"Etant donné que le pic de l'épidémie se situe en hiver, à cheval entre deux années civiles, nous définissons la période de référence entre deux minima de l'incidence, du 1er septembre de l'année $N$ au 1er septembre de l'année $N+1$.\n",
"Notre tâche est un peu compliquée par le fait que l'année ne comporte pas un nombre entier de semaines. Nous modifions donc un peu nos périodes de référence: à la place du 1er septembre de chaque année, nous utilisons le premier jour de la semaine qui contient le 1er septembre.\n",
"Comme l'incidence de syndrome de varicelle est très faible en été, cette modification ne risque pas de fausser nos conclusions.\n",
"Encore un petit détail: les données commencent en decembre 1990, ce qui rend la première année incomplète. Nous commençons donc l'analyse en 1992."
"Encore un petit détail: les données commencent en decembre 1990, ce qui rend la première année incomplète. Nous commençons donc l'analyse en 1992.L'année 2020 est incomplete nous arrêtons l'analye à 2019"
"En partant de cette liste des semaines qui contiennent un 1er septembre, nous obtenons nos intervalles d'environ un an comme les périodes entre deux semaines adjacentes dans cette liste. Nous calculons les sommes des incidences hebdomadaires pour toutes ces périodes.\n",
"Nous vérifions également que ces périodes contiennent entre 51 et 52 semaines, pour nous protéger contre des éventuelles erreurs dans notre code."
]
},
{
"cell_type": "code",
"execution_count": 88,
"metadata": {},
"outputs": [],
"source": [
"year = []\n",
"yearly_incidence = []\n",
"for week1, week2 in zip(first_septembre_week[:-1],\n",
"plt.title('Incidence annuelle') # Ajout d'un titre\n",
"plt.xlabel('Années') # Nom de la grandeur en abscisse\n",
"plt.ylabel('Incidence') # Nom de la grandeur en ordonnée\n",
"plt.grid()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Une liste triée permet de plus facilement répérer les valeurs les plus élevées (à la fin)."
]
},
{
"cell_type": "code",
"execution_count": 90,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"2002 516689\n",
"2018 542312\n",
"2017 551041\n",
"1996 564901\n",
"2019 584066\n",
"2015 604382\n",
"2000 617597\n",
"2001 619041\n",
"2012 624573\n",
"2005 628464\n",
"2006 632833\n",
"2011 642368\n",
"1993 643387\n",
"1995 652478\n",
"1994 661409\n",
"1998 677775\n",
"1997 683434\n",
"2014 685769\n",
"2013 698332\n",
"2007 717352\n",
"2008 749478\n",
"1999 756456\n",
"2003 758363\n",
"2004 777388\n",
"2016 782114\n",
"2010 829911\n",
"1992 832939\n",
"2009 842373\n",
"dtype: int64"
]
},
"execution_count": 90,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"yearly_incidence.sort_values()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Enfin, un histogramme montre bien que les épidémies fortes, qui touchent moins de 1,5% de la population française, sont assez rares: il y en eu 4 au cours des 20 dernières années."
]
},
{
"cell_type": "code",
"execution_count": 91,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.axes._subplots.AxesSubplot at 0x7f631fdaf390>"