{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Sujet 7 : Autour du SARS-CoV-2 (Covid-19)" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "%matplotlib inline\n", "import matplotlib.pyplot as plt\n", "import pandas as pd" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Les données fournies à l'adresse [ci-dessous](https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv) correspondent au nombre cumulé de cas de covid dans 279 pays et territoires du monde à partir du 22 janvier 2020 jusqu'à la date de réalisation de ce document (16 novembre 2021)." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "data_url = \"https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv\"\n", "\n", "data_file = \"coviddata.csv\"\n", "\n", "import os\n", "import urllib.request\n", "if not os.path.exists(data_file):\n", " urllib.request.urlretrieve(data_url, data_file)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Ici on a importé les données et on les a copiées dans un fichier locale" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Province/StateCountry/RegionLatLong1/22/201/23/201/24/201/25/201/26/201/27/20...11/7/2111/8/2111/9/2111/10/2111/11/2111/12/2111/13/2111/14/2111/15/2111/16/21
0NaNAfghanistan33.93911067.709953000000...156397156397156397156414156456156487156510156552156610156649
1NaNAlbania41.15330020.168300000000...189125189355190125190815191440192013192600193075193269193856
2NaNAlgeria28.0339001.659600000000...207156207254207385207509207624207764207873207970208104208245
3NaNAndorra42.5063001.521800000000...15618157051571715744157441581915819158191590715929
4NaNAngola-11.20270017.873900000000...64674647246476264815648576487564899649136491364940
5NaNAntigua and Barbuda17.060800-61.796400000000...4091409140914102410241064118411841184122
6NaNArgentina-38.416100-63.616700000000...5296781529806952994185300985530244553040595305151530574253071595308781
7NaNArmenia40.06910045.038200000000...320433321243322364324039325521326830328081328963329341329913
8Australian Capital TerritoryAustralia-35.473500149.012400000000...1866188418931902191719281943195319651971
9New South WalesAustralia-33.868800151.209300000034...76988772077741777671779517820078393785567876678994
10Northern TerritoryAustralia-12.463400130.845600000000...229230230231231231232231243250
11QueenslandAustralia-27.469800153.025100000000...2098209921022105210921062106210921102110
12South AustraliaAustralia-34.928500138.600700000000...918918918918918919920920920921
13TasmaniaAustralia-42.882100147.327200000000...237237237237237237237238238238
14VictoriaAustralia-37.813600144.963100000011...9813099183100162101451102566103760104665105484106262107245
15Western AustraliaAustralia-31.950500115.860500000000...1112111211121112111211121112111211131116
16NaNAustria47.51620014.550100000000...883887892065899777911175923150934948948100959652971541981904
17NaNAzerbaijan40.14310047.576900000000...547281548591550446552322554096556430558431560853561925563940
18NaNBahamas25.025885-78.035889000000...22485225292259222544225522257222572225722260122613
19NaNBahrain26.02750050.550000000000...277081277098277113277138277165277184277201277223277246277262
20NaNBangladesh23.68500090.356300000000...1571013157122815714341571669157190615721271572278157250115727351572948
21NaNBarbados13.193900-59.543200000000...20069202652067621011213112159521877220932231622639
22NaNBelarus53.70980027.953400000000...613927615814617719619708621689623628625592627478629271631025
23NaNBelgium50.8333004.469936000000...1414463143883014388301463548146354814847121484712148471215124741524862
24NaNBelize17.189900-88.497600000000...27894281622816228568287492889928899288992910529269
25NaNBenin9.3077002.315800000000...24804248042480424833248332483324833248332483324833
26NaNBhutan27.51420090.433600000000...2623262326232623262326232625262526252625
27NaNBolivia-16.290200-63.588700000000...517902518266518870519669521518522530522530523485524261525187
28NaNBosnia and Herzegovina43.91590017.679100000000...257401259913260837261799262906263587263587263587265149265942
29NaNBotswana-22.32850024.684900000000...192935193449193449193449193701193701193701193701194129194129
..................................................................
250NaNTogo8.6195000.824800000000...26114261222612526133261332613326148261582616726167
251NaNTonga-21.179000-175.198200000000...1111111111
252NaNTrinidad and Tobago10.691800-61.222500000000...59304596585996360475609846151961922622676267063084
253NaNTunisia33.8869179.537499000000...713308713352713352715276715489715571715637715687715716715818
254NaNTurkey38.96370035.243300000000...8233649826147382901358317394834229283659298388512841013684339888459089
255NaNUS40.000000-100.000000112255...46524348466366704671670946811405468667194700711947054618470794284722152747309008
256NaNUganda1.37333332.290275000000...126570126625126644126714126763126833126889126923126965127002
257NaNUkraine48.37940031.165600000000...3218967323317832533273277772330369433289343353694336938733813993398913
258NaNUnited Arab Emirates23.42407653.847818000000...740432740500740572740647740729740801740879740945741006741074
259AnguillaUnited Kingdom18.220600-63.068600000000...1039103910391077110911091137113711371175
260BermudaUnited Kingdom32.307800-64.750500000000...5677568856885688569257085708570857085713
261British Virgin IslandsUnited Kingdom18.420700-64.640000000000...2725272527452745274527452745274527452745
262Cayman IslandsUnited Kingdom19.313300-81.254600000000...2676267626762676342734273427342742034203
263Channel IslandsUnited Kingdom49.372300-2.364400000000...13684139681396814190143791451914519145191504515180
264Falkland Islands (Malvinas)United Kingdom-51.796300-59.523600000000...72787879797979797979
265GibraltarUnited Kingdom36.140800-5.353600000000...6153616862066256632863856464650965616634
266Isle of ManUnited Kingdom54.236100-4.548100000000...997099911004610106101591019410225102551029610354
267MontserratUnited Kingdom16.742498-62.187366000000...41414141414141414141
268Saint Helena, Ascension and Tristan da CunhaUnited Kingdom-7.946700-14.355900000000...4444444444
269Turks and Caicos IslandsUnited Kingdom21.694000-71.797900000000...3011301730183021303030313031304530453045
270NaNUnited Kingdom55.378100-3.436000000000...9301909933389193666769406001944840294873029524971956109996003699637190
271NaNUruguay-32.522800-55.765800000000...395268395410395610395805395964396175396402396545396677396888
272NaNUzbekistan41.37749164.585262000000...187924188169188398188619188892189186189458189683189915190104
273NaNVanuatu-15.376700166.959200000000...6666666666
274NaNVenezuela6.423800-66.589700000000...413135414220414220416190416190417998418900419745420500420500
275NaNVietnam14.058324108.277199022222...968684976672984805992735100089710098791018346102652210351381045397
276NaNWest Bank and Gaza31.95220035.233200000000...455099455689455949456186456407456632456632456632457154457390
277NaNYemen15.55272748.516388000000...9870988398919902990799129918991899369936
278NaNZambia-13.13389727.849332000000...209902209908209918209939209953209963209971209983209996210008
279NaNZimbabwe-19.01543829.154857000000...133187133205133242133302133329133329133393133428133438133505
\n", "

280 rows × 669 columns

\n", "
" ], "text/plain": [ " Province/State Country/Region \\\n", "0 NaN Afghanistan \n", "1 NaN Albania \n", "2 NaN Algeria \n", "3 NaN Andorra \n", "4 NaN Angola \n", "5 NaN Antigua and Barbuda \n", "6 NaN Argentina \n", "7 NaN Armenia \n", "8 Australian Capital Territory Australia \n", "9 New South Wales Australia \n", "10 Northern Territory Australia \n", "11 Queensland Australia \n", "12 South Australia Australia \n", "13 Tasmania Australia \n", "14 Victoria Australia \n", "15 Western Australia Australia \n", "16 NaN Austria \n", "17 NaN Azerbaijan \n", "18 NaN Bahamas \n", "19 NaN Bahrain \n", "20 NaN Bangladesh \n", "21 NaN Barbados \n", "22 NaN Belarus \n", "23 NaN Belgium \n", "24 NaN Belize \n", "25 NaN Benin \n", "26 NaN Bhutan \n", "27 NaN Bolivia \n", "28 NaN Bosnia and Herzegovina \n", "29 NaN Botswana \n", ".. ... ... \n", "250 NaN Togo \n", "251 NaN Tonga \n", "252 NaN Trinidad and Tobago \n", "253 NaN Tunisia \n", "254 NaN Turkey \n", "255 NaN US \n", "256 NaN Uganda \n", "257 NaN Ukraine \n", "258 NaN United Arab Emirates \n", "259 Anguilla United Kingdom \n", "260 Bermuda United Kingdom \n", "261 British Virgin Islands United Kingdom \n", "262 Cayman Islands United Kingdom \n", "263 Channel Islands United Kingdom \n", "264 Falkland Islands (Malvinas) United Kingdom \n", "265 Gibraltar United Kingdom \n", "266 Isle of Man United Kingdom \n", "267 Montserrat United Kingdom \n", "268 Saint Helena, Ascension and Tristan da Cunha United Kingdom \n", "269 Turks and Caicos Islands United Kingdom \n", "270 NaN United Kingdom \n", "271 NaN Uruguay \n", "272 NaN Uzbekistan \n", "273 NaN Vanuatu \n", "274 NaN Venezuela \n", "275 NaN Vietnam \n", "276 NaN West Bank and Gaza \n", "277 NaN Yemen \n", "278 NaN Zambia \n", "279 NaN Zimbabwe \n", "\n", " Lat Long 1/22/20 1/23/20 1/24/20 1/25/20 1/26/20 \\\n", "0 33.939110 67.709953 0 0 0 0 0 \n", "1 41.153300 20.168300 0 0 0 0 0 \n", "2 28.033900 1.659600 0 0 0 0 0 \n", "3 42.506300 1.521800 0 0 0 0 0 \n", "4 -11.202700 17.873900 0 0 0 0 0 \n", "5 17.060800 -61.796400 0 0 0 0 0 \n", "6 -38.416100 -63.616700 0 0 0 0 0 \n", "7 40.069100 45.038200 0 0 0 0 0 \n", "8 -35.473500 149.012400 0 0 0 0 0 \n", "9 -33.868800 151.209300 0 0 0 0 3 \n", "10 -12.463400 130.845600 0 0 0 0 0 \n", "11 -27.469800 153.025100 0 0 0 0 0 \n", "12 -34.928500 138.600700 0 0 0 0 0 \n", "13 -42.882100 147.327200 0 0 0 0 0 \n", "14 -37.813600 144.963100 0 0 0 0 1 \n", "15 -31.950500 115.860500 0 0 0 0 0 \n", "16 47.516200 14.550100 0 0 0 0 0 \n", "17 40.143100 47.576900 0 0 0 0 0 \n", "18 25.025885 -78.035889 0 0 0 0 0 \n", "19 26.027500 50.550000 0 0 0 0 0 \n", "20 23.685000 90.356300 0 0 0 0 0 \n", "21 13.193900 -59.543200 0 0 0 0 0 \n", "22 53.709800 27.953400 0 0 0 0 0 \n", "23 50.833300 4.469936 0 0 0 0 0 \n", "24 17.189900 -88.497600 0 0 0 0 0 \n", "25 9.307700 2.315800 0 0 0 0 0 \n", "26 27.514200 90.433600 0 0 0 0 0 \n", "27 -16.290200 -63.588700 0 0 0 0 0 \n", "28 43.915900 17.679100 0 0 0 0 0 \n", "29 -22.328500 24.684900 0 0 0 0 0 \n", ".. ... ... ... ... ... ... ... \n", "250 8.619500 0.824800 0 0 0 0 0 \n", "251 -21.179000 -175.198200 0 0 0 0 0 \n", "252 10.691800 -61.222500 0 0 0 0 0 \n", "253 33.886917 9.537499 0 0 0 0 0 \n", "254 38.963700 35.243300 0 0 0 0 0 \n", "255 40.000000 -100.000000 1 1 2 2 5 \n", "256 1.373333 32.290275 0 0 0 0 0 \n", "257 48.379400 31.165600 0 0 0 0 0 \n", "258 23.424076 53.847818 0 0 0 0 0 \n", "259 18.220600 -63.068600 0 0 0 0 0 \n", "260 32.307800 -64.750500 0 0 0 0 0 \n", "261 18.420700 -64.640000 0 0 0 0 0 \n", "262 19.313300 -81.254600 0 0 0 0 0 \n", "263 49.372300 -2.364400 0 0 0 0 0 \n", "264 -51.796300 -59.523600 0 0 0 0 0 \n", "265 36.140800 -5.353600 0 0 0 0 0 \n", "266 54.236100 -4.548100 0 0 0 0 0 \n", "267 16.742498 -62.187366 0 0 0 0 0 \n", "268 -7.946700 -14.355900 0 0 0 0 0 \n", "269 21.694000 -71.797900 0 0 0 0 0 \n", "270 55.378100 -3.436000 0 0 0 0 0 \n", "271 -32.522800 -55.765800 0 0 0 0 0 \n", "272 41.377491 64.585262 0 0 0 0 0 \n", "273 -15.376700 166.959200 0 0 0 0 0 \n", "274 6.423800 -66.589700 0 0 0 0 0 \n", "275 14.058324 108.277199 0 2 2 2 2 \n", "276 31.952200 35.233200 0 0 0 0 0 \n", "277 15.552727 48.516388 0 0 0 0 0 \n", "278 -13.133897 27.849332 0 0 0 0 0 \n", "279 -19.015438 29.154857 0 0 0 0 0 \n", "\n", " 1/27/20 ... 11/7/21 11/8/21 11/9/21 11/10/21 11/11/21 \\\n", "0 0 ... 156397 156397 156397 156414 156456 \n", "1 0 ... 189125 189355 190125 190815 191440 \n", "2 0 ... 207156 207254 207385 207509 207624 \n", "3 0 ... 15618 15705 15717 15744 15744 \n", "4 0 ... 64674 64724 64762 64815 64857 \n", "5 0 ... 4091 4091 4091 4102 4102 \n", "6 0 ... 5296781 5298069 5299418 5300985 5302445 \n", "7 0 ... 320433 321243 322364 324039 325521 \n", "8 0 ... 1866 1884 1893 1902 1917 \n", "9 4 ... 76988 77207 77417 77671 77951 \n", "10 0 ... 229 230 230 231 231 \n", "11 0 ... 2098 2099 2102 2105 2109 \n", "12 0 ... 918 918 918 918 918 \n", "13 0 ... 237 237 237 237 237 \n", "14 1 ... 98130 99183 100162 101451 102566 \n", "15 0 ... 1112 1112 1112 1112 1112 \n", "16 0 ... 883887 892065 899777 911175 923150 \n", "17 0 ... 547281 548591 550446 552322 554096 \n", "18 0 ... 22485 22529 22592 22544 22552 \n", "19 0 ... 277081 277098 277113 277138 277165 \n", "20 0 ... 1571013 1571228 1571434 1571669 1571906 \n", "21 0 ... 20069 20265 20676 21011 21311 \n", "22 0 ... 613927 615814 617719 619708 621689 \n", "23 0 ... 1414463 1438830 1438830 1463548 1463548 \n", "24 0 ... 27894 28162 28162 28568 28749 \n", "25 0 ... 24804 24804 24804 24833 24833 \n", "26 0 ... 2623 2623 2623 2623 2623 \n", "27 0 ... 517902 518266 518870 519669 521518 \n", "28 0 ... 257401 259913 260837 261799 262906 \n", "29 0 ... 192935 193449 193449 193449 193701 \n", ".. ... ... ... ... ... ... ... \n", "250 0 ... 26114 26122 26125 26133 26133 \n", "251 0 ... 1 1 1 1 1 \n", "252 0 ... 59304 59658 59963 60475 60984 \n", "253 0 ... 713308 713352 713352 715276 715489 \n", "254 0 ... 8233649 8261473 8290135 8317394 8342292 \n", "255 5 ... 46524348 46636670 46716709 46811405 46866719 \n", "256 0 ... 126570 126625 126644 126714 126763 \n", "257 0 ... 3218967 3233178 3253327 3277772 3303694 \n", "258 0 ... 740432 740500 740572 740647 740729 \n", "259 0 ... 1039 1039 1039 1077 1109 \n", "260 0 ... 5677 5688 5688 5688 5692 \n", "261 0 ... 2725 2725 2745 2745 2745 \n", "262 0 ... 2676 2676 2676 2676 3427 \n", "263 0 ... 13684 13968 13968 14190 14379 \n", "264 0 ... 72 78 78 79 79 \n", "265 0 ... 6153 6168 6206 6256 6328 \n", "266 0 ... 9970 9991 10046 10106 10159 \n", "267 0 ... 41 41 41 41 41 \n", "268 0 ... 4 4 4 4 4 \n", "269 0 ... 3011 3017 3018 3021 3030 \n", "270 0 ... 9301909 9333891 9366676 9406001 9448402 \n", "271 0 ... 395268 395410 395610 395805 395964 \n", "272 0 ... 187924 188169 188398 188619 188892 \n", "273 0 ... 6 6 6 6 6 \n", "274 0 ... 413135 414220 414220 416190 416190 \n", "275 2 ... 968684 976672 984805 992735 1000897 \n", "276 0 ... 455099 455689 455949 456186 456407 \n", "277 0 ... 9870 9883 9891 9902 9907 \n", "278 0 ... 209902 209908 209918 209939 209953 \n", "279 0 ... 133187 133205 133242 133302 133329 \n", "\n", " 11/12/21 11/13/21 11/14/21 11/15/21 11/16/21 \n", "0 156487 156510 156552 156610 156649 \n", "1 192013 192600 193075 193269 193856 \n", "2 207764 207873 207970 208104 208245 \n", "3 15819 15819 15819 15907 15929 \n", "4 64875 64899 64913 64913 64940 \n", "5 4106 4118 4118 4118 4122 \n", "6 5304059 5305151 5305742 5307159 5308781 \n", "7 326830 328081 328963 329341 329913 \n", "8 1928 1943 1953 1965 1971 \n", "9 78200 78393 78556 78766 78994 \n", "10 231 232 231 243 250 \n", "11 2106 2106 2109 2110 2110 \n", "12 919 920 920 920 921 \n", "13 237 237 238 238 238 \n", "14 103760 104665 105484 106262 107245 \n", "15 1112 1112 1112 1113 1116 \n", "16 934948 948100 959652 971541 981904 \n", "17 556430 558431 560853 561925 563940 \n", "18 22572 22572 22572 22601 22613 \n", "19 277184 277201 277223 277246 277262 \n", "20 1572127 1572278 1572501 1572735 1572948 \n", "21 21595 21877 22093 22316 22639 \n", "22 623628 625592 627478 629271 631025 \n", "23 1484712 1484712 1484712 1512474 1524862 \n", "24 28899 28899 28899 29105 29269 \n", "25 24833 24833 24833 24833 24833 \n", "26 2623 2625 2625 2625 2625 \n", "27 522530 522530 523485 524261 525187 \n", "28 263587 263587 263587 265149 265942 \n", "29 193701 193701 193701 194129 194129 \n", ".. ... ... ... ... ... \n", "250 26133 26148 26158 26167 26167 \n", "251 1 1 1 1 1 \n", "252 61519 61922 62267 62670 63084 \n", "253 715571 715637 715687 715716 715818 \n", "254 8365929 8388512 8410136 8433988 8459089 \n", "255 47007119 47054618 47079428 47221527 47309008 \n", "256 126833 126889 126923 126965 127002 \n", "257 3328934 3353694 3369387 3381399 3398913 \n", "258 740801 740879 740945 741006 741074 \n", "259 1109 1137 1137 1137 1175 \n", "260 5708 5708 5708 5708 5713 \n", "261 2745 2745 2745 2745 2745 \n", "262 3427 3427 3427 4203 4203 \n", "263 14519 14519 14519 15045 15180 \n", "264 79 79 79 79 79 \n", "265 6385 6464 6509 6561 6634 \n", "266 10194 10225 10255 10296 10354 \n", "267 41 41 41 41 41 \n", "268 4 4 4 4 4 \n", "269 3031 3031 3045 3045 3045 \n", "270 9487302 9524971 9561099 9600369 9637190 \n", "271 396175 396402 396545 396677 396888 \n", "272 189186 189458 189683 189915 190104 \n", "273 6 6 6 6 6 \n", "274 417998 418900 419745 420500 420500 \n", "275 1009879 1018346 1026522 1035138 1045397 \n", "276 456632 456632 456632 457154 457390 \n", "277 9912 9918 9918 9936 9936 \n", "278 209963 209971 209983 209996 210008 \n", "279 133329 133393 133428 133438 133505 \n", "\n", "[280 rows x 669 columns]" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "raw_data = pd.read_csv(data_file, skiprows=0)\n", "raw_data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Les colonnes du dataset utilisé ont la signification suivante :\n", "\n", "\n", "| Nom de colonne | Libellé de colonne |\n", "|------------------|------------------------------------------------------|\n", "| Province/State | Division sub-nationale (si présente) |\n", "| Country/Region | Nation |\n", "| Lat | Latitude d'un point au centre de la province ou du pays |\n", "| Long | Longitude d'un point au centre de la province ou du pays |\n", "| *autres colonnes*| Nombre de cas de COVID-19 confirmés dans la région (nation ou division sub-nationale) ayant eu lieu avant la date en tête de colonne (en format mois-jour-année) |" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Maintenant, on sélectionne les pays et les régions que nous intéressent, c'est-à-dire :\n", "- la Belgique (*Belgium*),\n", "- la Chine - toutes les provinces sauf les régions speciales de Hong-Kong (*China*), \n", "- Hong Kong (*China, Hong-Kong*),\n", "- la France métropolitaine (*France*),\n", "- l’Allemagne (*Germany*), \n", "- l’Iran (*Iran*), \n", "- l’Italie (*Italy*), \n", "- le Japon (*Japan*), \n", "- la Corée du Sud (*Korea, South*),\n", "- les Pays-bas - partie européenne (*Netherlands*),\n", "- le Portugal (*Portugal*), \n", "- l’Espagne (*Spain*), \n", "- le Royaume-Unis sans les territoires d'outre-mer (*United Kingdom*),\n", "- les États-Unis (*US*).\n", "\n", "On élimine du dataframe les colonnes sur la latitude et la longitude des régions.\n", "\n", "Ensuite, on crée un nouvelle ligne qui somme toutes les valeurs pour la chine en déhors de Hong-Kong, car les données sont présentées divisées par province.\n", "\n", "Enfin, on élimine la colonne *Province/State* et on renomme la ligne qui corresponde à Hong-Kong comme *China, Hong Kong* et on trie les résultats en ordre alphabétique." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Country/Region1/22/201/23/201/24/201/25/201/26/201/27/201/28/201/29/201/30/20...11/7/2111/8/2111/9/2111/10/2111/11/2111/12/2111/13/2111/14/2111/15/2111/16/21
0Belgium000000000...1414463143883014388301463548146354814847121484712148471215124741524862
1China, Hong Kong02258881010...12368123681236912374123771237812380123811238712388
2China, mainland548641918140120672869550160778131...97900979629801698080981769825198340983929841498445
3France002333455...7037999703975670517957062794707524470790057093651710614771091257128903
4Germany000001444...4792463481617748574634908540495737450027305037039505624250912005144827
5Iran000000000...5987814599615560044606012408601994760272696031575603771860452126051642
6Italy000000000...4808047481259448187054826738483543548439574852496486006148652604873075
7Japan2222447711...1723682172378217239761724172172437917245731724767172489317249671725111
8Korea, South112234444...381694383407385831388351390719393042395460397466399591402775
9Netherlands000000000...2201010221281422240962236744225303122692352283083229510723143042334472
10Portugal000000000...1097557109812510993071100961110243811041891106005110748811084621110155
11Spain000000000...5025639503205650320565038517504280350471565047156504715650569545061045
12US112255566...46524348466366704671670946811405468667194700711947054618470794284722152747309008
13United Kingdom000000000...9301909933389193666769406001944840294873029524971956109996003699637190
\n", "

14 rows × 666 columns

\n", "
" ], "text/plain": [ " Country/Region 1/22/20 1/23/20 1/24/20 1/25/20 1/26/20 1/27/20 \\\n", "0 Belgium 0 0 0 0 0 0 \n", "1 China, Hong Kong 0 2 2 5 8 8 \n", "2 China, mainland 548 641 918 1401 2067 2869 \n", "3 France 0 0 2 3 3 3 \n", "4 Germany 0 0 0 0 0 1 \n", "5 Iran 0 0 0 0 0 0 \n", "6 Italy 0 0 0 0 0 0 \n", "7 Japan 2 2 2 2 4 4 \n", "8 Korea, South 1 1 2 2 3 4 \n", "9 Netherlands 0 0 0 0 0 0 \n", "10 Portugal 0 0 0 0 0 0 \n", "11 Spain 0 0 0 0 0 0 \n", "12 US 1 1 2 2 5 5 \n", "13 United Kingdom 0 0 0 0 0 0 \n", "\n", " 1/28/20 1/29/20 1/30/20 ... 11/7/21 11/8/21 11/9/21 \\\n", "0 0 0 0 ... 1414463 1438830 1438830 \n", "1 8 10 10 ... 12368 12368 12369 \n", "2 5501 6077 8131 ... 97900 97962 98016 \n", "3 4 5 5 ... 7037999 7039756 7051795 \n", "4 4 4 4 ... 4792463 4816177 4857463 \n", "5 0 0 0 ... 5987814 5996155 6004460 \n", "6 0 0 0 ... 4808047 4812594 4818705 \n", "7 7 7 11 ... 1723682 1723782 1723976 \n", "8 4 4 4 ... 381694 383407 385831 \n", "9 0 0 0 ... 2201010 2212814 2224096 \n", "10 0 0 0 ... 1097557 1098125 1099307 \n", "11 0 0 0 ... 5025639 5032056 5032056 \n", "12 5 6 6 ... 46524348 46636670 46716709 \n", "13 0 0 0 ... 9301909 9333891 9366676 \n", "\n", " 11/10/21 11/11/21 11/12/21 11/13/21 11/14/21 11/15/21 11/16/21 \n", "0 1463548 1463548 1484712 1484712 1484712 1512474 1524862 \n", "1 12374 12377 12378 12380 12381 12387 12388 \n", "2 98080 98176 98251 98340 98392 98414 98445 \n", "3 7062794 7075244 7079005 7093651 7106147 7109125 7128903 \n", "4 4908540 4957374 5002730 5037039 5056242 5091200 5144827 \n", "5 6012408 6019947 6027269 6031575 6037718 6045212 6051642 \n", "6 4826738 4835435 4843957 4852496 4860061 4865260 4873075 \n", "7 1724172 1724379 1724573 1724767 1724893 1724967 1725111 \n", "8 388351 390719 393042 395460 397466 399591 402775 \n", "9 2236744 2253031 2269235 2283083 2295107 2314304 2334472 \n", "10 1100961 1102438 1104189 1106005 1107488 1108462 1110155 \n", "11 5038517 5042803 5047156 5047156 5047156 5056954 5061045 \n", "12 46811405 46866719 47007119 47054618 47079428 47221527 47309008 \n", "13 9406001 9448402 9487302 9524971 9561099 9600369 9637190 \n", "\n", "[14 rows x 666 columns]" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "list_of_countries = [\"Belgium\", \"China\", \"France\", \"Germany\", \"Iran\", \"Italy\", \"Japan\", \"Korea, South\", \"Netherlands\", \"Portugal\", \"Spain\", \"United Kingdom\", \"US\"]\n", "raw_data_countries = raw_data.loc[raw_data[\"Country/Region\"].isin(list_of_countries)].drop([\"Lat\", \"Long\"], axis=1)\n", "clean_data = raw_data_countries.loc[(raw_data_countries[\"Province/State\"].isnull()) | ((raw_data_countries[\"Country/Region\"] == \"China\") & (raw_data_countries[\"Province/State\"] == \"Hong Kong\"))].copy()\n", "china_withoutHK = raw_data_countries.loc[((raw_data_countries[\"Country/Region\"] == \"China\") & (raw_data_countries[\"Province/State\"] != \"Hong Kong\"))]\n", "sum_China = china_withoutHK.drop([\"Province/State\", \"Country/Region\"], axis=1).sum()\n", "sum_China[\"Country/Region\"] = \"China, mainland\"\n", "clean_data = clean_data.append(dict(sum_China), ignore_index=True)\n", "clean_data.loc[clean_data[\"Province/State\"]==\"Hong Kong\", \"Country/Region\"] = \"China, Hong Kong\"\n", "data = clean_data.drop([\"Province/State\"], axis=1).sort_values(\"Country/Region\").reset_index(drop=True).copy()#.set_index(\"Country/Region\").sort_index().copy()\n", "data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Ici on convertit les index du tableau en format *date*" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Country/Region2020-01-22 00:00:002020-01-23 00:00:002020-01-24 00:00:002020-01-25 00:00:002020-01-26 00:00:002020-01-27 00:00:002020-01-28 00:00:002020-01-29 00:00:002020-01-30 00:00:00...2021-11-07 00:00:002021-11-08 00:00:002021-11-09 00:00:002021-11-10 00:00:002021-11-11 00:00:002021-11-12 00:00:002021-11-13 00:00:002021-11-14 00:00:002021-11-15 00:00:002021-11-16 00:00:00
0Belgium000000000...1414463143883014388301463548146354814847121484712148471215124741524862
1China, Hong Kong02258881010...12368123681236912374123771237812380123811238712388
2China, mainland548641918140120672869550160778131...97900979629801698080981769825198340983929841498445
3France002333455...7037999703975670517957062794707524470790057093651710614771091257128903
4Germany000001444...4792463481617748574634908540495737450027305037039505624250912005144827
5Iran000000000...5987814599615560044606012408601994760272696031575603771860452126051642
6Italy000000000...4808047481259448187054826738483543548439574852496486006148652604873075
7Japan2222447711...1723682172378217239761724172172437917245731724767172489317249671725111
8Korea, South112234444...381694383407385831388351390719393042395460397466399591402775
9Netherlands000000000...2201010221281422240962236744225303122692352283083229510723143042334472
10Portugal000000000...1097557109812510993071100961110243811041891106005110748811084621110155
11Spain000000000...5025639503205650320565038517504280350471565047156504715650569545061045
12US112255566...46524348466366704671670946811405468667194700711947054618470794284722152747309008
13United Kingdom000000000...9301909933389193666769406001944840294873029524971956109996003699637190
\n", "

14 rows × 666 columns

\n", "
" ], "text/plain": [ " Country/Region 2020-01-22 00:00:00 2020-01-23 00:00:00 \\\n", "0 Belgium 0 0 \n", "1 China, Hong Kong 0 2 \n", "2 China, mainland 548 641 \n", "3 France 0 0 \n", "4 Germany 0 0 \n", "5 Iran 0 0 \n", "6 Italy 0 0 \n", "7 Japan 2 2 \n", "8 Korea, South 1 1 \n", "9 Netherlands 0 0 \n", "10 Portugal 0 0 \n", "11 Spain 0 0 \n", "12 US 1 1 \n", "13 United Kingdom 0 0 \n", "\n", " 2020-01-24 00:00:00 2020-01-25 00:00:00 2020-01-26 00:00:00 \\\n", "0 0 0 0 \n", "1 2 5 8 \n", "2 918 1401 2067 \n", "3 2 3 3 \n", "4 0 0 0 \n", "5 0 0 0 \n", "6 0 0 0 \n", "7 2 2 4 \n", "8 2 2 3 \n", "9 0 0 0 \n", "10 0 0 0 \n", "11 0 0 0 \n", "12 2 2 5 \n", "13 0 0 0 \n", "\n", " 2020-01-27 00:00:00 2020-01-28 00:00:00 2020-01-29 00:00:00 \\\n", "0 0 0 0 \n", "1 8 8 10 \n", "2 2869 5501 6077 \n", "3 3 4 5 \n", "4 1 4 4 \n", "5 0 0 0 \n", "6 0 0 0 \n", "7 4 7 7 \n", "8 4 4 4 \n", "9 0 0 0 \n", "10 0 0 0 \n", "11 0 0 0 \n", "12 5 5 6 \n", "13 0 0 0 \n", "\n", " 2020-01-30 00:00:00 ... 2021-11-07 00:00:00 \\\n", "0 0 ... 1414463 \n", "1 10 ... 12368 \n", "2 8131 ... 97900 \n", "3 5 ... 7037999 \n", "4 4 ... 4792463 \n", "5 0 ... 5987814 \n", "6 0 ... 4808047 \n", "7 11 ... 1723682 \n", "8 4 ... 381694 \n", "9 0 ... 2201010 \n", "10 0 ... 1097557 \n", "11 0 ... 5025639 \n", "12 6 ... 46524348 \n", "13 0 ... 9301909 \n", "\n", " 2021-11-08 00:00:00 2021-11-09 00:00:00 2021-11-10 00:00:00 \\\n", "0 1438830 1438830 1463548 \n", "1 12368 12369 12374 \n", "2 97962 98016 98080 \n", "3 7039756 7051795 7062794 \n", "4 4816177 4857463 4908540 \n", "5 5996155 6004460 6012408 \n", "6 4812594 4818705 4826738 \n", "7 1723782 1723976 1724172 \n", "8 383407 385831 388351 \n", "9 2212814 2224096 2236744 \n", "10 1098125 1099307 1100961 \n", "11 5032056 5032056 5038517 \n", "12 46636670 46716709 46811405 \n", "13 9333891 9366676 9406001 \n", "\n", " 2021-11-11 00:00:00 2021-11-12 00:00:00 2021-11-13 00:00:00 \\\n", "0 1463548 1484712 1484712 \n", "1 12377 12378 12380 \n", "2 98176 98251 98340 \n", "3 7075244 7079005 7093651 \n", "4 4957374 5002730 5037039 \n", "5 6019947 6027269 6031575 \n", "6 4835435 4843957 4852496 \n", "7 1724379 1724573 1724767 \n", "8 390719 393042 395460 \n", "9 2253031 2269235 2283083 \n", "10 1102438 1104189 1106005 \n", "11 5042803 5047156 5047156 \n", "12 46866719 47007119 47054618 \n", "13 9448402 9487302 9524971 \n", "\n", " 2021-11-14 00:00:00 2021-11-15 00:00:00 2021-11-16 00:00:00 \n", "0 1484712 1512474 1524862 \n", "1 12381 12387 12388 \n", "2 98392 98414 98445 \n", "3 7106147 7109125 7128903 \n", "4 5056242 5091200 5144827 \n", "5 6037718 6045212 6051642 \n", "6 4860061 4865260 4873075 \n", "7 1724893 1724967 1725111 \n", "8 397466 399591 402775 \n", "9 2295107 2314304 2334472 \n", "10 1107488 1108462 1110155 \n", "11 5047156 5056954 5061045 \n", "12 47079428 47221527 47309008 \n", "13 9561099 9600369 9637190 \n", "\n", "[14 rows x 666 columns]" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "column_headers = pd.to_datetime(data.columns.values[1:])\n", "arr = list(column_headers.to_pydatetime())\n", "data.columns = [data.columns.values[0]] + arr\n", "data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "On peut enfin représenter le nombre de cas cumulés de COVID par pays dans un graph à échelle linéaire ..." ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAArQAAAEBCAYAAACJ0TaBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3XlYVGX7B/DvmRkYGDbZ9x2GWYARB1FRMtxNMZV8VTSX3M2UyC1N3zfLytQWNcslLXdLywWLwtI0KQ1UFmURFEUFBIRhh1nO7w8bf2asCozA/bkuLplznvOc+zDH4eaeZ56HYVkWhBBCCCGEtFccXQdACCGEEELI06CElhBCCCGEtGuU0BJCCCGEkHaNElpCCCGEENKuUUJLCCGEEELaNUpoCSGEEEJIu9ZqCS3DMDsYhrnHMExKE9p+zDDM5b+/MhiGKWmtuAghhBBCSMfCtNY8tAzDPAegHMAulmV9m3HcawACWJZ9pVUCI4QQQgghHUqrVWhZlj0D4P6j2xiG8WQYJoZhmASGYc4yDCOq49DxAPa3VlyEEEIIIaRj4bXx+bYCmM2y7DWGYXoA2Aygn3YnwzCuANwB/NrGcRFCCCGEkHaqzRJahmGMAQQD+JZhGO1m/mPNxgE4xLKsuq3iIoQQQggh7VtbVmg5AEpYlu3aQJtxAF5to3gIIYQQQkgH0GbTdrEsWwrgBsMwYwCAeUCm3c8wjA8AcwB/tFVMhBBCCCGk/WvNabv240Fy6sMwzG2GYaYBmABgGsMwiQCuAHjxkUPGAzjAtta0C4QQQgghpENqtWm7CCGEEEIIaQu0UhghhBBCCGnXWuVDYVZWVqybm1trdE0IIR1SQkJCIcuy1rqOgxBC2qNWSWjd3NwQHx/fGl0TQkiHxDDMTV3HQAgh7RUNOSCEEEIIIe0aJbSEEEIIIaRdo4SWEEIIIYS0a5TQEkIIIYSQdo0SWkIIIYQQ0q5RQksIIYQQQto1SmgJIaQFJBckY/fV3boOgxBCOiVKaAkh5ClUKivxZfKXmBwzGXtT96JSWanrkAghpNNplYUVCCGkM7hech1Lzy5F6v1UyKxl2NRvEwR6Al2HRQghnQ4ltIQQ0kz3q+8jOisamy5vggHXAGv7rsUQtyG6DosQQjotSmgJIaQZfrn1C9754x0UVRehm003fPjch7A1stV1WIQQ0qlRQksIIU1wu+w2Prv8GaKvR8PH3Aef9f8MUiuprsMihBACSmgJIaRBtepafJ74Ob6+8jVYlsUU6RTM7zYfehw9XYdGCCHkb5TQEkJIHViWxamcU9h8eTPSi9MxwnME5gfMp+EFhBDyDKKElhBCHpNXkYflvy/HhbwLsDK0og99EULIM44SWkII+ZuiRoEdKTvw/bXvUaOuwVs93kK4MBw8Dr1UEkLIs4xepQkhBMCd8juYe3IubpbeRA/7HlgatBTuZu66DosQQkgTUEJLCOnUqlXV+Pnmz/go/iPUamqxbdA2dLfrruuwCCGENAMltISQTktRo8D8X+fj4r2LcDV1xYbQDfDo4qHrsAghhDQTJbSEkE4pryIPM36egTvld/BO73cwwnMEOAxH12ERQgh5ApTQEkI6nYNpB/HppU+hYTXYPmg7utl203VIhBBCngKVIwghncq3Gd9i9fnV8O7ija0Dt1IySwghHQBVaAkhncahjENY9ccqhDiG4KPnP4IBz0DXIRFCCGkBlNASQjo8tUaNqNNR+DXnVwQ7BOPT0E+hx6WlawkhpKOghJYQ0qGxLIsPLnyAX3N+xUz/mZjmO42SWUII6WAooSWEdGifJ36OA+kHMEU6BfO6zgPDMLoOiRBCSAujhJYQ0iEp1Uq88+c7OJp1FGEeYYiSR1EySwghHRQltISQDunrq1/j+8zvMdZnLF6Xv07JLCGEdGCU0BJCOpy/8v7CpkubMMh1EN7q+ZauwyGEENLKaB5aQkiHUq2qxtKzS+Fs4oy3g9/WdTiEEELaAFVoCSEdRk5ZDhacWoB7lffw5aAvYaxvrOuQCCGEtAGq0BJCOgQNq8HKcyuRV56HD0I+QJB9kK5DIoQQ0kaanNAyDMNlGOYSwzDRrRkQIYQ8iSOZRxCfH483At/AMI9hug6HEEJIG2pOhXYBgNTWCoQQQp7U3fK7+OzyZ+hq3RWjvUfrOhxCCCFtrEkJLcMwTgCGAdjeuuEQQkjzxGTHYPj3w1FSXYL53ebT9FyEENIJNbVC+wmAxQA09TVgGGYmwzDxDMPEFxQUtEhwhBDSkPLacqy9sBbe5t44MfoEutt113VIhBBCdKDRhJZhmOEA7rEsm9BQO5Zlt7IsG8iybKC1tXWLBUgIIfVZF78OhdWFWN5jOeyM7HQdDiGEEB1pSoW2N4ARDMNkAzgAoB/DMHtaNSpCCGnEX3l/4fC1w5gsnQx/a39dh0MIIUSHGk1oWZZ9k2VZJ5Zl3QCMA/Ary7ITWz0yQgipx5+5f+K/cf+FtaE1Xu36qq7DIYQQomM0Dy0hpF2pUFZgyZklYFkWq/usBp/L13VIhBBCdKxZK4WxLHsawOlWiYQQQprg/fPvo6SmBJv6bYKftZ+uwyGEEPIMoAotIaTdiL0Zi6NZRzHDbwYls4QQQh5qVoWWEEJ05ezts/jgwgcQWYgwWzZb1+EQHUtISLDh8XjbAfiCijOEdHQaACkqlWq6XC6/V1cDSmgJIc+822W3Mf/X+bA3tseKnivA49BLV2fH4/G229nZia2trYs5HA6r63gIIa1Ho9EwBQUFkry8vO0ARtTVhv6qJYQ805QaJZb9vgx6XD3sGLyDpugiWr7W1tallMwS0vFxOBzW2tpagQfvyNSJyhyEkGfahosbcOneJXz43Ie0eAJ5FIeSWUI6j7//v9dbiKWElhDyTFJqlNh4cSN2X92Nl4QvYaj7UF2HRAgh5BlFQw4IIc+kb9K/wc4rO9HfpT8iu0XqOhxC/oXL5cpFIpHEx8dHIpFIxLGxsUaNHSMQCAIaazN27FjXhIQEg5aJkuhaU55z8vSoQksIeeZcyL2AdfHrEOwQjHV914FhGF2HRMi/8Pl8TVpa2lUAOHz4sOmyZcucBg4cmP60/R48ePDm00dHSOdCFVpCyDPl8r3LeP3063A1ccWHz31IySxpFxQKBdfMzEylfbxixQpbX19fsVAolLz++usOj7dXq9WYOHGii5eXlzQ0NNSrb9++Xjt37jQHgKCgIJ8zZ84IgH9W93bu3GkeHh7uBgDh4eFuEyZMcOnRo4fQycnJ78SJE8Zjxoxx8/DwkGrbkGeHQqHg9OrVSyiRSMRCoVCyZ8+eLgCQnp6u7+7uLh09erSbUCiUDBkyxKOsrIwDAAsXLrT39fUVe3t7S8ePH++q0WgAPLg/5syZ4+jn5yd2c3PzjYmJMdbhpT0zqEJLCHlmHM86jmW/L4OJvgk29NsAM76ZrkMi7cCiQ4nOGXllgpbsU2hnUrn2JVlOQ21qamo4IpFIUlNTwxQWFur98MMPGQDw3XffmWZmZhokJSWlsiyLAQMGeP3444/GQ4cOLdceu2vXLvOcnBz99PT0K3fu3OH5+vr6Tpkypag5MSoUCt4ff/yRsW/fvi5jx471/vXXX9PkcnmVv7+/OC4uzjA4OLjqya6+Yzpy5IjzvXv3WvQ+sbGxqRw5cmSD9wkACAQCzYkTJzItLCw0ubm5vB49eogiIiJKACA7O9tgy5Yt2YMGDaoYM2aM29q1a61XrVqVv2jRonvr1q3LBYCRI0e6HzhwwCwiIkIBACqViklOTk49ePCg2apVqxyGDBmS0ZLX1R5RhZYQ8ky4UngFa/9aC7GFGDHhMXAxddF1SIQ0SDvk4MaNG1e+//77a1OnTnXXaDSIiYkxPXPmjKlEIpFIpVJJVlaWQVpa2j/GxJ49e9Z49OjRxVwuFy4uLqqePXuWNff8w4YNK+FwOOjWrVulpaWlMigoqIrL5UIoFFZlZWXxW+5KydPSaDRMZGSkk1AolISGhgrv3bunf/v2bR4A2NnZ1Q4aNKgCAF5++eWiuLg4YwD48ccfTfz9/UVCoVASFxdnkpKSYqjtb8yYMcUAEBwcXHH79m19XVzTs4YqtIQQnapQVuC7a99h46WNMOebY81za2Cqb6rrsEg70lgltS0MGDCgori4mJebm8tjWRaRkZG5ixYtKqyvPcs2bcaxR4fcVFVV/WP8jYGBAQsAXC4X+vr6DzvkcDhQqVQ0VucxTamktpYtW7ZYFBUV8ZKTk1P5fD7r6OjoV1VVxQHwr2FVDMOgsrKSeeONN1zPnz9/1cvLSxkVFeVQXV39sAipfe55PB7UajU916AKLSFEhyqVlZj/63x8+NeH8DH3wd5he+Fu5q7rsAhptkuXLhloNBrY2tqqhg4dWrp7924rhULBAYAbN27o3blz5x8FpJCQkPIjR46Yq9Vq5OTk8M6fP29SV7+WlpbKixcvGqjVahw9etS8La6FtDyFQsG1srJS8vl89vjx4yZ37959WFXNzc3VP3nypBEA7Nu3zyI4OLi8srKSAwB2dnYqhULBOX78OD33jaAKLSGkzRVWFeJ0zml8kfgF7lXew8peKzFGOEbXYRHSLNoxtMCDiuvnn3+ezePxMHr06NIrV64YdO/eXQQ8GD+5d+/eG46Ojg8/NDZ58uTikydPmgiFQqm7u3u1TCar6NKli/rxc7z99tt3XnzxRS97e3ulSCSqqqiooEJUO6JUKqGvr89Onz79/tChQ718fX3FUqm00t3dvVrbxsPDo3rHjh2Wc+fOdXV3d69ZuHBhgYmJiWbChAkFEolE6uTkVCuTySp0eR3tAdPUtz2aIzAwkI2Pj2/xfgkh7ZuiRoHjWcexNWkrimuKITQXYkXPFehq01XXoekcwzAJLMsG6jqO9iIxMTFbJpPV+5Z+e6BQKDhmZmaavLw8bvfu3cXnzp1Lc3FxUTV+JGkv/vjjD8OZM2e6JScnp9a1Pz09XX/48OHe165du9LWsbVHiYmJVjKZzK2ufVShJYS0mqKqIlxXXEdyYTKOZx1HZkkmAMDf2h+fBn4KmbUMHIYKTqRzGjhwoHdpaSlXqVQyixYtyqVktmP58MMPrbds2WKzdu1anY/x7gyoQksIeSIaVoPi6mLkV+YjvyIfeZV5yK/If/C4Mh95FXnIKfv/13Efcx8McB2A552fh8hCpMPIn01UoW2ejlChJYQ0D1VoCSHNwrIsSmpKkFuRi9yKXORV5D1MXLXJ6r3Ke1BqlP84jsfwYCOwgZ2RHXwtfTHSayR8LX0htBDCytBKR1dDCCGko6OElpBOrrCqEFeLriKlMAVXi64ipywHuRW5qFL9c052PY7ew2RVZi2DrZEtbAW2sDOyg53ADrZGtrAwsKAhBIQQQtocJbSEdDJ3y+/ifO55/Jn7JxLyE5BfmQ8AYMDAw8wDHmYeCHYIhoOxAxyMHB4krEZ2MDcwp2SVEELIM4kSWkI6OJZlkVKYgujr0fjt9m+4U34HAGBpYInudt3hZ+UHqZUUYgsxBHotuiokIYQQ0iao3EJIB1VcXYyvUr7CiCMjEPFDBA5lHILQXIilQUvx3YjvcOo/p7C271pMkk6C3FZOySwhzXTr1i3e8OHDPZydnX09PT2lffv29UpKSuJHR0ebhIaGetV1zNixY10TEhIM6tr3pNLT0/W9vb2lj26LiopyWLlypW1LnudxQUFBPmfOnBFoY3B1dfU9fPgwLfP3GIFAEKD9/uDBg2aurq6+165d08lytZ988omlUCiUCIVCibe3t3TPnj1dnqSfuLg4w4MHD5ppH7fF/dYYqtAS0oFoWA3O3TmHY1nH8MutX6DUKNHNphumSKdgoNtAWlKWkBai0WgwYsQIr4iIiKLo6OjrwINf8nfv3tVr6LiDBw/ebJsI205WVpbe4MGDhe+9915OeHh4qa7jeVYdPXrUZOHChc4xMTHXvL29a5tyjFKphJ5eg7dUk2VlZemtX7/e/vLly6mWlpZqhULByc3NfaI8MD4+XhAfH280duxYRYsE1wKoQktIB6DWqPHjjR8Rfiwcc3+Ziz9z/8RLwpfw3Yjv8PXQrxEuDKdklpAWFB0dbcLj8djFixcXaLcFBwdXDRkypBwAKioquEOGDPFwd3eXjhgxwl2j0QD4Z1VTIBAEvPbaa44+Pj4SmUwmysnJ4QHAvn37zPz9/UVisVgSHBws1G5/UnFxcYYymUwkFAolAwcO9CwoKOBqY5kzZ46jn5+f2M3NzTcmJsYYAMrKyjgvvPCCh1AolAwbNszD399fpI35cXfu3NEbNGiQcOXKlXcmTJigAIDKykrmpZdechMKhRKxWCw5fvy4CQBs2LDBctCgQZ4hISHerq6uvrNnz3bS9vPxxx9bubm5+QYFBfmMGzfOddKkSS5Pc83PmpiYGONXX33V7dixY5lSqbQGADIyMvR79eolFAqFkl69egm1Vdvw8HC36dOnO/Xo0UM4d+5cp9LSUs6YMWPcfH19xWKxWKKtqqanp+vL5XIfiUQilkgk4tjYWKOGYsjNzdUzMjLSmJmZqQHAzMxMIxKJaoGG7xHtc5+bm8tzdHT0q66uZt5//32H48ePm4tEIsm2bdvMASA1NdUwKCjIx8nJye/dd9+1aa2fZX2oQktIO8ayLGKyY7D58mZkl2bDw8wD7/V5D0PchkCP2zJ/1RPyzDvyqjPuXW3ZMTM2kkqM/KzeCfGTkpIMZTJZZX37U1NTDS9fvnzdzc1NKZfLRbGxscaDBw8uf7RNVVUVp1evXuUbN268M3v2bKeNGzdaf/jhh7kDBw4sHzduXBqHw8FHH31ktWrVKrtt27bdbijcnJwcvnYZXgAoLCzUmzt3bh4ATJkyxf3jjz++NWzYsPLIyEiHJUuWOOzYsSMHAFQqFZOcnJx68OBBs1WrVjkMGTIkY+3atdZdunRRZ2RkXP3rr78MevXqJa3vvLNnz3Z/880377zyyivF2m1r1qyxAYCMjIyrly5dMnjhhRe8s7KyUgDg6tWrgsTExKuGhoYaLy8v34ULF+bzeDysW7fO/uLFi1e7dOmiCQ4OFkql0qr6zvmkrqYuca4oz2jR+8TIWFgpEa9pcOGE2tpaZuzYsV4///xzekBAwMMlb2fPnu0SERFR9NprrxV98sknlnPmzHE+efJkFgBkZWUZnDt3LoPH42HevHmOoaGhpd9++212YWEhNzAwUDxixIhSBwcH1dmzZzMEAgGbnJzMHz9+vEdKSkqdK5IBQM+ePSutrKyUzs7Ofr179y4bPXp0cUREhAJo+B55nIGBAfvmm2/ejY+PN9q1a9ctAIiKijLMzMw0iIuLSy8pKeGKxWLfRYsWFfD5/JZf7KAeVKElpJ1Kv5+OqT9NxeIzi6HP1cf6vuvx/YvfI8wzjJJZQnTMz8+vwtPTU8nlciGVSiuzsrL+NWZST0+PHTdunAIA5HJ5xc2bN/UB4MaNG/ohISHeQqFQsmHDBru0tDTDxs7n7Oxck5aWdlX7NWnSpAIAKCoq4paVlXGHDRtWDgAzZswo+vPPP421x40ZM6YYAIKDgytu376tDwBxcXHG48ePvw8A3bt3rxYKhfUm7r179y49cOCAZVlZ2cN8Ii4uznjSpElFABAQEFDt4OBQm5ycbAAAffr0KbW0tFQLBALWy8urOisri3/27FmjHj16lNna2qr5fD47atSo4vrO1x7p6emx3bp1K//iiy/+MRn3pUuXjGbOnHkfAObMmXM/ISHh4fMyevToYh7vQc3x9OnTph9//LG9SCSS9OnTx6empobJzMzUr62tZSIiItyEQqFkzJgxnllZWQ2OzebxeDhz5sy1ffv2ZXl7e1cvXbrUOSoqyqGxe6SpBg0aVGJoaMja29urLCwslLdv327ToilVaAlpZxQ1Cmy+vBkH0g/AVN8UK3utxGiv0eByuLoOjRDdaKCS2lr8/Pyqjhw5Yl7f/kcrU1wuFyqVinm8DY/HYzkcjvb7h23mzZvnsmDBgrwJEyYooqOjTVatWuXQCpcA4EG1TXt+tVrNAA/e+WmqpUuX5n311VeWYWFhHrGxsZl6enoNHq+vr//oz4VVKpWtsmJpXRqrpLYWhmFw7Nix688995xw6dKldh988EFeY8cYGxtrtN+zLItDhw5lymSymkfbREVFOdjY2CgPHz58Q6PRwNDQUN5YvxwOB6GhoZWhoaGVQ4cOLZ0+fbrb8uXL8+trz+PxWLVaDeDBUJKG+m7KPd+aqEJLSDtRparCtxnfIuz7MBxIP4D/CP+D6FHRGCMcQ8ksIW0sLCysrLa2llm/fv3Dqttvv/0mOHHiRLMrW48rKyvjuri4KAHgq6++stRuP3XqlGDUqFFuzenL0tJSbWpqqtaOj/3yyy8te/XqVd7QMcHBweUHDhwwB4CEhASDjIyMBivE27dvzzExMVGPHTvWTaPRoE+fPuV79uyxAICkpCR+bm6uvr+/f3V9x4eEhFScP3/epKCggKtUKnH06NF6/1Bor0xMTDQxMTHXDh06ZPnxxx9bAUBAQEDF9u3bzQFgy5YtFoGBgXU+L6GhoaXr16+31Y7DPnfunCEAKBQKrr29vZLL5WLz5s2W2sQTANzd3f81TCQ7O1vv999/fzjkIj4+XuDo6Fjb0D3i7Oxcc+HCBSMA2Lt378PnxdTUVF1eXv5M5ZCNVmgZhjEAcAYA/+/2h1iW/W9rB0YIeUClUeFI5hFsvrwZBVUF6GbTDW/2eBMiC5GuQyOk0+JwODh27FjW3LlznT/55BM7Pp/POjk51WzcuDFHO3TgSS1fvvzu+PHjPW1tbWsDAwMrbt26xQeA7OxsvqGhYbPLmTt37rwxZ84c1/nz53NcXFxq9u/fn91Q+0WLFhX85z//cRMKhRJfX99KHx+fKnNzc3V97TkcDr799tvs/v37e82ZM8fp448/vvPyyy+7CoVCCZfLxZYtW7Ibitvd3V35+uuv53bv3l1sY2OjFAqFVdoPLnUktra26piYmIy+ffuKrK2tVZ9//vmtyZMnu3366ad2lpaWql27dmXXddwHH3xwd+bMmS4ikUjCsizj5ORUc+rUqczIyMh74eHhnkeOHDHv06dPmaGhoQZ48OEtlmX/VR2tra1lFi5c6JSfn6/H5/NZCwsL5bZt224B9d8jS5cuzR87dqzHgQMHLENCQh7OYDF06NCydevW2YtEIskbb7yR2wo/rmZrtNTPMAwDwIhl2XKGYfQA/A5gAcuyf9Z3TGBgIBsfH9+ykRLSybAsi9M5p/HJxU9wXXEdMmsZ5nadi172vfDgvyXpSBiGSWBZNlDXcbQXiYmJ2TKZrFDXcbSlWbNmOb3yyitFPXr0aPEPTD1KpVKhtraWEQgE7JUrV/iDBg0SZmVlpWiHJ7QGhULBMTMz0yiVSgwePNhrypQphZMmTSpprfN1ZPv37zfLysriv/XWW/d0HUtLS0xMtJLJZG517Wu0Qss+yHi1ZXC9v7/a7FNrhHQ2LMvifN55fH75c1y8dxFupm745PlP0M+lHyWyhHRiW7ZsaXCmg5ZSVlbGCQkJ8dGOb/34449vtmYyCwCLFi1yOHPmjGlNTQ3Tt2/f0okTJ1Iy+4TGjx//zMwN25aa9KEwhmG4ABIAeAH4jGXZ83W0mQlgJgC4uHSo6eMIaRMaVoNTOafwZfKXSC5MhpWhFVb0XIFR3qOgx6FZCwghbcPc3FzT0PRPrWHr1q1tkqyTjqtJCS3LsmoAXRmG6QLge4ZhfFmWTXmszVYAW4EHQw5aPFJCOqhKZSWOZB7BwfSDuK64DidjJ6zouQIver0IPpev6/AIIYSQZ16zpu1iWbaEYZjTAIYASGmkOSGkAYVVhfg2/VvsS9uHkpoSiC3EWBOyBoPcBoHHoRn1CCGEkKZqyiwH1gCUfyezhgAGAFjT6pER0kHllObgy5QvcSzrGJQaJZ5zeg4z/Gagq01XXYdGCCGEtEtNKQPZA/j673G0HADfsCwb3bphEdLx5FXk4fPEz3E08yi4DBcjvUbiZcnLcDdz13VohBBCSLvW6KS4LMsmsSwbwLKsP8uyvizLrmqLwAjpKCqVldh8eTPCvg/D8azjGCcah5jwGKzstZKSWULasVu3bvGGDx/u4ezs7Ovp6Snt27evV1JSEj86OtokNDTUq65jxo4d65qQkNDgEqVtbe/evWbLli2za6hNenq6vre3978m638SDf18OiKGYeQzZsxw0j5euXKlbVRUVIOrv0VHR5vExsYaaR+Hh4e77dy586kWnHB0dPTLzc1tkfFsAoEgoCX6aUk0UI+QVqJhNYi+Ho1PEz7Fvap7GOw2GJHdIuFk4tT4wYSQZ5pGo8GIESO8IiIiiqKjo68DQFxcnOHdu3cbnJLk4MGDN9smwqabMGGCAkCnnOqpLejr67M//PCDeW5ubp69vb2qKcf8+uuvJsbGxuqBAwdWPO35NRpNs5Yzbq+eqWXLCOkIWJZF3J04jD8xHst/Xw4bgQ12Dd2FdX3XUTJLSAcRHR1twuPx2MWLFxdotwUHB1cNGTKkHAAqKiq4Q4YM8XB3d5eOGDHCXbtsaVBQkM+ZM2cEwIMq12uvvebo4+MjkclkopycHB4A7Nu3z8zf318kFoslwcHBQu32hmLp3r27zwsvvODh5ubmO3fuXMfPP//cws/PTywUCiVXrlzhN9Tvhg0bLCdNmuQCPKgETpkyxTkgIEDk5OTkV1dVMD09XV8ul/tIJBKxRCIRayuJ0dHRJkFBQT51XfehQ4dM3d3dpXK53OfQoUNdnvbn355wuVx20qRJBe+9957t4/vu3r3LGzx4sKevr6/Y19dX/PPPPxulp6fr79q1y/qLL76wFYlEEu2StL/99ptxXc/LihUrbH19fcVCoVDy+uuvOwAPniMPDw/pxIkTXaRSqSQrK+sfq9cNGDDAUyqVir28vKTr1q17uHxzffdkWlqafteuXUW+vr7iBQsWPKwu37x5Uy8wMNBHJBJJvL29pdpYdYEqtIS0oPvV97Hs92U4d+cc7Izs8F6f9zDMYxg4DP3tSEhrWXFuhXNmcaag8ZZN52XuVflO73dy6tuflJRkKJPJKuvbn5plekGJAAAgAElEQVSaanj58uXrbm5uSrlcLoqNjTUePHhw+aNtqqqqOL169SrfuHHjndmzZztt3LjR+sMPP8wdOHBg+bhx49I4HA4++ugjq1WrVtlt27atwXla09LSDA8dOnTdxsZG5erq6sfn8wuTk5NT33nnHZv169fb7NixI6ep/ebn5+vFx8enXb582WDUqFFeU6dOLX50v4ODg+rs2bMZAoGATU5O5o8fP95DO29tXdcdEhJSMW/ePLfY2Nh0qVRaM3z4cI+GrqW1RKbeck6rqG7R+0RkZFD5idil3vtEa9GiRff8/Pyk//vf//Ie3T5r1iznqKio/MGDB5dfu3ZNf/Dgwd7Xr1+/MmnSpAJjY2P1qlWr8gFg27ZtVnU9L999951pZmamQVJSUirLshgwYIDXjz/+aOzh4VGbnZ1tsG3btuw9e/bcejyevXv3Ztva2qrLy8uZgIAAycSJE4vt7OzU9d2Tc+fOdZk+fXrBvHnzit5//31rbT87duyw6N+/v2LNmjV5KpUKZWVlOvtlRwktIS0kPi8eS84sQUlNCRZ3X4yxPmOhz32qJd0JIe2Un59fhaenpxIApFJp5eMVMgDQ09Njx40bpwAAuVxecfLkSVMAuHHjhv7IkSOdCgoK9GpraznOzs41TTmfq6urEgBcXFxqhg4dqgAAmUxW9dtvv5k0p98RI0aUcLlcyOXy6qKion8NoaitrWWmTZvmevXqVUMOh4ObN28+nDC7rus2MTFROzk51fj5+dUAwIQJE4q2b99u/Xi/HZmFhYVmzJgxRR988IGNoaGhRrv93LlzpteuXTPUPi4vL+cWFxfXmRTW9bzExMSYnjlzxlQikUgAoLKykpOWlmbg4eFRa29vX9u/f/86hyysWbPG9sSJE10AIC8vT+/KlSsGdnZ2FfXdkxcvXjT+8ccfswBg1qxZRe+8844TAPTs2bNi1qxZbkqlkvPSSy8VBwcHt+qyzA2hhJaQp6RhNdievB2fXf4MzibO+GzAZxBZiHQdFiGdRkOV1Nbi5+dXdeTIkXo/pMPn8x8OWuRyuVCpVP9at5rH47EcDkf7/cM28+bNc1mwYEHehAkTFNHR0SarVq1q8ANEj5+Pw+FAu1Qth8OBWq1uVr+PLnNb19jL1atX29rY2CgPHz58Q6PRwNDQUN7YdT8Ly3Y3pZLamt588838bt26ScaNG1eo3cayLOLj41ONjY0bHeRa1/PCsiwiIyNzFy1aVPho2/T0dH2BQKBBHaKjo01+++03k/j4+DQTExNNUFCQT1VVFQeo/54EAA6H868Yhw4dWn7mzJn0w4cPm02ZMsV9/vz5+fPmzStq7FpaA70PSshT0LAa/Dfuv9h4aSMGuw3GweEHKZklpBMICwsrq62tZdavX/9w/OFvv/0mOHHixFOPISwrK+O6uLgoAeCrr76y1G4/deqUYNSoUW4t3W9zKRQKrr29vZLL5WLz5s2WarW6wfZdu3atvn37tr52LO+BAwcsnvTc7Zmtra06LCyseN++fQ/vmT59+pSuWbPGRvs4Li7OEABMTEzUZWVl3Mb6HDp0aOnu3butFAoFBwBu3Lihd+fOnQaLlSUlJVwzMzO1iYmJ5tKlSwaJiYlGDbUHgG7dupVv27bNAgC2bdv28N7JyMjQd3R0VL7xxhuFEydOLLx48WKLDuloDkpoCXlCao0aK8+txJHMI5gtm401IWtgpNfo6wIhpAPgcDg4duxY1i+//GLq7Ozs6+XlJf3vf//roE0Yn8by5cvvjh8/3lMul/tYWlo+/FR8dnY239DQ8Ik/rl5fv80VGRl5b//+/ZYymUyUkZFh8Ohb6HURCATsxo0bbw4fPtxLLpf7ODs71z7pudu75cuX55WUlDxMOLdu3Zpz8eJFI6FQKPH09JRu2rTJGgDCw8NLTpw40eXRD4XVZfTo0aVjxoy53717d5FQKJSMGjXKs6SkpMFEODw8XKFSqRihUChZtmyZg0wma3Qmhc2bN9/aunWrja+vr1ihUDzs/6effjKRSCRSsVgsOXr0qPnixYvzm/aTaHlMa0zlEBgYyMbHx7d4v4Q8K9QaNVbGrcSxrGOYK5uLOV3n6Dok0s4xDJPAsmygruNoLxITE7NlMllh4y07jlmzZjm98sorRT169NDZOEVCdCkxMdFKJpO51bWPxtAS8gTWxq99kMx2nYs5MkpmCSGtb8uWLQ3OdEBIZ0ZDDghppuNZx7E3dS8miidSMksIIYQ8AyihJaQZUotS8fYfbyPQNhBRgVG6DocQQgghoISWkCYrqS5B5KlImBuYY13fddDjNLjCJSGEEELaCI2hJaQJWJbFyriVKKgqwO6hu2Fp+MQz3hBCCCGkhVGFlpAm+DbjW5zKOYXIbpGQWkl1HQ4hhBBCHkEJLSGNuF5yHWv/Wotgh2BMlEzUdTiEkGcEl8uVi0QiifYrPT2d1rom/6K9T7y9vaVDhw71KCsra1butXTpUrvWiCs9PV3f29u7w1RoKKElpAG16losObsEhjxDvNv7XXAY+i9DCHmAz+dr0tLSrmq/fHx8/rFggFL51GsskA5Ae59cu3btip6eHrt+/Xrrphyn0WigVquxYcMG+9aOsSOg386ENGDDxQ1Iu5+Gd3q/A2tBk16DCCGd2IYNGyyHDh3q0a9fP6+QkBChQqHg9OrVSyiRSMRCoVCyZ8+eLsCD6piHh4d03Lhxrl5eXtLevXt7l5eXMwCQkpLCDw4OFvr4+EgkEolYu2TsihUrbH19fcVCoVDy+uuvO+jyOsmT6dOnT3lmZiYfAP73v//Zent7S729vaWrVq2yAf7/vpg4caKLVCqVjB071q2mpoYjEokkI0aMcH+8qrpy5UrbqKgoB+DB0stCoVDStWtX0axZs5y07dLT0/XlcrmPRCIRSyQScWxsbIdc0pI+FEZIPTKLM7E7dTfGCMegr3NfXYdDCKnH3WXLnWuuXWvRNeT53t6VDu+tzmmojTbRAABnZ+ea2NjYLAC4ePGicVJS0hVbW1u1UqnEiRMnMi0sLDS5ubm8Hj16iCIiIkoA4NatWwZ79uy5HhwcfPOFF17w2LVrl/ncuXPvR0REuC9cuDBv0qRJJZWVlYxarWa+++4708zMTIOkpKRUlmUxYMAArx9//NF46NCh5S153R3ZokOJzhl5ZS16nwjtTCrXviRr8D7RUiqV+Omnn0wHDRpUevbsWcG+ffssExISUlmWhVwuF/fv37/MyspKnZ2dbbBt27bsPXv23AIAgUBgnpaWdhV4kJzW1//06dPdN2/enD1w4MCKuXPnOmq3Ozg4qM6ePZshEAjY5ORk/vjx4z1SUlJSn/banzWU0BJSj08vfQoBT4D5AfN1HQoh5BmkfSv58e0hISGltra2agDQaDRMZGSk059//mnM4XBw7949/du3b/MAwNHRsSY4OLgKAAICAiqzs7P5xcXFnPz8fP1JkyaVAIBAIGABsDExMaZnzpwxlUgkEgCorKzkpKWlGVBC++x79A+fHj16lC1YsKBw7dq11i+88EKJqampBgCGDRtWfOrUKZMxY8aU2Nvb1/bv37+iOecoLCzkVlRUcAYOHFgBAJMnT74fGxvbBQBqa2uZadOmuV69etWQw+Hg5s2b/Ja+xmcBJbSE1CEhPwGnc05jfsB8dDHooutwCCENaKyS2tYEAoFG+/2WLVssioqKeMnJyal8Pp91dHT0q6qq4gCAvr4+q23H5XLZqqoqDsuydXUJlmURGRmZu2jRosJWv4AOqqmV1JZW1x8+9T3PwD/vn8fxeDxWo/n/3dXV1ZzG+lu9erWtjY2N8vDhwzc0Gg0MDQ3lzQi/3aAxtIQ8hmVZfBT/EWwENjSrASHkqSgUCq6VlZWSz+ezx48fN7l7926DMyFYWFho7Ozsanfv3t0FAKqqqpiysjLO0KFDS3fv3m2lUCg4AHDjxg29O3fuUFGqnerXr1/5Dz/80KWsrIxTWlrK+eGHH8xDQ0PL6mrL4/HYmpoaBgCcnJxU9+/f5+Xl5XGrqqqYn376yQwArK2t1UZGRppffvnFCAB2795toT1eoVBw7e3tlVwuF5s3b7ZUq9VtcYltjhJaQh7z882fkVSYhHld58GQZ6jrcAgh7dj06dPvJyYmGvn6+or37Nlj4e7uXt3YMXv27Lnx2Wef2QiFQklgYKAoJyeHN3r06NIxY8bc7969u0goFEpGjRrlWVJSwm2LayAtr0+fPpURERFF3bp1E8vlcvHLL79c0Lt376q62k6YMKFALBZLRowY4c7n89k33ngjNygoSNy/f38vLy+vh/fTli1bsufMmePatWtXEcuyMDExUQNAZGTkvf3791vKZDJRRkaGgaGhYb0V4PaMaahM/aQCAwPZ+Pj4Fu+XkNamVCvx4tEXwefycSjsELgc+n1B2gbDMAksywbqOo72IjExMVsmk9Hb74T8TaFQcMzMzDQAsGzZMrvc3Fy9nTt3PlPDcZ5WYmKilUwmc6trH71dQcgjfrr5E3LKcrCx30ZKZgkhhLQb33zzjdn69evt1Wo14+joWLNv375sXcfUliihJeRvLMti79W9cDN1w3NOz+k6HEIIIaTJZsyYUTxjxoxiXcehKzSGlpC/JRYkIqUoBRHiCFoRjBBCCGlH6Lc2IX/bdXUXTPVN8aLni7oOhRBCCCHNQAktIQCuFF7ByZsnMdZnLAR6LbqQDCGEEEJaGSW0pNPTsBq8d/49WBhYYKrvVF2HQwghhJBmajShZRjGmWGYUwzDpDIMc4VhmAVtERghbUU77+zr8tdhom+i63AIIe1ITk4OLywszN3JyclPKpWKu3btKtq1axctL0j+YcmSJXZeXl5SoVAoEYlEkl9//dWouX3s3bvXbNmyZXatEV9H0JRZDlQA3mBZ9iLDMCYAEhiGiWVZ9l/rVxPS3qg0KuxI3gEnYyeEeYbpOhxCSDui0WgQFhbmFRERUXT8+PEbAJCRkaH/7bffNimhValU4PFosqGO7uTJk0Y//fRTl+Tk5KuGhoZsbm4uT7vyV3NMmDBBAUDRCiF2CI1WaFmWzWVZ9uLf35cBSAXg2NqBEdIWjmQeQer9VLwW8BrNbEAIaZbjx4+b6OnpsYsXLy7QbhMKhbXLly+/p1KpMGvWLCdfX1+xUCiUrF271goAoqOjTXr06CEMCwtz9/Hxkaanp+u7u7tLx44d6+rt7S0dMWKE+5EjR0y6desmcnV19T116pQAAE6dOiUICAgQicViSUBAgCgxMZEPABs2bLAcNGiQZ0hIiLerq6vv7NmznQDg448/tpo2bZqzNq7169dbTZ8+3altf0IEAO7cuaNnYWGhMjQ0ZAHA3t5e5ebmpnR0dPSbM2eOo5+fn9jPz0+ckpLCB4B9+/aZ+fv7i8RisSQ4OFiYk5PDAx4815MmTXIBgPDwcLcpU6Y4BwQEiJycnPx27txprrsrfDY0609DhmHcAAQAOF/HvpkAZgKAi4tLC4RGSOuqVlVja9JWSC2lGOo+VNfhEEKe0C+7Up3v3ylv0U9zWjgaV/afJG5wlaXk5GRDf3//yrr2ffLJJ1ZmZmbqlJSU1KqqKqZ79+6isLCwUgBISkoyunTp0hWRSFSbnp6un5OTY3Dw4MHrcrn8pr+/v3jv3r2W8fHxafv27euyevVq+9DQ0CyZTFZ94cKFND09PRw5csRk8eLFTj/99FMWAFy9elWQmJh41dDQUOPl5eW7cOHC/GnTpt2XSqWSmpqa23w+n92zZ4/Vli1bbrbkz6jdOfKqM+5dbdlP/dpIKjHyswbvk5EjR5a+//77Dm5ubr59+vQpHT9+/P1hw4aVA4Cpqak6OTk5ddOmTZavvfaa86lTpzIHDhxYPm7cuDQOh4OPPvrIatWqVXbbtm27/Xi/+fn5evHx8WmXL182GDVqlNfUqVM77Ry0QDMSWoZhjAEcBhDJsmzp4/tZlt0KYCvwYOnbFouQkFbyZcqXyK3Ixeo+q8EwzX73hxBC/uHll192uXDhgrGenh7r5ORUk5aWJjh27Jg5AJSVlXGvXr1qoK+vz/r7+1eIRKJa7XGOjo41QUFBVQAgFAqr+vXrV8rhcNCtW7fKd9991wEA7t+/zx07dqx7dna2AcMwrFKpfPii1adPn1JLS0s1AHh5eVVnZWXxvby8ynv37l128OBBMz8/v2qlUsloz0HalpmZmSYlJeVqTEyMyS+//GIyefJkz5UrV94GgMmTJ98HgBkzZtx/6623nAHgxo0b+iNHjnQqKCjQq62t5Tg7O9fU1e+IESNKuFwu5HJ5dVFRkV7bXdGzqUkJLcMweniQzO5lWfa71g2JkNYXnxePrUlbMcxjGLrbddd1OISQp9BYJbW1+Pn5VR09evThW727d+++lZubywsMDBQ7OjrWrl+//lZ4ePg/CkDR0dEmAoFA8+g2fX39h0UgDocDAwMDFgC4XC7UajUDAEuWLHHs27dvWWxsbFZ6erp+v379fOo6nsvlPkx2Z86cWbh69Wo7oVBYPXHixMKWvv52p5FKamvi8XgYPnx42fDhw8v8/f2rdu/ebQk8eL61GIZhAWDevHkuCxYsyJswYYIiOjraZNWqVQ519am9T4AHK112dk2Z5YAB8CWAVJZlP2r9kAhpXaW1pXj7j7fhYOSAFT1X6DocQkg7FRYWVlZTU8OsWbPGWrutvLycAwADBw5UfP7559baD/8kJSXxS0tLn3igfmlpKdfJyakWALZs2WLVlGP69etXkZubq//9999bTps27f6Tnps8ncTERH5ycjJf+/jSpUuG2udy165dFgDw5ZdfmgcEBFQAD6r5Li4uSgD46quvLHURc3vUlAptbwAvA0hmGOby39uWsSz7Q+uFRUjree/8e7hddhuf9f8MRnrNnjmFEEIAPKiuHT9+POvVV1913rBhg52FhYVKIBCo//e//91+5ZVXirOzs/l+fn5ilmUZCwsL5Q8//JD1pOdasmRJ3vTp0903bNhgFxIS8q9hf/UZOXJkcVJSksDa2lr9pOcmT6e0tJQ7f/58l9LSUi6Xy2Xd3Nxqvv7665uBgYFmNTU1jL+/v0ij0TAHDhy4DgDLly+/O378eE9bW9vawMDAilu3bvEbOwcBmNYoUwcGBrLx8fEt3i8hT+vyvct4+ceXMcNvBuZ3m6/rcAh5iGGYBJZlA3UdR3uRmJiYLZPJ6G30RoSGhnpFRkbmv/jii2W6joX8k6Ojo198fHyqvb29StextBeJiYlWMpnMra59NE8R6TQ0rAZrLqyBjaENpvtN13U4hBDSagoLC7lubm6+BgYGGkpmSWdAMzqTTuOHGz8gpSgFq/ushkCvZWduIYSQZ4mVlZU6Ozs7RddxkPrduXMnWdcxdCRUoSWdQrWqGp9e/BRiCzGGewzXdTiEEEIIaUGU0JJOYffV3ciryMOi7otoRTBCCCGkg6Hf7KTDK6wqxPbk7Qh1DqU5ZwkhhJAOiBJa0uFtvrwZtepaRMmjdB0KIYQQQloBJbSkQ8sszsTha4fxH5//wM3MTdfhEEI6EIFAEKDrGMizLz09Xd/b21v66LaoqCiHlStX2v7yyy9G/v7+IpFIJPHw8JBGRUXVuSoYaRzNckA6tPUJ62HEM8Js2Wxdh0II6QRUKhV4PPrVSppm2rRp7vv378/q1atXlUqlQmJiooGuY2qvqEJLOqy4u3H4/c7vmOk/E+YG5o0fQAghTyA6OtqkR48ewrCwMHcfHx8pAAwYMMBTKpWKvby8pOvWrXu4VK1AIAh47bXXHH18fCQymUyUk5ND2W8ndv/+fZ52mVsejwe5XF6t65jaK/qPRDoktUaNdfHr4GjsiAhxhK7DIYS0op8+/8S5MOdmi04ubeXsWjl4TmROU9snJSUZXbp06YpIJKoFgL1792bb2tqqy8vLmYCAAMnEiROL7ezs1FVVVZxevXqVb9y48c7s2bOdNm7caP3hhx/mtmTspG4rzq1wzizObNH7xMvcq/Kd3u80+T553MyZM/PFYrFvjx49ygYNGqR49dVXiwQCQcsv4doJUIWWdEhHs47iWvE1RMojoc/V13U4hJAOzt/fv0KbzALAmjVrbH18fCRyuVycl5end+XKFQMA0NPTY8eNG6cAALlcXnHz5k16gergGIapd/u6dety//jjj9QBAwaUfvPNN5bPP/+8sI3D6zCoQks6nAplBTZe2giZtQyDXQfrOhxCSCtrTiW1tQgEAo32++joaJPffvvNJD4+Ps3ExEQTFBTkU1VVxQEAHo/HcjgPakk8Hg8qlarubIe0uKeppD4NW1tblUKh4D667f79+1x3d/caAJBKpTVSqbQgKiqqwNLSsmteXh7Xzs5OrYtY2zOq0JIOZ0vSFhRWFWJJ9yX1/mVMCCGtpaSkhGtmZqY2MTHRXLp0ySAxMdFI1zER3TEzM9PY2Ngojx49agIA+fn53NOnT5v169ev/MCBA2YazYO/hZKTkw24XC5rZWVFyewToAot6VCul1zH7iu78aLni/Cz9tN1OISQTig8PFyxdetWa6FQKPH09KyWyWQVuo6J6NbXX399Y+7cuS5LlixxBoAlS5bclUqlNUuWLHFcunSps4GBgYbH47Hbt2+/QbNkPBmGZVt+7HFgYCAbHx/f4v0S0phZsbOQXJiM4yOPw9LQUtfhENJkDMMksCwbqOs42ovExMRsmUxWqOs4CCFtJzEx0Uomk7nVtY+GHJAO49ydc4i7G4fZ/rMpmSWEEEI6EUpoSYeg1CjxUcJHcDR2xDjROF2HQwghhJA2RAkt6RC2J21HRnEGFgYupGm6CCGEkE6GElrS7l3Mv4gvkr7AcI/hGOA6QNfhEEIIIaSNUUJL2rWS6hIsPrMYjsaOWN5jua7DIYQQQogO0NwQpN1iWRYr4lagqLoIe4bugbG+sa5DIoQQQogOUIWWtFt7U/fidM5pRMmjILWS6jocQkgnIxAIAgAgPT1d/4svvrBorH16erq+t7c3vVh1InU951FRUQ4rV660bei4M2fOCKZMmeIMPFh5LjY2ttmLczg6Ovrl5ub+q3D56PazZ88KHB0d/c6dO2e4d+9es2XLltk19zx1iY6ONgkNDfVqib6aiiq0pF1Kv5+O9Qnr8bzT85gonqjrcAghndi1a9f4Bw8etJg9e/Z9XcdCOobnnnuu8rnnnqsEgF9//dXE2NhYPXDgwBZdoOP8+fOG48aN89yzZ09W7969q3r37l0FQNGS52hLVKEl7Y5SrcTy35fDTN8Mq3qvouVtCSE6tXz5csf4+HhjkUgkefvtt23S09P15XK5j0QiEUskEnFd1TW5XO4TFxdnqH3crVs30fnz5w0fb0c6tqCgIJ85c+Y4+vn5id3c3HxjYmKMgf+vcKanp+vv2rXL+osvvrAViUSSmJgY47t37/IGDx7s6evrK/b19RX//PPPRgCQl5fH7d27t7dYLJZERES4NrRwVmJiokF4eLjXjh07boSGhlYCwIYNGywnTZrkAgDh4eFuU6ZMcQ4ICBA5OTn57dy50xwA1Go1Jk6c6OLl5SUNDQ316tu3r5d236FDh0zd3d2lcrnc59ChQ12058rPz+cOGDDAUygUSmQy2cP7PCoqymH06NFuvXv39nZ0dPT7+uuvu8yePdtJKBRKQkJCvGtqapr1y50qtKTd2Zq8FenF6fg09FOYG5jrOhxCiI7dP5ThrMyrELRkn3p2RpUWLwlzmtJ29erVd9avX2976tSpTAAoKyvjnD17NkMgELDJycn88ePHe6SkpKQ+esyUKVMKt2/fbhUcHJyTlJTEr62tZXr06FHVktdA/unusuXONdeuteh9wvf2rnR4b3WT7pP6qFQqJjk5OfXgwYNmq1atchgyZEiGdp+Pj0/tpEmTCoyNjdWrVq3KB4CwsDD3qKio/MGDB5dfu3ZNf/Dgwd7Xr1+/snTpUodevXqVr1u3LvfAgQNm+/fvt6rvnGPHjvXaunXrjcGDB5fX1yY/P18vPj4+7fLlywajRo3ymjp1avGuXbvMc3Jy9NPT06/cuXOH5+vr6ztlypSiyspKZt68eW6xsbHpUqm0Zvjw4R7afhYvXuwgk8kqT548mXXs2DGTyZMnu6elpV0FgJs3b/Lj4uIyLl68aNCvXz/R119/nfXFF1/cHjhwoOc333xj9vLLL5c09edIFVrSrly+dxnbkrYhzCMM/Vz66TocQgj5l9raWiYiIsJNKBRKxowZ45mVlWXweJspU6YUnzx50qympob54osvrCIiImgZ3w6ovncQH90+ZsyYYgAIDg6uuH37dqMTqZ87d850wYIFLiKRSBIWFuZVXl7OLS4u5vz5558mr7zyShEAjBs3TmFqaqqur4/evXuXfvnll1Yqlare84wYMaKEy+VCLpdXFxUV6QHA2bNnjUePHl3M5XLh4uKi6tmzZxkAXL582cDJyanGz8+vhsPhYMKECUXafi5cuGAybdq0or/7LCspKeEVFRVxAWDAgAEKPp/PBgUFVanVauall14qBQCpVFp148aNZk0qTxVa0m4oahRYfGYx7I3ssazHMl2HQwh5RjS1ktpWVq9ebWtjY6M8fPjwDY1GA0NDQ/njbUxMTDQhISGl+/bt63Ls2DGLhISEq7qItTN52krqk7C1tVUpFAruo9vu37/PdXd3r9E+NjAwYAGAx+NBrVY3+jY7y7KIj49PNTY2/teYAg6naXXKbdu23Zo6darrpEmTXPft23ezrjbauLTnfPTfutSXvNd1DMMwLADw+XwWALhcLng8HquNn8PhQKVSNWvIAVVoSbvAsixWnFuBgqoCrO27lqboIoQ8M8zMzNTl5eUPkxaFQsG1t7dXcrlcbN682VKtrrtQNnv27MIlS5Y4y2SyCltb23qraaT9MjMz09jY2CiPHj1qAjwYT3r69Gmzfv361ftW/+NMTIB4lR4AACAASURBVEzUZWVlD++vPn36lK5Zs8ZG+1g7Frtnz55lO3bssASAb775xrS0tJT7794e4HA4OHr06PXMzEyDyMhIh6bGEhISUn7kyBFztVqNnJwc3vnz500AoGvXrtW3b9/Wv3LlCh8ADhw48HDWj549e5bt3LnTEngwNtjc3FxlYWGhaeo5m4oSWtIu7L66G6dyTiFKHgVfK19dh0MIIQ8FBQVV8Xg81sfHR/L222/bREZG3tu/f7+lTCYTZWRkGBgaGtb5yzskJKTSyMhIPXXqVBpu0IF9/fXXN9577z17kUgk6du3r8+SJUvuSqXSmsaPfCA8PLzkxIkTXbQfCtu6dWvOxYsXjYRCocTT01O6adMmawD44IMP7p47d85YIpGIf/rpJzN7e/vahvo1NDRkf/zxx8yYmJgu77//vnVTYpk8eXKxvb19rVAolE6dOtVVJpNVdOnSRS0QCNiNGzfeHD58uJdcLvdxdnZ+eO41a9bcvXjxokAoFEqWL1/u+NVXX91o6rU3B9NQ+RgAGIbZAWA4gHssyzYpkwgMDGTj4+NbIDxCgNibsXjj9BsIdQ7FJ6Gf0KwGpENiGCaBZdlAXcfRXiQmJmbLZLJ2nQhmZ2frPf/88z5ZWVkpXG69xTRCnikKhYJjZmamycvL43bv3l187ty5NBcXl/oH47agxMREK5lM5lbXvqaMof0KwCYAu1owJkKa5K+8v7DkzBL4Wfvhg+c+oGSWENIhbNq0yfLdd991fO+993IomSXtycCBA71LS0u5SqWSWbRoUW5bJbONaTShZVn2DMMwbq0fCiH/lH4/HfN/nQ9nE2d81u8zGPJoikZCSMcwb968onnz5hU13pKQZ8uFCxfSdR1DXVpslgOGYWYCmAkALi4uLdUt6aRult7E7JOzYaRnhC0Dt6CLQZfGDyJEB9jaWlRevIjyU6ehKiyE4/p1ug6ps9BoNBqGw+E0PG6OENIhaDQaBkC9HyZrsYSWZdmtALYCD8bQtlS/pPP5K+8vvH76dTBgsH3IdtgZtcjS0oS0GFVxMSrOnEHZqdOo+P13aMrLwejrw6hXL7AqFRgezYjYBlIKCgok1tbWCkpqCenYNBoNU1BQYAYgpb429KpLnimHMw7j3T/fhYupCzb12wRnU2ddh0QIAKDmxg2UxZ5E+alTqLp8GWBZcK2tYDp0CIyffx5GPXuCY/SvFU5JK1GpVNPz8vK25+Xl+YJm7CH/1969h9l1l4e9/77rsm+z99x1v8uSZVs2krGtcDHYoRCM0xMXSAkQKAlPmkBSKLRP29AkbUrP04QnaZOTWxNOOaE5hKahgUIcXxKIjYwNtuU7tmRL1s26azQze2b2bd3e/rHWHs1II1uWRprZmvfzPEu/dd/v3vMb7Xd+67d+y1zpEuCHURT93Ll2sITWzAvDzWF+49Hf4L799/HW5W/lt277LSq5ylyHZRa48OhRqn99N2P33ktrZ/rk0sLmzQz+4i9Svv12CpuvQ85zIHMzu2666aYTwE/MdRzGmPnhNRNaEfkfwO3AoIgcAv69qn7pUgdmFoZm1OQrO7/Cl577Es24yadu/BQfv/7jeI79rWXmRlKvM/6d71D939+k9sgjoEpx61aWfO6Xqbz73fhLrQuMMcbMN+czysGHLkcgZmFJNOHuvXfz+0/9Psdqx7h95e189qbPsr53/VyHZhagpNmk/thjjN17H+P3309Sr+MvX87gJz9Bz3vfS26VdX0xxpj5zJrBzGWlqnz/yPf5nSd/h13Du9g8sJn/dOt/4palt8x1aGaBCQ4eZGL7Q0xs/y71Rx9DWy2cri4qd76H3rvuonjTTdadwBhjOoQltOayaEZNvvXyt/jqzq/ycvVlVpRX8IW3fYE71t2BI5Y0mEsvabWoP76Die3fpbb9IYL9+wHIrVlD7wc+QPntb6e07RacfH5uAzXGGPO6WUJrLqldw7v45p5vcvfeuxltjXJt/7V8/i2f5871d5J3LXEwl47GMc2du6g//jj1H/yA2mOPoY0Gks9T2raNvp/+acpvfxu5NWvmOlRjjDEXyRJaM+uOThzlvv33ce++e9k5vBPf8bl91e186JoPcfOSm+3xteaSUFWCffupPfwwtYcfpr5jB8nEBAD+mtX0vu99lN/+NkrbtuEUZ+epc6pKMjZGNDxMPDKCtlp0vfnNs3JuY4wx588SWjMrhpvD3LfvPu7bfx9PnXgKgBsGb+Bz2z7Hj6//cXryPXMcobkSJfU6tR88ysRD26l9dzvhkSNAmsB233knpVtuoXjLzXi9vST1Okm9TnjoEEkrQIMW2mySNBok9QZJo442GiSNbF17ud44vTw53yCp14mrVYhOP8bcHRjg6oe/N1cfhzHGLFiW0JoLNh6M891D3+X+fffzvcPfI9KIjX0b+fSNn+aOdXewqmJ3hpvZpaq09u5l/J57mHjwuzRffDFNKD0Pb3CQ/MaNqONAEDDx4IOM3XMPSb0OyTmfljgz18UpFnGKRaRUxCmW0uWuLtxFg5PLbm8vbn8fXn8/bl8/3kD/pXnjxhhjXpUltOa8qSoHxg7w+PHH2f7Kdh4+8jBhErK4tJiPXvdR/uFV/5Cr+66e6zDNFULDkNbu3dSfeor64ztoPv884dGj01pEJ7W7sfgefl8/bk83UirhTE5dOF2lLBEtIPk8ksvj5HNIsYRTKk5JYEuI71vXGGOM6SCW0JpXparsHt3N3+7/W+7ffz/7x/YDsLRrKR+65kO8a827eMOiN9hIBeaCaRQR7NtH8MortF5+OU1ed+0iHhqa3rIqgjswQH7jRkrbbqG0ZQtOTw/+kiW4AwNzkoAmcUyrUSeo12jV68RRyLINmy57HMYYs9BZQmtmtL+6n3v33cu9++9lX3UfjjjcvORmfvran+ZNy97Emu411oLVgTSOiU6dIjpyhODwYaLjJ/CXLqH7zjtn93WSBA1DNAgmy6RWIzx6jPDIYcKjRwn27yfYt5/Wyy9DGJ59Et8nv2EDpW3bKN9+G6VbLv2QWpokNCbGqVdHqVdHqVVHqY+OUquOUB8dpV4dSdeNVWlNTBC2mtOOL/X08skvfuWSxmiMMeZsltCaScdqx9IkNhudQBBuXnozH7n2I7xj9TsYLA7OdYjmPCVBQOuFF2g88wytvfsIDx8meOUg4eEjZ1+ydxwklyNpNIlHRohHR4gnJkjqdbReJ6mlN1MlzSYaRxDFaBSl82GExtlyGE4mr8TxqwcoAp43LZH1V6ygsHULXbdso7jlDeSvvhpx3dn5PJKYieFTjJ04wdipk9RHs8R0auKaTTpDf1vH9Sj19FDq6aWrp5dFq9dRKHeRK3ZR6OoiV+oiXypRKFdmJV5jjDGvj6jqrJ/05ptv1h07dsz6ec3sC+OQB155gK/v+TrfP/J9Ek24YfAG7lh7B+9e+26WdC2Z6xDNeQiPHqXx1FM0nnmGxtPP0HzhBTRLFt3eXvwVK/BXryK3ajXe0iX4y5fjL1+ONhrs/6kPTj+ZCE65nPYpndIPVQqFtG+p54LrIZ6XJpyei7geksul23M5JOcjfrv0SVotWi/spPHkk+lIBJ5H6Y1vpLRtG8WtWynecD1uz8WPhBEGLYYO7ufEvr2cPLCXkWNHGTtxnLGhkyTx9ETe9TxKPX1pktrbS6mnLyt7JxPXUk8fpd5eCl3l87oioaoXfOVCRJ5Q1Zsv6GBjjFngLKFdoIYaQ/zli3/J/3zxfzLcHGZJaQl3bbiLu666i9Xdq+c6PHMe6jt2pI9uffBBWi+9BIDk8xSuv57i1i0Ut2yhuGUr/pLFr3qexrPPomGI29eP29eL29190S2j8cQEjexmrvrjj9N4+mlQpbh1Kz3vfx/d73kPbrl8Ua+hqowcPcyhnT/k8K4XOL53D8NHDk22sOa7uuhbtoKewcX0LhqkZ6CfnsF+yn29lCpl8vkcogkkMSTRGVN89vo4gDjMpgCSdD4OmowcqlI9XqXRcLn+l3/zgt6PJbTGGHPhLKFdYJ4fep6v7voq9+y7hyiJuG3lbfzUpp/iLcvfguvMzuVdc2kEr7zCxAMPEuzfx/i3v0N04gQ4DsU33kjlH7yT0i23UNh0NeL7ly0mVSUeGUlv6tq3Lx2VYMcTNHfuTG/o8jyKmzfTdeutdP/4neTXr389J4dmFcaPwsQJqJ0kGD7E2IEXqB3dR2v4CG5UJ+9GFHylkHPxXXAlwRWFJELiAPQ1uj/Moohe+JW9eP7r/12yhNYYYy6c9aFdIJ47+Ry/99Tv8YOjP6DklfjA1R/gw9d+mDXd9tjP+UpVab7wArWHH6H20EPUH3883eC6lG68kd6f+gD9H/vYtJZOVU37sWb9WomirL9rjIYRRKe3aRRBHKNRDHG6nLRaaLOFtpokU8qkUSepVolHq8Sjo8TVrBwdJanVJl9f8nmKW7Yw+IlPULrlZopbtuCUSq/+RqMAhvfC4Sdg6EV0eB9UD8PJnUhYn7ZrDhhQoVvzJMUyeL1IrhfxKqjmUc0RJi6txAPxUHFR9dDERRMPTQSNXcBFcUCzEhdwULysdE+v0/b+XrbdR3GJE48ID3I5/HIJv6cLt7vIwAUks8YYYy6OtdBe4faM7OEPnv4DvnPwO/Tl+/j49R/n/Ve/n0rObl65nDSKiE4Nk4xVZ3gy1emnUcXVKsHBg0SHDxMcPDj56FbJ53EqFcT3QJw0UT0zac0S1EtCBKdUwSlXcLq6cbraZRm3fynekpV4i1fh9i9CxEUThWzSRCFulyFOfTdubSdu/SX8+pO40QGENG7FJ9IlxEkfoa4j1kFiHSChj1h7SbSHhAqQDRMnIDkXybk4eRfJu0jOQXwX8RzEE1SEOFHiRIkSJYqVMEqIwoQgSgiDhFYrphXEtJoxzWZMnGgaPhCjKFDszVMeKNA1WGJwTTfLNvXSu6Q0a6N9WAutMcZcOGuhvUIdGj/EHz39R9y99266/C5+aesv8dHrPkqX3zXXoV1x4okawZ7dtPbvJx4aIho6RTQ0RHRqaHI5Hh1NL6G/DuL7eEuW4C0axKlU0ocCZDdm4bdvykpLXBfERWPQWCASNFI0FDRUNISklZbEgqog4qbJsZMeiziI64PjI24OXH9yGddHzjHWcBJCcAiCQy3gEBAj1HGdMRxnHNcZIe/8kDzP4DKEQ5qkKzlC/zqC7g8T+KsYD/o5MVZiZOgYQdggcRK6ly9hcP06lm7aSGWwnxgIooRWmNAKEpqNkEYtolkLaU5kUy2kMdGcnE/imT93cYRCl0ehnKNY9ikMliiVffrLPoUun2LZp9ido2ewSGWggOvZWMvGGDNfWUJ7hTlZP8mfPPsn/NXuv8IVl5/Z/DN8/PqP01vonevQOp7GMa2XXkqn3btp7d5Da/fu9K79KaRYxBsYwBscxF+zhuIb34gUixCERNUq0bFjhEeOEB09OnmMu2gRheuuo3DD9ZRuvJHilq245el/fKgq8VhAdLxOeKJOdKJONNwkHm0RjbYgmuHxrq7g9uZwKzmcSg637KetmJ6D+A7iAbTQeAINJ0iicZKwjkYN4qhKErVI4gCJ69nUgCRAkhBJQpx4Ai+q4kZVvHgML67iJeMI05PIWPIM+1toOps56W3heLCUoYmA5vBRGmMHCBsPpeH6vRQqG8h1b8AvrGYk8Nj3ghI/e5hWbf9rJ6ddPoWyT+/iEoV1abJaKKfJaXtbezlX8BDHxlI2xpgrgXU5uEKMB+P86Q//lK/s/AphHPLeje/lF97wCzbs1kXSKKL2g0cZ+5u/YeKBB9KWVtLW09z69eQ3biS/YQP5qzfir1xJ0mikDy145RDhKwdpvbyX4OWXiavVyXP6y5eT37SJwvWbKWzeTHHzZrxFi06/ZqLEo63JpDU8npUn6mir3aUgwi0G+H0JXiXELYa4+Rau38Rxm4hTJw7GaY2NEo1X0cYY2hrHCSdwkxqe1vC1jk8Dkdf3f0CkPrH6JLgESYmWVmhpmRbdtKgQ0E1AhUC6aWqBZiwMBV20WqcIG0cIm0fRJB1STJw8hfIKuvo20jVwDYXyYlzXSRuOHUFcwXEEx3WyhHVKgjolSc0XOz85tS4Hxhhz4ayFtsONBWN87cWv8eXnv8xoa5Q71t7Bp278lA29dRFUlcbTTzP213czdv/9xKdO4ZTLlN/xo5Tf9jZy69aTNOpp6+wrh6jv2MHIn/850cmTk+cQNyG/tEx+7TIq795EfmkfuUVlvN4CzpKroTSABnWS6hHiR1+gMTqOjo2RjI+jtRqSNBBp4lEj5zVwvAZOoYHk60g8gcQtUGA4m2bgqoAWES0RapHE6SLwyiTeIhK/QuKV0VwZ8hUoVJBCD06xgluq4BaKeMUSXrGAVyoihTJOvozkijieg4YBwcQYzYlxGmNV6uNjNMbGqFdHGD1xnOrxY1SPv0BzYnwyHs/PsWjdepauv4OlV21kyVUb6V+2AnHsUr4xxpiLYy20HepY7Rh/vvPP+dpLX6MW1njL8rfw6Td+ms0Dm+c6tI6lScLE3/89Q3/yRZrPPYfkchS3vIHcuvVILpd2M9izh/jUqfYR5AeE8qY+isvy5LrqeM4YTjwO4cRZl93POw7JgVeEXBcUe6DYQyhlgqREMyrQaOWYaOSYqOUYm/AJkiKBlgi0iBS6KS9dRHnZIipL+hhY2U3fkhKl7tw5WzBVlVatRn2sSn1slEa1Sn2sSmN8jEa7HB+bsm6MKGjNeC7HdeletJiexUvpXbKMniVL6V2ylN6ly+lfvhLXs7+hz8VaaI0x5sLZt0sHSTTh0aOP8o093+Dv9v8divJja3+Mn938s1w7cO1ch9dR2uOnhkePEh46xPjfP0Bt+3bikRHwffB9NAiyBwPsQPJ58ps20f2jt1DuO0XBP4QbHkPGDwNHUAT11hDnryPUXqKomygYJGoUSaIuEiokWkYpku8+iNtXxBvoxRnsQXu7CbvKNJMctZrD2KmA6skG1ZN1qocbTIxmrbGZfMmjZ1GRnrWltFxUpHuwSM/iYpq4nnHXfRxFjB4/wsjRdBo9foSJ4VPpNDJMvVo96ylabblikWKlm2J3D129fQyuWkOxu4dipZtSVhYny24KpS5rcTXGGHPZWUI7z4VxyJMnnmT7oe18+8C3OVI7QiVX4YPXfJCPXPcRVpRXzHWI807SaBCdGiY+NUR0Khtx4NhxwmPHiI4dJTxylPDYMbTZPOtYt7+fwvXXk1u7Fn/pKrxl6/GcKt6JR3BPPII7/m1kPCKSlbTipTTi/4tWcj2RroSmB45AySMpesQVl6jPIXCEJtBIYDxWmq0BWkMhjf0hzfGAJDkJnJwWR7Hi07OoyIqr++hZXMwS1xI9i4sUumZ+cIImCaPHjnBi/z5OHtjLyQP7GDl6mNHjxyafngWQL3VRGRikq6+fgVVrske89qYJajaVenoolrvxcrnZ/NFcsWpRzKFWyFgUc0uPjSRijDGXmyW080icxBwYP8BLwy+xa3gXu0Z28fSJp6mFNXzHZ9vSbXzmps/wjtXvIO/m5zrcOaFJQmvPHlq7dhEcODhleKxTRMPDxENDJPX62QeK4A4O4vb2guviFEvEWUKb23A9pbfehb/6jSRj40h1P17tKQr7vkPuwIu4MgZAkKynIe/klNzFGOtooEzECWONiHqkNJKQlgLDwVkvnyu45Es+uZJHvujRPVhk8dpuipUcpUqOYrdPsZKjWM5RGSiQL776r2bQqHPq0CucPLgvTWD3pwls2Erfk+O69K9YxaI167n6TW+jb9lyepcup2/ZcoqV7lkbO7WTqCqxQqiaTomePZ8kBJqOVxuoEqkSJEo9TqhGMdUoZjSMGY0ihoKIw62Aw82Q0Si9WW/Q9/jhrdfP8Ts1xpiFx/rQzpHh5jB7Rvawe3Q3e0b38NLwS7w08hLNOE1IPPG4qvcqblh0A29b8TbetOxNlPzXeOLSFUiThPqOHdQfe5zGk0/SePbZyYcNIILb34/X3487OIA3MIg30I87MIjT3UPSgujoKcJXDhAefJnw0D6SRg1E8AcGKC7rp7QiT67SwpFxPOcIHicR0svv9XgpJ8LNjMZL+WHtnVSTXhxP0gS0kqPUnaNYOZ2I5rs88lnCmi/55EseuWI6Oa9xB34YtGhOjNMcH0/LiQkaE9l8bSJbl66vnjjO2Mnjk8fmiiUWr13PorXrWLxmPYvWrmdg5Wq8y/gI3NcSJko1ihmL0mRwLEsMx6KYZpIQKlkSmRApBEkymUxG50hAp24PzrHuzMR0Nv63KzhCj+cy4HusLORYUcixIu9Pzl9oC631oTXGmAtnCe0lFiYhe0f38uLIi+w8tZPdI7vZPbqb4ebpW9O7c91s6t/Epr5NXNN/DZv6N7G+Zz05d+Fe7q098gj1bKSBYN8+ECF/9dUUb7yBrmtWUFhSQIMJwsOHCfYfIjh8gmioSjhaJxqPiBp6ut+pKPmeiEJfQGlRQHl5C6+QXoIPtUgj6aaZdDEWL6EaLaNR2kjUuxFv1Va6BwuU+wpUBgpU+gvkS96MrZuqShyGBI06rXqNoNHIEtEpyegZienU+Sg8u1W3zXE9CuUyhXKFQrlCpX+AwdVrGVy1hsFVa+hZvOSc/VabccJ4HDMeJYxFMeNRzHgcZ/MJtTimlSitLJkM2vNZS2X6tKy0ZTM+YznJWjwT0iQzyhLOdgIaJWlraCNJqMczjJF7Dq5ATgRPBN8R/CmlJ0LOybaJpJeY4vRpaUQRThIjSYLE6eN8JY7Tx/1GEU6S4GiSlkmCJDFukqT7J/HkNld1ynyCkyheHJGPQwpRhJucfhpb+/9PJR1uLVcs8q/+xWfP+71OZQmtMcZcOOtyMItqYY0Xh19k1/CuyQR2z+gewmzMzYJbYEPvBm5beRsbejewoW8DG3s3MlgcXJCXgM+UNBpMPPQQ1b/6Oq0d3yFXiejdtITSu69Da+O0DrxM8/GnOPW3Hq2qh8ZTkjhRvKLgdXkUlpXweks4vRUY7KfevYjheplTo3nqYRetiQpRs5vCoiWUF/dS7nModUOhLAx0KUhI2GgQNA8SNOqc3Nfg0At1gnp9WsLaarSX023nurGqzfNzFCqVLDEt07t0+eR8oVyhOGXe7SpDqYuoUKLh+ozHCeNZC+dIHHMwypbHYsZGXmFiSsI6liWw41FMcB5/sAqQd9JEMSfO5LwvDq6AK4IDOCJnLfsOODhZ8snpRHNK0ll0HHp8l27PpdebUvouPZ5L0XEmk1ZPBGeG34UkSRgZGeHYsWMcO3aMo0ePcvz4ccbHx8/aV0TI5/Pk83ly+Ty5XA7Pz+E4TvpuRbInpKXj3CoeiE+iEMXZ43GThDDOHpObKJEkhKKMOUoUp9vCbL96EBNkD3zw44X7R6gxxswlS2gvkKqyb2wfT594Op1OPs2+6r7J7X35Pq7pv4aPXPsRNvVv4tr+a1ndvRrPsY+8TaOA8Knv0Nrxd8S7n0BPvYzjhFTUpbRBaI54jD41xInto6BpkiO5bryefvJrV+AuXYu7diPBkquoVRZxohUxdHyYkeMnqVdH0foE7K8hToNcvoHjjiISoklAVGsyNNQgevbcLaNTOa5HvlTC7erC6arglMrI0n7cUhelYhfFYhHyJZJCgThfIPLzRLls8nMEnk+AUI/T1sp2q2UjVupJnJZxQiNMqA8lhCfHgbOTtWkxARXPpew6dGdlv+eyKudTch1K4lByhKI4FASKOOSBAoIP5FTwEiWJlViz5C1O0pbWOCGM0uQtSpQ4mxJVEk2Ik7SFNknSY5Mkbb09Pa/EWQttS5VT7WOTM/ZRiOMknY9CnKiJEwc4YQ0/buJH9bRM0mHCFCFGqEmRGr3UWExdc9TUp6EercQhUiFpXHi9nInnCL7r4LuCm817juD6QqHoUvRdfM+hVJo/3TyMMWYhsezqPIVxyPOnnufJE0/y1PGnePrk04y20qdG9eR72LpoK3euu5Nr+6/lmv5rWFxavPBaXeMI6qegPgS1oaxMl5ORIyRDr8DoYWgOk9TrhGMxwVja2tqq+rSqXcSt062ubk8PTu8qcsvW4vSuRgdWMlYpcjwY5lD1MOMTQ+iuHejO7WhSA53hZjCgUKlQLPdTrHTjFYtQ7CLsqhCUyrQKJZqFIk2/QN3PU/d8aq5HTVwmcBhTGEugGseMRQnh1BbPRCFMkDBBggRqCYwrkihoCBqAjoMqouBpmoQ6pA89EFUcBUdBsn3yCRRU02MSQBVNr+9DnCWCUZImoXGaZA4nyqkZ3/n5St+ToMgMJWfNt/+ZLF7j7OmIvAqotueFZHLbmWcRoJxNl49I+sqOCCJp6TiCK5J+HpI9vUyERJUgBidRwkiptSJEhPB1dK0wxhgze84roRWRO4D/B3CB/6aqv3lJo5oHgjjguaHn2HFsB48ff5xnTjwzecPW2u613L7qdm5cfCNbF29lXfe6Ky95jUNojEJzFBoj6XxjBJqjJPVTaO0UWhuC6vE0eW2O4rZOoXFCHDgkgUPccohDIWq4NMc9gnGPsO4R1X006Jt8KfU8kt5BdNkyvPIKCt0b8HpXE3k5TjYPcqS5n1fCZxkeeYRwIkfg5Qj9AsGyboLSKlrFCs2uNDlt5Uq0/DxNL0/g+bQ8n8CB0BEiByJX0PYNWpr1s40SpKVQU4giJAiQVpwmqa0YaSVIECORko8Ssg6kacL5OiXZ9OqdE9oJ5mntJFKmrE+TL3CcqesVmZJsTk1OmVzOEuZ2mqnnTmCnHSdTXuMc+zuSXvJ35HRi6IrgOGnpCriO4DpZKULe9ygW8hQLOUqFPKVike5yF12lIjnPwXWy1lBHJkvfdaYte65M7ue57fXTj/POOMaRdsmV9/trjDELzGveFCYiLvAS8C7gEPA48CFVfeFcx3TiTWHVVpXnhp7juZPP8cTxJ3j6LTsOnwAADzVJREFU5NO04vQy56aeDdzUt5mbyhvZml9NfyIkQYiGCXGjQVyvE9caaL2JNpskQRMNQjSI0ChEkwjCGI0jNIohidEoQuNsPk5QjSBJ0CRJ12s6T5ycntck3UcVkiRtvcvK01OStuappvu1kzZN2k1kaFamLYfpMe0kZ/p82qJ2Ou9J59stbSRZGpPtnjW5zUhFSIo9hF39tCqD1PqWU128hhOLVnKyf4CxnMuIFzPsRgy7MaMujHsuLS9H7LgQKcQJkt6dBLFm8wlEenp9okicIDFIrDiJZjcJZQloku6jiZLE5wx3Ggel4CQUnJiCxBQkpCARBULy2VQgJEeIpzGOKE6WOLbLaQlndt6zli8wpxIRHMfBcRxc152c9zwP3/fPKs9c5/kenuvi+x6+7+F5Dr7v4bouvu/iuk5WpvOOk7ZUtqd2y6XjgGpaCWYuk7PXk9Xjc23XGCX9/VCN0SQrNT697jXLmOQ89jmf86hGaHJ63ZnnzeX6eetbtl/oz9FuCjPGmAt0Pi2024A9qroXQET+ArgLOGdCe6H+5OfeiiRp4iWSZk4yJeEW0gSkvW5yW3u5vV/7EOV0cjblHO19IkkIiWk56aXkXAT5EN4dKB8OlL4goRwkuPFzJNEP0VgYSYThWND4MrXoiE7exzLZ+tZezradXp5hYsq8k6VP2bI6EItDIg6xuMTiEjouofiE4tISn0B8AsejRY6W+LScHE3xicUlyY5NREhEiMWhlisykSsxnisxlu9iPFeiWigzVOohEff0+0qyzDhU5Oho1uKpZyXFHudXST2J8J0IXyJcJ8aXCE9iPKddxnhuhJftk3ND8k5A3g3IOVPm3YC8E5JzW+S9Fl1enbzbzPoFZMFJNrXn2z8n2j+jaRXwnOtl2vyZ58nWTd0v+1me2Wp6+kesk5fGp66bnJezuw6056M4nRpnP2uiY8VZFUv0dPeG5Bzrps9P2W9yPt0/ybpMtPebfi4HhwZvnas3bIwxC9j55AorgFemLB8CfuTMnUTk54GfB1i9evUFBfMjPxgm/+rXYs9LAtBuWJySd7YbG5lSThYC2fVQ1HGIPJeW4zLhewQFn5abTk03R8PNE7g+seMQuh6h6xFMln66znGJxCVyskk8IsclFJfYcbL1HjEOUXudeMRZchk5LjFpkgiSJo5INjnZlGayafxntzVOb/Gbmhy1d5hWnJFMnT5m+j5Tkq8z1kmWtDnZV327FIlYxBAOCS4RHjG+BOSdFnmnRcFpkneCLPnMkk4nLT0nypLNFjkvLdMktEXezRJPN5gW02QKp6fHHZ1eZv9qOn96m07b9/Q+Z6ybsmKm9efaN9GZ11/I6+mUfdvH6Rn76wwxTT3/tPOeY59X23a++72ec8wUazu5bJ8juwAxuW7q9vb+051ZC17dxfypWnHCizjaGGPMhTqfhHam/9/P/spQ/SLwRUi7HFxIMNXf/jziOHiOj+e5eL6P67i4nofjuYjr4zoOft4HzyPnevi5PJ7npzdvOCBkw/5MGf7n9CVdQcSZzPROvzGZlv1N67s4NSuc4ZqwzPjxyBnlmfMznPtCXZa+f5erNdrey+t8kcvwGth7McYYM++dT0J7CFg1ZXklcORSBHPbHf/4UpzWGGOMMcZcwWZ+vNB0jwMbRWSdiOSADwLfurRhGWOMMcYYc35es4VWVSMR+WfA/aTDdv1/qvr8JY/MGGOMMcaY83Be49Cq6j3APZc4FmOMMcYYY1638+lyYIwxxhhjzLxlCa0xxhhjjOloltAaY4wxxpiO9pqPvr2gk4qcBA7M+olfn0FgaI5jOB8W5+zqhDg7IUawOGfba8W5RlUXXa5gjDHmSnJJEtr5QER2dMJz0S3O2dUJcXZCjGBxzrZOidMYYzqRdTkwxhhjjDEdzRJaY4wxxhjT0a7khPaLcx3AebI4Z1cnxNkJMYLFOds6JU5jjOk4V2wfWmOMMcYYszBcyS20xhhjjDFmAbCE1hhjjDHGdDRLaA0AIiJzHYMx52L10xhjzKvp2IRWRPqnzM/bLzsR+aiI3DDXcZyHSntmnn+e8z7OTqmbYPVztnVC/TTGmCtRxyW0InKHiGwHfldE/jOAzsM720Rki4g8A7yfefw5i8i7ROR7wG+LyL+Geft5vkdEHgD+UER+BeZfnJ1SN8Hq52zrhPppjDFXsnn7RTaVpFwR+Xng14H/DPwqcJOIvGdOgzu3O4E/VNV/pKrPzHUwMxGRlaSf5xeAfwncJiJfyLbNi9YlEXFE5BPA54HfAv4QeLOIfHxuI0t1aN0Eq5+zYr7XT2OMWSjmfUIrIqKpGPgecKuqfhNoAieA50XEae87l3Geseoa4Fi27bNZ613P5Y9sujPivAZ4TlX/WlXHSb+MPysiG1VV50PSoKoJcBD4kKreo6qPAt8Geuc2ss6pm+d4faufs2A+109jjFlI5nVCKyL/DPh69oW7TFVfUNVIRN4I/G9gLfBvgP/SPmSO4/yMiKzIVh8BFovIN4CrgZ8Bviwii+YiRjjr8+wGXgJuFZE3Z7ssBp4nbWGcMyLyiyLy/imrvg3sFRE3W74WmNPLuZ1SN8Hq52zrhPppjDELzbxNaEXkvcDHgN8D3gD8iohszTaPAB9U1W3AvwZ+RkRuzlpL5jLOLcC/FZHVwDPAh4E9qvrJbL4buDU77rImODN8nl8AWsDvAL8gIg8DPwa8D9gqImsvdx9AEamIyB8D/w747yLiZZui7Gfb/vnmgUfPOPayfZ6dUjdniNXq58XF2BH10xhjFqJ5m9ACPwL8V1V9gLQf3T7gnwOo6j5VPZjN14C/JP0yng9xHgA+p6p/ARwFfBFZkn3hfR9YA3Nyw8hMn+d/UNUvAf8U+Kyqfpj08uljwNhljo/ssvJ3VXUpcDfpJWbIWjezy8w+sAp4UkRWisjPtbddxlA7pW6C1c9Z00H10xhjFpw5T2jPbLmYsryXtNUIVT0A/A1QEpGfOGP/XwU2Ay/Mkzi/BSwSkVuB3wZC4HMi8mvATwLfnUdx9onIe1U1VNXHsv3+I9AFjM9RnN/Kys8AH8r6S8ZTWsM2AQPAp7N9B2Y63yWOeV7VzZnM1/r5OuOcs/r5KnHO2/ppjDEL2ZwntIA/dWFKS8b/Auoicle2fBR4ELgOJofJ+R5p/7+fVNVj8yjOvwfeoqpPAb8B7AJKwDuzdfMlzgdJv4ARkY0i8k3getLWsHAu4lTVmog42c/zj4D/lq2Psl2vIq0D64AfV9UvTD1+tk3pFzmf6+brjXUu6+fr/Uznqn7OGOd8q5/GGGNSc5bQisibReRrwG+JyHXtL48pLR0jwDeAT4qIqGoVKAPFbPtO4BOq+k9U9eg8i7Mrm1DVYVX9Y1X9nKoemmdxloFCtv0Y8Euq+hOqenwO4nQlGxGgTVV/GViXHbNURK4h7ft5q6p+8lL93LPX+3wWQzxlfbuVbV7UzYuIda7q54V8pnNRP2eMc77UT2OMMWebk4RWRBYDfwDcA5wi7X/4cZjW0lEE7idtqfmiiCwHbgSCbL/9qvrD+R7n5XCRcYbZfuOXMqE5jzhjVU1EpAxMHT7qC8DDwHZgafZzf4xLREQ+Bvx34FdF5APZOi+Lsd3KNud1c7ZivRwuMs7LWT9fNc75UD+NMcbMbK5aaLcAL6nqn5IORP914K6shQMR+b9JW2uWkA6ofhz4KjAK/KbFecXG+R9JLz1fny2/B/gU6dBXm1X1wcsQ42HgHcAdpH1M0XQ4rnZL8q8zPz7LTor1Sonz3zP39dMYY8wM5HJ07RKRf0Tar+wZVf0bSce6fAS4Q1VfFpF+0i+GEvAfSPul/ZqqvjzlHCVVrVucCydOEbkOGFfVVy5DjM+q6t1Z8uKoaihpP9gHVPXXsn0XA7/LHHyWnRTrQonzctRPY4wx50lVL9kELCIdZH478AnSpyf9ZLbtN4HfzeYd0vEv/1+gf8rxzqWMz+Kct3G6cxTje7NtuazcDFSBJTMcf1k+y06KdQHFecnrp0022WSTTa9vutRdDq4CHlbVt6vqH5NeTvwX2bb/AVwjIu/UdAzMU6SXHFuQPiNdL99g9Bbn/IoznumklyHGfwWgqoGIuKr6PPA1ssve2SVmsn0u54MSOiXWhRLn5aifxhhjXodZT2hF5J+IyO0iUgKeAP4sW++Sjsf5fLbrc8BfAL8rIhuAf0A6QLkPl/7LzeJceHGeR4zPZctC9uhSVf054GMiMgJsOfNO94Ueq8VpjDFmPvBee5fXln0JLCW9kSMBXiZ9us8/V9XjWYtHLCLXkt0hnCUuX876pv0ycA3wT1V1dDZisjgtzguIsS+LUQEVkTWkj159iHTIqEs9qkZHxGpxGmOMmXcuts8CWX8y0kHkv5LNe8DvA18/Y58/Az6QzS+dco7cpe5bYXEuvDgvIsZFWdkLbLvUn2UnxWpx2mSTTTbZNB+nC26hlXR8xs8DrojcQ/q8+hgmh7r5NHBERG5T1fbjNCeAfZIOXP4+EblDVQ+p6iUbE9PiXHhxzlKMd6rqQeCSjinaKbFanMYYY+azC+oTJiK3kfZD6wP2kD5fPQR+VES2weSlu88Dv54d45IOov+/SL9kflQv/UDpFucCi3MWYzx4qWLstFgtTmOMMfPdhbbQJsBvq+r/DyAiNwLrgH8H/FfgpuwGim+QfpmsyV7rj4E/U9UnLzpyi9Pi7NwYOy1Wi9MYY8y8dqF37T4B/GXWugHpox9Xq+qXSS/1fUrTm39WAomqHlDVl1X1M5f5S8PiXHhxdkKMnRarxWmMMWZeu6CEVlXrqtrS0+Mxvgs4mc3/LHCtiNxNOuboEzB5x/FlZXEuvDg7Ica2TonV4jTGGDPfXdSwXVlLiJIOjP+tbPU48G9Jn3e+T1UPw2TftTlhcc6uToizE2Js65RYLU5jjDHz1cUOFJ6QDog/BLwha/34NdLLed9rf2nMAxbn7OqEODshxrZOidXiNMYYMy/JxTZQiMibgEey6U9V9UuzEdhsszhnVyfE2QkxtnVKrBanMcaY+Wg2EtqVwEeB/6KqrVmJ6hKwOGdXJ8TZCTG2dUqsFqcxxpj56KITWmOMMcYYY+bSxfahNcYYY4wxZk5ZQmuMMcYYYzqaJbTGGGOMMaajWUJrjDHGGGM6miW0xhhjjDGmo1lCa4wxxhhjOpoltMYYY4wxpqP9H00mqO2M79faAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "data_to_plot = data.set_index(\"Country/Region\").transpose().copy()\n", "data_to_plot.plot()\n", "plt.legend(loc=\"right\", bbox_to_anchor=(2.0, 0.5), ncol=2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "... et à échelle logarithmique." ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsAAAAD7CAYAAABkDSKoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3XmUXFd96PvvPmPNPVSP6pbUGrolS7JlWbI8CwOWsS+2cRhiMCFACCYvl5uQBGfdlXcTAgkrBMhAHnmJeWDAeYC52ExmsjHwbINHyUaWNc9Sz0NVd9d4xv3+ONWt1mRrsluW9mets/apXedU7epudf/0O7+zt5BSoiiKoiiKoigXCm22B6AoiqIoiqIoryUVACuKoiiKoigXFBUAK4qiKIqiKBcUFQAriqIoiqIoFxQVACuKoiiKoigXFBUAK4qiKIqiKBcUFQAriqIoiqIoFxQVACuKoiiKoigXFONsv6AQYh7wRWAU2Cml/MzZfg9FURRFURRFOV0nlQEWQtwrhBgWQrx0VP9NQogdQojdQoj/WevuAX4spfwDYNlZHq+iKIqiKIqinBFxMkshCyHWAUXgPinlilqfDuwE1gO9wHPAe4Ah4AFAAv8lpfzqK71+U1OT7OrqOs2PoCiKcmHauHHjqJSyebbHoSiK8npzUiUQUsrHhRBdR3WvBXZLKfcCCCHuB94GeMAnauc8ALxiANzV1cWGDRtOZdyKoigXPCHEgdkeg6IoyuvRmdwE1wEcmvG4t9b3M+BPhBD/Cew/0clCiLuEEBuEEBtGRkbOYBiKoiiKoiiKcvLO5CY4cZw+KaV8CXjnK50spfySEGIAuNWyrNVnMA5FURRFURRFOWlnkgHuBebOeNwJ9J/ZcBRFURRFURTl1XUmAfBzQLcQYoEQwgLeDfzw7AxLURRFURRFUV4dJzsN2reAp4AlQoheIcSHpJQ+8FHgYWAb8L+llFtO5c2llA9JKe+qq6s71XEriqIoiqIoymk52Vkg3nOC/p8APzndNxdC3Arcunjx4tN9CUVRFEVRFEU5JWd9JbhTIaV8CHhozZo1H57NcSiKopwpP/RxAoeqX6UaVHF8J2oDh4pfwfGd6PmgStWvTh97/dzrWdK4ZLaHryiKckGZ1QBYZYAVRTkXVP0q+WqeXDVHrpoj7+QpukVKXomSV6LoFSl75SPaqecqfoWqX8WX/mm9d0uiRQXAiqIor7GTWgnu1bZmzRqpFsJQFOVs8QJvOpiduU0FuTOD3Vw1R9kvn/C1DM0gZaZImsnjbgkjga3bxIwYMT2GbdjE9BgxIxb1T/VNPX/UsaZmnvbnFEJslFKuOe0XUBRFuUCpDLCiKK+aUIYEMojaMJh+LKU83H9UO7UFMqDslSl5JQpegZIbZWILbiHqcwsUvWK01bK1U31O4Bx3PIZm0Gg30hhvpMFuYG5mLg12A9l4lsZY1Df1XMpKkTJTWLr1Gn/VFEVRlFebygArynkmlCFVv0rZL1P2ysdtq36Vil+Zvnxf9svT+27o4oUeXuDhBtG+G7p4gYcXelGgGtYCWeQRj48OaF8NAkHSTE4HqCkzdXh/Rl9jvPGIYLcx3kjaTCPE8dbweX1SGWBFUZTTM6sZYEW50EkpKXklJt1Jyl4UhB4RsPplKl5len/qmIpfOWFwW/ErpzSGmB4jbsSjy/K1y/amZmJqJrZhk9bSmJqJpVsYmoEudHRNRyDQhY4mNHSt1ooTtEc9P7UdfdzR/XEjTtpKHxHcJswEmjiTKcwVRVGUC50qgVCUV4mUktHKKAcmD3CocIjB0iCD5UGGSkOMVkbJV/PknTxe6J3U61maRcJMkDAS023cjFNv1xM34tP1qDOPiRvx6cdJM0nciB+xxYyYCiYVRVGUC44qgVCUs6Dsldme286O/A525HawPbedvRN7j8jGCgTZeJbWRCtN8SYaYg3RZjeQsTJRAHtU0DozkDU0dcFGOZIqgVAURTk96i+qopyGglvgheEX2DC4gQ1DG9g6tnW65rXermdJ4xLe0f0O5mXmMT89n7npubQl2zD107/jX1EURVGUs0MFwIryCqSU7JvYx5axLWwd28rGoY3syO8glCGGZnBx08X8wYo/YGXzSpY2LqUl0XJe3WilKIqiKOcbVQOsKMfhBA7PDjzLY72P8UTvE/SX+gGwdZtLmi/hI5d8hDWta7ik+RJiRmyWR6soiqIoyqlQNcCKUjNUGuLxvsd5/NDjPDP4DBW/QtyIc0X7FazrXMdlLZcxPzNf1eIq5wxVA6woinJ61F9y5YIVypCXRl/isd7HeLz3cbbntgPQkerg9sW3s65zHZe3XY6t27M8UkVRFEVRzqazHgALIa4D3lt77WVSyqvP9nsoyukqukWe7H+Sx3of49d9vyZXzaEJjUubL+XPVv8Z6zrWsah+karhVRRFUZTz2EkFwEKIe4FbgGEp5YoZ/TcBXwB04MtSys9IKZ8AnhBC3A489yqMWVFOyf6J/Tze+ziP9z7OxqGN+NInY2W4tuNa1nWu49qOa6mz62Z7mIqiKIqivEZONgP8NeCLwH1THUIIHfh3YD3QCzwnhPihlHJr7ZA7gT88e0NVlJPjBR4bhzdOB70HJg8AsLh+Mb+//PdZ17mOlc0rVS2voiiKolygTioCkFI+LoToOqp7LbBbSrkXQAhxP/A2YKsQYh4wIaWcPItjVZTjklIyXB7m6YGneaz3MZ7sf5KSV8LSLC5vv5z3XvRe1nWuoyPVMdtDVS5goesS5HL4Y2OH27EcyeuuJdbTM9vDUxRFuaCcSQqsAzg043EvcEVt/0PAV1/uZCHEXcBdAPPmzTuDYSgXklCG9BZ62ZbbxvbcdraNbWNbbhu5ag6AlngLN3XdxBs638AV7VeQMBOzPGLlfCd9H38shz88hDc4iD84hD80iDc4hD84iDcyTDCWIywWj3t+WzqlAmBFUZTX2JkEwMe7S0gCSCk/8UonSym/JIQYAG61LGv1GYxDOQ8FYcBQeYiDhYMcKhxi7/je6aC35JUAMITBovpFXNdxHRdlL2JVyyouarxI3cCmnBWh6xKMjOCPjODVWn9kBH94uLY/ij8yQjA2BkdNJylME6O1FaOtlfjy5ejZJoxsI3pjI0Y2i97QGD3OZtGSyVn6hIqiKBeuMwmAe4G5Mx53Av1nNhzlQuIFHr3FXg4VDk1vByejgLev2IcXetPHxvQYPY093LLwFi5qvIil2aV013dj6dYsfgLl9UhKSZDPR9nZ2hZlbYcOB7kjIwTj48eerGm1IDYKZq2uLozGBvT6evT6erS6eoz6OkQiAX6A9H2k70EQID0f6fsEhQLB+DjOzp1I3yd51ZXYixa99l8IRVGUC9iZBMDPAd1CiAVAH/BuohvfTpqU8iHgoTVr1nz4DMahnKOklOSqOXqLvfQX++kr9tFX7ONQ4RC9hV4GSgOEMpw+PmEkmJueS3dDN2+a9ybmpucyLz2Puem5tCRa0DV9Fj+Nci6TUhKWSgS5HO7Bg7gHD+L190eB7egIQS5PMDFBWCwSVioQhse+iK6DpsHUFQTTjI4LgsPHhCHB6CjB6OhZG3v7pz+tAmBFUZTX2MlOg/Yt4HqgSQjRC3xCSvkVIcRHgYeJpkG7V0q55VTeXC2FfH6o+BX2Texjz/ge9k7snc7iHiwcnC5XmFJv1zM3PZeVzSu5ddGt00FuZ7qTbCyryhfOAVJKZKVCMD5OUCgSlkqEpam2hPQ8MjffjF535NRx0vMIHRcCHxmG4NfaIEAGQdSGIYQhMghBhlF/KA/vSzn9vPQ9wmKJsFggLBbxJybxh4bwhgYJxnJHBrSed4JPM4OuIywLva4OLZFAJJNoyQRaMoWWTKJZFsI0D2+GgTANhGlG5xpRK3UNX0CIIAB8IQlkiC8hQBKEIX4Y4IchQRhE+36AH/gEgY/v+/i+h+f5+L6LNbed+lfnW6koiqKcwMnOAvGeE/T/BPjJWR2Rck6bcCb47fBv2TSyiR35HewZ30N/sR8ZlX9jCIPOdCed6U5WtaxiXmYenalOOlIdzEnNUTelnQOCYgl33z7cAweim7UGBvEGB2rZ0lGCfB7pOC/7GoN//2mM5mZktUroONHxMzOlrxFhmmiJBHomg97QgJHNYrS0YLa3Y3R2YHd1YXZ0oGcyCP3IKwhupcz40CATw4NUCpNUCgWqxQKVwmStHcMpFfEcB991otZxkPI42eNXYJgWhm1jWBambWNY0SaMGIFUVzYURVFea0IedfPGbFizZo3csGHDbA9DOY7+Yj8bhzby/PDzvDD0Ansm9gCgC50FdQvoru9mYf1CFtUvYlHdIuZm5mJq5iyPWpFS4vf34+zZg3vwEN6hQ7j791PZtOmY2lYtmcRob8Nsa8doakJvbERviGpa9XQmyo6mkmjJJHoySWXzSxQeeQRh24iYjWbZiFgMLWYjLBth6KAbCF0DTQddA0SU5XVcpFMlLFcIq9WobCGfwx8di4Lv0VHC0oyrBkJgtLVhL1yIvXgxdvfiqO62rQ2jpQXNqtWABz5UclAeA6cAbhHpFPEKY1RG+6nmh3Anx3ALedzSJH65gPSq6CJEFxIhJAKJrgl008DUDXRDx9A0NE2giagyQhOgRcNCEJ0TnQuCMGplSJQfjjLbyBDCIAqcw1qWWwa1Y0KGFn2C9t//k9P6PgshNkop15zWyYqiKBewWV0JQJVAnJsOFQ7xyP5HeHj/w2zLbQMgbaZZ2bKSty58K5e2XMqKphXEjfgsj/TCIF2XsFwmrFSQnod03aj1PELHIRgbwz14CLf3EH5fP15tCi45c9otTYuypC0t2EuWoGXS6Kl0FMRqWnSzVuCD70dlBn190WPPRwbRzVz4fu24ILqxyw+icfjRY+kH0TFTx0+14Stkhg0Do6Udo6Wd2NJVGK1zMJrbMNo6Mdrmohk6lAcRpT5EZRht+4OIF4YInDyyvB/hjqH5E8e8rACs2jZVrCGljhQGMmkghQWYSEyQOqAhpSAKcTUINWSoTT+WcsZ+FAYj0Wth8Mznaq8hj3o8fV7tXKEjNY1409LT+8FQFEVRTpvKACvA8YPeFdkV3Nh1I1fPuZruhm40oc3yKF/fpJSEExN4Q9GMA97gIP7QcFTTmh8nLJcIS+WoLZdr++WTq289FZoGmobQjai2VdNB6NG+0EAzQGhR34xWoAMChI6UAiH0KMM79fzUvjbzsXa4T9MRZgJhRlljzbKiutt4DE346CKPLkbRyaGLHLoYQxc5DNGLJsozvo4aIXWEMoMv2wlklkCm8WQaP0wSEEeKOKEWR+oJpJ5CGmnQE0jNIKzV6oYhBFIShOAHkiCU+EGIH0g8L8T3Q4IwOlZKCIjmeQxl1MqjHhuWhhEzMOM6VsIkljaJZ2ziaYtYxqSuPUl9exIzbiL0s1PrrjLAiqIop0dlgC9gXuDxi4O/4P4d97NxaCMAFzddzF+s/gvWd61XK6edAffgQSqbNlHZvBlnx87pGttjamuFQM9m0evqotIBBAgNzbajqEqIaAEF3z/iNC2RwJgzB7OzE6uzE2v+fMyuLrR4A2ExJCgHyKokrEJYkYQVGfUVPaQ7VcPqIaiiUUWIKprhRJvuIHQHoVVAVgAXKT2kdEFG+wIXZBnwQPoI6SKkh8BDk27UHm8TR36OE3HCNOWwnkqQZtK7hFGngQlHUHI9co6OL0MCGRAKA6ml0fQWNL0VYbQgtMYokD9GZXrPsDRMW8eMGZi2jpUwao/1qLUNEkc8jjardvz0NvW8pSM0dQOnoijK64XKAF+ABkuDfGfnd3hw54OMVcfoTHXyzp53cvOCm5mTmjPbw3tdCl2X8rPPUXzsMYqPP4Z34CAAIhYjtmQJRksLwraiTGgYEhQLBPlx/HyOYHAI6bogJLoZolkSszGF1daA2ZzBaGyAtuWYzY3oDWk0Kw5OQDBeJBwvEE4WCQuTyHIBTZYRVKLAVlTR9CpCd9A0ByEqaLKKkGUIygh5csHolEAaBJgE0iYQJiEmoTCRwkIKg1BYSN0iFDZSswiFGfUJs7ZvEoQCX4IfSvxA4ochfhDi+QElVyNfDhkvVqlUCkfcbKbpFom6VpINc0g2zCHV2E4620Es3YBhaAhNoOkCTY9qdoUmMCwNKxYFszMDVsPS0c6TYFVlgBVFUU7PrGaAlddOKEOe7n+a+3fcz2O9jyGl5A2db+COpXdw9ZyrVXnDafJHR8l/81vkv/UtgnweYVlYixaSetMbAYE3MoLb20tl0yYAdCvEbvCId1jE2mzsbgfd9NBECS2szHjl4cO7HnDou0cuPH48tckEpJEEK0mgJwi0OIFIUAkbqDitVAObctmg6tl4MoYnY/gijpnKoCfSGKkMRiqDmanDrqvHrq8jXp8i0Zginrax9OjnxHOqVCYncQqTlCcnZsycUKBanKRaLE73Rf3juJXyCYeu6TrxTB11za3M626hrqWVTHMLdc1t1LW2UdfcgtDUz6iiKIpydsxqBnhGCcSHd+3aNWvjOJ+NVcb40d4f8Z2d3+HA5AEaY428vfvtvLPnnarE4RRN33DW20vpqacoPvYYzvYd0WIJhnFMmYLe3IS9eBHpTp9EeghTjKCVDyJkdFOY1GIEyR5CrYkgbCDw6wgcm8CJEcokkgShTKLpRcxUCS2Tirb6NH4iiWPaVEKTUkmjVISJCYORwYCJkSq+e+RUXUIT1LfESdbb1LcmaOpMkW6MkWqIUdcaR9cPB5dSSsoT4+T6e8kP9JEf6GdyZJhiPkdpPEdpPI9/omnShCCWSBJLp4ml0sRTaWLpDLFUingqc0R/vNYfS2Ww4nE1B/RpUBlgRVGU06NKIM5DJa/Ek/1P8sPdP+TXfb/Glz6rWlZxx5I7WD9/vVo++Dik7+OP5aJ5cfsH8AYG8AcHpve9gQGCsbFjzhO2jd3dTWzZstrsBV1oySxGYRPGyBOY479GC0YISeCGS/HDOVTCK/HCBYTURSW/CRPiBtLW8S0NT9NwBFQRlEJJ0Q1wKgHVkke17FMtesjwyH+3mi5I1ts0tCVoaE2SrLepa4mTzsawYgbJOgvDOna+WSklE0OD9O/aTv/O7Qzt2Umuv++IbK1ummSaWkg1Zkk1NJKoqyeeqSORqSOezhDP1BFPRwGtnUyiqRX7TooThuyrOLRYJo3m6V2MUwGwoijK6VElEOcBJ3DYNLyJZwaf4dmBZ3lp9CV86dMcb+Z9y97HbYtuY3HDhX2jYVip4OzcGS3+MDyMNzSMPzg4PSODPzJyzPK4IpHAbG9Hr6/HaMpGq6BVqxjNLaTW30r8ipuRVRt/pEIwPIze//8RH7wfU9uDLiYIZRxHX0nJ/n3ysbfgCJNqKCl5IYVqwGTJY6LoE+aPP8uDGdOJJUzspEEsadI4J4mdNImnTFINMVL1NsnaFk+ZJ3UTludUGdyzi/6d2xnYtZ2BXTsoT4zX3i9O26Julq17Ew3tHTTO6aChvYNMU7MqPzgJUkpcKXFDSTUMqQQhI67PsOsx5PoMOR4jrk+/47Kn7HCo6hICX1g6jzvaG2d7+IqiKBcUlQF+HfJDny1jW3h24FmeGXiGF4ZfwA1dNKGxIruCte1ruaL9Cta0rsHQLtz/47gHDlB49FFKTz5F6emnj1ipTEulMFpbMVtbo0UVWlswW1owWtsw57Qjg4DSUxsp/PxRqpueA03DWrAGc/61mJkkuphAF2PY5k5s/UV02Y8mHSqinXy4gG2Fa9hZvpyQw4uCGLZOIm0ST1vE01a0n5nat4hPPU5Z2EnjiLKEUyGlxCmVKOZGKeTGKIyNMnJgHwO7tjO8f2+0HDHQ0D6H9u6lzOlZSnv3UprmzX9dZm+llPgS3DCkGkpcGeLUglA3lDihxAmjPjc88XNOGOJIeYLjwlpge9Rz8sjnXo4AmiyDNstkQcJmUdxmccLmyvoUHbHTuyqjMsCKoiinR9UAvw6EMmRnfifPDDzDs4PPsnFoIyUvWi2rp6GHK9qv4Iq2K7is9TLSVnqWRzu7gslJxr/zABM//hHO1mg+Y3PePDJvuZH4ypVYCxditLSgp1LT54RhSPXF3ZR+s4HKhqeobvstwfgoAHrCJrUgTv0iFytdRZc5RHi4PCDAYMC5iImgjW2VN+M0XkrjnBR1TXEyzXHqmuNkmmIkMjamfebBpQxDypMTFGuBbSE3SjE3RnEsCnaLuTEKudFjanQN26Z9UQ9zllxEe/dS2ruXkMjUneBdZk8gJcOuR2/Vo6/q0ud4DDkeg65H3vMp+iHFIKAUhJSDw4HrqS9OfCxDgK1p2JqYbi2hEdMEliawhKj1HW4tTWALgSk4orUExDSNrKHRZOo0mzoNuoZRq3Oe+Xs3kUhg2/ZpjVkFwIqiKKdHZYDPUaOVUZ7ofYIn+5/k6YGnGXeiy9RdmS7Wtq1lbftaLm+7nMaYunQKUYlD4dFHGfvyV3B27CB2ySVkbr6ZzI3rMTtqN/tV8sjh7Xhbnqby4ktUth+kemAYZ9QlrFUhCF2SaHFItTkk2x3MOg2ZaqegdVJxE0xW4hwan08pzOIbaUTbJXStbKV5fpqWeWnsxOkvAx34PqXxHIWxsSh7OzZaC2ijALeYH6OYyxEGR80JrOskGxpJNzaRasySzmZJTe03NpHORvuafnoBeCUIGXI9Bp1oG/V8KkE4HYSWg5BSEFANJZ6U+FOtPPbxVF8gwZeSQEq8MMrgBrXnjv6NlNA12mt1silDI6lrpHSduB4Fp9PBaq2NaVoUmGoCWxwZ0E4dp4cBpfE8hVyOUj5PaWIcp1LB8zxc18V13en9qfbV+l15221v47LLVp3WuSoAVhRFOT0X7vXxc9BoZZSH9z/MI/sf4YXhF5BImuPNrOtcx5XtV3J52+W0Jdtme5jnHBmG9P73j1J68kmEbdP5n/9B+tqrYOfDsOdbBD/6FaXf7qS4z6U4YBM4USAoNIlVZ5BcVE9sfivxpfOJX7IMLZPFS3exdYvNnq0OA7snEUA6G6NxToqOa+tZvSJLXUvipOeT9ZxqLWs7Nl2aEAW5Uda2mBulNDEORwVZhmVPB7QdS5eTbsySyh4Z3CYydadVo+uHkhHPY2A6y+pPB7lDjseAG7Xj/vGXMtaIgtOkrpHQNWKahqkJDCEwRdTGNQ3DPPzYEGBohx/rtT59xjnttklHzKIjZtJhW6SNs5A5l5LBwUG2bdvGvn376OvrI5xR851KpUgkEpimiWVZxONxLMvCsqzpPl3X0TQNIcQx28x+4JgWoOwGjFc8BsarDE5WKTo+e0dLrPaSXHbGn1BRFEU5FWc9ABbREkx/B2SADVLKr5/t9zif+KHPLw7+gu/u+i5PDzxNKEMW1y/mj1b+EW+e92Z6GnrU9FAvw8/nGfzE31J68klS111B253XYI7eh/zs+ygfrJLfnaTQFwdpIKw4Vutc7JZLiK2+mvSb1xJf1owwo+BRhpJ9L46y7/kR9r04ilOapGV+mjX/rYtl18wh3Rg75v2PV287FdBOlSQUx0aplorHnBtLpqKZFbJNtHQtiPYbm6aD3HRjE3YyeVrffyklOS/gUNU9YuurugzWsrkjrn9MtlUX0GqZtFomC+M2V9enaLNM2uxoa7UNmkyTZC37eq7/bI6Pj7Np0yY2b97M6OgoQgjmzJnDVVddRXt7O83NzTQ0NGBZJ1+DG4aSihdQdgMqbkDZ8w/vuwFl12dwosqBXJnBiSpVL2DbwCT58uGbHS1doymVYsXcDtpam16Nj64cx8aNG1sMw/gysILo/3CKopy/QuAl3/f/cPXq1cNHP3lSAbAQ4l7gFmBYSrliRv9NwBeIpuD/spTyM8DbgA4gB/Se+fjPT+PVcR7Y9QD3b7+fofIQ7cl2PrTiQ9yy8BYW1i+c7eG9LhSfeIKBv/orTG2IhR9sw3J/jPzF98kfTJLf34IzXEWvqyO+eh0ivgxryXLq3tJFfGl2OugFGB8qs2vDEDufHWJ8qIydNOjoaeCyt8ynsc1iYmSI4X0vsvu54ZOqt0UIknX1pBqz1LW00XnRclIN2VopwlT2NosZOzagPhlSSib8IMrczihNGHCi2tmpYLdy1KwWGUOjw7Zos01WpOK01gLbdtuk1TZpt0yyloF+jge1JxKEkqoXUHY8du3axbaXXqR3/x6klDS0zKF7zToy7QsJdZOcF9A/GeLkilS9SSreVAB7VDDrBVSO6qt4x8+IH60xadGWiZGwdK5alOWyeQ00p22WtmVY1JzEOM2bHJXTZxjGl9va2i5qbm7Oa5o2+/V/iqK8asIwFCMjI8sGBwe/DNx29PMnVQMshFgHFIH7pgJgIYQO7ATWEwW6zwHvqb1JXkp5jxDiASnlO1/p9S+kGuCqX+VrW77GvS/dS8WvcEXbFdx50Z28ofMN6K/DO/BngwwCxv7vz8Ov/436RS6G5eKVNfKFq8g/N0RYLGMvWULy+t/BG+1CGCZ1N3WRXNuO0KPgrlJw6d81zqZfHmJg9wRSOjS2FmloKxP6w0wMDTIxMjQ9RdgUTddr8+FOZWmztbrbpunsbbKhAd049VpgKSV5P2DY9Rhxoumzhl1/OmM7dTPYkONROc6MAw2GTmfMYm5tm96PW3TaJnWnOdfs8XhBSNkNooCzFhxWPJ+KG1J2fbzaMsdBGNUAT7dBGC2DPNUXSIIwPPKYcGqJ5CigrXohjh+1VT/AmdFO9Xu+R5OcZJ6WZ56eJy58KtJgV9DEDr+FEi9/k5kuwDZ1YqZGzNCxDG16s3UdyxAYuoap11pNw9AFunZ404haIcA2dHRNEIQhXnD4s/lB9DXxQjn93Aev7uLqxaeXBVY1wKdm06ZNey+++GIV/CrKBSIMQ7F58+aGlStXHpNZPKm/iFLKx4UQXUd1rwV2Syn3Aggh7ifK/h4C3NoxJ5cquQBIKfn5gZ/zTxv+if5SP+vnr+ePVv4RPQ09sz201w/fJXz6SwQP/xNNeg4uAr/9ega3N5D/+UYID5Bev566d7yb6p4Uzo489sI6Gt7Vg9EQZVvHh8o89f097H1hmNAfRdf3YJn9FEYPMjAeMrADUtkmGts7WLR6LXUtbWRaWqkN7O7iAAAgAElEQVRrjpbmTdbVn1K9bcEPGHQ8xjyfUddnzKttJ9j3j/NnOa6J6RKEVekEbU2HSxKmyhNaLZPYKWQUy67PWNFlrOSSKzmMlz0mKt50O3OLAlx/OvtZcQP8V5jy61SZtWDS0LRaGz2O1YJSS4+CUVMX2LpBnWZC4ENlgrAyiRsW8UJBniSjehvYKaRh4wWStB9iBwGuL3H9EDc4ds6IQFIrXwiI1p4+M0KAOfVZ9OjzGLpWa6PPOfUZi47/yi+onC2aCn4V5cJR+/d+3D+OZ5IS6iAKdqf0AlcQlUT8X0KI64DHT3SyEOIu4C6AefPmncEwzn0lr8QnnvwED+9/mJ6GHu699l4ub7t8tod17nMKMLoLtv8IuesRxOBmNMAZN3Hm34zDIka/8ihhcTf173gH2bs+jJR1jH19C6EzQd0tC0ldPYcwkLzw84O89Hgf44O9yGAnhrYHtzCMEBr13T0sW3cHHUuX0dK18JSnB6sGIdtKVbYUKxyoOByouhyoOBysuORPcANZxtDImgZZ02Be3GJVJkHWNGixTZotg2bTpMU2aDYNMoZ+0rW2Zdenf7zKwESF/vEK/eNVBieqjBQdxooOYyWXsaL7spfx07ZBXcKkPmFSFzdpTFokLJ24qRMz9en9uBVtM5+zdA1T19A0ovpiCaGUIAUhEhlKQsDxo2C6WssYFxyfYtWn5PhMVv0jAvB82WO87OIFJ4pbMkAGUxekbYN0zCRpGaRsg4Stk7QMErVxxszDW9zUojEbWi2rGwWkpn44cJ3erwXnU4H6zGOMWjZ46hhDEyd9c6SiKIoyO84kAD7eb3gppSwDH3qlk6WUXxJCDAC3Wpa1+gzGcU7bO7GXP/vVn7F/cj9/etmf8oHlH7igF6d4WWEI+X1w8Cl46UHY9ziEPlLouG4jxd1J/PoVaBffxsRDD+Ed+C7Ja6+l5S/vJtbTQ2V7jtw3NqNnLJo/spwwbbH1N/1s/Okm8n2b0LTduOUhEIK2i1aw5Op30n3FNacU8DphyLZilRcLZTYVyrxYqLCtVJnO3JpC0BkzmR+zWdmSYH7cpt02a8GuTpNl0mjqWLUssuMHjJc9xoouRcfHrYQ4BZdxv8qgF1B0/OmsbKHqUazOyMR6UQlCyQkouT5lx8c9TpBoGdp0YGrqgoaESbNuR5ftBWi1y/dTMXYoo0v2JSdgsuIThHK6b6qN9qO620BKwtol/jOhATFdYuuSmAixNR9L+mQDh1ZcLMPHJsAWPs31Kbrnd3DJksV0L+gkHbOwDFVTq5z7dF1f3d3dXZFSouu6/MIXvnBw/fr1pZc7J5FIrCqXyy+83DF33HHH/L/8y78cWr16dfXsjliZDSfzPVfOzJlEYr3A3BmPO4H+MxvO+eXRA4/yv37zv7B1my+t/xJXtF8x20M693hV6H0Wtv8YtnwPikNRf8MCwkv/gMmN+xn7xW688YD6Oz9E9aUtVL7479jdi5n7/3yJ1HXXAVDaMEj+u7sw21Nk37+Ml57ZyZMPPEy1sBUZRDd/zlmyjCVX3U7PldeQajj5+ZPHXJ+fjI7z/aFxnp0o4dXq5hsMnUvSCf54bguXpBNcnI7TGbOOuYksCCWTFY/NfRP8bF+OzX0T7BwqkCu5OP6ZLeEgiAJYXQh0TSNjRtnJqaDXMrQj61RFbV8INI3j9E291tQ+x/RpgO+7uI6D61TxHIfA9wk8l9B3CTwPGXpI30eGARohmpBoHN5MEWISRJsIsERIwraIxWxs+8gtlWomnU6TyWRIp9O0tLSQTCbP6OumKLPFtu1w+/btWwEefPDBzF/91V91rl+/fseZvu63v/3tA2c+OkW5cJxJAPwc0C2EWAD0Ae8G7jyVF5BSPgQ8tGbNmg+fwTjOSQ/sfIBPPvVJLmm6hH+6/p/U/L0zhSGM7oRn/gNe+i44k1H//GvhTf+LMDWPiecHGP70FwjLZdLXvwHT9ch//T70bJa2T36S+ne8HWEYSCkpPNbL5M/2Izptnvc3svN/fBG/GgXSjZ0LWfGGW1hy9XVkmppPeoiTfsDPRif4/lCex/MFfAkL4xa/19rAQsOkDR3LCZio+kz0VdlWmeSpssd4xWOyVks7XnEZL7kUnJcvhbcNLbpkHzPIxAwycZO6uEF9wqYhYdKQtGhKWmTTFo0Ji4akTX3cJGGdfGnE6apWqwwODjIwMBBt/QOMjY1hhCFTc1jouh7No5tKkEwmSSTS2LZ9xBy6MzfTNI8IcGOxGKZpnvNTqinK2TYxMaHX1dVNF4H/9V//dev3vve9Rtd1xVvf+tbxf/mXfzkiqRQEAe9///vnPf300+m5c+c6YRjygQ98YOyDH/xgfu3atUs+//nPH1q3bl15Zvbwq1/9asOPfvSjugcffHD/O97xjq5YLBbu3r071tfXZ99zzz37vva1rzVt3LgxuWrVqtKDDz64/zX+EigvY2JiQrvpppsWT0xM6L7vi7/5m7/p/73f+73xHTt2WDfddFP3qlWrSi+99FJi4cKF1e985zv70+l0+PGPf7z9Zz/7Wb3jONqaNWuK3/jGNw5omsbatWuXrF69uvjrX/86UygU9P/8z//cf9NNNx07P+cF5GSnQfsWcD3QJIToBT4hpfyKEOKjwMNE06DdK6XccipvPmMp5FMb9TluKvi9tuNa/vWN/4qtn94yp+cdrwrP3gPP3wdjuwEBK98Ny38HGhbgBRnGvvwVxr/zz0jHIXbppcR6upn4wQ9BSrIf+QjZD//h9DLG5ckJhu5/EXMv9Hl7ePKJ7xIiMeOdLHvD73LF76ynsb39uENx/ZB82SVXcsmXXfIll53FKi9Vq2wLPPbrklCA5YZkxlxkX4m+sSrfOsFH0zVBfdykrlY321BbEW6kEE2RlrIN3tDTxDWLm+huTdOYtKiLR8ea58B0WFJKCoXCdLA7ODjI4OAg+Xx++ph0Ok17ezs9PT1ks1kaGxtpbGwknU6r4FV53bn7gU1zdw4WEmfzNXva0uXPvXPloZc7xnEcbenSpcscxxGjo6PmT37yk50A3/3udzO7d++Ovfjii9uklNxwww2Lf/rTn6Zuvvnm6SDlvvvuazh06JC1Y8eOLX19fcaKFStWfOADHxg7lTFOTEwYTz311M5vfvOb9XfccUf3L3/5y+2rV6+uXHLJJRc9+eST8auvvrpyep/+/PP9739/7vDw8Fn9GWlpaSnffvvtL/szMiWRSIQ//vGPdzc2NoYDAwPGFVdcsfTOO+8cB9i/f3/snnvu2X/jjTeW3vWud3V97nOfa/7Upz41dPfddw9//vOfHwC4/fbbF9x///11d9555wSA7/ti8+bN27797W/XfepTn5pz00037Tybn+315mRngXjPCfp/AvzkrI7ode57u76ngt+ZwgD2/Aq2fh+2/iDK9s69EtZ+BDouQ3aspvDTnzL+wGcoP7cBKSWZW2/FbMoy/r3vU/3tb8nceisN//3/YNx12Pybxxjat4fhfXtZWFrG/NRF7Cq+wFbnAFriBlasu4Y3//4qNF1jouzx7L4cO4YK7BwscCBXZniyytBklVzZQ6YMwgabsMEibLTB1kGACAIyIx7t5YBOYdCYsGnoSVGfsGhMWtQnTBoSFg2JaL8+YZKyDYQQHBgr8fUnD/DDTX2MFl2uWpjlQ9cu4LqeJuyzsKLZ2eB5HrlcjqGhoelAd3BwkHK5PH1MQ0MDbW1trFq1ivb2dtrb20nV/uOhKMrpm1kC8eijjyY/+MEPLti5c+eWn/3sZ5nHH388s2zZsmUA5XJZ2759e2xmAPzEE0+k3v72t+d1XWfevHn+lVdeWTjV93/rW986rmkal112WTmbzXpr166tAPT09FT27NljqwD43BGGofjYxz7W+fTTT6c0TWN4eNjq7e01ANra2twbb7yxBPC+971v7N/+7d9agKGf/vSn6X/+539uq1ar2vj4uLFs2bIKMAHwrne9Kw9w9dVXl+6+++6TX/3nPDWrd2OdbyUQe8b38HdP/x1XtV+lgt/iCGx/CJ67F4Y2g5WGxW+CFe+EZbchpaT60hZG/uZDlJ58Cquri4Y77yR9880MfuYfmPze9wjmdTL4rtt4plwg9z//FCmjetlUpolrWm6nPpVlYp5g5/aLiWVWcfntCziQEXz8gRfZ0j/JjqHDfxuSMYPWzjTMT2ImMwgDnFrSMqvrrErGuao+xRubM1yUjp9SRtPxA368eYCHNvXzyNYhDE3wpqUtfPCaBVy5MHtWv6wnw/M8KpUKpVKJ8fFxcrnc9DY2Nsbk5OT0sbqu09LSwpIlS2hra6OtrY3W1lZip7lIh6K8XrxSpva1cMMNN5Ty+bwxMDBgSCn52Mc+NnD33XePnuj4k5m3H45cgrtSqRzxyywWi0mI/u1bljX9gpqm4fu+upQzw8lmal8t99xzT+PY2JixefPmbbZty46OjosrlYoGHPM3SghBuVwWf/EXfzH/mWee2bp48WLvz//8z+dUq9XpS4xT33vDMAiC4IL/Xs9qAHw+lUD4oc9f/+avSZpJ/uG6f7hwg9+hLfD456OMrwwh3Q43/j1c/mEwY0gpqTz3HMP/+gUKLzxPqbEe3vu7hNUKw4//isx99yGBLZ3N9NZbpEYGaFmwiO4rrqF1wSKyqQ6cnw7hj1bpb0vy3It5WhZkKKyq42PP7GbvaIls0mJ5Rx2Xr2yhmDE5QMCL5Spba/O/LohbvL0+xZX1Ka6sSzI3Zp3yJXwpJb35Cj/c1M/XntzPSMGhMWnxx9cv4v1XddGSOf0AMgxDHMfBcRxc1z3ufqVSoVwuT7cz9z3v2HlsE4kEjY2NdHV1TZcutLa20tTUhK6fG5lpRbnQvPDCC7EwDGltbfVvvvnmyb/927+dc9ddd+Xq6urCffv2mZZlyY6Ojuka4euuu674X//1X9mPfvSjY/39/cYzzzyTfs973pM7+nWz2az3/PPPx1auXFn9wQ9+0JBKpdSc/K9DExMTelNTk2fbtnzooYfS/f3901nbgYEB69FHH03ecMMNpW9+85uNV199dbFcLmsAbW1t/sTEhPbQQw813HrrrfkTv8OFTWWAz5JvbPsGm0c384/X/SPZ+Guf9ZtVXhWe/zps+CqMbIv6Lns/rL0LJ93F5OgIE7/9LcO/eYLRp37D+MQ4vmmSnNNEy2SZ5m9+B11KAsOgtOIi9LesZ+2ay7mlayHJ+gYAwqrP5CMHKD61n8DQeLYSMLp7nKVv7uQfD/az85dD9LSm+R/vXsE+Cx7LF3jErUKhypJkjHe1NXJlXZIr61O02ae+Sluh6rF3pMTBXJmNB/L8ascwB8aikoHrupv4/LtWcu3iJvSXmf+1Wq0yNjZGqVSiWCwe0c7cn1mK8HJisRiJRIJEIkE6naa1tZVEIkE8Hp/ur6+vp6GhgXg8fsqfWTn7pAxx3VGqzgBOdYBy5QBN2etJpZbM9tCU18hUDTBE/5H+j//4j/2GYfD2t799csuWLbHLL798KUT1n9/4xjf2zQyA3//+9+cfffTRdE9Pz/IFCxZUV65cWaqvrz8muP3kJz/Z97a3vW1xe3u7t3Tp0kqpVJr9Gw2Uk+Z5HpZlyT/8wz/M3XzzzYtXrFhx0fLly8sLFiyYnuJu4cKF1XvvvTf7x3/8x/MXLFjgfPzjHx9Jp9Phe9/73pFly5Yt7+zsdFeuXPmy0+td6E5qKeRX7c0PZ4A/vGvXrlkbx5kaq4zx1u+9lctaLuPf3/zvF8YNQVLCjp8QPvcVtD2/AKCUXEhvbCUHyk0MjjlMjgzjlIokXJ+6skOm4lBfqVJX8TCC2u/sbCOJ664je+ttJC5fg2YdWZbkDZYobRyitGGIsOLTK2HzpMe8S5tZ/bYFfOS7m9g2XOC225bwK6fCwapLg6FzfWOa6xszXN+YpvUUA17HD9g5WGRT7zibDo3zwqFxdg8fvlk2ZmpcvaiJN/Q0c213E4uaj18bWy6X2bVrF3v27KGvr4+xsWPvVbEsi2QySSqVOqKNxWLTMylMzZYwcz8Wi6Gdwop0yqtPyhDXy+FUB3CcAarVgSjQdQap1vocZwgpj1z5bemST9PR8e7Tek+1FPKp2bRp0/6VK1eesMTg9WBiYkKrq6sLBwcH9csvv/yi3/zmN9vnzZunlhM8jzz11FPxu+66q2vz5s3bjvf8jh07rFtuuaV7165dpzTxwIVq06ZNTStXruw6ul9lgM+CL2/+MlW/yscv//h5G/x61Spje16isvXnmPt+QV1uG5ZTZbJo0zs+h1LZIl+IEZM7SGl7WO4HmOUKetVBm/pPlq5jL1lCfMUKYsuXE790JXZPz/TXTIYSb6SM11fE7S1S2Z0nGCwjgUEvZEc1ILmwnts+sojGeWn+7H//lg2FMpk3zuHrExNcWZfk/1zUzs1NddMLTZzUZwtCNuzP89tD4zy7b4wn94xNz8/bmLS4dG49t62cw5K2NPOzCbqySWLm8csGKpUKL7zwAtu3b+fQoUNIKUkkEnR2dnLJJZfQ0tJCKpWaDnQt64K/D+F1JQiqVCoHKJf3U67sp1LeT7lyAKc6QNUZREr3iOOFsIjZbdixdurrLseOtRGz27Fj7cTsNuLxeRhGepY+jfJ6tH79+u7JyUnd8zxx9913D6jg9/zy2c9+tvmee+5p+dznPjfrNernu1nNAE9Zs2aN3LBhw2wP47Tkqjne8sBbuLHrRj597adnezgvS0qJ9DzCUinaikXCYpGgWCQslmr7BSrDw5QHB6iMjBDmh4iVhjF9F82XBJ5G4GggjxPo6zp6Oo0MQ8JCAaTEmDOHzPobyNx6G9aCRYTlkGDcIRh38KfafBUvXyWcdBG1lcwCYMIP6XMlo7ZO9zVzWHbtHDJNccJQ8pH/dyM/dcoEizMsiNt8pqeTdY0nH0gMTVZ5ZOsQT+0Z5ck9Y4yXo7rZhU1J1vU0s6argUs66pnbeHI3xA0ODrJhwwZefPFFXNelra2NJUuW0NPTQ3t7u8rWvo6EoUOlcqgW5O6jXJ4KdPfjOINHHGuaWRKJ+cRiHUcEtrbdTizWjmk2IsSr971XGeBTcz5kgBVFOTXnZAb4fLgJ7sGdD1INqnxoxSuu/nxWSCkJS2WCfI5gbAw/lyPI5fDHcgS5MfxcnmBsjKBQIKyUkeUKYblMWK0iHScqXXil90CimZKkKdHNEGFIZDIBmUZirfOJLVyO0dqOns1iZLNIKXF27qP84g4qz2xCz7SQfsvVWD2XQGjjjzvkHpxEVp476n3AAcp+SCWESigphBI3YZJckKF1QT0rF2RoXZBBn7HM7Wcf28WPkwHh3AzvbG3gMz2dpE5iijE/CPnVjhG+/dxBfrVjhCCUzKmL8ealrdy4vJW1XY00JE8tI5vP53nkkUfYtm0buq6zYsUKrrzyStpPMP+wcm6QUuK6wxRLuyiVdh0R5Far/cDhFfpMs4F4vIuGhitJxLuIJ7pIxLtIJLpU9lZRFOV1SpVAnKFHDjzCpc2XsrB+4Vl93bBcxtm1i+r2HThbN1PdsR1vYJAgP4F0j73LH0DYBkYqhp4w0WI6hikQWdBaTYSmAzZSugjhguZhGA4xu4ph+mhmiGZKdEMiDQs3uRri8wnNTtzkdYRaCzKQEISEFY/qwQLhNgfpF0CzEGIuwpxL4tobovF7UNxaoipLlLyQciing9yyBC1lYjfFSTXFyWRjZLJxOpti1LckSNafeAaNL7x4iH91C+j1Fl9YOpc72l/5hsMwlHzvhT4++/B2hiYdmtM2d61byDsu62RRc/KUy1aCIGDfvn1s2bKFzZs3I4Tg+uuvZ+3atSQSZ3XOdOUscN0cpdLOWrC7k1JxF8XSTnx/YvoYw0gTj3dRV7eK9rbfOSLINc36WRy9oiiK8mqY1QD49e7Q5CG257bz8TUff+WDwwC0WpbSLcFEL3L8EOHAXuTQAbz+Xkrb+6gcyOOMVvEmD2egNCPErvdIpgL0hhDDDtBjIYYdHm7tAK323ZTSQGLVNhMpoxYsJDGkzCAxCUkQykaqsplANhHIZgKakLIBKjqiKpFIZOATBv2Evk9QdfA8D08KXKHjmHGqhLhS4oSSqoRqKBEpk0Q2TqYW4DZmY9F+U4xUQ+yIjO7JCKTkI8/u5kflErEAvr+2m0sbXnlhhuf25/jED7awdWCSS+fW8/e3X8wblzRjnOLqa77vs3fvXrZu3cr27dupVqtYlsWKFSt44xvfSF1d3Sm9nnL2+X6BYmknpeLOqC3toljciecdvvnQMDIkk920tvw3kslukqkeksluLDN73tbvK4qiKMdSAfAZ+PnBnwOwfv764x8QhrDjx/D8fcjdv0A2XASFPjQvmpYvcASTB+NM7E9QHYsuvetxgZ21SXQlsZoaMFta0ZvaEbF6sOqQVgbMGFgxhGETmnFc00ZqBqWJIsN9vYz0HWSkvxfPqxISYMeSpFP1xGN1xM06hLTxPInrBrgeuL7E8QVeqOOFFXzp4Wk2gW7DdP2iAMzaBrYNmZYkmeYEmWyc5lqAm87GyGRjGNbZm1u25Afc8dwuNlSrtOQ8fv6Wi2lNvfw8u64f8sVf7eaLv9zFnPo4//y7K7n90g60l5mm7Gie57Fnzx62bt3Kjh07cBwH27ZZsmQJy5cvZ+HChZjmqU+pppyZIChTKu2mWNxZy+xGwe7M+lxdT5BMdtPU9EZSyR6SyR6SqW5sq1UFuoqiKIqqAT4Tjx54lOXZ5cxJzTn2yd2PIn/4J4jJPkK9nlBmCUdLuOFaKvkYxb3DVA/0Qhhgzu2i7k3XEFt5MWFdHe5kBafgMFFwcF2JU4Dq7hxOtYrrO/ge+KHADULKMk9VjuDKIUKiKf+EyKCZ89HMbjSjEyESjJaAo2YEFKGPETqY0sXAwxQ+KcvHsv9/9s48vorq/P+fmTt332+Wm+1mTyAJIbJGAmgV2RSoipZNcQEUkVaKYrV83eBXq1ZcgFoRaykViiuIUUAoCFZaS1jCkpCN7Htukpu7z9yZ8/vjJiGBJCwJW5y3zmtmzpzzzDn3HnKfeeY5z+ODXMVDrvFBplFAZTZBGWGGwqiGSieHLkABmfLqTJ0KD4sZRwpR5PEivNKD7+8fDq2ie6WTEIJvTlTjjZ15KGt0YfrQCLzyyxRo5BfXX6/Xi8LCQuTm5iI/Px8sy0KhUCApKQnJycmIjY0Fw4jPjVcDnvfC5SryW3I7WHQ9nrOLo2laBrUqAUbDzVBrEqFRJ0CtToRCEXZFF5+JiFwuZWVlzKJFiyKzs7NVMpmMREREeNesWVNeVlYmW7VqlXnfvn2F57aZMWNG1LPPPls7bNgwT1cyL4euQmktXbo0TKPR8CtWrKjtq/ucy8iRIwe8+eab5bfccosrLy9PNmHChMS33nqrbPr06S0Xbv3zQKVSDXG5XEcB4JNPPtE/++yzlj179uQnJCSwF2rb17zzzjsB7733nhkACCHUSy+9VPnAAw80X6qcgwcPKsvLy2UzZsywAVdnrl0I0Qf4Mqlx1uBEwwk8NfSpzhcqD4PsfQNU0U746CjY2d/CLfkFFMnBIHwlrJvfg3DmBHipEi3Bg1CnGQCbIQ7eSj24OjVACQDkrVtHggFCIKFcIMgDJ+SD46sBEFCUFCpVGLSaIdAbIqHRBUCmlEKmYiBVySDXKCDXKiDXKSE3qKEwqKDQKCCRXt8KwhGbE7Ozi2Dz+hCUb8fXc0b2qPw6vD68vP0UPj9cgaRQHf7+6Ejcmhh0wfu43W7k5eUhNzcXhYWF4HkeKpUKgwYNQnJyMmJiYsRsaVcIQgR4vTVwu8vgdpfD7S6F03WmfWFa22I0imKgUsVCpxuMsND7oNYkQKNOhFIZCYoSvxuRGwNBEDBt2rT42bNnWzMzM88AfsWgqqqqx1dJn3zySenV6eHVo6ioSDpx4sTEV199tVxUfrvmq6++0j7zzDOWnTt3Flys8stxXJ+9mSwqKpKuWrUq9NixY7kBAQG8zWajq6urL0tvzMrKUmVlZanbFODrAdGUdZnsKd0DoIP7AyEgP/4Z2PMiBKKGk/8VnJpfwekoR8npPRAONiC05ifQAotyy3gUR98JCU2gVvAwaBkoNRIo1AwUWjnkWgWUeiXkBhUUWgVkagaOljrk/+d75P64D16PE8bQMCSMnI7otKEIG5AECdN/XsUTQvD3KiuW51dAcPkQVuDAJ7OHI8zQfTazo2VNePrTbBRbnfjN7fF46o7EHrOyORwOnD59Gjk5OSgpKYEgCNDpdBg+fDiSkpIQGRkphi67DATBB45rAsc1gmWt/j3XCI49Z99+vRkdIy5QFAOl0gK1OhHBwXf63Rc0iVApo0HT/WeOi/w8yczM1DIMQ5599tn6trKMjAx32zWn0ymZNGlSbF5enjI1NdW1bdu2YpqmO1lNVSrVkHnz5tV99913eoVCIWRmZhZaLBbf5s2b9a+99loox3G00Wj0ffLJJ2csFstlxwg+ePCg8oknnohyu910VFSUd/PmzSVBQUH8yJEjBwwbNszx73//W2e32yXvv/9+yaRJkxx2u52eMWNGdGFhoSIhIcFTXl4uW7t2bdktt9xyXmrLyspK6SOPPBLz4osvVs6ZM8cGAC6Xi5o7d27U8ePHVRKJBG+88Ub51KlT7atXrw7IzMw0uN1uuqysTD558uTm999/vwIA3n777cB33303JDg4mIuNjfXIZDKycePGsssd8/XEzp07NU8++WT0119/XZCSkuIFgPz8fNlDDz0UbbVamYCAAN/GjRtLEhIS2OnTp0cbjUbfiRMnVIMHD3atWrWqat68eZG5ublKnuep5cuXVz3wwAPNeXl5stmzZ8e43W4aAN59992y8ePHd5strrq6WqpWqwW9Xs8DgF6vF/R6PQv0PD/a5mp1dTUzfPjwpKKiopN//OMfwzweDz1w4EDN008/XRPLElsAACAASURBVA0Aubm5ypEjRw6oqqqSLVy4sPb//u//6q78J3sWUQG+TPaW70WCMQFRuigQrx38xwvBlGfCzY+CM3YFSoqLcOy0DZw0FEkNe2GuOwxP+EBIH/4Nbho9FL8wq6BQ9/yD3lxTjdx//wu5P+5HU1UFJAyDhPTRSL19Iiwpqf3Sl7GJ8+HpU6X4tskOut6D29w01j8xBupuXBjq7V68tP0kvj1RA62cweb5N2NUXNeRIaxWK3Jzc1FQUICysjIQQmAymZCRkYGkpCSEhYX1y8+0txBCwPMOeL118Hpr4WXrwHrr4GVbz7114DgrWLaxU2SFzlCQSg2QSk2QSU1QqeJgMIyAVGpqTwihVEZCLg8FTYt/lkSuAtuetKAup2/DtgQnu3D3n7tNYHD8+HFlWlpat7nOc3NzlceOHTsTHR3NDRs2bODu3bs1EydOdHSs43a76VGjRjnWrFlTuXDhwog1a9YEvfHGG9Xjx493zJw58zRN03jrrbcCV6xYEbJ+/fqKnrpbXl4ub0vLDAANDQ3SRYsW1QDAww8/HPP222+X3XXXXY4lS5aE/e53vwv76KOPygHA5/NRJ06cyP3kk0/0K1asCJs0aVL+n/70pyCDwcDn5+fnHDp0SDFq1KiU7u67cOHCmOeff77y0UcfbWore/3114MBID8/P+fo0aOKO++8M6GoqOgkAOTk5Kiys7NzlEqlEB8fP+iZZ56pZRgGb775ZuiRI0dyDAaDkJGRkZiSkuLuabyXSk7u7yxOR36fzhG1JtGVnPR6j0kuWJalZsyYEf/dd9/lDRkypN3tZeHChZGzZ8+2/vrXv7a+8847AU888YRlz549RQBQVFSk+PHHH/MZhsHixYvDb7vttpbPPvuspKGhQTJ8+PCkadOmtYSFhfl++OGHfJVKRU6cOCGfNWtW7MmTJ7vMNgcAN998syswMJCzWCypo0ePtt97771Ns2fPtgE9z49zUSgU5Pnnn6/KyspStz2gLF26VFlYWKg4ePBgXnNzsyQpKWnQsmXL6uVy+VVLTtHnvzQURf0CwEoApwBsIYR839f3uNZ4fB4cqzuGOUlzQNxO+FbfBcZ1Ai3y+Sg0P4Ksw3XgfGaE8HlIKvsQVH0ZgpYuRcCC+RdUsNz2FuQd/AE5P+xFdUEeQFGwJA3C8LvuRsLNo6HU9M+4oz5ewBunKrCuvhFeioAptOOBQANWPjAI0i4iNnC8gM+yKvDGrtNweXk8PT4RD42Ohu4cFwmbzYacnBzk5OSgvNz/b9NsNmPs2LFITk6G2fzzXhRFCIHPZ4PbUwGPpxIedyW83pp2RdfrrQPL1oHnz//NlkhUkMvNkMmCodEkQSYNgFTmV3Db91ITZDITpFKj6KogInIBUlNTnXFxcRwApKSkuIqKis4LTC6VSsnMmTNtADBs2DDnnj17dABQXFwsu/vuuyPq6+ulLMvSFovFe6H7WSwW7+nTp3PazpcuXRoGAFarVWK32yV33XWXAwAWLFhgvf/++9tjfd5///1NAJCRkeFctmyZDAAOHjyoeeqpp+oAYMSIEZ7ExMRuFf3Ro0e3bNmyJeDJJ5+0arVaoa39r3/96zoAGDJkiCcsLIw9ceKEAgDGjBnTEhAQwANAfHy8p6ioSF5XV8ekp6fbzWYzDwD33HNPU35+fs+ro28QpFIpGTp0qOP9998PTE9Pb1cqjx49qt6xY0cRADzxxBONr7zySkTbtXvvvbepbX3K999/r9u1a5dh9erVIQDg9XqpwsJCWVRUFDdv3ryonJwcJU3TKC0t7T7mKACGYXDgwIGC/fv3q7777jvdc889Z8nKylIvX768tqf5cbFMmDChWalUEqVS6TOZTFxFRQXTNv+vBhelAFMU9RGAKQDqCCGDOpRPAvAuAAmADwkhr8Gf38ABQAGgx6fPG5UTDSfACRyGGm6CZ/UCKFzHYY97DbvKh6I+qw6hXDHCCr+F0VsNAAj7cD00o0d3K49jvSg5ehinDuxF8dEsCLwPgZYojJ39MAaOvhW6wAv7sd6oFDc4se5IGbZ4HPBopWDsLH4lVeG39w5DTKD6vPqEEOw9XYfXdpxGQZ0DI6KN+OO9qYgP9j8YuN1u1NTUoLKyErm5uaisrATgV3pvv/12pKWl/axClgkCC6+3Fh5vDbyeani91fB4q+FxV7YqvVXg+U4GJtC0EnJ5MORyM3TaQZDJg/3nMjPk8mDIZP5zhrlwGDoRkeuWHiy1V4rU1FT3tm3bjN1d72j9kkgk8Pl85z2dMwxD2tyzGIZpr7N48eLIp556qmbOnDm2zMxM7YoVK7pYnd03KBQK0nZ/nucpwP+3+WJ57rnnajZs2BAwderU2N27dxdKpdIe28tkso6fC+E47qpksb2QpfZKQVEUtm/ffuaWW25JfO6550Jee+21mgu10Wg07b5khBB8/vnnhWlpaZ0egpYuXRoWHBzMffHFF8WCIECpVA67kFyapnHbbbe5brvtNtfkyZNb5s+fH718+fJuF64xDEN4ngfgd2vpSfbFzPcrycVagDcAWAtgY1sB5Tfn/BnAePgV3UMURW0H8AMhZD9FUWYAbwGY06c9vg7Iqs0CBQqxX56E0v0NnJHzsO30YLidbtx+Cw3yypug5HJQBgMiN/wN8piYTu0JIagvLUbp8aMoOX4UladPgec4qA1GDJk0Bcm33I6gqJh+aZkUBILTNXb8K7cWmfl1OKki4CPUkKoYPKjU4KWMKGjk57uGEELwQ0ED3tqdj2PlzYg0KfH6lFikGHhU5BzGoX9Vo6amBjbb2VfwoaGhGDduHJKTkxEQcOGEGTcaPO9qdUuog9dbA4/Xr+B6PW3HNWDZ87O+MowWCkUElMpImIwZ/jS+ynAoFRFQKMLBMPp+OfcuBUL8MbAFIvizL0JoP+YJ32W5QIT2Njzh28t4wsMn+Lrc8wKPeEM8zGrztR6yyFVg6tSp9hdeeIFatWpV4NNPP90AAPv371c5HI5eLziw2+2SyMhIDgA2bNjQ/gdv3759qtWrVwdv3bq15GJlBQQE8Dqdjt+5c6dm0qRJjr/+9a8Bo0aNcvTUJiMjw7Flyxbj1KlT7YcPH1bk5+d3v2gDwIcfflj+y1/+MmbGjBnRn3/+ecmYMWMcH3/8sWnatGn248ePy6urq2WDBw/2/PTTT126IIwdO9b5/PPPW+rr6yUGg4H/6quvjElJSX3qAnEt0Wq1ws6dOwtGjx490Gw2+3772982DBkyxPnhhx8an3zyycZ169aZhg8f3uV3ctttt7WsWrXKvGHDhjKapvHjjz8qR48e7bbZbJKIiAhWIpFg7dq1AW2KKgDExMSkFBcXn+oop6SkRFpRUSEdM2aMC/AvZAsPD2d7mh8Wi8X7v//9T33bbbe5Nm3a1P6wp9Pp+L6Y533JRSnAhJADFEVFn1M8EkAhIeQMAFAUtQXALwkhba9TmnB+KIN2KIp6DMBjABAZGXlpvb7GZFVlIZaLQKjr7+BVFnyaMwVEIuCepUMg/GMNmgBIAgIQ9fcNkFksAABnc1O7wlt6/ChcNn8UkUBLFG6acBeibxqGyJTBoPtJtAFCCJpcHMoaXShrdKG80YUTFTb8VGyFFQL4KA2ERDUomsKvggx4ZUAEjNKz09Hn88Fms8Ha2ITv8+rw2clmFDQT6BgffqGqRaSzGrl7CNqclwIDA2GxWDBixAiEhIQgJCQEGk3PFsqOSktHhUcg/gfpjgpNt+et7dqUIUI6HwsQANK9rE6KVus5z7vAc1bwnBXE1wyea4TgawLxNYH4mts3COf/rSe0EpAYQRgDIB8AQTUSRKIHLzGAMHrwtA6Elne+r4eAuG0gpBkCjl94fG3n54yho9InQIAgCO1tOiqNPOE7fdZt27nXOslr29C5fttxm3wf8UEQziqdbWWd5HSjtHbqC66aGxpWZKzAPQn3XLX7iVw7aJrG9u3bixYtWmR55513QuRyeXsYtNLS0kvLw34Oy5cvr5o1a1ac2Wxmhw8f7iwrK5MDQElJiVypVF7yhP7b3/5W/MQTT0T95je/oSMjI73//Oc/S3qqv2zZsvpf/epX0YmJicmDBg1yDRgwwG00Gvnu6tM0jc8++6xk3Lhx8U888UTE22+/Xfnggw9GJSYmJkskEqxbt66kp37HxMRwv/3tb6tHjBiRFBwczCUmJrrbFmv1F8xmM79z5878W2+9dWBQUJDvL3/5S9lDDz0U/e6774a0LYLrqt1rr71W9dhjj0UOHDgwmRBCRUREePft21e4ZMmSuunTp8dt27bNOGbMGLtSqRQAoLq6miGEnGf1YFmWeuaZZyJqa2ulcrmcmEwmbv369WVA9/Pjueeeq50xY0bsli1bAsaOHdse3WPy5Mn2N998M3TgwIHJbYvgrjUX/RqhVQHObHOBoCjqPgCTCCHzW88fBJAOYC+AiQAMAP7Skw9whzjACwoKCi5/FL3ExblgdVvR6G0Ex3Ptlhkf8YEX+E4/sB7eg5X/XoEpzbF4pXk3vlc+gVNl46Gd1QBNbREGvLgJNC/gp/fmwcnQ8J4qB8mtAWrtAACilIJEG0CijBAi9SAaWSclAkAnZQNAp+vn7Tu2JWgva1NiuqoPgs7KTMe2Pcjv2B+/okDg9fHwcDy8Ph6sjwfLC2B9PDieB08I0DYmWgZenwavbiS88miA8Aj2HENMy0/QulyQs3LIvXIoWAWIR4NGNgDVgg5lvBEeSKEEiyR5KcLUJWBlLrilbrikLrhkLjhlTvAU32ls5ypx7Ypoh3FfC2QUgV5CYGjd9K2bgSEwSAQYJQSaLp6BWAFoESi08P7Nxnc+bm7de8//G3bVoECBpujzN9CgKAoSSgKKorq9RlPn1EMXsii6/T4d5VEUBSkl9ZfTEjAUA5r212mT3Z2ctvZt9+uqD+397mosoDuN61y5DM2AoRh/X1r7xtAMJLS/bxatBQHKy3tDQVHUYULI8D7+Kvst2dnZJWlpaee/FunHPP744xGPPvqoNT09/YpaR30+H1iWpVQqFTl16pR8woQJiUVFRSfb3CWuBDabjdbr9QLHcZg4cWL8ww8/3DB37txLjlH7c+ef//ynvqioSH61ozBcLbKzswPT0tKizy3vzSK4rn5pCSHkSwBfXoyAqx0HmOM5fFv8LQqaCnC07iisHisaPY1w+y7+70K82wJWyWEwdwxltBo5xeNwKGInCo7vwJt/5eFmAIdahqzt3yCqWgUaFKx6DhUDPagxc2jW+UDT1aBAgaqlgDq/4kBRFNr/o6jzyvz/U+0/ym2vqLusf44sAJ3K6NYEAV3dExTa5VM425b1ETi8Pri8PNysABcrwOsT4NeJKQAUaEoKhVQCpZSBVmUAUYaAl5phZyJglQaDpxjoPS1IKz+BxKoKaDxeEBKGZqJAg6BBBaVCLdGi2ed/4yWlfQgNsCEmzAqLxQa/f78BFGXs9jNoUzraj8+5BqCTwtNxvB3rd/wM2q61tz1XVsdzABLBDsrXAImvEZSvEbSvAfA1gOKsoIQu3ljRaoAxgZYaQTGBoGSBoKUm0IwJEqkJNGMELdHA3KpUnXffc76z7q61j7ebMXT8DHocbxefXce5JiIicv2wbt26q7IWx26302PHjh3Q5p/79ttvl15J5RcAli1bFnbgwAGd1+ulbr311pbLSdAgAsyaNeu6ic17NemNAlwBwNLhPAJA1aUIuJqZ4I7WHcXLB1/GGdsZyCVyDDANwE3BN8GkMCFAEYBAZSCMCiNkEhkklARS+qw1qc2CJBFobN2yEYUox+1uK06wS6AOUuKNp56F6w+A27sTp5NicYbmMcCmwuCpkzD4jkkwhlyxtQh9SpOTRYnViRKrE8UNLpRanShpcKK4wYkWjz+cpFRCIS5Ig5uCNYgOUCEsQA1KJ4VDRqHI7cGxRhsKvD64OmThMjlsSKkrwYDGWkRLGNhlJtTp05AnZVDUzMPF+a21apkEQ6ONGBUXgFGxAUgN14PpIgLE9QLH2dDcfAjNtiw4HXlwe8rhdleCkLPxyilKAoU8HEpVJJRKv7+tXBEKhTwEcnkI5HIzJJIeXeVERERErnuMRqPQU0itK8EHH3zQLxfai1wdeqMAHwKQQFFUDIBKADMBzO6TXvUxTZ4mPL77cRjlRqy9fS3GRoxtt2hdCvYfKnASeYgTpFBJgnCqYRTuuMUDx4LfwHvsGIpDAlBKC0gWGIx7bwNkyr4NMUkIgdcntFtinawPbo6Hh+Xh5vybhxPayzxc53IPx8PNtp2fve7hBDS72HYlFwAoCgg3KBEdoMa0m8KQEKzF4EgDeA2DbIcbR1tc2Nbiwhm7FcTv3QGpzweT04YYlx2RIAiVKKChlXDyctT6InCCDcDXVn9kHJoiGBiixD1DDRgaacRNkQbEBKhB95C84nqA42yoqd2O2trtsNmOARBAUVJo1InQaJIQFDgBSqVFjGsrIiIiIiJyHXOxYdD+CeAXAAIpiqoA8BIh5K8URS0GsAv+MGgfEUJO9SDmmrG7dDfcPjc+vvNjJBoTL0uG4PWheV8JciKLMNXRjJzmWxA3yABuxUNwMBKAkcAz5maMO3QcekvUJSu/dS0elDe5UW1zo8bmQVWzB7V2D6wOLxqdLBqdLJpcHHjh0t4oSSUUFIwECpkESqkECindupfAqJYhlJFAKZNAI2cQFaBCdIAaQUYFeKUEVawPpR4WpW4vPnd48GJRKbycALA89BwPo82O2MZmyFws1LQcjFQFN2Ro9miw3+Ft9cN1gqaciApQI9Gsxf3DLRgaacTgCH23yS2uNwghaG7+H6qqPkVd/Q4IghcaTTKioxfBZBwNnW4wJJJ+EX5SRERERETkZ8HFRoGY1U35twC+vdybXy0f4MLmQqilaiQYEi5bhvN/NSjzVcFNeXGTx40iz81IO7kFFToVQlpcqBmchNSDR8HX10O/+Dc9ymp2scgqacLR8ibk1ThworIZtS2dY5arZBKE6BQI0MgQE6jGsCgTjCopNAoGGjkDlYyBWiaBRErDSwMcDXgpwEMBPoqApyhwIPASwC0IcPPCeXsrT+AWBLhYH5xODu4GK9jyWnBeHhTLA6wAihXAcAKkHIGM5UG1uit4AfgDEyoBKKFTMAiRK2DWKTBYp0CoXoG4YA0SgrWIDVJDIb3xoltwnA2VVVtQVfUp3O4SMIwWoaH3IzzsV9Bqu01yJCIiIiIiInKdc01NcFfDB1ggAg5WHUSMrndxdV3Z9SgPswIAIlkViiOHovyLv8Lk8sIhk8J8PBc+ABF/XgvtuHHnta9r8WD9D2ewP78e+bX+hVAMTSE6UI2bYwOQFmFAdIAKWp0MEoUUboqgjvOhgfWhkfNvhT4eTZwPjZwHTV4eTQ4f3BdhEZbTFJQ0DbmPgHH4gBYWfAsHzsGCc3JgPZ0jx0gB0DQFg0qKII0cQXo55GBhrSoFTZwID9BieOpApCbEIFAjR6BWBpXsxrDmXgws24jyig0oL/87eN4Bg2EkYqIXIzh4kuivKyIiIiIi0g+4plrL1bAAv3HoDZS2lOK+xPsuW4avwQ2uwoGKmxshaQbk9jgEBVagQqNAaLMD+tHp4MsroJswHprbb+/U1ubi8Jf9RdhwsBg+niAjPhB3poXCFKqBV82g3MvhjNuLj9weVNS1wFNzvkJLATBKJTAyDIxSCcLkMgzS+I9N0g771usyAHVNbpTUOJBXbcfpmhYU1jnR4DhrZQ7WypEcrEFEjBLhBhXCjUqEGfwW3AC1DDqFFDRNwe12Y8+ePTh8+DBuCgjA3XffDYvFcl4fb3QIIWhq/i+qKregrv47EMIiKGgSYqIXQ6tNutbdExER6SeUlZUxixYtiszOzlbJZLL2OMBlZWWyVatWmfft21d4bpsZM2ZEPfvss7XDhg3zXIs+d8WmTZv0p06dUr766qvdZinLy8uTTZkyJaGgoKDX7pGZmZna7j6f/gZFUcPmz59fu379+goAePHFF80Oh0Py1ltvdRtoIDMzUyuXy4Xx48c7AWD69OnRU6ZMsT3yyCNNl9uP8PDw1KysrNzQ0FDfhWv3jEqlGuJyuY72Vk5f0n/Mdl1wqOYQNuVuwvSE6Xhu5HOXLceVXQ8AKJUWI4rj0MgmoubHjxHW5AAdYkb0+vWg6PMX1R0ubcSTm46i1u7BHUPDoR5owCmPF286XfDV+BeDKWkKMUo5BqgVGB+gg1kmRbBcimAZgyCZFIFSBgapBJJurNcOrw+51S3IKWnGgaoW5FS3IK/WDtbnd1VQSiUYEKLFbQOCkGjWIilUh6RQLQI0PaYABwBUVVVh8+bNcDqdGDVqFG6//XZIpednabuRYdkGVFd/icqqT1rdHHQID5+F8PBZ0Kgv32VGRERE5FwEQcC0adPiZ8+ebc3MzDwDAAcPHlRWVVX1+If1k08+Kb06Pbx45syZYwPwswyfdaWRyWTk22+/NVZXV9dcrPK5d+9erUaj4dsU4N4gCGfzEPRn+q0LBMuzWPGfFYjQROB3I38HueTCCl9XEELgOlYHWYwOhbZcpLAsaoRk1PvykOz0IGDB410qvxv/U4IVX+fAFKbByPEWfONwgbHacLNBjUWWYNykUyFVq0K4XAr6Il0zHF4fTlXacKLDVtzgRNs8NallSA7V4eGMaCSH6pAcpkNckAaSS4ysQAjByZMnsX37dqhUKixYsABhYTdGKLeLweOpRl3dt6hv+BdstiwQwsOgH9Hq5jBZXNAmIiJyRcjMzNQyDEOeffbZ+rayjIwMd9s1p9MpmTRpUmxeXp4yNTXVtW3btmKapjFy5MgBb775Zvktt9ziUqlUQ+bNm1f33Xff6RUKhZCZmVlosVh8mzdv1r/22muhHMfRRqPR98knn5yxWCzdKk+ZmZnaV155JSwoKIjLyclR3XnnnU2pqanu9957z+z1eqmtW7cWpaSkeLuTu3r16oCsrCz1xo0by6ZPnx6t1Wr57OxsdX19vXTlypUV51oe8/LyZLNnz45xu900ALz77rtl48ePd2ZmZmpXrFgRZjKZuHPH/fnnn+uWLVtmMZlMvtTUVNeV+l6uNyQSCZk7d279q6++al6zZk1lx2tVVVXMI488ElVZWSkDgLfeeqssKiqK27hxYxBN0+TTTz8NeOedd8oAYP/+/ZrVq1ebz/1OXnjhBfPWrVtNLMtSd911V/Pbb79dlZeXJ5s8eXJCRkaG/fDhw5qvvvqqk6X9jjvuiKuurpZ5vV564cKFtc8880wD4LfsdjUfT58+LZs5c2asz+ejxo0b1/6gVFpaKp0+fXqsw+GQ8DxPrVmzpnTSpEk9ptm+UvRbF4hdJbtQ0lKCtbevhZK5fL9NrsoJX70bsgwTKvJbMNGrQHPDMUQ0OwCahv6ezilMCSHYcLAEL3+dg6j0EOQbJGhye/BEZDAWRAQhRH5hCyrrE3CmwYHT1XYU1NlR0uBCbk1LJ2U3RKfAoHA9fpkWjtQIHVLC9AjWynudjMDhcOCbb75Bbm4uIiIiMGPGDGi12l7JvNb4fA7YbIfR1PQTmpr/h5aWYwAINJqBiIp8DCEhd0OtvvKxqEVERK4fXvjxBUthU2GfxqqMN8a7Vo5eWd7d9ePHjyvT0tK6VeRyc3OVx44dOxMdHc0NGzZs4O7duzUTJ07spBy43W561KhRjjVr1lQuXLgwYs2aNUFvvPFG9fjx4x0zZ848TdM03nrrrcAVK1aEtL1C747Tp08rP//88zPBwcG+qKioVLlc3nDixInclStXBq9atSr4o48+Kr9YubW1tdKsrKzTx44dU9xzzz3x5yrAYWFhvh9++CFfpVKREydOyGfNmhXbFje4q3GPHTvWuXjx4ujdu3fnpaSkeKdMmRLb01iuBEtyyyynnZ4+nSMD1QrXO0mR3c6RNpYtW1aXmpqa8vLLL3dyMXn88cctS5curZ04caKjoKBANnHixIQzZ86cmjt3br1Go+FXrFhRCwDr168P7Oo7+fLLL3WFhYWK48eP5xJCcMcdd8Tv2LFDExsby5aUlCjWr19f8vHHH5ed259NmzaVmM1m3uFwUEOGDEl+4IEHmkJCQvju5uOiRYsi58+fX7948WLrH//4x6A2OR999JFp3Lhxttdff73G5/PBbrdfs2D//dYCvOX0FkTronFLxC29kuM6WgdIKFSFNwL5gNERDKunAiNsLqjHjoHUbO5U/83v8rD2x2KoRocgXyPBfWYjXk2MgI7pOgpCvd2L7/PqUGJ1otTqQmGdA0X1DnC8X9NlaAoWkwrxwRrcfVM4UsP1GBSuR5D28izaPZGTk4PMzEx4vV7ccccdGDVqFCSS6zt6AyEEPp8NHk81PN4qeD3V8Hiq4PH6915PFTzeGvjj9TLQ6QYjJuYphJinQKWKudbdFxEREWknNTXVGRcXxwFASkqKq6ioSHZuHalUSmbOnGkDgGHDhjn37NmjA4Di4mLZ3XffHVFfXy9lWZa2WCzec9t2db+oqCgOACIjI72TJ0+2AUBaWpp7//792kuRO23atGaJRIJhw4Z5rFbreZYelmWpefPmReXk5ChpmkZpaWn7j1hX49ZqtXxERIQ3NTXVCwBz5syxfvjhh0Hnyu2vmEwm4f7777e+9tprwUqlUmgr//HHH3UFBQXtVj2HwyFpamrqUons6jvZuXOn7sCBA7rk5ORkAHC5XPTp06cVsbGxbGhoKDtu3LguXShef/118zfffGMAgJqaGumpU6cUISEhzu7m45EjRzQ7duwoAoDHH3/cunLlyggAuPnmm52PP/54NMdx9H333dfU9gbkWtAvLcBlLWU43nAcy4Yv65VFlBAC98kGKBKMKCrfBgCQNMoQYnOC8bIwTJ/eqf7Ok9VYc6gUkltD4ZJQ+H/xYZgXHtjeB0EgKLY6sT+vHgV1dpQ1unCouAksL0BCU4gwKhEb3SZrKAAAIABJREFUqMZtA4MxMMTvrxsTqIb0CmdDKy0txffff4/i4mKEhobinnvuQXBw8BW9Z1cQQsDzDnCcDRzX1L6xXCM4rvlsGdsIztcMjm0CyzV1yrwGABQlhVweAoUiDAbjSCgVFhgMI6DXD4FE0rfJSURERG5MerLUXilSU1Pd27ZtM3Z3XS6XtzteSiQS+Hy+837AGIYhdKvbHcMw7XUWL14c+dRTT9XMmTPH1uZWcKH+dLwfTdNoS11M0zR4nr8kuR3THnflP/qHP/zBHBwczH3xxRfFgiBAqVQOu9C4r3V69Yux1F5Jnn/++dqhQ4cmz5w5s6GtjBCCrKysXI1Gc0En3a6+E0IIlixZUr1s2bKGjnXz8vJkKpVKQBdkZmZq9+/fr83Kyjqt1WqFkSNHDmhzZeluPgIATdPn9XHy5MmOAwcO5H3xxRf6hx9+OOY3v/lN7eLFi60XGsuVoF8ugjtYdRAAcKvl1l7J8dW6wDd7ob3NgtNn/gOlIKChhsaYRgckJhO0v/hFe90z9Q4s/eokMDIIOgWDzWlxSNH4H9JcrA+bfyrDugNnUG/3PzwHqGUI0soxd1QUpg+LQHyw5ooruh3heR5nzpzBoUOHkJ+fD41GgwkTJiA9Pb3Prb6ECPB4quF2l8DL1oP11oFlG/zHbD1YtgEs2wCOswHo8t8fAApSqbF1M0ChiIBOOxhSqREyWaA/vbAiDAp5KGSyQFCXkelPRERE5EoydepU+wsvvECtWrUq8Omnn24AgP3796scDkev/2DZ7XZJZGQkBwAbNmwIaCvft2+favXq1cFbt24t6Uu5l4rNZpNERESwEokEa9euDeB5vsf6N910k6eiokJ26tQpeUpKinfLli2my733jYrZbOanTp3atHnz5sBZs2ZZAWDMmDEtr7/+evDKlStrAf8iyoyMDLdWq+VbWlou+OM9efLklpdffjnssccea9Tr9UJxcbFUJpP1qEw3NzdL9Ho9r9VqhaNHjyqys7PVF7rP0KFDHevXrzctWrSocf369e3zJj8/XxYTE8M+/fTTDU6nkz5y5IgKgKgA9xX/qfoPwjXhiNRG9kqO+3QjAEA50ISC7HJE8gQqF4GG9UE7eRwomf/tlJvlsXDzEdgHGSCRS/CPwbFI0SghCAQf/1SKd/cUwOpkMTo+AMsmDsCwKCPigjS9HuelIggCqqqqkJ+fjyNHjsDhcEChUGDcuHFIT0+HTHbe27ZLhhABDkcemm1ZsDVnweHMh9tdCkHo/NaMphWQy4IhkwdBpYqDwZAOqVQPhtFByuj9iq7MCJnUBKnUAIbRgaKub3cMERERkZ6gaRrbt28vWrRokeWdd94Jkcvl7WHQSktLe/UHePny5VWzZs2KM5vN7PDhw51lZWVyACgpKZErlcrLXtLfndxLZcmSJXXTp0+P27Ztm3HMmDH2jq/1u0KlUpE1a9aUTpkyJd5kMvnS09Mdubm5P7tA7MuXL6/5+9//3u768cEHH5TPnz8/MjExMZnneSo9Pd2ekZFRNn369Ob77rsvbseOHYa2RXBdce+997acOnVKMWLEiIEAoFKphE2bNhUzDNPtHJk+fbrtgw8+CEpMTEyOi4vzpKWlXTDSxHvvvVc2c+bM2Pfee888bdq0dn/wXbt2aVevXh3CMAxRqVT8pk2bii/+0+hbqOsh1MXw4cNJVlZWn8jiBA63bLkFk2Im4aVRL/VKVt372SBeHsZHojDhs7FIapbgsQ0UFBzXKeHFK1+fwgd2G/hQFT4aFI07gww4kF+Pt3bn41h5MzLiArB0fCKGR1/ZB1hBEODxeOByueB2u9v3jY2NqKqqQnl5ObxevyIaFxeHESNGID4+HgzT++cgL9uA6qpPUVm1BR6Pf9GqXB4CrTYFKmU0VKoYKJVRUCj8FlqJRHPNX2+JiNzoUBR1mBAy/Fr340YhOzu7JC0treHCNfsPjz/+eMSjjz5qTU9Pv2a+liIi15Ls7OzAtLS06HPL+90iuJMNJ+HgHBgVOqpXcgQXB7a0BdrbLPjPRytgNUoQ6AyCxuAD39wM9c03AwDKG134a60VfJwOy2NDMc6oxcrMHPz138UI0yvw+vRU/Gq45aKUPUEQwLIsWJaF1+vtdNx23pWC63K54HK54PF4uvS9oigKwcHBGDRoEKKjoxEbGwu1+oJvMC4IIQKamv6Lyqp/or7+OxDig9E4CrExT8FguBkKRZio5IqIiIhcQ9atW9djJAgRkZ8r/W4R3JHaIwCAkSEjeyXHk98EEMAmtaKubB9gBAJKAcJxUI0YAbpVgXzmh3ywcTpMNekwO8CAe987iFNVLZg7Kgq/vzMJCmnXr+1bWlqQn5+PsrIyNDc3o6WlBXa7HRfyiwL8juYqlQoqlQpKpRIhISFQKpWdyjruNRpNr9wbCCEQBDd8Pjs4Xws4tglNTf9BTe02uN1lYBg9LBEPISxsJtTqqx6pRkRERERERETkkuh3PsDl9nKYFCYYFIZeyfHkN4FSMfhu6/swBrEApIgqtYFvdkFzqz+02tGqZhyQ8QjiGaxNjcY73+Ujp7oFHzw4DBNSQs6T2dTUhOPHjyM3Nxc1Nf7QflqtFiaTCRaLBTqdDmq1GjKZDHK5HDKZrP2449abbGyC4AXbGkmB5Rpb99b2Pcta4fPZwfMO+Hx2+HwO+HwtIOTceOoUDIaRiIl5CsFBk8TkESIiIiIiIiI3DFdEAaYoSg3gAICXCCGZV+Ie3VFhr0CENqLXctgyO7xqD2ynqqCK8gKQIpLzK56q9HQAwJNZZ0A0NP6cEo3jZc1Yf+AMpg4OO0/5dbvd2LlzJ44fPw5CCCwWC+644w4kJiYiKCjost0EzoYNawLLNraGDLN2Um7bw4i1lvF81wlXKEoCqdQEmdQEhtFBLjNDpYoDw2hbF6ZpIWG0kDI6MIwWWm0KZLLAy+q3yM8QQgAi+Pe42GNyifXbjnFp9TvdT7j043Y5wtmtk/wLXI8eAwSKabdFREREriYXpQBTFPURgCkA6gghgzqUTwLwLgAJgA8JIa+1XvodgE/7uK8XRam9FMPMwy5csQd4BwtfgxvlJAdxUUYUMzwkAgWD3gyfm0CekIAt+TU4o6EwlEgxQCnHlA//jQijEivvHtRJVllZGb744gvY7XaMGjUKI0aMgF6vgSB4IQheeL017cf+jYUgeOHzOVrj3jb7Y962x8Fths/XFifXBkK4LsdA0zJIpaZ2pVapj/RHVJCZWiMrnD2WyUxgGL0YOuxaIwgA5wJ8Hv/GeQCfG/B5/RvvBXgO4NnWrfXY17G8bd+bur5zFLVzlb5LVBhx7RfaXtf88j1RARYRERG5ylysBXgDgLUANrYVUP6YVH8GMB5ABYBDFEVtBxAGIAfAVX8nXueqQ42zBkmmpF7JYUvtAICS6uO47Q4zfrQzMLrkEFpaoBo6FJREglcKq0BLgHeHqjH/b3tgdxOsuP0Uyoq2guOa4PO1wOlshsvZjKRkArmcBvAJjhz14lIVApqWQcr4498yUgNUqlhIpQZ/qDBG71dyZaZOe4lELS5Au5YQAjSeAWzlQHMZ0FQC2GsA1gGwTsDbumcdZ8u4Pkx1L5EDEhnAyPx7ibR133bcel2mBiRGfxnTWkZLAEoCUBQACqDoCxzjIuqce9y20R3OezrGJdbvcI+Lrk8D/vD7F+g33WHrWKdDWcfz89qdc/9eumuJiIiIiFw6F6UAE0IOUBQVfU7xSACFhJAzAEBR1BYAvwSgAaAGkAzATVHUt4SQHuP99RVtC+B6awF251ghUDzslA1BNIcKRo64Mgl8NTWgZ4zD9wWb0aRMxv3CF1iztQknqidj4eANUHHFcDj8yRoEQYO6OjtUqlhEhSdAKlOBpuUdNtnZY0oGWtLhmJaBYbStSq4BNK0UldnrCUIAdxNgqwBaqoCWCsBW2Xpcebac7xD7mJIAGjMg1/qVTrkGUJn8xzJNh70KYBT+Tao8e9ymnLYpsIy8e6WWblNeRURErjckEsmwhISE9pBkX331VeGAAQPYntqI/LxomyM8z1Px8fHuTz/9tESr1V60HvXcc8+FvPbaazV93a+8vDzZlClTEgoKCk71texrQW98gMMBdEwTWAEgnRCyGAAoinoYQEN3yi9FUY8BeAwAIiN7l7CijcO1h6FklBhoGnjZMggvwJVdhxL7KQwcOwZ01VpUBkoxq8Uf97kg4G/4R/lc0EjECMqFNyomYlyiEs/O/Cdo2u8j7Ha78f777wMAFi5cCKXyZxe7u//gaQHqcoHak0BdDlB7CqjNAby2zvUoCaALA3ThQPhQIGkKEJAAmGIAQySgiwAk/W7NqYiIyCUil8uF06dP53R3neO4Xi10Frnx6ThHpk2bFrNq1aqgl19+ufZC7QRBACEEq1evDr0SCnB/oze/yF2ZmDrmnd7QU2NCyAcURVUDmCqTyXpnsm3lWP0xpAWlgaEvf1hcjQtudQHskV/AENkAUlmDJokFceUCqDAdkm97FT+eNAF1HlTrFsDBFmHJhGHtyq/P58PWrVtht9vxyCOPiMrvjQbnBooPAHk7gKK9QHPp2WtyHWBOAVLvAwLiAX24X+HVhQOaYL/lVUREROQSWb16dcCOHTv0Xq+Xdrlc9K5duwonTZoUb7PZJD6fj3rxxRerHnjggea8vDzZ5MmTE0aOHOnIysrSmM1mdteuXYUajYacPHlS/thjj0VZrVZGIpGQzz777ExKSor3hRdeMG/dutXEsix11113Nb/99ttV13q8IhfPmDFjHMePH1cCwMsvv2zetGlTIAA8+OCD9S+++GJd25zIyMiwHz58WJOSkuLyer30wIEDkxMTE91/+tOfKjtabV988UWzw+GQvPXWW1X79+9XLViwIFqlUgnp6emOvXv36gsKCk7l5eXJZs+eHeN2u2kAePfdd8vGjx9/wexvNxq9UYArAFg6nEcAuGb/sHiBR7GtGDMHzOyVnPzClahN/xxygYZFGIxqphKUQBBWJoX+roloUGagGXkItPPYWlSJsQmBSI3Qt7f//vvvkZ+fjzvvvBMWi6WHO4lcN7RUA/k7gfxdwJnv/QvPZBog9hfAsIeA4BS/4quPEF0LRET6CVW/X27xFhSo+lKmPCHBFfbqH8p7qtOmnACAxWLx7t69uwgAjhw5ojl+/Pgps9nMcxyHb775ptBkMgnV1dVMenr6wNmzZzcDQFlZmeLjjz8+k5GRUXrnnXfGbty40bho0aLG2bNnxzzzzDM1c+fObXa5XBTP89SXX36pKywsVBw/fjyXEII77rgjfseOHZrJkyd3HQ5IpBPLPs+25NfY+3SOJIZoXX+6L63HOdIGx3HYtWuXbsKECS0//PCDavPmzQGHDx/OJYRg2LBhSePGjbMHBgbyJSUlivXr15d8/PHHZQCgUqmMbRbkvLy8bpMAzJ8/P+a9994rGT9+vHPRokXhbeVhYWG+H374IV+lUpETJ07IZ82aFXvy5Mnc3o79eqM3CvAhAAkURcUAqAQwE8DsPunVZVDtrIaX9yJGH3PZMhobD6KW/xyasrHQJd4Pi/0gfpD8BzG1gMTlhSo9HZvqmgFCMEQmww8tNiybOKC9vdvtxk8//YTU1FSMHNm7RBwiVxBBAKqP+RXe/B1Adba/XB8JDH0QSJzkD03FXFbKexEREZFu6c4FYuzYsS1ms5kHAEEQqCVLlkT897//1dA0jbq6OllFRQUDAOHh4d6MjAw3AAwZMsRVUlIib2pqomtra2Vz585tBgCVSkUAkJ07d+oOHDigS05OTgYAl8tFnz59WiEqwNc3HR+S0tPT7U899VTDn/70p6A777yzWafTCQBw1113Ne3bt097//33N4eGhrLjxo27JAttQ0ODxOl00m2W3Yceeqhx9+7dBgBgWZaaN29eVE5OjpKmaZSWlvbLH8OLDYP2TwC/ABBIUVQF/PF9/0pR1GIAu+APg/YRIeSSHKP7MhPcsfpjAIA4Q9xltRcEDvkFKyBxBYDJvR0D504G/8Eq5FOhSCnxAADU6SPxVUE9KBuHxmYvjCop7kg2t8vIzs4Gx3EYNap3aZhFLhNC/OG8fO7WEGKeziHFmkv97g0FuwFHDQAKsIwExr3kV3qDk0QLr4jIz4QLWWqvNiqVqn29zLp160xWq5U5ceJErlwuJ+Hh4altr6NlMlm7q6FEIiFut5smpOvIQoQQLFmypHrZsmUNV3wA/ZCLtdT2NV09JHX3HQOd5865MAxDBOHsZY/HQ19I3h/+8AdzcHAw98UXXxQLggClUtknbqrXGxcbBWJWN+XfAvj2cm9OUdRUAFPj4+MvV0Q735z5BhGaCAwOGnxZ7SsqP4bTWYCw00+BM+tA8SwktcdRpBqCwaWVkMXGol6nR4G3EkyNC/m1LjycEQ290u/7SwjBoUOHEB4ejrCwsF6Pp99AiD+8F+s8u3Gu1tBfLr/PbXcKa1sMXK4tFu5F1LtQiDm5Doi73a/wJkwA1AFX5WMQERERuVhsNpskMDCQk8vl5Ouvv9ZWVVX1mMveZDIJISEh7D/+8Q/Dgw8+2Ox2uymfz0dNnjy55eWXXw577LHHGvV6vVBcXCyVyWQkPDz83NSeItc5t99+u+PRRx+NXrlyZQ0hBN9++61xw4YNZ7qqyzAM8Xq9lFwuJxEREb7GxkampqZGotfrhV27dunHjRvXEhQUxKvVauFf//qXety4cc5//OMfprb2NptNEhERwUokEqxduzaA5/mrN9CrSL9Zlt7gbkCcIQ70ZSZzqKr6FEokQdNwE9jREqClEhThUEPRmFFOoL4/HbsaWgAAmiYWHp5gdPzZTGjFxcWwWq245557+mQ81z2cG6g5ATTkA84GwN0IuBr94cFcjZ3Pha6TdXQLzQCM0u+C0DEUmLR1rwro/lp7+DD5OTLkgDrY78srLlYTERG5jpk/f37j5MmT4wcNGpSUkpLiiomJ8Vyozccff1y8YMGCqJUrV4ZJpVLy2WefFd17770tp06dUowYMWIg4LcUbtq0qVhUgG88xowZ45o9e7Z16NChSYB/Edzo0aPdXfn4zpkzpz4pKSl50KBBru3btxc//fTT1SNHjkyKiIjwxsfHt8+ldevWlSxcuDBKpVIJo0ePtmu1Wh4AlixZUjd9+vS4bdu2GceMGWNXKpVXJZTt1YbqyQx+tRg+fDjJysrqlYwJn0/AiJAR+MOYP1xyW4+3Bj/+OBp6670IOTwNmkVxMDB1wAe34kkuCYu/sCH8nXfwQFAsDtfYkJTnQKnVheyXJkAl8z9DbNq0CRUVFVi6dGn/DWHjbABOfgmc2edfLNYxcYNE7o9rqzS17g1njxWG1ji3rZtU7Y9323YsVZxVVhmFGC5MROQioSjqMCFk+LXux41CdnZ2SVpamugOICICwGaz0Xq9XgCA3//+9yHV1dXSv/3tb9eVa1BfkJ2dHZiWlhZ9bnm/0TRsXhv0cv2FK3ZBY+O/AQDyigQ4fTaER4SAlBaBAhBe61fyPEOG4n85lWAqXWB9BEMjje3Kb25uLgoKCjBu3Lj+qfxai4D//Bk4tsnvdmCIBIY84I+SEJzkT/AgVYn+syIiIiIiIjcIn376qX7VqlWhPM9T4eHh3s2bN5dc6z5dTa6pAtxXPsCcwMHlc0Evu3wFWCYLhLI+CjZJAyiahquiHAyAuAofHJGBKKL8iq3KxqG8yYP7h0UA8Pv+7t27F8HBwf1v8RvPAbuWA//7wJ9pbPAMYNSTfqVXRERERERE5IZlwYIFTQsWLGi61v24Vlyew2wfQQj5mhDymF5/eYprGy1ev2/u5ViACRHQ2PgjDJpRUAgq8AZ/ubuyEqW0FAMrCLghA7Df2gLwAkYFakEIMDrB7/9bVFSE+vp6ZGRkgGH6jUEdcNQDG38J/G8dMGIesOQk8Mu1ovIrIiIiIiIicsPTLzQ2G+tPS3s5CrDHUwGOa4TU5o8frEn0hzXzNdVjn1OHsT7AcMsk7LfaQTexoEFDI2cwONx/r0OHDkGtVmPQoEF9NJrrgKpjwJY5gKsBuPdDYPD917pHIiIiIiIiIiJ9xjW1AFMUNZWiqA9sNluv5DS4/GsaTArTBWqej9PljyJCqrQQiABjij97m8/eBGm5FD6Ggmr0BJRxHOhGL+rsXqSG68FIaLS0tCA/Px9DhgzpP9bf+nxg4zS/P++ju0TlV0RERERERKTf0S9cICodlQCAcE34BWqej8tVDABgqgLQwjZAFxIMAFA0HkLMGRp1icH4ifVHAAnhgMI6B1LCdACAo0ePghCCoUOH9qr/1w3OBmDz/YBEBjycCYTddK17JCIiIiIiIiLS51xTBbivqHRUgqZomNXmC1c+B5frDBhGB5lVDytXBZVOD76hChDKYW4GvDcPwsFmByieIE4mh9cnYHi0EYIg4MiRI4iNjYXJdOmW5+sO3ud3e7DXALO2AMboa90jERERkX5HeXk5M3Xq1JiIiIjUlJSUpJtuumngxo0bDde6XyLXF7/73e9C4uPjUxITE5MHDhyYvHfvXvWlyti0aZP+97//fciV6F9/oF+8t690VCJEFQIpfekhyFyuEiiZKEgECRzSFlA0DfbIv1BtU0ACQDNkKA5Y7aCavKBAIGdo3JoYjMOHD8Nms2HChAl9P6BrwY9vA+X/Be75AIgQw4qKiIiI9DWCIGDq1Knxs2fPtn799dfFAJCfny/77LPPLkoB9vl8/cfdTqRb9uzZo961a5fhxIkTOUqlklRXVzNer/eS44zOmTPHBqB3Pqb9mH7hA1zlqEKY5vLSD7tcxZCz/raszp+xzJ3zP9hsMvAUoEwagUKPF3SjF3aPDwNDdWAoAf/6178QFRWFgQMH9qrv1xynFfjuBWDv/wOSpgGDf3WteyQiIiLSL/n666//f3t3Hh9ldfZ//HPNmm0SSAIBEpZAyEIIEYMgolUoiH0UN2zFHUStttpanqdia2utrba02scfakvRqrgitY+K1KVqUREVxCUQQGQnARIg+zKZ9fz+mAmNCJKQZbJc79drXpm5516+M3PrXJw59zkuu91ubrvttoNNyzIzM7133HHHAb/fz/e///200aNH52RmZo764x//mAywYsUK14QJEzJnzJiRnpWVlbtlyxZHenp67qWXXjp05MiRueeff376Sy+95Dr55JOzhw4dOnrlypUxACtXrowZO3Zsdk5OzqixY8dmFxYWOgEWLlyYdPbZZ48444wzRg4dOnT0jTfemAbwv//7v8lz584d3JTr/vvvT77uuuvSOvcdUgB79+61JyYm+qOjow3AwIED/cOGDfOlpqbm3XTTTal5eXk5eXl5OUVFRU6AZ599NmHMmDHZOTk5o0477bTM4uJiG4Q+66uvvnoIwMyZM4fNnj178NixY7PT0tLyHn/88b6Re4VdQ0T/KWmMeQV4Zdy4cde3ZT8ldSVMHNj6MXgDATcez34S679NY7ABZz8XAN6yHfhqbZT1gRprf2A/jiovxe4gM/IHUVRURGNjI2eddRZWazeeVvfLN+Cf/w3VxZB5Dsx8VCezUEr1Cm8/uXlwxd66mPbcZ2JqXMO3r8455kxaGzZsiB4zZkzD0Z574IEHkhMSEgJFRUWb3W63nHLKKdkzZsyoAVi/fn3sZ599tjE7O9u7ZcsWR3FxcdTzzz+/o6CgYPeYMWNynnnmmaR169Z98eyzz/a55557Bk6ePHl7fn5+49q1a7+w2+289NJLrttuuy3tjTfe2A6wadOmmMLCwk3R0dHBjIyM0f/zP/9TNnfu3Irc3NxRHo+nxOl0mqeffjr5r3/96+72fH+6nZd+OJgDm9r1HKH/qAYufPgbZ1u78MILa373u98NGjZs2OjTTz+95rLLLqs499xz6wDi4+MDGzZs2PzQQw8l3XLLLYNXrly5bdq0aXWzZs36wmKx8Kc//Sn57rvvHvDII4+UHLnfsrIy+7p16774/PPPoy666KKMOXPm9NoxgKEHdIHwBrwcbDh4YhfAuUP/bdtq+1Pnq8SVmARAwF2FpdZKRaKTdbU+LAFDXlw0hZXV5AyI4/33V9CvXz+GDRvWni+l81TshDfvhM3LIWEIXPsvGDIh0qmUUqpXueqqq4asXbs2zm63m7S0NM8XX3wRs3z58r4AtbW11k2bNkU5HA4zZsyY+uzsbG/TdqmpqZ7x48e7ATIzM91TpkypsVgsnHzyyQ2//e1vBwFUVFRYL7300vRdu3ZFiYjx+XyHWzdOP/30mqSkpABARkZG4/bt250ZGRl1kyZNqn3++ecT8vLyGn0+nzQdQ3WuhISEYFFR0abXX3/d9fbbb7uuueaaEXfeeWcJwDXXXFMBcP3111f84he/GAywc+dOx4UXXph28OBBu9frtQwePNhztP2ef/75VVarlYKCgsby8vIeOG1t67R7ASwiOcCPgWTgbWPMX9r7GM2V1pdiMAyMG9jqbd0NuwCwlSfT4KvGlZRKsLERi7iJrRFKMhJ4v6IWKj0M7htDYXE1gUO7KS8v5/LLL0e6S2uptwH2fgKl62Hvp7DxxdDyU66Hs26H2OTI5lNKqU72TS21HSUvL8/98ssvH/7p+amnntqzf/9+27hx43JSU1O9999//56ZM2fWNN9mxYoVrpiYmGDzZQ6HwzTdt1gsREVFGQCr1UogEBCA+fPnp5555pm1b7755vYtW7Y4pkyZknW07a1W6+Hi+IYbbjh0zz33DMjMzGy88sorD7X36+92jtNS25FsNhvnnXde7XnnnVc7ZswY91NPPZUEoc+7iYgYgJtvvnnIj3/849IrrriiesWKFa677777qH1Cm84TCM1i29u1qA+wiDwmIgdEpOiI5eeIyBYR2SYitwMYYzYbY24Evgd0+NVU++v3AzAotvV9gOsbtgNgO5hIQ6AWV3Iynq1bsVq8xDSCf0BIw2jrAAAgAElEQVQ/vnSH+v/arIJVYOfnq8nOziYzM7NdX8cJ8XvBXQnVe+HQVtj3GexaDZ8+FRrR4dGpsHAs/HEELDkP3vg57F4NJ18F338Xzr1Pi1+llOokM2bMqPV4PLJgwYJ+Tcvq6uosANOmTav+y1/+0q/pYqf169c7a2pqTvg6nZqaGmtaWpoX4K9//WuL/kc/ZcqU+v379ztefPHFpLlz51ac6LFV2xQWFjo3bNjgbHr82WefRTd9lk8++WQiwN/+9re+Y8eOrYfQrwVDhgzxATzxxBNJkcjcHbW0BfgJ4CHgyaYFImIFHgamASXAxyKy3BizSUTOB24Pb9OhSutLARgY2/oW4Lq6L4hypmHxRtHgr8GV1I8D//6EaG89EEV1Smif9mofpYFa4i2NRDtsnHvuucfeqTFQfxAaKsBdAZ46CHgh6IOAL3Q/0Ox+S5d766Fqd2h/vvpQq27Qd+wcfYZA4vDQ35gkyJgKg06GuH7H3kYppVSHsVgsvPLKK9t/+MMfDl64cOGAxMREf0xMTOCuu+4qufbaayt37drlzMvLyzHGSGJiou/VV1/dfqLHmj9/ful1112XvnDhwgFnnHFGzfG3CLnwwgsr169fH9OvX7/AiR5btU1NTY31Rz/60ZCamhqr1Wo1w4YN8yxZsmT3uHHjEjwej4wZMyY7GAzK0qVLdwDccccd+y677LIRKSkp3nHjxtXv2bPHebxjKJCWNoOLyDBghTFmdPjxROAuY8z08OOfARhjftdsm38aY76hWgwZN26cWbduXavDAywqXMTDnz/MJ1d+gsPqaNW2H350NlHBNPotn8PK/c9xyUO/Z83PHifV9wf878az5JfXsGTAdL61YS9FZT4GR3l46gffpl+/oxSRh7bBmkWwYRk0nsioFhKagMLqAKst9NdiB6s9dN8eFSpmnQngiAFHLNhjj34/ui+k5IGlRwzzrJQ6BhH5xBij4xa2UGFh4a78/Hz9af8bTJ48OePWW28tu+CCC2ojnUV9VWpqat66des2Dxw40B/pLN1JYWFhcn5+/rAjl7elD3Aq0Lx/TAkwQUTOAi4GnMCrx9pYRG4AbgAYMmTICYcorS8lOTq51cWvx3OAhobtJMoUAGpNFVFxLhqqqqkRGzHA+j6Diap2M7xqPWtMPt+ZmPX14tddCe/+IVT8Wmww6sLQOLqxyRCdCE5XuKi1/+evpdn9puWWbjyahFJKqW7t0KFD1nHjxuXk5OQ0aPGreoO2FMBHuwLMGGPeAd453sbGmMUish+Y4XA4Ck40xP76/SfU/aGy8iMAYqvG4LN4iUp0QSBA0CE0VNnACYW2FPIP7KHW0RcaYeywI4pfTx08dXGo723BNTD5Dojrf6IvRSmllIqI5OTkwK5du4qOv6aKlL17926IdIaepC2/kZcAg5s9TgP2tS1O6+2v38+A2NbP9NfQsBOwYDuYQoOpxZWUhHtvGcQ6CNZZOdBHCNgTsdT5yBp/FgDD+zWbidAYePkHsL8QZj0LM/6fFr9KKaWUUt1AWwrgj4GRIpIuIg5gFrC8fWK1jDGG0vrSEyqA3e7dREUNxJQHqPVU4Erqx97CvcTYqrDWWahMcIBYOMQALNbQcHnJcc36la9ZBJtehql3QfZ/tc8LUkoppZRSHa6lw6A9B3wIZIlIiYjMNcb4gZuBN4DNwDJjzMbWHNwY84ox5oaEhITW5gZgV80u3H43w+KHtXrbBvduoqOGEqjxUFV/AFdSMhW7K+hj2Ud8tXAwPg6A7JRkKuq9xDisRNnD/XQDfnjvPhgxBU675YSyK6WUUkqpyGhRH2BjzGXHWP4q33Ch2/GIyAxgRkZGxgltv6pkFQCnp57e6m3d7j0kuaaAgTp/JYOSTqJ0o5vo4FaSA7B/QOjCvAkDE/hyXw2Jsc0ustv8MjQcgnHX6tTBSimllFLdTETHyWprC/CopFFcl3cdg+JaNwmG31+Lz1eB0x/ars5XhSspmZqaIKXecgDWZE+DgCG9bwzl9V6SmhfAqxdCvxzI0q4PSimlWi4mJmZspDOorm3Lli2OkSNH5jZfNm/evEF33nlnyttvvx07ZsyY7Ozs7FHDhw/PnTdvXutnAVNAB0yF3BptbQEeN2Ac4wa0fgjMBvduABzuFADq/aEC2OvZTFxZkEaHhe2Dc7EW1+FODPDelwc5Kys8AkRpEez/HKbdrUOXKaWUajO/34/NFtGvY9VNzJ07N/25557bPnHiRLff76ewsDAq0pm6q27dAnyiPI2h2eOsNQkELYbGQD1xSclEOTeStt3K5uw4vA4H1r0NFFfWAzDz5LTQyA//+gVE9YGxV3VqZqWUUj3HihUrXBMmTMicMWNGelZWVi7A1KlTR+Tm5uZkZGTk3nfffYenL46JiRl7yy23pGZlZY3Kz8/PLi4u1mq5l6qoqLA1TXtss9koKChojHSm7qpbtwCfKL8/PCtkpR2f3YPdGYUzJpY+tRuJ9ghF4zOwAlLv52CtF4fNwrl5A2Hrm7BjJZzze4hJ7NTMSiml2s8bf3lg8KHi3THtuc/kwUMbpt90a/Hx1wxZv3597GeffbYxOzvbC/DMM8/sSklJCdTV1cnYsWNHXXnllZUDBgwIuN1uy8SJE+sefPDBvTfeeGPagw8+2O8Pf/jD/vbMrr7ul6t/OXhb5bZ2PUcy+mY0/GbSb1p8jhzphhtuKMvJyRk9YcKE2rPPPrv6hz/8YXlMTEzLpvRVX9ErW4CbCmBTYadRGojp04fi7TuJrTpAEFgzfDhx7iBiYF+Vm/SkWCwWgY8fhfhUOOW6Ts2rlFKq5xkzZkx9U/ELsGDBgpSsrKxRBQUFOaWlpfaNGzdGAdjtdjNr1qxqgIKCgvrdu3e3bupT1a3IMS6uFxHuu+++/R9++OHmqVOn1ixbtizprLPOyuzkeD1Gr/wZxdfUAnxIaAjWEBOfwEerVpNR5WZfEuy09cGzr46+Ths7D9WTNcAFDRWw/W049Qeh6YuVUkp1W61pqe0oMTExwab7K1ascL377ruudevWfeFyuYLjx4/PcrvdFgCbzWYsllB7lc1mw+/36/BDnaAtLbVtkZKS4q+urv7KRUYVFRXW9PR0D0Bubq4nNzf34Lx58w4mJSWdVFpaah0wYEAgElm7s4i2AIvIDBFZXF1d3anH9ftrsFpiwSvUeisIxCWwadc2HIf8bB8o+K3xWCq8PHJ1AXsqGkhPjoXPn4WgH0bP7NSsSimler6qqiprQkJCwOVyBT/77LOowsLC2ONvpXqihISEYP/+/X0vv/yyC6CsrMz6zjvvJEyZMqVu6dKlCcFg6N9NGzZsiLJarSY5OVmL3xPQO7tA+GqwWeIBKG08wB6vYWCtG6vHsGmIYCzxDBYL/VxO/EFDelIMrLof0s+EgfmdmlUppVTPN3PmzGq/3y+ZmZmjfv7znw/Kz8+vj3QmFTlLlizZee+99w7Mzs4edeaZZ2bNnz9/X25urufpp59OGj58+Ojs7OxRV199dfqjjz66U0cQOTG98l3z+auxmlgMhl0xQRAhv+wQAFsHCYFgAt8bm8a+qtDFlUPtleCugLzv6sQXSimlTlhDQ8NnAOedd17teeedV9u0PDo62rz33ntbv2kbgDlz5lTOmTOnsuOTqkgqKChoXLNmzZdHLl+xYsWOSOTpiSLaAhwpfn8t1kAs5VKLN8pJdloq0Qf2ELQYyhLtGE8iZ4zsx74qNwCDqj4NbTh4fARTK6WUUkqp9tBr+wBbfDEUOYohGGR4XCxWdw3lieCNGozdB/lpCeyrbsQikLJtGSRnQbJebKmUUkop1d310j7A1XjdVrZJKY6KMqIafVgbGyntK3ht/Uhz2rFZLeyrctM/1oq95APIv1S7PyillFJK9QC9sguEz19DWV0DDrHhKC+locwDDT729bEQtLpIjQoNsbivvIZBnh0Q2w9OuiLCqZVSSimlVHvokAJYRC4UkUdE5GURObsjjnGijAkQCNRR6fWT60hDggFqS+ohCMV9IWiNJzXaAeXb2V+8g0HBUvjek+AaEOnoSimllFKqHbS4ABaRx0TkgIgUHbH8HBHZIiLbROR2AGPMS8aY64HZwKXtmriN/P668F8HQ4jH7ozCd7AcgIMJELTEU9C4EfPIt9kbSCA170wYelokIyullFJKqXbUmhbgJ4Bzmi8QESvwMPAdYBRwmYiMarbKL8LPdxl+f+iCuyh/PAFvI67kfjjr9wFwKF4IWuOZ9sn/UBE9DC92Bg4eHsm4SimlepCYmJixAFu2bHEsWrQo8Xjrb9myxTFy5Mjcjk+muoKjfd7z5s0bdOedd6Z803bvvfdezOzZswdDaFbBN998s9UTqaSmpubt37//a8PjNl++atWqmNTU1LzVq1dHP/PMMwk///nP2+Xn8RUrVrgmT56c0R77aqkWF8DGmPeAiiMWjwe2GWN2GGO8wFLgAglZALxmjPm0/eK2XWNjaPjEBG9f3O5a4vsm4vSGxgA+FA9icWHPuoiKmcsASIpzRiyrUkqpnmnr1q3O559//rgFsFIt8a1vfavhiSeeKAb497//7Vq1alVcex9jzZo10bNmzRrx9NNPb580aZL7iiuuqL733ntL2/s4naWtfYBTgeZzZZeEl90CTAUuEZEbj7ahiNwgIutEZN3BgwfbGKPlSkq2A9DXn4i7toK43W/j9NcQsBvcUYLfn0xg2j1U+kL/COob4+i0bEoppXqHO+64I3XdunVx2dnZo37961/337Jli6OgoCBr1KhROaNGjco5WgteQUFB1gcffBDd9Pjkk0/OXrNmTfSR66mea/z48Vk33XRTal5eXs6wYcNGv/7663HwnxbULVu2OJ588sl+ixYtSsnOzh71+uuvx+3bt882ffr0EaNHj84ZPXp0zr/+9a9YgNLSUuukSZNG5uTkjLr88suHGmOOedzCwsKomTNnZjz22GM7J0+e3ACwcOHCpKuvvnoIwMyZM4fNnj178NixY7PT0tLyHn/88b4AgUCAK6+8ckhGRkbu5MmTM84888yMpudeeOGF+PT09NyCgoKsF154oU/TscrKyqxTp04dkZmZOSo/P//wOT5v3rxBF1988bBJkyaNTE1NzVuyZEmfG2+8MS0zM3PUGWecMdLj8bRqqK62zgR3tIMZY8xCYOE3bWiMWSwi+4EZDoejoI05WsQYw4YNn5IyAPr7k9ni2U3fqFgc3lpqXYA4CfricUXZqWrwAtAnxt4Z0ZRSSnWiihe+HOwrrY9pz33aB8Q2JF6SWXz8NeGee+7Ze//996esXLlyG0Btba1l1apVX8bExJgNGzY4L7vssuFFRUWbm28ze/bsQ48++mjyaaedVrx+/Xqn1+uVCRMmuNvzNaj/2PfzOwZ7tm5t13PEOXJkw6B772nROXIsfr9fNmzYsPn5559PuPvuuwedc845h2eMy8rK8l599dUH4+LiAnfffXcZwIwZM9LnzZtXNn369LqtW7c6pk+fPnLHjh0bb7/99kETJ06su++++/YvXbo04bnnnks+1jEvvfTSjMWLF++cPn163bHWKSsrs69bt+6Lzz//POqiiy7KmDNnTuWTTz7Zt7i42LFly5aNe/futY0ePXr07NmzyxsaGuTmm28e9uabb27Jzc31nHfeeYf7m952222D8vPzG956663ty5cvd11zzTXpX3zxxSaA3bt3Oz/44IMvP/3006gpU6ZkL1myZPuiRYtKpk2bNmLZsmUJV111VVVL38e2tgCXAIObPU4D9rVxnx1m//79HCrfD4AtEIXf+LAP/TYWdyMV8RaMtR8WX5Aou4Uqtw+AhGgtgJVSSnUsr9crl19++bDMzMxR3/3ud0ds37496sh1Zs+eXfnWW28leDweWbRoUfLll19+KBJZVceRY8w30Hz5d7/73UqA0047rb6kpOS4P1OvXr06/sc//vGQ7OzsUTNmzMioq6uzVlZWWj766CPXtddeWw4wa9as6vj4+MCx9jFp0qSav/3tb8l+v/+Yxzn//POrrFYrBQUFjeXl5XaAVatWxV188cWVVquVIUOG+E899dRagM8//zwqLS3Nk5eX57FYLFxxxRXlTftZu3ata+7cueXhfdZWVVXZysvLrQBTp06tdjqdZvz48e5AICCXXHJJDUBubq57586drfrJvq0twB8DI0UkHdgLzAIub+M+O8y2bduwWkIfngTs+IM+LNY+0OinNEEI2vrjMKETrbohVABrC7BSSvU8LW2p7Sz33HNPSv/+/X3/+Mc/dgaDQaKjo7/2y6jL5QqeccYZNc8++2yf5cuXJ37yySebIpG1t2hrS+2JSElJ8VdXV1ubL6uoqLCmp6d7mh5HRUUZAJvNRiAQOO7P/sYY1q1btzkuLu5rfRwslpa1gz7yyCN75syZM/Tqq68e+uyzz+4+2jpNuZqO2fzv0Ryr2D/aNiJiAJxOpwGwWq3YbDbTlN9iseD3+1vVBaI1w6A9B3wIZIlIiYjMNcb4gZuBN4DNwDJjzMaW7rMzZ4ILBoN8tuZ9ki2hf2RYgk78xoup8WM8huIE8Nn64wz36nju4z0AxDnb+m8EpZRS6qsSEhICdXV1hwud6upq68CBA31Wq5U///nPSYHA0RvjbrzxxkPz588fnJ+fX5+SknLMFjvVPSUkJAT79+/ve/nll10Q6g/7zjvvJEyZMuWYXQ+O5HK5ArW1tYfPrdNPP71mwYIF/ZseN/UjP/XUU2sfe+yxJIBly5bF19TUWL++txCLxcLLL7+8Y9u2bVG33nrroJZmOeOMM+peeumlvoFAgOLiYtuaNWtcACeddFJjSUmJY+PGjU6ApUuXHr4g9NRTT619/PHHkyDUt7lv377+xMTEYEuP2VItru6MMZcdY/mrwKsncnARmQHMyMjo4JEv6g+x7a+zqawfx8SB9dTynxZg+6ZQvf7JcMFn60+sX6is97LjYD0up+2Y/0JRSimlTtT48ePdNpvNZGVljbr88ssP3XrrrQdmzpw54qWXXup7+umn10ZHRx/1C/+MM85oiI2NDcyZM0e7P/RQS5Ys2fmDH/xgyPz58wcDzJ8/f19ubq7neNs1mTlzZtUll1wy4rXXXuvzwAMP7Fm8eHHxddddNyQzM3NUIBCQCRMm1J522ml7fv/73++bOXPm8FGjRuVMnDixbuDAgd5v2m90dLR57bXXtk2aNCnrd7/7nS82Nva4Rek111xT+dZbb7kyMzNz09PTG/Pz8+v79OkTiImJMQ8++ODu8847LyMxMdE/YcKEus2bN0cDLFiwYF9Td6Do6OjgE088sbOlr7015JuapzvLuHHjzLp16zpm5w0VsGQGr5al8Jl1DJdf1pcdexYy8u2/8u6BFxm9ZRfOxq1c+kMn1ck/Ia0+j79MHMkFD69m8VUFnJ2rM8AppbomEfnEGDMu0jm6i8LCwl35+fndunDctWuX/ayzzsravn17kdV6zAY7pbqM6upqS0JCQrC0tNR6yimn5KxevfqLIUOGHLszcTsrLCxMzs/PH3bk8oj+vt8pLcCbXoKyIkqTzmdATDLGWh86dsCOM8GFVFfgGeQHnASt8cRZLeyuaABgSFK7XvyplFJKnbCHHnoo6be//W3qvffeW6zFr+oupk2bNrKmpsbq8/nkpz/96f7OLH6/SUQLYGPMK8Ar48aNu77DDlK2CWN3UVYXJC89hWBgI4IDwUKMzYrTU8WBfqFW/KA1nnirleKmAjhRC2CllFJdw80331x+8803lx9/TaW6jrVr126JdIajaeswaG0iIjNEZHF1dXXHHeTAZqqSTsLj8TBgwAACQTcWQrO7uSpCE9uVDg4VwMbiIsFuZXd5PclxTmIcegGcUkr1IMFgMKgXdijVS4T/ez9qX+WIFsAdPgqEMXBgI6UxWQAMGDAAv78Oi3FgjKFP0Xr8cXGU9BNsFgdGoki229hT0cBQ7f6glFI9TdHBgwcTtAhWqucLBoNy8ODBBKDoaM/37CbOujJwV7In2B+brRFj3qe09EWcwVR85V/iqKjAOyadUnsF0fa+IILdF+SjHRVcNDY10umVUkq1I7/ff11paemjpaWlo4lwA5BSqsMFgSK/33/d0Z7s2RfB7XyPzYMSsaQ9ysQhQb7cCn0STsH15Tl4N/+DQHQsttQovnQ6iYkeCkHDoYrQrJJTc1I6JpNSSqmIKCgoOACcH+kcSqnI67FdIHx7P+HzT++hZLiV+voU+iVfT07OAk4++RlsZamY8m3UZZ2COBvYbbMg9qHgCeDxB4l1WDl3zMB2z6SUUkoppSKvR3aB2Lt3Lyvf+hUDh9ThruvLmLw/M3z4GACCbjee5+4BoDFpJMb+GQER3NYUpCFIvTdASvzXpmBXSimllFI9RI8rgNeuXcuHH6xmxIgSLI0DmDz5dVwuFxCaX/rQ4sVQXUZwxJlU9skhyh4a8qycPljqfdQ1Bukf74zkS1BKKaWUUh2oR/UBDgaDvP7661it9UTH1jK873RcLhfGGKr+/neqlv2dxqIiGJhNMHcajV4LDXEewEG1JRFLvZ9qt5+RKXHtkkcppZRSSnU9PWoijOrqaoLBIFNzD+IG+qRdQMAfZOufHsc8dh/GZodzvkdJVH++cH3KFz4bqwY5AAha+2Ktr+JQnU+7QCillFJK9WA9qgtEeXk5sXHleOLexR6w4koaT9HSD7E8sZCqPiP5ZOyN4LXwRvZ9FEeXARAVDHJdbB6/EhvRRvD4g/R3aRcIpZRSSqmeqt0LYBEZDtwBJBhjLmnv/X+TQ4cOkdJ/B0E7jOl/M18+sxL7PT+i0WHnzit3c9A1//C63zv0baZ99DF5ozey5Vs/ACDBYuEgaAuwUkoppVQP1qJh0ETkMRE5ICJFRyw/R0S2iMg2EbkdwBizwxgztyPCHk/5/mLiXYdwNPTnraJRfLnkXrw2C7+6IsiAtCxu8E3kBu+pzN53LtP35THMs4dYY9g88EwAXBJ6O7QAVkoppZTquVraAvwE8BDwZNMCEbECDwPTgBLgYxFZbozZ1N4hW6qybB0DRpbz4vZcPjK/4a7GA3w+XOjnGsj8x9wEvtwAgOW/FlBfuwuby45BKLb3BXOAaGtTAaxdIJRSSimleqoWtQAbY94DKo5YPB7YFm7x9QJLgQvaOV/LNVQQMFvxGMObzh3UOssZVCmM2wa3L/Uh1bUMuOtXZBdtwGK140gfStIVlyDOeMr9QSw+g01C08P3d2kLsFJKKaVUT9WWPsCpQHGzxyXABBFJAu4BxorIz4wxvzvaxiJyA3ADwJAhQ9oQI8R88So+q5VDfkGMYfGmSVgD7+EYMYIR/1zx1WNjQWwWxFMDUfEc8vox3gAGiI+yEe2wtjmPUkoppZTqmtpSAMtRlhljTDlw4/E2NsYsFpH9wAyHw1HQhhxQuYvGlX/E12cEb1XbOf8jQ8I774HFgiMt7cjjYsGCWC3QWAPOeMoavYgniC8Q1P6/SimllFI9XIu6QBxDCTC42eM0YF/b4pygt35NbW0t26yVbHRbufS9IADidOIYNuwrq/p9XixiRWwWCLcAH/T6wRvArdMgK6WUUkr1eG0pgD8GRopIuog4gFnA8tbswBjzijHmhoSEhDbEAGr28pr9XMrFgy0AtiAkXn89xu3G2rfPV1b1e0MFsMVmhcZqcMZT5Q8gviA1jX6dBlkppZRSqodr6TBozwEfAlkiUiIic40xfuBm4A1gM7DMGLOxNQcXkRkisri6urq1ub+qtpRaawyfUMsQE1rUWFgIgLVP36+s6mtsxCIWxG4FTw1BZzy1wSDiCVDt1lnglFJKKaV6uhb1ATbGXHaM5a8Cr7ZrotYyBurK2BR7AIChxgYEaFi7FnE4cGZlfmV1f6MHAIvdClW1eB2xoSc8QQJBQ4rOAqeUUkop1aO1pQtEm7VLF4jGat63w6rEdUQjfIc4AAbeey/Z6wuJGTv2K6v73V4gXAD73ARsMaEnfKF+w9oCrJRSSinVs0W0AG6XLhDuCpa54gE4zWJDPI7Qvp2Oo67ua2gEwGq3gq8Bny06tH4g1Heib+zRt1NKKaWUUj1D928B9tRRYXGSEojh7D6CNRAqYC1RR2/J9btDBbDNGSp4/fZQAUy4AI5ztmVkOKWUUkop1dV1/xZgbz3ltigSYmpxxlbhtKSE9u04el9en9sNgM0WCD22hluAg6ECOFYLYKWUUkqpHq37twB76/BYA0RZDAffvpWxJ38fOH4XCJs9VPA2dYHgcAGss8AppZRSSvVk3b650zTW4JUgDoSowFDE7wNCLcC1q0oINvi/sr5tW+ivPdwC7LWGu0o0FcCObv+WKKWUUkqpbxDRak9EZgAzMjIyTngfvj3FeMVgCzhw9Esm2FgHQKA2SPU/d4YmbG42aXNU0I4v6MHRJ/TSPeFRICRoEIEYh7YAK6WUUkr1ZBEtgI0xrwCvjBs37voT3Yev7ABeq8EWjMKZ1AfjLQ/tOzTcL/1/cBKOwa7D67+/9CnWvvR3fpL4U+A/LcBiQq2/IoJSSimllOq5ItoHuD3Ulx4gANj80VjtFoKNoT6+wcZQIWtN+OrFcN7GBhzR0YgvdDGcJ9wH2IL2/1VKKaWU6g26dYfXkpIS3vQVA2DzxWKnkfInngDAs6serEEsW5eCr/7wNgPL38GZuBc2vQyA2xoFxhD0Bol1deu3QymllFJKtUC37gO8feuXvJ1eDQZia4bi2rcGX/EOALy7PcQOKkZe+dFXtskBcAGfbwB7DHXR/RB3JRjwBoJtej1KKaWUUqrr69bDoJ126nicvmoSxDDwy5lYTWjEh8F/W0rqr8+g77Q+oRXnvAbzd8H8XbyRMI+nqy8OPb5tB7XOPmBCI0D899mZ7fCqlFJKKaVUV9atf/O32+3UW6FPeAizpgvYLHHRWGLs4A1PsJGQBtF9AfBZojL6y+4AAAyGSURBVPEax+HH3uB/ukdY9AI4pZRSSqker/tfBCdCTLjngliOKGAbwwVwVJ9jbu8LF89KKaWUUqp3aPcWYBGJBf4MeIF3jDHPtPcxmmsQIckfKnzFInylnHVXgVjA6TrqtgCeoPb7VUoppZTqTVrUAiwij4nIAREpOmL5OSKyRUS2icjt4cUXAy8YY64Hzm/nvF/TgBDjD70My5GvprEKohLgG7o2+Iy2ACullFJK9SYtbQF+AngIeLJpgYhYgYeBaUAJ8LGILAfSgA3h1QLtlvQoVu/6B3VGiPGGKl+xhv42fvYkGzbYGF62GgdxLHtvx+FtGg7WEXT7eCS87JlAXUdGVEoppZRSXUyLCmBjzHsiMuyIxeOBbcaYHQAishS4gFAxnAZ8zje0MIvIDcANAEOGDGltbgDeLX4NgNRyR2if4eVxG/7MBFeo9v5XoIB7Xt18eJvpB2ro5/Xw/8LLGqenope+KaWUUkr1Hm3pA5wKFDd7XAJMABYCD4nIucArx9rYGLNYRPYDMxwOR8GJBJh36gPMevgkykuHsHY0hyvg7QlncZnnCt6fP4XTHLEUyX/q8Lf+XMShXQ0U/Xo6ABkfFDErJZEXOXAiEZRSSimlVDfTlgL4aA2nxhhTD8xpyQ6MMa8Ar4wbN+76EwkQZY8jxgPlRywPio0GYoiL7/u1bWwWwSJCnDP00q0CTmu3HwxDKaWUUkq1UFsqvxJgcLPHacC+1uxARGaIyOLq6uo2xFBKKaWUUqrl2lIAfwyMFJF0EXEAs4Dl7RNLKaWUUkqpjtHSYdCeAz4EskSkRETmGmP8wM3AG8BmYJkxZmPHRVVKKaWUUqrtWjoKxGXHWP4q8OqJHrytfYCVUkoppZRqrYhe/aV9gJVSSimlVGeLaAFsjHnFGHNDQkJCJGMopZRSSqleREwXmApYRA4CuyMcIxk4FOEMLaE521d3yNkdMjbpLll7Ss6hxph+nRVGKaV6iogWwCIyA5gBvBLuDxzJLOuMMeMimaElNGf76g45u0PGJt0lq+ZUSqnerS0TYbRZ00VwkcyglFJKKaV6F50CTSmllFJK9SpaAP/H4kgHaCHN2b66Q87ukLFJd8mqOZVSqhfrEhfBKaWUUkop1Vm0BVgppZRSSvUqWgCrEyYiEukMSh2NnptKKaW+Sa8qgEUksdn9LvsFKSJXiUhepHO0gKvpThd/P7t8Tj03212X/8yhe5ybSinVE/WKAlhEzhGR94AHROR+ANMFOz+LSL6IFAIz6cKfjYhME5H3gftE5Dbosu/nd0RkJfCwiNwBXS+nnpvtS89NpZRSLdFlv8jaSkKsInIDcBdwP/ALoEBEvhPRcMf2X8DDxpgLjTGFkQ5zNCKSRuj9XAD8N3CmiCwIP9clWrBExCIiNwJ3A38EHgYmisi1kU0Woudmx9BzUymlVEv1yAJYRMSEBID3gdONMS8DjcABYKOIWJrWjWTOIxZlA6Xh534Sbh1M6PxkX3VEzmxggzHmFWNMLaEv8J+IyEhjjOkKhYYxJgjsAS4zxrxqjFkDvAX0iWwyPTfbm56bSimlTkSPK4BF5Gbg/8Jf0gONMZuMMX4RORl4CRgGzAf+1LRJhHPeKiKp4cX7gP4i8iKQCcwGnhCRfpHICF97P+OBL4HTRWRieJX+wEZCLZgRIyI/EJGZzRa9BewQEWv4cQ4Q0Z+Y9dxsX3puKqWUOlE9qgAWkYuAa4CFwBjgDhE5Kfx0JTDLGDMeuA2YLSLjwi0ykcyZD/xcRIYAhcDlwDZjzE3h+/HA6eHtOrUgOsr7uQDwAP8LfF9EVgNnAxcDJ4nIsM7uxygiLhFZBNwJLBGRpum9/eHPtunzdQJrjti2095PPTc7NKeem0oppVqlRxXAwATgL8aYlYT6Au4EfgxgjNlpjNkTvl8PLCP0Bd4Vcu4GfmaMWQrsB+wikhL+kvwQGAoRuUjmaO/nr40xfwOuB35ijLmc0E+6a4GaTs5H+Kfud40xA4AVhH72hnDrafinbzswGPhURNJE5Lqm5zoxqp6bHZtTz02llFIt1i0L4CNbR5o93kGoZQpjzG7gn0CMiJx/xPq/AHKBTV0k53Kgn4icDtwH+ICficgvgUuAd7tQzr4icpExxmeMWRte7zdALFAboZzLw39vBS4L9/kMNGtxywKSgB+F10062v46OHOXOjdbkTOi52Yrc0bs3PyGnF323FRKqd6sWxbAgL35g2atJS8ADSJyQfjxfuAdYBQcHnrofUJ9GC8xxpR2oZz/Bk4zxnwG/A74AogBpoaXdZWc7xD60kZERorIy8BoQi1uvkjkNMbUi4gl/Hn+GXg0vNwfXnUEoXMgHTjXGLOg+fbtrVnfzq58brYmZyTPzda+n5E6N4+as6udm0oppUK6VQEsIhNF5O/AH0VkVNMXTrPWlErgReAmERFjTDUQB0SHn98M3GiMudoYs7+L5YwN3zDGVBhjFhljfmaMKeliOeOAqPDzpcAPjTHnG2PKIpDTKuERE5oYY24H0sPbDBCRbEL9V083xtzUUZ97+Hh3hzMEmi1vasnrSudma3NG6tw8kfczEufmUXN2lXNTKaXU13WbAlhE+gMPAa8C5YT6T14LX2lNiQbeINQatFhEBgFjAW94vV3GmKKunrMztDGnL7xebUcWQS3IGTDGBEUkDmg+JNcCYDXwHjAg/LmvpYOIyDXAEuAXIvK98DJbOGNTS15XODfbnLMztDFnZ56b35izK5ybSimljq7bFMCErkj/0hjzOKGJA/4PuCDcioKI/JZQi1AKoUHwy4BngSrg95qzx+b8DaGfw0eHH38HuIXQUGK5xph3OiHjXmAKcA6hfrKY0PBmTS3Vd9E13kvN2bk5f0Xkz02llFJHIV21q5mIXEiob1yhMeafEhpv9APgHGPMdhFJJPRlEgP8mlDful8aY7Y320eMMaZBc/aenCIyCqg1xhR3Qsb1xpgV4YLHYozxSagf70pjzC/D6/YHHiCy76Xm7AI5O+PcVEop1ULGmC51A/oRmhTgPeBGQrNjXRJ+7vfAA+H7FkJjkD4CJDbb3qI5e2VOa4QyXhR+zhH+mwtUAylH2T6S76XmjFzODj839aY3velNb627dcUuECOA1caYbxljFhH6iXNe+LnngGwRmWpC45CWE/oZ1AMgoautO2vyAM3ZtXIGjrbTTsj4UwBjjFdErMaYjcDfCf8UH/7Zm/A6kXwvNWfkcnbGuamUUqoVukQBLCJXi8hZIhIDfAI8GV5uJTQe6sbwqhuApcADIpIBfJvQoPJ26PgvRM3Z+3K2IOOG8GMhPJ2tMeY64BoRqQTyjxwNQHNqTqWUUpFlO/4qHSP8xTGA0MUrQWA7oRmcfmyMKQu3qgREJIfwVdThQueJcP+624Fs4HpjTJXm1JwRytg3nNEARkSGEpqOdxWhYbg6bGQHzdk7cyqllGoHkeh3QbhPHKFB/58O37cBDwL/d8Q6TwLfC98f0GwfDs2pObtQxn7hv32A8V34vdSc3Tin3vSmN73prX1undoCLKExMu8GrCLyKhAPBODw8EE/AvaJyJnGmKYpVuuAnRIabP5iETnHGFNijOmwcUk1Z+/L2U4Z/8sYswfoyDGHNWcvzKmUUqp9dVofNRE5k1Bfur7ANuA3hAatnywi4+Hwz4l3A3eFt7ESmvTgBUJfTJNNxw9urzl7Wc52zLinozJqzt6bUymlVPvrzBbgIHCfMeYpABEZC6QDdwJ/AQrCF428SOgLaGg43yLgSWPMp5pTc/bijJqz9+ZUSinVzjrzKuVPgGXhFhQITQc6xBjzBKGfH28xoYud0oCgMWa3MWa7MebWTv6i0Zy9L2d3yKg5e29OpZRS7azTCmBjTIMxxmP+MybmNOBg+P4cIEdEVhAa8/UTOHxVdqfSnL0vZ3fIqDl7b06llFLtr9OHQQu3thhCExksDy+uBX4OjAZ2GmP2wuH+dxGhOdtXd8jZHTKC5mxv3SWnUkqp9hOJgdqDhCYwOASMCbew/JLQT4zvN33RdAGas311h5zdISNozvbWXXIqpZRqJxKJBg0RORX4IHx73Bjzt04P0QKas311h5zdISNozvbWXXIqpZRqH5EqgNOAq4A/GWM8nR6ghTRn++oOObtDRtCc7a275FRKKdU+IlIAK6WUUkopFSmR6AOslFJKKaVUxGgBrJRSSimlehUtgJVSSimlVK+iBbBSSimllOpVtABWSimllFK9ihbASimllFKqV9ECWCmllFJK9SpaACullFJKqV7l/wOL6sseULj2BAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "data_to_plot.plot(logy=True)\n", "plt.legend(loc=\"right\", bbox_to_anchor=(2.0, 0.5), ncol=2)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }