diff --git a/module2/exo1/toy_document_en.Rmd b/module2/exo1/toy_document_en.Rmd index b8ccc6fad9f10486269b06bcbb3d945acd804cc6..57758bde0afa08d8a6f76c32f45bffc19d7ed2e9 100644 --- a/module2/exo1/toy_document_en.Rmd +++ b/module2/exo1/toy_document_en.Rmd @@ -1,32 +1,37 @@ ---- -title: "On the computation of pi" -author: "Lijuan Ren" -date: "20 Sept 2021" -output: html_document ---- - -## Asking the maths library -pi -## [1] 3.141593 - - -## Buffon’s needle -set.seed(42) -N = 100000 -x = runif(N) -theta = pi/2*runif(N) -2/(mean(x+sin(theta)>1)) - - -## Using a surface fraction argument -set.seed(42) -N = 1000 -df = data.frame(X = runif(N), Y = runif(N)) -df$Accept = (df$X**2 + df$Y**2 <=1) -library(ggplot2) -ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + theme_bw() -4*mean(df$Accept) - - - - +--- --- +title: "On the computation of pi" title: "On the computation of pi" +author: "Arnaud Legrand" author: "Lijuan Ren" +date: "25 juin 2018" date: "20 Sept 2021" +output: html_document output: html_document +--- --- +```{r setup, include=FALSE} ## Asking the maths library +knitr::opts_chunk$set(echo = TRUE) pi +``` ## [1] 3.141593 +## Asking the maths library +My computer tells me that $\pi$ is *approximatively* +```{r} +pi +``` +## Buffon's needle ## Buffon’s needle +Applying the method of [Buffon's needle](https://en.wikipedia.org/wiki/Buffon%27s_needle_problem), we get the __approximation__ +```{r} +set.seed(42) set.seed(42) +N = 100000 N = 100000 +x = runif(N) x = runif(N) +theta = pi/2*runif(N) theta = pi/2*runif(N) +2/(mean(x+sin(theta)>1)) 2/(mean(x+sin(theta)>1)) +``` +## Using a surface fraction argument ## Using a surface fraction argument +A method that is easier to understand and does not make use of the $\sin$ function is based on the fact that if $X\sim U(0,1)$ and $Y\sim U(0,1)$, then $P[X^2+Y^2\leq 1] = \pi/4$ (see ["Monte Carlo method" on Wikipedia](https://en.wikipedia.org/wiki/Monte_Carlo_method)). The following code uses this approach: +```{r} +set.seed(42) set.seed(42) +N = 1000 N = 1000 +df = data.frame(X = runif(N), Y = runif(N)) df = data.frame(X = runif(N), Y = runif(N)) +df$Accept = (df$X**2 + df$Y**2 <=1) df$Accept = (df$X**2 + df$Y**2 <=1) +library(ggplot2) library(ggplot2) +ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + theme_bw() ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + theme_bw() +``` +It is then straightforward to obtain a (not really good) approximation to $\pi$ by counting how many times, on average, $X^2 + Y^2$ is smaller than 1: +```{r} +4*mean(df$Accept) 4*mean(df$Accept) +``` \ No newline at end of file