{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Calculs statistiques sur un tableau\n", "Le but de cet exercice est d'examiner les différentes statistiques telles que la moyenne, écart-type etc. d'un tableau donné au préalable" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Données d'entrées" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "\n", "table = np.array([14.0, 7.6, 11.2, 12.8, 12.5, 9.9, 14.9, 9.4, 16.9, 10.2, 14.9, 18.1, 7.3, 9.8, 10.9,12.2, 9.9, 2.9, 2.8, 15.4, 15.7, 9.7, 13.1, 13.2, 12.3, 11.7, 16.0, 12.4, 17.9, 12.2, 16.2, 18.7, 8.9, 11.9, 12.1, 14.6, 12.1, 4.7, 3.9, 16.9, 16.8, 11.3, 14.4, 15.7, 14.0, 13.6, 18.0, 13.6, 19.9, 13.7, 17.0, 20.5, 9.9, 12.5, 13.2, 16.1, 13.5, 6.3, 6.4, 17.6, 19.1, 12.8, 15.5, 16.3, 15.2, 14.6, 19.1, 14.4, 21.4, 15.1, 19.6, 21.7, 11.3, 15.0, 14.3, 16.8, 14.0, 6.8, 8.2, 19.9, 20.4, 14.6, 16.4, 18.7, 16.8, 15.8, 20.4, 15.8, 22.4, 16.2, 20.3, 23.4, 12.1, 15.5, 15.4, 18.4, 15.7, 10.2, 8.9, 21.0])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Calcul de la moyenne\n", "Pour calculer la moyenne de la liste, il suffit d'appeler la fonction _mean_ de la bibliotèque _numpy_." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "mean_table = np.mean(table)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "La __moyenne__ de la liste d'entrée est donc de" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "mean value = 14.11\n" ] } ], "source": [ "print(\"mean value = \", round(mean_table,2))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Calcul du minimum et du maximum\n", "Tout comme pour la moyenne, on peut directement appeler les fonctions _min_ et _max_ de _numpy_ pour connaître la valeur minimale et maximale de la liste d'entrée. " ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "min_table = np.min(table)\n", "max_table = np.max(table)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Les valeurs minimale et maximale de la liste d'entrée sont donc respectivement :" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "min value = 2.8\n", "max value = 23.4\n" ] } ], "source": [ "print(\"min value = \", round(min_table,2))\n", "print(\"max value = \", round(max_table,2))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Calcul de la médiane\n", "_numpy_ fournit également un fonction permettant de calculer la médiane d'une liste. Dans le cas de notre liste celle-ci vaut :" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "median value = 14.5\n" ] } ], "source": [ "median_table = np.median(table)\n", "print(\"median value = \", round(median_table,2))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Calcul de l'écart-type\n", "L'écart-type (ou *standard deviation*) est également une fonction intégrée dans la bibliothèque *numpy*. Celle-ci nous donne un écart-type pour la liste donnée en entrée de :" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "standard deviation = 4.33\n" ] } ], "source": [ "ecart_type_table = np.std(table, ddof=1)\n", "print(\"standard deviation = \", round(ecart_type_table,2))" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }