diff --git a/module2/exo2/exercice.ipynb b/module2/exo2/exercice.ipynb index 9ed74547bf62b7c1d3b9b8fcf9513c91d5d9ecff..517345fb13ba06b40e501aaffa25c750c9a18b58 100644 --- a/module2/exo2/exercice.ipynb +++ b/module2/exo2/exercice.ipynb @@ -4,7 +4,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Savoir faire un calcul simple soi-même\n", + "# Savoir faire un calcul simple par soi-même\n", "Je vais calculer la moyenne et l'écart-type, le min, la médiane et le max des données suivantes :\n", "\n", "14.0, 7.6, 11.2, 12.8, 12.5, 9.9, 14.9, 9.4, 16.9, 10.2, 14.9, 18.1, 7.3, 9.8, 10.9,12.2, 9.9, 2.9, 2.8, 15.4, 15.7, 9.7, 13.1, 13.2, 12.3, 11.7, 16.0, 12.4, 17.9, 12.2, 16.2, 18.7, 8.9, 11.9, 12.1, 14.6, 12.1, 4.7, 3.9, 16.9, 16.8, 11.3, 14.4, 15.7, 14.0, 13.6, 18.0, 13.6, 19.9, 13.7, 17.0, 20.5, 9.9, 12.5, 13.2, 16.1, 13.5, 6.3, 6.4, 17.6, 19.1, 12.8, 15.5, 16.3, 15.2, 14.6, 19.1, 14.4, 21.4, 15.1, 19.6, 21.7, 11.3, 15.0, 14.3, 16.8, 14.0, 6.8, 8.2, 19.9, 20.4, 14.6, 16.4, 18.7, 16.8, 15.8, 20.4, 15.8, 22.4, 16.2, 20.3, 23.4, 12.1, 15.5, 15.4, 18.4, 15.7, 10.2, 8.9, 21.0\n", @@ -26,7 +26,7 @@ "outputs": [], "source": [ "import numpy as np\n", - "values=np.array([14.0, 7.6, 11.2, 12.8, 12.5, 9.9, 14.9, 9.4, 16.9, 10.2, 14.9, 18.1, 7.3, 9.8, 10.9,12.2, 9.9, 2.9, 2.8, 15.4, 15.7, 9.7, 13.1, 13.2, 12.3, 11.7, 16.0, 12.4, 17.9, 12.2, 16.2, 18.7, 8.9, 11.9, 12.1, 14.6, 12.1, 4.7, 3.9, 16.9, 16.8, 11.3, 14.4, 15.7, 14.0, 13.6, 18.0, 13.6, 19.9, 13.7, 17.0, 20.5, 9.9, 12.5, 13.2, 16.1, 13.5, 6.3, 6.4, 17.6, 19.1, 12.8, 15.5, 16.3, 15.2, 14.6, 19.1, 14.4, 21.4, 15.1, 19.6, 21.7, 11.3, 15.0, 14.3, 16.8, 14.0, 6.8, 8.2, 19.9, 20.4, 14.6, 16.4, 18.7, 16.8, 15.8, 20.4, 15.8, 22.4, 16.2, 20.3, 23.4, 12.1, 15.5, 15.4, 18.4, 15.7, 10.2, 8.9, 21.0])\n", + "valeurs=np.array([14.0, 7.6, 11.2, 12.8, 12.5, 9.9, 14.9, 9.4, 16.9, 10.2, 14.9, 18.1, 7.3, 9.8, 10.9,12.2, 9.9, 2.9, 2.8, 15.4, 15.7, 9.7, 13.1, 13.2, 12.3, 11.7, 16.0, 12.4, 17.9, 12.2, 16.2, 18.7, 8.9, 11.9, 12.1, 14.6, 12.1, 4.7, 3.9, 16.9, 16.8, 11.3, 14.4, 15.7, 14.0, 13.6, 18.0, 13.6, 19.9, 13.7, 17.0, 20.5, 9.9, 12.5, 13.2, 16.1, 13.5, 6.3, 6.4, 17.6, 19.1, 12.8, 15.5, 16.3, 15.2, 14.6, 19.1, 14.4, 21.4, 15.1, 19.6, 21.7, 11.3, 15.0, 14.3, 16.8, 14.0, 6.8, 8.2, 19.9, 20.4, 14.6, 16.4, 18.7, 16.8, 15.8, 20.4, 15.8, 22.4, 16.2, 20.3, 23.4, 12.1, 15.5, 15.4, 18.4, 15.7, 10.2, 8.9, 21.0])\n", "#print(values[2])" ] }, @@ -46,13 +46,13 @@ "name": "stdout", "output_type": "stream", "text": [ - "14.113000000000001\n" + "moyenne des valeurs = 14.113000000000001\n" ] } ], "source": [ - "moyenne=values.mean()\n", - "print (moyenne)\n" + "valeurs_moyenne = valeurs.mean()\n", + "print ('moyenne des valeurs =',valeurs_moyenne)\n" ] }, { @@ -65,20 +65,55 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "4.334094455301447\n" + "écart-type des valeurs = 4.334094455301447\n" ] } ], "source": [ - "ecart_type=np.std(values, 0, ddof = 1)\n", - "print (ecart_type)" + "valeurs_ecart_type = np.std(valeurs, 0, ddof = 1)\n", + "print ('écart-type des valeurs = ', valeurs_ecart_type)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Calcul du min et du max" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "minimum des valeurs = 2.8\n", + "maximum des valeurs = 23.4\n" + ] + } + ], + "source": [ + "valeurs_min = valeurs.min()\n", + "valeurs_max = valeurs.max()\n", + "print('minimum des valeurs = ', valeurs_min)\n", + "print('maximum des valeurs = ', valeurs_max)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Calcul de la médiane" ] }, { @@ -86,7 +121,10 @@ "execution_count": null, "metadata": {}, "outputs": [], - "source": [] + "source": [ + "Valeurs_med = np.median(valeurs, 0)\n", + "Print( 'médiane des valeurs = ', Valeurs_med)" + ] } ], "metadata": {