diff --git a/module2/exo1/toy_document_fr.Rmd b/module2/exo1/toy_document_fr.Rmd index 77f6f4fde8beb595914ea813e9010368c9f77498..6957d03fed335309469b1e3231db8a8adf283f50 100644 --- a/module2/exo1/toy_document_fr.Rmd +++ b/module2/exo1/toy_document_fr.Rmd @@ -5,22 +5,21 @@ date: "25 juin 2018" output: html_document --- -```{r setup, include=FALSE} +```{r setup, include=FALSE} knitr::opts_chunk$set(echo = TRUE) ``` ## En demandant à la lib maths -Mon ordinateur m’indique que $/pi$ vaut *approximativement* +Mon ordinateur m'indique que $\pi$ vaut *approximativement* ```{r cars} - pi ``` -**En utilisant la méthode des aiguilles de Buffon +## En utilisant la méthode des aiguilles de Buffon -Mais calculé avec la _méthode_ des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme _approximation_ : +Mais calculé avec la __méthode__ des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme __approximation__ : ```{r} set.seed(42) @@ -32,9 +31,9 @@ theta = pi/2*runif(N) -## Avec un argument “fréquentiel” de surface +## Avec un argument "fréquentiel" de surface -Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si $X \sim U(0,1)$ et $Y \sim U(0,1)$ alors $P[X^2+Y^2\leq 1] = \pi/4$ (voir [méthode de Monte Carlo sur Wikipedia] (https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). +Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d'appel à la fonction sinus se base sur le fait que si $X\sim U(0,1)$ et $Y\sim U(0,1)$ alors $P[X^2+Y^2\leq 1] = \pi/4$ (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait: ```{r} @@ -46,16 +45,9 @@ library(ggplot2) ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + theme_bw() ``` -Il est alors aisé d’obtenir une approximation (pas terrible) de $\pi$ en comptant combien de fois, en moyenne, $X^2+Y^2$ est inférieur à 1: +Il est alors aisé d'obtenir une approximation (pas terrible) de $\pi$ en comptant combien de fois, en moyenne, $X^2 + Y^2$ est inférieur à 1: ```{r} 4*mean(df$Accept) ``` - - - - - - -