Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
M
mooc-rr
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
0b3be5c4ec0aeddd7a0ad8726496d7a1
mooc-rr
Commits
71e57821
Commit
71e57821
authored
Nov 22, 2021
by
0b3be5c4ec0aeddd7a0ad8726496d7a1
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Prova commit
parent
90dd5459
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
107 additions
and
17 deletions
+107
-17
exo5_fr.ipynb
module2/exo5/exo5_fr.ipynb
+1
-1
analyse-syndrome-grippal.ipynb
module3/exo1/analyse-syndrome-grippal.ipynb
+106
-16
No files found.
module2/exo5/exo5_fr.ipynb
View file @
71e57821
...
@@ -705,7 +705,7 @@
...
@@ -705,7 +705,7 @@
"name": "python",
"name": "python",
"nbconvert_exporter": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"pygments_lexer": "ipython3",
"version": "3.
7.3
"
"version": "3.
6.4
"
}
}
},
},
"nbformat": 4,
"nbformat": 4,
...
...
module3/exo1/analyse-syndrome-grippal.ipynb
View file @
71e57821
...
@@ -2169,7 +2169,7 @@
...
@@ -2169,7 +2169,7 @@
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count": 1
3
,
"execution_count": 1
6
,
"metadata": {},
"metadata": {},
"outputs": [],
"outputs": [],
"source": [
"source": [
...
@@ -2194,7 +2194,7 @@
...
@@ -2194,7 +2194,7 @@
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count": 1
4
,
"execution_count": 1
7
,
"metadata": {},
"metadata": {},
"outputs": [
"outputs": [
{
{
...
@@ -2222,16 +2222,16 @@
...
@@ -2222,16 +2222,16 @@
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count": 1
5
,
"execution_count": 1
8
,
"metadata": {},
"metadata": {},
"outputs": [
"outputs": [
{
{
"data": {
"data": {
"text/plain": [
"text/plain": [
"<matplotlib.axes._subplots.AxesSubplot at 0x7f98a
8884da0
>"
"<matplotlib.axes._subplots.AxesSubplot at 0x7f98a
6601f28
>"
]
]
},
},
"execution_count": 1
5
,
"execution_count": 1
8
,
"metadata": {},
"metadata": {},
"output_type": "execute_result"
"output_type": "execute_result"
},
},
...
@@ -2261,9 +2261,32 @@
...
@@ -2261,9 +2261,32 @@
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count":
null
,
"execution_count":
19
,
"metadata": {},
"metadata": {},
"outputs": [],
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.axes._subplots.AxesSubplot at 0x7f98a64fec88>"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEKCAYAAAA1qaOTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xt83FWd+P/Xe2ZyvzVpLr2kN9rSUm6FdrmDCFrAVcEVvlZX2/WLVhFW/bqrC/70iyvyXXBd2UUXFKUKqEAXLxS5Wbkpt0IKpffSlAJNb0nJpUlzm8v798fnTDpJJ8kkmXQmk/fz8cgjkzOfc+bMp2nec+6iqhhjjDEj5Ut1BYwxxmQGCyjGGGOSwgKKMcaYpLCAYowxJiksoBhjjEkKCyjGGGOSwgKKMcaYpLCAYowxJiksoBhjjEmKQKorkGzl5eU6c+bMVFfDGGPGlHXr1h1U1YqRlJFxAWXmzJnU1NSkuhrGGDOmiMg7Iy3DuryMMcYkhQUUY4wxSZFwQBERv4i8LiJ/dD+XicgaEdnhvpfGXHuDiNSKyHYRuSQmfZGIbHTP3S4i4tJzRORBl75WRGbG5FnuXmOHiCxPxps2xhiTfENpoXwF2Brz8/XAU6o6F3jK/YyILACWAicClwJ3iIjf5bkTWAHMdV+XuvSrgSZVnQPcBtzqyioDbgTOBM4AbowNXMYYY9JHQgFFRKqBvwV+HpN8OXCPe3wPcEVM+gOq2qWqu4Ba4AwRmQwUq+pL6h3Ccm+fPNGyHgIudq2XS4A1qtqoqk3AGo4EIWOMMWkk0RbKfwLfACIxaVWqug/Afa906VOB3THX1bm0qe5x3/ReeVQ1BLQAEwcoqxcRWSEiNSJS09DQkOBbMsYYk0yDBhQR+TBQr6rrEixT4qTpAOnDzXMkQfUuVV2sqosrKkY0jdoYY8wwJdJCORf4qIi8DTwAXCQivwIOuG4s3Pd6d30dMC0mfzWw16VXx0nvlUdEAkAJ0DhAWWaMaDrczSNv2D+ZMePBoAFFVW9Q1WpVnYk32P60qn4aWA1EZ10tBx52j1cDS93MrVl4g++vuG6xVhE5y42PLOuTJ1rWle41FHgSWCIipW4wfolLM2PEQ+vq+Mf7X6elPZjqqhhjRtlIVsrfAqwSkauBd4GrAFR1s4isArYAIeBaVQ27PNcAvwTygMfdF8DdwH0iUovXMlnqymoUkZuAV91131XVxhHU2RxjBw93AdAeDFFCVoprY4wZTUMKKKr6LPCse/wecHE/190M3BwnvQY4KU56Jy4gxXluJbByKPU06aOxrRuAzmBkkCuNMWOdrZQ3o6qpPRpQwoNcaYwZ6yygmFHVeNgCijHjhQUUM6qa3GC8dXkZk/ksoJhR1dNCCVkLxZhMZwHFjJpgOEJLh9dC6bIuL2MyngUUM2qaY9aeWJeXMZnPAooZNdEZXmCD8saMBxZQzKiJjp+ABRRjxgMLKGbU9AooIevyMibTWUAxo8ZaKMaMLxZQzKhpcgHF7xMblDdmHBjJ5pDGDKixvZuinACItVCMGQ+shWJGTePhbkoLssnN8tNlCxuNyXgWUMyoORJQfNblZcw4YAHFjJqm9m4mFmSTG/Bbl5cx44AFFDNqmg4HKc33urwsoBiT+QYNKCKSKyKviMgbIrJZRP7VpX9HRPaIyHr39aGYPDeISK2IbBeRS2LSF4nIRvfc7e4oYNxxwQ+69LUiMjMmz3IR2eG+lmPGjKb2bibkZ1mXlzHjRCKzvLqAi1S1TUSygOdFJHp0722q+oPYi0VkAd4RvicCU4A/i8jx7hjgO4EVwMvAY8CleMcAXw00qeocEVkK3Ap8QkTKgBuBxYAC60Rktao2jextm2OhMxgmL8tPbpaftq5QqqtjjBllg7ZQ1NPmfsxyXzpAlsuBB1S1S1V3AbXAGSIyGShW1ZdUVYF7gSti8tzjHj8EXOxaL5cAa1S10QWRNXhByKS5UDhCRCE74CMn4LcWijHjQEJjKCLiF5H1QD3eH/i17qnrRGSDiKwUkVKXNhXYHZO9zqVNdY/7pvfKo6ohoAWYOEBZfeu3QkRqRKSmoaEhkbdkRll32Asg2QEfuVk+277emHEgoYCiqmFVXQhU47U2TsLrvpoNLAT2Af/hLpd4RQyQPtw8sfW7S1UXq+riioqKAd+LOTa63d5dWf5oC8UCijGZbkizvFS1GXgWuFRVD7hAEwF+BpzhLqsDpsVkqwb2uvTqOOm98ohIACgBGgcoy6S5aECJtlBsc0hjMl8is7wqRGSCe5wHfADY5sZEoj4GbHKPVwNL3cytWcBc4BVV3Qe0ishZbnxkGfBwTJ7oDK4rgafdOMuTwBIRKXVdaktcmklz0S6vHL/Ppg0bM04kMstrMnCPiPjxAtAqVf2jiNwnIgvxuqDeBr4AoKqbRWQVsAUIAde6GV4A1wC/BPLwZndFZ4vdDdwnIrV4LZOlrqxGEbkJeNVd911VbRzB+zXHyFEtlGAYVcXNFDfGZKBBA4qqbgBOi5P+mQHy3AzcHCe9BjgpTnoncFU/Za0EVg5WT5Neeg3KB/xEFIJhJTtgAcWYTGUr5c2oiB2Uz83yA9BpG0Qak9EsoJhR0bfLC2wLe2MynQUUMyp6urz8PnJcC6XLFjcak9EsoJhR0buF4rq8rIViTEazgGJGRTSg5AR85AaiXV7WQjEmk1lAMaMi2uVlg/LGjB8WUMyosC4vY8YfCyhmVATD8WZ5WZeXMZnMAooZFT0tFL+1UIwZLyygmFHRFeq9Uj42zRiTmSygmFERuw7FFjYaMz5YQDGjInZQPse6vIwZFyygmFERDEfw+wS/T3paKNblZUxms4BiRkV3KEK23/v1yvb7ELEWijGZzgKKGRXdoQjZboW8iJBrxwAbk/EsoJhR0R0+ElAAd8iWdXkZk8kSOQI4V0ReEZE3RGSziPyrSy8TkTUissN9L43Jc4OI1IrIdhG5JCZ9kYhsdM/d7o4Cxh0X/KBLXysiM2PyLHevsUNElmPGhK6YLi+AnIC/Z6DeGJOZEmmhdAEXqeqpwELgUhE5C7geeEpV5wJPuZ8RkQV4R/ieCFwK3OGODwa4E1iBd878XPc8wNVAk6rOAW4DbnVllQE3AmcCZwA3xgYuk7680xmP/HoF/NKzet4Yk5kGDSjqaXM/ZrkvBS4H7nHp9wBXuMeXAw+oapeq7gJqgTNEZDJQrKovqaoC9/bJEy3rIeBi13q5BFijqo2q2gSs4UgQMmmsOxTu1ULJ9vt61qYYYzJTQmMoIuIXkfVAPd4f+LVAlaruA3DfK93lU4HdMdnrXNpU97hveq88qhoCWoCJA5Rl0lzsoDx4uw6HwprCGhljRltCAUVVw6q6EKjGa22cNMDlEq+IAdKHm+fIC4qsEJEaEalpaGgYoGrmWOk7KJ8VsC4vYzLdkGZ5qWoz8Cxet9MB142F+17vLqsDpsVkqwb2uvTqOOm98ohIACgBGgcoq2+97lLVxaq6uKKiYihvyYyS7lCELP+RzwNZ1uVlTMZLZJZXhYhMcI/zgA8A24DVQHTW1XLgYfd4NbDUzdyahTf4/orrFmsVkbPc+MiyPnmiZV0JPO3GWZ4ElohIqRuMX+LSTJrrDivZAX/Pz1k+n7VQjMlwgQSumQzc42Zq+YBVqvpHEXkJWCUiVwPvAlcBqOpmEVkFbAFCwLWqGl3Rdg3wSyAPeNx9AdwN3CcitXgtk6WurEYRuQl41V33XVVtHMkbNsdGd59pw1kBocvWoRiT0QYNKKq6ATgtTvp7wMX95LkZuDlOeg1w1PiLqnbiAlKc51YCKwerp0kv3aEwOX0G5ds6QymskTFmtNlKeTMqjhqU9/votllexmQ0CyhmVBw9KG+zvIzJdBZQzKjou1I+y2+D8sZkOgsoZlR4g/Ixs7xsYaMxGc8CihkV8VbK2zoUYzKbBRSTdKp61KB8to2hGJPxLKCYpIu2RLJjBuUDfh9B277emIxmAcUkXdCNlRw1KB+xMRRjMpkFFJN00YO0em9f73V5eTvqGGMykQUUk3Q9ASXQe5aXKoStlWJMxrKAYpLuSECJ3cvLexy0qcPGZCwLKCbpusPeXqCxK+UDPnHP2cC8MZnKAopJuu6Q1wqJ3Rwy2loJWUAxJmNZQDFJ1zNtuM8sL7AuL2MymQUUk3RHZnn1HpQHbHGjMRnMAopJuriD8n4bQzEm0yVyBPA0EXlGRLaKyGYR+YpL/46I7BGR9e7rQzF5bhCRWhHZLiKXxKQvEpGN7rnb3VHAuOOCH3Tpa0VkZkye5SKyw30tx6S9eIPy0RaKbRBpTOZK5AjgEPBPqvqaiBQB60RkjXvuNlX9QezFIrIA7wjfE4EpwJ9F5Hh3DPCdwArgZeAx4FK8Y4CvBppUdY6ILAVuBT4hImXAjcBiQN1rr1bVppG9bTOaooPy8cdQrIViTKYatIWiqvtU9TX3uBXYCkwdIMvlwAOq2qWqu4Ba4AwRmQwUq+pL6i2Xvhe4IibPPe7xQ8DFrvVyCbBGVRtdEFmDF4RMGot2a+VYl5cx48qQxlBcV9RpwFqXdJ2IbBCRlSJS6tKmArtjstW5tKnucd/0XnlUNQS0ABMHKMuksXiD8tFtWGyDSGMyV8IBRUQKgd8CX1XVQ3jdV7OBhcA+4D+il8bJrgOkDzdPbN1WiEiNiNQ0NDQM+D7M6Is3KB+wacPGZLyEAoqIZOEFk1+r6u8AVPWAqoZVNQL8DDjDXV4HTIvJXg3sdenVcdJ75RGRAFACNA5QVi+qepeqLlbVxRUVFYm8JTOKukPxBuW9x8GItVCMyVSJzPIS4G5gq6r+MCZ9csxlHwM2ucergaVu5tYsYC7wiqruA1pF5CxX5jLg4Zg80RlcVwJPu3GWJ4ElIlLqutSWuDSTxvrbvh6sy8uYTJbILK9zgc8AG0VkvUv7JvBJEVmI1wX1NvAFAFXdLCKrgC14M8SudTO8AK4Bfgnk4c3uetyl3w3cJyK1eC2Tpa6sRhG5CXjVXfddVW0c3ls1x0q8lfLZtjmkMRlv0ICiqs8TfyzjsQHy3AzcHCe9BjgpTnoncFU/Za0EVg5WT5M+uuKch2LTho3JfLZS3iRdVyhMTsCHW7cKHNlt2AKKMZnLAopJuq5gpNcaFLAuL2PGAwsoJum6QmFysvy90qzLy5jMZwHFJF1XMEJuVu9frZ5pwxZQjMlYFlBM0nWGwuQE+muhWJeXMZnKAopJunhjKNblZUzms4Bikq4rdHRA8fsEn1hAMSaTWUAxSdcVCpPbZ1AevFaK7TZsTOaygGKSrjNOlxd4Cx2DIRtDMSZTWUAxSdcVZ1AeICvgI2SbQxqTsSygmKTrCh09bRi81fI2hmJM5rKAYpLOm+XVzxiKdXkZk7EsoJik6wyFyYnTQskO+KyFYkwGs4Biki7eOhTwVsvbGIoxmcsCikkqVe132nDAZ11exmQyCygmqYJhJaLEb6FYl9eQHWzroqM7PPiFxqSBRI4AniYiz4jIVhHZLCJfcellIrJGRHa476UxeW4QkVoR2S4il8SkLxKRje65291RwLjjgh906WtFZGZMnuXuNXaIyHJMWuty58nHG5TP9tssr6H62B0v8O9Pbk91NYxJSCItlBDwT6p6AnAWcK2ILACuB55S1bnAU+5n3HNLgROBS4E7RCT61+VOYAXeOfNz3fMAVwNNqjoHuA241ZVVBtwInAmcAdwYG7hM+ome1hhvUD7Lby2UoWg63M3uxg62HziU6qoYk5BBA4qq7lPV19zjVmArMBW4HLjHXXYPcIV7fDnwgKp2qeouoBY4Q0QmA8Wq+pKqKnBvnzzRsh4CLnatl0uANaraqKpNwBqOBCGThqIBJbefacO223DiahvaAHi3sT3FNTEmMUMaQ3FdUacBa4EqVd0HXtABKt1lU4HdMdnqXNpU97hveq88qhoCWoCJA5Q1arxYZ4arM+i6vOK2UKzLayh2HPACyt7mTrtvZkxIOKCISCHwW+CrqjpQG1zipOkA6cPNE1u3FSJSIyI1DQ0NA1Stf/tbOln8vT/zP+vqBr/Y9Ksr6Lq84k4bti6voait9wJKOKLsa+5McW2MGVxCAUVEsvCCya9V9Xcu+YDrxsJ9r3fpdcC0mOzVwF6XXh0nvVceEQkAJUDjAGX1oqp3qepiVV1cUVGRyFs6SnlhNi0d3bzVcHhY+Y2nZ1C+n92GrcsrcTvqW/H7vM9Uu5us28ukv0RmeQlwN7BVVX8Y89RqIDrrajnwcEz6Ujdzaxbe4PsrrlusVUTOcmUu65MnWtaVwNNunOVJYImIlLrB+CUuLekCfh8zJhbwluu3NsPTaS2UpKmtb2PRDG8Oio2jmLEgkMA15wKfATaKyHqX9k3gFmCViFwNvAtcBaCqm0VkFbAFb4bYtaoanUh/DfBLIA943H2BF7DuE5FavJbJUldWo4jcBLzqrvuuqjYO870O6rjyAnZaQBmRAacNB2wMJVGtnUH2tXTyqTOm8/q7TRZQzJgwaEBR1eeJP5YBcHE/eW4Gbo6TXgOcFCe9ExeQ4jy3Elg5WD2TYXZlIc9srycYjvQcWWuGpmfacJwWSsBnXV6J2um6XudNKmLqhDwLKGZMsL+aMY4rLyAYVnbbf95h65k23N8YSshaKImIDsjPqSxkWlk+dfY7acYACygxZlcWAtjA/Aj0TBuOu/WK2BHACTrY1gXApJJcppflWwvFjAkWUGLMLncB5aCNowzXQCvls/0+QhHr8kpEe1cIEW+B6PSyfJragxzqDKa6WsYMyAJKjJL8LMoLs9lZby2U4eoK9j8on+X3EY4oYQsqgzrcHSY/y4/PJ0yekAfAgRZbi2LSmwWUPo4rL7QWyggcGUOJMyjv9+Z22EyvwbV3h8nP8ebMlOZnAdDUbi0Uk94soPQxu7KArftabT3KMEVbKNlxZslF0yygDK69O0RBttfKK83PBqCpvTuVVTJmUBZQ+vjsubPICfj4Xz99ydakDENXyDut0Z1M0Et0KnbIpg4P6nBXmPxs10IpcAHlsAUUk94soPRxfFURq754Noc6Qjz46u7BM5heukKRuFOG4UhAsRbK4Nq7QxTkePexrKeFYl1eJr1ZQIljdkUhcyoLefNAa6qrMuZ0BsNxpwyDt9swHBlnMf073H2khZKX7Scn4LMuL5P2LKD0Y96kIrbvt4AyVF2hSNwpw3Bkw0gLKINr7wqRn32kpVdWkG1dXibtWUDpx/FVRexr6aSlw7oZhqIrFI47ZRgg17VcoosfTf/aY1ooABPys62FYtKeBZR+zJvkLXLcYd1eQ9IVjMSdMgxHtmOxgDK4wzFjKABlBVk0WgvFpDkLKP04vqoIgO0WUIakc4AWSl52NKBYl9dg4rVQmm1Q3qQ5Cyj9mDohj8KcAG/aOMqQdAUj/Q7KR8+ZtxbKwILhCN2hSM86FPBmejVal5dJcxZQ+iEiHF9VyDYLKEMy0LThaFdYZ8gCykDau737E10pD95alJaOoG1bY9KaBZQBzJtUxPYDrXiHR5pEDDRtOBpoOrotoAykvTsE0KuFUpqfhSo2ScSktUSOAF4pIvUisikm7TsiskdE1ruvD8U8d4OI1IrIdhG5JCZ9kYhsdM/d7o4Bxh0V/KBLXysiM2PyLBeRHe4rekTwMTOnsojm9iAH26yrIVHRlfLx9AzK27ThAR3uOrqFUlZg26+Y9JdIC+WXwKVx0m9T1YXu6zEAEVmAd3zviS7PHSIS/Zh1J7AC74z5uTFlXg00qeoc4DbgVldWGXAjcCZwBnCjO1f+mJnjzkexLVgSN+C0Ydfl1WVjKAOKtlDyY7oOJ+Tb9ism/Q0aUFT1L3jnvCficuABVe1S1V1ALXCGiEwGilX1JfX6j+4FrojJc497/BBwsWu9XAKsUdVGVW0C1hA/sI2aaECJnp5nBueNoViX10gcaaH0HpQH237FpLeRjKFcJyIbXJdYtOUwFYjdAKvOpU11j/um98qjqiGgBZg4QFnHzJSSXPKz/RZQhqAzGO5ZEd9Xlt+H3yc2KD+IjmB0DCV22rDbwt5aKCaNDTeg3AnMBhYC+4D/cOlHbzELOkD6cPP0IiIrRKRGRGoaGhoGqveQiAhzKgutyytBqjrgGAp4q+VtHcrAoi2U3gsbvRaKTR026WxYAUVVD6hqWFUjwM/wxjjAa0VMi7m0Gtjr0qvjpPfKIyIBoASvi62/suLV5y5VXayqiysqKobzlvo1p6LQWigJ6g5HUI1/nnxUXrbf1qEMomcMJaaFkp/tJ9tvG0Sa9DasgOLGRKI+BkRngK0GlrqZW7PwBt9fUdV9QKuInOXGR5YBD8fkic7guhJ42o2zPAksEZFS16W2xKUdU7MrC9nX0klbV+hYv/SYEx0byYv5Q9hXTsBPhwWUAfW0UGLuo4hQWpBlXV4mrfX/P98RkfuBC4FyEanDm3l1oYgsxOuCehv4AoCqbhaRVcAWIARcq6rRvx7X4M0YywMed18AdwP3iUgtXstkqSurUURuAl51131XVROdHJA00YH5TXtamFiQzVy3JYs5WjRQxO6S21dulo8u6/IaULSFktfnPpYV5PCeTWE3aWzQgKKqn4yTfPcA198M3BwnvQY4KU56J3BVP2WtBFYOVsfRFA0on/3Fq3SHIzz7zxcyrSw/lVVKWz0rvAcMKNblNZjD3WGy/EJ2n67D8sJsDrZ1pahWxgzOVsoPYkZZPvnZfvKy/YQjyhOb9qe6Smmrp8urn1le0edsltfAvLNQjv6sV1GUY4tsTVqzgDKIgN/H7750Dmv+zwWcPLWERzfuS3WV0taRFkr/Dd/cLL+tQxlEe3e417YrURWFOTS0dtlWQCZtWUBJwPxJxUwszOHSkyaxfncze5o7Ul2ltNRf33+s3CybNjyY9u5wr21XoiqKcugORzjUaRNETHqygDIEl500CYDHrZUSVyJdXjnW5TWow92h+C2UohwAGlptHMWkJwsoQ3BcRSHVpXms392c6qqkpUQG5fOy/DbLaxDtXeG43YblhRZQTHqzgDJEMybms7vJurziaU9w2rCtQxlY3+N/o6ItFJvpZdKVBZQhml6WT11je6qrkZY6EhlDCdi04cH0Pf43ylooJt1ZQBmi6tJ83jvczWFbOX+Ujm6vK2uwWV6dwbDNVBrA4a5Q3FbehLwsAj6xFopJWxZQhmi6W9S4u8laKX21B0NkB7wdhfuTl+0nohAMW0DpT0d3OG4rz+cTyt3UYWPSkQWUIYqukt/daOMofXV0hwccP4EjG0faOEp84YjS2hWiODcr7vPlRbZa3qQvCyhDNK00D4B3bRzlKO3d4V6nDMYTPWTLTm2M75A7Mz56/klfFYU5NFhAMWnKAsoQlRVkU5DtZ7cFlKP011UTq+dceZs6HFfzIAHFurxMOrOAMkQiwrSyfOpsDOUo7d3x96CKFT0e2Lq84muJBpS87LjPVxR5Ow5HIt4Y1KFOOxLYpA8LKMMwrSzfurziaO8OD7hKHo6sorepw/E1uwO0ivP66fIqyiEUUZo7gqx96z0W/uufeHZ7/bGsojH9soAyDNNK89nd2GFTX/voCA6ly8sCSjwtg42huMWNuw62cd/L7xBRuOXxbYQj9rtoUs8CyjBML8ujIxi2rcT7aE9glle0y6szZGMo8TS3R7u84geU8+aUU5wb4JbHt/GnzQc4vqqQbftbuemPW7jj2VpbH2VSatCAIiIrRaReRDbFpJWJyBoR2eG+l8Y8d4OI1IrIdhG5JCZ9kYhsdM/d7o4Cxh0X/KBLXysiM2PyLHevsUNEoscEp9zx7tTGrfsOpbgm6SWRQfmcgL/nWnO0aAulpJ+AMiE/m+sumsOrbzfRHY7wX0tP49RpE/jli2/z/Se289ybDceyusb0kkgL5ZfApX3SrgeeUtW5wFPuZ0RkAd4Rvie6PHeISPQvzJ3ACrxz5ufGlHk10KSqc4DbgFtdWWV4xw2fCZwB3BgbuFLpxKklAGzc05LimqSXjuDgLZRowOmyHYfjam4PUpgTIODv/7/msrNnUl2ax+nTJ3DC5GJ+dfUZ/O5L5wC2z5dJrUEDiqr+Be+s91iXA/e4x/cAV8SkP6CqXaq6C6gFzhCRyUCxqr6k3sDDvX3yRMt6CLjYtV4uAdaoaqOqNgFrODqwpURJXhazygvYUGe7DsdKbJaXjaEMpLmju9/WSVRulp/fXXMOP1u2GICi3CxOcR9y7Mx5k0qDninfjypV3QegqvtEpNKlTwVejrmuzqUF3eO+6dE8u11ZIRFpASbGpsfJk3InTy2h5u2+cXb8ikSUzmBk0FleuW6lvK1Dia+lPdjvgHysyuLcXj8H/D5K87N477C1UEzqJHtQPt4mTjpA+nDz9H5RkRUiUiMiNQ0Nx6YP+ZTqEva2dNoiM6cjga3r4UgLxdahxNfSkVhAiaesIJvGw9ZCMakz3IBywHVj4b5HJ8LXAdNirqsG9rr06jjpvfKISAAoweti66+so6jqXaq6WFUXV1RUDPMtDc3Jrothk42jAIkdrgXW5TWY5o7goF1e/ZlYmGMzD01KDTegrAais66WAw/HpC91M7dm4Q2+v+K6x1pF5Cw3PrKsT55oWVcCT7txlieBJSJS6gbjl7i0tHDi1BJEYEOdBRSIOf53kDEUv0/I9tu58v1pbg9S0s8q+cGUF2bzng3KmxQadAxFRO4HLgTKRaQOb+bVLcAqEbkaeBe4CkBVN4vIKmALEAKuVdXoR9Fr8GaM5QGPuy+Au4H7RKQWr2Wy1JXVKCI3Aa+6676rqmkzaFGYE2DmxAK2H7Cpw+BtXQ8DnycflZPlsxZKHKpKS0e3dXmZMWvQgKKqn+znqYv7uf5m4OY46TXASXHSO3EBKc5zK4GVg9UxVaZMyGVfS2eqq5EWEu3ygiOHbJneOoJhgmHtd1HjYCYW5NDUHiQUjgw47diY0WK/dSMwqTiP/RZQAOjs6fJKJKBYCyWe6Cr54Y+heF1lTe22YaRJDQsoIzCpJIf61i7bR4mhtVCKcrJo7bQtQvrq2XZlmF1eEwu8fb5s6rBJFQsoIzCpJI9wRG11MtCe4LRh8D5JN7ZbX39fzR3ePRnuoHyxW+KlAAAeBklEQVS0hdJoM71MilhAGYFJbnGZdXtBR7cblB9klhdAab4NHscz2GmNg5lY4AWUg3ZvTYpYQBmBySVeQLGB+ZgurwRmedlspPhGPobiurysxWxSxALKCFS5FsqBQxZQ2ocwKF+an01rZ4hg2NaixBrs+N/BTMjLwidYsDYpYwFlBCYWZJPlF2uh4C1s9AnkBAb/lSor8P5gNtk4Si8HDnVSkO1PaC1PPD6fUFaQbavlTcpYQBkBn0+oLMq1FgrQ2hmkICeAO+ZmQGVuNlLTYZveGmtPUwfVpfkJ3cP+TCzIodFmeZkUsYAyQpNLctnX0pHqaqTcnuZOppTkJXRtqWuhWNdMb3VNHUwtTewe9mdiYbZtYW9SxgLKCFWV5HLgkH0i3NOc+B/DsoLoAjz7wxdrT3MHUyeMNKDk2DR2kzIWUEZocrHXQvH2sxy/9jS1J/zHsCzfCyjvWQulR2tnkJaOINUjbKFUFnmLbY1JBQsoIzSpJJfOYIRDHeN35XdrZ5BDnaGEWygTXEBpsoDSY0+z12060i6vyqIc2rvDtHWN399HkzoWUEZoshs32N3UnuKapM7eZm9SQqItlOyAj6LcgI2hxNjT5AWU6tL8EZVjU9lNKllAGaHoQVuv7x6/58vvafaC6VA+XZcVZNsYSow6F1BGOoZSWeTNoKu3cT2TAhZQRmhaWR4VRTmsG8fny/d8uh7CH0PbfqW3Pc0d5AR8lBcObx+vqMpiF1BarYVijj0LKCMkIiyeUUrNO02prkrK1DV3kO33Ue62/kiEtVB6q2tqZ2pp3ojWoABUui4va6GYVLCAkgSLZ5ZR19QxbjeJ3NPUweQJufh8if8xLCvItl1xY+xpGvmUYYCinAC5WT4bQzEpMaKAIiJvi8hGEVkvIjUurUxE1ojIDve9NOb6G0SkVkS2i8glMemLXDm1InK7O3cedzb9gy59rYjMHEl9R8viGd5brHlnfHZ77R3G+omyAtvCPladWyU/UiJCVXGuTR02KZGMFsr7VXWhqi52P18PPKWqc4Gn3M+IyAK88+JPBC4F7hCR6KZFdwIrgLnu61KXfjXQpKpzgNuAW5NQ36RbMKWYvCw/NW+Pz26v4SzIK83PpjMYoaPbTm5s6wrx3uHuEa9BiaosyrEWikmJ0ejyuhy4xz2+B7giJv0BVe1S1V1ALXCGiEwGilX1JfVWB97bJ0+0rIeAi2WkncyjIMvv4+SpJWzc05Lqqhxz3aEI9a1dQ14/Ed0g0lopsH3/IQDmTypKSnmVxbk0WAvFpMBIA4oCfxKRdSKywqVVqeo+APe90qVPBXbH5K1zaVPd477pvfKoaghoASb2rYSIrBCRGhGpaWhoGOFbGp45VYW81dCWktdOpa37DqEKsysKh5Svwk1vHa/jTrG27GsF4ITJxUkpz1ooJlVGGlDOVdXTgcuAa0XkggGujdey0AHSB8rTO0H1LlVdrKqLKyoqBqvzqJhdUUhTe3DcHW70yi5v3OjMWWVDyhcNQLX1rUmv01izbd8hinMDPQe2jVRlUS6HbbW8SYERBRRV3eu+1wO/B84ADrhuLNz3end5HTAtJns1sNelV8dJ75VHRAJACZCWI9+zKwoA2NlwOMU1ObbW7nqPWeUFPdNVEzWtNJ/cLB87Doy/Vl1fW/cd4oTJxSOeMhxVFV2LMgZaKaFwhHtefJvP31vD9/64hcMWBMe0YQcUESkQkaLoY2AJsAlYDSx3ly0HHnaPVwNL3cytWXiD76+4brFWETnLjY8s65MnWtaVwNOaprswRj9x7xxH3V7hiPLKrsYht07AO0tmTmUhb9aPn/sVTySibN/fmrTuLvBaKMCYmOn1wKu7uXH1ZrbuO8TdL+zisv/6qy14HcNG0kKpAp4XkTeAV4BHVfUJ4BbggyKyA/ig+xlV3QysArYATwDXqmp0is81wM/xBup3Ao+79LuBiSJSC3wNN2MsHU2dkEdulo/acfIHsqM7zLb9hzjUGeLM44YeUADmVhax48D47vLa3dTO4e5w0gbk4UgLZSyMo/zh9T0cX1XIX7/xfn72mcW829jO87UHU10tM0yB4WZU1beAU+Okvwdc3E+em4Gb46TXACfFSe8ErhpuHY8ln084rrxwXLRQ9jR3cNEPnqUgx/v1OXPWUfMkEjK3qpDfv76HQ51BinOHd476WLc1yQPyANPK8vH7JO27E3c3tlPzThNfv2QeIsIFx1cQ8Alv7m+N85fFjAW2Uj6JZleOj4Dy3PYGukIRCnL8nFJdwpRhrvA+vtL7VJ7uf/hG05a9LYjA8VXJa6HkZvk5rryAbW46crp6ZIM3VPrRU6cA3i7Us8oL2D7OW61jmQWUJJpdUUBdUwedwcxerPdC7UEmFefyl6+/n9XXnTfscqJ/RMdLt1coHOHHT+/oNVX6yc0HWDS9lLxs/wA5h27+5OKe1k86UlV+/9oeTp8+gWllR3YIOH5SEW+Ok9+HTGQBJYlmVxSimtkD85GI8uLOg5w7p3zEs5KqS/PIy/Lz5jhpoTy9rZ4f/OlNvvLA60Qiyrb9h9h+oJWPLpyS9Nc6YXIRe5o7ONQZTHrZyfDKrkZ21Lex9G+m90qfV1XEu43ttHfbbK+xyAJKEi2cNgGAl3a+l+KajJ4t+w7R1B7kvLnDGzeJ5fMJx1cVsnHP+DhL5uH1ewn4hLW7GvnpX95i9fq9+H3Ch06enPTXOmGSNyazfX96ftq/7+V3KM4N8JFTewfT46uKUOWYT25Z9epu/u2xreP+KO+RsoCSRNPK8pk/qYg1Ww6kuiqj5gU3A+fc2eVJKe/CeZXUvNOU8VuFtHYG+fPWA3zqzOksWVDFrU9s466/vMW5c8qHtO1/ouZP9roTt+1Lv3GU+tZOnty8nysXTTuqq2+em+12LAPhvpYOvv3wJn76l7f4zSvvHrPXTYYHX32Xnzy3k+Y02cLIAkqSfeCEKmreacrY89L/vPUA86qKhryQsT+XnTwJVfjTlv1JKS9dPbn5AF2hCJcvnMqPPnUa3/7wAiZPyOUfzpkxKq83qTiXkrwstqZBC2VfS+9xxVWv7iYYVv7+rOlHXTu9LJ+cgG/E4yhb9x1K+EPKD//0JqqwaEYpN/1xS9p3Wf9PzW7ufeltfv7Xt/iX327klse3cd6tz6TFWKQFlCT7wIIqwhHl2TfrB794jNl18DCvvt3E5aclr89/XlURs8oLeGJT5gaU/S2d3LbmTWZOzOf06RPICfi5+rxZ/PUbF3HR/KpReU0RYf6kIramuIXS0h5kyQ//wjd/vxHwFsP+Zu27nDenPO7+b3634HUkG61uqGvm8h+/wN/d+QL1rZ1EItpvV9a2/Yd46LU6lp09gzv//nSy/D6++8iWYb/2aHtmez1ff2gD//fhzXzv0a1cPL+SR647j2A4wi9efDvV1bOAkmynTC2hoiiHP23OvG6vh9btxifw8dOrB784QSLCpSdN4sWd72Vkq66lI8iylWtpbu/m9k+elrTtVRKxeGYpG+paePtg6rYDWlWzm9auEL9/fQ/b9h/i6W317G3p5NNn9d8yW7JgEi+/1ci6fk5B3dPcQSTiBYjOYJjX321inTuLqKU9yJd+/RqlBVkcbO3mw7c/z8nfeZLF3/szX3ngddbv7j1ed8vj2yjKCXDdRXOoLM7lKxfP5bk3G3hme/p9IKw/1Mk/rXqD+ZOK+O01Z/Otvz2B//770zm5uoQPnzKFh1/fk/L92yygJJnPJ3z01Cn8acsBdje2p7o6SdHeHeLVtxv53Wt7uOD4CqqS1N0V9dFTpxCOKL9Mg09YyRQKR7juN6+x6+BhfrZsMadUTzimr7/8nJkEfMKPnq49pq8bFY4o97z0NidPLaEwJ8A3f7eR//jTdiYV5/KBEyr7zff5C2ZRWZTDzY9uOaplUfN2I+ff+jS3PLGN+kOdnP/9Z/jYHS/y8Ttf4uW33uNbD29if0snP/n0Iu5atojjKgr42OlTueD4Cp7d3sAV//0C33joDSIR5YXagzy7vYHrLprDhPxsAJadPZNZ5QVc/9sNPLFpf1oN0v/4mVpaO4P8+FOnsWhGGZ87/zhys7wxqE+dOZ3D3WEeeWPvIKWMLgsoo+Bz58/CJ/DTv+xMdVVGrLnd+5R31U9eYl9L51HTPJPhhMnFfOjkSfzsr29lzOB8OKJ8++HN/HXHQb53xUmcMyc5kxiGorIol0+fNYPfv17HphSc1fPU1gPUNXXwpQtnc+375/Dau83sP9TJ9ZfNJ+Dv/09PfnaAr33weF57t5nHY7pCu0Jhrv/dRiIKK5/fxXX3v05LR5DbP3kaMyfms+LeGh55Yy9f/cBcTpteyvlzK3hgxdl874qTue0TC3nh+ov4wgXHsaqmjs/fW8O1v3mNqRPyWHb2zJ7XyA74+NEnT6MkL4sv/mod3/z9RsKR0Qkq9738Dtf8al1CU6Tfa+tiVc1urlg4lTmVRy+CPX36BOZPKuI3a1M7qcACyiiYXJLHlYuqWVVTNyZ2fO1PdyjCF+5bR11TB//5iYU88dXzueTE0enz/+cl8+gKRbjtz2+OSvnHUlcozBd/tY77X3mXay6czSdGIQgn6gvvO46SvCwu/+8X+LfHj+202Ade3U1VcQ4fXFDFFy44jle+eTGvf/uDXHHa1EHzXrV4GvOqirj1iW10hyIA/PjpWmrr2/jBVaeSl+3nlV2NfOXiuXz01Cn84KpTae0KcWp1CV983+y4ZRbmBLj+svl8/vxZPLWtnjkVhdx39Rk9n/KjTppawmNfPp8vXTib+1/ZzZcfeD3p9622vo2bHtnC45v284X71tEVGngx9D0vvk1nMMIX3ndc3OdFhG9/eAHf+eiClLaqLKCMkqvPO47uUIQnNo/dweYfP72Dtbsa+ferTuGK06Yyf1Lytljv67iKQpafPZPfrH2XRzfsG5XXOFbuffEd1mw5wI0fWcC/XDo/pXWpLMplzdfex+ULp/DT597ikWN0b+sPdfLcmw383enVBPw+RITK4tyEf3/8PuGGD83nnffa+clzO1mz5QA/fqaWKxdVc+Wiav7fx07mI6dOYcUF3h/YxTPLeOiL5/CLz54xYOtHRPjmh07g0S+fx6ovnM1x/RwMF/D7+Mal8/nGpfN4dMM+fvXyO0O/CXG0d4d4ausB/uW3G8jN8nHDZfP5646D3LZmR9zru0JhfvDkdu54didLFlTFbZ1EnTunnEUzyo7pOF1fw94c0gxsdkUB1aV5vFB7sFeTeqzYvLeFO57dyd+dNpXLFw7+iTIZrr9sPm/UNfP1h95gwZRiZpUXHJPXTaa2rhB3PreT8+eW89lzZ6W6OgCUF+bw71eeys76Nv519WbOm1NOWUH2qL7mH9bvIRxRrlw0/Akc7zu+ggvnVfDDNV6r9YTJxdx0ubeH7EdOnXLUoshFM0oTKldEOHFKSULXXvO+2bz8ViP/77FtNLcHqSrJ5crTq/H5hv5HOxJRPv3ztbz2bjMi8O9XnsqVi6rZUd/G3c+/xWnTJ3D7UzvoDIY5pXoC1182n2/9YRNrthzg46dX8+0PnzDk1zzWJJ0GnZJh8eLFWlNTk+pqAPAvD23gsU37WP9/l+Afxi9gKrxQe5Brf/Maze1ByguzWfN/3kfpKP/xibW/pZMLf/AMVyycyi0fP+WYve5IdAbD+ETIDvj44Z+2c/vTtTx87bmcOu3YDsIPZtv+Q3zkR88zq7yAn3x6Ub+fzkfiYFsXq9fv5e7nd1FVnMPvvnTuiMrrDIZ5dnsDr73bxLKzZ1Bdmj94piTb39LJ393xAnvdHmwfOnkSF86r5FBHkE+fNeOoLrO+fvrcTg4c6mLKhFy+9+hW/u+HF/DRhVN6FrTWt3Zy0Q+eo60rRGVRDqdPL+WZ7fUoXrfzdz6ygH84Bh9ORGSdqi4eURkWUEbP6jf28uX7X+cP157bsy1LqnQGw4QjSsAvNB0OsnX/Ieoa25mQn82iGaVMmZBHS3uQS/7zL+Rl+7lyUTUfXFCV1F1wE/X//X4j/1NTxwvXX9Rz9nw6CIYjrF6/l417WvjYaVMpK8hm9Rt7ueOZWvJzApw5q4w/btjH354ymf/+1Omprm5cf93RwJfvf51QRLn/82dx0tTBP6kf6gzyo6d2sLPhMD4RFkwp5nPnzzrqyIH27hB/d8eLbNvfyoT8LG77xELeP6//2VxjSSgcIazKfS+9w82PbSX6Z/PkqSV87vxZ5GcHOG9Oec/K/7ca2tjf0snOg4f59h829ZRz5qwyHlhx1lHdUg+tq+MPr+/h+1eewpQJeWzZe4h/+e0GPrigii9fPPeYvEcLKHGkU0A52NbF4u/9ma9fMo9r3z8nZfV4YtM+/vl/NvQ7R90ncMasMprbg+yob+P3XzrnmE9xjfVWQxsX//A5vnThbL5+SWrHIKLWvdPE11at55332vH7pNfMnw+cUEVTezfr3mnif587i+svm092IH2HJ3c3trP0rpfpCIa5//Nn9Wx3Eo+qct39r/PEpv3MqyoiGI6ws6GNC46v4CefXsSz2xtoau+mOxTh2e31PPtmA3cvX8z751WmtC9/NNXWt6LqLfT92qo3ev5fFeUE+PuzZvA3M0v50q9fo8tNJrjg+Ar+8aI5/OKFXfzzknmj0jJMhnETUETkUuC/AD/wc1W9pb9r0ymgAFz2X39FVXlgxVlkB3wIMuhW5dv3t/Kbte+QHfBxzuxy5k8uYtIQBjSjDrZ1cduaN/n12ndZOG0Cl500iWA4Qkl+NnMqCjmuooD32rp5dONennuzAYBPnTGDT52ZullJUV/69Toe27iffzhnJsvOnsGs8oKe96+qx+yP1aHOID9+upa7n9/F5JJc/vWjJ/I3s8p4eL0333/xjFJOmFyMqlLf2pX0NTqj5e2Dh/lfP32Jju4w3/rwCXR0h6kuzed98yrI8vvY3djOc2828FbDYVa+sKvXh6JfvfwO3/rDJopzAxzqPPIhRQS+edkJfP6C+DORMlFLe5CGtk7qD3XxwKu7We3WgRxfVcjXPng8tfVtLDtn5pg4QG5cBBQR8QNv4h0nXAe8CnxSVePuj5BuAWX1G3v5p1XrKc7Noq0rRLbfx79fdSpvHWzjpZ3vke33sbOhje5QhH9aMo8Xd77Hb1+rIzfLRyQC3WHvU84Jk4u55sLZ+ATau+NPMSzJy2L+pCJ8Ivxxwz7ueKaW9mCYZWfP4PrL5pMTSO6ZG6OpozvMLY9v5Z6XvNk1Mybmc9375/Doxn28UHuQiQU5VBXnUFGUS1VxDpVFucyYmM/FJ1SSHfDxVsNhDrZ1sX1/K3VNHSw5sYqSvCzWvdNEwOejvTtEQ1sX86qKmF1RSESVcEQpzsti5sQCnt5WzyNv7OUvbzbQ1h3iqkXVfOvDC8bEH4ZE7W3u4HP31LAlZnuWgmw/ZYXZ1DV19HTrXDivgruX/03POKCqctMft7KhrplrLpzNginFZPt95Gb5e07xHK9q3m5k9Rt7+ceL5qZVd20ixktAORv4jqpe4n6+AUBV/y3e9ekWUMDbW+iHa95k5sQCXtnV2PMfOPrJdsbEfPY2d7JxTwt+n7DiguNY4VbBvlHXzJa9h/jli2/z7hBX3n/ghEquv+wE5lSmZxM7ETsb2lj7ViO/eGEXO+rbKMoJ8PFF1bR1hahv7aL+UCf1rV00um1bcgI+VI8EYvAWq0XXMsTq23UV5ROIKFQW5fD+eZV8+qwZnFyd2KygsaYzGGZDXQvTy/LZvLeFv+44SFN7N7PKC7hi4VRK87MpzgtkbPeVOWK8BJQrgUtV9XPu588AZ6rqdTHXrABWAEyfPn3RO+8kZ874aGjvDvGzv+zizOPKOOu4I2eKhMIRfvf6Hk6cUhx3SmMwHGH97maKcgMUZAeI9/+7vrWLHQdaERFmVxQmPI1yLAiGIzxfe5ATJxfH3em4KxRm895DPPLGXrL8Pk6eWkJVcS4zy/Mpzs3iiU37CYYjnDunHJ8IOQEfxXlZbNt/iH3Nnfj9gl+Eg21dbNvfyqIZpXzghKoxMzvPmJEaLwHlKuCSPgHlDFX9x3jXp2MLxRhj0l0yAkr6TkU5og6YFvNzNZDaHdCMMcYcZSwElFeBuSIyS0SygaXA6hTXyRhjTB9pPyVDVUMich3wJN604ZWqujnF1TLGGNNH2gcUAFV9DHgs1fUwxhjTv7HQ5WWMMWYMsIBijDEmKSygGGOMSQoLKMYYY5Ii7Rc2DpWItALbh5G1HDiYhCqUAMk8wDvZ5Y1Wucm6f1HJrF+6/5uk870bC+WNp/s3WveuHChQ1YoRlaaqGfUF1BzLfHHKuSvJ7yep5Y1iPZNy/0ajfun+b5LO926MlDdu7t9o3btk3UPr8kq+R9K8vNEuN1mSWb+x8m+SLOn+fu3+pUdZSZeJXV41Ooz9aIabz3js/g2f3buRsfs3fNF7l6x7mIktlLuOcT7jsfs3fHbvRsbu3/Dd1ef7iGRcC8UYY0xqZGILxRhjTApkbEARkWki8oyIbBWRzSLyFZdeJiJrRGSH+17q0ie669tE5Md9yvqkiGwUkQ0i8oSIlKfiPR1LSb5/n3D3brOIfD8V7+dYGsa9+6CIrHO/Y+tE5KKYsha59FoRuV3GwdGJSb5/N4vIbhFpS9X7OZaSde9EJF9EHhWRba6cWxKqQDKnoKXTFzAZON09LsI7l34B8H3gepd+PXCre1wAnAd8EfhxTDkBoB4odz9/H+9I4pS/xzFy/yYC7wIV7ud7gItT/f7S7N6dBkxxj08C9sSU9QpwNiDA48BlqX5/Y+z+neXKa0v1+xpL9w7IB97vHmcDf03kdy/lN+AY3uiHgQ/iLXqcHHPzt/e57h/6/EHMAhqAGe4/9U+AFal+P2Po/v0N8OeYnz8D3JHq95OO986lC/AekOOu2Rbz3CeBn6b6/YyV+9cnfVwElNG4d+65/wI+P9jrZWyXVywRmYkXidcCVaq6D8B9rxwor6oGgWuAjXgnRS4A7h7F6qadkdw/oBaYLyIzRSQAXEHvEzgz2jDu3ceB11W1C5iKd2JpVJ1LGzdGeP/GtWTdOxGZAHwEeGqw18z4gCIihcBvga+q6qFh5M/CCyinAVOADcANSa1kGhvp/VPVJrz79yBes/ltIJTMOqarod47ETkRuBX4QjQpzmXjZlpmEu7fuJWse+c+BN4P3K6qbw1WTkYHFBcMfgv8WlV/55IPiMhk9/xkvPGRgSwEUNWd6rX9VgHnjFKV00qS7h+q+oiqnqmqZ+M1vXeMVp3TxVDvnYhUA78HlqnqTpdcB1THFFuN10rOeEm6f+NSku/dXcAOVf3PRF47YwOKmw1zN7BVVX8Y89RqYLl7vByvj3Ege4AFIhLdNO2DwNZk1jUdJfH+ISKV7nsp8CXg58mtbXoZ6r1zXQqPAjeo6gvRi13XRKuInOXKXEYC93usS9b9G4+See9E5Ht4m1F+NeEKpHrQaBQHo87D6x7YAKx3Xx/Cm3X0FN6n5KeAspg8bwONQBvep8MFLv2LeEFkA95eOhNT/f7G2P27H9jivpam+r2l270DvgUcjrl2PVDpnlsMbAJ2Aj/GLUbO5K8k37/vu9/FiPv+nVS/v7Fw7/Baw+r+7kXTPzfY69tKeWOMMUmRsV1exhhjji0LKMYYY5LCAooxxpiksIBijDEmKSygGGOMSQoLKMYcYyLyRRFZNoTrZ4rIptGskzHJEEh1BYwZT0QkoKo/SXU9jBkNFlCMGSK36d4TeJvunYa3Rfgy4ATgh0AhcBD4B1XdJyLPAi8C5wKrRaQIb/fbH4jIQrwdrPPxFi/+b1VtEpFFwEqgHXj+2L07Y4bPuryMGZ55wF2qegpwCLgW+BFwpapGg8HNMddPUNX3qep/9CnnXuBfXDkbgRtd+i+AL6u3/5kxY4K1UIwZnt16ZO+jXwHfxDugaI07VNEP7Iu5/sG+BYhICV6gec4l3QP8T5z0+4DLkv8WjEkuCyjGDE/fPYtagc0DtCgOD6FsiVO+MWnPuryMGZ7pIhINHp8EXgYqomkikuXOmOiXqrYATSJyvkv6DPCcqjYDLSJynkv/++RX35jksxaKMcOzFVguIj/F28H1R8CTwO2uyyoA/CeweZBylgM/EZF84C3gsy79s8BKEWl35RqT9my3YWOGyM3y+qOqnpTiqhiTVqzLyxhjTFJYC8UYY0xSWAvFGGNMUlhAMcYYkxQWUIwxxiSFBRRjjDFJYQHFGGNMUlhAMcYYkxT/P5TNN3OpjBGUAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"source": [
"sorted_data['inc'][-200:].plot()"
"sorted_data['inc'][-200:].plot()"
]
]
...
@@ -2298,10 +2321,8 @@
...
@@ -2298,10 +2321,8 @@
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count": null,
"execution_count": 20,
"metadata": {
"metadata": {},
"collapsed": true
},
"outputs": [],
"outputs": [],
"source": [
"source": [
"first_august_week = [pd.Period(pd.Timestamp(y, 8, 1), 'W')\n",
"first_august_week = [pd.Period(pd.Timestamp(y, 8, 1), 'W')\n",
...
@@ -2320,7 +2341,7 @@
...
@@ -2320,7 +2341,7 @@
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count":
null
,
"execution_count":
21
,
"metadata": {},
"metadata": {},
"outputs": [],
"outputs": [],
"source": [
"source": [
...
@@ -2344,9 +2365,32 @@
...
@@ -2344,9 +2365,32 @@
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count":
null
,
"execution_count":
22
,
"metadata": {},
"metadata": {},
"outputs": [],
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.axes._subplots.AxesSubplot at 0x7f98a6497518>"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAD8CAYAAABQFVIjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3X+QldWd5/H3B0FxElEg6PBDhY3GCppZHLrQLfdHxB0gPyrgjJmwOkrVWEXijy1nNrWiE7fMKFMVU5M4y7ohMWNG1FF0TCzdRIa0UWucWQSaoFE0TjMrgygjWI2KUwVj43f/eL53fLhpbt9ubve9t/vzqrrVT5/nnHNPPzT9vefH8xxFBGZmZkdrTLMbYGZmI4MDipmZNYQDipmZNYQDipmZNYQDipmZNYQDipmZNYQDipmZNYQDipmZNYQDipmZNcTYZjdgOH3sYx+LmTNnNrsZZmZtZcuWLW9FxJT+8o2qgDJz5ky6urqa3Qwzs7Yi6R/ryechLzMzawgHFDMzawgHFDMza4i6AoqkHZJekPScpK5M+7qk1zPtOUmfLeW/UdJ2Sa9IWlhKn5v1bJe0SpIy/ThJD2b6RkkzS2WWSerO17JS+qzM251ljz36y2FmZoM1kB7KhRExJyI6Smm3Z9qciHgcQNJsYClwNrAI+I6kYzL/amA5cGa+FmX6lcC+iDgDuB24LeuaBNwMnAfMA26WNDHL3JbvfyawL+swM7MmGYohr8XA2og4GBGvAtuBeZKmAhMiYkMUu3rdAywplVmTxw8DF2XvZSHQGRE9EbEP6AQW5bn5mZcsW6mrre159wC/+70N7Nl/oNlNMTMbkHoDSgA/lbRF0vJS+rWSfiHpB6Wew3TgtVKeXZk2PY+r0w8rExG9wDvA5Bp1TQbezrzVdbW1VT/rZvOOHlY90d3sppiZDUi996FcEBFvSDoZ6JT0S4rhq1spgs2twLeA3wfUR/mokc4gytSq6zAZAJcDnHbaaX1laQln3bSOg70f/Ov3923cyX0bd3Lc2DG8svIzTWyZmVl96uqhRMQb+XUP8AgwLyLejIhDEfEB8H2KOQ4oegunlorPAN7I9Bl9pB9WRtJY4ESgp0ZdbwEnZd7quqrbfmdEdEREx5Qp/d7o2TTPXH8hX5gzjfHjin+S8ePGsHjONJ5ZcWGTW2ZmVp9+A4qkj0g6oXIMLABezDmRiouBF/P4MWBprtyaRTH5vikidgP7JZ2fcyBXAI+WylRWcF0CPJnzLOuBBZIm5pDaAmB9nnsq85JlK3W1pZMnjOeE48ZysPcDjhs7hoO9H3DCcWM5+YTxzW6amVld6hnyOgV4JFf4jgXuj4i/lnSvpDkUQ007gC8DRMQ2SQ8BLwG9wDURcSjrugq4GzgeWJcvgLuAeyVtp+iZLM26eiTdCmzOfLdERE8erwDWSloJbM062tpb7x3ksvNO59J5p3H/pp3s9cS8mbURFR/2R4eOjo7ws7zMzAZG0paqW0b65DvlzcysIRxQzMysIRxQzMysIRxQzMysIRxQzMysIRxQ2pCf92VmrcgBpQ35eV9m1opG1Z7y7c7P+zKzVuYeShvx877MrJU5oLQRP+/LzFqZh7zajJ/3ZWatys/yqsOedw9w7QNbuePSc90bMLNRx8/yaiCvqjIz65+HvGrwqiozs/q5h1KDV1WZmdXPAaUGr6oyM6tfXQFF0g5JL0h6TlJXpk2S1CmpO79OLOW/UdJ2Sa9IWlhKn5v1bJe0KrcCJrcLfjDTN0qaWSqzLN+jW9KyUvqszNudZY89+svxqyqrqh65+gIuO+909r53cCjexsys7dW1ykvSDqAjIt4qpX0T6ImIb0i6AZgYESskzQYeAOYB04AngE9ExCFJm4DrgGeBx4FVEbFO0tXAb0TEVyQtBS6OiC9JmgR0AR0UWw1vAeZGxL7cZvhHEbFW0neB5yNida2fwzs2mpkN3HCs8loMrMnjNcCSUvraiDgYEa8C24F5kqYCEyJiQxRR7J6qMpW6HgYuyt7LQqAzInoiYh/QCSzKc/Mzb/X7m5lZE9QbUAL4qaQtkpZn2ikRsRsgv56c6dOB10pld2Xa9DyuTj+sTET0Au8Ak2vUNRl4O/NW12VmZk1Q77LhCyLiDUknA52Sflkjr/pIixrpgylTq67DG1MEwOUAp512Wl9ZzMysAerqoUTEG/l1D/AIxfzImzmMRX7dk9l3AaeWis8A3sj0GX2kH1ZG0ljgRKCnRl1vASdl3uq6qtt+Z0R0RETHlClT6vlxzcxsEPoNKJI+IumEyjGwAHgReAyorLpaBjyax48BS3Pl1izgTGBTDovtl3R+zoFcUVWmUtclwJM5z7IeWCBpYq4iWwCsz3NPZd7q9zczsyaoZ8jrFOCRXOE7Frg/Iv5a0mbgIUlXAjuBLwJExLZcgfUS0AtcExGHsq6rgLuB44F1+QK4C7hX0naKnsnSrKtH0q3A5sx3S0T05PEKYK2klcDWrMPMzJrED4c0M7Oa/HBIMzMbVg4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEHUHFEnHSNoq6cf5/dclvS7puXx9tpT3RknbJb0iaWEpfa6kF/Lcqtxbntx//sFM3yhpZqnMMknd+VpWSp+Vebuz7LFHdynMzOxoDKSHch3wclXa7RExJ1+PA0iaTbEn/NnAIuA7ko7J/KuB5cCZ+VqU6VcC+yLiDOB24LasaxJwM3AeMA+4WdLELHNbvv+ZwL6sw8zMmqSugCJpBvA54M/ryL4YWBsRByPiVWA7ME/SVGBCRGyIYiP7e4AlpTJr8vhh4KLsvSwEOiOiJyL2AZ3Aojw3P/OSZSt1mZlZE9TbQ/kz4Hrgg6r0ayX9QtIPSj2H6cBrpTy7Mm16HlenH1YmInqBd4DJNeqaDLydeavrMjOzJug3oEj6PLAnIrZUnVoNfByYA+wGvlUp0kc1USN9MGVq1XUYScsldUnq2rt3b19ZzMysAerpoVwAfEHSDmAtMF/SfRHxZkQciogPgO9TzHFA0Vs4tVR+BvBGps/oI/2wMpLGAicCPTXqegs4KfNW13WYiLgzIjoiomPKlCl1/LhmZjYY/QaUiLgxImZExEyKyfYnI+L3ck6k4mLgxTx+DFiaK7dmUUy+b4qI3cB+SefnHMgVwKOlMpUVXJfkewSwHlggaWIOqS0A1ue5pzIvWbZSl5mZNcHY/rMc0TclzaEYatoBfBkgIrZJegh4CegFromIQ1nmKuBu4HhgXb4A7gLulbSdomeyNOvqkXQrsDnz3RIRPXm8AlgraSWwNeswM7MmUfFhf3To6OiIrq6uZjfDzKytSNoSER395fOd8mZm1hAOKGZm1hAOKGZm1hAOKGZm1hAOKGZm1hAOKGZm1hAOKGZm1hAOKGZm1hAOKGY2Kux59wC/+70N7Nl/oNlNGbEcUMxsVFj1s2427+hh1RPdzW7KiHU0z/IyM2t5Z920joO9H27ldN/Gndy3cSfHjR3DKys/08SWjTzuoZjZiPbM9RfyhTnTGD+u+HM3ftwYFs+ZxjMrLmxyy0YeBxQza5rhmNc4ecJ4TjhuLAd7P+C4sWM42PsBJxw3lpNPGD9k7zlaOaCYWdMM17zGW+8d5LLzTueRqy/gsvNOZ+97B4f0/UYrP77ezIZd9bxGhec1WpMfX29mLcvzGiOTA4qZDTvPa4xMdQcUScdI2irpx/n9JEmdkrrz68RS3hslbZf0iqSFpfS5kl7Ic6tyb3ly//kHM32jpJmlMsvyPbolLSulz8q83Vn22KO7FGY2nDyvMfLUPYci6b8BHcCEiPi8pG8CPRHxDUk3ABMjYoWk2cADwDxgGvAE8ImIOCRpE3Ad8CzwOLAqItZJuhr4jYj4iqSlwMUR8SVJk4CufN8AtgBzI2Jf7lv/o4hYK+m7wPMRsbrWz+A5FDOzgWvoHIqkGcDngD8vJS8G1uTxGmBJKX1tRByMiFeB7cA8SVMpgtGGKKLYPVVlKnU9DFyUvZeFQGdE9ETEPqATWJTn5mfe6vc3M7MmqHfI68+A64HysoxTImI3QH49OdOnA6+V8u3KtOl5XJ1+WJmI6AXeASbXqGsy8Hbmra7rMJKWS+qS1LV37946f1wzMxuofgOKpM8DeyJiS511qo+0qJE+mDK16jo8MeLOiOiIiI4pU6b0lcXMzBqgnh7KBcAXJO0A1gLzJd0HvJnDWOTXPZl/F3BqqfwM4I1Mn9FH+mFlJI0FTgR6atT1FnBS5q2uy6wmP3XWbGj0G1Ai4saImBERM4GlwJMR8XvAY0Bl1dUy4NE8fgxYmiu3ZgFnAptyWGy/pPNzDuSKqjKVui7J9whgPbBA0sRcRbYAWJ/nnsq81e9vVpOfOms2NI7macPfAB6SdCWwE/giQERsyxVYLwG9wDURcSjLXAXcDRwPrMsXwF3AvZK2U/RMlmZdPZJuBTZnvlsioiePVwBrJa0EtmYdZkfkp86aDS0/esVGjT3vHmDl4y/z023/xIH3P2D8uDEsPPvX+drnPukb6sxq8KNXzKoM5O7sdpxnacc228jigGKjSr13Z7fjPEs7ttlGFg95mZW041Nw27HN1l485GU2CO34FNx2bLONTA4oZiXt+BTcdmyzjUxHs2zYbESqzLNcOu807t+0k71tMMndjm22kcdzKGZmVpPnUMzMbFg5oJiZWUM4oJiZDYBvID0yBxQzswHwDaRH5lVe1lb2vHuAax/Yyh2XnutlsTas/HDR/rmHYm3Fnw6tWXwDaf/cQ7G2MNo/Hbpn1ny+gbR/7qFYWxjtnw7dM2sN9T5cdLRyD8VaRq1P4aP10+Fo75m1mu9d/uG9fSuXnNPElrSmfnsoksZL2iTpeUnbJP1xpn9d0uuSnsvXZ0tlbpS0XdIrkhaW0udKeiHPrcqtgMntgh/M9I2SZpbKLJPUna9lpfRZmbc7yx7bmEtiA9WoZZT9fQofjZ8OR3vPzNpLPT2Ug8D8iHhP0jjgbyVVtu69PSL+tJxZ0myKLXzPBqYBT0j6RG4DvBpYDjwLPA4sotgG+EpgX0ScIWkpcBvwJUmTgJuBDiCALZIei4h9mef2iFgr6btZx+rBXwobrHIgWHnxpwZcvt5P4aPx0+Fo7ZlZe+q3hxKF9/Lbcfmq9QCwxcDaiDgYEa8C24F5kqYCEyJiQxQPELsHWFIqsyaPHwYuyt7LQqAzInoyiHQCi/Lc/MxLlq3UZcPkrJvWMfOGn3Dfxp1EFIFg5g0/4ayb1vVfuMSfwmsbjT0za091zaFIOgbYApwB/O+I2CjpM8C1kq4AuoCv5h/96RQ9kIpdmfZ+Hlenk19fA4iIXknvAJPL6VVlJgNvR0RvH3XZMHnm+guPuEf7QPhTeG2jsWdm7amuVV4RcSgi5gAzKHob51AML30cmAPsBr6V2dVXFTXSB1OmVl2HkbRcUpekrr179/aVxQapkYHAn8JHHj+iZPQZ0CqviHhb0tPAovLciaTvAz/Ob3cBp5aKzQDeyPQZfaSXy+ySNBY4EejJ9E9XlXkaeAs4SdLY7KWU66pu853AnVA8vn4gP6/1r1H7cPhT+MhztHNr1n763Q9F0hTg/QwmxwM/pZgQ3xIRuzPPHwLnRcRSSWcD9wPzKCblfwacGRGHJG0G/iuwkWJS/n9FxOOSrgE+FRFfyUn5346I381J+S3Ab2Zzfg7MjYgeSX8F/LA0Kf+LiPhOrZ/F+6GYDT3vcT/y1LsfSj09lKnAmpxHGQM8FBE/lnSvpDkUQ007gC8DRMQ2SQ8BLwG9wDW5wgvgKuBu4HiK1V2V2du7gHslbafomSzNunok3Qpszny3RERPHq8A1kpaCWzNOsysyRo1t2btp9+AEhG/AM7tI/3yGmX+BPiTPtK7gF8Zz4iIA8AXj1DXD4Af9JH+/yh6QWbWQrzIYvTynfJm1nDe43508p7yZmZWk/eUNzOzYeWAYmZmDeGAYmZmDeGAYmZmDeGAYmZmDeGAYmZmDeGAYmZmDeGAYmZmDeGAYmZmDeGAYjaEvCeIjSYOKGZDqLwniNlI54dDmg2B6j1B7tu4k/s27vSeIDaiuYdiNgSeuf5CvjBnGuPHFf/Fxo8bw+I503hmxYVNbpnZ0HFAMRsC3hPERiMHFBtRWmkSvLInyCNXX8Bl553O3vcONrtJZkOq34AiabykTZKel7RN0h9n+iRJnZK68+vEUpkbJW2X9IqkhaX0uZJeyHOrJCnTj5P0YKZvlDSzVGZZvke3pGWl9FmZtzvLHtuYS2LtrJUmwb93eQcrl5zD7GkTWLnkHL53eb/bSZi1tX432Mo/+h+JiPckjQP+FrgO+G2gJyK+IekGYGJErJA0G3iAYnveacATwCci4pCkTVn2WeBxYFVErJN0NfAbEfEVSUuBiyPiS5ImAV1AB8Xe9VuAuRGxL/et/1FErJX0XeD5iFhd62fxBlsjV/UkeIUnwc2OXsM22IrCe/ntuHwFsBhYk+lrgCV5vBhYGxEHI+JVYDswT9JUYEJEbIgiit1TVaZS18PARRnIFgKdEdETEfuATmBRnpufeavf30YhT4IPr1YaWrTWUdcciqRjJD0H7KH4A78ROCUidgPk15Mz+3TgtVLxXZk2PY+r0w8rExG9wDvA5Bp1TQbezrzVdVW3fbmkLklde/furefHtTbkSfDh1UpDi9Y66roPJSIOAXMknQQ8IumcGtnVVxU10gdTplZdhydG3AncCcWQV195bGSoTIJfOu807t+0k73+9Nxwvr/GahnQjY0R8bakp4FFwJuSpkbE7hzO2pPZdgGnlorNAN7I9Bl9pJfL7JI0FjgR6Mn0T1eVeRp4CzhJ0tjspZTrslGqPOm9ckmtzzw2WM9cfyErH3+Zn277Jw68/wHjx41h4dm/ztc+98lmN81aQD2rvKZkzwRJxwP/Gfgl8BhQWXW1DHg0jx8DlubKrVnAmcCmHBbbL+n8nAO5oqpMpa5LgCdznmU9sEDSxFxFtgBYn+eeyrzV729mQ8RDi1ZLPT2UqcAaScdQBKCHIuLHkjYAD0m6EtgJfBEgIrblCqyXgF7gmhwyA7gKuBs4HliXL4C7gHslbafomSzNunok3Qpszny3RERPHq8A1kpaCWzNOsxsiHlo0Y6k32XDI8lQLhve8+4Brn1gK3dceq4/rZk1UDv+32rHNtfSsGXDVh+vejEbGu34f6sd29wI7qEcJd9QZzY02vH/Vju2uR7uoQwT31BnNjTa8f9WO7a5kRxQjtJAVr347mJrB63ye9qOK8rasc2N5IDSAPU+VXa0jqtae2ml39N2fGJzO7a5UTyHMgxG6riqjSz+PbUj8RxKCxnt46rWHvx72npaZfixXg4ow6Cdx1Xb7RfaBq+df09HqlYafqzHgJ7lZYPXrncXl3+hV178qWY3x4ZYu/6ejjTt+hBOz6FYnzyebtY8e949cMSHcDajx+g5FDsqHk83a552HX70kJf1qV1/oc1GinYcfnRAsSNqx19os5GiHff38RzKKDbSnohqZkPDcyjWr3Zbkmhmrc1DXqNQuy5JbDXu4Zkdrp4tgE+V9JSklyVtk3Rdpn9d0uuSnsvXZ0tlbpS0XdIrkhaW0udKeiHPrcqtgMntgh/M9I2SZpbKLJPUna9lpfRZmbc7yx7bmEsy8nkFV2O4h2d2uHp6KL3AVyPi55JOALZI6sxzt0fEn5YzS5pNsYXv2cA04AlJn8htgFcDy4FngceBRRTbAF8J7IuIMyQtBW4DviRpEnAz0AFEvvdjEbEv89weEWslfTfrWD34SzF6eAXX0XEPz6xv/fZQImJ3RPw8j/cDLwPTaxRZDKyNiIMR8SqwHZgnaSowISI2RLES4B5gSanMmjx+GLgoey8Lgc6I6Mkg0gksynPzMy9ZtlKX1WE0PxH1aLmHZ9a3Ac2h5FDUucBG4ALgWklXAF0UvZh9FMHm2VKxXZn2fh5Xp5NfXwOIiF5J7wCTy+lVZSYDb0dEbx91WR3acUliq3APz6xvda/ykvRR4IfAH0TEuxTDSx8H5gC7gW9VsvZRPGqkD6ZMrbqq271cUpekrr179/aVxWzA3MMz+1V19VAkjaMIJn8ZET8CiIg3S+e/D/w4v90FnFoqPgN4I9Nn9JFeLrNL0ljgRKAn0z9dVeZp4C3gJEljs5dSruswEXEncCcU96HU8/Oa9cc9PLNfVc8qLwF3AS9HxLdL6VNL2S4GXszjx4CluXJrFnAmsCkidgP7JZ2fdV4BPFoqU1nBdQnwZM6zrAcWSJooaSKwAFif557KvGTZSl1mZtYE9fRQLgAuB16Q9Fym/RHwXyTNoRhq2gF8GSAitkl6CHiJYoXYNbnCC+Aq4G7geIrVXesy/S7gXknbKXomS7OuHkm3Apsz3y0R0ZPHK4C1klYCW7MOMzNrEj96xczMavKjV8zMbFg5oJiZNcFI3F7bAcVsFBmJf8Ta1Uh8dI8fDmk2ipT/iK28+FPNbs6oNJIf3eNJebNRoPqPWMVI+CPWbhq5X/xwPfHak/Jm9q/8/LHW0chH97TasJmHvMyabDg+Zfr5Y63laLfXbtVhMwcUsyYbrnmNo/0jZo1ztI/ueeb6C484bNZMDihmTTLcnzL9/LGRo1V7nJ5DMWsSz2s0zmhcDt2KT7x2D8WsSVr1U2Y7Go3LoVuxx+mAYtZEntc4Oq06OT1a+T4UM2tbjbynw47M96GY2YjnYcPW4iEvM2trHjZsHR7yMjMbwRpx46yHvMzMbFgfz1LPnvKnSnpK0suStkm6LtMnSeqU1J1fJ5bK3Chpu6RXJC0spc+V9EKeW5V7y5P7zz+Y6RslzSyVWZbv0S1pWSl9VubtzrLHNuaSmJm1v7NuWsfMG37CfRt3ElGsgJt5w08466Z1/RcepHp6KL3AVyPik8D5wDWSZgM3AD+LiDOBn+X35LmlwNnAIuA7ko7JulYDy4Ez87Uo068E9kXEGcDtwG1Z1yTgZuA8YB5wcylw3Qbcnu+/L+swMzOac+NsvwElInZHxM/zeD/wMjAdWAysyWxrgCV5vBhYGxEHI+JVYDswT9JUYEJEbIhi4uaeqjKVuh4GLsrey0KgMyJ6ImIf0AksynPzM2/1+5uZjXrNWAE3oFVeORR1LrAROCUidkMRdCSdnNmmA8+Wiu3KtPfzuDq9Uua1rKtX0jvA5HJ6VZnJwNsR0dtHXWZmxvCvgKs7oEj6KPBD4A8i4t2c/ugzax9pUSN9MGVq1XV4Y6TlFMNsnHbaaX1lMTMbkYb78Sx1rfKSNI4imPxlRPwok9/MYSzy655M3wWcWio+A3gj02f0kX5YGUljgROBnhp1vQWclHmr6zpMRNwZER0R0TFlypR6flwzMxuEelZ5CbgLeDkivl069RhQWXW1DHi0lL40V27Noph835TDY/slnZ91XlFVplLXJcCTOc+yHlggaWJOxi8A1ue5pzJv9fubmVkT1DPkdQFwOfCCpOcy7Y+AbwAPSboS2Al8ESAitkl6CHiJYoXYNRFxKMtdBdwNHA+syxcUAeteSdspeiZLs64eSbcCmzPfLRHRk8crgLWSVgJbsw4zM2sS3ylvZmY1+U55aymjcQMks9HGAcWGxXA+/sHMmsNPG7Yh5Q2QzEYP91BsSHnfdLPRwwHFhpQ3QDIbPTzkZUPOGyCZjQ5eNmxmZjV52bCZmQ0rBxQzM2sIB5QRyjcSmtlwc0AZoXwjoZkNN6/yGmF8I6GZNYt7KCOMbyQ0GzwPFR8dB5QRxjcSmg2eh4qPjoe8RiDfSGg2MB4qbgzf2Ghmo96edw+w8vGX+em2f+LA+x8wftwYFp7963ztc590754G3tgo6QeS9kh6sZT2dUmvS3ouX58tnbtR0nZJr0haWEqfK+mFPLcqtwEmtwp+MNM3SppZKrNMUne+lpXSZ2Xe7ix7bD0XxcysLx4qbox65lDuBhb1kX57RMzJ1+MAkmZTbN97dpb5jqRjMv9qYDnFHvNnluq8EtgXEWcAtwO3ZV2TgJuB84B5wM25rzyZ5/aIOBPYl3WYmQ1aZaj4kasv4LLzTmfveweb3aS20+8cSkT8TbnX0I/FwNqIOAi8mnvEz5O0A5gQERsAJN0DLKHYU34x8PUs/zBwR/ZeFgKdlT3kJXUCiyStBeYDl2aZNVl+dZ1tNDP7Fd+7/MMRnZVLzmliS9rX0azyulbSL3JIrNJzmA68VsqzK9Om53F1+mFlIqIXeAeYXKOuycDbmbe6LjMza5LBBpTVwMeBOcBu4FuZrj7yRo30wZSpVdevkLRcUpekrr179x4pm5mZHaVBBZSIeDMiDkXEB8D3KeY4oOgtnFrKOgN4I9Nn9JF+WBlJY4ETgZ4adb0FnJR5q+vqq613RkRHRHRMmTJloD+qmZnVaVABRdLU0rcXA5UVYI8BS3Pl1iyKyfdNEbEb2C/p/JwfuQJ4tFSmsoLrEuDJKNYyrwcWSJqYQ2oLgPV57qnMS5at1GVmZk3S76S8pAeATwMfk7SLYuXVpyXNoRhq2gF8GSAitkl6CHgJ6AWuiYhDWdVVFCvGjqeYjF+X6XcB9+YEfg/FKjEiokfSrcDmzHdLZYIeWAGslbQS2Jp1mJlZE/nGRjMzq6neGxtHVUCRtBf4xz5OfYxibqaduM1Dr93aC27zcGm3Nh9te0+PiH4noUdVQDkSSV31RN9W4jYPvXZrL7jNw6Xd2jxc7fXThs3MrCEcUMzMrCEcUAp3NrsBg+A2D712ay+4zcOl3do8LO31HIqZmTWEeyhmZtYQIzKgHGEPl38raUPuyfJ/JE3I9HGS1mT6y5JuLJV5Ovd1qez7cnKLtPlYSX+R6c9L+nSpTJ/7zrR4m4flOks6VdJT+e+8TdJ1mT5JUmfur9NZetjpgPf3afE2t+R1ljQ5878n6Y6qulryOvfT5iG/zoNo729J2pLXcouk+aW6GneNI2LEvYD/CPwm8GIpbTPwn/L494Fb8/hSikfuA/waxZ3/M/P7p4GOFmzzNcBf5PHJwBZgTH6ruEO0AAADpklEQVS/Cfh3FA/RXAd8pg3aPCzXGZgK/GYenwD8PTAb+CZwQ6bfANyWx7OB54HjgFnAPwDHDOd1bnCbW/U6fwT498BXgDuq6mrV61yrzUN+nQfR3nOBaXl8DvD6UFzjEdlDiYi/oXiMS9lZwN/kcSfwO5XswEdUPGzyeOBfgHeHo51lA2zzbOBnWW4P8DbQoeIZaxMiYkMUvymVfWdats1D1ba+RMTuiPh5Hu8HXqbY+mAxxb465NfKNfvX/X0i4lWgsr/PsF3nRrV5KNrWqDZHxD9HxN8CB8r1tPJ1PlKbh8sg2rs1IioP0d0GjFfxzMWGXuMRGVCO4EXgC3n8RT58kvHDwD9TPIZ/J/Cn8eEzwwD+Irut/2Moh4+O4Ehtfh5YLGmsiodwzs1ztfadGS4DbXPFsF5nFZvGnQtsBE6J4gGm5NfKEMVg9vcZMkfZ5opWvM5H0srXuT/Ddp0H0d7fAbZGsRFiQ6/xaAoovw9cI2kLRRfxXzJ9HnAImEYxRPBVSf8mz10WEZ8C/kO+Lh/eJh+xzT+g+IfvAv4M+L8UD+Mc0F4xQ2SgbYZhvs6SPgr8EPiDiKjVG23InjyN0IA2Q+te5yNW0Udaq1znWobtOg+0vZLOpthC/cuVpD6yDfoaj5qAEhG/jIgFETEXeIBibBmKOZS/joj3cyjm78ihmIh4Pb/uB+5n+IcO+mxzRPRGxB9GxJyIWAycBHRTe9+ZVm3zsF5nSeMo/gP+ZUT8KJPfzK5/ZZhlT6YPZn+fVm1zK1/nI2nl63xEw3WdB9peSTOAR4ArIqLy96+h13jUBJTKSgtJY4CbgO/mqZ3AfBU+ApwP/DKHZj6WZcYBn+fDfV+a2mZJv5ZtRdJvAb0R8VLU3nemJds8nNc5r8ldwMsR8e3SqfKePOX9dQazv09LtrnFr3OfWvw6H6meYbnOA22vpJOAnwA3RsTfVTI3/BoPdja/lV8Un4x3A+9TROArgesoVkL8PfANPryp86PAX1FMVL0E/Pf4cBXHFuAXee5/kqtlWqDNM4FXKCbinqB4Emilng6KX+B/AO6olGnVNg/ndaZYlRP5Xs/l67PAZIoFA935dVKpzNfyWr5CafXLcF3nRrW5Da7zDooFHu/l79LsNrjOv9Lm4brOA20vxYe7fy7lfQ44udHX2HfKm5lZQ4yaIS8zMxtaDihmZtYQDihmZtYQDihmZtYQDihmZtYQDihmZtYQDihmZtYQDihmZtYQ/x/rFzgxQKYDrwAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"source": [
"yearly_incidence.plot(style='*')"
"yearly_incidence.plot(style='*')"
]
]
...
@@ -2360,9 +2404,55 @@
...
@@ -2360,9 +2404,55 @@
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count":
null
,
"execution_count":
23
,
"metadata": {},
"metadata": {},
"outputs": [],
"outputs": [
{
"data": {
"text/plain": [
"2014 1600941\n",
"1991 1659249\n",
"1995 1840410\n",
"2020 2053781\n",
"2012 2175217\n",
"2003 2234584\n",
"2019 2254386\n",
"2006 2307352\n",
"2017 2321583\n",
"2001 2529279\n",
"1992 2574578\n",
"1993 2703886\n",
"2018 2705325\n",
"1988 2765617\n",
"2007 2780164\n",
"1987 2855570\n",
"2016 2856393\n",
"2011 2857040\n",
"2008 2973918\n",
"1998 3034904\n",
"2002 3125418\n",
"2009 3444020\n",
"1994 3514763\n",
"1996 3539413\n",
"2004 3567744\n",
"1997 3620066\n",
"2015 3654892\n",
"2000 3826372\n",
"2005 3835025\n",
"1999 3908112\n",
"2010 4111392\n",
"2013 4182691\n",
"1986 5115251\n",
"1990 5235827\n",
"1989 5466192\n",
"dtype: int64"
]
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"source": [
"yearly_incidence.sort_values()"
"yearly_incidence.sort_values()"
]
]
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment