diff --git a/module2/exo2/exercice.ipynb b/module2/exo2/exercice.ipynb index f5eadfbdf29d5397817997767c67525dd23b369a..e9edfe3bcd1c4b2b513af2eb18e36ebff080f9f8 100644 --- a/module2/exo2/exercice.ipynb +++ b/module2/exo2/exercice.ipynb @@ -111,6 +111,272 @@ "np.median(donnees)" ] }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztvXmYJGd95/l9MzIj8qyrq7r6qD4ltS5AEghJ3Ie51wN4vNgGDPjEO+PZwYN3Z/HMzq7x7Dzr8T0z9ngsGwzLADMe47GwGWMwh8UlgQQCXS211Oru6u6qrjOr8o7IiHf/iHjjfCMy6og8It/P8/TTVVlZlfFmRvzi935/F6GUQiAQCASjT2bQByAQCASC/UEYdIFAIEgJwqALBAJBShAGXSAQCFKCMOgCgUCQEoRBFwgEgpQgDLpAIBCkBGHQBQKBICUIgy4QCAQpIdvPF5udnaUnT57s50sKBALByPPwww+vUUrnej2vrwb95MmTeOihh/r5kgKBQDDyEEIuxnmekFwEAoEgJQiDLhAIBClBGHSBQCBICcKgCwQCQUoQBl0gEAhSgjDoAoFAkBKEQRcIBIKUIAy6QCAYa75zYQNPLm0P+jD2BWHQBQLBWPOhz/wAv/vFpwd9GPuCMOgCgWCsWd5qo6Xpgz6MfUEYdIFAMLbUO100VB1q1xj0oewLwqALBIKxZXmrDQDoCIMuEAgEo83KtmnQhYcuEAgEI84yM+i6MOgCgUAw0lzb7gAQHrpAIBCMPNe2mYYuslwEAoFgpLkmNHSBQCAYfnSD4r0f/Ta+8cxa6HOWhUEXCASC4afW1nD/06v4zoWN0OesMA1dBEUFAoFgeKl3ugCAhvW/H8OgWKmZHrqmUxgG7duxJYUw6AKBIJU0VTPQWQ8x6BtNFZpOcWgiDyAdXrow6AKBIJUwQ17v8DNYWED02EwBQDqqRYVBFwgEqaRpGfIwycUx6EUA6QiMCoMuEAhs1uudQR/CvuF46GEG3VzrccugpyEXXRh0gUAAAHjg/Dru/Dd/h0vrzUEfyr7QVC2D3uYb9OWtNggBjk6Zkovw0AUCQWr4/mIVlAKr9fagD2VfaFhB0YbKN+grtTYOlBSUlCwAERQVCAQjQqPTxfnVeuRzzq82AAAdbfQNG+Bo52Ea+vJWG/MTCpSsaQbTsG5h0AWCMeCjX38Ob/uDb4DS8Fzr82umwU9DtgcANGNo6Icm8pAtgy48dIFAMBKs1juotbuRxtr20FMQHAScdMW2ZqDLMdbXtts4OJGHLFkGPQU3MmHQBYIxgBXZhMkP1aaK9YYKIEUeuks7b/hy0dWugfWG6vXQU7BuYdAFgjGAGTe/YWM8a3nnQDq0ZMArtdR9gdFVKz3T1NAlAMntTJa32vj9L5/DxfVG7yfvEWHQBYIxgBnyMD3ZHTDtpEBLBpxdCRDcmbBZovOTjoee1M7k8mYTv/WFp3GxD+mgwqALBGNAq0cK3/k1t4eeDg3dbcRrvlx0Nkt0vpK3s1ySklxYsDUnJW9uhUEXCMYAZsijPPSF6fT0NAHMNU/kzRzzgIduGfRDky6DntDOhN0o2E4gSYRBFwjGgF5B0fOrDdx0qAIgPQa92dExb3VS9K/72nYHspTBdDHnSC4JxQ6YQVeEQRcIBsN9j1zBl568NujD2Deiimx0g+LiehPXzZWhZDMpSlvs4uCEYn/txkxZVEAISTwPnf1d4aELBAPi97/8DD72zQuDPox9o2X3Bg8a68ubTai6gdNzJdOg9ynL5W8eXcK99z+757/T1nT8i//+KNZ8jcWaqo75SpiH3ra996Tz0NnfHQoNnRByjBDyFULIk4SQxwkhH7AenyGEfJEQcs76fzrxoxUI+sRqvZMa6YFSamvoPA+dFRSdnitDyUl9WffiRhO//N++j498/bk9/63Hr27jUw9e8swOZWueC/HQl7fNsn8AyEoZSBmSmEHXhsxD7wL4ZUrpzQDuAfCLhJBbAHwIwJcopTcA+JL1vUAw8qhdA9WmlhqD3ukaYNPVeAb9WStl8fRsCbKUvORCKcW//MvH0FT10E6IO2GrpVr/a/ZjLU0HpcB0UYYsZQI7k/W6itmyYn+f5LrtoOgweOiU0iVK6Xetr2sAngRwFMDbAHzcetrHAbw9qYMUCPrJesMaHJwSg+7Ox+ZluZxfa2CykMNMSYaSyyR+I7vvkau4/+lVHJ0qoKHq0Pc4y7PaNA35VtMx6GydJVlCSZE8N7KubmCrpWGmJNuPydlMYp93Z1izXAghJwHcAeBBAPOU0iXANPoADu73wQkEg2Ctxkrg0xEcdBszrkFfreP0XAmEEChZKdEb2Xq9gw//1eO44/gU3vuSE+bxheTGx4V55lWXh86mFZWULMr5rOc9YM8LGPSEg6JDleVCCCkD+AyAX6KUbu/g995PCHmIEPLQ6urqbo5RINg3KKV470e/ja+cXQl9DusHnpYS+KiKScDU0K+bKwOAleWS3Lr/3ZfOod7p4t/+6AswWcgBCB9AERfmoVddHjq7SRTlLEpyFjXXujetnjXTRcegJ7lurWvuQIYiKAoAhJAcTGP+SUrpX1gPXyOEHLZ+fhgA9wqhlN5LKb2TUnrn3NzcfhyzQLBrGqqO+59exXcubIQ+x/HQ02HQ3R6w30OvtTWs1Do4PVcCYBm2BCtFz6828LyjkzgzX0HZKvrxV3HuFOahMy0dcFodlJUsyorXQ9+wDLrfQ0/q81Z1HVKGQMqQRP6+mzhZLgTARwA8SSn9HdePPgvgfdbX7wNw3/4fnkCwvzR69MgGnMZNakokF5ayWJKlQHOu56yS/9OzloeecJaL2jXs4GAlb3noHS3qV3pSbarW/xwPXZFQ8hn0zWbQQ5el5DR095qTJs6rvAzAewC8lhDyiPXvLQB+HcDrCSHnALze+l4gGGp6DQ4GgNWaadBT46Fba52rKAHJxTbobg89wXV3dMMODpaV/fHQqxwNna2Teeh1j4ce1NCVBIOiatfoS0AUALK9nkAp/TqAsL3CD+3v4QgEydJrLBkAu0Cl0zVAKYW5SR1dmIZ+sJLHBV8L17W6av3MTOFLulJU7Rp2cLBiSS5RN9c42FkunKBoUZYCBp156FPFnP1YksFgVad90c8BUSkqGDPqtkEPN1rMQwcATd9bSt0wwAz63ETQQ99qqiAEmLDkDyUrJRoMVrt6wEPfa1B0u+WkLbIRe07aYtaSXJzPe6OhoiRLyOck+zE5wRuZ+yaWNMKgC8aKXn3BAXhKyNOQusiGWxysKGioOgxX3ne1pWGykEPGCtglGRwEzBQ+pieX98tDtwy6qhtoWQFdtuaSkkVZkdBQu7ax32yomHbJLUDyaYv9klyEQReMFbGCorUOspaB65eOfnmzuecCG8BcF0vLY7Cb2JwlqzRdWSzVpoapglt6yCQaDHbrySV57xq6YVBUm07VJ5NfGqqOnGQ23iopWVDq7FQ2mqpHPweSDorqQxUUFQhSQ72Hht7p6thud3F4Km99n7xBv7zZxKt/86v4wuPLe/5bH/7s4/i5/+8hz2NNtQslm7FlFX+RzaQ7HzvhSlG3QZcyBGUluyeDXle7MChw4kARgMugd7ooWZKOfyew2VA9GS6Aue40BEWFQReMFb08dBYkPDplDnvoR/n/wxc30TWoPXRhL1zaaOLypnfUWVPV7eAg4F17tali2hccZMHgJDBT+Bzt2gxY7j5tkZX72wbdykVvdHR7B+Bfd5iHnlhhkU6Rk/oTWBcGXTBWuLNceEZrzQqIHp0yDUQ/NPTvXap6jm0vbLU0Tz42YOZkF63goP91eJILkGxvcLe3Ws5n96Shs7WePGCmXbIAqemhmzcOZtgbtoeuBTz0JHu5CA9dMDQYBsVXnlpJzGPrN6zrnkFhB9DcsIDoUTaOrQ/l/9+/XPUc215gXSLbrrU1OzpKimQbOL+HPuUrgQeSkZoMg0LTqdeg95BcWqruaYvrh6UqBiQX6yYGwL6R1TtddLo66p0uZko5z99JtDmXbkDOSr2fuA8Igy6I5O/PreKn//Q7ePTK1qAPZV/o1aiKpSwuTPVnvqbaNfD41e3Ase0WJjlsu3OyNR1FOWtLDyxIqhsU2+2u3VMFMCtFgWRuZLwmVZUeHvp//c4lvPtPHgzISAy2XuahV10eOluvOz2SGXx/louSldBJcKaoCIoKhoLnrOEHe63mGxbqrr4mvFx0v4eetIb+5NK2/Rp7Td9razraliH2dh7soihLAcmFebfeAhvmoe+/1GSPYpO8HnpUHvqz1vn31HKN+3NmoA9N5iFLGft7FjcAnKBoQ+06fVxCJJckdqKabkDOCg1dMAQsWp5RGvKxAa8XzPOIV2sdVPJZu4ox6XUzuWWqmNu3iknAWzXZUL0eOnudKqenSZKSiz3owSe5RK374oZ5/j19rc79OVvnZCGHyWLObtBVd2W5OFKT7nRaDHjo8WMHlzeb+JtHl3o+jyE8dMHQsLjRApCeVrKNThes6R1v17FWVzFXUaBYmmfSkssjl6qYqyi4bq68Z8ml6uo26DbuTbVraeheD5158ZM8Dz0JyYVj0Cv5XOTu76LVquDpa2Eeuop8LoN8TsJUIWcb+Kaq24a87Fr3RjPYaRHY2VzRj3/zAv7xp77riVNEIYKigqGBaZftlHjo9Y5uF6GEeeizZSVR6cHNI4tV3LYwFegIuBvCPHQmPxQtfdyWXKzne7NczOckkeXCG8XGslwMTlGVphu4smk6FOEGXcNUwTTOU8WcNw/dCooWchIyxNTQNzmtcwEzD919jFFc3WqDUmB5K16aqagUHVL+9vFlfPnstUEfRt+glOLyZvo89EOT1iR4zqSctXoHcxXFvgCT1NC3mhrOrzVwx/EplBVpXyUXJqcATEPPIpMhKMmSnU3DPHpulksCPdFVzrDkiuLo236uVlvoGhTTxRyeWalzK2m3WpodA5gsyKg2NXR1A52uYe9ICCEoWdIO67TovokBzk0mzo7smmXIr1RbPZ8LBHPvk0QY9B3we393Dvfef37Qh9E3qk3NNjKj1kpW0w382l894enLApgG/WDFNOjcLJd6B3MeDz25dTP9/PZjUyjJWW6Qdie4jTjLcjEMiqamo2QFCN07gU3LuHkKi3J91tAj+rlcWDd3h6+9aR6droHFjWCmC+tFA5g6+lZLQ0N1Oi3ar2Ote7OpYrKQQ9anae/kBr60U4OuG8iJoOjwsVprj5xhi+LRy1v4zb89G/rzRVeqWFy9cFg4u1TDR7/xHL76lHfsYb3TxfyEKbn4syvamo5au2tq6Amm7zEeWayCEOD5C5P7I7lYRlzOZuyv210dlAJFVwofy/SptjQQ4gyaAJBo7IA3LDmq4+IlSz9//S3zAPiyy1bT8dBNyUX19EJnlJSsneXil1vcx9RLajIMipWaadCvxjDolFKz26IIig4Xmm5gra6mZhI8AHzu0SX8wVeeDdWJWUAUGD0PfdOeYuN4rWwrzppU+Q0o8+Zny7ITJEsoNxkAvr9YxXVzZUzkc6YHqfKrV+NSbWrISQSHJ/Oe4CDgeKvuG8dWU8VEPucZjZZo2qJ1DilS0EOvhXjo+VwGL7v+AADg3Eow06XaUm0PfaqQQ0PV7bUXfQa91jY9dPeOhGHHDnqc5xtN1W6pzPT9KNhzhYY+ZKRtig1gzpM0/+d7hqPsodtTbNxjyXxzJv2VmewznqsoyEkEhCSjJQOm5/bIYhW3H5sCYBqcsOrVuGy1zKrPqYITHHQGPTgpfO4slymfcbM99AQLi9zGbSIf7qFfXG/gxEwJlXwOR6cK3Fz0alOzYwBsLcxzLituycVcdy8PvdeNzB0IvbrV26Dz1pwkwqDHZKXG5kymyaBbjapCDPrlzSYmC6b3OGo3MuaZb7o8dCY1lJWsx7AxWGOu2bICQkii49iuVFtYb6i4zTLo+9EbnPVlmXCl77FgI9PQ3TeyTZcxZPRdQ1dMI8xzKi6uN+2S/hvmywHJpa3p6HQNR0O31sIMOruJma9jxih4nRaB+EFRZtAXpgu4Wu2d5aJZf09MLBoyrlmd8NJSYAM4HnqYEVncaOHYTCHxsWRJwAJ+bg+d3bhKitmoqu7LrHB76IDTeTAJ2M2DtRhg3uReAqObTRVTxRymirIdFGWSSyFEcgnP9khOcuEHRb0NxQyD4uJGEydnzZL+G+crOL/aQNclgbHP1slyMf+/bBn0kuyVXOpWHnqkht7LoFt24EUnpnGl2uKmW3rWLDz04WTF+iDT5KEzQ77d5rcvXdxs4th0EfmcZJeUjwosJc9dbMPWW85nuSXnTEM/UDINepLTe5iU4x/2sJfAaLWpYbIgY7KQtSUn9+Qe9n+k5JKkh65ba5aCQVG/h7683YbaNXB8hnnoFai6YVeOAq7WBSwPvcAkF/NaLSneLJe1egdtzQhUiQLxK2SXt9qQMgS3LUxB7RpY9w0TCayZk3ufJMKgx2QllRp6uORiGGYO+rGZYuKT4JOAeW/MUweCk+B5QdGpYs42sknuTPyNqni9ynfKVkvDdDFnp+9RSm2Pv+iRXFjpvxbqoSfhuISV/gPBdV+0UhZZ060z82UAwDmX7FL1DXv2a+glX1CUncP+Pi6Aq/Q/hoc+V1ZwzLrR9Mp04WX2JIkw6DFxJJfRMmxRMIPO0y9X6x2oXQML0wXTUx21oCgny4UZcDY42G9EWJUoI8kbmd+48XqV75SqlcI3VZChGxT1Ttfx0FlQVDYNmzmZKaihZ6UMshnSN8lFyhAUZSngVLCSf6ahX3/QNOhPLTuZLlVXHxfA8dR5Bt2dwsjz0ONKLte225ifzNsDUHrlotuZPcKgDxfMQ9cN6tHxRpntCA2dFXHYksuI3cg2LQ/d3XWw7vfQ1aCHPlt2V01KieWh+z230h499Lamo6XpmCrKtoHbammctEXz/2WrfN0vuQDWjSyBdbM1K76qSV6DrosbTeQkgiOW4SzKWRybKeDpFcdDZ60L2Hor+SwIcZwv1uqAvQbD3wsdiJ+HvrTVxuEJx6D38tA1XQRFB0Knq0cGOK5tOxWHSeYm9wvD8uAAvhFhJf92UDRBD103qO1J7hfMM2+quu1t2h66NezB7xX6PfREJ8Hbnpu/gdTu3md/10HA9NjZ++ouLAKcz5dr0HPJBIPDAoSVfDaQh35xvYFj00VPjvyZgxWv5NLySi6ZDMFkIQeDmjewjOt33d46L8vFSdeMfv+vbbVxaDKPiUIWJVnq7aGLoGj/oZTi1b/5VXzy25dCn7PimveYhsCoWcRifs0LijIPfWG6mNgFzvi/7nsML/jVL+A9H3kQn/jWBTvbZC9UW5qtB7snwQNOlovfeK7UOnZbAACJ3siCkou3cdZOsQc3uDz07ZZmr7GQc7JcAKcohskUbnYSO9hua9weKzx4kgsAlDkdFy+sOSmLjBvmK3hurWF7vdWmZg+aZrC1u1MWAW9O+m4rReudLmqdLuYn8iCE4Oh0oWdxkQiKDgBVN7C01caFtQb355puRrMPWulsadDR3RcQLyi6uNnEXEVBPichn80kWli0tNVGScni8mYL/+q+x/ET935rT39PNyi2WhqO+8aS1TtdZDNmfnlFyULVDfuCa3S6aKo6Dk64NPQEb2TMYLILnWncu5Vc3AFC5rFWWxpamo58LmN7uraHXo3w0GPGDjTdwKt+4yv4xLcuxDpGtWsgmyEerxswG3TVXU4FpRSXNpo4YQVEGTcdqkDTqV1gtNUyg7qEOH+PBXndGS7m9+a6MwSYyHMklxjBYJaDfthq7nZkqtCzuCjsJpYUwqDDnFsIIHTbzzxGlkKVhs6DboPOC4oubrRwzJrao+SkRHclatfA9QfL+PIvvwo/ec9xj7y1G7ZbGih1MiRYcVHDGnrAuu+xxwAnRsJu2kCyQVFbT7bSBDNWcHDXHrpbcnFp6O42sgDHQw+RH+Kc48tbbWw2NZwNmSbkJ6wvuF9DX2+oqHe6AQ/95TfMghDgi0+YHU+rLc3Tyx1wiotKAQ/d/H66KHukGEZOIvYxhsG0+fkJ06AfnepdXKQKDb3/sMBRmH7JLnaWqsTyaUeZWjsYLHSzuNm015u0h67qhlVqT3CgpKDe6cbexvNgxu3ULPPQnSk27ML2ByGZpOaWXMyxZMmmLbq34iVOoDYuW64iG2bQTQ1dR9HlrTLPlfW596ctAiz/vve6mSy3k66DXIOe99YEsAyXkz4Pfbas4MUnZ/C3jy8DsBpz+Y4/zEO3DTpHbgEQqzKYeeiHXB76RkONjP+ILJcB4Bh0/gfD7szMYx21IhsezCvP5zIByaVrSVALtoeebB66phu2B1PZhxJ45pGfmjVT3TxDD3xTbOp+D32iTx66FjJfc5dB0U3XOLlCToIsZbgeOls3M8ITHIOuxAwGs14/S3EHPYSMYisr3qAoy0H3e+gA8KZbD+Hscg0X1hqexlwMJiG5g6Du73k56IxehWSsSvSQy0MHEOmlC8llADDJJcw7Yt7bgu2hj75BZ4HQI5OFQFB0aasN3aA4Nm2uN8kSeMA86ZkHw/TNWkj1ahyYt3rS8tA3bYOueyomzceiJJfk1q3qpnHzZmJESy6PX92yW7f6qbbMTotFWQIhxO7n0tJ0u+zffA1z3ctbbUzkswE9G7Bu4DGcFtaNc6naitUlMkxymbCmFrG/cX61ASlDsDAdNOhvfN4hAOawmSqnFw0z8H7JpWR76MEbGKPXjWx5q43JQs5+P9kg8ajURZHlMgDYlol56n5Wah1kiGn8gHRp6EemCgFvmHletuSSS1Zy4XnoUXMme8G81cOTZlEUT3IJeuhtyFLG4/ElneXiv8hLcvjA5Fpbwzv+07fw4c8+wf05K/tnAcIpa2BymIfeNWio/BD3RsbOk4aqY7vV+/PqREgulDrX39nlGk7NlrjPPTpVwAsWJvH5x5ex1dQCHvpkD8mFl+HCkKVMdFB0u2175wDsHPkoyUnjSGtJIgw6gKbWW3KZqyj2nXnUGlXxYAbz8GQ+YESWrC0k21IqWQndBAuqNJ26DHp49724bNopfDlMh8yZ9Od9r9bM0XPujIm40gMArNc7uP/p1d5PtOh09WD6XsSQi7985Cqaqo6/f3rVNhJuzNa5jnFj5f9snihDyToZLzz9nD0nzjl+2ZWyF6uVbKjk4v3Mn7q2jZsOVUL/zhtvPYTvXaqi1ukGsnSYx+5PW5QyBNcfLOOmQxOhf7dXVtOylYPOmK8okDIk2kNn3RaFh94/Wj2Cote2zfzkuP0eho1nVmp48Py657Fa28zhnasoqLW9gxU2rIZDB6yqSSVGju5ecHurjoe+F8lFBbHS06aLciDLBXA8ONbljxl0N0xDjyMnfOybF/BTf/rt2AVSPOMWNrWIUopPPXgJSjaDeqeL71zYCDyn2tQ8gxtYT3S/QSeE2K10J0P05Lixg8WNJm6wSvKXYhp0XnDQ3XGx3ulicaOFmw+HG943WbILELwpse/LPg0dAP7ug6/C+156MvTvmh56+I3M76FnpQwOTeQjPXS7Ilh46P2jp4Ze62B+oj9zJpPgd//uHP63P/++57F6p4tKPotKPgfdoJ5A73pDRU5yCjbyVlFKUsFgdd8lF3MrzioH3Xno5UBQ1PzsV7Y7Hv0cMD02Sp2pM1Fc2WzBoPGm2ACWccsFDTovKPr9y1t4cmkbH3z9GchSJjBWD2Brdgy046F3PZN7AGft4R5677TFtqZjpdbBXadmAABXYvQGD9PQ2aDoWrtr55jfOB/uoV83V7ZvJH4NnXnsRZ/kEgczq4m/bnNiWQfzLg8dAI5M5SM/c1FYNACY5NJUda43trLdxlwlH3tM1bCxXu9gZbvjWVutzQx60CPetKa6MPkhybFkgHmxyFYecGUfgqLmmDHzQp8uyqi2VLPzoBoVFG17MlwA7GgMHcv0uBwzha/D8dDLIUHRTz14EYWchHfdfRx3n57Bl8+uBJ6z1fRKLhOFHLaaZqVoSeYX2fBGsQEsqyn6s2ZyywuPTyObIViKse6otEXAvOGeXd4GANx0ONygA46X7s9Dt7Nc5KCH3osoiW2l1gGlTlER42iP4iKWksvLfU8CYdABtCzPXDdowPtmVaLzE4prTFXyBr3R6eJ3vvBU7BzfKKpNDZ2u4dHKa20NFSXnGHRfYYe73wXzJJPy0DWO5LId4aGvbLfxH750LjRXfcs1CX6qmMOmtX7doLYxy0kZKNkMGp0u1K6BzabmyUEHXL3BYwRGmeRweQceeiAoqmTR0nTPurbbGv7q+0t4621HUMnn8OobD+KZlbqdA86otrw52VPFHGqdrpXlws/4CJNcZKm35MICoicOFDE/kY+VuhimoVdcY+ieWq6homTt+E0YP/rCBdxyeAI3+zTxo1NFvOjENO44PtXzePzIEU3J7Bz0Cb+HXsCylRXGQ+safSsqAoRBB+DNbvF7SKxKdH4in7inythqavjJjzyIf//lZ/BFq4hiLzANeb3utJLd9nno7lz0zaZq6+cAkM8mGwx2Sy55K4c6SnL55IOX8NtffBpPXN3m/tw9CHiqKGOrqXk6LTJY/vNqPZiyCMQfekAptQ1abMlFD+rJdqDWJf3d970raGk63nX3cQDAa286CAD4ylOOl97p6miquidrxZ394ffQe0ouMeoOLm84mVBHpvI9uw4C0ZWigOlUnF2q4cZDFU9wmsfJ2RL+xwde4QlSAuZkps/8o5fiBQu7M+hhHrq/SpRxsKJA06ndHM1P2K4kKYRBh6OhA8HUxWt2BaFie2xJSi4rtTZ+/N5v4bErWwD2VmADmMaGZX2wiTwAk1xy3JmOGyEeehLpmpRST5YLYFUOdsIllwesAO8TS1vcn5sBQia55KDqhn1j9g89aHS6gdFzDLsDX4/Pm+2AAKcCsxcdje+hA16n4tPfXsQthyfwgoVJAMCp2RJOHijiKy7Zxd9GFvD2aPFr6CwgzOvjApjr7tUm+vJmC3I2g7mygsOTvXuaAMy4BbXtiuscfHJ5u6fckhT+tMUvPXkN/+dfPoovn72GC1b1ql9y6SURhu1KkkIYdPg8dF9gdMXloccdJLtb2pqOH/+jB3DfdbZYAAAgAElEQVRxvYmP/tSLTU91jwa9pen2Seo16Boq1ig2wDvTcaOh4kDJ2xecHd9+wwKObuNWyWdDPfS2puN7i1UAwOMhHnq16fT4YEaLSSFlxVtk0+h0uWX/7mPqdQN3yw1xJbIOx7j5DXpb0/HE0jbe9LxDHo/1NTcdxDefXbcdEdbqwJ+2aP/dUA09PMsFiI4dLG42sTBVQCZDbNmh53zNEOPGbjDnrtVQa3dxY0RqYZL4exZ94oGL+M8PXMLPfOwh/Mbnn4KczQRugr2C+GG7kqTo+UqEkI8SQlYIIY+5HvtVQsgVQsgj1r+3JHuYyeKVXHwtVV0eelYyc3iT8tDPrzbw3FoDH37rrXjFDXMo58PzkuPCvHMAWHVJLv6gKNOsNd0wR5m5DHo+0TmTwSyAKIP+/cUq1K4ZaOJJLqoVK2DGimVBMM/Z7aFXrKZQvLJ/IH4wmOnnZ+bLO9LQg5ILS6U0X4/JGMdmvHrya248iE7XsHcq9rBkT5aL83UxRHLxBxQZ9rojdmSLGy27cvrIVB6aTrHWiG6q1gkxblkpg0JOstMxb47IQU8Sf+xgtdbBK26Yxcd/5i68++7j+F9eeTogBTEPPWwu7zBKLh8D8CbO479LKb3d+vc/9vew+ktLc4yH34Be2zarRA9Ygw/MDz3Zhk2zFatjHGcIw07ZdA2xXbMMF6XUlbbo1dCZcZjheOhJGHSNFV5IzoVSUXKhW9gHn9sAIcBbnn8YTy5tB7xCpmUyDZ0ZdqZteyUXyTbohMCzKwHir5t56HeenMFqrRNrJ8MrLPIPimbePqtQZtx9egaFnIQvsK6DvtmagNdD9xfZlHpq6L3XbQ4QN4/r8GTvniYAoHb10CZV5XwWz66assaZQRn0bNCgH50q4FVn5vBvfuT5+OAbbgz8TiwPfZgkF0rp/QCClQwpoqnq9pvuLwxZqZlVoqy6LslGVf5xVWUlt2cNvery0NctD6qpmpkUpobuLYFnRUUzHA89GcklWEkX5aE/+Nw6bpyv4KXXHUBD1XHJn+1hGbdJ20P3Sy5+DV3Haq2NAyVzB+ZGjuGpAs4k+DuOmYG4uAFChVNYBDifBfs7R3wZH0pWwj+47TA+893LuFJt9ZZcQsrgea1zzb8fvTOptTVUm5rdGoLpyr1SF6O8VZaLfnSqwO1X3g8UV3dN3aBYb6iBuIqfiR6VzcPooYfxTwghP7Akmel9O6IB0FR1e5akX3JhVaIMJaL4YK/4ixCYJLAXWIZLTiJYq5lfs5Ovks/a213mEdsGvdgfD51XSVfhTLABzPfn4YubuOf0Adxy2AwS+nV0d9k/4DLo1aDkwvpw84qKALeW3EtyaeNgRbH75ceRXXiFRWWfhn5ls4UMQSCTAwA+8LozAAV+74tPuzx0fpZLIef10N962xH8yptvCs9D933etbaGt//BN/C9S5sAnKZcrHmb3XWwR+pilLfKPN2bBxQQBbx56BsNFbpBexr0XpXNQ+ehh/CHAK4DcDuAJQC/HfZEQsj7CSEPEUIeWl2N3+siCeqdLn74P3zNziBhtFQds9YHF/TQvRd7rxabe0H1eavl/P4Z9FOzJTsoyk4+pv+5X8c26J5hycl76P6gKE+TfPRKFW3NwD2nZ3DDfBnZDAlkulRdbWQBR1dmkktZDma5rHDK/oH42T1LWy0cnszbmnKcwCivsMgfFL1SbWN+Is/NYz46VcB7XnICn/nuZXznwiayGeIJfsrZTGAwNOPYTBG/8KrrQlMD/Rr6s6sNPLJYxe988WkATjyCtVeeKuaQz2UidyZd3YBBw7sOsuKiGwcktwDOtU0pdTKfytEGvTxqQVEelNJrlFKdUmoA+GMAd0U8915K6Z2U0jvn5uZ2e5z7wqX1Jh67so1HrCwJRlPt2sOB/aXXrGqSoWSTm97j99BLSnYfNHTTMF43V7YN+rbLQ2f/s8c2mhwPPYamultYlovbaLF2qn59/IHzpvJ316kDyOckXH+wHAiMVn0pfHI2g5Is2Z6727iVlSyaqo7l7XaIhx5v3ctbbRyeLNjNmuKkLvIudH87gqvVVmSBzS++5nqU5Cy++MQ1TBXlgIFmGrlfQ++F7JNcWOzla+fW8MTVbSzaA8TNGxghBEcmC5H9XHq1kWVrj2qelTSylAGlZidKVpvQy0PP+Xa4ftydRPvBrl6JEHLY9e2PAHgs7LnDBPP6/HfTlqpjuiiDkKCHvtXSPNrkTgbo7hS/t7qXgQeMzaaKipLF/EQea3UmuZjvwwQz6K4bx4b1nOlS0ENPYt28XheVfA6UBlNIH3xuA2fmy/YN9pbDE3hiyWfQW8HjZ1KEks14dHJmRFZrnUCGCxA0bDxYUdGhyTyyUgaHJ6N7ezDMwiKv55zPZZAh3qCoXz93M1OS8f5XnrbWGJRPJkJayfbCX1DFYi9ShuCPv3YeixtNlGTJI9kc6TGOrVdPE1YPEdVlMWncaaphtQk8omI+YZk9SREnbfHTAL4F4EZCyGVCyM8C+A1CyKOEkB8AeA2Af5bwce4LLAPCfzdtajpKioSS7J0E3+nqaGm6R49MVHLxa+g9CmziUG2qmCrlMFcxR7u1Nd2loQcll82miko+6/EqHMml97oppXjtb30Vn3zwYqzj88tM5nEFt7GabuDhCxu4+9QB+7Fbjkzg2nbHk1+/2TQHPbjlBzbUwN+Bz62n+3PQAZeGHvF5b7fM8noWGFyYLvTU0Lu62YbAf6GzWadsd7K0FW3QAeBnXn4Ks2UlkKEDOEY+zynmiYLtyJz6BfMm+eMvPoa/+v5VPHRxA8dmip4dweHJfLSH3mNyz7Ql25yaLXF/3g+UBAx6v4OiPfdilNJ3ch7+SALHkjjbLb6H3lTNqS4lRfJ46OwGMFn0equJZ7lYJ0BJzqKtGejqRiADIy6bVtUkC/qu1Tu28bYlFyWH1VodgNnHxW8cnHmLvT301XoH59caePjCJt5994mez3cye1xpi5zMgceubKGh6rj79Iz92C1Wi9Unrm7jlWdMOa/aVD2DHgBHRw+OJXMMXVRQNOrzZhWSLHXv6FQR33x2LfT5QLT8wHqir9Y70HRqT8UJo6Rk8YmfvQs8OXyykENRlnbcGMq/I1uvqyjJEv7xq6/Df/3OIh67so3X3XzQ8zuHpwpYqXVCNeNOD4P+8688jTc+79Cuz/P9QHZJbKu1DspKNpZcVc7nwvPQOdlMSTJWlaI8D103KNSugWIua3roriIjXkm1nORYMp+HzgIuYX3a41BtqpgqynaMYK2u8oOilvHcbKjcSTZKROMiNywDYjFmCTwz6O785DInc+C7l8y4B2vXCpgeOgCP7OLvCw6Ez5l0e+w8ySWOhu4fHLwwXcDydjvSq48aHMwGRbPA6tGp4M7Bz82HJ7ja8/xEPnJCTxg8yWW2omBhuoh/8AJTbfWPhzs6lQelTqsMPyrnc/Yf64tPznB/1i88kkudHyjnMRHhoWsjlLY4crDAnztzhHnkRVlC0de+1PbQfWPJEguKsjJ4V9oiANT2ILtsWgbONui1DmrtLghxSsLdW0aehw6waS5xptg0rf/jV0wC3qAorwPk1WoLJVnySCNTRRlHpwqewKi7dS6DfV8OyccG+JIL2zVEGXRWVMQkl6PTBVDqGHoeUd4q64keloO+E37pdWfwsZ8OzVcIxQ6Ca07LCHZO/Lyl2V9n9SNnsB1KWNfFfvcF3w22Qdd1s2V2jwwXRiUiG00V3RaTg0ku7tasLSsVryBLKMreUnunpLo/QVG/zugvNNkNzMCx7onrDdOgl5WsLUtUlCzqqqnbbjaCBhEwA3ZxPHRmyJe327HeJ38xFeAEa91ez/J2O9DpDjC9U7+HHtojO0JD53ljcaSm5S0zV5xJNiyVLyrTJcq4sZ7oLLDaq41sFDMlGdf7DG8ceJILq5S+9cgk/uYDr8A7XrTg+Z0j1k4iLHWxl4Y+DLh3Jjvx0KMqm0cibbHfnF3e9nSX2y08DZ01OCrKkp3GxuB56FE9k/eKX092JJfdGfSubqDWNucuuiWX7bbmqcZjQ3obahcbDdWTg86IPTjYqtyktHcpOODsSnK+LBfAK7msbAcHUACm7HJ+te40quJKLnwNnXnolXzWnsrkp5fUdHWrjYOVvK39Lkz1Li5i76PCec2S5VRcrbbsiVL9xi+5rNVVOwYDmDdR//tll/+HBEZ7pS0OA+55B7yRhGEMU1B0eN9dF5984BI++GeP7PnvOGmLjqFougx6UZY8qXK8kmolKyU6WzNDYBsHu0/0LnPRq3ZfExn5nISKksWqJbkwWQNwDOi17TZU3fDkoDOUbCZWYdHiZhNZKwjnH8LAg6cn87Jc/PMcGXccm4JBgU88cAFAmORixQpCeprwAqKMnQ4OPjSZR4ZETy5ini/fQze371eq7T1553vBbdgMg2Kj0cGBUrRxKylmX6CVbX6DrlGQXFjwstbuotbu7sCg59BU9UC7YcMwW0OPQqVoX2E9N/bKFsdDZwa9IGdt78j/fLeXZHpsyeWh5zh50ruVXPxNm2YrCtbqHbt1rv91Lq6bBpgXSMv3MGyMy5st3G71NIkTGOVJLoWcBClD7BsvpRTXtjtcyeXVN87hTbcewq//zVn83RPX0OkasSUX9h7w9HOGv0e2HzO10Pl9OZvB/EQ+luQSGhTtmEHRgRl01iZa01FtaTAoPANPwohqVTEKkgs7NiZ37URDB4LXqWb0f83D++66KCumV7zXYOR2ywmKsvmabKteyJlB0abrxrHd0jCRz9qNuYDouYN7xV+EsFfJZdPXOXG2LFsGveu5SbETkjW64hn0OB66blBcrbbwopPTyEkkVmCUl7ZICPFsY6tNDWrX4Bp0Qgh+68duw3VzZfyvn/4egGCf76mQoKiSNdsh86Qc+zkR8zXtoqIJr+FdmC7EGhwcZtDrluSyl4DoXrBjB9ZgZAC2ZBdFQZY8w2Lc9EpbHAZYVtMVq+/PTiQXILiTHsSuZHjfXRcsF9RfxblTmOSiG9T2zN1ZLmUrZYwZ+2pTDXh7LA+dN0x6r5jDkoMe+m4lF9Y6lxm4AyUF63WVI7nsj4e+vN2GplOcmCnh6FRhR5KL/0J3G/RrNf74L0ZZyeKP33unfVPwa+jTIRo6IQQ3Harg+UcnQ48vKnaw3e6iqercwcFxNHR+HrpkjzTrlYOeJCx2wAx6HA+9KGdDr9FeaYvDAPs82Ge3E8kFCPZEH8SuZHjfXRd7lR4YWy3NbljEjIU/y8WgzgW31dI8QwMA88Oh1OlBsp/4I+IsrXC3694MSC5yiORi/ryXh94ra2XRnjNZwMJ00e75EYXKkVwAb+aAk+sdfoGdnC3h37/zDkwVc4HMjkMTeRybKeDmw8Fc7c/901fg515xOvTvRlUGs+M67MsVX5guYnm7HTrCLepCd990BuWhA07sgM2hjeOhmzEo/jnieKs7q1rtJ37JJSq24oaXlQUMJhA8Egbd6UK3e+1a0w00Vd1OK2PGwh0ULSleA1p1TY9nsG1ZErKLX0NnrW33KrkwD3W2rGCzqVkDooOSy0VrbmK45NJjEvwG68JXxLGZgj1IOAqt6829dx8TSy9lgbYorRsAXn3jQXzvX70e1x/09gMpyBK+9s9fa1eT7gR3j2w/S3aVqPe45icU6Aa1O1f6cbxVTpaLy6DHKSpKCnYDX2ceeowCpWKE5DJKGvrlzRYI4V8HPMI6Load20kyvO+uC7+h3Q0sZZEFmpixsA16zinzZTr6ViuY0+wMPUigURUnxWkvLXQ3mypkyWmjyrwsc7iFy0O3vl7cbCEnkUDPE4BJLtFrZhfCkak8FqaLWG+oPW9Gqq4jmyGB8nS35LLMxgBGaN2MXtPid0pUq4cle+fg9aSZUfYPHGfYWS4hpf+Mo1PFwM/7BVv3ekNFhoQPw3ATKblErHlYYHLQtVobB0py7DYEYYOiWR/9nPDQvfgb/+8GZsBZyTJ781vWCViQJTtoxlIXt5o8D51VkyUwX7NLA9JDWeHnuOoGxbef28BvfP5saO+QasPsFMmMnHvb7PbQWTqf2jUwUwq2YQXi9bBZ3Gzi0EQeSlayW6v26g2u6cE1s+Njn9G17TZmSjLXo00aJSuF5qEvbbVBSHBrzm6gYQY9juSSzZDYGm4SsHWv1VXMlBRPYkAYRVkKX/MI5aFTGk9iYoQFRXnDW5JmZ42SB8R+BEVtD92WXBwPPZsh1kAA53UoNQNTAYMec+jBbuB66EpwUPRvf+EpfOrBS1i3tvRfeWoVf/OBVwT+nj8n210cMuHy0DMZYuc/h06Cz0k9s1wub7TsKTZs3uTiRhNn5sNborKBz348QdGQfuX9ICx2QCnFFx5fxo3zlcANqdf5GpXlwpyKw1P5WEY0KVh2z1q94zlvoog06COQh+4+tp3cTMOmFkV9zkkxvO+uC3/j/92w5ZNcmIzBOi0CbmlHR0PV0TVoYJAuC+okNTBZ9hm3si+31zAo/uNXn8WxmSJ+/1134H9/4414cmkbT1+rBf5etent5e72OvyyCvs+LJshHyO7Z3GziQVrQj3bCfXKdAlrXsT6Y7AcdN4Ytn4Qlqb6tXNrOLtcw8+8/FTgZ7089OgsF/Pz8g+G7jfmMHQD6/VOrAwXACgqUZJLMD112NitQVeyEuRsJqihs95MwqB7YYZ2b5KLadD9QdGWqtsXoKOhd7ll/0C8Htm7heehl3ySy0bTnHX4I3ccxQ+/4Ah+7M5jkDIEf/m9K4G/F/DQK3zJxfzeXHuUh05puNTU6ZqTf5iHPluWUchJPTNdwmYuVvI56AZFSzP/7nyPgGhSKCE9bO69/zwOVhS87fYjgZ8V4hp0zrrZuT6ooiKGneXSUHtWiTKKOTPlUuOcIx3r3N7vGMd+kskQ+zPZqdw1kc96mskB/MZzSTMiBr132uLF9QZ+8VPfxaV1vkfIDPThyQIyxCW5aLptyG2tXtXt1rn+STBxptjsFt64qko+62lH4G+8P1dR8LLrZ3HfI1cDI9s2m5o93AEw0yDzOWd4hhsWGA3LZujVG3yp2galzg2TEIKF6d656JpucING7Pg2mxrW6h3MD8xDD+ahP3ZlC19/Zg0/8/JT/EyVPUku5u8OMgcdcLqKmo254nnoUTeyfvcF3y3s+u6VUeWHN9icBUWFh+5DyWaQzZBID/2zj1zF536whP/5P30TTy0H5QdWJTpZyHkCjS21i0KOeejshOzao8wm+umhc7zVsm+uKG+SyttvP4Ir1RYetqayA6bGy3qhMwghtrflN+jMY+f1QgeCLVX9sDJ/FgxlX/eqFo0KigLAc6sNUGqmAg4CmdMu+d77z6OsZPGuu49zfyeO5CJLfG91spDDP3r1dXjrbUHPv58o2Qy2WxrqnW7sAKGT3RO8TvvddXC3sGPcqYduxnxCCouEh+6FEBIZcAGAR69s4WBFASHAj9/7rcAg6O22BlnKIJ/LoOKaMNJ0SS7unQALovoLi5IcmBwmubh3Jrxp5G+49RDyuYxHdql3uugaNFA1yWSXgOSixPPQwwKjbLCF26AvTBd69nPphEou5vGcWzFvzgOTXKygKIsdXN5s4nOPLuGddx3zdKx0U4wwbEC0cSOE4P940024ISKQ3A+UrGSni+4kKAqEe+gjYdCZ5LKDLBeA33FxEO0Ohv8dtvAHB/08emUL95w+gP/2Cy/FRD6Hd//xA57pKVstDROFbKBPiDsoqmTNIb3Nju5Mj/dLLlJykgvPQ6/ks9B0ar8ebxp5WcniDbccwuceXbK9AruXu08TnyvL9u+4Yd+Heej5Hjeyxc0mchLxdEQ8Nl1Erd215SseYZILy8J5ZsUcjTfIoKhhTYIHgE986yIIgJ9+WTAYymA7vvAUPn2oS+ABM3agW2uOq6Hb6+YkL/S7jexuYVlsO/bQOT3RWVBUZLlwKHHS9xhr9Q6Wttp4wcIkjh8o4nd+7DY0VB0/uLxlP8dstGUaZ/f2qK05Hjob0ttQnaCoP8vFTltMIsslJG0RgC27rNY6KMlSoC/J2+84gmpTw/1PrwJwyv79Qc65ioKKr+EY4HjEYdVx/qEHfi5vms2k3H/3mJXxEuWlm/1reGmL5vt+zjLocYqKkkD2xQ4ev7qNW49ORpblSxmzuVVooypt+I2b2wjF1dB7Si6joKHvMiha5njoIigagV96cPPoFdNwP89qsnTigDk5/IrLkJgeOjPoOY+H7h4EW5Kzpofe0pDNENvYMxwPPRkN3f/h+wPCYY33X3HDHGZKMv7soUUA7rJ/7w3p515xGr/1jtsCv1+OadDDyv8XN5p2hgsjTupi2Fac3WCeXalDyhDMxvQS9xu71YP1eV+ptuzAbxTMMeAxCt6qO9gbV0O3g6IcWW5kJJdsBnI246nTiANPchlEdezwv8MWvAIbxmOWJ36rNTR4tixDyWY8Abntdtdl0PmSCwAUFQl1y0N3V1kymIceJyh63yNX8Mrf+ErsAKqm03APvYdBz0kZvOeeE/jCE9fwg8tVu9OiX3K5bq6MN956KPD77n4vPBzJJcxDbwYMHdPTowKjvMwewFn3ekPFwYqy48n1+4V7Z2IYFFc24xn0Qi66yGbYJRd5Nx66r3WGm1G4iQHmuufKyo7TKyv5HOqdri1TAaI5VyRFWQptzvWDK1s4PVeyt+mEEBydLnjKzmtWb3PAK7m4s1wA5qGbuq8/wwWINwme8dc/WMKljWbksAM3PA/dbp7PGlXV2qHbwZ97xSnMlGT828+fdUku8UaYvf2Oo/iT994ZatBtw+bz0DXdwB9+9Vms1VV7Z8SYLORQyWejhz2EZLmU5CzYNRXWNrcfuCuD1+odqLqBhRg54iUlujf4sBs39nkXrS6kcXBnifkJC34PG2UlG2i2FgdmW9wqgqb3vznXSJT+A7B7lfN47MoW7jo143lsYdqbMucu42eSC6XUykN3GXTFbAGq6cEqUaC3lswwDIrvXNgAYPYZPz0XPayXUhqa5QI4/WVWax28/PpZ7t+o5HP4J6+5Hr/210+goxkgJFgYFcZkIYfX3TIf+nPnRuas++GLm/gXf/EonrpWwxtvnce77gqm8U1w8nPdqF2de8KzdgS1dndgKYuAtzKYtVpYmO7dNKsgZyNbyQ67cWPneVzvHHAkl1aI5OJPlR1GfvWtt+5q1oG7/J9dc51u/6tjh/uschEWFGUBUf+QggWXh04pNQcjuySXrmH2aqEUHsmlZHWMq7ZUrjFkF2IvGeWpazU70+SC1ZY2CuduHiz9B8xCqLamY7vHrMN333McR6cKeOjiJibyudgd43qR9wWD1+odvPOPH8B2W8O973kR/ug9dwYyggDzBhmVbsqTmRgsiM2bJdov3HUH7HyKU/RTzEl24zc/puQyvH3BASc9N26GC+BILryd9CjITIApSfrbL8fB6bjofObsxt3P6tjhf4ctwuaK+gOijKNTBWw0VDTVLlqa6XG7PXQAuGb12S7m3Bq6+Tq8xlyA6TnmJNJTcnnw/DoAs2vexZDqVTdhept7XuEaJ2XRj5KV8MHXnwEQX26JA7vAWR76hbUG1K6B//cfPh9v4GjyjIKc5QbJGKaGzj/h7ZmfwyC5dHVbOopTll9SwiXCTlcfGcklbg46YN70CQH3RjYqGvpu4XVcHEQgeGTe4bC5oo9e3gIhTkCUwQJXVzZbdpUo8/iY3rVijTbzZrmYAyW2mlpoD2glK/X00B98bgNHpwo4M1+xB0dEoYWkODnDPbrcKlEeb7/jKG46VNnXiTf+0n9WdHK4RxOpKE8VCA+KAs5FMlAN3RUzubzZwnQxF0gZ5VGQs1zpgf2tYTdutuSyAw+dEIJijj+1aBRkpr3A64mu6v2/cQ+/qGVRlB3DJmcdQ/volS2cmi0FKh+ZQTfzo83HJgpOUBRwPHSP5GLpti1N5wZFgd7j2Cg1e5W/6sY5tFSd24rAT5iHXsxJIMQMijKD3qvPhJQh+PTP3wN9H+ee5n2l//ZYuB7GtihLWN4OLyyKMm6VIZBc3L17zAyXeEMnSrIUOV9z2OUHdiObrcT30AFrRzbClaK7heeha13a95vYyLzDYXNFH7uyxR3yyy68y9WWXeYflFyYh+7W0CXbs+IFRQFrzmREP/RnVupYb6i459QBnDhQwuJm05POxCOsCCGTISjLZic3XpVoGNMleUdN+nvhL/1f3mqjkJPsm2QYUZPggeBgbDeOhz7IQQ+Ohn55sxm7C2JBlrjpe8CIFBbldu6hA2wM3RhLLi77pOoGctn+ptuOzDvMG+u1WuMHRAGzF4MsZXB5s2n3ZXFXigLAimXQvXnojoEKyxAJ65HNeOA5M7vl7tMzOHmgCE2nuNpjck/UVHQWEF6tdXY063A/yWYIMsQruRyazPcM+PTqwRPWnAtwGfQBlf0D3oKquEVFgLVuTedmTIyGh77zLBcgfFC0KbkMdyB4L1QUjuQyAJlpuM8qF7y5oo9ZAVGeQc9kCI5M5XFlsxXobc68fTso6tPQGf7WuYxeHvqD59dxaCKP4zNFHD9g7hR6BUZZD2lukY017GGl1sFMUe5rKTGDEOKZK7q81Y7lOUfNmdQNCt0Iz3K5fq6M4zNFu3HYIGDHdnWrhbZmxG5rW5Sz0A3KDZ6PQpbLwlQRspTBjYd2lvERNig67ZJLPmd2hHVLLqac2N/PeWQ0dN5cUdaJ76bDE9zfYbnotoful1xqHMkllocuhXrolFI8cH4DL7v+AAghOGkV21zcaODl4OePA9GtNlk+tqbTAc+ZzNil/8vbbbz45EyP37Akl5DgYNRNDADe99KTeO9LTg50KAIzvOdXzcB2XA2dnVMtVbfjD4xRyHI5fqCIs//6TTuu0C3KwXqRsBqLNOE0/XM89LBpXEkyMu+wOyjKWKuryOfC+y4cnSrg8mYLW1aWC9V5E4kAABfHSURBVNvCs5vDCguKutMWXd56mIceFRQ9v9bAWr2Du08dAGAG9ORsJr6HHjL0gEkugzTozEM3DIqV7U6s7BM2xYaXFaTq0YUXhJCBlfwzmJZ8ftVsEhZXcrHL4MP6moxAxsdu3nuehx4lJ6YJ/5ALlTNSMmlG5h3mBUXXah3MRvRdWJguYK3ewUqtjZIs2Z6gZFUhrnA9dOfrsCyXKMnlwfOOfg6YF8XxmSIurEWnLkaNJWOtg1drnR33ad5PmIe+0VSh6gYOxZBcCi5P1c8ghujuFHZsz1oeelzJxW5U5Qvid3UDBh3uNe8FXsxkFAZE7wf+Bl2D2JWMzDvMDK0nKFrv4ECEgWMX39nlWsA4sz7jgNcrd3+9m6DoN55Zw8GKgtOzTl+TkweKuNRzFBsbKBu8OZXz5tSi1fpgPXRzHJvupCzGGGRsz2nVgjp6L8llGGBGaMvqBRQ21MJP2LCHQQw96Ce8QdFqytfM8EsuIigaAW+u6FpdtQc28GB659ml7YBxZvILIU5ZO+DsBAo5KTRwFeaha7qB+59exWtuPOjZNRyfKeHCeiOyR4TjxQRf09xNdKB2jQFLLuYkeMeg95ZceDdihtY1349hNuiEENsQHY2pnwMuiXDMjFuR02VyEF0HBwFXchEeOh/eXNG1eicy15p56A1VD3hWLDBayEke48s8q6imVmFB0YcubKLW6eI1Nx30PH5ytoi2ZmDFKgzi4WjoHA9dydoTcwbtobc13a4SjVPww+ITXMnFGqLLixsME0weiaufA96gqBtHTx7uLJfdUrSC4O6B5eMquZhB0f5+ziPzDtvThCyDbhgUGw010qDPVxRkrcCOvwCGeegFXwYC2wmEBUQBKyjKCXZ99akV5CSCl9/gzWZhbWWjAqORWS6uoO9ADbrloV/bbkPKkFjHYksuXA29/+1FdwMzvnGLioDwnQnb2aXVWy0qWVAKtF1JA2nflTAmXLOKAVNe62enRWCEDDpg5ojXreq7akuDbtDIwoeslMHhKdOLDGrolofum0jEPKuwgChgSS6crI0vn13BXadmAvM6T1iDHqK6LqoRerI7lfLgoDV0zcDSVhtzZSUwxo6HHRzk5KJr9lZ8sJksvdiNh16wb2Q+yUXv/xSbfsKLHaQ9bsCoWPUibHcyiAKynq9GCPkoIWSFEPKY67EZQsgXCSHnrP+nkz1ME7eHzjoP9ipvZ15VUHIxLzj/iDkm7YSV/ZvPCTbnWtxo4txKHa+58WDg+UenzVmbl2J46LwTwF1YM1cebOfBdlfHNatKNA5h0gMQfRMbJnYluYQMio7KZkoDvEHR46Khl63dCYubDGtQ9GMA3uR77EMAvkQpvQHAl6zvE8c9p3GtFs+gs8BoWFC04JvGQog5RzRKQ+d56F99agUAAvo5YBqshelCpIceWSlqGXRZyvTsnZIkihUMXt5qx26YFZbtATgdJofduMm2Qd9BUDRMcmE37txwr3m32C06NG9wEACUIf+c9wrb9W9bOvpQFhZRSu8HsOF7+G0APm59/XEAb9/n4+Liniu6Zk2PmevRDc720H0GmnnsxVwwaPGhN9+Md99zIvRvsrRFd9bKV55axYkDRU+6opvjM8V4GnpILxfA1M8HWTXJCouWt+J76JGDgyOKqYYJ1gt+Jxq6LGUgZUhoCl9ajVuBcwMfFw399Jx57T95dRsAf6Rk0uz21eYppUsAYP0fdEsTwD00IL6HziQXflDUL7kAwLvuPo7bj02F/k3FN72nren45rNrgXRFNycPRKcuRnno7FhnB6ifA+aNbKulodbp7kByMY+d14FvEDMXd4MiZVCSpchAuR/WGzy0yCalxo03KDrta2bcfmwKcjaDB59bh2FQdCP6FCVF4q9GCHk/IeQhQshDq6ure/pbJTlr56Gv1TvIZkjPQg+2TfYPq7DzzTkGvRf2GDrLCH/r2XW0NYMrtzBOHCii1u7aY+n8OO1z+WmLwGADooDpoTMjHFdyKYRoycDoXOh5WcLCdHHHu6OiEmyha0suKU5bBLzB4HHR0PM5Cbcfm8KDz20MbM27fbVrhJDDAGD9vxL2RErpvZTSOymld87Nze3y5Uw8Gnq9gwNluWe/ibtOzeBfv+1WvPKMN5WQ6V08D70Xim/Yw98/vYp8LoO7T4U3q2Itb1nnRz+qTkPnD7oll0HiDtjGnSIkZQiUbIavoY9IUPSDrz+DX3vbrTv+vSJn/N6o3MR2S6TkMuSf835wz6kZPHZlyx4oPoxBUR6fBfA+6+v3Abhvfw4nGm+WS3QOOkPKELznJScDHpEjuew8yMj0T9ag69nVOs7MVwJd9dyEVQ4yoqrKKvksMmSwk3sAr1d5eAc9yosh03t6NecaFm4/NoW7Tx/Y8e/xhj2kPW2xxKk7SPtNzM3dpw/AoOauHeh/z56e1owQ8mkArwYwSwi5DOD/BvDrAP6MEPKzAC4BeEeSB8koK07nvvUeVaK9cLJcduOhO1NsAHPM3S0hLXwZUdkeQPSw5HxOwsd++i5u3/d+4m6REFdDB1hP9AjJJaWeW1EODopmu7q0Nufi1R10xkRyAYAXHp9GTiL42jlTXu737rOnQaeUvjPkRz+0z8fSE/fA5LW6iusOlnf9t6KyXHrhHphsGBRXNlt4wy3zkb8T1dME6N334ZVn9iZX7QfMQ58s5CJ3I37Chh5oKb/QC3I2ILGlXU/mOS5OZk864wZuCrKE2xam8PVzawBGR0MfCGw7V7fma+6llexUMYecRDCzwxFbgPMhqV2zP4uqG1iYic5RtkvgO3zJxfTQh/vjYDeyncgtQPgYulHR0HdLSZYCn3fa5YeclIEsZcZWcgHM1tm2hi4MejjMQ7+23YbaNfYoueRw3y++HD/6woUd/y7zVDtdA4ubZm75sR5VhCVbQw8ZHDwCE12YVx43IMoIGxQdNhg7LRQ4NzInyyWdawbY5x0sLBr283u/YMNtgP7LiSMzgg5wZIsLVoHObI+iol7cciRa9w5DzjpB0VUrH/5YDw89qqcJYFZNDruWzIzQToOzRdkZJuJG1Vn73OEOiu6WkpwNjN9Le+k/YO5M3I6LquvIZkis3j9p4EUnpiFlCHSD9r1obqTOKpaPfckqod+Lh74XFJfksrjRAtC7irCnhj4CHjoLBu8kIArwPVXAKo0OSdVMA2ZQNCi5pHnNQHBHlvYB0X5KStZOYOh3RfBIvctMcrloTf85UBqUQXckl8ubTRysKD2DhPmsBEJGW0Nna9ypQS/mwiWXtHrngGnYOl0Duqs3eKerp1puAYKDosfNoAPOCEqhoUfAdOj9klx2izsourjZ7Cm3AOZs0UJOCtXQR2Fw8OHJPLIZgpt7pGj6iQqKpvlCL3Fa6I6DcfN/3qo+/Of2fvO6m+eRzZAdx5v2ykhq6BfXGyAEmCkOxqArLg19caOFF5+M1z04LB8bMPXkgjzcJ/3CdBGPffiNO0pZBMz0vbC0xWHflewF94BsVpk8LgZ9ra7a33fGYM1+XnxyZlfXyl4ZqXeZSS7VpoaZoozsgIwBOzkbHR1LW61YHjpg3pDCgqKj4KED2NUJWpTNkX0sTZGhdmmqDTovbtLp9n/oQb8pKkJyAXZ3reyVkXqX2fAJAJGTivpxHIA5gcigwLGYfbKLcjZQOcgw5Yd06slhVbKjEAjeC4VcsN3DOBg3f8xkVJyVNDBS7zKbKwoMLsMFcIKiz67WAcSfZBPW0wRI90nvlh7cjEKq5l7gTWtK+00MCGb3DGIU27gycu9yybpIBmnQWWbGsytm+mRcySUsOAikW0/mBQcBa80p3ZUAYZKLntrWuYyi4s2/H4ddybAwcu/yMHjohJgtYZe325AyJHYpfEnORnvoKT3peS1VAdNzS+tNDHAkl0CWS4rXDJiSC2uiB6T73B42Ru5dtg36gFIWGe6+JnGDs7zue4w0GzdbeuD0Bk+zceN56ONg3NwSG6UUi5vNPfVdEsRnpNIWAadadHZARUUMOSsB6MYOiALmBBu/UWOoKc5+CAuKarph36DTCDNsjTHLcnEPiq51NFzb7uBFJ+Kl9gr2xshdTczrGRYPPW5AFDAlF38pOCPNGjqTHoLDHgxMpXTNAH+e6jh46O4b+GNXtgAALxQGvS+M3JnFAmyD1NABx6DHDYgC5gXuLwUHgK5uwKDp7UYX6qF3aaolF9481XEosim6BkU/dGETJVnCTYd21whPsDNG7swahqAo4BjfYzPxPXTeAF3APYpt5D6OWERJLv3uRtdPpAxBPpfhFBalPMvFdZ4/fHETdxyfHptOi4Nm5K6msjU6jg1dHhRsUPRONXSA76kC6fXQw/LQOylvzgUEM5vUMWjOxT7vlVoHZ5e3hX7eR0ZOQ3/HixZwfKY4kLJaN6wt5k4kF3vIhU9H77DBwSk1bkXO4GDA9NDHwbg1O+NVWMTO828+uw6DQhj0PjJyBv30XBmn53Y/S3S/UHIZyNnMjtKxwqWHdHvoUoZAzmb4hUUplZkY7mIySulYZLmw8/xr51aRIcAdx6cGfETjQ7rPrAQpyhKOTReQ2YE2GOapjsOILl6VrKanuzkXYHXYtFJVuwYFpemeVgQ4Bv3yZgs3HpqwO00KkmfkPPRh4ZffcCPqISmIYTANvcHxVIH0BkUBpiUHb2RpXjNg3cis82QcbtyA47gAwItOCO+8nwiDvkvOzFd2/DslVzqXG/tCT7FxK8gSWppzI6OUjoWeXJSzqDbNMYXjMCAaAPK5DAgBKAXuPDEz6MMZK9J9Zg0ZPdMWU3yh+yWXrpWLn9ZAMKMoO9XBjoee7rRFQgiKVtKCCIj2F+Gh95HQvuDMc0uzh56TAj1NgHTLTIC3ley4SC6AOaWqpGR3VEkt2DvCoPcRVhQVqqGn+EL3jyVja067cSu6xu91uub/aZdcAGCuouDMfBmEpHsHNmwIg95HlGwGGRIssBkHDd2cp9q0v097dSyjKEtoqF07ZRFI/00MAP70p15sFxgJ+ocw6H2EEMIdQzcOWS4FOTiWDEj3TQwwM5sMagZE1THZlQDAoZgzAgT7S/rPrCGDN4ZuHDy3oizZ+dhA+oupGCw42FJ1bFiS0zhILoLBIDz0PlNSsp7+2IDLuKXYWy34slzGYVcCODnZ7/ijb+GZlToIgRj2IEgMYdD7TCEnBfuCj4OHnstC7Rro6gayUsaV5ZLuoNmpuRKkDMFEPosPvfkmvPHWQzg1Wxr0YQlSijDofaakBMfQOd5qeo2bnbKp6ZiQMmORew8ALz45g6f/nzeL9rGCvpDuq2kIKXIGRY+Dh+5voauNQe49QxhzQb9I/9U0ZJSUYJOqcUjh8w9MZnGDtHvoAkE/EVdTnynk+E2qgJQHRXOs06RVNWn1gE/zTUwg6DfiauozJUXiVopmM2RHrXhHjaJPclG76c/sEQj6jbia+kxRznK7LaZZPweCfWyc0v/03sQEgn6TbisyhJRkCapu2AYNGI/JPQWfQR+X5lwCQT8RV1Of8Rs2YDzmTLICG9YTfVyacwkE/WRPeeiEkAsAagB0AF1K6Z37cVBphnVcbKpdTBbM0Vxql6ZeSw6TXISHLhDsH/tRWPQaSunaPvydsYDXE30cPHR/HnpHSC4Cwb4jrqY+U+SModO6RqqrRAGnSZU/Dz3tOxOBoJ/s9WqiAL5ACHmYEPL+/TigtFOSg4Oix8FDz0oZyFKGk+WS7nULBP1kr5LLyyilVwkhBwF8kRByllJ6v/sJlqF/PwAcP358jy83+hQtDb3l6zw4DtJDwdU6WO0ayBBRFi8Q7Cd7siKU0qvW/ysA/juAuzjPuZdSeiel9M65ubm9vFwq4Hnona4xFtJDydVCd1xuYgJBP9n1FUUIKRFCKuxrAG8A8Nh+HVhasdMWO14PfRykh5KSxUbDHPIwDjKTQNBv9nJFzQP4OiHk+wC+DeBzlNLP789hpZeSHBwUrY6Jh/6y62fxtXOrWK93zJvYGKxZIOgnu9bQKaXnAdy2j8cyFhSVYNriuMgP77r7OD72zQv484cvQ+2Ox5oFgn4irqg+I0sZSBni6Yk+Dr1cAODMfAV3npjGp799aWzWLBD0E3FF9RlCCIqyd2qRptOx8VbfdfdxXFhv4pvPrqc+914g6DfjYUWGjJKc9aQtdsbIW33L8w9jspDDSq0zNjcxgaBfiCtqABR9PdHNAOF4eKv5nIR/+MKjAABlTG5iAkG/EFfUACjK3jF046Ynv+sus8BMeOgCwf6yH825BDukKGfR6Hg99HEybjfMV/CqM3OYKuYGfSgCQaoQBn0AlGQJ61aBjWFQdA06Vh46APzJ++6ERMZDZhII+sV4WZEhoag4Hro6pn3Bc1Im1TNUBYJBMF5WZEgo5hwNnRl0ESAUCAR7RViRAVBSsmK2pkAg2HeEFRkARVcbWdEXXCAQ7BfCigyAoixB0ynUriE8dIFAsG8IKzIA2Bi6lqoLD10gEOwbwooMgJLiDLlgw5LHpVJUIBAkh8hDHwDMQ//o15/DmfkKAOGhCwSCvSMM+gC48+Q07jo1g4984zlQaj4mNHSBQLBXhEEfAIcnC/izX3gJ1uodfOnJa3j86jbuOD496MMSCAQjjjDoA2S2rODHX3x80IchEAhSgtjnCwQCQUoQBl0gEAhSgjDoAoFAkBKEQRcIBIKUIAy6QCAQpARh0AUCgSAlCIMuEAgEKUEYdIFAIEgJhLLa8368GCGrAC7u8tdnAazt4+GMCuO47nFcMzCe6x7HNQM7X/cJSulcryf11aDvBULIQ5TSOwd9HP1mHNc9jmsGxnPd47hmILl1C8lFIBAIUoIw6AKBQJASRsmg3zvoAxgQ47jucVwzMJ7rHsc1Awmte2Q0dIFAIBBEM0oeukAgEAgiGAmDTgh5EyHkKULIM4SQDw36eJKAEHKMEPIVQsiThJDHCSEfsB6fIYR8kRByzvo/dZMwCCESIeR7hJC/tr4fhzVPEUL+nBBy1vrMX5L2dRNC/pl1bj9GCPk0ISSfxjUTQj5KCFkhhDzmeix0nYSQX7Fs21OEkDfu5bWH3qATQiQAfwDgzQBuAfBOQsgtgz2qROgC+GVK6c0A7gHwi9Y6PwTgS5TSGwB8yfo+bXwAwJOu78dhzf8OwOcppTcBuA3m+lO7bkLIUQD/FMCdlNLnAZAA/ATSueaPAXiT7zHuOq1r/CcA3Gr9zn+0bN6uGHqDDuAuAM9QSs9TSlUA/wXA2wZ8TPsOpXSJUvpd6+sazAv8KMy1ftx62scBvH0wR5gMhJAFAP8TgD9xPZz2NU8AeCWAjwAApVSllFaR8nXDnJBWIIRkARQBXEUK10wpvR/Ahu/hsHW+DcB/oZR2KKXPAXgGps3bFaNg0I8CWHR9f9l6LLUQQk4CuAPAgwDmKaVLgGn0ARwc3JElwu8B+OcADNdjaV/zaQCrAP7Ukpr+hBBSQorXTSm9AuC3AFwCsARgi1L6BaR4zT7C1rmv9m0UDDrhPJba1BxCSBnAZwD8EqV0e9DHkySEkB8GsEIpfXjQx9JnsgBeCOAPKaV3AGggHVJDKJZm/DYApwAcAVAihPzkYI9qKNhX+zYKBv0ygGOu7xdgbtVSByEkB9OYf5JS+hfWw9cIIYetnx8GsDKo40uAlwF4KyHkAkwp7bWEkP+MdK8ZMM/py5TSB63v/xymgU/zul8H4DlK6SqlVAPwFwBeinSv2U3YOvfVvo2CQf8OgBsIIacIITLMAMJnB3xM+w4hhMDUVJ+klP6O60efBfA+6+v3Abiv38eWFJTSX6GULlBKT8L8XL9MKf1JpHjNAEApXQawSAi50XrohwA8gXSv+xKAewghRetc/yGYcaI0r9lN2Do/C+AnCCEKIeQUgBsAfHvXr0IpHfp/AN4C4GkAzwL4l4M+noTW+HKYW60fAHjE+vcWAAdgRsXPWf/PDPpYE1r/qwH8tfV16tcM4HYAD1mf918CmE77ugF8GMBZAI8B+AQAJY1rBvBpmHECDaYH/rNR6wTwLy3b9hSAN+/ltUWlqEAgEKSEUZBcBAKBQBADYdAFAoEgJQiDLhAIBClBGHSBQCBICcKgCwQCQUoQBl0gEAhSgjDoAoFAkBKEQRcIBIKU8P8DRKN2O9aFL9kAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(donnees)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "ename": "TypeError", + "evalue": "() missing 1 required positional argument: 'height'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbar\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdonnees\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/matplotlib/pyplot.py\u001b[0m in \u001b[0;36mbar\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 2773\u001b[0m mplDeprecation)\n\u001b[1;32m 2774\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2775\u001b[0;31m \u001b[0mret\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0max\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbar\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2776\u001b[0m \u001b[0;32mfinally\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2777\u001b[0m \u001b[0max\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_hold\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mwashold\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/matplotlib/__init__.py\u001b[0m in \u001b[0;36minner\u001b[0;34m(ax, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1865\u001b[0m \u001b[0;34m\"the Matplotlib list!)\"\u001b[0m \u001b[0;34m%\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mlabel_namer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfunc\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__name__\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1866\u001b[0m RuntimeWarning, stacklevel=2)\n\u001b[0;32m-> 1867\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mfunc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0max\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1868\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1869\u001b[0m inner.__doc__ = _add_data_doc(inner.__doc__,\n", + "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/matplotlib/axes/_axes.py\u001b[0m in \u001b[0;36mbar\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 2157\u001b[0m \u001b[0;32mbreak\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2158\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2159\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mexps\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2160\u001b[0m \u001b[0;31m# if we matched the second-case, then the user passed in\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2161\u001b[0m \u001b[0;31m# left=val as a kwarg which we want to deprecate\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/matplotlib/axes/_axes.py\u001b[0m in \u001b[0;36mbar\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 2149\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mmatcher\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mmatchers\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2150\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2151\u001b[0;31m \u001b[0mdp\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mheight\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mwidth\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkwargs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmatcher\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2152\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mTypeError\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2153\u001b[0m \u001b[0;31m# This can only come from a no-match as there is\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mTypeError\u001b[0m: () missing 1 required positional argument: 'height'" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAD8CAYAAAB0IB+mAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAADUJJREFUeJzt3F9onfd9x/H3Z3YN6581oVFLZ6fUG05TXzQjUdMw1i1d2WpnF6bQi6SlYaFgwprSy4TB2ovcrBeDUpLUmGBCb+qLNbTuSBsGo80gSxcZUidOSNFcFmsuxGlLByksOPnu4pxNQpGtx+ccSY6+7xcI9JznJ+mrH/Lbj491nlQVkqTt73e2egBJ0uYw+JLUhMGXpCYMviQ1YfAlqQmDL0lNrBv8JMeSvJzkuYucT5JvJFlMcirJjbMfU5I0rSFX+I8ABy5x/iCwb/x2GPjm9GNJkmZt3eBX1RPAry6x5BDwrRp5CrgqyftnNaAkaTZ2zuBz7AbOrjheGj/2i9ULkxxm9K8A3vGOd9x0/fXXz+DLS1IfJ0+efKWq5ib52FkEP2s8tub9GqrqKHAUYH5+vhYWFmbw5SWpjyT/OenHzuK3dJaAa1cc7wHOzeDzSpJmaBbBPwHcOf5tnVuA31TVm57OkSRtrXWf0knybeBW4JokS8BXgbcBVNUR4DHgNmAR+C1w10YNK0ma3LrBr6o71jlfwBdnNpEkaUP4SltJasLgS1ITBl+SmjD4ktSEwZekJgy+JDVh8CWpCYMvSU0YfElqwuBLUhMGX5KaMPiS1ITBl6QmDL4kNWHwJakJgy9JTRh8SWrC4EtSEwZfkpow+JLUhMGXpCYMviQ1YfAlqQmDL0lNGHxJasLgS1ITBl+SmjD4ktSEwZekJgy+JDVh8CWpCYMvSU0YfElqwuBLUhMGX5KaGBT8JAeSvJhkMcl9a5x/d5LvJ/lpktNJ7pr9qJKkaawb/CQ7gAeBg8B+4I4k+1ct+yLwfFXdANwK/EOSXTOeVZI0hSFX+DcDi1V1pqpeA44Dh1atKeBdSQK8E/gVcGGmk0qSpjIk+LuBsyuOl8aPrfQA8GHgHPAs8OWqemP1J0pyOMlCkoXz589POLIkaRJDgp81HqtVx58CngF+H/gj4IEkv/emD6o6WlXzVTU/Nzd32cNKkiY3JPhLwLUrjvcwupJf6S7g0RpZBH4OXD+bESVJszAk+E8D+5LsHf9H7O3AiVVrXgI+CZDkfcCHgDOzHFSSNJ2d6y2oqgtJ7gEeB3YAx6rqdJK7x+ePAPcDjyR5ltFTQPdW1SsbOLck6TKtG3yAqnoMeGzVY0dWvH8O+MvZjiZJmiVfaStJTRh8SWrC4EtSEwZfkpow+JLUhMGXpCYMviQ1YfAlqQmDL0lNGHxJasLgS1ITBl+SmjD4ktSEwZekJgy+JDVh8CWpCYMvSU0YfElqwuBLUhMGX5KaMPiS1ITBl6QmDL4kNWHwJakJgy9JTRh8SWrC4EtSEwZfkpow+JLUhMGXpCYMviQ1YfAlqQmDL0lNGHxJamJQ8JMcSPJiksUk911kza1JnklyOsmPZzumJGlaO9dbkGQH8CDwF8AS8HSSE1X1/Io1VwEPAQeq6qUk792ogSVJkxlyhX8zsFhVZ6rqNeA4cGjVms8Cj1bVSwBV9fJsx5QkTWtI8HcDZ1ccL40fW+k64OokP0pyMsmda32iJIeTLCRZOH/+/GQTS5ImMiT4WeOxWnW8E7gJ+CvgU8DfJbnuTR9UdbSq5qtqfm5u7rKHlSRNbt3n8Bld0V+74ngPcG6NNa9U1avAq0meAG4AfjaTKSVJUxtyhf80sC/J3iS7gNuBE6vWfA/4eJKdSd4OfAx4YbajSpKmse4VflVdSHIP8DiwAzhWVaeT3D0+f6SqXkjyQ+AU8AbwcFU9t5GDS5IuT6pWPx2/Oebn52thYWFLvrYkvVUlOVlV85N8rK+0laQmDL4kNWHwJakJgy9JTRh8SWrC4EtSEwZfkpow+JLUhMGXpCYMviQ1YfAlqQmDL0lNGHxJasLgS1ITBl+SmjD4ktSEwZekJgy+JDVh8CWpCYMvSU0YfElqwuBLUhMGX5KaMPiS1ITBl6QmDL4kNWHwJakJgy9JTRh8SWrC4EtSEwZfkpow+JLUhMGXpCYMviQ1YfAlqYlBwU9yIMmLSRaT3HeJdR9N8nqSz8xuREnSLKwb/CQ7gAeBg8B+4I4k+y+y7mvA47MeUpI0vSFX+DcDi1V1pqpeA44Dh9ZY9yXgO8DLM5xPkjQjQ4K/Gzi74nhp/Nj/S7Ib+DRw5FKfKMnhJAtJFs6fP3+5s0qSpjAk+FnjsVp1/HXg3qp6/VKfqKqOVtV8Vc3Pzc0NnVGSNAM7B6xZAq5dcbwHOLdqzTxwPAnANcBtSS5U1XdnMqUkaWpDgv80sC/JXuC/gNuBz65cUFV7/+/9JI8A/2TsJenKsm7wq+pCknsY/fbNDuBYVZ1Ocvf4/CWft5ckXRmGXOFTVY8Bj616bM3QV9VfTz+WJGnWfKWtJDVh8CWpCYMvSU0YfElqwuBLUhMGX5KaMPiS1ITBl6QmDL4kNWHwJakJgy9JTRh8SWrC4EtSEwZfkpow+JLUhMGXpCYMviQ1YfAlqQmDL0lNGHxJasLgS1ITBl+SmjD4ktSEwZekJgy+JDVh8CWpCYMvSU0YfElqwuBLUhMGX5KaMPiS1ITBl6QmDL4kNWHwJamJQcFPciDJi0kWk9y3xvnPJTk1fnsyyQ2zH1WSNI11g59kB/AgcBDYD9yRZP+qZT8H/qyqPgLcDxyd9aCSpOkMucK/GVisqjNV9RpwHDi0ckFVPVlVvx4fPgXsme2YkqRpDQn+buDsiuOl8WMX8wXgB2udSHI4yUKShfPnzw+fUpI0tSHBzxqP1ZoLk08wCv69a52vqqNVNV9V83Nzc8OnlCRNbeeANUvAtSuO9wDnVi9K8hHgYeBgVf1yNuNJkmZlyBX+08C+JHuT7AJuB06sXJDkA8CjwOer6mezH1OSNK11r/Cr6kKSe4DHgR3Asao6neTu8fkjwFeA9wAPJQG4UFXzGze2JOlypWrNp+M33Pz8fC0sLGzJ15akt6okJye9oPaVtpLUhMGXpCYMviQ1YfAlqQmDL0lNGHxJasLgS1ITBl+SmjD4ktSEwZekJgy+JDVh8CWpCYMvSU0YfElqwuBLUhMGX5KaMPiS1ITBl6QmDL4kNWHwJakJgy9JTRh8SWrC4EtSEwZfkpow+JLUhMGXpCYMviQ1YfAlqQmDL0lNGHxJasLgS1ITBl+SmjD4ktSEwZekJgy+JDUxKPhJDiR5MclikvvWOJ8k3xifP5XkxtmPKkmaxrrBT7IDeBA4COwH7kiyf9Wyg8C+8dth4JsznlOSNKUhV/g3A4tVdaaqXgOOA4dWrTkEfKtGngKuSvL+Gc8qSZrCzgFrdgNnVxwvAR8bsGY38IuVi5IcZvQvAID/SfLcZU27fV0DvLLVQ1wh3Itl7sUy92LZhyb9wCHBzxqP1QRrqKqjwFGAJAtVNT/g62977sUy92KZe7HMvViWZGHSjx3ylM4ScO2K4z3AuQnWSJK20JDgPw3sS7I3yS7gduDEqjUngDvHv61zC/CbqvrF6k8kSdo66z6lU1UXktwDPA7sAI5V1ekkd4/PHwEeA24DFoHfAncN+NpHJ556+3EvlrkXy9yLZe7Fson3IlVveqpdkrQN+UpbSWrC4EtSExsefG/LsGzAXnxuvAenkjyZ5IatmHMzrLcXK9Z9NMnrST6zmfNtpiF7keTWJM8kOZ3kx5s942YZ8Gfk3Um+n+Sn470Y8v+FbzlJjiV5+WKvVZq4m1W1YW+M/pP3P4A/AHYBPwX2r1pzG/ADRr/Lfwvwk42caaveBu7FHwNXj98/2HkvVqz7F0a/FPCZrZ57C38urgKeBz4wPn7vVs+9hXvxt8DXxu/PAb8Cdm317BuwF38K3Ag8d5HzE3Vzo6/wvS3DsnX3oqqerKpfjw+fYvR6hu1oyM8FwJeA7wAvb+Zwm2zIXnwWeLSqXgKoqu26H0P2ooB3JQnwTkbBv7C5Y268qnqC0fd2MRN1c6ODf7FbLlzumu3gcr/PLzD6G3w7WncvkuwGPg0c2cS5tsKQn4vrgKuT/CjJySR3btp0m2vIXjwAfJjRCzufBb5cVW9sznhXlIm6OeTWCtOY2W0ZtoHB32eSTzAK/p9s6ERbZ8hefB24t6peH13MbVtD9mIncBPwSeB3gX9L8lRV/Wyjh9tkQ/biU8AzwJ8Dfwj8c5J/rar/3ujhrjATdXOjg+9tGZYN+j6TfAR4GDhYVb/cpNk225C9mAeOj2N/DXBbkgtV9d3NGXHTDP0z8kpVvQq8muQJ4AZguwV/yF7cBfx9jZ7IXkzyc+B64N83Z8QrxkTd3OindLwtw7J19yLJB4BHgc9vw6u3ldbdi6raW1UfrKoPAv8I/M02jD0M+zPyPeDjSXYmeTuju9W+sMlzboYhe/ESo3/pkOR9jO4ceWZTp7wyTNTNDb3Cr427LcNbzsC9+ArwHuCh8ZXthdqGdwgcuBctDNmLqnohyQ+BU8AbwMNVte1uLT7w5+J+4JEkzzJ6WuPeqtp2t01O8m3gVuCaJEvAV4G3wXTd9NYKktSEr7SVpCYMviQ1YfAlqQmDL0lNGHxJasLgS1ITBl+Smvhf13t1pXPV3XUAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.bar(donnees)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "donnees_sort = np.sort(donnees)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAHMxJREFUeJzt3Xl0ldW9xvHvzgiEEAiBJARCGMIQoDIEUVFKRRCrXuzgVFG0Kq1Xq97ae2trbW1t17VdHW/bW0sBZ/DaatE6YERrKdWCTCUDIDMkZCQDGchwcvb9IwdW1AAhOee857zn+azlysl7Xnh/25M862Xv/e5trLWIiEj4i3K6ABER8Q8FuoiISyjQRURcQoEuIuISCnQREZdQoIuIuIQCXUTEJRToIiIuoUAXEXGJmGBeLCUlxWZlZQXzkiIiYW/Lli1V1tohZzsvqIGelZXF5s2bg3lJEZGwZ4w51J3z1OUiIuISCnQREZdQoIuIuIQCXUTEJRToIiIuoUAXEXEJBbqIiEso0EVEAqihxcMPXy3iQFVjwK+lQBcRCaC/7qpg+YYDVNa3BPxaCnQRkQBaW1hGSv84ZowcFPBrKdBFRAKkua2dv+6qYMGkNKKjTMCvp0AXEQmQDXuqaGptZ+GktKBcT4EuIhIgawvLGNAnhgtGDw7K9RToIiIB0NbuZd3Oci6bmEpcTHCiVoEuIhIAmw5UU9vUxuWTg9PdAgp0EZGAWFtQRt/YaOZkn3VfCr9RoIuI+JnXa3mzsIy544fQNy46aNdVoIuI+NnmQzVU1LewMIjdLaBAFxHxuyf+cYABfWKYNzE1qNdVoIuI+NGBqkbWFpax+IKR9I8P6rbNCnQREX9a/vf9xEZFcetFWUG/tgJdRMRPqhpa+NOWYj43LYOhA/oE/foKdBERP3n6/UO0eLzcOWe0I9dXoIuI+EFTq4dn3j/IZRNTGTu0vyM1KNBFRHqprd3Lt17Kp6apja982pm7c4DgDsGKiLhMc1s796zayrqdFfzn5eOZmZXsWC0KdBGRHmpo8XDnU5v554FjPHrNZG6+YKSj9SjQRUR6wOu13Lt6G5sOVvOL66ZyzbQMp0tSH7qISE/8Yt2HvLOrgkeuzgmJMAcFuojIOVtbUMqv39nLdbnDWexwN0tnCnQRkXOwp7yeB174F+eNGMgPFk3GmMDvFdpdCnQRkW7ytHt54I//ok9sNL9fPIM+scFbGrc7NCgqItJNT753kB3FdfzmS9NISwr+o/1nozt0EZFuOHysiZ/m7eayiUO5ckq60+V0SYEuInIW1loeWpNPTFQUj14TWv3mnanLRUTkNKy1FJQc509bjvD3PVX8YNEk0pP6Ol3WaSnQRSTitXjaeW/fMd4qKqe45gTQEeb7Kho4WtdMlIGrzxvG4lmhM0WxK2cNdGPMCOBpIA3wAsustb8yxiQD/wdkAQeB66y1NYErVUTEv6y1/Hjtbp55/yCNre0kxEUzNjWRkx0qU4Yn8R/zxzFvYirJCXFOltot3blD9wAPWGu3GmMSgS3GmLeAW4G3rbWPGWMeBB4Evhm4UkVE/OuJfxzk8b/t48op6XwxdzgXjRlMfExoTUU8F2cNdGttKVDqe11vjNkJZACLgLm+054C3kWBLiJh4r19Vfzo9Z0syEnl1zdOIyoqNAc6z8U5zXIxxmQB04CNQKov7E+G/lB/FyciEgjFNU3cs2obo1IS+Pn1U10R5nAOg6LGmP7Ai8D91trj3Z22Y4xZCiwFyMzM7EmNIiK9UlJ7gruf28qhY40AnGhrJzY6imU3z6B/vHvmhnSrJcaYWDrC/Dlr7Uu+w+XGmHRrbakxJh2o6OrPWmuXAcsAcnNzrR9qFhHptv2VDSxevpH6Fg/XTM3AGDDAomkZjB7izFZxgdKdWS4GWAHstNb+vNNbrwBLgMd8X18OSIUiIj1UUFLHkpWbAHh+6QVMGpbkcEWB1Z079NnAzUC+MWa779i36QjyF4wxtwOHgWsDU6KIyLkrq2vmpuUbSYiL5tk7Zrnubrwr3ZnlsgE4XYf5PP+WIyLSe9ZavrOmgBZPO2vuns2olASnSwoKreUiIq7zRkEZ63aW8/X54yImzEGBLiIuU9fUxndfLmRyxgC+PHuU0+UElXvm64hIxNpdVk9NUysAqzYepqaplSdvm0lMdGTdsyrQRSSsrd50mG+9lP+RY3fNHcPkDHfPaOmKAl1EwtaWQ9V89+UCLslO4a65YwDoExvNtBEDHa7MGQp0EQlL5ceb+eqzWxk2sC+/uXE6Sf1inS7JcQp0EQkLjS0eXs8vpcXjBeCPW4ppbPHw7O2zFOY+CnQRCXm1Ta3c+sQHbD9Se+pYbLThVzdMY3xaooOVhRYFuoiEtIrjzdy8YhMHqhr57ZemM3PUIKCjr3xAH92Zd6ZAF5GQdaS6iZuWb6SqoYUnbpvJ7LEpTpcU0hToIhKS9pTXs3jFRprbvDx3xyymZQ5yuqSQp0AXkZCzo7iWJSs3ERMdxQtfuVD95N2kQBeRkHHoWCNvFpbxP2/vZWC/WJ67YxYjB0fOWiy9pUAXEcdYaykoOU5eURl5heXsLq8HYHrmQP73phmkJfVxuMLwokAXEUc8t/EQv3lnL6V1zUQZyM1K5uGrcliQk8qI5H5OlxeWFOgiElTWWn719h5+uW4P549K5oEF47l0wlCSE+KcLi3sKdBFJGi8XssPX9vJyn8c4IszhvPY56dE3IqIgaRAF5GgeWztLlb+4wC3XpTFd6/KISrqdJuhSU8o0EUkKPZXNrBiwwGuzx3B967OoWP/efEn/VtHRILiZ3kfEh8TxTcuH68wDxAFuogE3I7iWl7LL+WOi0cxJDHe6XJcS4EuIgH3k7W7SU6I4845o50uxdUU6CISUBv2VLFhbxV3f2YsiVodMaA0KCoiflHb1MrxEx4AvNay7UgNeYXlvLu7koyBfblpVqbDFbqfAl1EzqqsrpnaE62fON7msfxz/zHyisrYfKgGaz/6fuqAeL4wI4MlF2bRJzY6SNVGLgW6iJzRm4Vl3PXsFrz29OdMTB/A1y7NZmSnR/bHDO3PpzKSNNc8iBToInJae8rr+fr/bWdKRhJf/fSYT7xvDEwalqS1V0KEAl1EulR3oo2lz2yhb1w0j988g/Skvk6XJGehQBeRT6hpbOWBP/6LI9VNrLrzAoV5mFCgiwgAxTVNvFVUTl5hOZsOVtPutTy6aBLnj0p2ujTpJgW6SASx1pJfUse/jtRycoyzqr6FdTsrKCo9DsC41P7c9ekxLJycxuSMJOeKlXOmQBdxubZ2Lxv3V5/aFajsePNH3jcGZmQO4tufncD8nDRGpWjLt3ClQBdxqS2Hqnn6/UO8s6uC+mYPfWKjmJM9hP+cNJ6Lxg4mzrcOeXxsNP3jFQVuoE9RxGVqm1p57I1dPP/BEQb1i2XhpDQWTErj4rEp9I3Twz1upkAXCWMHqhp5q6iM4poTQMcj92sLyqhpamPpnNHcf1k2/eL0ax4p9EmLhKjjzW0sX7+f0rrmT7zntR1L0u6paABgYL9YTj6PmZ2ayCNXTyJn2IAgViuhQIEuEmKstbyeX8b3/1JIZUML6QP6dHleVkoCN83KZP6kNDIGap64KNBFHFXV0MLbO8v5+54qTrS2A3CssZXtR2qZnDGA5Uty+dTwgQ5XKeFCgS4SJBv2VLFiw36a27wANLZ6yC+pw1pIT+rD4P5xAEQbw8NX5bDkwpHERGvLAum+swa6MWYlcBVQYa2d7Dv2CHAnUOk77dvW2tcDVaRIOKtqaOGHrxaxZvtRMgb2PdU9khAXw72XZrNgUio56QO0z6b0Wnfu0J8EfgM8/bHjv7DW/tTvFYm4wMmHed4qKmPN9qM0tXq4d142/z53jNYFl4A5a6Bba9cbY7ICX4pIeGto8bD+w0ryCst4Z1cFx30P88wdN5RvXD6esUP7O12iuFxv+tDvMcbcAmwGHrDW1vipJpGwUVnfMaiZV1TOhr1VtHq8DOoXy4JJaczPSWVO9hA9zCNB09NA/x3wKGB9X38GfLmrE40xS4GlAJmZ2lNQwldbu5eH1xTw2o7SU8caWj1YC8MH9eXmC0YyPyeV3JGDNJgpjuhRoFtry0++Nsb8AXj1DOcuA5YB5ObmnmETK5HQ1dzWzj2rtrJuZwWfm5bBoH4dM1KSE2KZNzGVCWmJGtQUx/Uo0I0x6dbak7cpnwMK/FeSiDM87V4afXPBO2tpa+fe57ex8UA1j14zmZsvGOlAdSJn151pi6uBuUCKMaYY+B4w1xgzlY4ul4PAVwJYo0hAWWt5Lb+UH/yliIr6li7PiY4y/PL6qSyamhHk6kS6rzuzXG7s4vCKANQiEhRVDS3UN3sAaGj28LO3dvPu7komZwxg6ZzRXXadTMscyPTMQcEuVeSc6ElRiQh7Kxp4I7+UvKJy8kvqPvJeQlw0370qh1v0ZKaEOQW6uN4Lm4/w4Is78FqYnjmQ/1o4nmG+TY+NgVmjBpOW1PUCWCLhRIEurrZiwwEefbWIS7JT+Nm15zH0NCsXiriBAl3Cmqfdy/v7j51a8KqzDw5Ws2z9fq6YnMYvb5hKfIwe8BF3U6BL2OqYG76NdTvLT3vOtTOG89+fn6K+cYkICnQJSw0tHu58ajPv7z/GQ5+dyIVjBn/inPiYKMYO7a8HfiRiKNAlrFhrKTx6nIfWFFBQUscvrj+Pz00b7nRZIiFBgS4hqcXTzvv7jlFUevzUsbK6ZtYVlXO0rpn4mCh+d9N0FkxKc7BKkdCiQJeQsqO4lmXr9/Pu7koaWjwfeS8+JopLsodw//xxzJswlMH94x2qUiQ0KdAlZPztw0q+8sxm+sXFcPV56SzISWPmqGRiojr6wGOijAY3Rc5AgS4h4fX8Uu57fhvZQxN5+vbzSdHdt8g5U6BLUFlryS+pY11ROcW1JwBo9Xh5Pb+U6ZmDWHHrTJL6xjpcpUh4UqBLUHi9lt/+dS+rNh2mtK6ZKAPpSX05OaPwyk8N48dfmEK/OP1IivSUfnsk4DztXh58KZ8/bSnm0+OG8MCC8Vw6YSjJCXFOlybiKgp0CagWTzv3rd7O2sIy7puXzf2XZetBH5EAUaCLX9U1tfHtNfkcqW4CoKaplSPVJ3j4qhxuv3iUw9WJuJsCXfymor6ZW1ZsYn9lIxeNHYwBUvrH840F47XTj0gQKNDFL4prmli8fCPlx1tYeetMLs5OcbokkYijQJdz0tzW8Uh+XlEZ6z+sormtY1PlhhYP8TFRPHvHLGaM1FZtIk5QoMtZ1Z1o493dFeQVlvPu7goaW9vpHx/DJdkpDO7fMVMlJiqKG8/PZHxaosPVikQuBbqccvJuG+BYYytv7ywnr7Ccf+4/hsdrGZIYz6JpGSzISeXCMYO1YYRIiFGgRwBrLbVNbV2+V1J7gryict4qKmdnp5UNTxqdksDtl4zi8klpTB0+kKgoTTkUCVUKdJfbcqiGh/6cz66y+tOeE2Ugd2Qy91+Wfequu09sx8qGY4f2D1apItJLCnSXqjvRxk/W7mLVpsOkDejDt66YQHzMJ1cqTOoXy5zsIVqKVsQFFOguY63l1R2lfP8vRVQ3tnDbRaP4+oJx9I/XRy3idvotd5Ej1U18Z00Bf/uwkikZSTxx60ymDE9yuiwRCRIFukuUH2/mC797j8YWD9+7OodbLswiWgOYIhFFge4CLZ52vvrsFhpaPLz07xcxIW2A0yWJiAMU6C7wyCuFbDtcy+9umq4wF4lgCvQwU9/cxoY9VdT45pUfPNbI6k1HuPszY7hiSrrD1YmIkxToYcBay5rtJazZdpT39lXR1m4/8v5lE1P5+vzxDlUnIqFCgR7ivF7LD14t4sn3DjJycD9umz2K+TmpZCb3O3XO0MR4bRohIgr0UOZp9/LNF/N5cWsxt188iu9cOVHBLSKnpUAPUV6v5Wurt/FGQRlfnz+Or106VmEuImekQA9ReUXlvFFQxjcXTuCuuWOcLkdEwsAnF/eQkLBs/T6GD+rLnZdoH04R6R4FegjafLCarYdrufOS0cRE6yMSke5RWoSg36/fz8B+sVybO9zpUkQkjCjQQ8y+ygbW7SznlgtG0i9OQxwi0n1nDXRjzEpjTIUxpqDTsWRjzFvGmD2+r9oV2E+W/30/cdFR3HJRltOliEiY6c4t4JPAb4CnOx17EHjbWvuYMeZB3/ff9H957rflUDWPvFJEY6sHgMPHmrh+5ghStOGEiJyjswa6tXa9MSbrY4cXAXN9r58C3kWBfs7+vqeSpU9vYXD/OKaOGAjA1OEDuefSsQ5XJiLhqKedtKnW2lIAa22pMWaoH2uKCG/kl3Lv89sYOzSRp798PkMSdUcuIr0T8FE3Y8xSYClAZmZmoC8XEg4fayKvqIy8wnJ2lNRi7SfPafF4mTFyECtvnUlS39jgFykirtPTQC83xqT77s7TgYrTnWitXQYsA8jNze0i2sKftZaCkuO8VVRGXlE5u8rqAZiYPoAbz88krovNmQf0ieW22VmaySIiftPTNHkFWAI85vv6st8qCjMnWtu5e9VW3tlVQZSBmVnJfOfKiVw+KY0RnVZEFBEJtLMGujFmNR0DoCnGmGLge3QE+QvGmNuBw8C1gSwyVB1vbuP2Jz9g86EavrlwAtfPHEFyQpzTZYlIhOrOLJcbT/PWPD/XElaqGlpYsnITH5bX8+sbp3HVp4Y5XZKIRDh14PaA12v5yjNb2FfZwLJbcvnMeE3yERHnKdB74NmNh9hyqIafX3eewlxEQobWcjlHR2tP8OM3djFn3BA+Ny3D6XJERE5RoJ8Day0PrynAa+FH10zWDkIiElLU5XIWhUfr2FXaMa/80LFG3t5VwcNX5WhKooiEHAX6GTS2eLhp+UZqm9pOHZuZNYhbtRKiiIQgBfoZvLD5CLVNbfzhllzGpyYCMGxgH6Kj1NUiIqFHgX4annYvKzYcYMbIQczPSXW6HBGRs9Kg6Gm8XlBGcc0Jls4Z7XQpIiLdokDvgrWWZev3MTolgfkTdXcuIuFBgd6F9/cdo6DkOHfOGU2U+stFJEwo0Lvw+Pr9pPSP14NDIhJWFOgf88HBatZ/WMmXL86iT2y00+WIiHSbAr0Tay0/fmMXQxLjNddcRMKOAr2Td3ZVsPlQDffNy9ZOQiISdhToPu1ey0/W7iZrcD+unznC6XJERM6ZAt1nzbYSdpfX88CC8cRG63+LiIQfJRcdS+L+NG83kzMGcOWUdKfLERHpkYjvKN5f2cDNKzbR0Ozh8cUzNO9cRMJWRAd64dE6lqzchLWweukFTM5IcrokEZEei9hAL607wZf+sJGEuGieuWMWY4b0d7okEZFeichAP7nzUKvHy8t3zyYrJcHpkkREei0iB0Vfyy9l3c4KHlgwTmEuIq4RcYFe29TKI68U8qnhSXoaVERcJeK6XH702k5qmtp4+suziNF8cxFxkYhKtNfzS/njlmKWzhlNzrABTpcjIuJXERPou8vq+cYf/8W0zIHcf1m20+WIiPhdRAR6XVMbS5/ZTEJ8DI8vnkF8jJbFFRH3cX2glx9v5p7VWzlae4LHF08ndUAfp0sSEQkIVw6Ker2Wlf84wKs7Stl+pBaA//78FGaMTHa4MhGRwHFloL9ZWMYPX9vJ5IwBfGPBOBZOTmPs0ESnyxIRCShXBvr24lrioqN46a7ZxMW4vldJRARwaR96fnEd49MSFeYiElFcl3jWWgpK6pgyXCsnikhkcV2gH65u4nizhylaCldEIozrAn1HcR2AAl1EIo7rAr2gpI646CjGpWpWi4hEFtcFen5JHRPSNSAqIpHHValnrSW/pE5byYlIROrVPHRjzEGgHmgHPNbaXH8U1VOHjjVRrwFREYlQ/niw6DPW2io//D29ll+iAVERiVyu6nLRgKiIRLLeBroF8owxW4wxS/1RUG/sKNaAqIhErt4m32xr7XTgCuBuY8ycj59gjFlqjNlsjNlcWVnZy8udnrWWgqN16m4RkYjVq0C31h71fa0A/gyc38U5y6y1udba3CFDhvTmcmekAVERiXQ9DnRjTIIxJvHka2ABUOCvws7VlkM1AJqyKCIRqzezXFKBPxtjTv49q6y1a/1SVQ+8sPkImcn9yEnX5s8iEpl6HOjW2v3AeX6spcf2VTaw8UA1/7VwPFFRxulyREQc4YrpIKs3HiYmyvDFGcOdLkVExDFhH+jNbe28uLWYBZNSGZqoDaBFJHKFfaC/WVhGTVMbN56f6XQpIiKOCvtAX7XxMJnJ/Zg9JsXpUkREHBXWgb63omMw9IbzR2gwVEQiXlgH+p+3FRMdZbh2xginSxERcVxYB/ragjJmjUpmSGK806WIiDgubAN9b0U9+yobWTg5zelSRERCQtgG+tqCMgAW5CjQRUQgnAO9sIxpmQNJS9LccxERCNNAP1LdREHJcRZO0t25iMhJYRnobxZ2dLdcrkAXETklLAM9r7CcCWmJZKUkOF2KiEjICLtAr6xv4YND1ZrdIiLyMb1ZDz2oWjztvLf3GKs2HcZaFOgiIh8TFoH+P2/v4fd/20djazsJcdHcNjuL8amJTpclIhJSwiLQ05L68G9TM1gwKZWLxgwmPiba6ZJEREJOWAT6dbkjuC5X67WIiJxJ2A2KiohI1xToIiIuoUAXEXEJBbqIiEso0EVEXEKBLiLiEgp0ERGXUKCLiLiEsdYG72LGVAKHevjHU4AqP5YTLiKx3ZHYZojMdkdim+Hc2z3SWjvkbCcFNdB7wxiz2Vqb63QdwRaJ7Y7ENkNktjsS2wyBa7e6XEREXEKBLiLiEuEU6MucLsAhkdjuSGwzRGa7I7HNEKB2h00fuoiInFk43aGLiMgZhEWgG2MWGmN2G2P2GmMedLqeQDDGjDDG/NUYs9MYU2iMuc93PNkY85YxZo/v6yCna/U3Y0y0MWabMeZV3/eR0OaBxpg/GWN2+T7zC93ebmPMf/h+tguMMauNMX3c2GZjzEpjTIUxpqDTsdO20xjzLV+27TbGXN6ba4d8oBtjooHfAlcAOcCNxpgcZ6sKCA/wgLV2InABcLevnQ8Cb1trs4G3fd+7zX3Azk7fR0KbfwWstdZOAM6jo/2ubbcxJgO4F8i11k4GooEbcGebnwQWfuxYl+30/Y7fAEzy/Zn/9WVej4R8oAPnA3uttfutta3A88Aih2vyO2ttqbV2q+91PR2/4Bl0tPUp32lPAdc4U2FgGGOGA1cCyzsddnubBwBzgBUA1tpWa20tLm83HTuk9TXGxAD9gKO4sM3W2vVA9ccOn66di4DnrbUt1toDwF46Mq9HwiHQM4Ajnb4v9h1zLWNMFjAN2AikWmtLoSP0gaHOVRYQvwT+C/B2Oub2No8GKoEnfF1Ny40xCbi43dbaEuCnwGGgFKiz1ubh4jZ/zOna6dd8C4dAN10cc+3UHGNMf+BF4H5r7XGn6wkkY8xVQIW1dovTtQRZDDAd+J21dhrQiDu6Gk7L12e8CBgFDAMSjDGLna0qJPg138Ih0IuBzjtED6fjn2quY4yJpSPMn7PWvuQ7XG6MSfe9nw5UOFVfAMwG/s0Yc5COrrRLjTHP4u42Q8fPdLG1dqPv+z/REfBubvdlwAFrbaW1tg14CbgId7e5s9O106/5Fg6B/gGQbYwZZYyJo2MA4RWHa/I7Y4yho091p7X2553eegVY4nu9BHg52LUFirX2W9ba4dbaLDo+13estYtxcZsBrLVlwBFjzHjfoXlAEe5u92HgAmNMP9/P+jw6xonc3ObOTtfOV4AbjDHxxphRQDawqcdXsdaG/H/AZ4EPgX3AQ07XE6A2XkzHP7V2ANt9/30WGEzHqPge39dkp2sNUPvnAq/6Xru+zcBUYLPv814DDHJ7u4HvA7uAAuAZIN6NbQZW0zFO0EbHHfjtZ2on8JAv23YDV/Tm2npSVETEJcKhy0VERLpBgS4i4hIKdBERl1Cgi4i4hAJdRMQlFOgiIi6hQBcRcQkFuoiIS/w/WL+xzpXB4UwAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(donnees_sort)" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "larg = (np.amax(donnees)-np.amin(donnees))/10" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "heigth = np.zeros(10)\n", + "coord = np.linspace(np.amin(donnees)+larg/2,np.amax(donnees)-larg/2,num=10)" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "for i in range(10):\n", + " for x in np.nditer(donnees):\n", + " if x >= np.amin(donnees)+i*larg and x " + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAACmRJREFUeJzt3UGIXId9x/Hfv3F6SXKw8dqY1Oq2wZT4UqUIE3ApDiHBjQ92DoH6UHQIKAcbEshF5JJcCu4hyakEFGysQ+ISSFwbbNoYEXALJVQOJpZRg0NQU8dCkvEh7qnY/vewY1BtyTu7O9qR/vp8QMzM2zd6f56evjze7put7g4A174/WPcAAKyGoAMMIegAQwg6wBCCDjCEoAMMIegAQwg6wBCCDjDEDfu5sZtvvrk3Nzf3c5MA17wXXnjh9e7e2G69fQ365uZmTp48uZ+bBLjmVdV/LbOeSy4AQwg6wBCCDjCEoAMMIegAQwg6wBCCDjCEoAMMIegAQ+zrnaLA+20efWYt2z3zyH1r2S5XjjN0gCEEHWAIQQcYQtABhhB0gCEEHWAIQQcYQtABhhB0gCEEHWAIQQcYQtABhhB0gCEEHWCIbYNeVbdX1c+q6nRVvVxVX10sv6mqnquqVxaPN175cQG4nGXO0N9K8vXu/mSSTyd5qKruTHI0yYnuviPJicVrANZk26B399nu/sXi+ZtJTif5eJL7kxxfrHY8yQNXakgAtreja+hVtZnkU0l+nuTW7j6bbEU/yS2rHg6A5S39K+iq6qNJfpzka939+6pa9n1HkhxJkgMHDuxmRrji1vVr4GCVljpDr6oPZyvmP+junywWn6uq2xZfvy3J+Uu9t7uPdfeh7j60sbGxipkBuIRlfsqlkjya5HR3f+eiLz2d5PDi+eEkT61+PACWtcwll7uT/G2Sl6rqxcWybyR5JMmPqurLSX6b5EtXZkQAlrFt0Lv735Jc7oL5Z1c7DgC75U5RgCEEHWAIQQcYQtABhhB0gCEEHWAIQQcYQtABhhB0gCEEHWAIQQcYQtABhhB0gCEEHWAIQQcYQtABhhB0gCEEHWAIQQcYQtABhhB0gCEEHWAIQQcYQtABhhB0gCEEHWAIQQcYQtABhhB0gCEEHWAIQQcYQtABhrhh3QPAxTaPPrPuEeCa5QwdYAhBBxhC0AGGEHSAIQQdYIhtg15Vj1XV+ao6ddGyb1XV76rqxcWfL1zZMQHYzjJn6I8nufcSy7/b3QcXf55d7VgA7NS2Qe/u55O8sQ+zALAHe7mG/nBV/XJxSebGlU0EwK7sNujfS/KJJAeTnE3y7cutWFVHqupkVZ28cOHCLjcHwHZ2FfTuPtfdb3f3O0m+n+SuD1j3WHcf6u5DGxsbu50TgG3sKuhVddtFL7+Y5NTl1gVgf2z74VxV9USSe5LcXFWvJvlmknuq6mCSTnImyVeu4IwALGHboHf3g5dY/OgVmAWAPXCnKMAQgg4whKADDCHoAEMIOsAQgg4whKADDCHoAEMIOsAQgg4whKADDCHoAEMIOsAQgg4whKADDCHoAEMIOsAQgg4whKADDCHoAEMIOsAQgg4whKADDCHoAEMIOsAQgg4whKADDCHoAEMIOsAQgg4whKADDCHoAEMIOsAQgg4whKADDCHoAEMIOsAQgg4wxLZBr6rHqup8VZ26aNlNVfVcVb2yeLzxyo4JwHaWOUN/PMm971l2NMmJ7r4jyYnFawDWaNugd/fzSd54z+L7kxxfPD+e5IEVzwXADu32Gvqt3X02SRaPt6xuJAB244p/U7SqjlTVyao6eeHChSu9OYDr1m6Dfq6qbkuSxeP5y63Y3ce6+1B3H9rY2Njl5gDYzm6D/nSSw4vnh5M8tZpxANitZX5s8Ykk/57kz6rq1ar6cpJHknyuql5J8rnFawDW6IbtVujuBy/zpc+ueBYA9sCdogBDCDrAEIIOMISgAwyx7TdFuf5sHn1m3SOwD9b573zmkfvWtu3JnKEDDCHoAEMIOsAQgg4whKADDCHoAEMIOsAQgg4whBuLgH23rpuapt/Q5AwdYAhBBxhC0AGGEHSAIQQdYAhBBxhC0AGGEHSAIQQdYAhBBxhC0AGGEHSAIQQdYAhBBxhC0AGGEHSAIQQdYAhBBxhC0AGGEHSAIQQdYAhBBxhC0AGGEHSAIW7Yy5ur6kySN5O8neSt7j60iqEA2Lk9BX3hM939+gr+HgD2wCUXgCH2GvRO8tOqeqGqjqxiIAB2Z6+XXO7u7teq6pYkz1XVf3b38xevsAj9kSQ5cODAHjd3fdk8+sy6RwCuIXs6Q+/u1xaP55M8meSuS6xzrLsPdfehjY2NvWwOgA+w66BX1Ueq6mPvPk/y+SSnVjUYADuzl0sutyZ5sqre/Xt+2N3/vJKpANixXQe9u3+T5M9XOAsAe+DHFgGGEHSAIQQdYAhBBxhiFZ/lsi/WeZPNmUfuW9u2AZblDB1gCEEHGELQAYYQdIAhBB1gCEEHGELQAYYQdIAhBB1giGvmTtF18qvgYIbpd5w7QwcYQtABhhB0gCEEHWAIQQcYQtABhhB0gCEEHWAIQQcYQtABhhB0gCEEHWAIQQcYQtABhhB0gCEEHWAIQQcYQtABhhB0gCEEHWAIQQcYQtABhhB0gCH2FPSqureqflVVv66qo6saCoCd23XQq+pDSf4hyV8nuTPJg1V156oGA2Bn9nKGfleSX3f3b7r7f5P8Y5L7VzMWADu1l6B/PMl/X/T61cUyANbghj28ty6xrN+3UtWRJEcWL/+nqn61h22u281JXl/3ENcA+2l79tFyxuyn+vs9vf2Pl1lpL0F/NcntF73+oySvvXel7j6W5NgetnPVqKqT3X1o3XNc7eyn7dlHy7GfdmYvl1z+I8kdVfUnVfWHSf4mydOrGQuAndr1GXp3v1VVDyf5lyQfSvJYd7+8sskA2JG9XHJJdz+b5NkVzXItGHHpaB/YT9uzj5ZjP+1Adb/v+5gAXIPc+g8whKAvoarOVNVLVfViVZ1c9zxXi6p6rKrOV9Wpi5bdVFXPVdUri8cb1znj1eAy++lbVfW7xTH1YlV9YZ0zXg2q6vaq+llVna6ql6vqq4vljqklCfryPtPdB/0I1f/zeJJ737PsaJIT3X1HkhOL19e7x/P+/ZQk310cUwcX34+63r2V5Ovd/ckkn07y0OLjRBxTSxJ0dq27n0/yxnsW35/k+OL58SQP7OtQV6HL7Cfeo7vPdvcvFs/fTHI6W3efO6aWJOjL6SQ/raoXFne+cnm3dvfZZOs/aJJb1jzP1ezhqvrl4pKMywgXqarNJJ9K8vM4ppYm6Mu5u7v/IlufLPlQVf3Vugfimve9JJ9IcjDJ2STfXu84V4+q+miSHyf5Wnf/ft3zXEsEfQnd/dri8XySJ7P1SZNc2rmqui1JFo/n1zzPVam7z3X32939TpLvxzGVJKmqD2cr5j/o7p8sFjumliTo26iqj1TVx959nuTzSU598Luua08nObx4fjjJU2uc5ar1bqAWvhjHVKqqkjya5HR3f+eiLzmmluTGom1U1Z9m66w82bqz9ofd/XdrHOmqUVVPJLknW5+Idy7JN5P8U5IfJTmQ5LdJvtTd1/U3BC+zn+7J1uWWTnImyVfevU58vaqqv0zyr0leSvLOYvE3snUd3TG1BEEHGMIlF4AhBB1gCEEHGELQAYYQdIAhBB1gCEEHGELQAYb4PznXKtMiS1+PAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.bar(coord,heigth,width=larg)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(coord)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "type(coord)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, { "cell_type": "code", "execution_count": null,