgFjADuNMY8bHdhSoE39G9/RRUfaOifq2R7irxhfkM1zM/t/JkCizHmTeBNm2tR6hvOrw/9yy1i2gi9IaIbFB85wUfbD/KT6cMI0zA/19OprCqgdYkI46qJSby1+QCHjp1q+Q3KcavyvLlb8/RQU1DQJqECXlamhv65RV2dISeviLOHxpPcW8P8goHPJiEib1tf7++8cpT6phH9ezAhpRfZniK8E+1UoPqXFeaXpddGBI3m9iQSReTbwBUiMlFE0hsunVWgUgDzM1P44sAxCjX0L6CtyC2iZ9dILhrdz+lSVAdp7sT1ncDtQDLwYKPXDDDdrqKUauyyCYnc8/JGVuQWkZbSy+lyVBPKT9Tw2sb9XDMpRcP8gojPPQljzEpjzAzg98aYaY2WFhuEiDwpIqUissHH6+eJSLmIFFjLne0YhwpysdGRzByXyEuFJZysrnW6HNWEF+vD/PRQU1Dx5zqJe0XkChF5wFr8vSvd32k5QfZDY0yatdzj53ZViJqfmcKxU6dZs15D/wJRtqeIMQNiGTNAw/yCiT8Bf/cBNwGbrOUm67lmGWM+AA63u0KlLJMHx5GqoX8BaWNJORv2VmiYXxDyZwrspcCFxpgnjTFP4t07uLSDPv8sESkUkVdFZEwHbVMFKRFhXmYKn+08zK6DGvoXSLJzrTC/CUlOl6I6mL/XSTQ8U9hR+5L5wCBjzATgYeAFXyuKyPUi4hERT1mZxjOEsq9C//J0byJQVNXU8kJBCZeM6U/PbpFOl6M6mD9N4j5grYj8XUT+AeQB/93eDzbGVBhjjlmP1wCRItJk0Isx5gljTKYxJjMhIaG9H61crH/PaM4b0ZeVecWcrq1zuhwFvPFVmJ8eagpG/py4fgaYAjxnLWcZY55t7weLSH8REevxZKuWQ+3drgp+WZnJHKg4xYfbDjpdigJyrDC/bw3t43Qpygb+BvztA1a3ZsMi8gxwHhAvIsXAXXjvaocx5nFgLrBIRE4DJ4GrjV5Oq/wwfWQ/+nTvworcIqaN1NA/J9WH+d10vob5BSu/mkRbGGOuaeH1pcBSuz5fBa/60L+/f7KLQ8dO0ScmyumSQtbKPO8NoeZmaJhfsNKAP+VKWZNSOF2noX9Oqqsz5HiKOecMDfMLZs02CREJ83XFtFJOGt6vB2kpvViRq6F/Tvnky0PsPXpST1gHuWabhDGmDigUkYGdVI9Sfps/KYVtpccoKDrqdCkhaYWniF7dIrlojIb5BTN/DjclAhtF5G0RWV2/2F2YUi25bHwiXSPD9QpsBxw9Uc3rG/dzZVoSUREa5hfM/DlxfbftVSjVBj2+Cv3bxx2XjaZbF9vmYahGXiwo8Yb56aGmoOfPdRLvA7uASOtxLt6rpZVyXFZmshX6t9/pUkLKitwixibFMnpArNOlKJv5E/D3Q2Al8BfrqSSaidBQqjNNHhzH4PjuesipE23YW86mfRXM172IkODPOYkbgbOBCgBjzDZAr2BSAcEb+pfM5zsPs1ND/zpFtscb5neFhvmFBH+axCljTHX9NyISgffOdEoFhK9C/3RvwnZVNbW8sHYvM8ZqmF+o8KdJvC8ivwS6isiFQA7wkr1lKeW/frHRTNPQv07x+sb9VFSd1hPWIcSfJnE7UAasB34ErAF+bWdRSrXWvMwUSitP8cE2jZK3U46nmOTeXTlriIb5hYoW5wwaY+qsiPDP8B5m2qpBfCrQnD+qL/Ex3tC/6SP14i47FB32hvndfMFwDfMLIf7MbroU+BJYgjeQb7uIzLC7MKVaIzLcG/r39uZSDh475XQ5QWllXjEiMDdTw/xCiT+Hm/4ITDPGnGeM+TYwDfiTvWUp1XpZmVboX76G/nW02jrDyrxizh2WQFKvrk6XozqRP02i1BizvcH3O4BSm+pRqs2G9evBxIG9yPZo6F9H++TLg1aYn+5FhBqfTUJEZovIbLy5TWtE5Psi8j28M5tyO61CpVphfqY39G+thv51qBW53jC/C0fr+Z5Q09yexOXWEg0cAL6N905zZUBv2ytTqg0urQ/9y9VrJjrK0RPVvLHxgIb5hSifs5uMMT/ozEKU6gg9oiO5dHwiLxWWcOflGvrXEV5Yu5fqWg3zC1X+zG4aLCIPishzGhWu3CArM4Xj1bW8sm6f06W4njGGFZ5ixiX11DC/EOXPn1kvAH/Fey5CL2dVAW9Sam8Gx3cnx1PMPP3rt102llSweV8F91451ulSlEP8aRJVxpgltleiVAepD/37/Wtb2VF2jCEJMU6X5ForcouIigjjigkDnC5FOcSfKbAPichdInKWiKTXL7ZXplQ7zE1PJjxMyMkrdroU16qqqeXFAivMr6uG+YUqf/YkxgHfAabz78NNxvpeqYDUNzaaaSMSWJVXzK0XDici3J+/h1RDGuanwL8mcRUwpGFcuFJuMC8zhbc2l/L+F2WcP0rn97dWtqeIlLiuTNEwv5Dmz59XhUCv1m5YRJ4UkVIR2eDjdRGRJSKyXUTW6SEs1dGmj/x36J9qnaLDJ/h4+yHmZaRomF+I86dJ9AO2iMjrrZwC+3fgkmZenwEMs5brgcf82KZSfosMD2N2ejLvbCmlrFJD/1ojpz7ML0NjOEKdP4eb7mrLho0xH4hIajOrzAKesmLHPxWRXiKSaIzRye2qw2RlJvPEBzt4fm0x108d6nQ5rlBbZ1jpKWLqsAQGaJhfyPPnfhLv2/TZSUDD4wDF1nPaJFSHOaNvD9IH9iLbU8wPzx2CiB46acl7W0spKa/iV5eOdroUFQD8ueK6UkQqrKVKRGpFpKIDPrup39YmoztF5HoR8YiIp6xM7zymWmf+pBS2lx4jf4+G/rWkrPIUv3huPYPju3PB6L5Ol6MCQItNwhjTwxgTay3RwBy8Nx9qr2Kg4dy6ZKDERw1PGGMyjTGZCQkJHfDRKpRcOn4A3bpo6F9LTtfW8ZNn1lJRVcOjC9I1zE8B/p24/hpjzAt0zDUSq4HvWrOcpgDlej5C2SEmKoJLxyXy8roSjp867XQ5AevBN7/gXzsO8dsrxzEqUXOalFeL5ySse0rUCwMy8XFYqNH7nsEbLR4vIsV4T4BHAhhjHgfWADOB7cAJQFNnlW2yJqWQk1fMK+v36cVhTXhz0wEefe9LrpmcojOa1Nf4M7vp8gaPTwO78M5MapYx5poWXjfAjX58vlLtljmoN0Piu5PjKdIm0cieQye4JbuAsUmx3HX5GKfLUQHGn9lN+he+cj1v6F8K97+2hS/LjjFUQ/8Abz7TouV5CPDYggyiI/U8hPo6n01CRO5s5n3GGHOvDfUoZZuFrnpAAAAQ2UlEQVQ5GUk88MZWcjzF3D5jpNPlBITfrN7IxpIKnvx+Jilx3ZwuRwWg5k5cH29iAfhP4Oc216VUh+vbI5ppI/qyKr+Y07V6a5QcTxHP5hZx47ShTB+p2VaqaT6bhDHmj/UL8ATQFe/J5WeBIZ1Un1IdKiszmbLKU7y3NbSvt9lUUsGvX9jAt4b24ZYLRzhdjgpgzU6BFZE4EfktsA7voal0Y8zPjTGlnVKdUh1s2si+xMdEscITutdMVFTVcMPyPHp1i2TJNRMJ1wA/1QyfTUJE/gDkApXAOGPMb4wxRzqtMqVsEBkexpz0JN7ZUkppZZXT5XQ6Ywy3ZRdSfOQkj1ybTnxMlNMlqQDX3J7ErcAA4NdASYNojsoOiuVQyhHzMlOorTM8n7/X6VI63f9+uIM3Nh3g9hkjyUyNc7oc5QLNnZMIM8Z0bRTLEVv/fWcWqVRHOqNvDBmDepPtKcJ7uU5o+GzHIe5/bSszx/XnP88Z7HQ5yiX0no4qJM3PTOHLsuPk7wmNI6illVUsfmYtg+K6cf+c8ZqGq/ymTUKFpJnjE+nWJTwk7lp3uraOxU+vpbKqhkevS6dHdKTTJSkX0SahQlJMVASXjU/k5XX7gj707w9vbOXznYf576vGMbK/HilWraNNQoWsrMwUTlTX8sq64A0ffmPjfv7y/g6uPXMgs9M1uE+1njYJFbIyBvVmSEJ3soP0mondh45za04h45N7cudlepc51TbaJFTIEhGyMlPw7D7C9tJjTpfToapqalm4LJ8wER65Nl2D+1SbaZNQIW12ehLhYUJOXnDtTdz54gY276vgz/PTNLhPtYs2CRXSvgr9y9tLTZCE/mXnFpHtKebH089g2ki9T7VqH20SKuTNn5TCwWPBEfq3saScO17cwDlnxPPTC4Y7XY4KAtokVMibNiKBhB5Rrr9movxkDYuW5dO7WxceujpNg/tUh9AmoUJeRHgYs9OTeHere0P/jDHcllNIydGTPLIgnT4a3Kc6iDYJpfBeM1FbZ3jOpaF/f/lgB29uOsAvZ44iY1Bvp8tRQUSbhFLA0IQYMl0a+vevLw/x+9e2cOn4RH5wdqrT5aggo01CKUvWpBR2lB0nb7d7Qv9KK6r48TNrSY3vrsF9yhbaJJSyXDouke4uCv2rsYL7jp86zePXZRATFeF0SSoIaZNQytI9KoLLxg/glfX7OOaC0L8/vL6Vz3cd5r7Z4xjer4fT5aggZWuTEJFLRGSriGwXkdubeP08ESkXkQJrudPOepRqSdakZCv0r8TpUpr12ob9PPHBDr4zZRBXTkxyuhwVxGxrEiISDjwCzABGA9eISFMpYx8aY9Ks5R676lHKH+kDezM0oTvZnmKnS/Fp58Hj/CynkAkpvfj1ZaOcLkcFOTv3JCYD240xO4wx1cCzwCwbP0+pdqsP/cvbfYTtpZVOl/MNJ6trWbQsj/Bw4ZFrJxIVocF9yl52NokkoOEZwGLrucbOEpFCEXlVRMbYWI9SfpmdnuwN/QuwvQljDHe8uIGtByr58/w0kntrcJ+yn51Noqm5eI0noOcDg4wxE4CHgRea3JDI9SLiERFPWZn783VUYEvoEcX0kX1ZlV8cUKF/K3KLWJlXzI+nD+O8ERrcpzqHnU2iGEhp8H0y8LWzgcaYCmPMMevxGiBSROIbb8gY84QxJtMYk5mQkGBjyUp5zc9M4eCxat7dUup0KQBs2FvOnas3cu6weG46f5jT5agQYmeTyAWGichgEekCXA2sbriCiPQX6+ofEZls1XPIxpqU8st5VuhfINy1rvxEDQuX5dGnexceunqiBvepTmVbkzDGnAYWA68Dm4FsY8xGEVkoIgut1eYCG0SkEFgCXG3clomgglJEeBhz0pN5d2sZpRXOhf7V1RluyS7gQEUVjyxIJ657F8dqUaHJ1uskjDFrjDHDjTFDjTG/s5573BjzuPV4qTFmjDFmgjFmijHmEzvrUao1sjKTqa0zrHIw9O+x97/k7S2l/GrmKNIHanCf6nx6xbVSPgxJiGFSam9yHAr9++TLg/zxja1cPmEA3/tWaqd/vlKgTUKpZmVlprDj4HE8nRz6t7+8ip88s5bB8d35n9njNLhPOUabhFLNmGmF/mV3YuifN7gvnxPVtTx+XQbdNbhPOUibhFLN6B4VweUTOjf07/5Xt+DZfYT7Zo9jmAb3KYdpk1CqBfMyUzhRXcvLhfaH/r26fh//99FOvnfWIGalaXCfcp42CaVakD6wF2f0jbH9mokdZcf42cp1pKX04leXNpWFqVTn0yahVAu8oX/J5O85alvo38nqWm5Ynk9kuPDIgnS6ROivpgoM+i9RKT9cNTGZiDCxJULcGMOvnl/P1gOVPHT1RJJ6de3wz1CqrbRJKOWH+tC/52wI/Xv68z08t3YvN50/jKnDNZtMBRZtEkr5af4kb+jfOx0Y+reu+Ch3r97E1OEJ/GS6BvepwKNNQik/fXt4An17RHXYNRNHT1SzaFk+8TFd+PP8NMI0uE8FIG0SSvkpIjyMORnJvLu1lAPtDP2rqzPcvKKA0soqHr0uQ4P7VMDSJqFUK8zLSKbOwKr89p3AfvS97by7tYw7LhtNWkqvDqpOqY6nTUKpVhiSEMPk1DhyPMVtDv37ePtBHnzzC66YMIDvTBnUwRUq1bG0SSjVSlmTUth58Di5u1of+lcf3DckIYb7NLhPuYA2CaVaaea4/sRERbT6Cuya2jpufDqfqhoN7lPuoU1CqVbq1iWCyyck8sq6fVRW1fj9vvvWbCFv9xHunzueM/rG2FihUh1Hm4RSbTAvM4WTNbW8vG6fX+u/sm4fT368k+9/K5XLxg+wuTqlOo42CaXaYGJKL4b5Gfr3Zdkx/mtlIekDe/HLmaM6oTqlOo42CaXawBv6l8LaPUfZdsB36N+J6tMsWpZHVGS4BvcpV9J/sUq10VXpSVboX9N7E8YYfvnceraVHuOhq9NI7KnBfcp9tEko1UbxMVGcP6ovz+Xvpfr0N0P/ln22hxcKSrj5guGcO0yD+5Q7aZNQqh3mT0rh0PFvhv4VFh3l3pc2cd6IBBZPO8Oh6pRqP20SSrXD1GFW6F+DQ05Hjldzw/J8EnpE8acsDe5T7mZrkxCRS0Rkq4hsF5Hbm3hdRGSJ9fo6EUm3sx6lOlpEeBhzM5J5zwr9q6sz3JxdQFnlKR5dkE5vDe5TLmdbkxCRcOARYAYwGrhGRBrfuHcGMMxargces6sepewyLzOFOgMr84pZ+u523ttaxh2Xj2aCBvepIGBnLsBkYLsxZgeAiDwLzAI2NVhnFvCU8SalfSoivUQk0Rjj3xVKSgWAwfHdmTw4jr9+tJMjJ6q5amIS15050OmylOoQdh5uSgIazg0stp5r7TpKBbyszBQOH69mWN8YfnfVWA3uU0HDzj2Jpn5LGmcr+7MOInI93sNRDByof6GpwHPZ+ER2HzrO3IxkunXR4D4VPOzckygGUhp8nwyUtGEdjDFPGGMyjTGZCQk631wFnujIcG69aASD+nR3uhSlOpSdTSIXGCYig0WkC3A1sLrROquB71qznKYA5Xo+QimlAodt+8XGmNMishh4HQgHnjTGbBSRhdbrjwNrgJnAduAE8AO76lFKKdV6th48NcaswdsIGj73eIPHBrjRzhqUUkq1nV5xrZRSyidtEkoppXzSJqGUUsonbRJKKaV80iahlFLKJ/FOMHIPESkDdrfx7fHAwQ4sx0k6lsAULGMJlnGAjqXeIGNMq69Gdl2TaA8R8RhjMp2uoyPoWAJTsIwlWMYBOpb20sNNSimlfNImoZRSyqdQaxJPOF1AB9KxBKZgGUuwjAN0LO0SUucklFJKtU6o7UkopZRqDWNMwC147zHxLrAZ2AjcZD0fB7wJbLO+9raevxDIA9ZbX6c32NZrQKG1nceBcB+feY31/nXWe+KbWKcb8Aqwxdre/7h1LK3ZnhvG0mD91cAGl/9c3gO2AgXW0tel4+iC9/DIF3h/Z+a48WcC9GjwsyjAOwX1z24cS5t+p1r6ZXJiARKB9AY/oC+A0cDvgdut528H7rceTwQGWI/HAnsbbCvW+irAKuDqJj4vAiit/49lfc5vmlivGzCtwS/Ah8AMN47F3+25ZSzW67OBp/GvSQTsWPA2iUw3/65Yr90N/NZ6HEbLDT5gx9LofXnAVDeOpS1jDsjDTcaYfcaYfOtxJd5unATMAv5hrfYP4EprnbXGmPo72m0EokUkynqtwno+Au//2Js6CSPW0l28NyeOpek75J0wxrxrPa4G8vHeTc91Y2nF9lwxFhGJAW4BftvcGNwwltYI8HH8B3Cfte06Y0yzF4EF+Fi8bxAZBvTF+weiG8fS+n+HLXVNpxcgFdhjDeZoo9eONLH+XOCtRs+9DhzB+1emr121uUAFsA/4wNd6DdbvBewAhrh5LP5szw1jAf4EXGXV1eKeRICP5T28hwMKgDuwJpi4aRzW70cR8CDeP6ZygH5u/Zk0WP9O4AGX//tq3ZhbM9jOXoAYvLt2s63vm/0PDIwBvgSGNrGtaLy7ahc28Vok8DYwFG+XXQr8upm6IoBXgZ+6fSwtbc8NYwHSgJesx6m0okkE2lisdZOsrz2AN4Dvum0ceOMjDNZ5CLx7ef9068+kwXs2ARlu/ffVpjH7O9jOXqzBvA7c0uC5rUCi9TgR2NrgtWS8x/3Obmab37P+o4Tz75NQ9wCTgLcbrDcV7x31vrZeg9efBJYEw1gab8+NYwEW4d1l3gUUA9XAe24cSxPb+35LP5dAHAfe/wEdB8Ks9VKAjW7+mQATgC/c/Hvva71mx+HvgDtzsf6BPUWjGQTAH/j6SZ/fW4974T37P6fR+jENfiARwApgcROfNwDvrleC9f29wB991PZbvN08zM1j8Xd7bhhLo/ek4t+J64Aci7WN+pOKkcBKYKHbxmG99izWLB28zS7HjT+TBuv/D3B3S/+2AnksrR2zMYHbJM7Bu6u6jn93wZlAH7y7Stusr3HW+r/G+1dLw2lqfYF+QK61nY3Aw0CEj89ciPfk0jrgJaBPE+skW3VtbvA5/8+lY/F7e4E+lkbrp+JfkwjIsQDd8R6eqN/eQzR/Tikgx2GtNwjvMe91Vg0D3fgzabDuDmCkm/8f1pbfKb3iWimllE8BOQVWKaVUYNAmoZRSyidtEkoppXzSJqGUUsonbRJKKaV80iahVAtEpFZECkRko4gUisgtItLs746IpIrItZ1Vo1J20SahVMtOGmPSjDFj8EY6zwTuauE9qYA2CeV6ep2EUi0QkWPGmJgG3w/Be4FTPN4Lxv6J9yI48F4N+4mIfAqMAnbiTftcgveK3fOAKOARY8xfOm0QSrWRNgmlWtC4SVjPHQFGApVAnTGmyoqRfsYYkyki5wG3GWMus9a/Hu/Ng35rRUB/DMwzxuzs1MEo1UoRTheglEuJ9TUSWCoiaUAtMNzH+hcB40VkrvV9T2AY3j0NpQKWNgmlWsk63FSL9w5fdwEH8CaEhgFVvt4G/NgY83qnFKlUB9ET10q1gogk4L3P8FLjPVbbE9hnjKkDvoM3mhm8h6F6NHjr68AiEYm0tjNcRLqjVIDTPQmlWtZVRArwHlo6jfdE9YPWa48Cq0RkHt4b3x+3nl8HnBaRQuDveNNcU4F867aRZVi3rlQqkOmJa6WUUj7p4SallFI+aZNQSinlkzYJpZRSPmmTUEop5ZM2CaWUUj5pk1BKKeWTNgmllFI+aZNQSinl0/8H7uttW/FFEvcAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# Redefine Nlines to not take into account name row\n", "Nlines = len(year)\n", "\n", "# Create labels for figures\n", "datelabels = []\n", "for i in range(Nlines) :\n", " yyyy = str(year[i])\n", " mm = str(month[i])\n", " dd = str(day[i])\n", " date_string = yyyy+\"-\"+mm+\"-\"+dd\n", " datelabels.append(date_string)\n", " \n", "fig, ax = plt.subplots()\n", "\n", "I_x = [i for i in range(Nlines)]\n", "ax.plot(I_x,Nemail)\n", "ax.set_xticks(I_x)\n", "ax.set_xticklabels(datelabels)\n", "plt.xlabel(\"Date\")\n", "plt.ylabel(\"Number of emails\")\n", "\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Some numbers" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Mean" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "1.8571428571428572" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.mean(Nemail)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Median" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "2.0" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.median(Nemail)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Traitement des données avec pandas" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
DateNumber of emailsNumber that require answers
02023-08-0230
12023-08-0320
22023-08-0420
32023-08-0500
42023-08-0610
52023-08-0732
62023-08-0853
\n", "
" ], "text/plain": [ " Date Number of emails Number that require answers\n", "0 2023-08-02 3 0\n", "1 2023-08-03 2 0\n", "2 2023-08-04 2 0\n", "3 2023-08-05 0 0\n", "4 2023-08-06 1 0\n", "5 2023-08-07 3 2\n", "6 2023-08-08 5 3" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "raw_data = pd.read_csv(filename)\n", "raw_data" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Number of emailsNumber that require answers
Date
2023-08-0230
2023-08-0320
2023-08-0420
2023-08-0500
2023-08-0610
2023-08-0732
2023-08-0853
\n", "
" ], "text/plain": [ " Number of emails Number that require answers\n", "Date \n", "2023-08-02 3 0\n", "2023-08-03 2 0\n", "2023-08-04 2 0\n", "2023-08-05 0 0\n", "2023-08-06 1 0\n", "2023-08-07 3 2\n", "2023-08-08 5 3" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "date = pd.to_datetime(raw_data['Date'],format='%Y-%m-%d')\n", "raw_data['Date'] = date\n", "data = raw_data.set_index('Date')\n", "data" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAEfCAYAAABh3CzrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xd8VGXe/vHPN50QCC303juIEZDiYlekCKhrXV1dsaHuuu5SxN7A9XF3FVzFvnZXmhRFV7GAgAJCQon03kINLQlJ7t8fMzw/HiUwgcycmcn1fr14hSQnc67DhCsnZ+5z3+acQ0REIkeM1wFERKRkVNwiIhFGxS0iEmFU3CIiEUbFLSISYVTcIiIRRsUtIhJhVNwiIhFGxS0iEmHigvGg1apVcw0bNgzGQ4uIRKUFCxbsdM6lBbJtUIq7YcOGzJ8/PxgPLSISlcxsfaDb6lKJiEiEUXGLiEQYFbeISIRRcYuIRBgVt4hIhAloVImZrQP2A4VAgXMuPZihRESkeCUZDniuc25n0JKIiESw3QfzKSgsonrFpKDvS5dKRERKwSOfLKX3899xKL8g6PsKtLgd8LmZLTCzwcfbwMwGm9l8M5ufnZ1deglFRMLcV1nb+WTxFq7v2oDkhKDc1/h/BFrc3Z1znYBLgbvM7JxfbuCcG+ecS3fOpaelBXTXpohIxDuQV8DIiUtoVj2FO3o1Cck+Aypu59wW/9sdwESgczBDiYhEimdn/MzWnFxGDWpPYlxsSPZ50uI2s/JmVuHo34GLgCXBDiYiEu4WrN/DW3PWcePZDTmzQeWQ7TeQizE1gIlmdnT795xznwU1lYhImMsrKGTY+AxqVUzi/otbhHTfJy1u59waoEMIsoiIRIx/fb2alTsO8PpN6aQkBv8FyWNpOKCISAmt3L6fsTNX0a9Dbc5rWSPk+1dxi4iUQFGRY+j4DFIS43i4b2tPMqi4RURK4O2561m4YS8P9mlN1ZRETzKouEVEArR572Ge+SyLns2qMeCMOp7lUHGLiATAOcfIiZkUOXhqQDv8I+08oeIWEQnAlIytzPw5m/svbkG9KsmeZlFxi4icxJ6D+Tz6yVI61E3lpm4NvY4TnFXeRUSiyePTlrHv8BHe+UMXYmO8u0RylM64RURO4NsV2UxYuJnbf9OEVrUqeh0HUHGLiBTrUH4BIyZm0jitPEPOa+p1nP+lSyUiIsX4n89XsGnPYT667WyS4kMz818gdMYtInIcizbu5Y3Za7muS306N6ridZz/Q8UtIvILRwqLGDY+g7QKiQy9tKXXcX5Fl0pERH5h3LdryNq2n3E3nEnFpHiv4/yKzrhFRI6xOvsA//xyJZe1q8VFbWp6Hee4VNwiIn5FRY7h4zNJiovh4X7ezPwXCBW3iIjf+z9u4Id1uxl5WWuqV0jyOk6xVNwiIsC2fbmMmp5FtyZVuTK9rtdxTkjFLSJlnnOOBycvIb+wiKcHejvzXyBU3CJS5n26ZBtfLNvOfRc2p0HV8l7HOSkVt4iUafsOHeGhyUtpU7sit/Ro5HWcgGgct4iUaU9NX86eQ/m8+fuziIuNjHPZyEgpIhIE36/ayYfzN3Jrz8a0rZPqdZyAqbhFpEw6nF/I8ImZNKiazB8vaOZ1nBLRpRIRKZP+8eUK1u86xHu3dgmrmf8CoTNuESlzlmzex6vfreW36fXo1qSa13FKTMUtImVKQWERQ8dnUKV8AiN6t/I6zinRpRIRKVNenbWWpVty+Nd1nUhNDr+Z/wKhM24RKTPW7TzI379YwUWta3BJ2/Cc+S8QKm4RKROccwyfkElCbAyP9W8b9re1n0jAxW1msWb2k5lNDWYgEZFg+M/8TcxZs4thvVtSMzV8Z/4LREnOuO8FlgcriIhIsOzYn8sT05bRuVEVrjmrvtdxTltAxW1mdYHLgFeDG0dEpPQ98slScgt8M//FxETuJZKjAj3j/gfwV6CouA3MbLCZzTez+dnZ2aUSTkTkdM1Yuo3pmdu49/xmNElL8TpOqThpcZtZH2CHc27BibZzzo1zzqU759LT0tJKLaCIyKnKyT3CQ5OX0LJmBQaf09jrOKUmkDPu7kA/M1sHfACcZ2bvBDWViEgpGP1pFtn78xg9qD3xETLzXyBOeiTOueHOubrOuYbA1cBXzrnrg55MROQ0zFuzi3fnbeDm7o3oUK+S13FKVfT8CBIR8cs9UsjwCZnUrVyO+y5q7nWcUleiW96dc18DXwcliYhIKRnz1SrW7DzIv2/uTHJC9M3soTNuEYkqy7fm8NI3qxnYqQ7nNI/OgRIqbhGJGoVFjmHjM0gtF8+Dl7X2Ok7QqLhFJGq8MXstizft4+F+bahcPsHrOEGj4haRqLBx9yH+5/MVnNeyOn3b1/I6TlCpuEUk4jnnGDExkxiDxy+P7Jn/AqHiFpGIN/GnzXy3cidDL21JnUrlvI4TdCpuEYloOw/k8djUZXSqX4nruzTwOk5IqLhFJKI9NmUZB/MKGD2ofVTM/BcIFbeIRKyvsrbzyeIt3HVuU5rVqOB1nJBRcYtIRDqQV8DIiUtoXiOFO3s19TpOSEXfvaAiUib87bMstubk8vG13UiIK1vnoGXraEUkKixYv5t/z13PjWc35MwGlb2OE3IqbhGJKHkFhQwdn0mtikncf3ELr+N4QpdKRCSi/Ovr1azacYA3bjqLlMSyWWE64xaRiLFi+37GzlxF/461Obdlda/jeEbFLSIRobDIMXR8BimJcTzUJ3pn/guEiltEIsI7c9fz04a9PNinNVVTEr2O4ykVt4iEvc17D/PMZ1n0bFaNAWfU8TqO51TcIhLWnHOMnJhJkYOnBrSL+pn/AqHiFpGw9sniLcz8OZv7L25BvSrJXscJCypuEQlbuw/m8+iUZXSom8pN3Rp6HSdsqLhFJGw9MW0ZOYePMGpQe2LLyMx/gVBxi0hY+nZFNhMWbub23zShVa2KXscJKypuEQk7B/MKGDExk8Zp5RlyXtma+S8QZfN+UREJa899sYJNew7z0W1nkxQf63WcsKMzbhEJK4s27uWN2Wu5rkt9Ojeq4nWcsKTiFpGwcaSwiGHjM0irkMjQS1t6HSds6VKJiISNl79ZTda2/bzyu3QqJsV7HSds6YxbRMLCqh0HeP7LVVzWrhYXtq7hdZywpuIWEc8VFTlGTMgkKT6Gh/uV7Zn/AqHiFhHPvf/jBn5Yt5uRl7WmeoUkr+OEvZMWt5klmdkPZrbYzJaa2aOhCCYiZcO2fbmMmp5FtyZVuTK9rtdxIkIgZ9x5wHnOuQ5AR+ASM+sajDCb9x7GOReMhxaRMOScY+SkJeQXFvH0QM38F6iTFrfzOeB/N97/p9Tbde+hfAaMnc3gtxeQk3uktB9eRMLQp0u28d/l27nvwuY0qFre6zgRI6Br3GYWa2aLgB3AF865ecfZZrCZzTez+dnZ2SUOklountt/04SZWTvo98IssrbllPgxRCRy7Dt0hIcmL6VN7Yrc0qOR13EiSkDF7ZwrdM51BOoCnc2s7XG2GeecS3fOpaelpZU4iJlxc49GvD+4KwfzCxkw9nsm/bS5xI8jIpHhyenL2HMon9GD2hMXq3ESJVGify3n3F7ga+CSoKQBzmpYhWl396BdnVT++OEiHp68hPyComDtTkQ8MHvVTj6av4lbezambZ1Ur+NEnEBGlaSZWSX/38sBFwBZwQxVvWIS797ahVt6NOKtOeu5etwctu3LDeYuRSREDucXMmJiJg2qJvPHC5p5HSciBXLGXQuYaWYZwI/4rnFPDW4siI+N4cE+rRlz7RlkbdtPnxe+Y87qXcHerYgE2T++XMH6XYd4emA7zfx3igIZVZLhnDvDOdfeOdfWOfdYKIId1ad9bSbf1Z3UcvFc/9o8xn27WkMGRSLUks37ePW7tfw2vR7dmlTzOk7EiohXBJrVqMDkIT24uE0NnpqexZ3vLmS/hgyKRJSCwiKGjs+gSvkERvRu5XWciBYRxQ2QkhjH2Gs78UDvVny+bDv9x85m5fb9XscSkQC9OmstS7fk8Fi/NqQma+a/0xExxQ2+IYO3ntOYd//QhZzDR+g/djZTFm/xOpaInMS6nQf5+xcruKh1DS5pW9PrOBEvoor7qK6NqzL17p60qlWRu9//icemLONIoYYMioQj5xzDJ2SSEBvDY/3b6rb2UhCRxQ1QMzWJ92/tyk3dGvL67LVc+8pcduRoyKBIuPlo/kbmrNnF8N6tqJmqmf9KQ8QWN0BCXAyP9GvDP6/uyJLNOVz2wix+WLvb61gi4rcjJ5cnpy2nc6MqXH1WPa/jRI2ILu6j+nesw6S7upOSGMc1r8zl1e/WaMigSBh4ZMpScgt8M//FxOgSSWmJiuIGaFGzApOHdOf8ltV5Ytpyhrz/EwfzCryOJVJmzVi6jemZ27j3/GY0SUvxOk5UiZriBqiYFM/LN5zJ0Eta8mnmVvqPnc2qHQdO/oUiUqpyco/w0OQltKxZgcHnNPY6TtSJquIG35DBO3o14Z1burDnYD79x8zi08ytXscSKVNGfZpF9v48Rg9qT7xm/it1Ufsv2q1pNabe04NmNSpwx7sLeWr6cgo0ZFAk6Oat2cV78zZwc/dGdKhXyes4USlqixugVmo5PrytKzd0bcC4b9dw3avzyN6f53UskaiVe6SQ4RMyqVelHPdd1NzrOFErqosbIDEulscvb8tzV3Vg8aa99HnhOxas15BBkWAY89Uq1uw8yFMD2pGcEOd1nKgV9cV91MBOdZl4Z3eS4mP57ctzeXP2Wg0ZFClFy7fm8NI3qxnUqS49m5V8FSwJXJkpboBWtSryyZAe9GqRxiNTlnHvB4s4lK8hgyKnq7DIMXR8Bqnl4hl5mWb+C7YyVdzgW5R43A3p3H9Rc6ZkbGHA2O9Zk60hgyKn443Za8nYtI+H+7WhcvkEr+NEvTJX3AAxMcaQ85rx1u87s2N/Lv3HzGbG0m1exxKJSBt3H+J/Pl/B+S2r07d9La/jlAllsriPOqd5GlPu7kGjtPLc9vYCRn2apSGDIiXgnGPExExiDB6/XDP/hUqZLm6AupWT+ei2s7mmc31e+mY1v3v9B3Ye0JBBkUBMWLiZ71buZOilLaldqZzXccqMMl/cAEnxsTw9sB3PXNGeBev30PeFWfy0YY/XsUTC2s4DeTw+bRlnNqjM9V0aeB2nTFFxH+Oq9HqMv6MbcbHGVS/P4e256zVkUKQYj01ZxqG8QkZp5r+QU3H/Qts6qUwZ0oMeTavx4KQl/PmjxRzOL/Q6lkhY+SprO58s3sJd5zalWY0KXscpc1Tcx1EpOYHXbjyLP13QnImLNjPgxdms33XQ61giYeFAXgEPTFxC8xop3NGriddxyiQVdzFiYox7L2jGGzedxdZ9ufR5YRb/Xbbd61ginvvbZ1lsy8nl6YHtSYhThXhB/+on0atFdabe3YMGVZP5w7/n8+yMnyks0nVvKZsWrN/Nv+eu58azG3Jmg8pexymzVNwBqFclmY9v78ZV6XUZM3MVN73xA7sP5nsdSySk8goKGTo+k9qp5bj/4hZexynTVNwBSoqP5ZkrOjBqYDvmrd1N3xdmsXjjXq9jiYTMizNXs2rHAZ4Y0JaURM385yUVdwld3bk+H99+NgBXvjSH9+Zt0JBBiXortu/nxa9X0b9jbc5tUd3rOGWeivsUtK9biSl396BL4yqMmJjJXz/OIPeIhgxKdDo6819KYhwP9WntdRxBxX3KqpRP4M3fd+ae85rynwWbGPSv79mw65DXsURK3Ttz1/PThr081Lc1VVMSvY4jBFDcZlbPzGaa2XIzW2pm94YiWCSIjTHuu6gFr92Yzsbdh+g7ZhYzs3Z4HUuk1Gzee5hnPsvinOZpXN6xjtdxxC+QM+4C4M/OuVZAV+AuM9PvS8c4v1UNptzdg9qVynHzWz/y3BcrNGRQIp5zjpETM3HAk5r5L6yc9KVh59xWYKv/7/vNbDlQB1gW5GwRpUHV8ky4oxsjJy3h+S9XsmD9bs5sUMXrWKWiafUU+nWo7XUMCbFPFm9h5s/ZPNSnNfWqJHsdR45RojE9ZtYQOAOYd5zPDQYGA9SvX78UokWecgmxPHtlezo1qMST05Yze9UuryOVmuT4WC5oXcPrGBIiuw/m8+iUZXSoV4kbuzX0Oo78ggU6lM3MUoBvgCedcxNOtG16erqbP39+KcQTr+UXFNH3hVnk5B7h8z+dQ4WkeK8jSQjc9+EiPlm8han39KBlzYpexykTzGyBcy49kG0DGlViZvHAeODdk5W2RJeEuBhGDWrHtpxcnvnsZ6/jSAh8syKbCT9t5o5eTVTaYSqQUSUGvAYsd849F/xIEm7OqF+Z33drxNtz1zN/3W6v40gQHcwrYMSETJqklWfIeU29jiPFCOSMuztwA3CemS3y/+kd5FwSZv58UXPqVCrH0PEZ5BXoZqNo9dwXK9i89zCjBrUnMS7W6zhSjJMWt3NulnPOnHPtnXMd/X+mhyKchI/yiXE8OaAtq7MPMvarVV7HkSBYtHEvb8xey/Vd63NWw+gYERWtdOekBKxXi+oMOKMOL369mqxtOV7HkVKUX1DEsPEZVK+QxNBLWnodR05CxS0l8mCf1lQsF8+w8Zm6ySiKjPt2NVnb9vP45W01cigCqLilRKqUT+Dhvq1ZtHEv/56zzus4UgpW7TjA81+u4rL2tbhQY/UjgopbSqxfh9r0apHG32b8zKY9mlgrkhUVOUZMyKRcQiyP9G3jdRwJkIpbSszMeOLytgCMmLhE85FHsPd+2MAP63bzwGWtSKugmf8ihYpbTkndysn89eIWfLsim8mLtngdR07Btn25jPo0i+5Nq3LlmXW9jiMloOKWU3bD2Q05o34lHp2ylF0H8ryOIyXgnGPkpCUUFBXx1IB2mvkvwqi45ZTFxhijB7XnQF4Bj0/VZJGR5NMl2/jv8u3cd2FzGlQt73UcKSEVt5yW5jUqcEevpkxatIWZP2sRiUiw91A+D01eSrs6qdzcvZHXceQUqLjltN11bhOaVk9h5MQlHMwr8DqOnMRT05ez51A+owa1Iy5WFRCJ9KzJaUuMi2X0oHZs2XeYZz/XDILhbPaqnXw0fxODz2lMm9qpXseRU6TillJxZoMq3NC1AW9+v46FG/Z4HUeO43B+ISMmZtKwajL3nt/M6zhyGlTcUmr+cnELalZMYtj4DPILiryOI7/wj/+uYP2uQzw9sD1J8Zr5L5KpuKXUVEiK54nL27Ji+wFe+ma113HkGEs27+OV79ZwTed6nN2kqtdx5DSpuKVUnd+qBn071GbMV6tYtWO/13EEOFJYxF8/zqBqSiLDLm3ldRwpBSpuKXUP921NcmIsw8ZnUqQZBD332qy1LNuaw+P925BaTjP/RQMVt5S6aimJjLysNfPX7+Hdeeu9jlOmrd15kL9/sYKL29Tgkra1vI4jpUTFLUExqFMdejarxujPfmbL3sNexymTnHMMn5BBQlwMj/Vv63UcKUUqbgkKM+OpAe0oLHI8OEkzCHrho/kbmbtmNyN6t6JGxSSv40gpUnFL0NSrksyfL2rOl1k7mJqx1es4ZcqOnFyenLacLo2q8Nv0el7HkVKm4paguqlbQ9rXTeWRT5ay52C+13HKjEemLCW3oIinB7YjJkYz/0UbFbcEVVxsDKMGtmff4SM8OX2513HKhBlLtzE9cxt/vKAZjdNSvI4jQaDilqBrXbsit/2mMR8v2MSslTu9jhPV9h0+woOTltCqVkVu7dnY6zgSJCpuCYm7z2tG42rlGT4xg0P5mkEwWEZ/lsXOA3mMHtSOeM38F7X0zEpIJMXH8tTAdmzcfZi/f7HC6zhRad6aXbw3bwO39GhE+7qVvI4jQaTilpDp2rgq13Suz2uz1pKxaa/XcaJK7pFChk/IpF6VcvzpwuZex5EgU3FLSA3v3ZJqKYkMHZ/JkULNIFhaXvhqJWt2HuTpAe1JTojzOo4EmYpbQqpiUjyPX96W5VtzGPftGq/jRIVlW3J4+Zs1XHFmXXo0q+Z1HAkBFbeE3MVtanJp25r888uVrMk+4HWciFZY5Bg2IYNKyfE80Fsz/5UVKm7xxKP92pAUF8PwCZpB8HS8MXstGZv28XDfNlQun+B1HAkRFbd4onrFJB64rBXz1u7mw/kbvY4TkTbsOsSzn//MBa2q06e9Zv4rS05a3Gb2upntMLMloQgkZcdV6fU4u3FVnpq+nO05uV7HiSjOOR6YlElcTAyPX94WM93WXpYEcsb9JnBJkHNIGWRmPDWwHfkFRTw0WecFJTFh4Wa+W7mToZe0oFZqOa/jSIidtLidc98Cu0OQRcqgRtXK88cLmjNj6XY+W6IZBAMxZ/UuHp2ylPQGlbmuSwOv44gHSu0at5kNNrP5ZjY/Ozu7tB5WyoA/9GxE61oVeXDyUvYdPuJ1nLDlnOPlb1Zz/WvzSKuQyHNXddTMf2VUqRW3c26ccy7dOZeelpZWWg8rZUB8bAzPXNGe3QfzeVozCB7X/twj3PHOQp7+NIuL29Rg8pAe1K+a7HUs8YhGlUhYaFsnlT/0aMQHP27k+9WaQfBYK7bvp//Y2XyxfDsP9G7F2Gs7kZKouyPLMhW3hI0/XtCc+lWSGTEhk9wjhV7HCQtTFm/h8rGzyTl8hHf/0IVbz2msESQS0HDA94E5QAsz22RmtwQ/lpRF5RJieXpgO9btOsQ/v1zpdRxPHSks4rEpy7j7/Z9oVasi0+7pSdfGVb2OJWHipL9vOeeuCUUQEYDuTatxVXpdxn27hsva1aJtnVSvI4Xcjpxc7npvIT+u28NN3RoyoncrEuL0y7H8f/pukLAzoncrKicnMGxCBgVlbAbBH9bu5rIXZrFkcw7/vLojj/Rro9KWX9F3hISdSskJPNqvDUs25/D67LVexwkJ5xyvfreGa16ZS0piHJPu6k7/jnW8jiVhSsUtYal3u5pc0KoGz32xgvW7DnodJ6gO5BUw5P2feGLaci5oVZ3JQ7rTomYFr2NJGFNxS1gyM564vC3xMb4ZBJ2LzhkEV+04wOVjZ/Np5laGXdqSl64/k4pJ8V7HkjCn4pawVTM1iaGXtuT71bv4z4JNXscpddMzt9J/zCz2HMznnVu6cPtvmmionwRExS1h7drO9TmrYWWenLacHfujYwbBgsIinpy2jDvfXUizGhWYek8PujXVyjUSOBW3hLWYGOPpge05nF/Io1OWeR3ntO3Yn8t1r87jle/WckPXBnx4W1fN7iclpuKWsNe0egr3nN+UaRlb+WLZdq/jnLL563bT5/lZLN60l+eu6sDjl7clMS7W61gSgVTcEhEGn9OEljUrMHJSJjm5kTWDoHOON2av5epxcymXEMvEO7szsFNdr2NJBFNxS0RIiIth1KD27NifxzOfZXkdJ2CH8gu494NFPDplGb1apPHJkB60qlXR61gS4VTcEjE61qvE77s14p25G/hxXfiv7bEm2zfUb2rGFv5ycQvG3ZBOajkN9ZPTp+KWiHL/xc2pW7kcQ8dnhPUMgp8t2Ua/MbPJ3p/HWzd35q5zm2rRAyk1Km6JKMkJcTw5oB1rsg8yduYqr+P8SkFhEaM+zeL2dxbQJK08U+/pSc9mWlhESpeKWyLOb5qnMfCMOvzr69VkbcvxOs7/2nkgjxte+4GXvlnNtV3q89HtZ1Onkob6SelTcUtEGtmnNRXLxTN0fCaFRd7fDr9wwx76PD+LhRv28Lcr2vPUgHYa6idBo+KWiFSlfAIP923N4o17efP7dZ7lcM7x9px1/PblOcTHGRPu7MaV6fU8yyNlg4pbIla/DrU5t0Uaz874mY27D4V8/4fzC/nzR4t5cPJSejStxtQhPWlTu+wt/CChp+KWiGVmPDGgHWbwwKQlIZ1BcN3Ogwx4cTYTF23mvgub89qNZ5GarKF+EhoqbolodSqV468Xt+DbFdlMWrQ5JPv877Lt9B0zi205ubxx01ncc34zDfWTkFJxS8S74eyGnFG/Eo9NWcauA3lB209hkePZGT/zh3/Pp0HVZKYM6UGvFtWDtj+R4qi4JeLFxhijB7XnQF4Bj00NzgyCuw/mc9MbPzBm5ip+m16Pj2/vRr0qyUHZl8jJqLglKjSvUYE7ezVl8qItzMzaUaqPvXjjXvq+MIt5a3czamA7Rl/RnqR4DfUT76i4JWrceW4TmlZP4YGJmRzIKzjtx3PO8d68DVz50hwAxt/ejas71z/txxU5XSpuiRqJcbGMHtSOrTm5PDvj59N6rNwjhfzl4wxGTMyka5OqTL27B+3qaqifhAcVt0SVMxtU4XddG/DWnHUsWL/nlB5jw65DDHzxez5esIl7zm/GGzedReXyCaUbVOQ0qLgl6vzlkpbUrJjEsPEZ5BcUlehrZ2btoM8L37FpzyFevymd+y5sTqyG+kmYUXFL1ElJjOOJy9uycscB/vX16oC+prDI8dwXK/j9mz9St3IyU+/uyXktawQ5qcipUXFLVDq/VQ36dqjNmJkrWbl9/wm33XMwn5vf/JHnv1zJoE51mXBnN+pX1VA/CV8qbolaD/dtTfnEOIaOz6ComBkEMzfto88Ls5izehdPDmjLs1dqqJ+EPxW3RK1qKYk8eFlrFm7Yyzvz1v/q8x/+uIFBL32Pc47/3H4213VpgJmuZ0v4C6i4zewSM/vZzFaZ2bBghxIpLQM71aFns2qM/jSLLXsPA76hfsPGZzB0fCadG1Zh6j096VCvksdJRQJ30uI2s1hgLHAp0Bq4xsxaBzuYSGkwM54a0I4iByMnLWHj7kNc+dIcPvhxI0PObcpbN3emiob6SYSJC2CbzsAq59waADP7AOgPBGdSCJFSVq9KMn++qDlPTFvOnNW7iIs1XvldOhe21qgRiUyBFHcdYOMx728CuvxyIzMbDAwGqF9ftwVLePl990Z8vnQ7B/IKePG6TjSsVt7rSCKnLJDiPt6rNb96id45Nw4YB5Cenu79IoAix4iNMT4Y3BUz9AKkRLxAinsTcOwienWBLcGJIxI8WuxAokUgo0p+BJqZWSMzSwCuBj4JbiwRESnOSc+4nXMFZjYEmAHEAq8755YGPZmIiBxXIJdKcM5NB6YHOYvwIR3KAAAIwklEQVSIiARAd06KiEQYFbeISIRRcYuIRBgVt4hIhDHnSv9eGTPLBn49HVtgUoF9pRjHS9FyLNFyHKBjCUfRchwA9YENp/i1DZxzaYFsGJTiPh1mNs45N9jrHKUhWo4lWo4DdCzhKFqOA3wnrYGW7+kIx0slU7wOUIqi5Vii5ThAxxKOouU4APaGYidhd8YtIhKpzGy+cy492PsJxzNuEZFINS4UO9EZt4hIhNEZt4hIhPG0uI+3lqWZ/c3Msswsw8wmmllELAZYzLE87j+ORWb2uZnV9jrnyZxofVEzu9/MnJlV8ypfSRTznDxiZpv9z8kiM+vtdc5AFPe8mNnd/o8vNbNnvMwYqGKelw+PeU7Wmdkir3OGNeecJ3/wzTS4GmgMJACL8a1peREQ599mNDDaq4ylcCwVj9nmHuAlr7OeynH4P1cP3wyR64FqXmc9jefkEeB+r/OV0rGcC/wXSPRvV93rrKfzPXbMNv8DPOR11gCO5RLgZ2AVMMz/sY7AXGARMB/oHIx9e3nG/b9rWTrn8oEPgP7Ouc+dcwX+bebiW7gh3BV3LDnHbFOe46wcFGaOexz+z/0d+CvhfwxHnehYIk1xx3IHMMo5lwfgnNvhYcZAnfB5Md/yRFcB73uULyAnWET9GeBR51xH4CH/+6XOy+I+3lqWdX6xzc3ApyFLdOqKPRYze9LMNgLX4Xsiw9lxj8PM+gGbnXOLvYl1Sk70/TXEfwnrdTOrHPpoJVbcsTQHeprZPDP7xszO8iRdyZzs/31PYLtzbmVIU5VccT+AHFDRv00qQVotzMviPuFalmb2AFAAvBuyRKeu2GNxzj3gnKuH7ziGhDRVyR3vOBKBBwj/Hzq/VNxz8i+gCb5fabfi+7U83BV3LHFAZaAr8BfgIwv/BTVPtobtNYT52bZfcT+A/gj8zX+y9iwwPBg797K4i13L0sxuBPoA1zn/haMwF8i6nO8Bg0KW6NQc7zg2AI2AxWa2zv+xhWZWM/TxSuS4z4lzbrtzrtA5VwS8gu/MKdwV9/21CZjgfH4AioBwf+H4RP/v44CBwIce5Cqp4n4A3QH8yX+y9ifgtWDs3MviPu5almZ2CTAU6OecO+RhvpIo7liaHbNNPyDLk3SBO95xTHDOVXfONXTONcT3H6+Tc26bl0EDUNxzUuuYbQYASzxJVzLFrfs6CTgPwMya43uxb6dnKQNzojVsLwCynHObPEsXuOJ+AN0ITPB/7D8E6cQgoKXLgsEVs5almU3G9+v5F/7f+uY65273KmcgTnAs482sBb4zofVARB6Hx7FOyQmek7fNrCO+s6N1wG0exgzICY5lJfC6mS0B8oEbw/031JN8j11NZFwmgWN+AAGb8WW/Fvgd8Bvga3w/VINyrV53ToqInAL/PQD/4P//AHrSzHoA/8R3UpwL3OmcW1Dq+1Zxi4hEFt3yLiISYUJe3GY2wH/bdMtQ71tEJBp4ccZ9DTAL38V8EREpoZAWt5mlAN2BW/AXt5n1MrOpx2wzxsxu8v+9t3/CqVlm9vyx24mIlFWhPuO+HPjMObcC2G1mnYrb0MySgJeBS51zPYCgr+MmIhIJQl3c1+C7px//22tOsG1LYI1zbq3//UgZ3ykiElQhuwHHzKriG5De1swcvrGPDt9dU8f+AEk6+iWhyiYiEklCecZ9BfBv51wD/+3T9YCjZ9OtzSzRzFKB8/0fywIam1lD//u/DWFWEZGwFcpb3q8BRv3iY+Px3Sb6EZCB7/bQnwCcc4fN7E7gMzPbCfwQwqwiImErrO+cNLMU59wB/1SVY4GVzrm/e51LRMRL4X7n5K3+teeW4puU/GWP84iIeC6sz7hFROTXwv2MW0REfiHoxW1m9cxsppktN7OlZnav/+NVzOwLM1vpf1vZ//ELzWyBmWX63553zGN9ZmaL/Y/zkn/BThGRMiXol0r8K47Ucs4tNLMKwAJ8d1DeBOx2zo0ys2FAZefcUDM7A99ioVvMrC0wwzl3dOHdis65HP+LlR8D/3HOfXDcHYuIRKmgn3E757Y65xb6/74fWI5vUc3+wFv+zd7CV+Y4535yzh1dr3EpkGRmif7P5fg/HodvmSZdoBeRMifUk0w1BM4A5gE1nHNbwVfuQPXjfMkg4CfnXN4xjzED2AHsx3fWLSJSpoSsuP0zA44H/njMmfOJtm8DjOYXawI65y4GauFbl/K843ypiEhUC0lxm1k8vtJ+1zl3dAXk7UdX3Pa/3XHM9nWBicDvnHOrf/l4zrlcfHOc9A92dhGRcBOKUSUGvAYsd849d8ynPsG3lD3+t5P921cCpgHDnXOzj3mclGOKPg7ojW8+ExGRMiUUo0p6AN8BmUCR/8Mj8F3n/gioD2wArnTO7TazkcBw/u+y9hfhmy1wKr5LJLHAV8CfnHMFQT0AEZEwozsnRUQijO6cFBGJMCpuEZEIo+IWEYkwKm4RkQij4hYRiTAqbol4ZlZoZov8s0YuNrP7zOyE39tm1tDMrg1VRpHSpOKWaHDYOdfROdcGuBDfzVkPn+RrGuJb71Qk4mgct0Q8MzvgnEs55v3GwI9ANaAB8DZQ3v/pIc65781sLtAKWItvdsrn8S1m3QvfTV5jnXNaKk/CkopbIt4vi9v/sT1AS3yzSBY553LNrBnwvnMu3cx6Afc75/r4tx8MVHfOPeGfRng2vrt514b0YEQCEOd1AJEgMf/beGCMmXUECoHmxWx/EdDezK7wv58KNMN3Ri4SVlTcEnX8l0oK8c04+TCwHeiA7zWd3OK+DLjbOTcjJCFFToNenJSoYmZpwEvAGOe7DpgKbHXOFQE34JugDHyXUCoc86UzgDv8UxBjZs3NrDwiYUhn3BINypnZInyXRQrwvRh5dArhF4HxZnYlMBM46P94BlBgZouBN4F/4htpstA/FXE2/uX0RMKNXpwUEYkwulQiIhJhVNwiIhFGxS0iEmFU3CIiEUbFLSISYVTcIiIRRsUtIhJh/h8O4XeFrp23yAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "data['Number of emails'].plot()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }