diff --git a/module2/exo1/toy_notebook_en.ipynb b/module2/exo1/toy_notebook_en.ipynb index 0bbbe371b01e359e381e43239412d77bf53fb1fb..74bf3fe760e44aa4f45bc527de06cf0f0d48c1b9 100644 --- a/module2/exo1/toy_notebook_en.ipynb +++ b/module2/exo1/toy_notebook_en.ipynb @@ -1,25 +1,39 @@ -{ - "cells": [], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.3" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} +# On the computation of $\pi$ +## Asking the maths library +My computer tells me that π is approximatively +from math import * +print(pi) + +## Buffon’s needle +Applying the method of [Buffon’s needle](https://en.wikipedia.org/wiki/Buffon%27s_needle_problem), we get the **approximation** + +import numpy as np +np.random.seed(seed=42) +N = 10000 +x = np.random.uniform(size=N, low=0, high=1) +theta = np.random.uniform(size=N, low=0, high=pi/2) +2/(sum((x+np.sin(theta))>1)/N) + +## Using a surface fraction argument +A method that is easier to understand and does not make use of the sin function is based on the fact that if $X ∼ U(0, 1)$ and $Y ∼ U(0, 1)$, then $P[X2 + Y2 ≤ 1] = π/4$ (see ["Monte Carlo method"on Wikipedia](https://en.wikipedia.org/wiki/Monte_Carlo_method)). The following code uses this approach: + +%matplotlib inline +import matplotlib.pyplot as plt +np.random.seed(seed=42) +N = 1000 +x = np.random.uniform(size=N, low=0, high=1) +y = np.random.uniform(size=N, low=0, high=1) +1 +accept = (x*x+y*y) <= 1 +reject = np.logical_not(accept) +fig, ax = plt.subplots(1) +ax.scatter(x[accept], y[accept], c='b', alpha=0.2, edgecolor=None) +ax.scatter(x[reject], y[reject], c='r', alpha=0.2, edgecolor=None) +ax.set_aspect('equal') + +It is then straightforward to obtain a (not really good) approximation to 𝜋 + by counting how many times, on average, 𝑋2+𝑌2 + is smaller than 1: + + 4*np.mean(accept) \ No newline at end of file