From f04e6618c8f1955535ef40fd510280ce04bd9bd2 Mon Sep 17 00:00:00 2001 From: 1071ae964b205fc96951cf272887f050 <1071ae964b205fc96951cf272887f050@app-learninglab.inria.fr> Date: Mon, 16 Jun 2025 18:01:15 +0000 Subject: [PATCH] small changes --- module2/exo1/toy_notebook_en.ipynb | 3 --- 1 file changed, 3 deletions(-) diff --git a/module2/exo1/toy_notebook_en.ipynb b/module2/exo1/toy_notebook_en.ipynb index dd1bba4..bb88a69 100644 --- a/module2/exo1/toy_notebook_en.ipynb +++ b/module2/exo1/toy_notebook_en.ipynb @@ -7,7 +7,6 @@ "# On the computation of $\\pi$\n", "\n", "## Asking the maths library\n", - "\n", "My computer tells me that $\\pi$ is *approximatively*" ] }, @@ -34,7 +33,6 @@ "metadata": {}, "source": [ "## Buffon’s needle\n", - "\n", "Applying the method of [Buffon’s needle](https://en.wikipedia.org/wiki/Buffon%27s_needle_problem), we get the **approximation**" ] }, @@ -68,7 +66,6 @@ "metadata": {}, "source": [ "## Using a surface fraction argument\n", - "\n", "A method that is easier to understand and does not make use of the sin function is based on the\n", "fact that if $X ∼ U (0, 1)$ and $Y ∼ U (0, 1)$, then $P[ X^2 + Y^2 \\leq 1] = \\pi/4$ (see [\"Monte Carlo method\"\n", "on Wikipedia]()). The following code uses this approach:" -- 2.18.1