{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# mon premier document" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "4" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "2+2" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "10\n" ] } ], "source": [ "x=10\n", "print(x)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "20\n" ] } ], "source": [ "x=x+10\n", "print(x)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## petit exemple de completion" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "mu, sigma= 100, 15" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([78.37950146, 95.82816446, 75.91133687, ..., 95.17911469,\n", " 97.85784035, 82.19899987])" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "x=np.random.normal(loc=mu, scale=sigma, size=10000)" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [], "source": [ "import matplotlib.pyplot as plt" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(array([1.000e+00, 1.700e+01, 2.350e+02, 9.920e+02, 2.543e+03, 3.141e+03,\n", " 2.147e+03, 7.770e+02, 1.340e+02, 1.300e+01]),\n", " array([ 32.59631646, 45.10928893, 57.62226139, 70.13523385,\n", " 82.64820632, 95.16117878, 107.67415124, 120.1871237 ,\n", " 132.70009617, 145.21306863, 157.72604109]),\n", " )" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAD8CAYAAACRkhiPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAElFJREFUeJzt3X+s3fV93/HnqyahJC0KzBfm2mZ2I2cboMYpnuct2pSGrriliukfkRy1xdKQXCGypVP3w26ltf3DEtvaZkMaTLRhmDYNstpkWAG6eF7XqBLFvTCCMcTDKx7c2MNuo650k9zaee+P80E5Mef6Ht97fc+9+Twf0tH5nvf38/1+3x/hy+ue7/me701VIUnq03dMugFJ0uQYApLUMUNAkjpmCEhSxwwBSeqYISBJHTMEJKljhoAkdcwQkKSOXTXpBuayevXq2rBhw6TbkKQV5bnnnvvjqpqaa9yyD4ENGzYwPT096TYkaUVJ8r/GGefpIEnqmCEgSR0zBCSpY4aAJHXMEJCkjhkCktQxQ0CSOmYISFLHDAFJ6tiy/8awtFxt2PPkxI598v47J3ZsfXvxnYAkdcwQkKSOGQKS1DFDQJI6NmcIJPnOJEeSfCXJsSS/2OrXJzmU5NX2fN3QNnuTnEhyPMkdQ/Xbkhxt6x5IkiszLUnSOMZ5J3AO+GhVfRDYDGxPsg3YAxyuqk3A4faaJDcDO4FbgO3Ag0lWtX09BOwGNrXH9kWciyTpMs0ZAjXw5+3lu9qjgB3A/lbfD9zVlncAj1fVuap6DTgBbE2yBri2qp6pqgIeG9pGkjQBY30mkGRVkheAM8ChqnoWuLGqTgO05xva8LXAG0Obz7Ta2rZ8cV2SNCFjhUBVXaiqzcA6Br/V33qJ4aPO89cl6u/cQbI7yXSS6bNnz47ToiRpHi7r6qCq+lPgvzE4l/9mO8VDez7Ths0A64c2WwecavV1I+qjjvNwVW2pqi1TU3P+nWRJ0jyNc3XQVJL3teVrgB8EvgocBHa1YbuAJ9ryQWBnkquTbGTwAfCRdsrorSTb2lVBdw9tI0magHHuHbQG2N+u8PkO4EBVfTHJM8CBJPcArwMfB6iqY0kOAC8D54H7qupC29e9wKPANcDT7SFJmpA5Q6CqXgQ+NKL+J8Dts2yzD9g3oj4NXOrzBEnSEvIbw5LUMUNAkjpmCEhSxwwBSeqYISBJHTMEJKljhoAkdcwQkKSOGQKS1DFDQJI6ZghIUscMAUnqmCEgSR0zBCSpY4aAJHXMEJCkjhkCktQxQ0CSOmYISFLHDAFJ6pghIEkdMwQkqWOGgCR1zBCQpI7NGQJJ1if53SSvJDmW5FOt/gtJvpbkhfb4kaFt9iY5keR4kjuG6rclOdrWPZAkV2ZakqRxXDXGmPPAz1TV80m+G3guyaG27tNV9UvDg5PcDOwEbgG+B/gvST5QVReAh4DdwB8ATwHbgacXZyrq1YY9T066BWnFmvOdQFWdrqrn2/JbwCvA2ktssgN4vKrOVdVrwAlga5I1wLVV9UxVFfAYcNeCZyBJmrfL+kwgyQbgQ8CzrfTJJC8meSTJda22FnhjaLOZVlvbli+uS5ImZOwQSPJdwG8DP11Vf8bg1M77gc3AaeCX3x46YvO6RH3UsXYnmU4yffbs2XFblCRdprFCIMm7GATAZ6vq8wBV9WZVXaiqbwC/Cmxtw2eA9UObrwNOtfq6EfV3qKqHq2pLVW2Zmpq6nPlIki7DOFcHBfgM8EpV/cpQfc3QsB8DXmrLB4GdSa5OshHYBBypqtPAW0m2tX3eDTyxSPOQJM3DOFcHfRj4SeBokhda7WeBTyTZzOCUzkngpwCq6liSA8DLDK4suq9dGQRwL/AocA2Dq4K8MkiSJmjOEKiq32f0+fynLrHNPmDfiPo0cOvlNChJunL8xrAkdcwQkKSOGQKS1DFDQJI6ZghIUscMAUnqmCEgSR0zBCSpY4aAJHXMEJCkjhkCktQxQ0CSOmYISFLHDAFJ6pghIEkdMwQkqWOGgCR1zBCQpI6N8zeGJS0zG/Y8OZHjnrz/zokcV1eO7wQkqWOGgCR1zBCQpI4ZApLUMUNAkjo2ZwgkWZ/kd5O8kuRYkk+1+vVJDiV5tT1fN7TN3iQnkhxPcsdQ/bYkR9u6B5LkykxLkjSOcd4JnAd+pqr+JrANuC/JzcAe4HBVbQIOt9e0dTuBW4DtwINJVrV9PQTsBja1x/ZFnIsk6TLNGQJVdbqqnm/LbwGvAGuBHcD+Nmw/cFdb3gE8XlXnquo14ASwNcka4NqqeqaqCnhsaBtJ0gRc1mcCSTYAHwKeBW6sqtMwCArghjZsLfDG0GYzrba2LV9clyRNyNghkOS7gN8Gfrqq/uxSQ0fU6hL1UcfanWQ6yfTZs2fHbVGSdJnGCoEk72IQAJ+tqs+38pvtFA/t+UyrzwDrhzZfB5xq9XUj6u9QVQ9X1Zaq2jI1NTXuXCRJl2mcq4MCfAZ4pap+ZWjVQWBXW94FPDFU35nk6iQbGXwAfKSdMnoryba2z7uHtpEkTcA4N5D7MPCTwNEkL7TazwL3AweS3AO8DnwcoKqOJTkAvMzgyqL7qupC2+5e4FHgGuDp9pAkTcicIVBVv8/o8/kAt8+yzT5g34j6NHDr5TQoSbpy/MawJHXMEJCkjhkCktQxQ0CSOmYISFLHDAFJ6pghIEkdMwQkqWOGgCR1zBCQpI4ZApLUMUNAkjpmCEhSxwwBSeqYISBJHTMEJKljhoAkdcwQkKSOGQKS1DFDQJI6ZghIUscMAUnqmCEgSR0zBCSpY3OGQJJHkpxJ8tJQ7ReSfC3JC+3xI0Pr9iY5keR4kjuG6rclOdrWPZAkiz8dSdLlGOedwKPA9hH1T1fV5vZ4CiDJzcBO4Ja2zYNJVrXxDwG7gU3tMWqfkqQlNGcIVNWXga+Pub8dwONVda6qXgNOAFuTrAGurapnqqqAx4C75tu0JGlxLOQzgU8mebGdLrqu1dYCbwyNmWm1tW354rokaYLmGwIPAe8HNgOngV9u9VHn+esS9ZGS7E4ynWT67Nmz82xRkjSXeYVAVb1ZVReq6hvArwJb26oZYP3Q0HXAqVZfN6I+2/4frqotVbVlampqPi1KksYwrxBo5/jf9mPA21cOHQR2Jrk6yUYGHwAfqarTwFtJtrWrgu4GnlhA35KkRXDVXAOSfA74CLA6yQzw88BHkmxmcErnJPBTAFV1LMkB4GXgPHBfVV1ou7qXwZVG1wBPt4ckaYLmDIGq+sSI8mcuMX4fsG9EfRq49bK6kyRdUX5jWJI6ZghIUscMAUnqmCEgSR0zBCSpY4aAJHXMEJCkjhkCktQxQ0CSOmYISFLHDAFJ6pghIEkdMwQkqWOGgCR1zBCQpI4ZApLUMUNAkjpmCEhSxwwBSeqYISBJHTMEJKljhoAkdcwQkKSOGQKS1LE5QyDJI0nOJHlpqHZ9kkNJXm3P1w2t25vkRJLjSe4Yqt+W5Ghb90CSLP50JEmXY5x3Ao8C2y+q7QEOV9Um4HB7TZKbgZ3ALW2bB5Osats8BOwGNrXHxfuUJC2xOUOgqr4MfP2i8g5gf1veD9w1VH+8qs5V1WvACWBrkjXAtVX1TFUV8NjQNpKkCZnvZwI3VtVpgPZ8Q6uvBd4YGjfTamvb8sV1SdIEXbXI+xt1nr8uUR+9k2Q3g1NH3HTTTYvTma6oDXuenHQLkuZhvu8E3myneGjPZ1p9Blg/NG4dcKrV142oj1RVD1fVlqraMjU1Nc8WJUlzmW8IHAR2teVdwBND9Z1Jrk6ykcEHwEfaKaO3kmxrVwXdPbSNJGlC5jwdlORzwEeA1UlmgJ8H7gcOJLkHeB34OEBVHUtyAHgZOA/cV1UX2q7uZXCl0TXA0+0hSZqgOUOgqj4xy6rbZxm/D9g3oj4N3HpZ3UmSrii/MSxJHTMEJKljhoAkdcwQkKSOGQKS1DFDQJI6ZghIUscMAUnqmCEgSR0zBCSpY4t9K2lJ38Ymdcvwk/ffOZHj9sB3ApLUMUNAkjpmCEhSxwwBSeqYISBJHTMEJKljhoAkdcwQkKSOGQKS1DFDQJI6ZghIUscMAUnqmCEgSR1bUAgkOZnkaJIXkky32vVJDiV5tT1fNzR+b5ITSY4nuWOhzUuSFmYx3gn8QFVtrqot7fUe4HBVbQIOt9ckuRnYCdwCbAceTLJqEY4vSZqnK3E6aAewvy3vB+4aqj9eVeeq6jXgBLD1ChxfkjSmhYZAAV9K8lyS3a12Y1WdBmjPN7T6WuCNoW1nWk2SNCEL/ctiH66qU0luAA4l+eolxmZErUYOHATKboCbbrppgS1KkmazoHcCVXWqPZ8BvsDg9M6bSdYAtOczbfgMsH5o83XAqVn2+3BVbamqLVNTUwtpUZJ0CfMOgSTvTfLdby8DPwS8BBwEdrVhu4An2vJBYGeSq5NsBDYBR+Z7fEnSwi3kdNCNwBeSvL2f36yq30nyh8CBJPcArwMfB6iqY0kOAC8D54H7qurCgrqXJC3IvEOgqv4I+OCI+p8At8+yzT5g33yPKUlaXH5jWJI6ZghIUscMAUnqmCEgSR0zBCSpY4aAJHXMEJCkjhkCktQxQ0CSOmYISFLHDAFJ6pghIEkdW+gfldEys2HPk5NuQdIK4jsBSeqYISBJHTMEJKljhoAkdcwQkKSOGQKS1DEvEZW07E3y0ueT9985sWMvBd8JSFLHDAFJ6pghIEkdMwQkqWNLHgJJtic5nuREkj1LfXxJ0jctaQgkWQX8e+CHgZuBTyS5eSl7kCR901K/E9gKnKiqP6qqvwAeB3YscQ+SpGapvyewFnhj6PUM8LeXuIcrzts5S98+JvXzvFTfT1jqEMiIWr1jULIb2N1e/nmS41e0q7mtBv54wj0s1Eqfw0rvH5zDcrBi+s+/mnXVuHP4a+McZ6lDYAZYP/R6HXDq4kFV9TDw8FI1NZck01W1ZdJ9LMRKn8NK7x+cw3Kw0vuHxZ/DUn8m8IfApiQbk7wb2AkcXOIeJEnNkr4TqKrzST4J/GdgFfBIVR1byh4kSd+05DeQq6qngKeW+rgLtGxOTS3ASp/DSu8fnMNysNL7h0WeQ6re8bmsJKkT3jZCkjpmCIyQZFWS/57ki+319UkOJXm1PV836R4vJcn7kvxWkq8meSXJ31lJc0jyT5IcS/JSks8l+c7l3n+SR5KcSfLSUG3WnpPsbbdOOZ7kjsl0/a1mmcO/af+OXkzyhSTvG1q3IuYwtO6fJqkkq4dqy2oOs/Wf5B+1Ho8l+ddD9QX3bwiM9inglaHXe4DDVbUJONxeL2f/DvidqvobwAcZzGVFzCHJWuAfA1uq6lYGFxDsZPn3/yiw/aLayJ7brVJ2Are0bR5st1SZtEd55xwOAbdW1fcB/wPYCytuDiRZD/wD4PWh2nKcw6Nc1H+SH2BwZ4Xvq6pbgF9q9UXp3xC4SJJ1wJ3Arw2VdwD72/J+4K6l7mtcSa4F/j7wGYCq+ouq+lNW0BwYXLBwTZKrgPcw+C7Jsu6/qr4MfP2i8mw97wAer6pzVfUacILBLVUmatQcqupLVXW+vfwDBt/tgRU0h+bTwD/nW7+cuuzmMEv/9wL3V9W5NuZMqy9K/4bAO/1bBv9YvjFUu7GqTgO05xsm0diYvhc4C/zHdkrr15K8lxUyh6r6GoPfdF4HTgP/p6q+xArp/yKz9Tzq9ilrl7i3+fiHwNNtecXMIcnHgK9V1VcuWrVS5vAB4O8leTbJ7yX5W62+KP0bAkOS/Chwpqqem3QvC3AV8P3AQ1X1IeD/svxOncyqnTffAWwEvgd4b5KfmGxXi26s26csJ0l+DjgPfPbt0ohhy24OSd4D/BzwL0etHlFbdnNg8DN9HbAN+GfAgSRhkfo3BL7Vh4GPJTnJ4A6nH03yG8CbSdYAtOczs+9i4maAmap6tr3+LQahsFLm8IPAa1V1tqr+Evg88HdZOf0Pm63nsW6fslwk2QX8KPDj9c1rylfKHN7P4BeKr7Sf63XA80n+KitnDjPA52vgCIOzFKtZpP4NgSFVtbeq1lXVBgYfuPzXqvoJBre22NWG7QKemFCLc6qq/w28keSvt9LtwMusnDm8DmxL8p72287tDD7YXin9D5ut54PAziRXJ9kIbAKOTKC/OSXZDvwL4GNV9f+GVq2IOVTV0aq6oao2tJ/rGeD728/JipgD8J+AjwIk+QDwbgY3kFuc/qvKx4gH8BHgi235rzC4uuPV9nz9pPubo/fNwDTwYvsHdN1KmgPwi8BXgZeAXweuXu79A59j8BnGXzL4H809l+qZwSmK/wkcB3540v1fYg4nGJx3fqE9/sNKm8NF608Cq5frHGb5b/Bu4Dfaz8PzwEcXs3+/MSxJHfN0kCR1zBCQpI4ZApLUMUNAkjpmCEhSxwwBSeqYISBJHTMEJKlj/x8yGQlS4PAgpQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.hist(x)" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAD8CAYAAACRkhiPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAElFJREFUeJzt3X+s3fV93/HnqyahJC0KzBfm2mZ2I2cboMYpnuct2pSGrriliukfkRy1xdKQXCGypVP3w26ltf3DEtvaZkMaTLRhmDYNstpkWAG6eF7XqBLFvTCCMcTDKx7c2MNuo650k9zaee+P80E5Mef6Ht97fc+9+Twf0tH5nvf38/1+3x/hy+ue7/me701VIUnq03dMugFJ0uQYApLUMUNAkjpmCEhSxwwBSeqYISBJHTMEJKljhoAkdcwQkKSOXTXpBuayevXq2rBhw6TbkKQV5bnnnvvjqpqaa9yyD4ENGzYwPT096TYkaUVJ8r/GGefpIEnqmCEgSR0zBCSpY4aAJHXMEJCkjhkCktQxQ0CSOmYISFLHDAFJ6tiy/8awtFxt2PPkxI598v47J3ZsfXvxnYAkdcwQkKSOGQKS1DFDQJI6NmcIJPnOJEeSfCXJsSS/2OrXJzmU5NX2fN3QNnuTnEhyPMkdQ/Xbkhxt6x5IkiszLUnSOMZ5J3AO+GhVfRDYDGxPsg3YAxyuqk3A4faaJDcDO4FbgO3Ag0lWtX09BOwGNrXH9kWciyTpMs0ZAjXw5+3lu9qjgB3A/lbfD9zVlncAj1fVuap6DTgBbE2yBri2qp6pqgIeG9pGkjQBY30mkGRVkheAM8ChqnoWuLGqTgO05xva8LXAG0Obz7Ta2rZ8cV2SNCFjhUBVXaiqzcA6Br/V33qJ4aPO89cl6u/cQbI7yXSS6bNnz47ToiRpHi7r6qCq+lPgvzE4l/9mO8VDez7Ths0A64c2WwecavV1I+qjjvNwVW2pqi1TU3P+nWRJ0jyNc3XQVJL3teVrgB8EvgocBHa1YbuAJ9ryQWBnkquTbGTwAfCRdsrorSTb2lVBdw9tI0magHHuHbQG2N+u8PkO4EBVfTHJM8CBJPcArwMfB6iqY0kOAC8D54H7qupC29e9wKPANcDT7SFJmpA5Q6CqXgQ+NKL+J8Dts2yzD9g3oj4NXOrzBEnSEvIbw5LUMUNAkjpmCEhSxwwBSeqYISBJHTMEJKljhoAkdcwQkKSOGQKS1DFDQJI6ZghIUscMAUnqmCEgSR0zBCSpY4aAJHXMEJCkjhkCktQxQ0CSOmYISFLHDAFJ6pghIEkdMwQkqWOGgCR1zBCQpI7NGQJJ1if53SSvJDmW5FOt/gtJvpbkhfb4kaFt9iY5keR4kjuG6rclOdrWPZAkV2ZakqRxXDXGmPPAz1TV80m+G3guyaG27tNV9UvDg5PcDOwEbgG+B/gvST5QVReAh4DdwB8ATwHbgacXZyrq1YY9T066BWnFmvOdQFWdrqrn2/JbwCvA2ktssgN4vKrOVdVrwAlga5I1wLVV9UxVFfAYcNeCZyBJmrfL+kwgyQbgQ8CzrfTJJC8meSTJda22FnhjaLOZVlvbli+uS5ImZOwQSPJdwG8DP11Vf8bg1M77gc3AaeCX3x46YvO6RH3UsXYnmU4yffbs2XFblCRdprFCIMm7GATAZ6vq8wBV9WZVXaiqbwC/Cmxtw2eA9UObrwNOtfq6EfV3qKqHq2pLVW2Zmpq6nPlIki7DOFcHBfgM8EpV/cpQfc3QsB8DXmrLB4GdSa5OshHYBBypqtPAW0m2tX3eDTyxSPOQJM3DOFcHfRj4SeBokhda7WeBTyTZzOCUzkngpwCq6liSA8DLDK4suq9dGQRwL/AocA2Dq4K8MkiSJmjOEKiq32f0+fynLrHNPmDfiPo0cOvlNChJunL8xrAkdcwQkKSOGQKS1DFDQJI6ZghIUscMAUnqmCEgSR0zBCSpY4aAJHXMEJCkjhkCktQxQ0CSOmYISFLHDAFJ6pghIEkdMwQkqWOGgCR1zBCQpI6N8zeGJS0zG/Y8OZHjnrz/zokcV1eO7wQkqWOGgCR1zBCQpI4ZApLUMUNAkjo2ZwgkWZ/kd5O8kuRYkk+1+vVJDiV5tT1fN7TN3iQnkhxPcsdQ/bYkR9u6B5LkykxLkjSOcd4JnAd+pqr+JrANuC/JzcAe4HBVbQIOt9e0dTuBW4DtwINJVrV9PQTsBja1x/ZFnIsk6TLNGQJVdbqqnm/LbwGvAGuBHcD+Nmw/cFdb3gE8XlXnquo14ASwNcka4NqqeqaqCnhsaBtJ0gRc1mcCSTYAHwKeBW6sqtMwCArghjZsLfDG0GYzrba2LV9clyRNyNghkOS7gN8Gfrqq/uxSQ0fU6hL1UcfanWQ6yfTZs2fHbVGSdJnGCoEk72IQAJ+tqs+38pvtFA/t+UyrzwDrhzZfB5xq9XUj6u9QVQ9X1Zaq2jI1NTXuXCRJl2mcq4MCfAZ4pap+ZWjVQWBXW94FPDFU35nk6iQbGXwAfKSdMnoryba2z7uHtpEkTcA4N5D7MPCTwNEkL7TazwL3AweS3AO8DnwcoKqOJTkAvMzgyqL7qupC2+5e4FHgGuDp9pAkTcicIVBVv8/o8/kAt8+yzT5g34j6NHDr5TQoSbpy/MawJHXMEJCkjhkCktQxQ0CSOmYISFLHDAFJ6pghIEkdMwQkqWOGgCR1zBCQpI4ZApLUMUNAkjpmCEhSxwwBSeqYISBJHTMEJKljhoAkdcwQkKSOGQKS1DFDQJI6ZghIUscMAUnqmCEgSR0zBCSpY3OGQJJHkpxJ8tJQ7ReSfC3JC+3xI0Pr9iY5keR4kjuG6rclOdrWPZAkiz8dSdLlGOedwKPA9hH1T1fV5vZ4CiDJzcBO4Ja2zYNJVrXxDwG7gU3tMWqfkqQlNGcIVNWXga+Pub8dwONVda6qXgNOAFuTrAGurapnqqqAx4C75tu0JGlxLOQzgU8mebGdLrqu1dYCbwyNmWm1tW354rokaYLmGwIPAe8HNgOngV9u9VHn+esS9ZGS7E4ynWT67Nmz82xRkjSXeYVAVb1ZVReq6hvArwJb26oZYP3Q0HXAqVZfN6I+2/4frqotVbVlampqPi1KksYwrxBo5/jf9mPA21cOHQR2Jrk6yUYGHwAfqarTwFtJtrWrgu4GnlhA35KkRXDVXAOSfA74CLA6yQzw88BHkmxmcErnJPBTAFV1LMkB4GXgPHBfVV1ou7qXwZVG1wBPt4ckaYLmDIGq+sSI8mcuMX4fsG9EfRq49bK6kyRdUX5jWJI6ZghIUscMAUnqmCEgSR0zBCSpY4aAJHXMEJCkjhkCktQxQ0CSOmYISFLHDAFJ6pghIEkdMwQkqWOGgCR1zBCQpI4ZApLUMUNAkjpmCEhSxwwBSeqYISBJHTMEJKljhoAkdcwQkKSOGQKS1LE5QyDJI0nOJHlpqHZ9kkNJXm3P1w2t25vkRJLjSe4Yqt+W5Ghb90CSLP50JEmXY5x3Ao8C2y+q7QEOV9Um4HB7TZKbgZ3ALW2bB5Osats8BOwGNrXHxfuUJC2xOUOgqr4MfP2i8g5gf1veD9w1VH+8qs5V1WvACWBrkjXAtVX1TFUV8NjQNpKkCZnvZwI3VtVpgPZ8Q6uvBd4YGjfTamvb8sV1SdIEXbXI+xt1nr8uUR+9k2Q3g1NH3HTTTYvTma6oDXuenHQLkuZhvu8E3myneGjPZ1p9Blg/NG4dcKrV142oj1RVD1fVlqraMjU1Nc8WJUlzmW8IHAR2teVdwBND9Z1Jrk6ykcEHwEfaKaO3kmxrVwXdPbSNJGlC5jwdlORzwEeA1UlmgJ8H7gcOJLkHeB34OEBVHUtyAHgZOA/cV1UX2q7uZXCl0TXA0+0hSZqgOUOgqj4xy6rbZxm/D9g3oj4N3HpZ3UmSrii/MSxJHTMEJKljhoAkdcwQkKSOGQKS1DFDQJI6ZghIUscMAUnqmCEgSR0zBCSpY4t9K2lJ38Ymdcvwk/ffOZHj9sB3ApLUMUNAkjpmCEhSxwwBSeqYISBJHTMEJKljhoAkdcwQkKSOGQKS1DFDQJI6ZghIUscMAUnqmCEgSR1bUAgkOZnkaJIXkky32vVJDiV5tT1fNzR+b5ITSY4nuWOhzUuSFmYx3gn8QFVtrqot7fUe4HBVbQIOt9ckuRnYCdwCbAceTLJqEY4vSZqnK3E6aAewvy3vB+4aqj9eVeeq6jXgBLD1ChxfkjSmhYZAAV9K8lyS3a12Y1WdBmjPN7T6WuCNoW1nWk2SNCEL/ctiH66qU0luAA4l+eolxmZErUYOHATKboCbbrppgS1KkmazoHcCVXWqPZ8BvsDg9M6bSdYAtOczbfgMsH5o83XAqVn2+3BVbamqLVNTUwtpUZJ0CfMOgSTvTfLdby8DPwS8BBwEdrVhu4An2vJBYGeSq5NsBDYBR+Z7fEnSwi3kdNCNwBeSvL2f36yq30nyh8CBJPcArwMfB6iqY0kOAC8D54H7qurCgrqXJC3IvEOgqv4I+OCI+p8At8+yzT5g33yPKUlaXH5jWJI6ZghIUscMAUnqmCEgSR0zBCSpY4aAJHXMEJCkjhkCktQxQ0CSOmYISFLHDAFJ6pghIEkdW+gfldEys2HPk5NuQdIK4jsBSeqYISBJHTMEJKljhoAkdcwQkKSOGQKS1DEvEZW07E3y0ueT9985sWMvBd8JSFLHDAFJ6pghIEkdMwQkqWNLHgJJtic5nuREkj1LfXxJ0jctaQgkWQX8e+CHgZuBTyS5eSl7kCR901K/E9gKnKiqP6qqvwAeB3YscQ+SpGapvyewFnhj6PUM8LeXuIcrzts5S98+JvXzvFTfT1jqEMiIWr1jULIb2N1e/nmS41e0q7mtBv54wj0s1Eqfw0rvH5zDcrBi+s+/mnXVuHP4a+McZ6lDYAZYP/R6HXDq4kFV9TDw8FI1NZck01W1ZdJ9LMRKn8NK7x+cw3Kw0vuHxZ/DUn8m8IfApiQbk7wb2AkcXOIeJEnNkr4TqKrzST4J/GdgFfBIVR1byh4kSd+05DeQq6qngKeW+rgLtGxOTS3ASp/DSu8fnMNysNL7h0WeQ6re8bmsJKkT3jZCkjpmCIyQZFWS/57ki+319UkOJXm1PV836R4vJcn7kvxWkq8meSXJ31lJc0jyT5IcS/JSks8l+c7l3n+SR5KcSfLSUG3WnpPsbbdOOZ7kjsl0/a1mmcO/af+OXkzyhSTvG1q3IuYwtO6fJqkkq4dqy2oOs/Wf5B+1Ho8l+ddD9QX3bwiM9inglaHXe4DDVbUJONxeL2f/DvidqvobwAcZzGVFzCHJWuAfA1uq6lYGFxDsZPn3/yiw/aLayJ7brVJ2Are0bR5st1SZtEd55xwOAbdW1fcB/wPYCytuDiRZD/wD4PWh2nKcw6Nc1H+SH2BwZ4Xvq6pbgF9q9UXp3xC4SJJ1wJ3Arw2VdwD72/J+4K6l7mtcSa4F/j7wGYCq+ouq+lNW0BwYXLBwTZKrgPcw+C7Jsu6/qr4MfP2i8mw97wAer6pzVfUacILBLVUmatQcqupLVXW+vfwDBt/tgRU0h+bTwD/nW7+cuuzmMEv/9wL3V9W5NuZMqy9K/4bAO/1bBv9YvjFUu7GqTgO05xsm0diYvhc4C/zHdkrr15K8lxUyh6r6GoPfdF4HTgP/p6q+xArp/yKz9Tzq9ilrl7i3+fiHwNNtecXMIcnHgK9V1VcuWrVS5vAB4O8leTbJ7yX5W62+KP0bAkOS/Chwpqqem3QvC3AV8P3AQ1X1IeD/svxOncyqnTffAWwEvgd4b5KfmGxXi26s26csJ0l+DjgPfPbt0ohhy24OSd4D/BzwL0etHlFbdnNg8DN9HbAN+GfAgSRhkfo3BL7Vh4GPJTnJ4A6nH03yG8CbSdYAtOczs+9i4maAmap6tr3+LQahsFLm8IPAa1V1tqr+Evg88HdZOf0Pm63nsW6fslwk2QX8KPDj9c1rylfKHN7P4BeKr7Sf63XA80n+KitnDjPA52vgCIOzFKtZpP4NgSFVtbeq1lXVBgYfuPzXqvoJBre22NWG7QKemFCLc6qq/w28keSvt9LtwMusnDm8DmxL8p72287tDD7YXin9D5ut54PAziRXJ9kIbAKOTKC/OSXZDvwL4GNV9f+GVq2IOVTV0aq6oao2tJ/rGeD728/JipgD8J+AjwIk+QDwbgY3kFuc/qvKx4gH8BHgi235rzC4uuPV9nz9pPubo/fNwDTwYvsHdN1KmgPwi8BXgZeAXweuXu79A59j8BnGXzL4H809l+qZwSmK/wkcB3540v1fYg4nGJx3fqE9/sNKm8NF608Cq5frHGb5b/Bu4Dfaz8PzwEcXs3+/MSxJHfN0kCR1zBCQpI4ZApLUMUNAkjpmCEhSxwwBSeqYISBJHTMEJKlj/x8yGQlS4PAgpQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "%matplotlib inline\n", "plt.hist(x)\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }