Applying the method of Buffon’s needle, we get the approximation for pi in our case
3. Using a surface fraction argument
A method that is easier to understand and does not make use of the sin function is based on the fact that if X ∼ U(0, 1) and Y ∼ U(0, 1), then P[X2 + Y2 ≤ 1] = π/4 . The following code uses this approach:
4. Écrire le lien "aiguilles de Buffon" vers wikipedia
5. Écrire le code de la méthode de Buffon pour Python et pour R