{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Analyse du risque de défaillance des joints toriques de la navette Challenger"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Le 27 Janvier 1986, veille du décollage de la navette *Challenger*, eu\n",
"lieu une télé-conférence de trois heures entre les ingénieurs de la\n",
"Morton Thiokol (constructeur d'un des moteurs) et de la NASA. La\n",
"discussion portait principalement sur les conséquences de la\n",
"température prévue au moment du décollage de 31°F (juste en dessous de\n",
"0°C) sur le succès du vol et en particulier sur la performance des\n",
"joints toriques utilisés dans les moteurs. En effet, aucun test\n",
"n'avait été effectué à cette température.\n",
"\n",
"L'étude qui suit reprend donc une partie des analyses effectuées cette\n",
"nuit là et dont l'objectif était d'évaluer l'influence potentielle de\n",
"la température et de la pression à laquelle sont soumis les joints\n",
"toriques sur leur probabilité de dysfonctionnement. Pour cela, nous\n",
"disposons des résultats des expériences réalisées par les ingénieurs\n",
"de la NASA durant les 6 années précédant le lancement de la navette\n",
"Challenger.\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Chargement des données\n",
"Nous commençons donc par charger ces données:"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
Date
\n",
"
Count
\n",
"
Temperature
\n",
"
Pressure
\n",
"
Malfunction
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
4/12/81
\n",
"
6
\n",
"
66
\n",
"
50
\n",
"
0
\n",
"
\n",
"
\n",
"
1
\n",
"
11/12/81
\n",
"
6
\n",
"
70
\n",
"
50
\n",
"
1
\n",
"
\n",
"
\n",
"
2
\n",
"
3/22/82
\n",
"
6
\n",
"
69
\n",
"
50
\n",
"
0
\n",
"
\n",
"
\n",
"
3
\n",
"
11/11/82
\n",
"
6
\n",
"
68
\n",
"
50
\n",
"
0
\n",
"
\n",
"
\n",
"
4
\n",
"
4/04/83
\n",
"
6
\n",
"
67
\n",
"
50
\n",
"
0
\n",
"
\n",
"
\n",
"
5
\n",
"
6/18/82
\n",
"
6
\n",
"
72
\n",
"
50
\n",
"
0
\n",
"
\n",
"
\n",
"
6
\n",
"
8/30/83
\n",
"
6
\n",
"
73
\n",
"
100
\n",
"
0
\n",
"
\n",
"
\n",
"
7
\n",
"
11/28/83
\n",
"
6
\n",
"
70
\n",
"
100
\n",
"
0
\n",
"
\n",
"
\n",
"
8
\n",
"
2/03/84
\n",
"
6
\n",
"
57
\n",
"
200
\n",
"
1
\n",
"
\n",
"
\n",
"
9
\n",
"
4/06/84
\n",
"
6
\n",
"
63
\n",
"
200
\n",
"
1
\n",
"
\n",
"
\n",
"
10
\n",
"
8/30/84
\n",
"
6
\n",
"
70
\n",
"
200
\n",
"
1
\n",
"
\n",
"
\n",
"
11
\n",
"
10/05/84
\n",
"
6
\n",
"
78
\n",
"
200
\n",
"
0
\n",
"
\n",
"
\n",
"
12
\n",
"
11/08/84
\n",
"
6
\n",
"
67
\n",
"
200
\n",
"
0
\n",
"
\n",
"
\n",
"
13
\n",
"
1/24/85
\n",
"
6
\n",
"
53
\n",
"
200
\n",
"
2
\n",
"
\n",
"
\n",
"
14
\n",
"
4/12/85
\n",
"
6
\n",
"
67
\n",
"
200
\n",
"
0
\n",
"
\n",
"
\n",
"
15
\n",
"
4/29/85
\n",
"
6
\n",
"
75
\n",
"
200
\n",
"
0
\n",
"
\n",
"
\n",
"
16
\n",
"
6/17/85
\n",
"
6
\n",
"
70
\n",
"
200
\n",
"
0
\n",
"
\n",
"
\n",
"
17
\n",
"
7/29/85
\n",
"
6
\n",
"
81
\n",
"
200
\n",
"
0
\n",
"
\n",
"
\n",
"
18
\n",
"
8/27/85
\n",
"
6
\n",
"
76
\n",
"
200
\n",
"
0
\n",
"
\n",
"
\n",
"
19
\n",
"
10/03/85
\n",
"
6
\n",
"
79
\n",
"
200
\n",
"
0
\n",
"
\n",
"
\n",
"
20
\n",
"
10/30/85
\n",
"
6
\n",
"
75
\n",
"
200
\n",
"
2
\n",
"
\n",
"
\n",
"
21
\n",
"
11/26/85
\n",
"
6
\n",
"
76
\n",
"
200
\n",
"
0
\n",
"
\n",
"
\n",
"
22
\n",
"
1/12/86
\n",
"
6
\n",
"
58
\n",
"
200
\n",
"
1
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Date Count Temperature Pressure Malfunction\n",
"0 4/12/81 6 66 50 0\n",
"1 11/12/81 6 70 50 1\n",
"2 3/22/82 6 69 50 0\n",
"3 11/11/82 6 68 50 0\n",
"4 4/04/83 6 67 50 0\n",
"5 6/18/82 6 72 50 0\n",
"6 8/30/83 6 73 100 0\n",
"7 11/28/83 6 70 100 0\n",
"8 2/03/84 6 57 200 1\n",
"9 4/06/84 6 63 200 1\n",
"10 8/30/84 6 70 200 1\n",
"11 10/05/84 6 78 200 0\n",
"12 11/08/84 6 67 200 0\n",
"13 1/24/85 6 53 200 2\n",
"14 4/12/85 6 67 200 0\n",
"15 4/29/85 6 75 200 0\n",
"16 6/17/85 6 70 200 0\n",
"17 7/29/85 6 81 200 0\n",
"18 8/27/85 6 76 200 0\n",
"19 10/03/85 6 79 200 0\n",
"20 10/30/85 6 75 200 2\n",
"21 11/26/85 6 76 200 0\n",
"22 1/12/86 6 58 200 1"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import numpy as np\n",
"import pandas as pd\n",
"import seaborn as sns\n",
"data = pd.read_csv(\"shuttle.csv\")\n",
"data"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Le jeu de données nous indique la date de l'essai, le nombre de joints\n",
"toriques mesurés (il y en a 6 sur le lançeur principal), la\n",
"température (en Farenheit) et la pression (en psi), et enfin le\n",
"nombre de dysfonctionnements relevés. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Inspection graphique des données\n",
"Les vols où aucun incident n'est relevé n'apportant aucun information\n",
"sur l'influence de la température ou de la pression sur les\n",
"dysfonctionnements, nous nous concentrons sur les expériences où au\n",
"moins un joint a été défectueux.\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Il est important de garder l'sensemble du jeux de donner si l'on souhaite obtenir une regression logistique adaptée à la situation. Un premier biais semble être lié à ce subsetting."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"#data = data[data.Malfunction>0]\n",
"#data"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"*Très bien, nous avons une variabilité de température importante mais\n",
"la pression est quasiment toujours égale à 200, ce qui devrait\n",
"simplifier l'analyse.*\n",
"\n",
"*Comment la fréquence d'échecs varie-t-elle avec la température ?*\n"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEKCAYAAAD9xUlFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAF9JJREFUeJzt3X2UXXV97/H3d5IACYlAg02VQAFJsVyBCOFJtDfx6Qa7JPUCBbyCl940ZUlul9y2htvVa6m1a1V8qHpFY+SiQldNVRBom14e1Ii0IASM4UHBuYBhEhogBshASGYy3/vH2bN7Mkxmzhlmz5lzeL/WmpWz9/mdne939pz5zN5nn9+JzESSJICuVhcgSZo8DAVJUslQkCSVDAVJUslQkCSVDAVJUqmyUIiIqyPiqYh4YC/3R0R8PiK6I2JDRJxQVS2SpMZUeaTwNWDxCPefAcwrvpYBX6qwFklSAyoLhcy8HfjlCEOWANdkzV3AgRHxuqrqkSSNbmoL/+9DgCfqlnuKdU8OHRgRy6gdTTB9+vQTDz300AkpsFEDAwN0dXXmyzOd2pt9tZ9O7W2i+nrkkUeeyczXjjaulaEQw6wbds6NzFwFrAJYsGBBrlu3rsq6mrZ27VoWLlzY6jIq0am92Vf76dTeJqqviPhFI+NaGbs9QP2f/HOBzS2qRZJEa0PhJuDC4iqkU4HnMvNlp44kSROnstNHEfENYCFwcET0AH8OTAPIzJXAGuA9QDfwInBRVbVIkhpTWShk5vmj3J/AJVX9/5Kk5nXeS/mSpDEzFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklSqNBQiYnFEPBwR3RFx2TD3HxAR/xARP4mIByPioirrkSSNrLJQiIgpwJXAGcAxwPkRccyQYZcAD2Xm8cBC4NMRsU9VNUmSRlblkcLJQHdmPpqZu4DVwJIhYxKYFREBzAR+CfRXWJMkaQSRmdVsOOJsYHFmLi2WLwBOyczldWNmATcBbwRmAedm5j8Ns61lwDKAOXPmnLh69epKah6r3t5eZs6c2eoyKtGpvdlX++nU3iaqr0WLFt2bmQtGGze1whpimHVDE+g/AeuBtwNvAG6NiB9m5vN7PChzFbAKYMGCBblw4cLxr/YVWLt2LZOtpvHSqb3ZV/vp1N4mW19Vnj7qAQ6tW54LbB4y5iLg+qzpBh6jdtQgSWqBKkPhHmBeRBxRvHh8HrVTRfU2Au8AiIg5wNHAoxXWJEkaQWWnjzKzPyKWAzcDU4CrM/PBiLi4uH8l8JfA1yLifmqnm1Zk5jNV1SRJGlmVrymQmWuANUPWray7vRl4d5U1SJIa5zuaJUklQ0GSVDIUJEklQ0GSVDIUJEklQ0GSVDIUJEklQ0GSVDIUJEklQ0GSVDIUJEklQ0GSVDIUJEklQ0GSVDIUJEklQ0GSVDIUJEklQ0GSVDIUJEklQ0GSVDIUJEklQ0GSVDIUJEklQ0GSVDIUJEklQ0GSVDIUJEklQ0GSVDIUJEklQ0GSVDIUJEklQ0GSVDIUJEklQ0GSVKo0FCJicUQ8HBHdEXHZXsYsjIj1EfFgRPygynokSSOb2sigiHhTZj7QzIYjYgpwJfAuoAe4JyJuysyH6sYcCHwRWJyZGyPiV5v5PyRJ46vRI4WVEXF3RHyo+EXeiJOB7sx8NDN3AauBJUPGvB+4PjM3AmTmUw1uW5JUgcjMxgZGzAN+DzgHuBv4ambeOsL4s6kdASwtli8ATsnM5XVjPgtMA/4DMAv4XGZeM8y2lgHLAObMmXPi6tWrG+tugvT29jJz5sxWl1GJTu3NvtpPp/Y2UX0tWrTo3sxcMOrAzGz4C5gCnAVsAn4K/Az4z3sZew5wVd3yBcD/HjLmC8BdwP7AwcDPgd8YqYYTTzwxJ5vvf//7rS6hMp3am321n07tbaL6AtZlA7/nG31N4TjgIuC3gVuB92bmfRHxeuBO4PphHtYDHFq3PBfYPMyYZzLzBeCFiLgdOB54pJG6JEnjq9HXFL4A3Accn5mXZOZ9AJm5GfizvTzmHmBeRBwREfsA5wE3DRlzI/C2iJgaETOAU6gdgUiSWqChIwXgPcCOzNwNEBFdwH6Z+WJmXjvcAzKzPyKWAzdTO+10dWY+GBEXF/evzMyfRsT/BTYAA9RONzV1lZMkafw0Ggq3Ae8EeovlGcAtwFtGelBmrgHWDFm3csjyJ4FPNliHJKlCjZ4+2i8zBwOB4vaMakqSJLVKo6HwQkScMLgQEScCO6opSZLUKo2ePvow8K2IGLx66HXAudWUJElqlYZCITPviYg3AkcDAfwsM/sqrUySNOEaPVIAOAk4vHjMmyOCHObdx5Kk9tXom9euBd4ArAd2F6sTMBQkqYM0eqSwADimeKu0JKlDNXr10QPAr1VZiCSp9Ro9UjgYeCgi7gZ2Dq7MzDMrqUqS1BKNhsLlVRYhSZocGr0k9QcR8evAvMy8rZi8bkq1pUmSJlpDrylExO8D3wa+XKw6BLihqqIkSa3R6AvNlwCnA88DZObPAT9PWZI6TKOhsDNrn7MMQERMpfY+BUlSB2k0FH4QEX8KTI+IdwHfAv6hurIkSa3QaChcBjwN3A/8AbXPSNjbJ65JktpUo1cfDQBfKb4kSR2q0bmPHmOY1xAy88hxr0iS1DLNzH00aD/gHOBXxr8cSVIrNfSaQmZurfvalJmfBd5ecW2SpAnW6OmjE+oWu6gdOcyqpCJJUss0evro03W3+4HHgd8d92okSS3V6NVHi6ouRJLUeo2ePvofI92fmZ8Zn3IkSa3UzNVHJwE3FcvvBW4HnqiiKElSazTzITsnZOZ2gIi4HPhWZi6tqjBJ0sRrdJqLw4Bddcu7gMPHvRpJUks1eqRwLXB3RHyH2jub3wdcU1lVkqSWaPTqo7+KiH8G3lasuigzf1xdWZKkVmj09BHADOD5zPwc0BMRR1RUkySpRRr9OM4/B1YA/7NYNQ3426qKkiS1RqNHCu8DzgReAMjMzTjNhSR1nEZDYVdmJsX02RGxf3UlSZJapdFQ+GZEfBk4MCJ+H7gNP3BHkjpOo1cffar4bObngaOBj2bmrZVWJkmacKMeKUTElIi4LTNvzcw/ycw/bjQQImJxRDwcEd0RcdkI406KiN0RcXYzxUuSxteooZCZu4EXI+KAZjYcEVOAK4EzgGOA8yPimL2M+wRwczPblySNv0bf0fwScH9E3EpxBRJAZv7hCI85GejOzEcBImI1sAR4aMi4/w5cR23CPUlSCzUaCv9UfDXjEPacRbUHOKV+QEQcQu1y17czQihExDJgGcCcOXNYu3Ztk6VUq7e3d9LVNF46tTf7aj+d2ttk62vEUIiIwzJzY2Z+fQzbjmHW5ZDlzwIrMnN3xHDDiwdlrgJWASxYsCAXLlw4hnKqs3btWiZbTeOlU3uzr/bTqb1Ntr5Ge03hhsEbEXFdk9vuAQ6tW54LbB4yZgGwOiIeB84GvhgRv9Pk/yNJGiejnT6q//P9yCa3fQ8wr5gjaRNwHvD++gGZWc6fFBFfA/4xM29AktQSo4VC7uX2qDKzPyKWU7uqaApwdWY+GBEXF/evbKpSSVLlRguF4yPieWpHDNOL2xTLmZmvGenBmbkGWDNk3bBhkJn/taGKJUmVGTEUMnPKRBUiSWq9Zj5PQZLU4QwFSVLJUJAklQwFSVLpVRMKW3t38pMnnmVr785WlyKpSVt7d7Kjb7fP3wnwqgiFG9dv4vRPfI8PXPUjTv/E97hp/aZWlySpQYPP38eefsHn7wTo+FDY2ruTFddt4KW+Abbv7OelvgE+ct0G/+KQ2kD983d3ps/fCdDxodCzbQfTuvZsc1pXFz3bdrSoIkmN8vk78To+FOYeNJ2+gYE91vUNDDD3oOktqkhSo3z+TryOD4XZM/flirOOY79pXczadyr7TeviirOOY/bMfVtdmqRR1D9/p0T4/J0AjX7ITls7c/4hnH7UwfRs28Hcg6b7AyW1kcHn79133sG/nPlWn78Ve1WEAtT+4vCHSWpPs2fuy/RpU3wOT4COP30kSWqcoSBJKhkKkqSSoSBJKhkKkqSSoSBJKhkKkqSSoSBJKhkKkqSSoSBJKhkKkqSSoSBJKhkKkqSSoSBJKhkKkqSSoSBJKhkKkqSSoSBJKhkKkqSSoSBJKhkKkqRSpaEQEYsj4uGI6I6Iy4a5/79ExIbi618j4vgq65EkjayyUIiIKcCVwBnAMcD5EXHMkGGPAf8xM48D/hJYVVU9kqTRVXmkcDLQnZmPZuYuYDWwpH5AZv5rZm4rFu8C5lZYjyRpFJGZ1Ww44mxgcWYuLZYvAE7JzOV7Gf/HwBsHxw+5bxmwDGDOnDknrl69upKax6q3t5eZM2e2uoxKdGpv9tV+OrW3iepr0aJF92bmgtHGTa2whhhm3bAJFBGLgP8GvHW4+zNzFcWppQULFuTChQvHqcTxsXbtWiZbTeOlU3uzr/bTqb1Ntr6qDIUe4NC65bnA5qGDIuI44CrgjMzcWmE9kqRRVPmawj3AvIg4IiL2Ac4DbqofEBGHAdcDF2TmIxXWIklqQGVHCpnZHxHLgZuBKcDVmflgRFxc3L8S+CgwG/hiRAD0N3LOS5JUjSpPH5GZa4A1Q9atrLu9FHjZC8uCrb076dm2g7kHTWf2zH3HbWw76dS+qtK9ZTvbXuyje8t2jpozq9XlqE1VGgoamxvXb2LFdRuY1tVF38AAV5x1HGfOP+QVj20nndpXVT56w/1cc9dG/ujYfi79m9u58LTD+NiSY1tdltqQ01xMMlt7d7Liug281DfA9p39vNQ3wEeu28DW3p2vaGw76dS+qtK9ZTvX3LVxj3XX3LmR7i3bW1SR2pmhMMn0bNvBtK49d8u0ri56tu14RWPbSaf2VZX1Tzzb1HppJIbCJDP3oOn0DQzssa5vYIC5B01/RWPbSaf2VZX5hx7Y1HppJIbCJDN75r5ccdZx7Deti1n7TmW/aV1ccdZxw77Q2szYdtKpfVXlqDmzuPC0w/ZYd+Fph/lis8bEF5onoTPnH8LpRx3c0JU3zYxtJ53aV1U+tuRYLjz1cO6/9y5uu/RUA0FjZihMUrNn7tvwL8JmxraTTu2rKkfNmUXPjGkGgl4RTx9JkkqGgiSpZChIkkqGgiSpZChIkkqGgiSpZChIkkqGgiSpZChIkkqGgiSpZChIkkqGgiSpZChIkkqGgiSpZChIkkqGgiSpZChIkkqGgiSpZChIkkqGgiSpZChIkkqGgiSpZChIkkqGgiSpZChIkkqGgiSpZChIkkqGgiSpVGkoRMTiiHg4Iroj4rJh7o+I+Hxx/4aIOKHKeqRmbe3dyU+eeJatvTtHHbvusa185paHWffY1nHbZjNju7dsZ9uLfXRv2T7q2GZUVW+zNezo2z3qdru3bOfb657o2O9BFdsdampVG46IKcCVwLuAHuCeiLgpMx+qG3YGMK/4OgX4UvGv1HI3rt/Eius2MK2ri76BAa446zjOnH/IsGM/cNVd3NFdC4PPf6+btx01m2uXnvqKttnM2I/ecD/X3LWRPzq2n0v/5nYuPO0wPrbk2DF2Xn29Y6nhD3+zj0s/8b29bnfwezCoE78H473d4VR5pHAy0J2Zj2bmLmA1sGTImCXANVlzF3BgRLyuwpqkhmzt3cmK6zbwUt8A23f281LfAB+5bsOwf6Wte2xrGQiDfti99WVHDM1ss5mx3Vu27/HLEOCaOze+4r+Wq6p3rDXsztzrdl8t34Px3O7eRGZWs+GIs4HFmbm0WL4AOCUzl9eN+UfgrzPzjmL5u8CKzFw3ZFvLgGXF4tHAw5UUPXYHA8+0uoiKdGpvI/YV06bPmHrQ634jurqmDK7LgYHd/duefCT7drxYP3bKrINfP2X/A1/2x8zuF559cvf2ZzaPZZvNjO2accDsqa957eEAu198jikzDgCg//mnHx948bmRz2WNoKp6x1rDYG/Dbbf+e1CvTb4H4/azOIpfz8zXjjaostNHQAyzbmgCNTKGzFwFrBqPoqoQEesyc0Gr66hCp/bWyX31P/dUx/UFndvbZPtZrPL0UQ9waN3yXGDzGMZIkiZIlaFwDzAvIo6IiH2A84Cbhoy5CbiwuArpVOC5zHyywpokSSOo7PRRZvZHxHLgZmAKcHVmPhgRFxf3rwTWAO8BuoEXgYuqqqdik/bU1jjo1N7sq/10am+Tqq/KXmiWJLUf39EsSSoZCpKkkqEwBhHxeETcHxHrI2Jdse7yiNhUrFsfEe9pdZ3NiogDI+LbEfGziPhpRJwWEb8SEbdGxM+Lfw9qdZ3N2ktfnbC/jq6rf31EPB8RH273fTZCX52wzy6NiAcj4oGI+EZE7DfZ9pevKYxBRDwOLMjMZ+rWXQ70ZuanWlXXKxURXwd+mJlXFVeMzQD+FPhlZv51MX/VQZm5oqWFNmkvfX2YNt9f9YppZTZRmybmEtp8nw0a0tdFtPE+i4hDgDuAYzJzR0R8k9rFNscwifaXRwoCICJeA/wW8H8AMnNXZj5LbSqSrxfDvg78TmsqHJsR+uo07wD+X2b+gjbfZ0PU99UJpgLTI2IqtT9ONjPJ9pehMDYJ3BIR9xZTcAxaXsz2enWrDwHH4EjgaeCrEfHjiLgqIvYH5gy+d6T491dbWeQY7K0vaO/9NdR5wDeK2+2+z+rV9wVtvM8ycxPwKWAj8CS192XdwiTbX4bC2JyemSdQm+X1koj4LWozvL4BmE9th3+6hfWNxVTgBOBLmflm4AXgZdOdt6G99dXu+6tUnBI7E/hWq2sZT8P01db7rAixJcARwOuB/SPiA62t6uUMhTHIzM3Fv08B3wFOzswtmbk7MweAr1CbJbad9AA9mfmjYvnb1H6Zbhmcubb496kW1TdWw/bVAfur3hnAfZm5pVhu9302aI++OmCfvRN4LDOfzsw+4HrgLUyy/WUoNCki9o+IWYO3gXcDD8SeU36/D3igFfWNVWb+G/BERBxdrHoH8BC1qUg+WKz7IHBjC8obs7311e77a4jz2fMUS1vvszp79NUB+2wjcGpEzIiIoPaz+FMm2f7y6qMmRcSR1I4OoHZq4u8y868i4lpqh7UJPA78QbvN4xQR84GrgH2AR6ld7dEFfBM4jNoP9TmZ+cuWFTkGe+nr87T5/gKIiBnAE8CRmflcsW427b/PhuurE55jfwGcC/QDPwaWAjOZRPvLUJAklTx9JEkqGQqSpJKhIEkqGQqSpJKhIEkqVfbJa9JEKy7F/G6x+GvAbmpTXEDtDYa7WlLYCCLi94A1xfsppJbzklR1pMk0a21ETMnM3Xu57w5geWaub2J7UzOzf9wKlOp4+kivChHxwYi4u5iH/4sR0RURUyPi2Yj4ZETcFxE3R8QpEfGDiHh0cL7+iFgaEd8p7n84Iv6swe1+PCLuBk6OiL+IiHuKefRXRs251N6M9ffF4/eJiJ6IOLDY9qkRcVtx++MR8eWIuJXa5H5TI+Izxf+9ISKWTvx3VZ3IUFDHi4g3UZsW4S2ZOZ/aadPzirsPAG4pJjjcBVxObfqBc4CP1W3m5OIxJwDvj4j5DWz3vsw8OTPvBD6XmScBxxb3Lc7MvwfWA+dm5vwGTm+9GXhvZl4ALAOeysyTgZOoTcx42Fi+P1I9X1PQq8E7qf3iXFebcobp1KZQANiRmbcWt++nNp1xf0TcDxxet42bM3MbQETcALyV2vNnb9vdxb9PhwLwjoj4E2A/4GDgXuCfm+zjxsx8qbj9buA3I6I+hOZRmyZBGjNDQa8GAVydmf9rj5W1Dzqp/+t8ANhZd7v++TH0xbccZbs7snjBrpjH5wvUZmfdFBEfpxYOw+nn34/gh455YUhPH8rM7yKNI08f6dXgNuB3I+JgqF2lNIZTLe+O2mc9z6A2J/6/NLHd6dRC5pliht2z6u7bDsyqW34cOLG4XT9uqJuBDxUBNPi5xtOb7El6GY8U1PEy8/5idsrbIqIL6AMupvZRiI26A/g7ah/ycu3g1UKNbDczt0btc6IfAH4B/Kju7q8CV0XEDmqvW1wOfCUi/g24e4R6vkxtVs31xamrp6iFlfSKeEmqNIriyp43ZeaHW12LVDVPH0mSSh4pSJJKHilIkkqGgiSpZChIkkqGgiSpZChIkkr/HzHofwgP0tIHAAAAAElFTkSuQmCC\n",
"text/plain": [
"
"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"%matplotlib inline\n",
"pd.set_option('mode.chained_assignment',None) # this removes a useless warning from pandas\n",
"import matplotlib.pyplot as plt\n",
"\n",
"data[\"Frequency\"]=data.Malfunction/data.Count\n",
"data.plot(x=\"Temperature\",y=\"Frequency\",kind=\"scatter\",ylim=[0,1])\n",
"plt.grid(True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"À première vue, ce n'est pas flagrant mais bon, essayons quand même\n",
"d'estimer l'impact de la température $t$ sur la probabilité de\n",
"dysfonctionnements d'un joint. \n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Estimation de l'influence de la température\n",
"\n",
"Supposons que chacun des 6 joints toriques est endommagé avec la même\n",
"probabilité et indépendamment des autres et que cette probabilité ne\n",
"dépend que de la température. Si on note $p(t)$ cette probabilité, le\n",
"nombre de joints $D$ dysfonctionnant lorsque l'on effectue le vol à\n",
"température $t$ suit une loi binomiale de paramètre $n=6$ et\n",
"$p=p(t)$. Pour relier $p(t)$ à $t$, on va donc effectuer une\n",
"régression logistique."
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"
Generalized Linear Model Regression Results
\n",
"
\n",
"
Dep. Variable:
Frequency
No. Observations:
23
\n",
"
\n",
"
\n",
"
Model:
GLM
Df Residuals:
21
\n",
"
\n",
"
\n",
"
Model Family:
Binomial
Df Model:
1
\n",
"
\n",
"
\n",
"
Link Function:
logit
Scale:
1.0000
\n",
"
\n",
"
\n",
"
Method:
IRLS
Log-Likelihood:
-3.9210
\n",
"
\n",
"
\n",
"
Date:
Mon, 24 May 2021
Deviance:
3.0144
\n",
"
\n",
"
\n",
"
Time:
13:26:19
Pearson chi2:
5.00
\n",
"
\n",
"
\n",
"
No. Iterations:
6
Covariance Type:
nonrobust
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
coef
std err
z
P>|z|
[0.025
0.975]
\n",
"
\n",
"
\n",
"
Intercept
5.0850
7.477
0.680
0.496
-9.570
19.740
\n",
"
\n",
"
\n",
"
Temperature
-0.1156
0.115
-1.004
0.316
-0.341
0.110
\n",
"
\n",
"
"
],
"text/plain": [
"\n",
"\"\"\"\n",
" Generalized Linear Model Regression Results \n",
"==============================================================================\n",
"Dep. Variable: Frequency No. Observations: 23\n",
"Model: GLM Df Residuals: 21\n",
"Model Family: Binomial Df Model: 1\n",
"Link Function: logit Scale: 1.0000\n",
"Method: IRLS Log-Likelihood: -3.9210\n",
"Date: Mon, 24 May 2021 Deviance: 3.0144\n",
"Time: 13:26:19 Pearson chi2: 5.00\n",
"No. Iterations: 6 Covariance Type: nonrobust\n",
"===============================================================================\n",
" coef std err z P>|z| [0.025 0.975]\n",
"-------------------------------------------------------------------------------\n",
"Intercept 5.0850 7.477 0.680 0.496 -9.570 19.740\n",
"Temperature -0.1156 0.115 -1.004 0.316 -0.341 0.110\n",
"===============================================================================\n",
"\"\"\""
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import statsmodels.api as sm\n",
"\n",
"data[\"Success\"]=data.Count-data.Malfunction\n",
"data[\"Intercept\"]=1\n",
"\n",
"logmodel=sm.GLM(data['Frequency'], data[['Intercept','Temperature']], family=sm.families.Binomial(sm.families.links.logit)).fit()\n",
"\n",
"logmodel.summary()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"L'estimateur le plus probable du paramètre de température est 0.0014\n",
"et l'erreur standard de cet estimateur est de 0.122, autrement dit on\n",
"ne peut pas distinguer d'impact particulier et il faut prendre nos\n",
"estimations avec des pincettes.\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"L'estimateur le plus probable du paramètre de temperature este de -0,1156 avec une erreur standard de 0,115. \n",
"ce resultat est assez conforme avec l'etude de *Dalal et al.*. Neanmoins la deviance associe au 21 degre de liberte est tres differente et je ne retourve pas la deviance de 18 mentionnee dans l'etude. Il semble que cet ecart provienne du fait que je ne donne par le nombre de replication de l'experience pour chaque etat.\n",
"voyons cela ...\n"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"
Generalized Linear Model Regression Results
\n",
"
\n",
"
Dep. Variable:
Frequency
No. Observations:
23
\n",
"
\n",
"
\n",
"
Model:
GLM
Df Residuals:
21
\n",
"
\n",
"
\n",
"
Model Family:
Binomial
Df Model:
1
\n",
"
\n",
"
\n",
"
Link Function:
logit
Scale:
1.0000
\n",
"
\n",
"
\n",
"
Method:
IRLS
Log-Likelihood:
-23.526
\n",
"
\n",
"
\n",
"
Date:
Mon, 24 May 2021
Deviance:
18.086
\n",
"
\n",
"
\n",
"
Time:
13:26:24
Pearson chi2:
30.0
\n",
"
\n",
"
\n",
"
No. Iterations:
6
Covariance Type:
nonrobust
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
coef
std err
z
P>|z|
[0.025
0.975]
\n",
"
\n",
"
\n",
"
Intercept
5.0850
3.052
1.666
0.096
-0.898
11.068
\n",
"
\n",
"
\n",
"
Temperature
-0.1156
0.047
-2.458
0.014
-0.208
-0.023
\n",
"
\n",
"
"
],
"text/plain": [
"\n",
"\"\"\"\n",
" Generalized Linear Model Regression Results \n",
"==============================================================================\n",
"Dep. Variable: Frequency No. Observations: 23\n",
"Model: GLM Df Residuals: 21\n",
"Model Family: Binomial Df Model: 1\n",
"Link Function: logit Scale: 1.0000\n",
"Method: IRLS Log-Likelihood: -23.526\n",
"Date: Mon, 24 May 2021 Deviance: 18.086\n",
"Time: 13:26:24 Pearson chi2: 30.0\n",
"No. Iterations: 6 Covariance Type: nonrobust\n",
"===============================================================================\n",
" coef std err z P>|z| [0.025 0.975]\n",
"-------------------------------------------------------------------------------\n",
"Intercept 5.0850 3.052 1.666 0.096 -0.898 11.068\n",
"Temperature -0.1156 0.047 -2.458 0.014 -0.208 -0.023\n",
"===============================================================================\n",
"\"\"\""
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import statsmodels.api as sm\n",
"\n",
"data[\"Success\"]=data.Count-data.Malfunction\n",
"data[\"Intercept\"]=1\n",
"\n",
"logmodel=sm.GLM(data['Frequency'], data[['Intercept','Temperature']], family=sm.families.Binomial(sm.families.links.logit),var_weights=data['Count']).fit()\n",
"\n",
"logmodel.summary()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Estimation de la probabilité de dysfonctionnant des joints toriques\n",
"La température prévue le jour du décollage est de 31°F. Essayons\n",
"d'estimer la probabilité de dysfonctionnement des joints toriques à\n",
"cette température à partir du modèle que nous venons de construire:\n"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEKCAYAAADpfBXhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xl4VOXd//H3dyb7QmLYISA7yA5hEXEBrYK2KiriinVBpHWp7SNVn199tE+16oNt1VZxQ3GpgisupYJa44JbQBBkX8UEkJ0kkD33748ZMGAgQzLJLPm8rivXzDlzn3O+dwY+c3LmnPuYcw4REYkunlAXICIiwadwFxGJQgp3EZEopHAXEYlCCncRkSikcBcRiUI1hruZPW1mW83s28O8bmb2sJmtMbPFZjYw+GWKiMjRCGTPfTow+givnwl09f9MBKbWvSwREamLGsPdOfcxsPMITc4FnnM+XwDpZtY6WAWKiMjRiwnCOtoC31eZzvXP23xoQzObiG/vnsTExKx27drVaoOVlZV4PNHxdYH6Ep6ipS/R0g9QX/ZbtWrVdudc85raBSPcrZp51Y5p4Jx7AngCYNCgQW7+/Pm12mB2djYjRoyo1bLhRn0JT9HSl2jpB6gv+5nZd4G0C8bHYC5QdRc8E9gUhPWKiEgtBSPc3wKu8J81czywxzn3k0MyIiLScGo8LGNmLwEjgGZmlgvcCcQCOOceA2YDZwFrgH3AVfVVrIiIBKbGcHfOXVLD6w64PmgViUhEKCsrIzc3l+Li4gbZXlpaGsuXL2+QbdW3QPqSkJBAZmYmsbGxtdpGML5QFZFGKDc3l9TUVDp06IBZdedVBFdBQQGpqan1vp2GUFNfnHPs2LGD3NxcOnbsWKttRMd5RSLS4IqLi2natGmDBHtjY2Y0bdq0Tn8VKdxFpNYU7PWnrr9bhbuISBTSMXcRiVher5c+ffocmJ41axYdOnQIXUFhROEuIhErMTGRRYsWHfb18vJyYmIaZ8zpsIyIRJXp06dz4YUXcvbZZ3PGGWcAMGXKFAYPHkzfvn258847D7S955576N69Oz/72c+45JJLeOCBBwAYMWIE+4dH2b59+4G/BioqKpg8efKBdT3++OPAj8MJjB07lh49enDZZZfhO0sccnJyOOGEE+jXrx9DhgyhoKCAUaNGHfShNHz4cBYvXhzU30Pj/EgTkaD649tLWbYpP6jr7NmmCXee3euIbYqKiujfvz8AHTt25I033gDg888/Z/HixWRkZDB37lxWr17NV199hXOOc845h48//pjk5GRmzJjBwoULKS8vZ+DAgWRlZR1xe9OmTSMtLY2cnBxKSkoYPnz4gQ+QhQsXsnTpUtq0acPw4cOZN28eQ4YM4aKLLmLmzJkMHjyY/Px8EhMTueKKK5g+fToPPvggq1atoqSkhL59+wbht/YjhbuIRKzDHZY5/fTTycjIAGDu3LnMnTuXAQMGAFBYWMjq1aspKCjgvPPOIykpCYBzzjmnxu3NnTuXxYsX8+qrrwKwZ88eVq9eTVxcHEOGDCEzMxOA/v37s2HDBtLS0mjdujWDBw8GoEmTJgCcd955DB8+nClTpvD0009z5ZVX1u0XUQ2Fu4jUWU172A0tOTn5wHPnHLfffjvXXXfdQW0efPDBw55uGBMTQ2VlJcBB55o75/j73//OqFGjDmqfnZ1NfHz8gWmv10t5eTnOuWq3kZSUxOmnn86bb77Jyy+/TG1HyD0SHXMXkag2atQonn76aQoLCwHIy8tj69atnHzyybzxxhsUFRVRUFDA22+/fWCZDh06sGDBAoADe+n71zV16lTKysoAWLVqFXv37j3stnv06MGmTZvIyckBfFemlpeXAzBhwgRuuukmBg8efOCvjGDSnruIRLUzzjiD5cuXM2zYMABSUlJ44YUXGDhwIBdddBH9+/fn2GOP5aSTTjqwzC233MK4ceN4/vnnOfXUUw/MnzBhAhs2bGDgwIE452jevDmzZs067Lbj4uKYOXMmN954I0VFRSQmJvL+++8DkJWVRZMmTbjqqnoaa9E5F5KfrKwsV1sffvhhrZcNN+pLeIqWvtRnP5YtW1Zv665Ofn5+va7/zjvvdFOmTKnXbeyXn5/v8vLyXNeuXV1FRcVh21X3OwbmuwAyVodlREQa2IsvvsjQoUO555576u3WgTosIyIC3HXXXQ22rUsvvfQnX/AGm/bcRaTWnKv2dskSBHX93SrcRaRWEhIS2LFjhwK+Hjj/eO4JCQm1XocOy4hIrWRmZpKbm8u2bdsaZHvFxcV1CrtwEkhf9t+JqbYU7iJSK7GxsbW+S1BtZGdnH7jKNNI1RF90WEZEJAop3EVEopDCXUQkCincRUSikMJdRCQKKdxFRKKQwl1EJAop3EVEopDCXUQkCincRUSiUMSF+77Sct7bUEZ5RWWoSxERCVsRF+7vLN7MP1eUMu7xz/lux+HvXSgi0phFXLiPG9SOSX3jWbO1kDMf+oSZORs15KiIyCEiLtwBjm8Tw7s3n0z/dunc+toSbnhxIXuKykJdlohI2IjIcAdok57IC9cM5dbRPZizdAtnPfQJX2/cFeqyRETCQsSGO4DHY/xqRGde/dUJeDww7rHPefLjdTpMIyKNXkDhbmajzWylma0xs9uqeT3NzN42s2/MbKmZXRX8Ug+vf7t03rnxJE47rgX3zF7OxOcX6DCNiDRqNYa7mXmBR4AzgZ7AJWbW85Bm1wPLnHP9gBHAX8wsLsi1HlFaYiyPXZ7F//yiJx+u2Mq5//iUFVvyG7IEEZGwEcie+xBgjXNunXOuFJgBnHtIGwekmpkBKcBOoDyolQbAzLj6xI7MmHg8+0orGPPIPN76ZlNDlyEiEnJW0/FpMxsLjHbOTfBPjweGOuduqNImFXgL6AGkAhc55/5VzbomAhMBWrZsmTVjxoxaFV1YWEhKSsoR2+wuqeTRRSWs2lXJWR1jGdstFo9ZrbZXnwLpS6RQX8JPtPQD1Jf9Ro4cucA5N6jGhs65I/4AFwJPVZkeD/z9kDZjgb8BBnQB1gNNjrTerKwsV1sffvhhQO1Kyirc/3tjsTv21nfcFdO+dHuKSmu9zfoSaF8igfoSfqKlH86pL/sB810Nue2cC+iwTC7Qrsp0JnDosY6rgNf9217jD/ceAay7XsXFeLh7TB/uPb8P89Zs5/xHP9NVrSLSKAQS7jlAVzPr6P+S9GJ8h2Cq2gicBmBmLYHuwLpgFloXlwxpz/PXDGV7YQnnPjKPL9btCHVJIiL1qsZwd86VAzcAc4DlwMvOuaVmNsnMJvmb/Qk4wcyWAB8AtzrnttdX0bUxrHNT3rx+OE2T4xg/7UveWJgb6pJEROpNTCCNnHOzgdmHzHusyvNNwBnBLS34jm2azOu/Gs6kFxbw25nfsHFHETed1gULwy9aRUTqIqKvUK2NtKRYnr16COcPbMvf3l/Fba8t0fDBIhJ1AtpzjzZxMR7+cmE/MtMTefg/a9hWWMI/Lh1AUlyj/HWISBRqdHvu+5kZvzujO/ec15vslVu59Mkv2bW3NNRliYgERaMN9/0uG3osUy/PYtnmfC58/HM27S4KdUkiInXW6MMdYFSvVjx71RC27Clm7NTPWLetMNQliYjUicLdb1jnpsyYeDzF5ZWMe/xzlm/WoGMiErkU7lX0bpvGy9cNI8bj4aLHP2ehbv4hIhFK4X6ILi1SeGXSMNKT4hg/7StyNuwMdUkiIkdN4V6NdhlJvHzdMFo0ieeKaV/x2ZqwuthWRKRGCvfDaJWWwMyJw2ifkcRV03P4eNW2UJckIhIwhfsRNE+N56WJx9OxWTITnpuvgBeRiKFwr0FGchwvXns8nZunMOG5+XykgBeRCKBwD0BGchwvThhK5+YpTHxuPvN0DF5EwpzCPUDHJMfxzwlD6dA0mWuezdGY8CIS1hTuRyEjOY5/XjuUzGOSuHp6Dgu+02mSIhKeFO5HqVlKPC9eO5SWTRK48ukcvs3bE+qSRER+QuFeCy1SE/jnhKE0SYxl/LQvWbmlINQliYgcROFeS23SE3nx2qHExXi4fNqXuvG2iIQVhXsdHNs0mReuGUp5RSWXPfUlW/YUh7okERFA4V5nXVum8uzVQ9i9r4zLp+mGHyISHhTuQdA3M50nrxjExp37uHJ6DntLykNdkog0cgr3IBnWuSn/uGQAS3J3M+mFBZSW66bbIhI6CvcgOqNXK+47vy+frN7Of73yDZWVLtQliUgjFRPqAqLNuMHt2LG3lPvfXUHzlHju+MVxmFmoyxKRRkbhXg8mndKJrQXFPD1vPS2bxHPdKZ1DXZKINDIK93pgZtzx855sKyjh3n+voEWTeM4bkBnqskSkEVG41xOPx/jLuH7sKCzl968upkVqAsO7NAt1WSLSSOgL1XoUH+PlsfFZdGqWwqTnF7B8c36oSxKRRkLhXs/SEmN55qrBJMfHcNUzOWzeUxTqkkSkEVC4N4A26Yk8c9VgCkvKueqZHAqKy0JdkohEOYV7AzmudRMevWwgq7cWcv2LCymr0EVOIlJ/FO4N6ORuzfnzeb35eNU2/ufNpTini5xEpH7obJkGdtHg9ny3Yx+PZq+lY7MkuoW6IBGJStpzD4FbzujOz/u05t5/r2D+Fg0yJiLBF1C4m9loM1tpZmvM7LbDtBlhZovMbKmZfRTcMqPL/nPg+7dL54nFJSzO3R3qkkQkytQY7mbmBR4BzgR6ApeYWc9D2qQDjwLnOOd6ARfWQ61RJSHWyxPjB5EaZ0x4dr5OkRSRoApkz30IsMY5t845VwrMAM49pM2lwOvOuY0AzrmtwS0zOjVPjee3WQnsK63gmunzNQ68iASN1XTGhpmNBUY75yb4p8cDQ51zN1Rp8yAQC/QCUoGHnHPPVbOuicBEgJYtW2bNmDGjVkUXFhaSkpJSq2XDTWFhIeuKEvjbghL6t/By44B4PBE6imS0vS/R0Jdo6QeoL/uNHDlygXNuUE3tAjlbprqkOfQTIQbIAk4DEoHPzewL59yqgxZy7gngCYBBgwa5ESNGBLD5n8rOzqa2y4ab7OxsbvrFCJq0Wc9dby8jp6Q1t47uEeqyaiXa3pdo6Eu09APUl6MVSLjnAu2qTGcCm6pps905txfYa2YfA/2AVUhAfnlCB1ZvLWRq9lq6NE/hgiyNIikitRfIMfccoKuZdTSzOOBi4K1D2rwJnGRmMWaWBAwFlge31OhmZtx1Ti9O6NyU219fwoLvdoa6JBGJYDWGu3OuHLgBmIMvsF92zi01s0lmNsnfZjnwLrAY+Ap4yjn3bf2VHZ1ivR4evWwgrdMTuO75BeTt1hk0IlI7AZ3n7pyb7Zzr5pzr7Jy7xz/vMefcY1XaTHHO9XTO9XbOPVhfBUe79KQ4pv1yECVllUx4VmfQiEjt6ArVMNSlRSoPXzqAlVvy+a+XdaNtETl6CvcwNbJ7C/77rON4d+kWHv7P6lCXIyIRRgOHhbFrTuzIii0FPPj+arq3TOXMPq1DXZKIRAjtuYcxM+Oe83ozsH06v3v5G5Zt0m36RCQwCvcwt/8+rGmJsVz73Hx2FJaEuiQRiQAK9wjQIjWBJ67IYnthCb/+59e6i5OI1EjhHiH6ZqZz/wV9+XL9Tv749tJQlyMiYU5fqEaQMQPasnxzPo9/vI6erdO4dGj7UJckImFKe+4R5veje3BKt+bc+da3zN+gIQpEpHoK9wjj9RgPXzyAzGOSmPTCAjZpiAIRqYbCPQKlJcXy5BVZFJdVct3zCyguqwh1SSISZhTuEapLi1T+dlF/luTt4fbXl1DTTVdEpHFRuEew03u25Hend+ONhXlM+3R9qMsRkTCicI9wN4zswuherfjz7OV8snpbqMsRkTChcI9wHo/xwLh+dGmRwg0vLmTjjn2hLklEwoDCPQqkxMfw5BW+++Ve+5zGgBcRhXvUOLZpMv+4dACrtxZwyyvf6AtWkUZO4R5FTuranNvO7MG/v93CIx+uCXU5IhJCCvcoc+1JnRjTvw1/eW8V7y/7IdTliEiIKNyjjJlx3wV96dWmCTfPXMSarYWhLklEQkDhHoUSYr08Pn4Q8TEeJj43nz1FZaEuSUQamMI9SrVNT2Tq5Vls3LmP38xYSIVusi3SqCjco9iQjhnceU4vsldu44G5K0Ndjog0II3nHuUuH9qeZZvymZq9lp6tm3B2vzahLklEGoD23KOcmfHHc3ox6NhjmPzqN3ybtyfUJYlIA1C4NwJxMR6mXp7FMUlxTHxuPtt1k22RqKdwbySap8bz5BWD2LG3lF+9sIDSct1kWySaKdwbkd5t0/i/sX3J2bCLO99aqiEKRKKYvlBtZM7t35blmwt47KO19GydyvhhHUJdkojUA+25N0KTR3Xn1B4t+OPby/hs7fZQlyMi9UDh3gh5PcZDF/enQ7Nkrv/n1xoDXiQKKdwbqdSEWJ66YhCVDiY8l0NBsYYoEIkmCvdGrEOzZB69bCBrt+3l5hmLNESBSBRRuDdyw7s0486ze/LBiq1MmaMhCkSihc6WEcYffywrt/jOoOnWMoXzB2aGuiQRqaOA9tzNbLSZrTSzNWZ22xHaDTazCjMbG7wSpb6ZGXed04thnZpy22tLWPDdzlCXJCJ1VGO4m5kXeAQ4E+gJXGJmPQ/T7n5gTrCLlPoX6/Uw9fKBtElPYOJzC8jdpTNoRCJZIHvuQ4A1zrl1zrlSYAZwbjXtbgReA7YGsT5pQOlJcUy7cjClFZVMeHa+zqARiWBW0yXo/kMso51zE/zT44GhzrkbqrRpC7wInApMA95xzr1azbomAhMBWrZsmTVjxoxaFV1YWEhKSkqtlg034diXpdsr+MuCYno383LzwHg8ZgEtF459qa1o6Uu09APUl/1Gjhy5wDk3qKZ2gXyhWt3/7EM/ER4EbnXOVdgRgsA59wTwBMCgQYPciBEjAtj8T2VnZ1PbZcNNOPZlBJCW+R1/mPUtnxS24M6zewW0XDj2pbaipS/R0g9QX45WIOGeC7SrMp0JbDqkzSBghj/YmwFnmVm5c25WUKqUBnf58ceybttenp63nk7NkjUGjUiECSTcc4CuZtYRyAMuBi6t2sA513H/czObju+wjII9wv2/nx/Hdzv2cudbS8nMSGJk9xahLklEAlTjF6rOuXLgBnxnwSwHXnbOLTWzSWY2qb4LlNDxeoyHLxnAca2bcMM/v2bZpvxQlyQiAQroPHfn3GznXDfnXGfn3D3+eY855x6rpu2V1X2ZKpEpOT6Gab8cTGpCLNc8m8OWPcWhLklEAqDhB6RGrdISmHblIPKLyrh6eg6FJeWhLklEaqBwl4D0apPGI5cNZOUPBdzw4teUV+g2fSLhTOEuARvRvQV/Orc32Su3cceb3+o2fSJhTAOHyVG5dGh7cnft49HstbRNT+SGU7uGuiQRqYbCXY7a5FHd2bKnmAfmrqJVWiJjszSKpEi4UbjLUTMz7rugL1sLSrjttcU0T43nlG7Na7WuWQvzmDJnJZt2F9EmPZHJo7ozZkDbIFcs9UXvX/jSMXeplbgY3yiS3Vqm8qsXFvDN97uPeh2zFuZx++tLyNtdhAPydhdx++tLmLUwL/gFS9Dp/QtvCneptdSEWKZfPZimKXFcPT2HLXuP7gyaKXNWUlRWcdC8orIK3REqQuj9C28Kd6mTFqkJPHvVEBzwwPxifsgP/CKnTbuLjmq+hBe9f+FN4S511ql5CtOvGkxhqeOKaV+xZ19g48C3SU88qvkSXvT+hTeFuwRF38x0bhqYwPrte7n62Rz2ldZ8FevkUd1JjPUeNC8x1svkUd3rq0wJIr1/4U3hLkHTs6mXBy/uz8KNu5j0wteUlh/5GPyYAW259/w+tE1PxIC26Ynce34fnW0RIfT+hTedCilBdVaf1tx3fl9+/9pifjtzEQ9fMgCv5/A3cBkzoK3CIILp/QtfCncJunGD25FfXMbd/1pOcryX+87vi+cIAS8iwadwl3ox4aROFBSX89AHq0mM9XLXOb040i0YRSS4FO5Sb27+WVf2lZbz5CfrSYjzctvoHgp4kQaicJd6Y2b891nHsa+0gsc/Wkd8jJffnd4t1GWJNAoKd6lXZsafzu1NaXklD3+wmliPceNpGklSpL4p3KXeeTy+gcYqKh1/eW8VMV4PvxrROdRliUQ1hbs0CK/HmHJhP8orHfe/uwKH49cjuoS6LJGopXCXBuP1GH8d1w8z+L93V+IcXD9SAS9SHxTu0qBivB7+Oq4/hm9UwfIKx02nddFZNCJBpnCXBuf1GH8Z1x+vx8Pf3l9FSXkFk0d1V8CLBJHCXULC6zGmjO1LXIyHR7PXUlxWyR2/OE4BLxIkCncJGY/H+PN5vYmP8fD0vPXsKy3nnvP6HHEsGhEJjMJdQsrMuPPsnqQmxPD3/6yhsKScv47rT1yMBiwVqQuFu4ScmfFfZ3QnJT6Ge/+9goLicqZePpCkOP3zFKkt7R5J2LjulM7cd34fPlm9jUuf/JJde0tDXZJIxFK4S1i5eEh7Hr0si2Wb87nw8c/J0/04RWpF4S5hZ3TvVjx71RB+yC/mvEfmsWxTfqhLEok4CncJS8M6N+WVScPwmDHu8c/5ZPW2UJckElEU7hK2erRqwhvXn0DmMYlc9UwOM3M2hrokkYihcJew1jotkVcmDWNY56bc+toS7n93BZWVLtRliYQ9hbuEvdSEWJ6+cjCXDGnP1Oy1/OqfC9hXWh7qskTCWkDhbmajzWylma0xs9uqef0yM1vs//nMzPoFv1RpzGK9Hv58Xm/u+EVP3lv2A2Onfs4mnUkjclg1hruZeYFHgDOBnsAlZtbzkGbrgVOcc32BPwFPBLtQETPjmhM7Mu3KwXy/cx9n//1Tvlq/M9RliYSlQPbchwBrnHPrnHOlwAzg3KoNnHOfOed2+Se/ADKDW6bIj0Z2b8Eb1w8nLTGWS5/8guc/34BzOg4vUpXV9J/CzMYCo51zE/zT44GhzrkbDtP+FqDH/vaHvDYRmAjQsmXLrBkzZtSq6MLCQlJSUmq1bLhRX2pvX5nj8cUlfLOtguFtYriiVxzx3uAMOhYt70u09APUl/1Gjhy5wDk3qMaGzrkj/gAXAk9VmR4P/P0wbUcCy4GmNa03KyvL1daHH35Y62XDjfpSNxUVle5v7610HW57x43620du/bbCoKw3Wt6XaOmHc+rLfsB8V0O+OucCOiyTC7SrMp0JbDq0kZn1BZ4CznXO7QhgvSJ15vEYN/+sG89cOZjNe4o5+++f8q/Fm0NdlkjIBRLuOUBXM+toZnHAxcBbVRuYWXvgdWC8c25V8MsUObIR3Vvwr5tOpHOLFK5/8WvumPUtxWUVoS5LJGRqDHfnXDlwAzAH3yGXl51zS81skplN8jf7H6Ap8KiZLTKz+fVWschhZB6TxMvXDePakzry/BffMeaReaz+oSDUZYmEREADZjvnZgOzD5n3WJXnE4CffIEq0tBmL9nM7CVbAFj1QwFnPfwJY/q3Zd6a7WzeU0yb9EQmj+rOmAFtg77tWQvzmDJnJZt2F9XrdgLxh1lLeOnL77m5dxnX3D6bS4a24+4xfUJSi4SG7oYgUWPWwjxuf30JRf7DMZUOXIXjlQW5B9rk7S7i9teXAAQ1eA/ddn1tJxB/mLWEF774cRyeCucOTCvgGw8NPyBRY8qclQfCdb/qTvQtKqtgypyV9b7t+thOIF768vujmi/RSeEuUeNohiMI9k1ADrftUAyRUHGYa1cON1+ik8Jdokab9MSA23oM3lyUF7QrWw+37aOpKVi8Vv2FXIebL9FJ4S5RY/Ko7iTGeg+aF+sxYg+5ajU+xkPmMUn8ZsYiJjw7n9xd++pl24mxXiaP6l7ndR+tS4a2O6r5Ep0U7hI1xgxoy73n96FteiIGtE1PZMqF/Zgytt9B8+6/oC8f3jKCP/z8OD5bu4PT//oxT3y8lrKKyqBu+97z+4TkbJm7x/Th8uPbH9hT95px+fHt9WVqI6OzZSSqjBnQttpArW7ehJM6Mbp3K+56ayl/nr2C1xbk8cdze3F8p6ZB3XYo3D2mD3eP6UN2djZrLxsR6nIkBLTnLo1a5jFJPPXLwTwxPovCknIufuILbnppITuLa78XLxIOtOcuApzRqxUndW3O1I/W8thHa3m3spLvvKu47pROJMXpv4lEHu25i/glxnn53end+OB3p9C/hZeHPljNyAeymZmzkQrdt1UijMJd5BDtMpL4df8EXpk0jNZpidz62hLOfOhj3lv2g24KIhFD4S5yGIM7ZPDGr0/g0csGUlbhuPa5+Yx59DM+Xb1dIS9hT+EucgRmxll9WvPeb0/m/gv6sC2/mMunfcm4xz9n3hqFvIQvhbtIAGK8Hi4a3J7/3DKC/z23F9/vLOKyp77kgqmf8Z8VOlwj4UfhLnIUEmK9XDGsA9mTR/Cnc3vxQ34JV0+fz1kPf8obC3PrdCGUSDAp3EVqISHWy3h/yD9wYT/KKir57cxvOPn/PuTxj9ayZ19ZqEuURk4n8IrUQazXw9isTM4f0JbsVVt54uN13PvvFTz4/mouyGrLFcM60K1laqjLlEZI4S4SBB6PcWqPlpzaoyVLN+1h+rwNvDw/lxe+2MjQjhlcfvyxnNGrJfEx3ppXJhIECneRIOvVJo0pF/bj9rOO4+X53/PCF99x40sLyUiO44KBbRk3qB1dtTcv9UzhLlJPMpLjmHRKZyae1IlP12znpa828sy8DTz5yXr6ZaYxNiuTn/dtQ0ZyXKhLlSikcBepZx6PcXK35pzcrTnbC0uYtTCPVxfkcsebS/nj28sY0b05Z/drw8+Oa0lyvP5LSnDoX5JIA2qWEs+Ekzox4aROLN+cz6yFeby5aBPvL99KQqyHU3u04MzerRnZowUpCnqpA/3rEQmR41o34bjWTbh1dA/mf7eLt7/ZxL+/3cLsJVuIi/FwUpdmnN6zJacd15LmqfGhLlcijMJdJMQ8HmNIxwyGdMzgrnN6seC7Xcxespn3lv3AByu2YraEvpnpnNajBSO6N6d3mzQ8Ht0PVY5M4S4SRrxVgv7Os3uyfHMBHyz3hfzf3l/FX99bRUZyHCd2acaJXZtxYpc9/m12AAANA0lEQVRmIbkJt4Q/hbtImDIzerZpQs82TbjxtK5sLyzh09XbyV65lU/XbOetbzYB0LFZMsd3yuD4Tk0Z0jGD1mkKe1G4i0SMZinxB+7T6pxj5Q8FfLp6O5+v3cE732zmpa++B6BdRiKDj81g4LHH4Aoqqah0eHUYp9FRuItEIDOjR6sm9GjVhAkndaK8opLlmwv4asNOvlq/g49Xb+P1hXkA3Jczh76Z6fRrl06/zDT6tkunTVoCZgr8aKZwF4kCMV4PfTLT6JOZxjUndsQ5x8ad+3jh3c8oSWnNwo27mfbpOsoqfEMTH5MUS++2afRs7Tvsc1zrJnRslkysV2MJRguFu0gUMjOObZrM8LaxjBjRG4CS8gpWbC5gce5ulm7K59tNe3hm3gZK/cMUx3k9dGqeTPdWqXRtkULXlql0aZFC+4wkhX4EUriLNBLxMV7foZl26QfmlVVUsm7bXpZvzmfFlgJWbMln/oZdvLlo04E2sV6jfUYSHZul0Kl5Msc2TaJj02TaN02idVqijueHKYW7SCMW6/XQvVUq3VsdPJBZYUk5a7YWsnZrIWu2FbJ+217Wb9/Lx6u3UVpeWWV5o216Iu0yksg8JonMYxJpm55I22MSaZOeSMvUeGK01x8SCncR+YmU+Bj6t0unf5W9fIDKSseW/GI2bN/Lhh37+H7XPjbu2Efurn3M3bSFHXtLD2rvMWiRmkCrtARaNfE9tmgST4vUBFqkxtOiSTzNUuLJSIrThVlBpnAXkYB5PEabdN9e+Qldfvr6vtJyNu0uIndXEZv3FLN5dxGb9hTzQ34xa7YVMm/tdgqKy3+ynNdjZCTH0TQ5jmYp8TRNiSMjOY6MpDgyUuI4JimO73ZU0HJzPsckxZGWGEtCrEdn/ByBwl1EgiYpLoYuLVLp0uLw49XvKy1na34JWwtK2FpQzPaCErYXlrKtoIQde0vZXljCxp372LW3lIKSgz8I7s/55MDzOK+HtKRYmiTEkJYYS5PEWJokxJKaEEPqgccYUuJ//En2//iee0mKi4na7wwCCnczGw08BHiBp5xz9x3yuvlfPwvYB1zpnPs6yLWKRK1ZC/OYMmclm3YX0SY9kcmjuvPK/I3MW7vzQJvhnTO4cFD7n7QDfjJv/nc7eenL77m5dxnX3D6bS4a24+4xfQLa7pgBbQ87P5Dl92+7wjm8Zj/ZdlJcDB2axbDo+9019uXOs3tycrfm7NxXyofzcujQrSe79pXx2drtZK/cxraCEgqKy/B6jLIKx4bte8kvLqeguOzAaZ81iY/xkBTnC/qkOC+JcV4SY70kxXlJiPU9T4jzkhDjJSHWQ0Lsj4/xMR7iY/yPsT8+j9v/4/3xebzXS2yMEev14FxgtdVFjeFuZl7gEeB0IBfIMbO3nHPLqjQ7E+jq/xkKTPU/ikgNZi3M4/bXl1BUVgFA3u4ibp656Cft5q3deVDY5+0uYvKr34CDskp3YN7vZi6isspyFc7xwhcbAQ4K2eq2e/vrS5j/3U5eW5D3k/nAQQFf3fJ12fbkV74B40Ao5+0u4o43l3Lv+X0YM6AtW5p6GdGnNbMW5vHB8q0Hli0uq+T7nUUH2u1XXFZBYUk5hcXlFBSXU1hSzt6ScvaWlrO3pIK9JeXsK61gb2k5+0p9z4tKKw487thbemC6pLyC4rJKisoqqKisezCf2TGWkSPrvJojCmTPfQiwxjm3DsDMZgDnAlXD/VzgOef7OPrCzNLNrLVzbnPQKxaJMlPmrDwQVEerur3TymraAbz05fcHBWx12y0qqziw133o/ClzVh4UntUtX5dtl1UTmoFut7p2vj1sL81SgjtccllFJcVlFZSUV1JS7nte6n/ue6ygpKyS0grf9IHH8krKKnw/nl0bg1pTdaymPw/MbCww2jk3wT89HhjqnLuhSpt3gPucc5/6pz8AbnXOzT9kXROBif7J7sDKWtbdDNhey2XDjfoSnhqsL3GtumTV17or9u3Bm5R2YLp0y5oFddluXZYPwrLNgO1HWrbqNsJcXf59Heuca15To0D23Kv7tuHQT4RA2uCcewJ4IoBtHrkgs/nOuUF1XU84UF/CU7T0xczml+/ZGvH9gOh5T6Bh+hLI1QW5QLsq05nAplq0ERGRBhJIuOcAXc2so5nFARcDbx3S5i3gCvM5Htij4+0iIqFT42EZ51y5md0AzMF3KuTTzrmlZjbJ//pjwGx8p0GuwXcq5FX1VzIQhEM7YUR9CU/R0pdo6QeoL0elxi9URUQk8mhEHxGRKKRwFxGJQmEf7maWYGZfmdk3ZrbUzP7on59hZu+Z2Wr/4zGhrjUQZuY1s4X+awMiuR8bzGyJmS0ys/n+eZHal3Qze9XMVpjZcjMbFol9MbPu/vdj/0++md0coX35rf//+7dm9pI/ByKuHwBm9ht/P5aa2c3+efXel7APd6AEONU51w/oD4z2n5FzG/CBc64r8IF/OhL8BlheZTpS+wEw0jnXv8r5upHal4eAd51zPYB++N6fiOuLc26l//3oD2ThO7nhDSKsL2bWFrgJGOSc643vRI6LibB+AJhZb+BafFf69wN+YWZdaYi+OOci5gdIAr7GN27NSqC1f35rYGWo6wug/kz/G3kq8I5/XsT1w1/rBqDZIfMiri9AE2A9/pMLIrkvh9R/BjAvEvsCtAW+BzLwndH3jr8/EdUPf50X4htscf/0HcDvG6IvkbDnvv9QxiJgK/Cec+5LoKXzn0vvf2wRyhoD9CC+N7bqEByR2A/wXYE818wW+IeVgMjsSydgG/CM/3DZU2aWTGT2paqLgZf8zyOqL865POABYCOwGd91M3OJsH74fQucbGZNzSwJ3ynj7WiAvkREuDvnKpzvT81MYIj/T52IYma/ALY65yJl7IuaDHfODcQ3Iuj1ZnZyqAuqpRhgIDDVOTcA2EsE/Ll/JP6LDc8BXgl1LbXhP/58LtARaAMkm9nloa2qdpxzy4H7gfeAd4FvgJ/eraQeRES47+ec2w1kA6OBH8ysNYD/cWsISwvEcOAcM9sAzABONbMXiLx+AOCc2+R/3IrvuO4QIrMvuUCu/69BgFfxhX0k9mW/M4GvnXM/+KcjrS8/A9Y757Y558qA14ETiLx+AOCcm+acG+icOxnYCaymAfoS9uFuZs3NLN3/PBHfG78C35AHv/Q3+yXwZmgqDIxz7nbnXKZzrgO+P5n/45y7nAjrB4CZJZtZ6v7n+I6HfksE9sU5twX43sy6+2edhm8464jrSxWX8OMhGYi8vmwEjjezJDMzfO/JciKvHwCYWQv/Y3vgfHzvTb33JeyvUDWzvsCz+L4x9wAvO+f+18yaAi8D7fH9Y7jQObfz8GsKH2Y2ArjFOfeLSOyHmXXCt7cOvsMaLzrn7onEvgCYWX/gKSAOWIdv+AwPkdmXJHxfRnZyzu3xz4u498V/yvNF+A5hLAQmAClEWD8AzOwToClQBvzOOfdBQ7wnYR/uIiJy9ML+sIyIiBw9hbuISBRSuIuIRCGFu4hIFFK4i4hEoUBukC3SoPyniX3gn2wFVOAbIgBgiHOuNCSFHYGZXQ3M9p83LxJyOhVSwpqZ3QUUOuceCINavM65isO89ilwg3Nu0VGsL8Y51yCXokvjo8MyElHM7JfmG99/kZk9amYeM4sxs91mNsXMvjazOWY21Mw+MrN1ZnaWf9kJZvaG//WVZvaHANd7t5l9hW9coz+aWY5/fO7HzOcifMNRz/QvH2dmuVWurD7ezN73P7/bzB43s/fwDVYWY2Z/9W97sZlNaPjfqkQjhbtEDP+AcecBJ/gHkovBN5QDQBow1z+YWSlwF77L1i8E/rfKaob4lxkIXGpm/QNY79fOuSHOuc+Bh5xzg4E+/tdGO+dmAouAi5xvPPWaDhsNAM52zo0HJuIbUG4IMBjfIGzta/P7EalKx9wlkvwMXwDO9w05QiK+S+0Bipxz7/mfL8E3TGy5mS0BOlRZxxzn3C4AM5sFnIjv/8Hh1lvKj0MtAJxmZpOBBKAZsAD491H2403nXLH/+RnAcWZW9cOkK75L0kVqTeEukcSAp51zdxw00ywGXwjvV4nvDl77n1f9d37ol0yuhvUWOf8XU/5xW/4BDHTO5ZnZ3fhCvjrl/PiX8aFt9h7Sp1875z5AJIh0WEYiyfvAODNrBr6zampxCOMM890zNQnfmOHzjmK9ifg+LLb7R8W8oMprBUBqlekN+G51xyHtDjUH+LX/g2T/fVATj7JPIj+hPXeJGM65Jf7RAt83Mw++UfYmAZuOYjWfAi8CnYHn95/dEsh6nXM7zOxZfMMbfwd8WeXlZ4CnzKwI33H9u4AnzWwL8NUR6nkc38iAi/yHhLbi+9ARqROdCimNhv9MlN7OuZtDXYtIfdNhGRGRKKQ9dxGRKKQ9dxGRKKRwFxGJQgp3EZEopHAXEYlCCncRkSj0/wHRUJwHFwSFegAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"%matplotlib inline\n",
"data_pred = pd.DataFrame({'Temperature': np.linspace(start=30, stop=90, num=121), 'Intercept': 1})\n",
"data_pred['Frequency'] = logmodel.predict(data_pred[['Intercept','Temperature']])\n",
"data_pred.plot(x=\"Temperature\",y=\"Frequency\",kind=\"line\",ylim=[0,1])\n",
"plt.scatter(x=data[\"Temperature\"],y=data[\"Frequency\"])\n",
"plt.grid(True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Il y'a bien une incidence de la temperature avec un risque de panne estimatif de \\>0,81 pour une unetemerature de 31F.Cepdnant je ne connais pas l'intervale de confiance de ce que j'ai dans ce modèle statistique. Ce aui me derange c'est que je suis tres loin des condtions de mesures. Aussi il est difficile de verifier la conordance du modele ave le phenomene physique réel. Ca donne pas envie de monter dans la navette..."
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/opt/conda/lib/python3.6/site-packages/scipy/stats/stats.py:1713: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.\n",
" return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEKCAYAAAAIO8L1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xl8lOW9///XPVsymewhC5AQFsOOYEEUFVGURXZFqkDVqli11X5b6znqqfWoPWo9vx57atvTgta6llZwYYmiFRQERXGNBMIeCEsmIftMZr3v+/fHJAMhAZKQySz5PB+PmNyTe+5clyHznvtaFV3XdYQQQohTGMJdACGEEJFJAkIIIUSbJCCEEEK0SQJCCCFEmyQghBBCtEkCQgghRJtCFhAPPfQQEyZMYNasWW1+X9d1/uu//ospU6Ywe/ZsiouLQ1UUIYQQnRCygLjuuut4/vnnT/v9TZs2UVpayvvvv8+vf/1rHn300VAVRQghRCeELCAuvPBCUlJSTvv99evXM2/ePBRFYcyYMdTX11NRURGq4gghhOggU7h+sN1uJycnJ3ick5OD3W4nKyvrjM9zuX2cPPVbURQUIPCfE8dK04OK0vStkx5XFKULayKEELEpbAHR1gof7Xnhbmj0Ya9sOOef3xwcJwJFCYZH82dDq88KBkPT14bAcVfLzEyisgvqF6mkftErlusGPaN+HRW2gMjJyaG8vDx4XF5efta7h66k6wTuRIJB1fElqRSFQGgoCkZjIDSMTcFhMioYDQYMBrlbEUJEp7AFxOTJk3n11VeZOXMm3377LUlJSd0aEF1B10HVdVR0fGrb5ygKmAyGQGAYA59NRgMmo4wwFkJEtpAFxH333cfnn39OTU0Nl19+Offeey9+vx+AhQsXMmnSJDZu3MiUKVOwWq08+eSToSpKWOk6+FStKUBOpIiigNlowGI2YjEZMJsM0jcihIgoSrQt911R3dglfRCRRgHMJgM52ck01Lkwmw0h6eMIt57Qzhur9YvlukHPqF9Hha2JSbSkA16/hsPlo8bhCQZGnMVInNkoTVJCiG4nARGhmgPD69dowIfFZCDeYiTeYpKObyFEt5CAiBLBsGj0EW8xkhBvwmwyhrtYQogYJgERZXTA5VVxeVXMRgMJ8SascfJrFEJ0PWnYjmI+VaPO6eV4rQuXxx/u4gghYowERAzwa3ogKOpceE83IUMIITpIAiKG+FWd6gYPtQ4PqqaFuzhCiCgnjdcxyO1V8XhVbFYztniTTMATQnSK3EHEKB1wuHxU1rmlf0II0SkSEDFOa+qfqK534/NLs5MQov0kIHoIr1+jut5NfaMXLbpWVxFChIkERA+iA41uP9X1bjRNQkIIcWYSED2QX9UlJIQQZyUB0UP5tUBIyHBYIcTpSED0YH5Np6beI30SQog2SUD0cH5Np87hDXcxhBARSAJC4PGp1DdKSAghWpKAEEBgdJNMqBNCnEwCQgTVO70ymU4IESQBIYJ0oNYhndZCiAAJCNGCKp3WQogmEhCiFY9Pxen2hbsYQogwk4AQbXI0+vD5ZfMhIXoyCQjRpkB/hBdd+iOE6LEkIMRpqZpOg0uamoToqSQgxBk1uv2yz7UQPZQEhDireqc0NQnRE0lAiLPyS1OTED2SBIRol0a3X0Y1CdHDRF1APPb8Vr7Zc1yaPMKgTkY1CdGjmMJdgI46ZG/gkL2Br/dUMm/iANKS4sNdpB7Dr+k4XD6SEizhLooQohtE3R2EyagAsOdwHf+7oogt3x2TtYO6UaCpSRb0E6IniLqAeHTJBPrnJAHg82sUfnqQ59bs4HidK8wl6xl0oM7pkaYmIXqAqAuI3r1sLJk9nHkTBxBnNgJwsLyBP6z8Tu4muolf1WXvCCF6gKgLCACDojB+WDb/b8H5FOSmAOBTA3cTLxTupNbhCXMJY1+jWwJCiFgX0oDYtGkT06ZNY8qUKSxbtqzV9xsaGrjrrruYM2cOM2fO5I033ujQ9VMT4/jhNUO57vKBwbuJ/UfreXZlEd/slZFOoeTXdDwyw1qImBaygFBVlccff5znn3+ewsJC1q5dy969e1uc89prrzFo0CBWr17NK6+8wtNPP43X27G9CBRFYdzQLH56/fn07x3om3B7VV7fsJfXP9yL2yvvdENF7iKEiG0hC4iioiLy8/PJy8vDYrEwc+ZM1q9f3+IcRVFwOp3ouo7T6SQlJQWTqXMjb9OS4lgyczjXXNQPoyEw0unbvVX88Y3vKKtwnHN9RGsen4pflRFNQsSqkM2DsNvt5OTkBI+zs7MpKipqcc7ixYu5++67mThxIk6nk9/97ncYDGfPrPR022m/N/fKAsYOz+H51dspr2qkusHD0tXFzJs0iKvH98OgKJ2vVDc5U/0iTYLVTEpiXIeek5mZFKLSRIZYrl8s1w1iv34dFbKAaKv9XznlxXnz5s0MGzaMl19+mUOHDnHrrbcybtw4EhMTz3jt6mrnGb+fYDZw15wRFH56kG0lFWiazpsf7mXHvuNcf8V5JMRH7vzA9HTbWesXSWoV8KRaW/1uTyczM4nKyoYQlyp8Yrl+sVw36Bn166iQNTHl5ORQXl4ePLbb7WRlZbU4580332Tq1KkoikJ+fj65ubns37+/S36+xWzk2ssHsvDqgmAHdsmhWv74ZhFlFbH7j6C7aXqgz0cIEXtCFhCjRo2itLSUsrIyvF4vhYWFTJ48ucU5vXv35tNPPwXg+PHjHDhwgNzc3K4tx8AM7pk/ij4ZCUBgl7Rlq3ewtbhcRjl1EemsFiI2haytxWQy8cgjj7BkyRJUVWX+/PkUFBSwfPlyABYuXMiPf/xjHnroIWbPno2u69x///2kp6d3eVkykuO5c+5I3tl6kM922FE1ndVbSimrcDBv4kDMpqicDhIxfKqGX9UwGeX/oxCxRNGj7G10RXUj9nNoJ/xmz3He2rQfX9Pomz4ZCSyeOjhiFv2Ltj6IZolWM4lW81nP6wntvLFav1iuG/SM+nVUj3vLN6agF3fNG0F6UmDkzdGqRv705nb2H60Lc8mimyy9IUTs6XEBAdA7w8ZPrhvF4LxUABo9fl4oLGHrjvKzPFOcjqrpsne1EDGmRwYEgDXOxM3ThnD56D4AaLrO6s2lvP3xflRNJn91hktGMwkRU3psQAAYDArTL+rH9yefF9xn4vOdFbz4bok0mXSC2+uXkWFCxJAeHRDNxpzXix/NGUFyQqCTdd+Rev789naq6t1hLll00WVOhBAxRQKiSW5mIndfe2K+xPE6N39+azul5fVhLll0kYAQInZIQJwkxWbhR3NGMLx/GtDceb2T7/ZXhblk0cPrU9E0aWYSIhZIQJzCYjayaMpgJp7fGwjsnvaPD/awueiYtK+3gw6yxLoQMUICog0GReGai/OZfWl/FCXwovfO1oMUfnpQtjRtB5dHmpmEiAUSEGcwYUQOi6cMxty0hMQn28t5fcNe2QPhLJqX3hBCRDcJiLMY3j+dJbOHkRAXWLaqaF8VL6/bhUc6Y89IOquFiH4SEO2Ql5XEnXNHkJpoAWDvkTqeW7sDh8sX5pJFLplHIkT0k4Bop8xUK3fOHUl2mhWAo8edLFtdTK3DE+aSRSZZekOI6CcB0QHNw2DzcwKrIh6vc7N0VTHHa11hLllkkqU3hIhuEhAdZI0zceuMocGF/uqcXpauLubo8ehbojvUPLL0hhBRTQKiEywmIz+YOphRAzMAcLr9PL92h2xlegpNB480MwkRtSQgOslkNHDD5PO4cGhgn223V+WvhTvZf1SW5jiZbEcqRPSSgDgHBoPCvIkDuHRkDgBen8ZL75awu6w2zCWLHF6/Jp3VQkQpCYhzpCgKMybkc8UFfYHAJLFX3ttFyaGaMJcscjjlLkKIqCQB0QUURWHqhXlMvTAPCAzxfO393ewsrQ5zySKDx6fi88vMaiGijQREF7rigr5cc1E/oCkk/rWH4gMSEgBOt0wqFCLaSEB0sYmj+zBzQj4Q2MZ0+Qd72C7LheP2qrI+kxBRRgIiBC4d1ZvZl/QHAiHxj/V75U4C6YsQItpIQITIhJE5zLm0P3DiTmJHD++TkD2rhYguEhAhdPGInBZ3Ess/2NOjO651HVkFV4goIgERYhNG5jDrkkCfhKrp/P2DPT16noRLdpsTImpIQHSDS0b2DnZcq5rOq+/vYu+RujCXKjzcstucEFFDAqKbXDqqN9PGB+ZJ+FWdV97bxYFjPW9ZDk3X8fklJISIBhIQ3WjSmL5cNTYXAJ9f46V1JT1ygT/ZbU6I6CAB0c0mf68vk8b0AQJrN/3tnRKOVfWspcKlo1qI6CAB0c2al+VoXuDP7VV5oXAnFT1o0yG/psukOSGigAREGDQv8Deuaalwp9vPC4U7qa53h7lk3UeamYSIfBIQYaIoCvMuG8D5gwKbDtU7vbxQuJO6HrLHtTQzCRH5JCDCyGBQWHDlIIblpwFQ3eDh9//8ukdssuNTNVRNmpmEiGTtCojbb7+dDz/8sMPLJGzatIlp06YxZcoUli1b1uY5n332GXPnzmXmzJn84Ac/6ND1Y4HRYODGqwoY2CcZgKOVTl58d2ePeIft8UpACBHJ2hUQN9xwAy+99BJXX301y5Yto6bm7JvhqKrK448/zvPPP09hYSFr165l7969Lc6pr6/nscce489//jOFhYX8/ve/71wtopzZZOCmqUPIy0oE4HClk1fe3xXzeyjIftVCRLZ2BcTUqVN58cUXee6556ioqGDWrFn8+7//O9u3bz/tc4qKisjPzycvLw+LxcLMmTNZv359i3PWrFnDlClT6NMnMOwzIyPjHKoS3eIsRm6ZPpQ+mTYA9h+t5/UNe9G02F3czutT0WTxPiEilqkzTzKbzcTFxfHAAw8wceJEHnzwwVbn2O12cnJygsfZ2dkUFRW1OKe0tBS/389NN92E0+nk5ptvZt68eWf9+enpts4UO+KlA//vhgv4/179kuO1LopLq3l3Wxk/mD4URVHCXbwuc/LvLzk5Hmtcp/4ZRqzMzKRwFyFkYrluEPv166h2/WW+//77vPrqq1RVVbFo0SIKCwux2Wz4/X6mTp3aZkC01V9x6oucqqoUFxfz4osv4na7ufHGGxk9ejQDBgw4Y3mqq2N3Yll6uo1bpg9h6apiHC4fW749ihGY3rRTXbRLT7e1+P25HG5SEuPCWKKulZmZRGVlbM6Oj+W6Qc+oX0e1KyBWrlzJHXfcwcSJE1s+2WTi4YcfbvM5OTk5lJeXB4/tdjtZWVmtzklLSyMhIYGEhATGjRtHSUnJWQMi1mUkx3PrjKE8t2YHbq/Kpm+PYrOamHh+n3AXrctJP4QQkatdfRBLly5tFQ7NJk+e3Objo0aNorS0lLKyMrxeL4WFha3Oveqqq/jiiy/w+/24XC6KiooYNGhQB6sQm3pn2Lh5+hBMxsBd17tbD/HV7sowl6rraXqgL0IIEXnaFRCLFi2iru7E8tS1tbUsXrz4jM8xmUw88sgjLFmyhBkzZnDNNddQUFDA8uXLWb58OQCDBg1i4sSJzJkzhwULFnD99dczePDgc6hObOmfk8zCqwdjaGqZe3PjPnYdOvsIsmjjloAQIiIpejsmN8ydO5dVq1ad9bHuUFHdiD2G2wlPbaMH+HJXBW9s3A+A2Wjg9lnD6JcdnZ1pbdXPZFDolWoNU4m6Viy3Y8dy3aBn1K+j2nUHoWkajY2NwWOn04mqyru+7jJ2SBbTxwc6qX2qxkvrdlFREzuL+8nifUJEpnYFxKxZs7jttttYtWoVq1at4vbbb2fOnDmhLps4ycTRvblsVG8AXB4/f3snttZtks5qISJPu0Yx3XnnnWRlZbFhwwZ0XefGG29s13wF0XUURWH6xf1wuHx8s/c4dU4vf3u3hDvnjIiJeQRuj4ot3hzuYgghTtLuV5Zrr72Wa6+9NpRlEWdhUBSumzQQp9vHnsN1VNS4ePm9Xdw2YxhmU3Svu+hTNfyqhskY3fUQIpa0KyCqqqp45ZVXKCsrw+8/sdJoT107KZxMRgOLrh7M82t3cOS4k4PlDfxzwx4WXT0YgyG6Z1u7vSqJVgkIISJFuwLi3nvvZdCgQUyYMAGj0RjqMomziLMYueWaofxl1Xaq6z3sKK1hzSelzLm0f1QvyeH2+Em0SjOTEJGiXQFRX1/Pr3/961CXRXRAotXMrTOG8Ze3t+N0+/lsh50Um4UrLugb7qJ1ml/T8flVzCZ5EyJEJGjX/XxBQQF2uz3UZREdlJEczy3XDMXS1P/w/rYyvtxVEeZSnRtXD9gHQ4ho0e47iDlz5nDBBRcQF3diYTXpgwi/3MxEFk0ZzMvrdqHpOm9t2k+i1cyQfmnhLlqnuL0qyQnhLoUQAtoZELNmzWLWrFmhLovopMF5qVw3aSArP9qHpsPyD/awZPZwcjMTw120DtM0HY9PJc4szUxChFu7AkKGt0a+7w3OpN7p5f1tZXj9gdnWd80dQUZyfLiL1mFuj18CQogI0K4+iNLSUhYuXBhcjbW4uJg//OEPIS2Y6LhJY/pw8fBsAJwuHy++U4LD5QtzqTrO7VM7vP+5EKLrtSsgHn30Ue6++26SkgKLPQ0bNox169aFtGCi4xRFYdYl/RneP9D/UFXv5uV1JVG3nLauy9IbQkSCdgVEQ0MDl19+eXCMvcFgwGyW8eqRyGBQuGFyAflNq70ernSyfP0e1Cjb29ojo5mECLt2BYTRaMTn8wUDwm63YzDIjNdIZTYZuGnaYHqlBPofdh2qZfXmA1HVbCPNTEKEX7s3DLrnnnuoqanhD3/4A4sWLeK2224LddnEOUiIN3PrjKEkNc1M3lZSwYavjoS5VO0nzUxChF+7RjHNmzeP3NxcPvzwQ1wuF08//TTjxo0LddnEOUpLCkykW7amGK9PY/2Xh0mxWRg3NOvsT44AHq9KvCX6V6oVIlq1+69v3LhxEgpRqE8vG4unDOaldwMT6d7+eD9JCdExkc7tU0nW9aheX0qIaNaugJg/f36bf6QrV67s8gKJrleQm8r8SQNZEWUT6XQdvD6NOIvMiRAiHNoVEA888EDwa4/HQ2FhIVlZ0dFMIQIuGJxJXRROpHN7/RIQQoRJuwJi/PjxLY4vu+wy6aSOQpPG9KHO6eWzHfbgRLo7546I6CW2pZlJiPDp1FhVh8NBWVlZV5dFhJiiKMyOsol0uh5YwE8I0f063AehaRqHDx/m1ltvDWnBRGg0T6T7a+EODtkdwYl0P5g6BGOE7kjX0OglzmyM+h3zhIg2He6DMBqN5Obmkp2dHbJCidAymwzcPG0IS1cXU1nrZtehWlZ9vJ9rLx8YkU05mg61Dg/pEd5fIkSs6VQfhIh+CfFmfnjNMP6yajsNjT6+2FVJss3C1ePywl20Nnn9Gg6XL6L7S4SINe0KiIsvvrjNd5Z6U+fhp59+2uUFE6GXlhTHD68ZyrLVO/D4VDZ8dYSkBAsXDY/Mu0Ony0ec2SBbkgrRTdoVEAsXLqS2tpYbbrgBXdd54403yM7OZsaMGaEunwix3hk2fjB1MC++W4Kq6azecoCkBDPD+6eHu2it6ECdw0uvVGu4iyJEj9CuUUzbtm3jP//zPxk6dCjDhg3j4YcfZuPGjfTt25e+ffuGuowixAb1TeH6KwYBgVFD/1i/h4PlDWEuVdv8mo7L4w93MYToEdoVEBUVFVRXVwePq6urqaysDFmhRPcbfV4vZk7IB8Cv6ry0rgR7dWOYS9U2ZxRugiRENGpXE9Mtt9zC3LlzufLKKwHYuHEjd955Z0gLJrrfpaN6U+/08nHRMdxelRffDUykS02MC3fRWmi+i7DGyUJ+QoRSu/7CFi9ezNixY9m2bRu6rrN48WKGDBkS6rKJMJh2UT8cLh9f7zlOndPLi++W8KPZI0iIj6wXY6fLJwEhRIi1+y8sNzcXVVUZMWJEKMsjwsygKFw3aSAOl489h+uoqHHx8nsl3DZzGJYIGj0kdxFChF67+iA2btzIzJkzuffeewH47rvvuOuuu0JaMBE+RoOBRVMGk5tpA+CQ3cHyD/agalqYS9aS9EUIEVrtCohnn32WlStXkpycDMCoUaM4dOhQSAsmwivObOSWa4a22Lb0rU37I2obUBnRJERotXuxvszMzBbHFoulywsjIost3sytM4aRbAv8rr/afZx3PzsUUSHhcPkiqjxCxJJ2BYTNZuP48ePB2dSfffYZSUlJZ33epk2bmDZtGlOmTGHZsmWnPa+oqIhhw4axbt26dhZbdJfm2dbWuED/w+aiY2z69miYS3WCqum4PLLaqxCh0K6A+MUvfsEdd9zB4cOHuemmm7j//vtbLODXFlVVefzxx3n++ecpLCxk7dq17N27t83zfvvb33LZZZd1rgYi5HLSE7h52lDMxsA/l/c+L2NbSUWYS3WC0y13EUKEQruGgIwePZqXX36Zr776CoALLrgg2B9xOkVFReTn55OXF1j8bebMmaxfv57zzjuvxXmvvPIK06ZN47vvvutM+UU3yc9JYtGUAl55b3dwb2urxcjIgRnhLlrTXYSfhHhZyE+IrnTWgFBVle9///u88cYbTJo0qd0Xttvt5OTkBI+zs7MpKipqdc4HH3zASy+91KGASE+3tfvcaBSp9ZuQbsNkMfHC6mJ0HV7/cC+9MmwMH9CxkAhF/YwGhV7pCRGxXHlm5tmbX6NVLNcNYr9+HXXWgDAajaSlpeHxeIiLa/+M2rZu+U/9433iiSe4//77MRo7Nr6+utrZofOjSXq6LaLrNygniVmX9mfNllL8qs6f3yji9pnD6Jfdvj+sUNbP3ejBFua7iMzMJCorI3Mdq3MVy3WDnlG/jmpXE1P//v1ZvHgx06ZNIyEhIfj44sWLT/ucnJwcysvLg8d2u52srKwW52zfvp377rsPgJqaGjZu3IjJZOLqq6/uUCVE95owIgeXx88HXxzG59d48d0S7pg9nN4Z4b3zcbh8WC0m2XlOiC7SroBwOp0UFBSwf//+dl941KhRlJaWUlZWRnZ2NoWFhfzP//xPi3M2bNgQ/PrBBx/kiiuukHCIElde0Be3R2Xzd4F1m/72Tgk/mj08rEtx63pge9KUCFs7SohodcaA+M1vfsODDz7IU089xZYtW7j00kvbf2GTiUceeYQlS5agqirz58+noKCA5cuXA4E9JkT0UhSFay7uh8vr58tdlThcPv5auJMfzRlBWlL4XqBdXpUEvyqbCgnRBRT9DOMDr732Wt56661WX4dTRXUj9hhuJ4z0PohTaZrOPzfs4bv9geXgM5LjuWPOcJIT2p5I2R31MxsNZKSEZ//qWG7HjuW6Qc+oX0edcR7Eydkh48xFWwwGhQVXnseQfqkAVNW7eaFwJ053+NZJ8qkajW5ZgkOIc3XGgPB6vezbt4+9e/e2+Lr5QwgAk9HAoqsHM7BPYG5MRY2LvxXuDOs6SQ6XF02TNzVCnIszNjFNnjz59E9UFNavXx+SQp2JNDFFLo9P5W/v7OSQ3QFAXlYit80YRpzlRH9Ad9Yvzmzs9v6QWG6miOW6Qc+oX0edsZP65FFGQpxNnNnID68Zyl/X7uTIcSdlFQ5eWlfCD68ZisXc/Z3GHp9Ko9sfcZsdCREt2r2aqxDtEW8xceuMoeSkB+bLlJY38PJ7u/D6w7OgXoPLi1+NrH0shIgW8tZKdLmEeDO3zRzGc2t2UFnrYv/Rel59bzc3TTu3bWr3HK7li5IKaho8pCXFMW5oFgW5qWd8jq5DvdNLenJ4RjWJjtt+oIrNRceorHWRmWrlsvN7M7KDy7mIriF3ECIkEq1mbp81LLjh0N4jdbz6/i58nbyT2HO4lvc+L6Oq3oOmQ1W9h/c+L2PP4dqzPtfr12RjoSix/UAVb2zcj73GhaaDvcbFGxv3s/1AVbiL1iNJQIiQSU6wsGTW8OCchD2H6/jLm9/h83e8yeeL0ywvfrrHTyUBER02Fx3r0OMitCQgREgl2wIhkZ4cGE1UvL+q6U6iYyFR0+Dp0OOn8vo16YuIApW1rtM87u7mkgiQgBDdIOWUkNhzuI5XOthxfbrhqh0ZxtoodxERL/M0a3llpkofUjhIQIhukZoYxx2zhpOVFngB2HukjpfX7cLra19IjBua1aHH2+L2+GVFgAh32fm9O/S4CC0JCNFtUhLjuG/R2GDH9f6j9bz4bgke79lDoiA3lWnj88hIjsOgQEZyHNPG5511FNPJNB3c7fhZInxGDshg/qSBZKdZMSgK2WlW5k8aKKOYwuSMM6kjkcykjm7p6TZKD9fw17U7gu3KeVmJ/PCaoVjjQj/q2mIyhHTIayzPxo3lukHPqF9HyR2E6HbJCRbumD0iOJmurMLB82t34HCFfoE/6awWov0kIERYJFrNLJk1nL6ZgV3ojlU18tyaHdQ5vSH/2TLkVYj2kYAQYZMQb2razzoRCAxxXLa6mKr60A5pdEk/hBDtIgEhwiqwdtMwzuubAgTmNSxbVUx5dWPIfqam6bi9chchxNlIQIiwizMbuXn6EIb3TwOgweXjuTXFHLKHrsPQ5ZG7CCHORgJCRAST0cDCqwfzvcG9gMAL+F/X7mTXoZqQ/DyPT0XVpLNaiDORgBARw2hQuG7SIC4dlQMEtg595b1dfL27MiQ/T+4ihDgzCQgRUQyKwoyL85k2Pg8ITG5b8dE+Nn1ztMtnQcvSG0KcmQSEiDiKojBpTF/mTxqIQQk8tu7zQ6zZUtql+0xrmt6uWdxC9FQSECJijR2SxQ+mDsFsCvwz3brDzmv/2t2lu9PJXYQQpycBISLa0Pw0lswajq1pX+mdB2v469qdNDR2zYQ6r0/t9CZGQsQ6CQgR8fKyErlr3sjgxkNlFQ7+sqoYexfMldCBGoe3S5uuhIgVEhAiKmQkx3PX3BHkZwcWHKtp8PCXVcXt2nL0bDRNp9bhkaXAhTiFBISIGrb4wD7XY84LzJXw+FReereET4vLz/nF3evXaGgM/WKBQkQTCQgRVUxGAwuuHMRVY3OBwDDYNVtKWbX5wDmv0tro8eNw+eROQogmEhAi6iiKwlVjc7nxqvMwGQPjYD/fWcEL7+w85yXDHS4fVXVuPO3c6U6IWCZhkiL/AAAduElEQVQBIaLW+YN6ceecESTbLACUHmvg/976jiOVjnO6rl/TqWnwUNPgkb0jRI8mASGiWt/MRH5y7UjysgJLhtc6vCxdXcxXXbA8h8encrzOTa1DgkL0TBIQIuolJVi4Y/ZwLhyaBYBf1Vn50b4u6ZeAwD7Wx+vc3bLjnRCRRAJCxAST0cC1lw/k2okDMDatz/HZDjvLVhdT0+Dpkp/hcPm6bIKeENFAAkLElAuHZfOjOcNJaeqXOFzp5I9vFlHSRcuGO93+btkWVYhIENKA2LRpE9OmTWPKlCksW7as1fdXr17N7NmzmT17NjfeeCMlJSWhLI7oIfKykrhn/igKcgO71Lk8Ki+v28W7Ww92SZOTy+OnztE1dyVCRLKQBYSqqjz++OM8//zzFBYWsnbtWvbu3dvinNzcXF599VXWrFnD3Xffza9+9atQFUf0MLZ4M7dMH8pVY3NpWhCWj4uOsWx1MdVdsOe1y6tSL81NIsaFLCCKiorIz88nLy8Pi8XCzJkzWb9+fYtzvve975GSEniXN2bMGMrLy0NVHNEDGQyB+RK3zhxGktUMBJqc/vDGd3yz9/g5X7/R7ZeOaxHTTKG6sN1uJycnJ3icnZ1NUVHRac9fuXIll19+ebuunZ5uO+fyRTKpX9can25j6MBevFS4g+L9VXh8Kq9v2MuB8gYWTh1CQrz5nK6fkBiHzXriGpmZSeda5IgVy3WD2K9fR4UsINparkBRlDbOhK1bt7Jy5Ur+/ve/t+va1dXOcypbJEtPt0n9QmThVefxSVYi731+CFXT2bbDzu6DNSy4chAD+6R0+rrV1U5SbBascSYyM5OorGzowlJHjliuG/SM+nVUyJqYcnJyWjQZ2e12srKyWp1XUlLCww8/zP/93/+RlpYWquIIgUFRuOz83vz42pFkpVkBqHN6+evanaz9pPScNiKqd3pldzoRc0IWEKNGjaK0tJSysjK8Xi+FhYVMnjy5xTlHjx7l3nvv5b//+78ZMGBAqIoiRAu9M2z85NpRXDIy0ASqA59sL+cPK7/jYHnn3kHqQK3Dg9srO9SJ2BGyJiaTycQjjzzCkiVLUFWV+fPnU1BQwPLlywFYuHAhf/rTn6itreWxxx4DwGg08uabb4aqSEIEmU0GZl3Sn6H5aby5cR+1Di9V9W6WrS5mwsgcplyYR5zZ2KFr6kB1vRvNqxJn6dhzhYhEih5laxtXVDdij+F2QumD6H7FB6p4d+shqk+acZ1oNdErJR6/qpOWFMe4oVkU5Kae9VrN9bOYDCRazVjaGTLbD1SxuegYlbUuMlOtXHZ+b0YOyOh0nbrS2k9L+ejrIzjdfmzxJq64oC+zJvQPd7G6nPRBtBayOwghosGew7V8+PVR4uNMpCtQ5/CiajoOlx+Hy4E1zohP1Xnv8zKAdoUEBDYgqm7wYDEZSEqwYDadvjV3+4Eq3ti4P3hsr3EFj8MdEms/LWXtllIgMMjE0egLHsdiSIiWZKkN0aN9UVIR/DreYiIzzRpcywkCs7Arahpxunxs22nv8PW9fo2qejd1Dg+q1vYs7s1Fxzr0eHf66OsjHXpcxBYJCNGjnbqQn0FRMBjAaAwsAAig64HRTrvK6iir6FwThKtpRdh6pxffKaOlKmtdbT6nsvbcZ3yfq9NNBHTKBMEeQQJC9GhpSXGtHjMaDJiNRjJT40m2WWievuPza/z57WJWfrSvU6u66npgW9Oqeg/Ha104XD40TScz1drm+Zmp8R3+GV0t0dr2JELbaR4XsUUCQvRo44a2npuTEG/CFm9CURQSrWayUq3EnzQq6avdlTzzz2/Z+M0RfP7OLf7n13QcLh+VtS4uKOjV5sTSy87v3alrd6UrLujbocdFbDE++uijj4a7EB3hdPlwxvAiaVarBVcM375HWv0ykuNJS4qjtsGDx6uSnhzH5O/lMqRfWvCxXinxTBvfj7FDMjla6cTp9qNqOvuO1PPNnkpsVjNZaVYURelU/VIT40hJtFDT4MHtUclKi2f6Rf3C3kENMDgvFRQ4WuXEr2rYrGamju8Xkx3UNlscjTH82mKztb5bPhsZ5hphInEYaFeK9vqpms7nO+x88OVhXJ4Tk+L6ZtqYdmE/xp/f55zrpyhgtZiItxjbPUy2O/SEYaCxXr+OkmGuQnSA0aAwYWQOYwp68dHXR/hkezmqpnOk0skL7+xkS3E5ky/oG9wjuzOa+yoaPX6MBgVrXCAsmjvNheguEhBCdII1zsQ1F+dz0fBs/vVFGd/urQJg18Eadh2sYWi/NK4a25e+mZ0PCqBpToYPh8uHyagQb5GwEN1HAkKIc5CeHM8Nkwu4fHQf3t9Wxq5DtQCUHKqh5FANw/LTuPJ7fck9x6AA8KsSFqJ7SUAI0QV6Z9i4ZfpQqht9vLlhD/uP1gOw82ANOw/WUJCbwqQxfRnQO+m0y953xMlhYTQoxJmNxFmMWEyGLrm+ECABIUSXOi83lSWzhnPgWD3rvzwcDIo9h+vYc7iOftmJTDy/D8Py0zAYuuaFXNX0YJ+FohAIi6aPrvoZomeSgBAiBAb0Tg4GxcZvjrK7LND0dMju4LV/7SYjOZ5LR+XwvcGZXTpSSdfB7VVxN+1NYTEZsJiN0hQlOkUCQogQGtA7mQG9kzl63MnGb46w/UA1ug5V9W5Wbynl/W1ljBuaxcXDs0lP7vqZ016/htev4XD5MBiUQGCYjFjMBgkMcVYSEEJ0gz69bCy8ejDV9W62bC/ny5IKvH4Nt1dlc9ExthQdY0i/NMYPz2JwbmpImoY0TW9xd2FQwGwyYjIqmIwGTEYFo8EgzVIiSAJCiG6UnhzP7Ev6c/XYXL4oqeDT4nJqHV50Tox8Sk20MG5oFmMHZ5KS2PHZr+2l6eDxqXhOmfhtbLrTMDd9GI0GDNLx3SPJTOoIE+0zjc9G6teSpumUHKpha7GdvUfqWnxPAc7LTWHskCyG5aedcU+JUDMYFHKykqivcwWDI9ZCQ2ZStyZ3EEKEkcGgMLx/OsP7p1NV5+bznXa+3F1Jo9uPzonRT/EWIyMHZnBBQS/yc5K6/cW5uXnq5OW/DUrz8ugKRkPgs8loCH5tMCgxFyI9jQSEEBEiIyWeay7OZ8qFeew8WMOXuyrZc7g2ODLpi5IKviipIMVmYdSgDM4flEHfXrawzXvQdNB0PfDFaSiAYlAwENiRzmBQMBoVzE19HoEzTjr/lKoE2jdOvX5gzw6DooSk7rqut7iupumomo6m6einlKWr2l8Upen/j3IibNui6U3l0HU0LXB8ogyB0jWXNXBe4FFdlzsIIWKCyWhg1MAMRg3MoM7p5Zs9lXy95zgVNYGNheqcXjYXHWNz0THSk+IYMSCdkQPT6ZuZGHHv2HVA13S05iMV6MLFfA1K4P+XyWTAbDQ03bUAKCgK+FUNVdPxq4EXVV0nuLR6cwgoSlMIGAwcr25sFUfhoihN8dlUTl07NZ5CTwJCiAiWYrMwaUxfLh/dh2NVjXyz5zjf7a+izhlYlrq6wcPHRcf4uOgYyTYLw/LTGJafxsA+yT1iGKumnxjKe67UMLwAn0ng3T9dd5vSCRIQQkQBRVHo08tGn142pl/cjzK7g6J9VWw/UEVDY+Ateb3Ty2c77Hy2w47FZOC83BSG5KUyOC81pKOhROySgBAiyhgUhfycJPJzkph5ST6HKxwUH6im+EA11U17bHv9GjtKa9hRWgNAdpqVgtxUzstNoX9OUkTtMyEilwSE6DYKzZ1xbX+vo/RTvoik5oHuYlAU+mUn0S87iekX9aOi1kVJ0wKBZRWOYOuEvcaFvcbF5u+OYTQo5GUnMrB3MgP7JJOXlRTWIbQickVdQMRZAouQna4vrs2HT3Ny2+d24LrQ7lEU7S1vSmIcfnfrXryO9j2eer7SwYq19XDbZWj94KnnBUabBP5fZfZKxNwNbarNHZGnDoJpbmVuqwj6KYmj6zR1cGr4VR2fqqGdYcROuCmKQnZaAtlpCUwa05dGt5+9R2rZXVbLnrI6GpqGqKqaTumxBkqPNbDhqyOYjAq5mYnk5yTRPycQNta4qHtpECEQdf8KUhLj8Lpid9/YRKsZV3zU/VoiTnCESvA/we+c03U9XhWX14/Hq0b8HUtCvInzB/Xi/EG90HUde42LfUfq2Hu4jtLyBjy+wJIbflWntLyB0vIGNjY9NzPVSr/sRPplJZKblUhWWkL4KiLCRl6JhOiAOEtg3wVN1/H6VLw+DY9PRY3gOwsIBGZOegI56QlcOqo3qqZz9LiT/UfrKD3WwEF7Q3CNJoDKWheVtS6+3FUJgNlooF/vJLJSrfRt6izPTLVilHWbYpoEhBCdYFCad3QLHPvVwMJ70dKWbzQo5GUlkpeVyKQxgQlX9upGDpY3cMju4FBFA9X1nuD5PlVj3+E69h0+sRyIyaiQlZZA7/QEcjISyE5PIDvNSqLVLJsWxQgJCCG6gMloINFqIDMtAdXjw+Xx4/KqEd1ncTKDotA7w0bvDBsXjwg85nD5OFLpoKzCwZFKJ0ernMEhtRBomjp63MnR4y3XnkqIN5GVZiUr1Upm8COelMS4iJvIJ85MAkKILmYyGkhKsJCUEOiz8PpVfH4Nn6qFc85ThyVazQzpl8aQfmkApKUlUFpWw9HjTo4cd1Je3cixqkZqGjwtntfo9gc7wU9mMir0SrGSkRxPRkocGcnxpCfHk54cR7ItTpqrIpAEhBAh1Nxn0ax5PZ+Tg6J5lFfz/hAer/9MyxuFjaIopCTGkZIYx7D+6cHH3V4/9moX5dWN2GsasVcH+i9OXtgPAncc5dWNlFc3trq2QVFITbKQmhhHWlJc8HNKYuCxFJulR8wMjzQSEEJ0o8AibG2/U27eR1pPMAfvOPx+DZ9fwx+JidEk3mIKTtw7WaPbH+zsPl7norLWzfE6N9X17lad+pquU13vadHvcSpbvIkUm4Vkm4WkhMDn5AQzSQkWEps/W00YDRIkXUUCQogIoygKFrOxxWxnTdcDoeHXUFUNTQdVC8zLiNTsSIhvOzg0Tae+0cvxOjc1DR6q6wOhUevwUtPgaXXn0czp9uN0+zla1foO5GTWOBOJVjOJVjM2qwlbfODrhHgTtngTCfFmEuJMJMQHPsxGg3Sqn4YEhBBRwKAowTuMUwUm8jXdaUTBhD6DQSE1MdCM1BavX6XW4aXO4aHO4aXW4aHO6aXe6aXO6aXO4Q3O4WiLy+PH5QncvbSHyagEQiXBgsVkwGoxYY0zBkapxRmJtzR9bTEGP+LMJuLMBuIsRiwmY8xu0yoBIUSUC+wnbQgOuYXAu/QTS10HgiPS7ziaWUxGslIDo6BOx+tTaWj0Uef04nB5aWj00dDow+Fq+eF0+c46R8Wv6sHnd5bZZCDObMRibv5sxGIytPpsNhmwmIzBXflO/jAZm75u+ty8hLnJaMBoDM/mSyENiE2bNvHEE0+gaRoLFizgRz/6UYvv67rOE088wcaNG4mPj+c3v/kNI0aMCGWRhIhZ2w9UsbnoGJW1LjJTrVx2fm9GDsjgr4U72LazAp+qYTYaGDc0k3FDs9jy3TEqa91kJMdz4bAsBuemsvNgNdtKKqiu95CWFMe4oVkcrnTw+Q47jV6VBIuR8cOzufKC3NOWY8/hWr4oqaCm4cQ1gFaPFeSmtvv5BbmpfPj14UA5PH4S4kxnLEfzNarr3YFO9fw0MlOt7D1SR8nBGhoafVjMBtKT4jGbDLi8fnx+nYZGLy5Px2fKNzf/0b6blk4xNu3YZzIqwdAwGQ2YDArG5mND4LPRoGA0BM41Nn1/1JDsDv/MkO1Jraoq06ZN429/+xvZ2dlcf/31PPPMM5x33nnBczZu3Mgrr7zCc889x7fffssTTzzBihUrznrtWN83VuoXvcJVv+0Hqnhj4/5Wj9viTexsWtG1mU6gfyDzlHfoY4dkBmdON78s1Do8OF2+4O5tzY9PGd+Pq8fmBjfg0Zo2Lygpq2HdZ2Utruv2+lGAOEvL96PTxue1Cok9h2t57/OWzwfISbfy3b6qVo9f8b2+rULidNcYMSCN4gM1rR5vLsfJ+4nvbqpHYMe2wF2XrumMHJhOamJcYLSZr+mj6WufXwseN+9R4W16PBKs+Z+5HX5OyO4gioqKyM/PJy8vD4CZM2eyfv36FgGxfv165s2bh6IojBkzhvr6eioqKsjKygpVsYSISZuLjrX5eMnB1i+IAC63v9VjH319hKSEQDtVc6et0+VH1wPbhp7ckbu1uJzrJw1qdY3tG/cFZ5M3h4nLE/hZNqs5eJ4OFO2rYvzQ7BbDfov2Hg/Ohzj5nWtb4QCwbWcFMy/u3+L8r/dUcnKXgH7SuSeXodnXuysZOSCjqW8h0MfzzZ7jgXfip4w4q3d6mXPpgDbLcjqaruPzBcLC23Sn4fWf+LrVh6oG+5Oa+5Z8qoZ60rFfDYxsU5ubD5uO/U3nqVpzs+K5vf8PWUDY7XZycnKCx9nZ2RQVFZ3xnJycHOx2+1kDojN7q0YTqV90C0f9ahzeNpf50PQ2VuFt2qns1POdbj/pyfGnPP/U7TkDnxvd/jbr2VY5NA1QaLUHRYPLR27flncQ9S5/i3kjzfyajsXU+nG3V2VQ/4xT6qES38ZqtMfr3PRqo1+j0asyeGAvADJSAt93etQ2V7Rt9KoMGZTZ6vFYFbKAaKvl6tShZO05Rwhxds/8bFK4iwCcezm6oh6Rco1YELIZJTk5OZSXlweP27ozOPWc8vJyaV4SQogIEbKAGDVqFKWlpZSVleH1eiksLGTy5Mktzpk8eTJvv/02uq7zzTffkJSUJAEhhBARImRNTCaTiUceeYQlS5agqirz58+noKCA5cuXA7Bw4UImTZrExo0bmTJlClarlSeffDJUxRFCCNFBIRvmKoQQIrrJqlZCCCHaJAEhhBCiTRG9FpPH42Hx4sV4vd7gzOyf/vSn1NbW8vOf/5wjR47Qt29f/vd//5eUlJRwF7dTmvtnsrOzWbp0aUzVbfLkydhsNgwGA0ajkTfffDOm6ldfX8/DDz/M7t27URSFJ598kgEDBsRE/fbv38/Pf/7z4HFZWRk//elPmTdvXkzU78UXX2TFihUoisLgwYN56qmncLlcMVE3gJdeeokVK1ag6zoLFizghz/8Yaf+9iL6DsJisfDSSy+xevVq3n77bT7++GO++eYbli1bxoQJE3j//feZMGECy5YtC3dRO+3ll19m0KATM1JjqW4Q+Ie6atUq3nzzTSC26vfEE08wceJE1q1bx6pVqxg0aFDM1G/gwIGsWrUq+LuzWq1MmTIlJupnt9t5+eWXeeONN1i7di2qqlJYWBgTdQPYvXs3K1asYMWKFaxatYqPPvqI0tLSTtUvogNCURRsNhsAfr8fv9+PoijBJToA5s2bxwcffBDOYnZaeXk5H330Eddff33wsVip2+nESv0cDgfbtm0L/u4sFgvJyckxU7+Tffrpp+Tl5dG3b9+YqZ+qqrjdbvx+P263m6ysrJip2759+xg9ejRWqxWTycSFF17Iv/71r07VL6IDAgK/yLlz53LJJZdwySWXMHr0aKqqqoLzJbKysqiurg5zKTvnySef5N/+7d8wnLQDVqzUrdntt9/Oddddxz//+U8gdupXVlZGeno6Dz30EPPmzeOXv/wljY2NMVO/kxUWFjJr1iwgNn5/2dnZ3HbbbVx55ZVcdtllJCYmctlll8VE3QAGDx7MF198QU1NDS6Xi02bNlFeXt6p+kV8QBiNRlatWsXGjRspKipi9+7d4S5Sl/jwww9JT09n5MiR4S5KyCxfvpy33nqL5557jtdee41t27aFu0hdxu/3s2PHDhYuXMjbb7+N1WqN2iaJM/F6vWzYsIHp06eHuyhdpq6ujvXr17N+/Xo+/vhjXC4Xq1atCnexusygQYNYsmQJt912G0uWLGHIkCEYja3XsWqPiA+IZsnJyVx00UV8/PHHZGRkUFFRAUBFRQXp6elneXbk+eqrr9iwYQOTJ0/mvvvuY+vWrdx///0xUbdm2dmB9eczMjKYMmUKRUVFMVO/nJwccnJyGD16NADTp09nx44dMVO/Zps2bWLEiBH06tW0mF0M1O+TTz4hNzeX9PR0zGYzU6dO5euvv46JujVbsGABb731Fq+99hqpqank5+d3qn4RHRDV1dXU19cD4Ha7+eSTTxg4cGBwiQ6At99+m6uuuiqcxeyUX/ziF2zatIkNGzbwzDPPcPHFF/Pb3/42JuoG0NjYiMPhCH69ZcsWCgoKYqZ+mZmZ5OTksH9/YA+GTz/9lEGDBsVM/ZoVFhYyc+bM4HEs1K9Pnz58++23uFwudF2Pyd9dVVVgefSjR4/y/vvvM2vWrE7VL6JnUpeUlPDggw+iqiq6rjN9+nTuueceampq+NnPfsaxY8fo3bs3v//970lNbXt3qmjw2Wef8cILL7B06dKYqVtZWRk/+clPgEA/0qxZs7j77rtjpn4AO3fu5Je//CU+n4+8vDyeeuopNE2Lmfq5XC6uuOIKPvjgA5KSAkt7x8rv79lnn+Wdd97BZDIxbNgwnnjiCZxOZ0zUDWDRokXU1tZiMpl46KGHmDBhQqd+dxEdEEIIIcInopuYhBBChI8EhBBCiDZJQAghhGiTBIQQQog2SUAIIYRoU0Sv5irEmSxYsACv14vP56O0tJSCggIAhg8fzlNPPRXm0rVPcXExZWVlMTVTWcQOGeYqot7hw4eZP38+n332WbiL0orf78dkOv37sBUrVvDJJ5/wu9/9rsuvLcS5kn9dIiatXLmSf/zjH6iqSnJyMo899hj9+/dnxYoVrFu3DpvNxu7du+nduzf/8R//wdNPP01ZWRmjR4/m6aefRlEU7r//fqxWK4cOHaK8vJyLLrqIX/3qV5jNZhoaGnjyySfZs2cPHo+HSy65hAceeACDwcDChQsZP348X3/9NQkJCTz77LPBSYIej4fRo0fz2GOPUV9fz5/+9CecTidz587loosuYvHixSxatIgtW7YAcPDgweDxwYMHWbhwITfccANbt27luuuuY+7cuTzzzDN88cUXeL1ehg0bxqOPPorVag3zb0DEBF2IKFdWVqaPHz8+eLx161b9zjvv1D0ej67rur5+/Xp98eLFuq7r+uuvv66PHz9eLy8v13Vd12+77TZ93rx5ekNDg+71evUZM2boW7du1XVd13/xi1/oc+fO1Z1Op+71evWbb75Z//vf/67ruq4/8MAD+po1a3Rd13VVVfWf/vSn+sqVK3Vd1/Ubb7xR//GPf6z7/f7g92tra4Nf33ffffrrr78eLM/PfvazYNlLS0v1Sy65pM3j0tJSffDgwfq6deuC33/22Wf1pUuXBo+feuop/fe///25/Q8VooncQYiYs2HDBnbs2MGCBQsA0HUdp9MZ/P7YsWODCwkOHz4ct9tNYmIiAEOGDOHQoUNcdNFFAMyYMYOEhAQgsIb+Rx99xMKFC/nwww8pLi7mueeeAwJrhfXr1y/4M2bPnh1cQVPTNJYtW8bmzZvRNI3a2tpO71SWkJDAtGnTWtTV5XJRWFgIBFZfHTFiRKeuLcSpJCBEzNF1ne9///vcc889bX4/Li4u+LXBYGh17Pf7T3tdRVGAwIv+0qVL6dOnT5vnNocKwKpVqygqKuLvf/87NpuNP/7xjxw7dqzN5xmNRjRNCx57PJ7TXre5TL/+9a+58MIL27yeEOdChrmKmNO8aqXdbgcCiwVu3769U9d69913cblc+Hw+1qxZE7yzmDx5MsuWLUNVVSCw8nBZWVmb12hoaCAtLQ2bzUZdXV3w3T6AzWajoaEheJyVlYXb7Q5ea+3atWet6wsvvBAMEofDwb59+zpVVyFOJQEhYs7FF1/MPffcw5133smcOXOYPXs2H330UaeuNXbsWO6++25mzZpFXl5ecIvRX/3qV2iaxty5c5k9ezZ33HEHlZWVbV7j2muvpba2llmzZnHfffe1eLd/6aWX0tDQwJw5c3jyySexWCw8+OCD3HLLLdx0002YzeYzlu+uu+5i0KBBXH/99cyePZvFixdz4MCBTtVViFPJMFchTuP+++9n7NixLFy4MNxFESIs5A5CCCFEm+QOQgghRJvkDkIIIUSbJCCEEEK0SQJCCCFEmyQghBBCtEkCQgghRJv+f76jvs4HQqT4AAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"sns.set(color_codes=True)\n",
"plt.xlim(30,90)\n",
"plt.ylim(0,1)\n",
"sns.regplot(x='Temperature', y='Frequency', data=data, logistic=True)\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Mon interval de confiance varie entre 0 et 1 ce aui confirme que mon modèle n'est pas fiable. Je ne peux pas considerer les elements de sortie du modèle."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {
"hideCode": false,
"hidePrompt": false,
"scrolled": true
},
"source": [
"Comme on pouvait s'attendre au vu des données initiales, la\n",
"température n'a pas d'impact notable sur la probabilité d'échec des\n",
"joints toriques. Elle sera d'environ 0.2, comme dans les essais\n",
"précédents où nous il y a eu défaillance d'au moins un joint. Revenons\n",
"à l'ensemble des données initiales pour estimer la probabilité de\n",
"défaillance d'un joint:\n"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.06521739130434782\n"
]
}
],
"source": [
"data = pd.read_csv(\"shuttle.csv\")\n",
"print(np.sum(data.Malfunction)/np.sum(data.Count))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Cette probabilité est donc d'environ $p=0.065$, sachant qu'il existe\n",
"un joint primaire un joint secondaire sur chacune des trois parties du\n",
"lançeur, la probabilité de défaillance des deux joints d'un lançeur\n",
"est de $p^2 \\approx 0.00425$. La probabilité de défaillance d'un des\n",
"lançeur est donc de $1-(1-p^2)^3 \\approx 1.2%$. Ça serait vraiment\n",
"pas de chance... Tout est sous contrôle, le décollage peut donc avoir\n",
"lieu demain comme prévu.\n",
"\n",
"Seulement, le lendemain, la navette Challenger explosera et emportera\n",
"avec elle ses sept membres d'équipages. L'opinion publique est\n",
"fortement touchée et lors de l'enquête qui suivra, la fiabilité des\n",
"joints toriques sera directement mise en cause. Au delà des problèmes\n",
"de communication interne à la NASA qui sont pour beaucoup dans ce\n",
"fiasco, l'analyse précédente comporte (au moins) un petit\n",
"problème... Saurez-vous le trouver ? Vous êtes libre de modifier cette\n",
"analyse et de regarder ce jeu de données sous tous les angles afin\n",
"d'expliquer ce qui ne va pas."
]
}
],
"metadata": {
"celltoolbar": "Hide code",
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}