diff --git a/module2/exo1/toy_document_fr.Rmd b/module2/exo1/toy_document_fr.Rmd index 7eece5e296bb586e88166aa8a263ca75b44c2b9e..e9067cddfb0e2a40f224c5c79c28de64ff8a605a 100644 --- a/module2/exo1/toy_document_fr.Rmd +++ b/module2/exo1/toy_document_fr.Rmd @@ -1,7 +1,7 @@ ---- -title: "Votre titre" -author: "Votre nom" -date: "La date du jour" +------ +title: "À propos du calcul de pi" +author: "Victor Vdm" +date: "05-10-2023" output: html_document --- @@ -10,24 +10,32 @@ output: html_document knitr::opts_chunk$set(echo = TRUE) ``` -## Quelques explications - -Ceci est un document R markdown que vous pouvez aisément exporter au format HTML, PDF, et MS Word. Pour plus de détails sur R Markdown consultez . - -Lorsque vous cliquerez sur le bouton **Knit** ce document sera compilé afin de ré-exécuter le code R et d'inclure les résultats dans un document final. Comme nous vous l'avons montré dans la vidéo, on inclue du code R de la façon suivante: +## méthode direct -```{r cars} -summary(cars) +$\pi$ vaut environ +```{r pi} +pi ``` -Et on peut aussi aisément inclure des figures. Par exemple: +## méthode des aiguilles de Buffon -```{r pressure, echo=FALSE} -plot(pressure) -``` +[aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon) -Vous remarquerez le paramètre `echo = FALSE` qui indique que le code ne doit pas apparaître dans la version finale du document. Nous vous recommandons dans le cadre de ce MOOC de ne pas utiliser ce paramètre car l'objectif est que vos analyses de données soient parfaitement transparentes pour être reproductibles. +```{r} +set.seed(42) +N = 100000 +x = runif(N) +theta = pi/2*runif(N) +2/(mean(x+sin(theta)>1)) +``` -Comme les résultats ne sont pas stockés dans les fichiers Rmd, pour faciliter la relecture de vos analyses par d'autres personnes, vous aurez donc intérêt à générer un HTML ou un PDF et à le commiter. +## Avec un argument "fréquentiel" de surface -Maintenant, à vous de jouer! Vous pouvez effacer toutes ces informations et les remplacer par votre document computationnel. +```{r} +set.seed(42) +N = 1000 +df = data.frame(X = runif(N), Y = runif(N)) +df$Accept = (df$X**2 + df$Y**2 <=1) +library(ggplot2) +ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + theme_bw() +```