{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "%matplotlib inline\n", "import matplotlib.pyplot as plt\n", "import pandas as pd\n", "import isoweek\n" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "data_url = \"https://www.sentiweb.fr/datasets/incidence-PAY-7.csv\"" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
02020417409419776211639FRFrance
1202040720906623518315FRFrance
2202039710582401876213FRFrance
3202038722537823724315FRFrance
4202037715844052763204FRFrance
520203679191001738102FRFrance
6202035782801694102FRFrance
7202034722723714173306FRFrance
8202033712841772391204FRFrance
9202032726506894611417FRFrance
10202031713031002506204FRFrance
1120203071385752695204FRFrance
122020297841101672102FRFrance
13202028772801515102FRFrance
1420202779861491823102FRFrance
15202026769401454102FRFrance
1620202572280597001FRFrance
1720202473880959102FRFrance
18202023755811115102FRFrance
1920202272770633001FRFrance
202020217602361168102FRFrance
212020207824201628102FRFrance
2220201973100753001FRFrance
232020187849981600102FRFrance
2420201772720658001FRFrance
252020167758781438102FRFrance
26202015719186753161315FRFrance
272020147387922275531639FRFrance
28202013773265236941611814FRFrance
292020127812357901045612816FRFrance
.................................
15281991267176081130423912312042FRFrance
15291991257161691070021638281838FRFrance
15301991247161711007122271281739FRFrance
1531199123711947767116223211329FRFrance
1532199122715452995320951271737FRFrance
1533199121714903897520831261636FRFrance
15341991207190531274225364342345FRFrance
15351991197167391124622232291939FRFrance
15361991187213851388228888382551FRFrance
1537199117713462887718047241632FRFrance
15381991167148571006819646261834FRFrance
1539199115713975978118169251832FRFrance
1540199114712265768416846221430FRFrance
154119911379567604113093171123FRFrance
1542199112710864733114397191325FRFrance
15431991117155741118419964271935FRFrance
15441991107166431137221914292038FRFrance
1545199109713741878018702241533FRFrance
1546199108713289881317765231531FRFrance
1547199107712337807716597221529FRFrance
1548199106710877701314741191226FRFrance
1549199105710442654414340181125FRFrance
15501991047791345631126314820FRFrance
15511991037153871048420290271836FRFrance
15521991027162771104621508292038FRFrance
15531991017155651027120859271836FRFrance
15541990527193751329525455342345FRFrance
15551990517190801380724353342543FRFrance
1556199050711079666015498201228FRFrance
15571990497114302610205FRFrance
\n", "

1558 rows × 10 columns

\n", "
" ], "text/plain": [ " week indicator inc inc_low inc_up inc100 inc100_low \\\n", "0 202041 7 4094 1977 6211 6 3 \n", "1 202040 7 2090 662 3518 3 1 \n", "2 202039 7 1058 240 1876 2 1 \n", "3 202038 7 2253 782 3724 3 1 \n", "4 202037 7 1584 405 2763 2 0 \n", "5 202036 7 919 100 1738 1 0 \n", "6 202035 7 828 0 1694 1 0 \n", "7 202034 7 2272 371 4173 3 0 \n", "8 202033 7 1284 177 2391 2 0 \n", "9 202032 7 2650 689 4611 4 1 \n", "10 202031 7 1303 100 2506 2 0 \n", "11 202030 7 1385 75 2695 2 0 \n", "12 202029 7 841 10 1672 1 0 \n", "13 202028 7 728 0 1515 1 0 \n", "14 202027 7 986 149 1823 1 0 \n", "15 202026 7 694 0 1454 1 0 \n", "16 202025 7 228 0 597 0 0 \n", "17 202024 7 388 0 959 1 0 \n", "18 202023 7 558 1 1115 1 0 \n", "19 202022 7 277 0 633 0 0 \n", "20 202021 7 602 36 1168 1 0 \n", "21 202020 7 824 20 1628 1 0 \n", "22 202019 7 310 0 753 0 0 \n", "23 202018 7 849 98 1600 1 0 \n", "24 202017 7 272 0 658 0 0 \n", "25 202016 7 758 78 1438 1 0 \n", "26 202015 7 1918 675 3161 3 1 \n", "27 202014 7 3879 2227 5531 6 3 \n", "28 202013 7 7326 5236 9416 11 8 \n", "29 202012 7 8123 5790 10456 12 8 \n", "... ... ... ... ... ... ... ... \n", "1528 199126 7 17608 11304 23912 31 20 \n", "1529 199125 7 16169 10700 21638 28 18 \n", "1530 199124 7 16171 10071 22271 28 17 \n", "1531 199123 7 11947 7671 16223 21 13 \n", "1532 199122 7 15452 9953 20951 27 17 \n", "1533 199121 7 14903 8975 20831 26 16 \n", "1534 199120 7 19053 12742 25364 34 23 \n", "1535 199119 7 16739 11246 22232 29 19 \n", "1536 199118 7 21385 13882 28888 38 25 \n", "1537 199117 7 13462 8877 18047 24 16 \n", "1538 199116 7 14857 10068 19646 26 18 \n", "1539 199115 7 13975 9781 18169 25 18 \n", "1540 199114 7 12265 7684 16846 22 14 \n", "1541 199113 7 9567 6041 13093 17 11 \n", "1542 199112 7 10864 7331 14397 19 13 \n", "1543 199111 7 15574 11184 19964 27 19 \n", "1544 199110 7 16643 11372 21914 29 20 \n", "1545 199109 7 13741 8780 18702 24 15 \n", "1546 199108 7 13289 8813 17765 23 15 \n", "1547 199107 7 12337 8077 16597 22 15 \n", "1548 199106 7 10877 7013 14741 19 12 \n", "1549 199105 7 10442 6544 14340 18 11 \n", "1550 199104 7 7913 4563 11263 14 8 \n", "1551 199103 7 15387 10484 20290 27 18 \n", "1552 199102 7 16277 11046 21508 29 20 \n", "1553 199101 7 15565 10271 20859 27 18 \n", "1554 199052 7 19375 13295 25455 34 23 \n", "1555 199051 7 19080 13807 24353 34 25 \n", "1556 199050 7 11079 6660 15498 20 12 \n", "1557 199049 7 1143 0 2610 2 0 \n", "\n", " inc100_up geo_insee geo_name \n", "0 9 FR France \n", "1 5 FR France \n", "2 3 FR France \n", "3 5 FR France \n", "4 4 FR France \n", "5 2 FR France \n", "6 2 FR France \n", "7 6 FR France \n", "8 4 FR France \n", "9 7 FR France \n", "10 4 FR France \n", "11 4 FR France \n", "12 2 FR France \n", "13 2 FR France \n", "14 2 FR France \n", "15 2 FR France \n", "16 1 FR France \n", "17 2 FR France \n", "18 2 FR France \n", "19 1 FR France \n", "20 2 FR France \n", "21 2 FR France \n", "22 1 FR France \n", "23 2 FR France \n", "24 1 FR France \n", "25 2 FR France \n", "26 5 FR France \n", "27 9 FR France \n", "28 14 FR France \n", "29 16 FR France \n", "... ... ... ... \n", "1528 42 FR France \n", "1529 38 FR France \n", "1530 39 FR France \n", "1531 29 FR France \n", "1532 37 FR France \n", "1533 36 FR France \n", "1534 45 FR France \n", "1535 39 FR France \n", "1536 51 FR France \n", "1537 32 FR France \n", "1538 34 FR France \n", "1539 32 FR France \n", "1540 30 FR France \n", "1541 23 FR France \n", "1542 25 FR France \n", "1543 35 FR France \n", "1544 38 FR France \n", "1545 33 FR France \n", "1546 31 FR France \n", "1547 29 FR France \n", "1548 26 FR France \n", "1549 25 FR France \n", "1550 20 FR France \n", "1551 36 FR France \n", "1552 38 FR France \n", "1553 36 FR France \n", "1554 45 FR France \n", "1555 43 FR France \n", "1556 28 FR France \n", "1557 5 FR France \n", "\n", "[1558 rows x 10 columns]" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "raw_data = pd.read_csv(data_url, skiprows=1)\n", "raw_data" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
\n", "
" ], "text/plain": [ "Empty DataFrame\n", "Columns: [week, indicator, inc, inc_low, inc_up, inc100, inc100_low, inc100_up, geo_insee, geo_name]\n", "Index: []" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "raw_data[raw_data.isnull().any(axis=1)]" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
02020417409419776211639FRFrance
1202040720906623518315FRFrance
2202039710582401876213FRFrance
3202038722537823724315FRFrance
4202037715844052763204FRFrance
520203679191001738102FRFrance
6202035782801694102FRFrance
7202034722723714173306FRFrance
8202033712841772391204FRFrance
9202032726506894611417FRFrance
10202031713031002506204FRFrance
1120203071385752695204FRFrance
122020297841101672102FRFrance
13202028772801515102FRFrance
1420202779861491823102FRFrance
15202026769401454102FRFrance
1620202572280597001FRFrance
1720202473880959102FRFrance
18202023755811115102FRFrance
1920202272770633001FRFrance
202020217602361168102FRFrance
212020207824201628102FRFrance
2220201973100753001FRFrance
232020187849981600102FRFrance
2420201772720658001FRFrance
252020167758781438102FRFrance
26202015719186753161315FRFrance
272020147387922275531639FRFrance
28202013773265236941611814FRFrance
292020127812357901045612816FRFrance
.................................
15281991267176081130423912312042FRFrance
15291991257161691070021638281838FRFrance
15301991247161711007122271281739FRFrance
1531199123711947767116223211329FRFrance
1532199122715452995320951271737FRFrance
1533199121714903897520831261636FRFrance
15341991207190531274225364342345FRFrance
15351991197167391124622232291939FRFrance
15361991187213851388228888382551FRFrance
1537199117713462887718047241632FRFrance
15381991167148571006819646261834FRFrance
1539199115713975978118169251832FRFrance
1540199114712265768416846221430FRFrance
154119911379567604113093171123FRFrance
1542199112710864733114397191325FRFrance
15431991117155741118419964271935FRFrance
15441991107166431137221914292038FRFrance
1545199109713741878018702241533FRFrance
1546199108713289881317765231531FRFrance
1547199107712337807716597221529FRFrance
1548199106710877701314741191226FRFrance
1549199105710442654414340181125FRFrance
15501991047791345631126314820FRFrance
15511991037153871048420290271836FRFrance
15521991027162771104621508292038FRFrance
15531991017155651027120859271836FRFrance
15541990527193751329525455342345FRFrance
15551990517190801380724353342543FRFrance
1556199050711079666015498201228FRFrance
15571990497114302610205FRFrance
\n", "

1558 rows × 10 columns

\n", "
" ], "text/plain": [ " week indicator inc inc_low inc_up inc100 inc100_low \\\n", "0 202041 7 4094 1977 6211 6 3 \n", "1 202040 7 2090 662 3518 3 1 \n", "2 202039 7 1058 240 1876 2 1 \n", "3 202038 7 2253 782 3724 3 1 \n", "4 202037 7 1584 405 2763 2 0 \n", "5 202036 7 919 100 1738 1 0 \n", "6 202035 7 828 0 1694 1 0 \n", "7 202034 7 2272 371 4173 3 0 \n", "8 202033 7 1284 177 2391 2 0 \n", "9 202032 7 2650 689 4611 4 1 \n", "10 202031 7 1303 100 2506 2 0 \n", "11 202030 7 1385 75 2695 2 0 \n", "12 202029 7 841 10 1672 1 0 \n", "13 202028 7 728 0 1515 1 0 \n", "14 202027 7 986 149 1823 1 0 \n", "15 202026 7 694 0 1454 1 0 \n", "16 202025 7 228 0 597 0 0 \n", "17 202024 7 388 0 959 1 0 \n", "18 202023 7 558 1 1115 1 0 \n", "19 202022 7 277 0 633 0 0 \n", "20 202021 7 602 36 1168 1 0 \n", "21 202020 7 824 20 1628 1 0 \n", "22 202019 7 310 0 753 0 0 \n", "23 202018 7 849 98 1600 1 0 \n", "24 202017 7 272 0 658 0 0 \n", "25 202016 7 758 78 1438 1 0 \n", "26 202015 7 1918 675 3161 3 1 \n", "27 202014 7 3879 2227 5531 6 3 \n", "28 202013 7 7326 5236 9416 11 8 \n", "29 202012 7 8123 5790 10456 12 8 \n", "... ... ... ... ... ... ... ... \n", "1528 199126 7 17608 11304 23912 31 20 \n", "1529 199125 7 16169 10700 21638 28 18 \n", "1530 199124 7 16171 10071 22271 28 17 \n", "1531 199123 7 11947 7671 16223 21 13 \n", "1532 199122 7 15452 9953 20951 27 17 \n", "1533 199121 7 14903 8975 20831 26 16 \n", "1534 199120 7 19053 12742 25364 34 23 \n", "1535 199119 7 16739 11246 22232 29 19 \n", "1536 199118 7 21385 13882 28888 38 25 \n", "1537 199117 7 13462 8877 18047 24 16 \n", "1538 199116 7 14857 10068 19646 26 18 \n", "1539 199115 7 13975 9781 18169 25 18 \n", "1540 199114 7 12265 7684 16846 22 14 \n", "1541 199113 7 9567 6041 13093 17 11 \n", "1542 199112 7 10864 7331 14397 19 13 \n", "1543 199111 7 15574 11184 19964 27 19 \n", "1544 199110 7 16643 11372 21914 29 20 \n", "1545 199109 7 13741 8780 18702 24 15 \n", "1546 199108 7 13289 8813 17765 23 15 \n", "1547 199107 7 12337 8077 16597 22 15 \n", "1548 199106 7 10877 7013 14741 19 12 \n", "1549 199105 7 10442 6544 14340 18 11 \n", "1550 199104 7 7913 4563 11263 14 8 \n", "1551 199103 7 15387 10484 20290 27 18 \n", "1552 199102 7 16277 11046 21508 29 20 \n", "1553 199101 7 15565 10271 20859 27 18 \n", "1554 199052 7 19375 13295 25455 34 23 \n", "1555 199051 7 19080 13807 24353 34 25 \n", "1556 199050 7 11079 6660 15498 20 12 \n", "1557 199049 7 1143 0 2610 2 0 \n", "\n", " inc100_up geo_insee geo_name \n", "0 9 FR France \n", "1 5 FR France \n", "2 3 FR France \n", "3 5 FR France \n", "4 4 FR France \n", "5 2 FR France \n", "6 2 FR France \n", "7 6 FR France \n", "8 4 FR France \n", "9 7 FR France \n", "10 4 FR France \n", "11 4 FR France \n", "12 2 FR France \n", "13 2 FR France \n", "14 2 FR France \n", "15 2 FR France \n", "16 1 FR France \n", "17 2 FR France \n", "18 2 FR France \n", "19 1 FR France \n", "20 2 FR France \n", "21 2 FR France \n", "22 1 FR France \n", "23 2 FR France \n", "24 1 FR France \n", "25 2 FR France \n", "26 5 FR France \n", "27 9 FR France \n", "28 14 FR France \n", "29 16 FR France \n", "... ... ... ... \n", "1528 42 FR France \n", "1529 38 FR France \n", "1530 39 FR France \n", "1531 29 FR France \n", "1532 37 FR France \n", "1533 36 FR France \n", "1534 45 FR France \n", "1535 39 FR France \n", "1536 51 FR France \n", "1537 32 FR France \n", "1538 34 FR France \n", "1539 32 FR France \n", "1540 30 FR France \n", "1541 23 FR France \n", "1542 25 FR France \n", "1543 35 FR France \n", "1544 38 FR France \n", "1545 33 FR France \n", "1546 31 FR France \n", "1547 29 FR France \n", "1548 26 FR France \n", "1549 25 FR France \n", "1550 20 FR France \n", "1551 36 FR France \n", "1552 38 FR France \n", "1553 36 FR France \n", "1554 45 FR France \n", "1555 43 FR France \n", "1556 28 FR France \n", "1557 5 FR France \n", "\n", "[1558 rows x 10 columns]" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data = raw_data.dropna().copy()\n", "data" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "def convert_week(year_and_week_int):\n", " year_and_week_str = str(year_and_week_int)\n", " year = int(year_and_week_str[:4])\n", " week = int(year_and_week_str[4:])\n", " w = isoweek.Week(year, week)\n", " return pd.Period(w.day(0), 'W')\n", "\n", "data['period'] = [convert_week(yw) for yw in data['week']]" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "sorted_data = data.set_index('period').sort_index()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "periods = sorted_data.index\n", "for p1, p2 in zip(periods[:-1], periods[1:]):\n", " delta = p2.to_timestamp() - p1.end_time\n", " if delta > pd.Timedelta('1s'):\n", " print(p1, p2)" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEKCAYAAAD5MJl4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsfXmcHUW59vOec2Ym6yQhOwmQkIQt7ER2EAhLwAVc0LjivXhRLnrdrvcDlSsqKIqIooCioIAXAVEERQSEgIKBJCwBAoQEEkhISEL2bSYzc+r7o7u6q6vfWvpMz8yZTD/55Td9qqurq6ur6613JyEEChQoUKBAARWlnu5AgQIFChSoPxTEoUCBAgUKpFAQhwIFChQokEJBHAoUKFCgQAoFcShQoECBAikUxKFAgQIFCqRQEIcCBQoUKJBCQRwKFChQoEAKBXEoUKBAgQIpVHq6A7VixIgRYsKECT3djQIFChToVXjqqafeFkKMdNXrtcRhwoQJmDdvXk93o0CBAgV6FYjodZ96hVipQIECBQqkUBCHAgUKFCiQQkEcChQoUKBACgVxKFCgQIECKRTEoUCBAgUKpFAQhwIFChQokEJBHAoUKFCgQAoFcSiw0+PRV9Zg2bptPd2NAgV6FXqtE1yBAr4458Y5aCgTFl12Rk93pUCBXoOCcyjQJ9DWIXq6CwUK9CoUxKFAgQIFCqRQEIcCBQoUKJCCkzgQUT8imkNE84loARF9Kyy/hIjeJKJnw/9nKNdcRESLiWghEZ2mlB9GRM+H564mIgrLm4jo9rD8SSKakP+jFihQoEABX/hwDq0AThJCHATgYAAziOjI8NxVQoiDw/9/BQAi2g/ATABTAcwAcC0RlcP61wE4D8CU8P+MsPxcAOuFEJMBXAXg+51/tAIFChQoUCucxEEE2BL+bAj/27R7ZwK4TQjRKoRYAmAxgMOJaCyAZiHEbCGEAHAzgLOUa24Kj+8EMF1yFQUKFChQoPvhpXMgojIRPQtgNYAHhRBPhqc+R0TPEdGNRDQsLBsHYJly+fKwbFx4rJcnrhFCtAPYCGA404/ziGgeEc1bs2aN1wMWKFCgQIHs8CIOQogOIcTBAMYj4AL2RyAimoRA1LQSwJVhdW7HLyzltmv0flwvhJgmhJg2cqQzkVGBAp3Ckre3Yv6yDT3djQIFegSZrJWEEBsAPAJghhBiVUg0qgB+CeDwsNpyALspl40HsCIsH8+UJ64hogqAIQDWZXqSAgVyxok/fARnXvN4T3ejQIEegY+10kgiGhoe9wdwMoCXQx2CxPsAvBAe3wNgZmiBNBGB4nmOEGIlgM1EdGSoT/gkgLuVa84Jjz8I4OFQL1GgQIECBXoAPuEzxgK4KbQ4KgG4QwjxFyK6hYgORiD+WQrgMwAghFhARHcAeBFAO4ALhBAdYVvnA/gNgP4A7gv/A8ANAG4hosUIOIaZOTxbgQIFChSoEU7iIIR4DsAhTPknLNdcBuAypnwegP2Z8hYAZ7v6UqBAgQIFugeFh3SBPoWL//QCrpm1uKe7UaBA3aOIylqgT+GWJ14HAFxw4uQe7kmBAvWNgnMoUKBAgQIpFMShQIECBQqkUBCHAjs1eotF9FOvr8c3736h1/S3wM6PgjgU2KnRW9bas3/+L9w0+3VUe0l/C+z8KIhDgZ0axVpboEBtKIhDgZ0avU1M09v6W2DnRUEcCuzUKJbaAgVqQ0EcCuzU6G0b8V7W3QI7MQriUGCnhuhly21vI2YFdl4UxKEX4Y2127D07a093Y1ehd622PY2YlZg50URPqMX4fgrZgEAll7+rh7uSYECBXZ2FJxDgZ0avY5z6GX9LbDzoiAOBXZqFGKaAgVqQ0EcCuzU6C078V7SzZ0K9z63EotWbe7pbtQtCuJQYKdGb1t0ewsx6+1obe/ABbc+jbN/Mbunu1K3KIhDgZ0a1V6y2lL4txCDdQ+q1eDvhm1tPduROoaTOBBRPyKaQ0TziWgBEX0rLN+FiB4kokXh32HKNRcR0WIiWkhEpynlhxHR8+G5q4mIwvImIro9LH+SiCbk/6gF+iJ6CW2I0N39/f28ZZhw4b1Yt3VH9964h1EQYTd8OIdWACcJIQ4CcDCAGUR0JIALATwkhJgC4KHwN4hoPwAzAUwFMAPAtURUDtu6DsB5AKaE/2eE5ecCWC+EmAzgKgDfz+HZckW1KnDz7KVoaevo6a4UyIJesgb0VDd/G2bGe31t3/Kf6W2bhp6AkziIAFvCnw3hfwHgTAA3heU3ATgrPD4TwG1CiFYhxBIAiwEcTkRjATQLIWaLILrYzdo1sq07AUyXXEW94G8L3sL/3r0AP7x/YU93pUAG9LYdYk/1ts4+ty5H75oVPQMvnQMRlYnoWQCrATwohHgSwGghxEoACP+OCquPA7BMuXx5WDYuPNbLE9cIIdoBbAQwvJYH6ipsaW0HAGzYXsgoexN6yw4x0jl0c4d7yfAU6AF4EQchRIcQ4mAA4xFwAftbqnNbEGEpt12TbJjoPCKaR0Tz1qxZ4+p2gQK9ZvHrqX5KWtS3+IYiNLoPMlkrCSE2AHgEga5gVSgqQvh3dVhtOYDdlMvGA1gRlo9nyhPXEFEFwBAA65j7Xy+EmCaEmDZy5MgsXS/QC7C1tR1rt7Tm2mZvWwTy7u2yddvw5GtrnfX6mFSp12waehI+1kojiWhoeNwfwMkAXgZwD4BzwmrnALg7PL4HwMzQAmkiAsXznFD0tJmIjgz1CZ/UrpFtfRDAw6JOv+rX127F9+57qdctOr0Bp171Dxx26d+967e0deDsn/8LC1ZsNNbpbW8p72l13A9m4cPXP2G+X68boXxQfL5u+HAOYwHMIqLnAMxFoHP4C4DLAZxCRIsAnBL+hhBiAYA7ALwI4G8ALhBCSBOf8wH8CoGS+lUA94XlNwAYTkSLAXwZoeVTPWLu0vX4xaOvYUlO0VG3trbj5bc25dJWb8ebG7Znqv/0G+sxd+l6fOcvLxrr9JZFINq459TfJ15bi7aOqrNeLFYqWIcCSTijsgohngNwCFO+FsB0wzWXAbiMKZ8HIKWvEEK0ADjbo791g7zm1nm3zMPji9di8WWno1IufBLzRm/ZGefZy+eXb8TM65/Ap4+d6H1N3xMr9Y550ZMoVqMakdeOdO6S9QCAjt6yxa1DWIeulw1rHovW2q2B3mahR9ygvjrt+upzZ0FBHGpERzWn2RXu2IrJ2jXobcOaxzwohWyAT1u9bXwKdB8K4lAjWtvz8ZSO7dtzaa6Ahr44rlJEpHIhJgMKWS6veX75RnznLy/u9AYXO/fT5YOCONSIHe1uZZ8P5C6vtwSIqyf4KFF7m2w5j95ynENbR7rlNzdsx/YwHIwcyw9c9y/c8NgStOY0v+sVOzvxywNFmtAakdfHUwrXt4I4dA1627DmsWhJkqnOqfZqFY3aXvCYyx+Or9HmYWkn11D3smnRIyg4hxqRl84h5hzs9fISY/U19LZFIJf+MnosjnPg0FcMI/rIY3YKBXGoEbnNrehDtrc4b+n6vO6408FqrNQHVwFerGTndEkjKL1NHJcVO/vz5YGCONSIvBadWASQS3MFNPQ22pCntZIqVqo6Jpiuv+lt41YgfxTEoUbk9e2USoVCut7RndxHHjvaUmStFKOviIu8UQyHEwVxqBU5Ta5ol1ewDpnhozNV18Rax9i1rk679O+4+E8vJMr+8coavJ1zEEFf6Mrl4Nh+TV8Ts/Stp60NBXGoEXl9TLG1Ui7N9Sn4OXnFlf779/Nru4/j/NtbWnFLmFENCIjQJ2+cg4/+0hzwruabITCG+NGDr2DDtnRqz7VbWvGB62YDANYrqT9dhFEfy52d0djZny8PFMShRuQ3uQqxUldCtSr74zNv1tRGVrGSrL149RZrPdu1Nsx6eTWufmgRvnnPgtS515SAkEvXbouOXfOrr02/vsYp1YKCONSIvD6mws/BjhdXbMKtT77BnvMRK7VnYMlWb27Bc8s3AEjuumt9M7Vc5zMNdoSWR61taQsk05C4TK/1xXJnXzyLz82NgjjUiLzmlm5CWCCJM67+J7521/M1X9/uad8PAGf85DG892ePAwA+9Zu5UXnWd9NZBfaP//4K5i5N5bpK9YcjjqZc0C4a2dLWkRA97ezzcSd/vFxQEIcakZcFi1RI5xbIrxdg1sLVuPvZ2kQ8WdFe9fdkVxXI85dtiI6z7qI78yYFBH7890U4++ezrXUAnjiUiP/t4kw/cN1sfOvPaTFVgb6LInxGjcjNlLUPxlb6t18Hu/IzDx6XT4OWofP1DFahE+rsnEPmW2a6NuYc0tRBLysRoSqE1/y6aXasVN/ZZ6O6uXvitbXYsK0NM/Yf04M9qj8UxKFG5L2W9yHGoVtRC0fW0tb9oUqyzCe50HMCJL1M0oqs47Cze5arjzczTKO69PJ39VBv6hOFWKlm5CRWCt/Azv4x9hTaPVJl6tiuEYfMnEMn5sYzb2xwVwrBcQ56wDzKkNuhQAEVTuJARLsR0SwieomIFhDRF8LyS4joTSJ6Nvx/hnLNRUS0mIgWEtFpSvlhRPR8eO5qCmcuETUR0e1h+ZNENCH/R80XeX1sFJmy5tNeX4JP3NC2GgZ2+w6NOGTVOdTwLuWafsGtTzvrynDxun5BbUeiVCvnkKm2Gas2teCtjS05tZYfCmLphg/n0A7gK0KIfQEcCeACItovPHeVEOLg8P9fASA8NxPAVAAzAFxLROWw/nUAzgMwJfw/Iyw/F8B6IcRkAFcB+H7nH61rkbe1Ul/SObiQJxeVhXNoKAcvQxcr1dqdrnqlX73zOQB+xLFWnVZefT/iuw/hyO89lE9jOWJnN9XNA07iIIRYKYR4OjzeDOAlADZN4pkAbhNCtAohlgBYDOBwIhoLoFkIMVsEX//NAM5SrrkpPL4TwHTieOY6Qn5+Dn3PWsmFPIcii59DUyXYw+hipe4g3LVxGx5ipfBvvW4+Nre04eQfPYrnl2/s1vvW6XDUFTLpHEJxzyEAngyLPkdEzxHRjUQ0LCwbB2CZctnysGxceKyXJ64RQrQD2AhgeJa+dTfy2nn4+jn0pcmc3SPZXN+H6AohcOuTb0TOZWmxUjZ017vidk8lwxetD4NzjLvpGeYuXYfFq7fgygcXds8NC3jDmzgQ0SAAfwDwRSHEJgQiokkADgawEsCVsipzubCU267R+3AeEc0jonlr1qzx7XqXIK8FoBxSB5c9fr2xwdWqwC8efRWbWtrybzvHR/XZMc9Zsg5fu+v5SJbfEwrpWvhk1pTVIGz6xl0vYLPyrty0oXvm24724D4VE1XrItTX11Sf8HojRNSAgDD8nxDijwAghFglhOgQQlQB/BLA4WH15QB2Uy4fD2BFWD6eKU9cQ0QVAEMApFxEhRDXCyGmCSGmjRw50u8Juwh5Ta6GcvAKXPb49SZ1eujl1fjefS/ju/e+lHvb3IJeqx7C57JtGjG4+9kVyQrdMPa1PB63gOtKaklAFq7ajOseebWWrnUp5KbojXVbcd/zK7vtvoV1oBs+1koE4AYALwkhfqSUj1WqvQ+AjFl8D4CZoQXSRASK5zlCiJUANhPRkWGbnwRwt3LNOeHxBwE8LPrI22uoBK9ghyMndU/KjO96ZjnOu3leQkQjd6Hd5RPAPb6PWqqWUbtLC9DXHdZKtYCLtKoPifoZqTkdXF3srmeQ4U1eWbUF5/+f21IrD9z42BJ84oY53XKv3gwfJ7hjAHwCwPNE9GxY9jUAHyGigxHMs6UAPgMAQogFRHQHgBcRWDpdIISQK8j5AH4DoD+A+8L/QEB8biGixQg4hpmde6zs2NrajideW4vp+472qp8X7WoMLWR2dNgX2Z6klV+6PQh1vaWlHUMGNACIiVljJX9xAMs5MPV8xiSPccsuVuoedIabdI1Ldz3Djhr8UDqLb//lxW6/Z2+EkzgIIR4DrxP4q+WaywBcxpTPA7A/U94C4GxXX7oS37xnAe58ajn+9sXjsM+Y5m67b6Mv59D931AK6s5T5iSWYrE8wS16VSFQ9jLezA5Xq/XKwmblJk36iJ5ElsCIAPDWxhZUyoQRg5q6qEcFJAoP6RCrNgWOOr4OO3lt5OXi2uogDvWQ5lFdjGR/pfknEPgU3PXM8k5nteN2tTWLlXIYtszWU930rnjdTPL3VsXyShWPucVK3fMMWQIjAsCR33sI0y79exf1poCKgjiEaO4XiEs2tbR71c/LmqOx7Mc51IMKhiMOqljphseW4Eu3z685qU58n3RZreOdx3vKbMra6Tv6gTPT9b13HUwnAPXl31NPfakHFMQhhFzkVI/a7/zlRUy48F62fm6cgxQrOWSv9TBv1U2eFCtJnQkArNkchLxWE+XUBI449KCXcndGZe3K+2QRK3XXdKsnQVe9Ogr2FAriECKKdKnM1hseW2Ksn9c8avLkHOph4qp9sIWNtuG3Sq5ln/vo9+NQ6zlf1JuPiQTLYXl21fVM3ebIV0eBEArOIYmCOISQ80IPP2BCZ6dRtSrw5/krUA4N093EoZM3rBFqApjOfjwrN27HN/70grMeb61Uq1gpB9SpXCnrOKlTO4/F/9FX1uANJU91b0c9bMDqCUU+hxAi4hzSxGHjtjZs2t7G1q8Vv5v7Br5+V7xQ1qvO4dePL1X6wNdp76hi1eZW/mSint8zcLVqpUs+4+bavWa9d3dxGl25mPk8wzk3Br4CncmDUEeMQ8E5aCg4hxAi4hzS5w769gO4VPME7uw0Wr0puZi6dQ49P3FNTlSX3vsSjrn8YawNdQ2dXRx9PaR9FpY8Rq3exEq7DukHADh28ojUudymSXeJlTLUXbFhu7OOEAIf+sXsmryt68FcvJ5QEIcQcXYtz+naiY/nydfW4icPLUqU9QY/B27RJgL+8UoQ52rDtmyKaKPimrVWMsN0rq2jinv0UBg1oN4U0iMHBzb+ZWYn461z6GF6t3Kje6HXcfTlDzvrVEUQK6sWb+t6MBevJxTEIUSsYPWs3wnq8OU75qfKeoOfg1FEIyPLRj/9BvFLdzzLlrOK1hqI47uvfgyPLX7bWU/t7dRd0w6Q9aRyaGnrwPwwvDX3OnznpVMhnbln/vjbC2/hqO89jEcWrk59cOoc27BtByZceC/umLtMb8KIzoiG6oE7rycUxCGE/Fi6Y+elR/0E3GKlevBz4LooRLy4Zu2iiXPISyG9cNXmzNfwu/H6cYKbuzSOR5n1LlkWP1PVjdvaUiHNs2L+8iAV6oIVm1LbCHVtX7Yu4C5ufmKpd9sqcZh5/exM/eqs8+bOhoI4hJDzwn/nVTu2tqYd7VwLSj3MW3VxUT/qKE9xTvfh2mE9pHO6nwrOWq0O6DILX09yiQ7FIKDWZzro2w/g1B8/WtvFIWzvrbOEVeWwn3gtFdjZ+9oCBXGIICdld3AOHOvr0inUA8trYtn1j91EYH1FdtwOzjcYX2fBcQ5Z0fNvikdLuxpKww7bJknu6F2Yv2yDs44+Jzq7CeqMWKmwVkqiIA4hYs7BD1+76/ma71XiRBeOO9fDvFXXZ7U7cTa7jOIXj/u46uaNcg6cQ3fR8db2aqZkS61t/oqbPJ5hs0coGl0/lXC0VGNBeXaoUzoHVmwq8NOHFmHZup3Hn8MXBXEIEXMOXf9lVxji4JrTar96Sv/Asd1EsSjG1S1fb1iOUHabWIn5IurJlHWdoqe54v6FOPCSBxLnbe9ANXro7Bx61oMrcHth+/WBQN7EqlOcA3OTNzdsx5UPvoJ/+83cmtvVUa0KvLpmS27tdRX6PHGYu3Qd9v7GfVi3LdiBdce6y+1OXWIjVdTSUxImVx/zWkT5sBBd99Dq6+iMeWhUvwuJyRdu4y28fO7dmkmsZMdZ1zyeKnttzRY88dpax5XJ8U6Llfg7+4pV87ZWkkWdVcKr+OU/X8P0Kx/FC29uzK3NrkCfJw7XzlqM1vZqJB/tjl0iJ1Zy3VZ1Lu6pfaxpgZYcgWTL12/rXF5pVtHaqRb9wSqkszZSP4xGAm0ZFNK1EOOTrnwUM69/IsM90mWmtd13ze+MUtlmrfTmhu34qeabVCuefmM9AGD5+voWVfV54qCLOrqFc2DFSv4seHcpp2e9vDrx22RtK59G9suUq1hfcEyPkTWgXJ5cBSfyy0uXYoKv3uAWj6CFdWC34ISqZ9D7a5rbvpu2zpijmsSmElc++EqfUloXxEH73R0fF7c7dc05LiIqW68qcM2sxZhw4b347l9fMlcEsPTtrVZ2WZezyoRIOuTjvPyW3a9A77fpg+cW464kiOpixRPuLrs1AODnBmKqYtuOdlzsEbTQ1tXEuNawq88KtQlTrnH9vZru69uf9qrenv+D+Cz8WZMT9WYUxEFPyN4N92R3p45rqonv2lz70UVrcMX9CwEA1//jNWubJ/zwEfzHzfMcd47xz0VrouPX126NjuUYbtzeOXGSBPd0PSlWynr3LAvriys2YSWTfVDvxm/+tTRTHziIxHHXj6i6MH/q13P4OpZrkuV+99QX+E3b/ZJ3ASZrpeTvrGlNbah3Ls9JHIhoNyKaRUQvEdECIvpCWL4LET1IRIvCv8OUay4iosVEtJCITlPKDyOi58NzV1Mo0yGiJiK6PSx/kogm5P+oxidM/OoOSyBu/XEqpD05h6yT1ye8hMQd85ZHSrS7w5hFFP7zge/QcmPRXd6rlXI2hfQrjBd2loX3jKv/ibuYzHl6LwY0lFN1ONSDJz0H6ZC2uaUt4iIEkBpcs87BU6yk1bvorue8+8iJlXRio3MmtaAec3lz8OEc2gF8RQixL4AjAVxARPsBuBDAQ0KIKQAeCn8jPDcTwFQAMwBcS0RyZl8H4DwAU8L/M8LycwGsF0JMBnAVgO/n8GxeSHEOPabtdZz27FfZkxesdRH556I0Mck7HlVPcu5qTmwJW69PveofXdIPXRc2oNEvur5drMQfu+rmiQMueQC/UpJo+XIOazxCwgPpzdFfn3/Lu2+sc6rWn3ZHmJudCc6lRAixUgjxdHi8GcBLAMYBOBPATWG1mwCcFR6fCeA2IUSrEGIJgMUADieisQCahRCzRTADbtaukW3dCWA66V9HN6FbrJW60JTVO1lRjY/JNe/7olI6B5N82dPPwfUIuwxs9OuYgqZK+pOoByc4NaZSHnB1sTtybwvBKaST5yUu/KMfB9DWicXbR9eVp0K6Pnm8GJmS/YTinkMAPAlgtBBiJRAQECIaFVYbB+AJ5bLlYVlbeKyXy2uWhW21E9FGAMMBJLapRHQeAs4Du+++e5aum59J+12vPgS+OocK58XFINfHzDl7Hm/iaL7adKaW3UUDw3plXSjzGFu9779/ajlbL3XvelpxPPqStmBLX/R8Bn+Axatrdy7jFn6d1uQiVooiCnS6qS6Ft0KaiAYB+AOALwohNtmqMmXCUm67JlkgxPVCiGlCiGkjR450ddkLPaGQ5uCaKKo81DY/PWlDzWIl7kX5cw5+9/TlEvLyyFarcTvP7JxDfgtIdvgRUVcf87FWcjeSEitZzvnAFfreBi+dQw4K6XrKfmeD11JCRA0ICMP/CSH+GBavCkVFCP9Ko/jlAHZTLh8PYEVYPp4pT1xDRBUAQwDky0cboCuH8qLmv3j0VUy48N6EV2p0T1YhbW/PN3yGt3LYq5YbRFl0DtrvDMrHWhbcWmLotTEff0/s8LpCaZmYQ4Y633jXvrnf1wZfPwdfdOZ6TteV0jkUpqwxQtn/DQBeEkL8SDl1D4BzwuNzANytlM8MLZAmIlA8zwlFUJuJ6MiwzU9q18i2PgjgYdGFZhdn//xfkbdjmnPI57bXPRrYrm9t9SMO7pDd7g/bp524XufbkNjGPGPWe6pgrZU4bsLRoK/+RQWXVyOzWKkHxQW+9zbVyzv8urUPEFFuB4nOSm2yXn7FBw+MjrvLWkli5cbtWG3wHaoH+HAOxwD4BICTiOjZ8P8ZAC4HcAoRLQJwSvgbQogFAO4A8CKAvwG4QAghV4/zAfwKgZL6VQD3heU3ABhORIsBfBmh5VNXQAiBuUvX48oHX2HP5/Xu5TzzXqwd59U1y9akT/iAxas340/Pps0nAeCvz6/ExIv+iiVvb2XPc9Zdvkl1OjcWzI4+/PvMG3wQuFrY96P2HJ6+TyfmxJbWdky48F7cqFjoeCFD3304AsBvV12K5OE5KKQ9mrhbS+PaWZPlrP1uVAwQuHvr31MuYqXw5V5670s4/LsPdbq9roJTIS2EeAzmqTrdcM1lAC5jyucB2J8pbwFwtqsveWAzk2hH64z19G/PPQIfv+FJa53l67dFDmHcTqMWa6WECZ2lqs/O5uQfmc0v/xAqPhfVkEXNBX+FdD6iHXWc/2v6FFztERtnz5EDs9/IgsdCx8EbH1+Cfz92ovd1WeiaEH6EMOkgzQ9oLdyWCS7Lnq7gsLK22agYIPj41xRipZ0YHRrlz6qQnjBiAFuuKjKP/f6s6HgHoyDjPj/Xmq4u+jYxhzqZa/nOt4TEc1A/ft+gy8Kv+jvPgXFIh8/wqwe44y1NuPBefOvPCxLn1ef/7Dv3xK5D+rH3cw1TZ0xZP/vbINF91h1nlnfn6yD5r1fXxoTXUC/iHPxvb+lXLdd0r85B5Rx4a6VkmemZWto6cPwPZuHxDE6lEmrkgXpCnyMO+rvNqpBuqpRxwt4jcdD4IVHZ62u3YsrX78Ndz6TNDX3trl3scIenn4Nar5Y94NYdIXFoMhCHTmwsvZ3gOELgce2vH1+a+D1QcRwjkJf1Ek+4k/e+ZtZifOgX5vzEXF+z2t+r89IlaklY+Djm0R+f5sWJEtIJkLUYy7jwbtzO5wiP2mPKOq1zyMo5VOycgy5WMnFDr67ZgjfWbcOl99rjmQFITbIHX1zlvqYH0PeIg25XrU1Rt5IzYL3VOSLtsB9YkH7JnJiHW6RckzrJOZiRyPNcw0reEmYLy1O8IOH74f7hqeX4y3MrEtFKefNWe4Mq9+P7OOy70X5fcf9CzFliNqbj+toZ56wWxuJNRZbd8psbghSfpisaGSdAiawL75vr/dKJJu/ha1DB18vMOZRVziF9fouWzc50X/m91CKOHWjYiPU0+h5x0H7rOwHX1CqXCCUc+pGIAAAgAElEQVRKTkKZfrEfE/+GEyvx/XJxDnE7tg/gygdiMU9Pxtnx0Ru8tJJ3l7l93jJ87tZn8JU75kdleURl9SEQtViS+aCtQ+De51bi3wwB6Gz9cM2hpC7BD6ZHinONMPL3jOPQWgNB9OUcTPU6wzlwxhyvr03mXDBxDjKab3tVRPkafDGw0S9uVnejPklWF0J///r8dU1OokA8odaTOzuOOLCcA9Mup+f6zC3zsM+YZnzplL0SMmvTB7CltR2LFA/RzrDoWT6yhjKl/AOqAtBj2GU1CV25cTuIwIZZCBv0hjfn0InbCCFARGz99moVF9z6tGdLyX7kFc5dheldRKTBU+/D4YJbn8akEQPxi0ftUYHZfmXiHDguL3l9vwb7/jertZJpDFSfmrVb7OI0vdc9FCnIiT7IOegvO5tYSXIOaj2ZE4GbiKw4wTMq6/0LVuEnoYWNj0L647+yW1FlQZaFnNtNceP4uzlvZOpDZ0Vbeh9qbU5txpTISK3HPTvnXGeDumDo7e09enDid5ZNgGsIbGPkyznc+9xKXP3wYmc9znrM91F8M8ZxGzYVTQ6FtL+TXjxwQ/o3WO+ZTjDWcxy+DX2OOOizL6tTS6xziK+TH34jE5eHm3Dc9/fkknXWiI+Jdgxd9kn67guXk5QKbgi5st8+kY04EMVqWdZr2nG9el4PLb5FNWlWHskmVlr69lZ8/28vG++XZ0IitRt6q58+LmkSm3SQjI//dMExxvadHvlcWTesYUkuyHxDc6Ko5G+XOW1jOSYe/BzzU0h3BvWaXK7PEQf9PeispOsDKBGlFNJyAvELp59CGgBmLTSbtKn21Z2ZS6aMXDp6MoyBRJkUj90amlOv0Yf8rY0mZSlhgCYDlhuIE374iP1+2t9OQemv/ux6cECh7inUZwbwqaMnsM1f+cBCw23N490d6Wl93QhMXdH7qH/f+vxX5wUftsXePlee1Reiu9L+ZkXfIw6OnYVLnFIuEYh4OS8bM8lPqgQA6G9hgX1NWXUIEaQNXbYuUKz5xsV3M8/5Q0/RSUTRc9eyk01yDvr74Z+EKL34mnaLKzUCI+dEHt/6ltb2iJPU56TeP9vicsl7p7Llf56/IlX2tTP2MYqVOqoiu5d3DfBdKH3HWNcZbE5ZHyl12UxwdjF0fK1CHBwiRPktRm3WKevQ94iDziamdA726yPOwVfRnGGlaO5vtg9QZdZZ9AGrNrXiivsX4pxfz8FTr6/DxXe78xADNrGS331r2Q3p6VNLjl1dFqgiKhf0BcFkhqovAvFl9r76yJiFAL54+7Nscw2apl8Yjm3viuvCecdPUtpJVrhj3jJjyJk88YwiGrWNkukb0L9LfXOmmkfr7XDWSinOwcAUqMTBJnr64m3PpMS/dUob+iBxSL1sfWdgv75EQSrJxGIdNnrrnDdSjnC8WMnUNn9iw7YdNXMOcsJv39GBj1z/JB6xiK6S6NyMrWUt14lDUinL3MPVR9XnA2Zxnko2uBqmnaBu5uhtKeRZ7y/PrQSQnpMNFTPnkBClWcihaa6ZrJV0e/+uwsV/ijcvtnEymrJqv/UFXxcrqae5DZ+rPa4dTo/ZURXY3NKGPz2b5tgKsVKdwPWyr51lt7IgIjRVyom48bKJDdva8KXb5yfqs8TB8NGa5sjB334Q23bEH2eWySQJF8HOmfj2hQA8v9ydfKWWCa+LlcqJBcy9q0udV46zOMHpRMQkQ9ZjbElilaVfKv7zhElsuU4EdcOHWsbaNB6mcrUPnz9pcub7HTt5ROZruJH671P3Cs54OsGlxMYWHYKXtZKBKqnrCJdX/PL7XsIBlzzgvLae0PeIg/Ii3nHZ31MRPZ2B+RCYrLYqOxDbq2V1Dh4foI7tbWli5IK+2JpCYnBOVibTy6Vrt+E9P3vMeM+ssXnU95HWOcTHtbDeSYV0kiQbF0fmnK9Fm6zG1VYdnUyL+aeOmcCW69Vtec/VOWQjiC4zYdscmzB8IL562t7W61WMG9ofo5qbvOtLcMMuTVN9TVkBu0xfPeVjrWRqSiUsV9y/EM9pochtuawLnUOdQH3/LuXsgUr8JBX9GnjOgUOWXYGtaqunlZGKMpnFNCpO+3EcpVUu1qbd8rqtdgefSrirFZ4GG3cq6S/LWhq7klOsZMamlrZ0ekmLBVBUhRki36B5Nl2COg9M1UwLtl5dV6rW4gRnToQUWitZRrdSJowY5J+fmwg1SSk5ohiNkak9ZgDaGZHsd87aH3/+3LEJ3yQfa6Uv3fGs4bbJiu/92eOJ30MH2H0f6hF9jjhkwVhDFM+mSgk7OqpeNs/cglHRXYc9sF0hDrMWrrbUjFEqqZZUZFy8uNwNpgXRJZ6RegNfpbma81dfsB5TIlxmdRRasSF7XB8TfOMiRZwD09WWNnf4k7TnrGwvqL/X6EEAgGEDkgtzLRvPkoE6GLla5R4N5VKmTHVEtWmw9HdeJor6ZzYp5criwmtCsfGuQ/rhgPFDMH7YAPxk5sEADNZK2m9TKBPXWmAjDoWHdJ0gmxkoXy5ZW5kC1BpCmznlu0NUsXJjnDHqjnnLUueXMgt8RduJZ/lAuYxoPpDEoZYFy+6dmy7LSjBMYqXEMSiS6cvQCt6OT5FYqTYxgb5IyHkiH/PTx+2Juy84BodP3CVRTxVLuPQssqwzYqVKiTLZNBPMGxNrH7TfpRLFY2K8Jn1GEod5S9fhbwsC8Y76+DP2H5Ool2jPs98uCcHQAWZOq/CQrhNk+XBNa4IU18hFw7Z2+Ci54nK/vsmwyio4B639xzV7tceh1oxXkVipFiWpZcXxfW+2oGdeIbspjpL5i48fBgBo89Y5+CmkTbtefTMfZ2WTvwkH7TYUAHDJe/aL6snzbR1V/OkZe0huCV2/I+Gz5gecgz9q5xySv2vlHGRVVYyszgX9e7b1wQTXBqK5XyFWqnu4Xnbyo7GLVnzmDZ8Pmb9SLbVZBLmCiUmo+QyAbFyTKUicqw1pg++72f7FP+LgbGY5ONjB5m7xuyfNITp8F7Txw/oDAEYODpSoHb45OTzbN1uCGTgH6YGvnJuixFeS53/+yKu4SyEOJmK7bUe7UXfkQ0ArZb/cGHE/ajNt5jYEtnAq0O5zRMhhRUSbaQeIv3mWOHi+1R/ez3ucS+hm2ip6rViJiG4kotVE9IJSdgkRvanllJbnLiKixUS0kIhOU8oPI6Lnw3NXUzgiRNRERLeH5U8S0YR8HzEJ26seNbgJwwfG7J9ZaRl+tFVHRfgpubjyf1iyQw1o9DNJrQoRtfnmhu14Q/PMZPvgOK+HltAhRVl5s8oZJTudwk8/cgiu/dihEZHwbdPEOUzfZxRbTwdpX6NctGK9kVKXseRa6zAWkPj338x11tG7qP5szMw58JFq3Z1I/uyoishoQbeXWLZuG7a0tkMIgaZKCc9dcipOnSrFRXyf1GM96kHUBY+Ob25pw3yHeXedrv9W+GxBfwNgBlN+lRDi4PD/XwGAiPYDMBPA1PCaa4lIribXATgPwJTwv2zzXADrhRCTAVwF4Ps1PosXbItWpRRP4useeRUPvcwrfmNzzaD2ghV8XgIAeFYzlW3rqOJFQx4D32XohL1HetXLc3k+PZTLNlmSwQCxsr2We9sIALuDs4gQ1F3z4xeeFJQldAs8iAL58BkHjI0WEG/CZNA56ClX1bMqsdX7VNbk66qeQD2Wi5rNFFjFE6+ZExVFTnCWNziwqZJpsQs4h87rHNqr1Wh+6UYCx/1gFs7++WwIBGPT3K9BcehLE229+3owTVMfAOBfryZTgf7MEIFW7aOVKe6tOgchxD8AmGdTEmcCuE0I0SqEWAJgMYDDiWgsgGYhxGwRjMTNAM5SrrkpPL4TwHSirqOztg+9VKJoAsnAZNxOOWZtg78mIgIAN81+PfF74VvmTFEJe3Vmwkg/BV9LkarIrhw1texSBErECunsE952jW9z3POOGxpwAD7jptaJZf5+N5f1Nm1PmprqJsWqma/ui3HXfx4d318bSxNxk/fVreBq+Yps/h8S/RvL2dq26BxserG0w1ostuR8T15auQnVqlCU7vF1OnSFfJnIEFspXfbRXyadH00cm29u6Dp1c+iUzuFzRPRcKHYaFpaNA6Ca0iwPy8aFx3p54hohRDuAjQCGd6JfDpjfRLDzSn6Ix04egfn/e2qiXili90Vmqi93E5e9b//ULtzVUiQbzbBYvfCmmavJApciUCIWK2W/h+0j8XFQCgszw2TFVKJshE7W+sgvn0iU6zt6td/qcYmAQ3YfhlP3Gx39BvixVE1R5bjZ5NpZYRMrDWysZDNl1RtQcNI+oxP52JP3TF8kgw6azIurIn5v6neqt6cTt1IpwxzTsGl7G1uudtG2361TxqFm4nAdgEkADgawEsCVYTk3AsJSbrsmBSI6j4jmEdG8NWt8YwRpDVteRJkoJZYY0r8hFXZC5RyyJnGRH/L4YQNS9uq+ynL/naxZsZwVsdLOXq9SNi+oUjRlhoVzcFzpg6TM3mCtwxIHv/ZNRETf0SfCvSdEHdpuVkvZSQmxUvq+uulylgU8usbjkv4N2TiHQOdg0LPAYpbKnJDPaCIOAjHnYBMLciI8TiH90EtpqYBO7FWnRPVch2fo7p0qtpIQYpUQokMIUQXwSwCHh6eWA9hNqToewIqwfDxTnriGiCoAhsAgxhJCXC+EmCaEmDZypJ/cPdWG5VyplFacNVZKqYUkUkhDRFngvO8fToQS2Xcl3HyxWVVwqGXSma6QC6Vrwlc0JaoKV7+tpy36ha6Czi2ZPOZd/dEXk2RynvT9ol2T5uegzcK4vfCV6JyDXEBr8c61DW1WJ06btVJJ2ZD59CESKxk2ZXOXrotGRhcL6iK8RD9KaeKwqaUt4aQpoYfW39wacw5jmmPH2STnwHY30b96Q03EIdQhSLwPgLRkugfAzNACaSICxfMcIcRKAJuJ6MhQn/BJAHcr15wTHn8QwMOiC0fLzTkItHdUIycwNXb+qNC0MfZcBba1ZYtWKecf91E4U5TmtJOtBfKZXXGGYj+H7P2xnfd9ls4SxKTOIbk41+q/kHJGVKtx4xSOMWlVSg7Ooawt2lvDOGGP/PcJ1n6riJP9xB174c2NuFuJJhrkNMkgViKb5Z95k8R9D/J7/I+b57HXvPDmpkicJJ+Ft1ZK/i6X0gppEwHSpXetive7+qq9xb9etbofTptIIvodgBMAjCCi5QC+CeAEIjoYwXMtBfAZABBCLCCiOwC8CKAdwAVCCLm1Ph+B5VN/APeF/wHgBgC3ENFiBBzDzDwezATbbr0ccg4X370gKpNesr899whMCcMXqItGW3tWsVKs09CvdKwZmcVKeSq6IhGLizhYwmfYCMv2HR3YsI2X3QL84sKWhX9rNWlIipWCv/KZXfJn2+44WS+pc/j4kbvjvQeNU4LKJRviFNLsrlojQlvDSL6qd65rUed8eN7902SgxXIpm8CKYBYrlSyEgyuWXMtqxaEtlStcaTtoJ92Sj7WSSgT+deFJ+I+b52HBik2p0CMqZ6gaH6hctu2TrVexkpM4CCE+whTfYKl/GYDLmPJ5APZnylsAnO3qR16wvQcZi+ivz6+MyiQbe+yUOORwrHMQmV+srM+FL1Cb4kQw8sPIGs4hD8hJ7+Ic5M6Oq2br921z7fmluSvZMkv31Lg4SWsfsOW6zsH1qk3ndTFMYhMgAu9ZNSSGTuA4sVIrE6tJF19N3dUuBuMQi7IsmyjFU9mvTRvnYGlLu2ZMc79UFjwgPdfkM9h0RvoC31Cm1EZP7fOuQ/vHim5DmBP92DfKwM5ordQrYfvAZQwY9d1zk1E163QRh2l7DEv8lpuJElEq0mrCioVptyfFSnJT6rRWMiikhRD456K3uUvC8/b7Z30Wrvr2jJFtdZ1DXn3UdQ764tgRiZU0nYNSr6U9fpZYVJlsZ3RzOnAkl2tAhc1CKqpToszKblNzRLZYY/FV5xy1B+75/DEJvYrk6PRNh7QCjN4fk2pWv2Nzv4ZUljgTB6ePc4JzSFiRCfZYR50yDn2QOFi201LUo757jjhAmXSuhVo/He/ygE16di2l8tWMY42ceHnI30/SvHa5PqiQH7BpN7TH8AEAzAppPWuajvteWGk9/4gWiXZHe5VVjovob7qfJuJgMnGUu9rYFNIO03ndt0UdGyFEaqHViUHcv7ieurEwcQ4ctrbaCaRNTp+ol9VayTKvTKIuda4duscwjBrcL/GMG0ITUn2eS/GcrtBP9in5e0j/hpRY05RCmFNmSyStleI6duKQPrdtRzt+P29Zjyqr+x5xyPiF61m3AD3PgL1BXQwTy48ZsZKjaxFx8GQdbLUmDB/o1YaEr82/KXzGqUrOCA5zl5oD5gHA7+YkI9Hu9Y378Nnfps10bbv8Fq8ETWmRQSxWsj+7MSwGmetxnIMUZeoKcXXtV82ghU5NLHDRD1/HP1/acNyUEVGGCNP9TMZPXGRg9dvrMHAOkjjoOgfbMw3qV4l0NBIpgxGlzyrU/lOif6roL3nNEYoYkZs33/nLi/jqnc9h9mtrjX3uavQ54mADQX6s8QvWk7nLeoDUOdjbbNcmePyhx+2eNnV04pwJ2e3uzef2HjPIr5EQg8MQECqxO2T3odGx7HvZED7DFAc/d1j0Ay2JbHrq9j0+1NdXgpsgfmjaeOM9AU4hnTzWZ9jlHzgQACI9BLdjPWLP4fivMF2nSazEwUQ/IvPMSJRWWzsqBjVV8OtPvcOqc2hpqxrFSqpeRYIT2+jcrAxMmeV7IaT7yIlG1XYlBikRV9W9JJdkSMWuYb4Yrn9vhSH6s5rK54k+RxzcSkWR+Fg/OG23VB0pfxfCnU1On7ic3FIG0nNZw9TiIZ0XxoVB6FTnI25Slz05jK6CHMNa789bsYRtG5qsxTkxedPkXUc398O4of1TYiW9b0fuGQQSkJykK0dD0Ea6zvWfOAxzv3Fyog23Z7D7Xv0ayqiUS9aQ3XfMW2bsN8c5qMRBLr4/m7UoUad/JFYKfvvMBc5Rz2RAofe3QekTx9kA6bkhAPz1C8eF52z9sna7S9H3iINV5xAsBPKFDB3QwOZdjuWyIpVkXofOqqp+DhK+u+pAeZfFlLWGBdKxs3x8cczm6iaZgN0Jrp5g6p6ul1Dt8E1zJyIOhjb1Hb0u5uCGvFSKGzRKjbRdvh7DyRfDBzUpcbuS9zTBh0uRdWzJfjqqAiXDKpTI0858N5Io6oEv0zqH9IZB7w7HOZh+6/0VACaOGIinLz6FDYioH0sMHdCI3Xbpz45NPXw+fY84OKi0UFTSph0NZwtuwvL127FRib2i2qzf9O+BY7kUz4hoMeBbPmDcEGP0SA4uyyz+Ir6YU3ZyH5stfAYHUypWHe8/ZJy7ktIP1/0NUqVUxi7VWdHIOTi5peTY6ZwIN80I8XuWrer1UvkefBZs5otX323Jk7j7Jk6Sf03NBWG4O8c56Hq9/o2azkHOCcsejBN96ZyDyQy9KgQG96tgl4GNbP/UPqTuC0M0WBGf7yn4JQbYieBasoRwf2Q+tuAqvv3nF3Hlhw5KXFMiwjv3GomXvzMDC1ZsTPRNnVRPXDQd/RvLeG3NFuy3azN+P2+5M76RRBb76cCE1/zgrH05048yE3ivtZ2Xm542dTSeXbaBPadDD3ttgmshV2qypTKCq0SJeFPIRB3HgqoPK7eT5a4RWn1XGlEfcIuNynGo+jSgczJvyRFzu3IJNVCeDlXnIAlg0slMJP5KDIgU0kmdg10cmw6dk9I5hH85HZJ8N2r/VMOR3z+1PHHNIWFGv5KBcEZlhVip++Ba0GO+wQwfW3AAeNeBQZQRTk4vJ1jAAieJjTrZxwzphyH9G3DI7sPQVCmHjnq+nIP/qtHuWABdnIMEJ1baZjCfHNTU0GU+G1nq26rq1kqTRqatvKRFW0dV4EcPvpI6r4+cbE+GpLhFC+sur5H9mhWGhE/rQ2R7UkwVn/vD+Uexz/PgS6tSZUlT3qSI7OK7X0jV5/rCYb3F412iymxKhBCYs2Qdb62khqcwEAedc5DjY7PyU02W1b7p/ZJ1U8/A9M/mMPrV0/YO+0jsN2ATOXYX+h5xsJwjrYJpceVswU/ff0xk0SNx/jsnAQAOUxzhOIW0LqayTaoS8dEjVfzHcRMxY+qYTDvKlrYOCCGw5O2tUZnqtctZbelWNwDvi2HyL6iUyNss198pXFjvGdXzbI8ICfHOPmPT+QckV/XPRW/j6ocWpc6nN8ZBe29vCYwZuHwAJYp3stLnxRQAMiJeyuTdbZcB7PNw+i11vulK3DcM/imZ1BtkzgQ3jAkKeNczb+JDv5iN2+fG5sv6/AIsxEHTOchnsXEO3OPoc87EOQT3Sp+zfacyBhnIxUH2HHnoe8TBsihIiwXX++Bitpx1yDj86pPTEvU4KxY5X4hh5WVzHRa3+7Jhp6GirUMY49MD4aKvPWNLWzWl2FMX7jIjrOYUbhVGObvNIJqolLPoT/zqjRoc6DC+cNuz9vYSxxZiXFKUqYJfRCRxMClp0zLq4G+Fc7CUYBaNLJyDHuzPBtWirqTtVIyhtjOsWQEXxLfz048cGh3LubM0JEhq/CSpMOfESronuOQcdOW6m3NIlumLe0SgGLGSHDeVeHGcj45Ap5XuV6xz6Dn0OeLA8Q6TRwU2/+OH9Q/tzu3WJ7FbvtKqSMdribOixWV3hwngk5xDUrHYbtGcEbNo6G7/m7a3RYqufZWd7seP3D06PmBcMu5Oa3uHUQGnPouKz0+fEh3La2WgQvXabTv4yLWVkpvQRX1xfGeSyxk7NFgoXCbGvkiIlcDv5BoqqoiQb0OFHBqOG5PQuVjAopDWFNdANssldb7pBEfHBSdOCvtn3j37lgPAqOam6HjyqEEpp9PmfhX84AMH4hSZAEnlHMI+ThqVFPX113QO8lFsO3kuOKA+BvKbGTG4MVUvEislHGSNt4tgCzzY0+hzxIF7Eee/cxKevviUgDggg0Jam0z6+llidtEypWiJ4Rx8JnGJCS189d+TooxB/SqRQlPdLQ1WnHX21cQjnDPSobvH4jCOOBw+Ie3lKYmD2kUuIdLPP34o+yzDBzam6qrtA8CTjNeoXGh9PzS13qdv4sM/A6FCOtqZC3YnJxe0RkN+7ZGDmxK/fcJdcHb3poBvcoOqPpMevtuECcMH4MDxsTOjLjLVx/ML0/eSFVMwZaKzKaQrSoRXYizxBvdrwIfesRur8I08kLW2ZWpfPR6YOg317nCcg74h+faZUwEAuwxMvk/ViEUdAp8Amebc1SLqV0+h7xEHpqxSJuwysDEOvCfrGt4tfz6tWNN3dtw5ID0BbDqHMjOZ9PoXnr5PZIKpylltu8mWto5EPw7abSj+3+n7xOw88+ET8yHExCH4vfTtrXh97dbUtTP2H8vmtPjRhw9m+ycfcd3WHfjw9U+kzvuGFJdQF95Wi5+J9H0JrgmeeZ8xgxN12PhbCvRFM+IcLKIfbkepv4E4+VPQfxenx+GRr56Y8OWJpEoGOb28J9e6ObteQOhWbWpJnSuVKLGw6m9PT6Wb4BzC1+aKreStkNbK9HaHDmjEniMHJsq3tLZj9mtro5hVpsB7NvAK6bBfPShY6nvEgXkRUj4rJ4jLVJUzIVTljhI2IsOtCzrnoMZfidqkOBH6snXb8PaWVvzmX0sTdQY0VqIdr7p70cVec742HT8OF+PW9mpisS9TsOjtGVrneBMHmewHwPqtO3DCDx/Bl++Yn35YxLvyx5Rorf0Mu2/5LloMimbZvysffMWYQjLZnrNK1Ec1kxj3qdp8O6btMQxfOHlKokzWG9AULGJcpjbW/l27ueSWJGem1vbxluYQK6SBDdt24Jk3kqbGkWMb175lMyUE8PNHX02dUzcs3C5a58aSfgSSKCbb1HUOPqasnKMe9z51cd8l9wS5X15cuSl6huh6T86B61ZEHHqQc+h7fg7Mm1B3Q4kF39CGbtEh68p5O2xAA777vgMwIhQncEq9pFgpKX6SnMDMw9OhO8qKKetxP5hl6GHMoqvPo6/vo5r7YUzohNba1pFIf6inJOUUnOquRn4Hkc6hKnDhH58z9i/oT9DHK+5/OdFvDq5dmDqer65Jp3asFeqCJULuUN/NRrolZjH41plTE+I8FQPDsCnXfPTQ1DlOzKHvIiuKCW3Qweycg454HAW+8ae0GWucKyF9rTmhTzCG6xirLDXXBffM+lgn/QjC+2rXNEYGAvGzAA4xjwfnEPQxFve1tnfgTs1/IekhHZcPG9DAmvY2lIlVXJtCpnQn+h7nwJRV4u2Q+sdIHdR8DlG7Il5Am/s34PQDxlr9ITixUuznEEwWzkLI10NafmjqB8GJleSzd4hkGAO5CMjrSyVGp6L8lru1BoVz2KyHJE/1MRDZVC0ETMIZGl0ZEx9W3J9zSMZWIqSnhXxPbIImi5WX/KubQEd9dPRNvru2jiqEEInQJjqX6AuVc7C9P26MTe8oMKLgzzVVykq99Aejnlf7B8QLqP49NGjEwSeqLqcX4RhQtR73vhPcNGOlqKO5fwO2tKSJhmIg12Poe8SBGW2pvIsVY45GWM5BYMKIwLZ879GDw2rmycktCDrnwO3+SopYyYZI52ARKwFJW3mVYPXXUlZyeYNLRJEPhww+1hhlghPOBViKbNRxHNK/Ab/85DTM0vIeuwjiKfuNiY7Xb0vvUHW4A8sFSPg5CLAmpjGB5a9P3Tusx8XZkuDEDfpiJHfd7VWBW+e8gb8teAsAcPVHDrE9khWqyDQvx8NyyRxbSYUuBgLSYqWmSikSt5oW3EoU8jxsrypQrQqr7wtnUqpHVAaS3A1HHP5LseBLmrDznR3cr5LO66KgJ1OIOokDEd1IRKuJ6AWlbBciepCIFoV/hynnLiKixUS0kIhOU8oPI6Lnw3NXU7jSEFETEd0elj9JRBPyfcQkuLkpdXoAACAASURBVEWhrHMMUV0enC5BiEDWf+9/HRuFyohNxoOKkn388il7YSCrBAz+yknHyfldHtL3fO6YqI9VIRLKarY9hdCp8vwrzg7CRv/4w4fg3QeOxeSRg1J7RSLglnMPx9yvn4xrPnYoTt9/TGRKCuFegEsM5wAAp+w3GhOGJ524XN/IRxQR3I2PLYmOLz0rlZk2E/RFmpAmzlIBmjUgohpnSwdRur39dk1amEmupL2jijfWxc5qx00egVoRL9D2Z7ERPR3ScdN0fr/Qcm5UKIZV760TByLC/zt9n0S9NLGOHcyC88B/3zkf18yKdR4pkR0jVmrliINi8soRB9UKMBmVNVUVADC4qQFbGOIgq2cJgZM3fDiH3wCYoZVdCOAhIcQUAA+Fv0FE+wGYCWBqeM21RCT5wusAnAdgSvhftnkugPVCiMkArgLw/VofxgvMYEv2z9cyQO6uOG/TqbsOiWTM+qLfsiOoL03tJOL7JiediXMwfbgjBjVFZokx55C2YU/cW1G+f/aWp6Jy6Uy2367N+NlHD0WlXEor3IkwoLGCkYObcMjuw3Ddxw+z5pBOP4vkMHjZrgr3YhXXN1mMqCalWRTSCVNWZtEe0j9436yYgWlT1jLlBwCSi1Vzvwo+dfQE7KKZ+cr50V4VyfhIzE3HMClDOajhM6yeu9pvG2Esaf4su2ve218+ZS/84fyjcVAYb0htSdc5AGlHvbRYiRL1BAT++PSbxv4BvFiJ+75dnIMKn0xwjZUS7yxneLbuhJM4CCH+AWCdVnwmgJvC45sAnKWU3yaEaBVCLAGwGMDhRDQWQLMQYrYIZtHN2jWyrTsBTCd9ZcgR3FBLRaK+mBvDZ4T1VOczrmacAzg4K6Oz6s5S+n3bbZwDESu+COrHx0ve3oq3NrXw3q+J9uJ7r9iYNjXUHojtN1fFR6wk00f6GAFk+UhU8dkohSDc/8XjvduQSJmyAvjme6ZG/hj9GkoJOb0OSZDef+g4vDuMtRUH3gv7yxEHxXpGCL6OFJ98688vJu7NbXJ+/W/vsD5ndK2i/7I6Hmq3sK2TksCqj/CH84/CP756IoBAsX7YHsNYQw/Od8TmGS7bC+oRe54D51fCE4d4PriIg49YqaFcQhtzH7lhnbtEX3q7D7XqHEYLIVYCQPhXJiQeB0DN57g8LBsXHuvliWuEEO0ANgIYXmO/nODeUZzQXatraENOOjViJbfD0Rf946+YBQAJq6BEPa0/nDJT3cma+gUAc18PJtXm1phlNREbwH+nb7qfhLrzdDUZOXEpz6PvKiVk/9Tw5xL//J8TE7/VXfRpU2NdhLrz9qU1KqcgRPD7qEnD8dBX3hk9gymF6sJLZ0QhwH/0oYPx4Xfslrg3F2dLYntbB14PRUVVIdg6qn/FZlWpydTVQ0yYoC6oNrGgTFAl8dU7A3PlQ3Yfir9/+Z2Jc9I3J1ayChy2xy7YXRMdcos550Oi6/L0uSs5Kpe3d7LN5H23trZHCvkvnbxXop6c2TZ/JMCskL7tvCOj44YKb60k2772kbT5b3chb4W0iYu2cde2c8nGic4jonlENG/NmjU1dZCb8CbZr2lOyXrqzuKUfUen6nFWTQDDOWhDIHf7psXcZD+tLtbffu/U1Hmbr4LfB6SJlbg6antMk4P7VfCJI/cI+xuUqYo/dWxO3z9e2OUCff5vY9GXhB5kjgtNUiukeO6ZN9bjrU0t0RjIvyWKnbj0naRuaaMTYi7OlsTi1Vvw2pqtUT3OmEAVO6p3tnF0Lqicn23tO2h8EEpCiquk2OZjR+wRhaOJ+xPoaSI5uoEjie6t3PjhMKJAsr3grxACbR3VhOgUiAmKjaObOEKLrkvJ733qN+/H1+56HgBwdpgGVrbpK1ZST6tchMzgBwQGHLpfzjWzFmO+Zyj7rkStxGFVKCpC+Fe+weUAVOP88QBWhOXjmfLENURUATAEaTEWAEAIcb0QYpoQYtrIkSNr6ji3BuofqWknKCF39KrCirUECv+u2LAdF9z6dFQ+YhAfIkKfdBUmBEKZCTkhcczkeNI1MXF+JHFQFxWbF7cOfdExWdkEDfKE+NxjJ+I7oZK4pMjMAeD4vczvVL6jpYYooYk+eJhx+lorSU7tfdf+C0B6DIhiYqRyNS6RG6DqHNJ191MUm7pIRkIl9qpowhY11IXE7l0bIpU7JiK868CxkSOfxMQRac5P+uYI7bmN91bKON8IddGf8vX7cMe8pK+BXGx1D2l57dLL35UKaWLTNzYmnjvN4ZugEjlT1YZyCVWRbOuK+xda2+0u1Eoc7gFwTnh8DoC7lfKZoQXSRASK5zmh6GkzER0Z6hM+qV0j2/oggIdFnsmPNXANTxie3EXoDmA65PlWR1hoOYlvm7sM9z63MirXWXzdqqk98nPgxTamiXbxu/eL+8isBkdM3AWfPnZiZE0F8GIlPSifXlfvd6Is/GvSOSR9GpLjLBW7HEyKaw4+QedceiW1j8nFRS5gIjovn/oGxUqKa5bUhReqWIl5V3vuEpk7m3QORITvvf8AAMmcISxH58k7qJyfTkDv/OzRid9lhovVuSVAsVYKf5s8lX25WN25TYe8XFdcq+e4e5vmQoIoKrogVy53LmqxDsnl+Hj1dzd8TFl/B2A2gL2JaDkRnQvgcgCnENEiAKeEvyGEWADgDgAvAvgbgAuEEHIFPR/ArxAoqV8FcF9YfgOA4US0GMCXEVo+dRXUCTC6uQlzvj49MhGUc6ms7Wh1RMTBkfvZJNJImedFfQOeen1dtMjw1kpmt3xVPsuF56iUSvjGu/fD2CFxtjPug/z0cRPZ9vXecI+XlFmnofY9EitJRzvL+lUVwKbtdqc6CVN0VA4+SvOEslcTIZXI3u9kW/Ke4eISTh+Xn4NJ5yDvDySDwbHTLmsfkZ7fU0YnxUXlEqUWSFPYjkWrt0TcjWkd1ImnCS492f7jmsN6COt56hwQcCo/1XJyqPoVH87hxk8FofvveyHwOxEW4wxpWeUT3ru74QyfIYT4iOHUdEP9ywBcxpTPA5AyOhdCtAA429WPvKC+ozJRZLIJxLsr186z4kkcgKSMMrqv9qWrH+QHrpttrCfL5GQf3dyEVZuC0NQDGsuJRZH7SG1+DgmLIdO3pItULGGbTTt99UPVg+XZRt20q/vaGfukymzRTiVcme/iPibvre9Z+zWUvfUautjE5udQLsVJnQLiwN9D3luGDQ/66Pfube0JIfDc8o1R+ZkH75oiuoH+K3k9J66Ti+QDL66K2uYQz0X7W7FxGDOmjmHEw9bmojaFAC78w3NRPyXUsSOFaLcbzAZP2iepf7Q9jtwochZLPY0+5yGtzt10Zq3kXxNizsGdX5fdxKUKebk/G8+IYlNWddJ/5dS9E/V85c6cXNbHGir4zbUX/GVE1gACnYNeV+4+bcHifPsE+LHoF4dxg3xEGBznMHxgI7548hT89tNHZOYcdJ2D2WRZEgczFyqfv609KVfX4RtryRTyhbu6UkpnJRw5qImpmYTrXboWc1tYGpvBiQ3SuY2zhkvWMzvfmWCrF4uV7PqYnkCfIw7q5NHXXjnpXLusiHNocy9C7A7eQ3Zv6kdZ2cmq80j/+P05hzQr77LSin/b2kuy0vO/eSpe/PZpGK4sHpHOoUPuoC3EwTDUtRIHGUXTTRySdX43J7DUJiJ88eS9MGnkoAzOk8HfWFwky7l3FXBUNqU1EC/aCZ2DRdzn7qP/brtUoogDO27KCIwb2h+jPExmTeIYf8u59IZGQi3K5ueA0GnUj2sBgAUrNporKrh93jLjOV3noN9/hmKK3d3og1FZ4+PUIi3FSg7i4KtzAMwig+R9030D3B7S6i5Dt9DhUgxw4rIsctksnENV0zlwymZd52BbvzgFqakPLR5EWyKrzsEVbM3RGoD0zpN7BvmebQQEiDc4SYV0J8RK4V+f+VAuJZ9FRvh1wbz5CDcLjgXazjko9UqyngfnEOoS9Oe+/hOHJesp9120yh39d2trO75+Vzq6rYSuc9D1nC6ld1ei73EO6s7CIPt37bIiU1YvsRIn3tHvK2XRyYlgFDdUBRav3pJITJ/mRphrPZ3gPFUODs4BzpVX9qfDQyEtBL+b5cbIlJbU1K61j+ReXHzFONGiFv62+TlIcZZrbOR4b9hmN6P1FX3p7yRuk+eAZb32DuFNgN590Fj+3uHlnGdysl5QkTMYUbsg6y1fv92jVzI5VrJUNd4AkPCkHjs0ec4HD3wp6aXfqHEO+jNxwf+6C32POCjHJiLgks/KHUnenIOrnrx3VQCf1ZzBdE6B5xL8ZPqusCE2ZNl5ygVH7ppsprLBLprbtac7taXVnzj46RzcdXT89QvHpcr0JFI2kZF897PDlKi2LGsA8PaWOGc2V9NXaS7NNvUFWkbfVVEqxaasHVVhzYktcezkEfjOmXwwRLmRavMU7eiitFGDmyIfmqC9AG9ucBOHoE2RcqhrakhbFkZiQUs/P3/SZBCl59deo/ksglJnpBMDlxd2V6LvEYeEtUzyXGTl4NQ58B8QB5Y4GD5Ul1UTIE0c0wtlSuTDvFlWfFFKLliAhXPwWGCSgdvsddPjb65rIg4cId+2w8zRffCw8Ynfrk+Ps8hx4Y7PHJVaBIK2wntqiwu7Kw8rn3PjnKgffP+Cv6oitdYscEBsBqxzxR87Yvd0HxWleXtVsPlHdAwb2BjFPtIhn8WURzyuFxIRZSGdNHIQ5nz95KT1YYZxkIu+vlFv1PqqWh/aRD7SFFmdO4fuPjRVr0ESY4Zz6NeQ9p7uTvQ94qAcHz8l6ZErp5LLlFV+uKaUlSpYG3Zt1ElbNCS4eDim8Mdp81hGnMXsKVn5rUkmzBdr95XtCazebA/kp4+NbukyZVSwwA5oLAc6DKZf+s4OsHMOx2rhrH1CU2eNjGmaPnpMIFuARb0Nl1ipraOKfcYMxtLL31Vzoh8gILYlSnPFJgIWiZWqVS+LKFsVLjKBTa8lw4uY6mUZhkjnoO1ouJDhsn+q6O284/dM1JPvtE2hDpeedUDqvnGq15A4KHKt4QObEvHbuht9ViF9/ScOw0n7jEqck5PO21rJh3NgylLik0Q4rwAjDCaBMvyxi3Pw8RJWr0vqHPjFcPXmVraca08I4O0t9qQ7+jB/7qRkruXPnzQZR08ajusefRXrt+5wWqdIbLUQB/3ZhOMVSmJsg4/ZJ5B2gpPEgRPH6O/PNCdlcVuHwIDG2olC3EdCU6Xst/FRfG58dQ7WGsqzqP3h+ggk4y7ZQrn4JRoKOPJ2jU0cNqBRq6fojML3t+iy01MBAiNHWuVZBjalnTN1ayU1UdXgfhVs7UHi0Oc4B/lqxw8bkGJv5fRy7bxk5jg/nYP7w9cXDbVMhzStTBEHD1NWjuvnzAd9NspfOWUvtlzVOchFdZxBcaeOTaVEqV1apVzCEXsOj5Sz3BrNLdzbWs0flP5szoREJTfnoJ836wdk/eCvlC9z/iz6QstFJw1bDdqqVtlYXLWgX0PJa25XFFNWm87h8Am7RMc2kVccTsWeg0SW7aV5bOvIIl2LrZXisg9P2y1Kf5toUxMr2fR7qliIe4cVhYis3dKK03/yz+hcc/+GgnPoTsjvmJs4usLQhNjPwcNaySLnT/VNvc7Qnh7+WC1P3iM+vuj0fTB0QAOb6J7bXelRNXXsP64Zn58+hT0n23t1TWzmN7rZwAUpfbZ9yBFBZAgB96q2WKyV1CYWr96cCDvBYf6yjZkU3ICNsMsTQSd2dJg5B53AuDiH9g6zF3VWNFZK3j48QgRzp0PTObxjwjAcOzkQ2/7owwfh2O/PAmDXA8hnUcXsrLVfWLbDmaskJDZenEPaz+FjR6b1LA3lEja1BfNBzkfue5Z0QCUOHPFWRWlrtSCDzf0asGjHZmffuwp9jnOQr95mRWRyi5ewZYLT4fO5ykmjLn4mEQ6FCtK0zoHvIxBwSR9+R3qiq/WqIgi/fMzk4Zim7PQ42BSP8rZqSkbTrlf9pmyLhvQ14Hbw3IdvWwvUNj7yyyed5sg+hCGrWOkHYdTN9o5ATs9zl8nfJnm+ukP1NSV1QVU0A+YscmqAyjZN5/D7zx6NL5w8Jey7EvPLQ+egcg42s9z2RFTkdD2K6vlZzgmF2wX4GF3jh/XHsjDPRocwi9I4c1sbh1gVaQLXv7GcELF1N/oecZCcA/MJN0QJ2+2LfrbYSu4PVu76//eeBc66RrGSzjkov22LhioGaq9WsYcWoVaFtFixSS+4x+Wyeen9so2S9DX46cOLU+f2UHI5/GTmwZZWQijDtmZzK4763sPuaxT84IMHMk36iZXkO5GK1PaqMIqC9HdmtPCJdqj+fgYSn3nnnmx5sAGJn0kPuKf3sUMIdFjur5bbuJtoMa/aOQI5vuqizxtbSA7Dz+JHIMk59GMizDb3a8DW1na0dVRxzaxXnZGbVc5BTw8MJMW6+vg1VUpOfVdXos+JlWxeqb4mqrqH9L8dM8FY1+d7le35cCIy8J5OHPSJpa4ltkVDfkCt7VVsamlPme6pkIu8T3uJ6wxtypDULkhfgzufSsbtv+MzR+HwiTGXM9whIgLcOgYX9h3TnCrz5Rz0D72to4oGAxemiypMnEO0UFar3kYIEnpGQgk9Z4iL2D31+nqs2Nhi1Dmofbd1kfOQtlkrqYu+rd4aD0MKqUtQCdPYoYy1YDg2f3luReqcipg4BO1d8cEDWU5EDT6pP0NTpdSjHtJ9jjjYxEqVyJXdZd5IKJco0jl8/iRe/i7rusCxmyZI6xl9Q5H29o5/20wMKbz15fe9DICXf0vIRd62++NYeJNYaUxzrKi2jbge/E5ChlqP61kaCdGZjdi0PYbhgPHpXBd6k6bh0TnN9g4z55CyPnOKlcxtmWAiJmVF0Wy9PnytH/3lk9Y+lssqcXDrHNR7f5/h1OQzJ4LkWXQO/1z0tvGe0eWgVPgMbt5Kr3CX70skVjI4eEbtWcRKTZVyj3IOfVCsFJGH1Dk5GeSin0olqKBcouhj9xHb2JCBNqBUipWAif5YTFlt1lf6hDSJLwA/zoHbzX3rzHTKUiCwiolg+QZMvgapxc1jsDuzEdvfkAQpZa1k6IhuHhpYGBlEbtqzmYg2Fy7ChH3GJB3zTPOiREku1uVjIWEa22TmQXP/5LipC6KaUlNvY8nbsZ8DtwHihkM3X1fr6joHDtKU3Df+muQcTN+4bKYqRMKIAwh8eAri0ANgOYfwTb2xbhv2HduMv3z+WOP1lVKcGNy2266Vc9A9eSWkzkG3JrHpIGycg37KbDJpPycxaWRAUHcJvVw/d+JkY3J7dWxs4h418Y0KfafsY61jM0v9wQfSu9TzT5gUHZuaT4mVDPWaNN1LW4dAg2mB9tQfqITItWAdMTFpaGDTEahcjqlVfV69bkjhmlRIu+eiuiBytdnAghbOQeKEvUeyOiN5HwF7SAwgfmanubsi7uP6Et03LF+3dQc+9eu5iXOSU3f1qavQ54hDrJBOQy5+7VWBvUcPwsAms9RNnYxWzkE7ddn70nFluOtNa5iM879Zs6JRA68ByZ2Kj225hGmxAmLOwSZykLmFm/tVUBVmZXRw7/jYtqOXBFGHTqx8llPbZzZicDpsw4ThscLbJIY5cPwQDFSUjabhPmT3YVF9IBAzcbm+gbT1mWnM1TF0EQd9o2KzgPIJKqnfb9Fq3uzSm3PQFlTZl1Q9LjQMGy4mee3Xz9jX6FwacA5us1f5zC7aXYo4B4dYKSzf3JLOIxEbyBTEoVsgd6jcjl7dibrixKhyVJvOQJ9EHztij3RbGaxMTLF+RmkJ0xOcQwZZdINlMW/w3MmUiLA9FKHYiIO6A3TrHNwfiM9u2+bDwp1S54HpPTWUS/jZRw+NftvyOxy15/CIg2ht60hxExL6YmJSqqrz2KWQ1k+bFqztbR144rV17D0S12vjYUqUUypRdG+7yXLwt93hv8C1YMtyKGFLHyujrbrDhVPYB5dYKfgbiZUcSn32XKSPKIhDt8DGOaiLvCtOjO9uyEfZbLO04OqqsutjJg/HP756Io7WYgapky4L52B7brnQu3ZXQR8DCmazflJvbVu0yUAQufu6YPeBSJclLW3cH3JQz3yPUinuQ4uFc9Dfy+n728NcA8kNi0+bpvEyiYd06MToywaveSAeR+vYUHox5LgEW6j4xD21uWcixEDsBOcyT5dNuszdY4W02ToSiMdDt7ZdeOmM2Hu6N3IORLSUiJ4nomeJaF5YtgsRPUhEi8K/w5T6FxHRYiJaSESnKeWHhe0sJqKrKUs4xYyweUirugOnTNFz0VDbvPQsQ6hi5nqbWGm7QhyEAHZXRB9x/+LjvHQOjYyznqmPLT6cg0ocrO2liQffrnva2HZhHIFKcpP2Pka9sIlOEHNBNs5BnV/nHjvRmEhHnacuzkF/11kTANnuPWXUIJx3/CRDTVUc456L7Q6dAzdm3LPoGxMTIZY38lmCI9Nvhwd55FAbEhHTGhGZsXckxXhNlbLiFNgLiUOIE4UQBwshpoW/LwTwkBBiCoCHwt8gov0AzAQwFcAMANcSkXxb1wE4D8CU8P+MHPrFIrZVYnYfygRzcw5+Qyd3L4ftMQwfPzItUsqKUokSnINprUuIGzJYK3GOOhL+nEOs0LTrHBSxklXnkDZlXfid9BRRo7pecOIk3MfkVLB9Z9ypiufiq56ziRwCy6sgx8CTS9YlIouqSHJ+lj4rnXaJD9Nh3T2Jg6Gar94NiL8Xu84h+PvMGxuiMu6dNJRLqRDi3PeqG4rYOQc/6hD5ODkc6+TY7HBYNKqmyBI/+tBBAOJn2pkU0mcCuCk8vgnAWUr5bUKIViHEEgCLARxORGMBNAshZotg63azck3ukLtDbsL7ehX7nJeQLzirg5Kp+totrYkFzrQTrlVhbnNMixT2zvAi8XGzpT3fIdGD3332nZPYndi4YbHfxB7DB2LfsZzDWu06B9tTk+diXqLAnv7hl1YBSCbpSdZTji0NHrRbbF5rcqiLO5n86T8nDQubyp06CJOcg64wKb7Q57TNk1rCShzIz0HS12G1FHEOdrGSHEO1vQGNlcS9eqVYCcH38gARPUVE54Vlo4UQKwEg/CsNi8cBUDNtLw/LxoXHenkKRHQeEc0jonlr1qypucMmZLH88CUOckHN4ssAAGccwCcWf+DFVYnfnziK50Z8TVn1D8hmoRWZ1nlwDhITLL4ivoHi9DzOXD7qoL342Ce3gA7unaq+GA9qY2+61ipWCkVkroXQN+REU6UccXvdzTkkzGgdz5NF5yDx3fcdgGYmWCRX12cuWQkT/Hxg5H1ufGyJtV5kyuqwVuJCfMiqvV0hfYwQ4lAApwO4gIiOt9TlRkdYytOFQlwvhJgmhJg2cuRIroobFp2D74Jqup6D/GCzWCTN/99TcdI+o531fjLzYLz7wF2d/cuS/EXNpKWjwcOUNbhffMzFp5Hw5hzCBXVKGC3208dNNLTn5pY+ymQ0A4D3HzKOdZBSQ0zYPtLk7exiPOHhRFVKEAdr1aiPLj+UlM7B8wUcwmQwA5Lvz3cz5aNzkDC9K64d165/6ACeyEiQn1QpWhdk6tGL370fW093gjMbmKQ5EVkm79UrdQ5CiBXh39UA7gJwOIBVoagI4V+ZkWM5gN2Uy8cDWBGWj2fKuwQ2U9YsC6ovMW+IZK329q768EHR8RDLRJ75jngIbSIg9WPNsovee0w6vaVEk6cpayJ0h81B0MszIfbt6BAC7zpwrJcznmmxGtBYYdM1fu8DB7DXqPH8bebNvtZKhIDIOO3kPa3NAEShnme/uta7TQCYNiGdF1rH187YB581KJqTIVrs7yRyHrOOTRaxknfV8L4O4kXupE5Ael14z4EGKzLNz8HocEjJekFfk33udcSBiAYS0WB5DOBUAC8AuAfAOWG1cwDcHR7fA2AmETUR0UQEiuc5oehpMxEdGVopfVK5JnfYTFnVCWTLJgb4vzC5ODonp6fc6YS9Y47JFmguy+IisR8jo1fRkMGUNbrG8hX70qzAt0Og3eJRrCOLKA0IxDMcpPwXsC9ISYW0GRRyDv/vD89bamnteb6/havssf9lKzKdqC0CL6K6zdYwG9GxY/pKw4wsnIMNnUmFysFmOKHCN0OfrCcNM0zEkxidgxyjcg9zDp0JvDcawF3hxK0AuFUI8TcimgvgDiI6F8AbAM4GACHEAiK6A8CLANoBXCCEkGY35wP4DYD+AO4L/3cJImslh1hpqyWbGGB2+NEhPwrf1KMuqH0cPsiciD2LslDCJduUOge3yaQf16IuenpoB709IcL8B55bRmvOCa8WAqhiJSvnoDyLiyD6OfQlr8kDcryzKH5tcyeLAUekc/Donw90InP/ArM+yHVfIANx0J7TFUpdWhaaY2MF5fe98FZUJqUbnEK6pa0D9y94CweOH2qN/ZYHaiYOQojXABzElK8FMN1wzWUALmPK5wHgnQByhi2fg/reXTJMX+LQELHTfjJZF9SP1Zdz8G3btWbFyvUMxMGTc5ixP6+Al/U6hEC7JRWlDhsNyWI4poqVrP4iniHSA4V0/Hv3XdI+KkCSAK/c0OLRUzdqyRTny/nZnB2BOHmVj4e0D7Ja/7ng6n9UT09l68k5mMaRew5pDRhHbI0nzKbtbfjCbc/i0rP273Li0Pc8pGFWEHWF7120oDqaroVz0PPbqkiYsno+l2tH6ysiU09bOQeFQJ9z1ARjPRlDv70qvP1L7JyD/3sekNA5+O2i7U6HlNh4/OITh/H1lDaypik13zv46yKwv/7UO6JjO6GLz9lCUwDxM/j6vfzzf060tpdVrKSn4NTRaDGcUKGbw7oSHN0QWjWZODD5yOqckWIkTiEtuQjfTVJn0PeIg1XnkP/9fK2VfCe77+Kofmi+LLOLOMjTmcRKNoW0KjpxLKhVESjtfEVkVmKbBZkjQAAAEQ9JREFU4T2rOz5bm+r7dXEOqgi52WiWm53zu+Q9vOWMem/AbdV03JQ4FIvNd0Ltlc2HQIVth66GpMhqeXXQbrxFlS/Ub2Rwvwru+s+j2Xp6v0xzQlcTmJ6bSyfaFvlGMMQh4iq6funue8RBHjh0Dk6HIk/4imJ84R3yQOm+SdmqwyVWksTDxYgkFNI5yP6lKWt7h/CyVAI6n2OD74cn52CNJ0UJRzyTgj1hbeZJEE805CqI+ujpkOlL3EsZOAcJ2453+45Yz+ciNvoznHkQb9LtC5U4fPHkvaIIujp0YwzTPNMNWkxzoqFMqWeVObQ5hXRb1Z0mIC/0OeIgV0BOtKDOtwFNfpP9fw12zhLyxeb1Kn2Jg/rx+E6k197mQzlITBo5CMdNGYHvM3kPVCQspTxFMa72OqpBjmtf8VsWr3BVjGKDTQ/lL0pLEuFBBnPkDmUX7fvMLmV9ZFbt+OrVdzaw0ayWVNt5YcVGa5vH7xVY2dnEN2rMsGEDzcYWeh+BznP9Az11S7oZt0kUrYsCbWle9Xwnus5BJUhyPcmaL7wW9Dni4GutZEpQY2rPhHvmBy4bf3/Jbk3hC99JoT5LXrqUxkoJt5x7hJuF97ydN3EoSbGSyGCt5P/Mx04ZYT1/66ePAABrZFh10XDpJlTxnSmP816jY38T32d2mfn66oxUjGo2Gz1MHhn3cZvDum9M2I6ti5JzeP+hbICEBFLhMzq5WO46NA69YmvLRbQkjp6UzGBn48p1fyWdACQ4hw67aWye6HvEwaJzUL+Zfz9momd7fjbIrlgsvvAmDj34Zn0DhWXxkJbIxc9BeftNlZJTVLX/+CEY3FTB56dPNtaZoi7mVuKQ3FCYCPdgJWxEXpxDFOcrw0JqExep0YB99Vo2TAo94I9zEGsgHebFNI5cfC0Oqge1Tex26O7DvN7H8EFNOHLP2Dy7qcE8PrpYqd1CHDoKhXTXIQ68lx7cWpS4Ljlv1vZcqMWqyRefOX7PzNdwaHME5pPwJw5+8nzTNTrUj81nnJr7NeD5b52Goye5Fy3AbeGTNVaO77t0zTE5dl1hleerkLbd+tDdh2HO16bjfYfwKXJVjFd2+oCZI7nXkupXhbpB2LbDbh2mOqLaIOfB4KaKVRKh6wQjzkFTSM9ftiHKm90dYqXOOMH1SsQhu9PIsqC++O3T0NYhjEHgdNRqR60jq85hrCEPAIeLztjXu64NvtyUr0mp+sy+OyabIlVNgbnDEXq5Frhs+aV46gvTp3i1d54n0R5oMW0G4o1FYxfsOq25EhCnsR3UZP9eRnmKc/XQ8ocaFMi+4iaVOOgpd3X4bn6kRdGRmohJh/zmxzT3w1ubWqJn0TmHM695nO1vV6HvEQdr4D3/dgZYFHUcfDkHXVapY7inzLNUIsz/5qnOBaMr4Ovt7zvevvJ8FTYOS8321d2hCQgUyY19Cd2u2i7Z2LZjcyMXlK5YWC48fR/r+S+dshda2qs4cZ8aA2ZqUNPZLr7sdG+O0gR187bnSLtz2Qtvbkxdw0G+jT0dzmqS6zpp31H49nunpqIqcOFqaok6nBV9T6wU/uWtlfIf8MveJx2/PU1QHedHDm7C4RN3wedONMu/JYb0b+j0R1MLfMUmvuOt7u7zECvlpf+pBSWKnyevd/O5EyfjHR5B9KS1VV4iThX7jrHL9vcd24yb//3wzJsqE1QT6TzGUSXUZx1sV4hLh7rp+9pFytKc1ZTFT0JyXZUSJZ4lIg4Mp5IlL3yt6IOcg1kj3RXEWMYMcslk5U7AZS9ORLjjM0fl07kuQt6cg7qY+yukzeN96B7DnGa7XYUSUfQ8ee3g//u0vb3q5X1fFd0hA1eR9+KYyJ/h+Sz/M8POLW1uCYiDK1y4XBtMCYx4zqGwVuoyuExZ80JLmGvWFl4bAI6ZNAKfP2myMc90b4IkwN97/wHWer6cgyoG8jZltSwePTnGROoi3b0LqpSlmxLodAbdIeZQkffYZZEavCd0uHPFNpK+Dq7xlpycTrRtmRd9nQ47gz7IOQR/O6uQ9sWeIwdit13645vvmWqtVyoRvnKq3w6w3hF5UufUnkocfBcF21rVHR+WCUQUmSp2x+5PxYgwx7YpeU9nkHcIbRf+f3v3HmNFdQdw/PvbZQGBhVWKlJdAraCIgrC1JcUuNcVKa0qjEjUqVJoUG41a07TaR9rUtNWGGlGbIFGI9mXTWFOstAbaoqW1VagiIiAopoJE8MnDCC7++secYWfvvXNn7u7ceez+PskNs2fPPcxvzu6ee86cOafW3k+SMS+5ZCqL51V/EBQ67mdFrVAQ1nPw048cPVo2yaN/lamxSel9jUO1zX7qcL0H9O3DP751bvIF55g/rJRUYxucXRT3D2oWOytGLRYHnXusUQ3dzXNOZd2ON7p7WsdcOG0UY4cOoHVc+PLoRVHLfYZNPzwv1n2WCcMHccao6EakoUHo1xD9AcMfDor6v/3Go7T35T8bcfiDD4+NQPis51AHafcceqO4azDFdaTTsFK8QqNuio9qOe7YVo9JGROy/HZQ8Pc/6r7HoraTWdRWeRe2rhCRHtEwQMe9pzg/Y80xh9Eeu6HaLse183sOUY3D6/u9JdlfefO9Tun+bKjD7R+ydtveTt+L+1xJd/S6ew7Vls/wk8KWNOipfjT3dO6d35pYef7wRdxnQKIEh5XizrQZ1hy+7APAmhvbunVOXfXi6wePHR94P96eIHl22dnh+zzXlftlbUnoZwy8xjPJGYvtblZa1JTXVZv2APDIxs67I/uzmA63H2Xnm50/SMRdTLM7el3PYc7kjzJh+KCKF9dvOFIePs3c/Cp7KXTFjbMncPKwgcyeNDyR8oI9h6gG55VbvxirTH8vjKiZJEnb/XZHb2XWhHhP12dh8bwpx3Yxq+anF54ROfGgHo4f0JfTRw6OPVMrC3F7DlPGtPDUzrf4bMmT137v4Certpa9x+451MHYoQND9871W/jMPg31EP2bGrnkE/GvYVQXOdg4TB45pMvnVWrtN2eF7qdQL8ENmj6XUONZDxdPj17CIktNjQ08et05WZ9GVf2aGjl05Ghkz+GeK6bz8DO7uXLG2E7pYTPAHvr6jLo8k1UqN42DiJwPLAEagXtV9da0z6Fvnwa23nJ+7KUuTPctvWJa5OJoi9o+xpMvvwkk+wDXuDpvs1jNiRHDXqb4po5p4W9b90beFzl+YF8Wzixf6LO0AThz9BBWXhtvragk5KJxEJFG4BfAbGAX8LSIrFTVF9I+lyynOfZG508eEZln1sT8Dr/Uyv91D9se1PQcSy6dytpt+2JNVIjjgjOjf1eSlIvGATgb2KGqLwOIyIPAXCD1xsHk05ob23pEj25ky3Fs33sw9TWdTPqa+zcde2AuCXHX2EpKXhqHUcCrga93AZ/M6FxMDn3crfVfdIvnTeG+dTtDt6E0JsifYPHCa/s5bURzRO5k5eWjWKVRubKPViLyNRFZLyLr9+3bl8JpGZOsYc39uGnOqamvRWSKbdLIwanchA7KS+OwCxgT+Ho08FppJlVdpqqtqto6bFgyS/8aY4wpl5fG4WngFBEZLyJ9gUuBlRmfkzHG9Fq5uOegqu0ici3wGN5U1uWqujnj0zLGmF4rF40DgKquAlZlfR7GGGPyM6xkjDEmR6xxMMYYU8YaB2OMMWWscTDGGFNGSrefKwoROQBsq/Ctk4D/xShiCPBuBvlqyWuxpJevlrwWS3r5asmbVSz1KLOesUxU1ejHrVW1kC9gfUj6vpjvX5ZFvhrLtFgsFosl57HU6frULZawv52lr544rPROzHyPZJSvlrwWS3r5aslrsaSXr5a8WcVSjzKzjAUo9rDSelUt29syLL2ILJZ8sljyyWJJtuwi9xyW1ZheRBZLPlks+WSxJFh2YXsOxhhj6qfIPQdjjDF1kvvGQUSWi8heEXk+kDZFRJ4UkU0i8oiIDHbpfUVkhUvfKCKzAu+Z7tJ3iMidkvbi6MnGslZEtonIs+6V+j6aIjJGRP4uIltEZLOIXO/STxCR1SKy3f17fOA9N7vrv01EPh9Iz7RuEo4l07qpNRYRGeryHxSRu0vKKlS9RMRStHqZLSIb3PXfICLnBspKp17iTtXK6gV8BpgGPB9Iexpoc8cLgVvc8TXACnd8IrABaHBfPwXMwNtY6M/AnALHshZozbheRgDT3HEz8CIwCfgZcJNLvwm4zR1PAjYC/YDxwEtAYx7qJuFYMq2bLsQyEJgJXA3cXVJW0eqlWixFq5ezgJHueDKwO+16yX3PQVWfAN4qSZ4IPOGOVwMXueNJwF/d+/biTQdrFZERwGBVfVK9q/sA8OV6n3upJGJJ4TRjUdU9qvpfd3wA2IK33etc4H6X7X46rvNc4EFVPayqO4EdwNl5qJukYknznMPUGouqHlLVdcD7wXKKWC9hseRBF2J5RlX9Dc82A/1FpF+a9ZL7xiHE88CX3PE8OnaR2wjMFZE+IjIemO6+NwpvtznfLpeWB7XG4lvhusffT7u7X0pExuF90vkPMFxV94D3C4HX64HK+4SPImd1081YfLmom5ixhClivUQpar1cBDyjqodJsV6K2jgsBK4RkQ14XbQjLn053sVaD9wB/AtoJ+Ye1RmpNRaAy1X1DOAc97oy1TMOEJFBwEPADaq6v1rWCmlaJT11CcQCOambGmIJLaJCWt7rpZpC1ouInA7cBizykypkq0u9FLJxUNWtqnqeqk4Hfos35ouqtqvqN1R1qqrOBVqA7Xh/ZEcHiqi4R3UWuhALqrrb/XsA+A0ZDWmISBPeD/qvVfUPLvl11/X1hyb2uvSwfcJzUTcJxZKLuqkxljBFrJdQRawXERkNPAzMV9WXXHJq9VLIxsGfaSAiDcD3gKXu6wEiMtAdzwbaVfUF1107ICKfct3J+cAfszn7zmqNxQ0zfcSlNwEX4A1NpX3eAtwHbFHV2wPfWgkscMcL6LjOK4FL3bjpeOAU4Kk81E1SseShbroQS0UFrZewcgpXLyLSAjwK3Kyq//Qzp1ov9bjLneQL79P0HuADvFbzq8D1eHf7XwRupeNhvnF4K7VuAdYAYwPltOL9QLwE3O2/p2ix4M3I2AA8h3ejaglupkzKsczE684+BzzrXl8AhuLdSN/u/j0h8J7vuuu/jcAMi6zrJqlY8lA3XYzlFbyJEgfdz+WkAtdLWSxFrBe8D4qHAnmfBU5Ms17sCWljjDFlCjmsZIwxpr6scTDGGFPGGgdjjDFlrHEwxhhTxhoHY4wxZaxxMKYORORqEZlfQ/5xElit15is9cn6BIzpaUSkj6ouzfo8jOkOaxyMqcAtjvYXvMXRzsJ7SHE+cBpwOzAIeAP4iqruEZG1eOtffRpYKSLNwEFVXSwiU/GefB+A9+DSQlV9W0Sm462h9R6wLr3ojIlmw0rGhJsILFPVM4H9eHts3AVcrN5aWMuBHwfyt6hqm6r+vKScB4Bvu3I2AT9w6SuA61R1Rj2DMKYrrOdgTLhXtWNdm18B38HbeGW1W/G5EW85FN/vSgsQkSF4jcbjLul+4PcV0n8JzEk+BGO6xhoHY8KVri1zANhc5ZP+oRrKlgrlG5MbNqxkTLiTRMRvCC4D/g0M89NEpMmttx9KVd8F3haRc1zSlcDjqvoO8K6IzHTplyd/+sZ0nfUcjAm3BVggIvfgrZp5F/AYcKcbFuqDtxHT5ohyFgBLRWQA8DJwlUu/ClguIu+5co3JDVuV1ZgK3GylP6nq5IxPxZhM2LCSMcaYMtZzMMYYU8Z6DsYYY8pY42CMMaaMNQ7GGGPKWONgjDGmjDUOxhhjyljjYIwxpsz/ASpQurFCxL3QAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "sorted_data['inc'].plot()" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEKCAYAAAD5MJl4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXd0HOd97/19pm1HB0gQAMUqSqS6KEWWbVVbkq+LHMeO5Zw4iqNrJbbTYydxmn2TKOXcOLk398ROrNeOZMddjmzFLZGlSLK6SVESJVIUOwCCRFkAi61Tn/ePmWd2ti+wFbvP5xweLmdnF4Pl7PN9fp1QSsHhcDgcjheh1RfA4XA4nPaDiwOHw+FwCuDiwOFwOJwCuDhwOBwOpwAuDhwOh8MpgIsDh8PhcArg4sDhcDicArg4cDgcDqcALg4cDofDKUBq9QWslaGhIbply5ZWXwaHw+GsK/bv379AKR2udN66FYctW7Zg3759rb4MDofDWVcQQk5Xcx53K3E4HA6nAC4OHA6HwymAiwOHw+FwCuDiwOFwOJwCuDhwOBwOpwAuDhwOh8MpgIsDh8PhcArg4lBHzsbSePjQbKsvg8PhcGqGi0Md+fIzp/Fr/7YfpsXncnM4nPUNF4c6spLRYVoUCdVo9aVwuhhKKWJpvdWXwVnncHGoI4mMLQrxDP9iclrHjw/P4Wf+6seIpfh9yFk7XBzqSEI1AQDxDLccOK1jZjmNjG5hMaW1+lI46xguDnUkqTLLoTpx0AwLX31ukscoOHVFNexNSlozW3wlnPUMF4c6klBX51Z6/PV5/NGDB7H/9FIjL4vTZai6BQBI61wcOGuHi0MdWa3lMLuSAQBEE2rDronTfaiGLQ4ZLg6cGuDiUEfiq7Qc5uO2KEST3DfMqR/MrcTFgVMLXBzqCLMcVspYDmnNxAP7p0EpxZwjDotcHDh1hFkO3K3EqYV1Owmu3TAtipQTAFwpYzk8+tocPv6tl3DBxohrOXBx4NQTN+bAA9KcGuCWQ51IallroVzMIeWcN7WYwnyCiwOn/nC3EqcecHGoE0m1OnHQTTttdWophQVuOXAaAHcrcepBRXEghEwQQv6bEHKYEPIqIeS3nOMDhJCHCSFHnb/7Pa/5JCHkGCHkCCHkVs/xKwkhB53n/pEQQpzjPkLIN5zjzxFCttT/V20siYxXHEq7lTRnVze1mOZuJU5DcMVBs1p8JZz1TDWWgwHg9yilFwK4BsDHCCG7AfwhgEcopTsBPOL8G85zdwDYA+A2AJ8lhIjOe30OwN0Adjp/bnOO3wVgiVK6A8A/APjbOvxuTSVRpeWgmfYX9pWZmPuYiwOnnrhuJYNbDpy1U1EcKKVnKaUvOI/jAA4DGANwO4D7ndPuB/Bu5/HtAL5OKVUppScBHANwNSFkFEAPpfQZSikF8KW817D3egDAzcyqWC8kndYZgyGlguVgC8KrZ1YAAGN9ASwmNdgfCYdTOzwgzakHq4o5OO6eywE8B2ADpfQsYAsIgBHntDEAU56XTTvHxpzH+cdzXkMpNQDEAAyu5tpaTUK1BWG0z1/ecnDEgVkNuzZGoJkWkvyLzKkTvAiOUw+qFgdCSBjAtwH8NqV0pdypRY7RMsfLvSb/Gu4mhOwjhOybn5+vdMlNhTXd29gTKCsOqpnrB961MQIAWExw1xKnPri9lbg4cGqgKnEghMiwheErlNJ/dw7POq4iOH/POcenAUx4Xj4OYMY5Pl7keM5rCCESgF4Ai/nXQSn9PKV0L6V07/DwcDWX3jQSjitpU58fCdUo2UyPWQ6MCxxxiCZ5Cw1OfcgGpLk4cNZONdlKBMAXABymlP6956mHANzpPL4TwHc9x+9wMpC2wg48P++4nuKEkGuc9/ylvNew93ovgEfpOnPCM7fQxl4/gNzsJS+6x3LwywI2DwQBAEu8vTKnTvDGe5x6UE2F9BsBfBDAQULIi86xPwLwNwC+SQi5C8AkgPcBAKX0VULINwEcgp3p9DFKKbtLPwLgPgABAD90/gC2+HyZEHIMtsVwR42/V9NJqAZkkWAo7ANgV0n3BuWC8zTDQsQvIZ4xMBzxYTBknx/lbiVOnWBuJSYSHM5aqCgOlNInUTwmAAA3l3jNPQDuKXJ8H4CLihzPwBGX9UoiYyDsk9Djtz/SUnEHzbAwEFIgCQQjET/6Q7aA8HRWTr3gRXCcesB7K9WJpGog5JMQ8duLfal0Vs20oIgCrjxvAOP9AYR9EhRR4FO7OHWDiwOnHnBxqBNx1bYcIlVYDrIo4P+7c697bCCk8GwlTl0wTMtNhqg2IB1NqLj57x/HF3/5Klyxub/yCzhdAe+tVCeSrjg4loNa3HJQDQuKlPux94cU7lbi1AXVkw1XbZ3D5GIKyykdJ+eTjboszjqEi0OdSKoGwv7qLId8cegLyFhOVzcgiMMpBxMHRRSqdiuxe08zeQCbk4WLQ52IuzGH8uKgmxZ8eeIQ8knuLAgOpxZYplJvUEZGN6tqy7LCxMFjdaQ1EzPL6cZcJGddwMWhTiRVAxGfBJ8kwicJiJWwBFhA2kvIJ7pzHrqR7798Fu//l2dafRkdAUtf7QvIsGh11sByyr5XVU+jvnt+cAg/97mnG3ORnHUBF4c6kcjYlgMA9AZkxFIlxKGIWymoSDnzILqNA5NLeO7kIu8FVAeYW6nPqbHJVNG2m4kDsxwsi+JHr5zD2VgGBnc1dS1cHOqAZVEkNRNhrziUshycbCUvIUV0u7p2I2yK3nIJQeVUj+tWCtjiUE3cYTltJ0MwcTgwtYwFJ3uu1H3M6Xy4ONSB+585BQAYdVpnVBKHfMsh5JOQ1s2S/Zg6Hda0kC9EtcMsh96AAqA6cWCfO2sK+ePDs+5zS1ywuxYuDjXyo1fO4X/9xyHctmcj3nul3VewrDiYxcTBnoXUrUVLzKWW/5nNx1V88cmTfNbFKnBjDo5bqZpaB+YCZa/98aFZ+GX7Hl3mxZldCxeHGvnJ0XlE/BL+8QOXQ3LcRRUtB7Ew5gAAqS6NOzBxyF+I/uHHr+PPv3cI00s8a6ZamFupz3ErVTMNzpvKGk2oODqXwFt3bwTALYduhotDjRgmRUAWc6yBnoDspgfmoxVNZbUth24d+MNiDl5BjaV1PPjCGQC879RqKAxIVyEOqWzMgY273TEcBsC7BXczXBxqRLcKA8y9ARnxEjMdigWkmeXQrRlLySIxh2/vn3bdbLzvVPUwy6FnFQHpWNq+7zTDcsVlY6/dLZi7lboXLg41YpgUspjbtJZliuRbD4ZpwaIoiDmwLKfuFYdCy+HrP53Ehh6+QK2WbMyhuoA0pRQxJ1tJNUw3nXgw5IMkEO5W6mK4ONSIYVlurIHBTPr8uAMrSCqsc7DdSt1aJZ2NOWQ/r9PRFG7cZY8lX0zyBapaXLdSoLqAdEozoZu2hasZFjKOuPhlEX1BhacXdzFcHGpEMygkobjlUCAOnr43XljxXLILq6RZjQiQ/byYe2NTXwAC4ZbDanAD0izmUMFy8N6jmmm5r/fJAvqDMv/suxguDjVilIg5ANksENOiOB1NZsWhlOXQhYVwKc/ixRYqNgujNyCjL8g71q6GbPsM262UKTENzrIovrVvCvPx7OzyHMtBEtEfVHhAuovh4lAj5WIObLH73sszeMvfP44554tYUOegdK/l4E3fZWLKMmbCPgl9QZm7NlaBalgQBVKxdub5U4v4xAMv4yvPnQYA+CQBqpG1HPyywD/7LoeLQ43oZmHMIV8cZpYz0E2Ks7EMgDJupS4MSDMhICQbwGcdbSN+CQN897oqVMOETxIgiQJkkZQUB1Y78uhrcwCAkR5fjuXg45ZD18MnwdWIbloIOG4hRk9ethITicVkcctBkewvcjfWObA01g0Rv+vfXnHcShG/7VaaXkq17PrWC6cWkvjeyzPI6Nk6Gr8slgxIn3HEgfVQGon4sZTU3BiFXxbQF5KxlNJBKQUhpcbIczoVbjnUiGFRSELux+iXc9t2s8Uu6vjO8y0HwK516MYKaWY5jPUHEEvrsCyKhMdy6OeuDQB2YPlnP/sU9p9eKvr89w+exd/91+s4FU3CJ9mblYAslgxI589q2NDjc9xKuZaDZlhd29al2+HiUCO6SQsC0kBu227XcnB2afmWA+B0Zu1Cy4HNsRjt9cOiQEIzct1KIQWLKa3r+ytFkxoOTC7jxanlos8zkX3tXBw+py9S2C+5G5N8ziyn3U2KLBL0BhSohuWKCctWAngLjW6Fi0ONGKZVEJAGcvsrrbhupdLiEPRJXTnwx7Uc+gIA7CZwuQFpvnsFAN3Z0ZeyLpm1NR9XXbfSeH+wZF+qmeU03rxzyBUGnyRAM0yP5SC4nV2XeLZYV8LFoUaKBaSB4uLA3ErFLI2QT+rKmQ7sd97ExCGtu6msEb+MgZC9e+2kdNY/eOBlfOHJk6t6je4UUJayLr3JDMytNNEfwORiYbyGUoozy2lsHwnjorFe9AdlKJJg1znodkCbEOJaDtyt151wcagR3aSQhQqWg7OrY5kf+Y33ADbwp/ssB2YtjeWIgwGfJECRBLcNBFugvv/yWTx1bKE1F1snnjg6j686KaTVwqrrS1mX8RxxsO+vzQNBLKf0gmLMaFKziwx7/fizd+zGn75jt2M52G4lv2yLS3/IsRx4xlJXwsWhRuz2GeXFgf0dLRNzCCpSV8YcmAtptM8elBRL64irBiJ+O5FuwLNAmRbFHz14EPf+5ETJ99PXwVhL1bBwfD6Js7HqW5GzFheJCm4lAG7MYfNAEAAw5VgPpxaSuPHvHnPFdaw/iMs39+O684ehiIId81FNd5ZDn2s5cHHoRrg41IhRIiDd44gDpbQw5lDUrSQipRmYWkzhyLl4Yy+6jUiqBgKy6IrAcsq2HCJ+e2Firo3FpIaXppcRS+slLayFhIqLPvWf2HdqsTkXv0ZUJ37y1LFo1a9holeqit5bQOm6lfLE4bVzKzi5kMT/feQoAGCTI8hAdsMSz+ju63uc/4OVTPdZtBwuDjWjm4XtMwDbckioBlYyBgyndTcLqpa0HFQTf/KdV/Cezz6Fo7PdIRAJ1UTIJ+YUDsYzutup1utWeuL1efc1xZhbUaEaFk5H27suggV9V+MeYwHpUlX0iYwB5t103UqDjjg4dSJskT8xnwQAjPcF3deze3Ilo7uWA3sf1vaF011wcagR3SxsvAcAQxG73fTJhWTBcyVTWVUDL08vI6mZuPvL+93AbCeT0gyEfBICTm1INKEikcm6lVh30cWkhscdcShlObDdtdrGi5lhWu5m4cljC1Wn6LKYQ6nfPaEa2O4M6GGLeo9fRm9AdoPScY8FEFJE9ASyNbCuOKQN13IghEBx2mpwug8uDjVSrGU3AGzqtU32186uFDxXKlsprZtYSul46+4NOLmQdBfDTiapGggpEgghGOsP4Mxy2nEr2QuXJAro8Ut4aXoZLzk5/pXFoX1jN2yR3zESxnxcxTMnqnMtsd17qbbuCdXAxWO9ALJuJcCOO0wu2rENttkIyCLG+gM5Vc/sNV7LwT4utPXnyWkcXBxqgFIK3aRQigSkWWrma078ICBnv7BFs5V82effdekmAN3RaymhGq4LieXl224l2T1n18YIHjsyD4sCV23pLxmU1daB5cC6pv7cFeMY6wvgz//jEIwqgugsIF3MrWRaFCnNxMRAEBt6fBgIK+5zmweCbswhnjEQUkT81lt24n1XTuS8R9Zy0N1sJcAWjXb+PDmNg4tDDbAxoMUtB1scDjuWQ07wr0T7DMBuQHfZRB+A0u2WO4mUZiLoCOM4sxw82UoA8JX/eQ2++7E34l8/dBXevHMYqmG5C2pCNfA733gRi0nNXUDVNv7cvDOe//jtF+K1c3F87adTFV9XLiDNBCPil/DgR9+IX79xh/vcxEAQZ5bSMC2KeEZHxC/j167fjg9fty3nPdg9mVCNnM2LTxLa+vPkNA4uDjXAFqNiqaw9AQkhRXQtB2ZJSAKBUCRGwSyHbUMhDIarG/HYCSRUw+1KO94fwGJSy3ErAfau9tKJPty4a8TTwdb+bA7NrODBA2fw4tSSG7RtZzeIO0xHEvC2izZi+3AIjx6erfg6zSOG+bA01rBPwqa+gPsZAbbloJkWzq1kCj5XL0wQLAr4vJaDzN1K3QrvyloDumV/YWWhUGMJIdjUF8DRuQQAe+EDigejgazlsGdTL/yO/7fSiMf1zE+OzuMnRxeQyBgIO787K4QDUHIRCzsimtAM9AZltxeQZlhgsd12doN4G9sRQjAY9lU1HtYbbDfyqvKZ+zFc5DPb2GsnRsxVKQ4A3PuPXWc7f56cxsEthxowylgOADDqWexGHTdTsWA0ANfvvmdTDwSBwCcJFUc8rme+99JZfP6JE5iLqx7LIZta6Y05eGHnsh5DqpFdNLV1EJBW3XkJ9n0QVMSqLETds0Cn8s5n1dFei4ExELLFYSmluW6lYng3Lb6CgDQXh26Ei0MNML93qQV/zIkzsIlmQGnLYaI/CEUUcO32IQB22+9OEIe5lYwbEPXibenAXGoT/ZUtB7YAJlxxsD8j3aTrJOaQ7XoK2OJQneWQTXnNT1Rg/44UEwenTiSasN11xawLIPe+zLUcBLdoj9NdcLdSDehOQLpYV1Ygay30+CXXMigWjAbsgqXDf3EbRCceEZCr21G2O7/6b/thWRTf/fU35RyPpXUMhX1YTKoYCtu726Gwz24AZ1hl3Eq5MQcWtNcMCywzs513ul63ElB+II8XzZPRlN+gkcUciloOTvxqMalhJWOgpwpxyLEcZNGt8Od0FxUtB0LIFwkhc4SQVzzHPk0IOUMIedH58z88z32SEHKMEHKEEHKr5/iVhJCDznP/SJwka0KIjxDyDef4c4SQLfX9FRsHM/Xzh/0wWBC6JyC7i1qxNFaG6AlUBxQR6bwdsGlR/PGDB/HKmVhN190sXp2J4cDkMmac8aheVjI6Lh3vxcO/ez3ef5WdVikIBOPOZ1bSclBKWQ5WTp2DaVH82XdfwakiRYitxBuQBpjlUDll2dszKv985lYKFxGHkCJCEQUsVnIriWUshzYWW07jqMatdB+A24oc/wdK6WXOnx8AACFkN4A7AOxxXvNZQgi70z4H4G4AO50/7D3vArBEKd0B4B8A/O0af5emYzgB6VIxB5a+2huQXXO+lFspn2I7ygOTS/jKc5N44uj6KI776nOTAOx5APmVwLG0jt6AjO3D4Zy8+rF+Jg6lYg72ucyV4rUcNE/84WwsjS89cxo/fOVcHX+j2nFjDq5bSaou5lDGckiWEQdCCAZCCmZjGaiGVdT1ZF9P9v+AF8FxgCrEgVL6BIBqO5ndDuDrlFKVUnoSwDEAVxNCRgH0UEqfofYq8SUA7/a85n7n8QMAbiZkfQysZX7gUq4iVuvQE5AR8ZWPOeTjlwsD0j8+bA+DN8z2n4qWVA1898UZKKIAw6JYSefudmNp3Z217YVldRVb6ICs64Tl9rOFSzOtnJgDE9Z2mz+d71ayR3lasKzy/6flYg7l3EqA3Xr7tBP3KWWRee/h3DoHsa1jOJzGUUtA+tcJIS87bqd+59gYAG9Fz7RzbMx5nH885zWUUgNADMBgDdfVNLLZSsU/xo29WcuB7XhLBa/zKTb/99HXZp2f2/5f1h8fnkVCNfBzV9r/zdGk6j5nF2QZRcVh21DYmU5W3HII5wekPZYD211nDNPdjZ9Zrr4tdjPIdysFFCdtuYL14G1+l18lndAMKM78i2IMhhRMRpk4VM5W8hfUObT//capP2sVh88B2A7gMgBnAXzGOV5sx0/LHC/3mgIIIXcTQvYRQvbNz7fetcKChKXcSn5ZxFVb+nHxWG/WrbQKcfAuGFOLKbw+m3B+bvtbDj965RyGIz7csnsjgNyBMWynW0wAfvGa8/DvH3ljyV2wTxIgCiTrVsqxHBy3km65GUClxmS2Cu8YTsCOOQCleyYxtJyYQ2FAupS7CLBnYrAphNXUORSmsnK3UjeyJnGglM5SSk1KqQXgXgBXO09NA/A2bRkHMOMcHy9yPOc1hBAJQC9KuLEopZ+nlO6llO4dHh5ey6XXzNRiyvWfu6msJQLSAPCtX7sWd167ZfVupbz890c8VbTtbjmkNROPHZnHrXs2uJlIbNARkE1jLSYOAUXExeO9Jd+bEOJ0sLU/G2Y56Hl1Dl63UrWdT5tBNuaQdSsBlQsedcPyZGoVprKWElMgOzAJKGM5lAxIi7xld5eyJnFwYgiMnwXAMpkeAnCHk4G0FXbg+XlK6VkAcULINU484ZcAfNfzmjudx+8F8Chtp2+zh5nlNK7/3//tdks1rPJFcF78sr3jrVYcArKIjGfBODKbwGBIQY9fcn9uu/L46/NI6ybedtFoTiolg4lDqbTKSoR9kidbyXErmRZ0g7rHmLBmdKut5k8XZivZn0Elt5JuWq6YFqSyepoXFiNXHIqfJwjETcn2y4XZSm36leQ0kIrfTkLI1wDcAGCIEDIN4FMAbiCEXAbb/XMKwK8CAKX0VULINwEcAmAA+BillN3JH4Gd+RQA8EPnDwB8AcCXCSHHYFsMd9TjF2sEc3EVFs26KvQKRXBeCCEI+6TVBaQ9O7aVjI7eoIxYSs9xMbQj//XqOfQFZVy9dcCNy0SLiEOpuEIlQj7JTedUve0znDVNNawc18v0UhqDjgXTalTDgkDgzgDJupXKp7PqJoVfFuCXhcJU1jLFbUB2FjSQne5WDEUUoJtmUReTZlo5rcA5nU9FcaCUfqDI4S+UOf8eAPcUOb4PwEVFjmcAvK/SdbQD7EvJFje28JUqgstnJOJzx15WIpCXyspGZ6ZUs+3dSlNLKVy4sQeyKEAW7d/Fu3tfceYK9Fb5WeQT8knuNDiv5cBQdTNnJz69lMalTqfbVqMalttXCcju0iu5lTTTgiKJCClSQfO9pGZgJOIv8Uo7IM0oZTkAtsszqZk5aa3M3cSum9M98ArpVcC+wKxilFkOpYrg8vniL19V9svphQWkKaUghGAlraPHLyGaIG2fyqoZFoLB7O85EFKKupXWbjmInjqHrOXAUA0Lac/u+sxy+6SzqrqZE/CtNiCtmxYUkSDoK2y3kcgY2DZUnVupnIVhL/55w34coVB1CyitP5wOhPdWWgVJ50u5nHLEoUL7jHwmBoLuTORK+J1Fg+2M4xkdPX4Zsii0vVtJM2mO+2wwrBR1K5VzcZQjpEiuOLDPR/fWORiW65cP+6S2yliyd+BFxKGKmIMsCjm/O8Oew11ZHAKyWNYFyv7PfHkV0vZ184ylboOLwypIF7iVqo85rJb8tt2s3bIsrgfLwczJfrEth2ydQyytQxKIuzCultyAdNZy0PNiNIokYGIg2IbikP29WZ1DpmK2ErXFwSchpZlYTmnusKmEqrutzIvBxKGS1crEIb9Cml03p7vg4rAK2G40P+ZQTbbSanEXDWfxW8nYFcWSILhtO9oVPc9yGAgpWEpmm7ex1hlrLYQP+aTC9hmeOgfAtu6Ciojx/kBbVUmrhplnOTgtyCsEpDXTgiwJCCoiTi4k8Ya/fhRf/+kk4hkdGd0qG3Dvc9x3FcVBLGY5eNxKnK6Ci8MqYEFOJg5aAy0Hb/67ZljI6HZfHFkkbV8EpxlWjqttMKTkVEivOOKwVmxxYAFpp/GeQXPcbcspDQFZxFhfADPLhY3/WoWqWzkxB/b/XI1bSREJQoqEM8tppHUTr5+L45zT1HC0t3RAQBIF9AXlkjUOjKKWg8zdSt0KF4dVwHar+W4lqcjYz1pxs1h0E3Enu6cnYMcc2j1bSTetPMvBh4xu5WR7RWoQh7BPhGZarmgCgJpnOSyldAQUEcMRHxKq0TazMfLdSn5ZACFVFME5MYegx310Zjnjdrzd5BksVYyBkFLRcvC54lAs5tDe9xyn/vBspVXAskRccWAB6SprF1YD271ldBPxTHaAvLQuYg5WjjXFUimjCQ3BAcm2HKoMzBcj5KkUzloOVo5Ix9I6Qj4RQ04R3kJCzZk01yry3UqEEATkygN/dNOOOfQFFEgCwY6RMM4sp3HW6R1VznIAgI9cv72itaZIQk4NBuBxK3WIOEQTKnoDcsl+aJws/BNaBWx3l1ANGJ7smHLtM9YKczdkdMsjDuslWynfcsitko7Vwa0E2P8PORXSOZaD7VZi7TsWEu1RJZ2frQRUNyqUCe6vXr8NX7v7Guzd0o+Z5TRmYhkQAmzoKS8O79s7gVv2bCx7jk8S4JfFnFiQazm0ieVVC6ph4ob//Rge2D9d+WQOF4fV4O2GuZIxsnUODQxIpzXTLRrr8Uu2W6mNA9KU2r7/nGwlZ/f+01OLMC2KlYyB3sDajdawp223t85B8yy8sbSOgCJlxSGuFn+zJqPqVo7bBnAGOxWxHGZXMtj7lw/jhcklV3A39Phx1ZYBjPUFEUvrOD6XwHDYV5e4l+KIgxe/3DlupZW0gbhq4GyR4VOcQrhbaRV4v8CxtN7QmEPAE3NgYhDxy5CE9nYrmRYFpblB+q2DIQxHfPjL7x/GA/un7VkOa6xxADyWQ8bIq3MgiPglqAkNlAIBWcBQhFkObSIOeW4lAI5bqTBb6cmjC1hIaDg6G3cD0gw2SGr/6SWMVog3VItfEuHPu7ZOcivld/LllIdbDqvAazkspzToFoUkkDWnZJbDG5Bmg3J6AhJkqb3dSu4AJM8i0x9S8OQf3Ij/8/7LcHIhCdOiNbmVWMO+BUcEADbPgeY0oAsqkhvvaB9xKGxDEVCkojGHfaft5sQJ1YSeF8cZcwTh3EoGmyrEG6rlV960FZ9+156cY51UBJc/A4RTHm45rIK0ZiLikxBXDddyaEQaK5AVh4xuuq0hIn4ZcptbDuxa8z8XnyTi3ZePoT+k4Fe/vA9bh0Jr/hlMWObjWfeAZlpQTAuD4Wyg2y+L8MsiIj6pvWIOcl7MochgJwB4/qQtDinVsAPSHsFl41QBYLS3PpbDRWO9uGgst116J9U5MHGolBnGseHisAqSmonRPj/iswnE0jp0kzYk3gB4iuB0M6cVhCQKOYHXdoNZNaW6z15//jBe+tQtNTVxY+Iw58QRQoo9c0CXrDwLJFLQAAAgAElEQVTLwf4ZQxEf5tvFctAL3UpBRcS5FT3nWDSh4vh8EoA96U3L24iMRPwQBQLToq6LqRH4OijmwN1Kq4O7lVZBWjPdXdpKWndzzxsB8/2mNQsrGR0RnwRRIJBFIWeecLvhikMZ0ay1uycbLzq3Yi/4Eb8MzbSgGhbCvqy7isVthsIKou0iDkXdSoUB6f2nl9zHMaeXl/czFQWCjU6GUr0sh2Jku7Ku/wU1kdeskVMeLg6rIKUZbj657VaiDQlGA3ZVqyIKThGc4RYwySJp62wl1t+o2rkVa8FuQCdi1nErRfwSKLVdH94BQsz6Ggr72sKtZJgWDIuWCEjnLlg/PbUIRRQwEvG5I1bzNyIs7rCxTjGHYggCgSJ2xhzpRF7LFU55uDisgqRmojcoIyCLWE7p0K3GWQ6AbdJndNNu1+3sliVByGkw1240sqWIl96A7LEcJPdne1tSZy0HX1sEpNlnUxBzUAqzlV6ajmHPWI/dl8qxHArEwYk7NNKtBDjT4DpgQc1v884pDxeHKjGcdg1BWUJvQHYth2rbda+FgBOozLEcJOK2Cm9HWEBaabA49ARkN+bg7RlUNOYQ9tli3sJYzS/c+yz++fETAArdagFFytnNUkrx+mwcF2zsQcgnYZlZDnkWx46RMCI+qeygn3qgSEKHuJXY6Nj1/7s0Ax6QrhLWGC3kE11xEAXS0DL8gFM5G1d1bHAWAFlo795KruXQQLcSYFsOR2bjAHK7jXrnGrhupUi2fUcjXTDleHFq2Z0DUiwgrZkWDNOCJAqYi6tYTunYtcFukTG5aHeV9eXda3e9aSvedekmiA1ybTJ8kpAzTGm9kt/Jl1MebjlUCQsYBhTRnuXMspUa+MVko0JX0lnLQRIJLAq3l3+7wVxe+QtZvekNyG6Ng1ccfJLgxjuYW2kw1NpCOEop0rqJo3O2mBVzKwHZDciRc/Z5uzb2IOwTPZZD7r3ml0VMDDS+X5RPFjsj5pDh2UqrgYtDlbCAYUjxuJUaHHPwO6NC4xnddZ2wn9eu6azNshx6PEV03mprWRTcnTmzHIYdy6FV6ayaaYHSbIFgvlspf47067NMHCIIKVK2h1eLmsX5OsWtpPGYw2rg4lAlzCQNKCL6AjKWU42POfidgHQ8Y6AnkM1WArIdYdsNvYkBaYbXcrDFwV5svTEHwHYrtYJ8N0YxtxKQ3YC8di6O4YgPAyElx03WWnFoz83IakjyIrhVwcWhSljXzJAiYSCsYDGpQXN8xI0iIItYTGowLOpaDpLTAbZdM5aaFZD2ikM4ZwElBXMJBl1xaI3lkL9Tzbccgkqh5bBrQwRA7u/W6M+0FD5J7KxspTb97rQbXByqxGs5DIYUaKaFWEpvbLaSMxISgFvwxNw1epvWOmhub6XGBklzLYfsY7uzqP0ZsRGcQVkEIXYqcisoEIe8mEPAMyrUsuxMpV0bbXFoC8tB7gy3Emt9rxkWrDa1vNsJLg5VwnZ1QUVEvzOoZi6ecXfyjWDbUBhhn4RP3LoL77hkFAAgOwHwdu2vlLUcaquCrkQ1biUWkBYEZ6COWn5Oc6Oo5FYKOZZDUjMxuZhCRrdcyyHkmfzWyI1IOTrGreSpJemE36fR8FTWKkl6AtKsudtSSm/obu7jt+7C791yfk7XV6nNA9JuzKGJloM3OC2LgrszZwFpwLYiWmU5MJckIQClhW4lZh2kVAPnVuyqb1bgFlI8wtfgIH8pfFJnZCuxHmWAbc157w9OIdxyqJK0lnUrDTipkUDjd3P57cDZz2vX/krNLIID7B5DQSV3d+3LS2UF7B14sZkJzYC5lbY5nWgLLYfsZDvmvmSxhlBbxBw6w62UUA30Be37ptLkPQ4Xh6pxU1l9ojsjAEDTZ9EyS6Vd+iuZFsULk9kmcXoTi+AAe+HyWm+K41aSBJLT3ylYYmZCM2DicOl4H4DcBd/+dzZbifX/YefkBKRbZTnI6799BpsUyL67PJ21MlwcqoS5JPyS6M5EBrIxgGbBiu50oz0shy88eQLv+ezTbhfRbFfW5omDd9GUJbvOIZA37jJUpH9Rs2AL0QffcB7+7a6fwXDEl/O8dya2tz27/ZzXKuJupbXCLDKW1syrpCvDxaFK0pqBgCxCcNwYzDXQqHkOpWinbKWMbuLen5wEAPzHSzMAmp/K6pfFnJ9lxxzEAn9yQBFzfM7NhC1EvQEZb9o5VPC8TxIgCgQpzUBCtVtsMFHIT9NtBZ3gVkrki8M6/32aAReHKklqpvuFJYS45mmzd3Oykx3V7Gylx47M4fZ/eiqnx863X5jGfFzFxEAAP3zlLCyLQjctSAKB0GCLSnGsgwLLQSS4dvsg3rJ7Q875IUVqueVQKgBKiL3hSKqm2xyOxSHaIeYQ9tmNAeMZvfLJbQrLVBoKc7dStXBxqJK0lpvdMBBukTi4AenmWg4vnF7CS1PLmFxMusf+7dlJXDLei4/fsguzKyr2Ty5BMxrbUsRLb0AusBwUUcAHrt6Mv/rZi3PODfpaZzmw4Ke/zJCjsE9C0glIhxTRFdd2qHO4ausAAODp49GW/Px6wPoqDbpuJS4OleDiUCVJ1UBQzn5RWcZSIxvvFaNVqayxtL1rPDGfFYe5lQwuGe/FzRdugE8S8P2Xz0I3adMCp70B2Q5IS7lupWKEFKllGSrMreSXS4tDyCchqTni4BGEkDcTq0UB6Ss29yPsk/D46/Mt+fn1oMCtxGMOFeHiUCVzcTUnkMjcSs3PVmpNEdyKs/NiFdsAEHcWsrBPwgWjPTg+n4DaRMthpMeH3qCSG3MosYDalkNr3EpMlPJTWL2EXLeSkRNnkMRsxXerYg6KJODa7YN4/Mg8KG2PRIjVwqzGQe5WqhpeBFcl00tp3HzBiPtvlrFUblZyI2hVV1ZmOTBxUA0TmmEh4ixkPX4JCdWAblpN+0z+9ucuAZC7aJZaQIOyBNXIzkxoJqpuwicJZeMwIcetREhhqqvt89fceFMruH7XMP7r0CxOLCSxfTjcsutYK9lsJSYO3HKoBLccqiCjm1hIqG7VKpAVh1ZZDs2eBue6lRxxyE+5DPskJDIGNMNqmltpU18Am/oCIIS41kOpoK1bS9CCHWM11bisgtt2KxVWUDcjyF+O63YOAwCeWKeupXiBW4lbDpXg4lAFM8tpANmB7oBXHJpd58CylVprObAAX9hpehf2ZS2HVgROmWiW+tmsCV+qBUHptG6WDUYDQNhxeyVUE2GfnPNcUJFaVgDHmBgIojcg57gV1xPMcmABaV4hXRnuVqqCM0wcilgOzTb13TqHFonDfFxFQjXcAJ9rOfibbzl4USQBSc0sHZB2q5CbH3fI6JYbNyhF0JdNtQ3nWQ5hn9iyTCUvwxEf5uOtaXteK0nVgE8S3AC/ysWhIhXvOELIFwkhc4SQVzzHBgghDxNCjjp/93ue+yQh5Bgh5Agh5FbP8SsJIQed5/6ROE2DCCE+Qsg3nOPPEUK21PdXrJ0zS4WWw2CLLAdWkd3s3koraR3nDdojKU8tJF1xYB1RI34ZCc1oakDaCxOkkjEHty12a9xK5TKVgKzllZ+tBNhupbYQh/D6FYdoUkN/UAEhdu8tPtOhMtXccfcBuC3v2B8CeIRSuhPAI86/QQjZDeAOAHuc13yWEMK+FZ8DcDeAnc4f9p53AViilO4A8A8A/natv0yjOLOchigQjHqG07cq5sB+XjPdShndhGpYbm+gEwtJt5KXWQ4RnwRKgeW01hLLQRYFyCIpaFTIYM35WpGxlK5CHIKK6BSa5WYrAbY4NDvxoRjDEV/LRq3WysxyGqN99vfXL4vI6Ca++twkjjlzvTmFVPwWU0qfALCYd/h2APc7j+8H8G7P8a9TSlVK6UkAxwBcTQgZBdBDKX2G2rlwX8p7DXuvBwDcTEp9w1vEmaU0Nvb4c4TgvMEQPvzmrbjh/OGmXksrurKuOC6lS8Z7QQhwcj7pDk4JedxKALCY0FpSyavkNeDLJ38UZzNRdaug11M+TBA00yqwHN520Ub83JXjDbu+alnPbqWzsQw29dqWP5uw+EcPHsTXn59q8ZW1L2v9Fm+glJ4FAOdvluM5BsD7aU87x8acx/nHc15DKTUAxAAMrvG6GsL0UjrHpQTYraL/+O27MTEQbOq1uKmsTeytxOINIz1+DId9mFlOF7iV2OIWTbbGclDE8uLAFtxkK2IOhlk55uCZ25AvDu+4ZBN+75ZdDbm21TAc8SHlZFStJyiltuXQyywHAa/P2hbDYrI1c8XXA/X+Fhfb8dMyx8u9pvDNCbmbELKPELJvfr62lLqf/+dn8KVnTlV17pnldE4wupW0oisrE4fegIyBkIJoUstmK+VZDnbMofmGX9WWQyuylbTKbiVv+mrE1555IiwNdKGNXEsn5hMVz1lK6VANC6POBs8vi26l/2KKi0Mp1ioOs46rCM7fc87xaQATnvPGAcw4x8eLHM95DSFEAtCLQjcWAIBS+nlK6V5K6d7h4bW7c2JpHc+fWsSLU8sVzzVMC+dWMgWWQ6sQBQJCmjvPYcVpuNbjt6fgLSbtjCVCsouud0FTKqRtNgJFFMr65UOeOc3NJmOYFd1KoTKWQ7vAOgS0i2tp36lF3PSZx/HauZWy52VT0W3LwSeLMJw6IW45lGat4vAQgDudx3cC+K7n+B1OBtJW2IHn5x3XU5wQco0TT/ilvNew93ovgEdpg2v0jzu7jeVU5S6T51YyMC3aNpYDIQSyIDQ15uC1HPqDChaTmhs4ZeGhcM4c5+ZbDrIolHVnBTxzmptNRrfgq2g5eMWhPcdXDofbSxxOR1MAgHOxTNnzzjrPjzoxB7/nPuHiUJqKWxRCyNcA3ABgiBAyDeBTAP4GwDcJIXcBmATwPgCglL5KCPkmgEMADAAfo5Syb+NHYGc+BQD80PkDAF8A8GVCyDHYFsMddfnNynBszhaHpSpMSlb0s7nJsYVySCJpap1DLJUVh0HmVlKNHGsh4s8WbrVjQNo7M6HZZLTKMQevIORnK7ULruXQJm6laNK+jkpJBmdjtuXAspW81epcHEpT8S6klH6gxFM3lzj/HgD3FDm+D8BFRY5n4IhLs1iN5XBgchmEABeP9zb6sqpGFoWmprLG0vaC2hOQMRDyIZ4xsJzScqyFVo+z3NDjK+tq885MaDZVuZV87e9WGggpEEj7WA4LCXthT1QIkM8sZyCLBENOJ2VvtXpKM6uqQ+lG2vMubDDHV2E57D+9hPNHIujxyxXPbRaySJraWymW1hFS7CpdNsdicjGVs4jlTixrvjh8+l17XD9yKdjAn//3yFHcsGukKYJvmBZ0k1ZVBFfscTshCgSDbVQIxwLjlbKnzsbS2Njrd3tTMStuY48f51YyWExq2NQmMcV2ovVlly3guJOpEEvrMIssKNGEik8/9CpiKR0HJpdwxXl9zb7EskiCAL2JFZ6xtO6O5WSV4ZOLqZxFTHTGpwKtsRyCilRRwIM+EZOLKXzm4dfx0EtnmnJdrBK3kuUQVNrfrQTYGUvtIw725q6UOPzfHx/Fez77FKYWU268AcjO1bh8s/295q6l4nSdOKiGidPRJCJ+u6KXFXh5+fKzp3Hf06fwyQdfxkrGwOWb+4u8U+uQJVJxl1xPVjI6ehxxYJXhGd1yaxwYbFFrh1YPxQgqIl6YtDPUWBFfo2HdP2upc2gnhiO+tklljTrXkSjhKvzPV8/hhcllvDC5jE2e7gZcHKqjPb/FDeR0NAWLAleeZy/4zLV0+OwKbv+np3A6msQD++16vR8cPAcge267YGcrNddyyBcHoHCHy2IQ5YbatJKgIrkzsFeaNA857QRLK2UriQJBwBl52uoOrOVop/5K5dxKKc3ISXEd7Su0HK5wNn1cHIrTvndhg2CZSldtsefiLjlB6aePR/HS1DJ+4d7nML2Uxq9etw0A0BeUsW0o1JqLLYEsNlccVjxupVxxyHXjsIylVk0sq4R35GazLAfVsMWhklsJsC2Gdk1jZbD+Sq2eCEcpRbSMW+mlqRgsCvz6jTsAAFsHs9/h688fxvv3TrhDi7g4FKd97dcGwcSBmZSxtH1jTC3aOdNnltOI+CX8zlvPx0JCQ1ARSzZzaxWSSJoyJlQ3LSwmNcTSOi5yxMHubAlQmlvbAGQL4VqRyloNQY+lU8yd2AiqmR/NCPlEWLQ9PzvGSMQH3aRYTGrubIRWsJI2XNdqsWylA1NLAIC73rQV77psE7Z4xOEN2wfxhu2DsCwKgXBxKEXXicOH37wNt+zZ4KazLSXtReJ0NIkLR3tw1ZZ+bB4Iwi+L+MzPX9rKSy2JJApNyVa6/+lT+MvvHwYA13IQBYK+gIyllF7Q5sGNObSpW6QRloNmWPjwl/bh47fsKsh++u6LZ9yEh0oxB/v6JFhtPqOZ9RKbWkq3VBy8tRbF+mUdmFzG1qEQ+kMK+j3WrhdBIHZRJ2+hUZSuE4eAIuKCjT1uYReLOUwuprBzJII/v72gFKPtUETSlGyl6aW0O1z+prz52UspvXDWsb/NLQcn6Hv+hnDddouzKxk8/vo8LhrryREHzbDw29940a0qrsat1BuQQYu3FWsbWDHo5GIKl020LouPBaMVUSgISFNKcWByGdedP1TxfQZCChYTXByK0XXiwIj4JQjELoSzLIqppTRuvnBDqy+rKiRBaEpvpYRqYCik4L4PXZ1zfDDkw/H5ZIFbiVkO7RpQ7QvKkEWCa7YN1q1VMxs3eeRcbgM42y8PzDnB22rcSp9+1562F4eJATuwy9ywrYKlsY4PBApiDpOLKSwkVFxehXj1h7jlUIquFQdBIOgLKlhKaTi3koFmWG3VIqMckkiQ1hu/iCQyRk5bDAYLSue7lVhqa7umst75hi247vxhPHM8Cs206lIZy7KRjszmNn+bXcnt91PNz9m1MVLTtTSDoCJhKKy0XBxY64zzBoI4ci53YM/Dh2YBANefP1LwunwGQwqOzlXu7NqNtOe3uEn0BWUsp3RMOjc6G4PZ7ihNylZKqEaBdQDA9eEWBKTb3K3UH1JwxeZ+Ny23HumsrK/P1GI6Zwc7VyAO7fmZrIWJgaD7nWkVCwkNhADj/cGCgPQPXzmH3aM92FzF97k/pGCJB6SL0jl37BrodyyHSae743qyHJqRrRTP6EWrdVmVdEGdg5Pa2q4BaUaPI2L1CEpnPIPq2QAZINsplG04Oql3z+aBIKaWWi0OKgaCCnoCEpKa6abWzq5ksP/0Em67aGNV7zMYstcAq4lFpeuF9v4WN5j+oJ11M7mYgiiQddNfxc5WarzlEC9hOQyGS4hDm1sODNZmox7prN6OoF5xmI2rkEWC9181AZ8ktHVLjNUy0R/EzHKmqbU2+UQTKobCPoR8EkyLQnUSNP7zVbtw9W1VisOGHj8saqewc3LpnDt2DfQFFbw6s4LTiyls6vO3ra88n6a5lTJG0alkb79kFBndwnjejIshFosoIijtBLu+lTpYDmmP5fCax/c9u5LBSMSPu9+8DW+/eLTjLAfToji7nKnKddMIFhIaBsOKK7oJ1YBfFvHUsQVsHghix0i4qve5eMzOMHt5Otb0kb/tzvpYDRuEbTloOD6XwHkD7VUFXQ5JaI5bKaEaRXe8IxE/PnLD9oLiwDdsH8RX/+fPYM+mnoZfWy2wmEO8DjGHtJNjP9YXyLEc5lZUjPT4IIkCzhtcP/dWNWRrHVrnWmJFeGyCHov3zMdVTAwEqi5cvWA0AkUU8PJ05amQ3UZXi0NfUEFGt3Do7AresH2w1ZdTNZLY+ElwpkWR0syibqVSEEJw7Y6htqsozyfrVqqf5XDZ5j4cnI65gjO7ksGGiL/cS9ctLJ21lUHpxaSGgaDsththQenFpIaBUPXFeT5JxIWjEbzExaGArhYH5hb5xK278NEbtrf4aqpHacIkOPZl6yRfOSPiBqTrF3O4601bEVcN/P3DrwNwxKGndRXEjWS0NwBJIA0VB0pp0Xb6gD0jI5bW0R9S3EJMNsQpmtTchIlquXTCFvZSP69b6WpxeOclm/DMJ2/Cx27c0fa7XS9SEybBMXFo9/jBWggqIkSB1CWVNa2b8EkCrtjcj1/8mfNw/9OnsP/0IlYyBkZ6OtNyEAWC/pCC5QYWj33v5bO4+p4f52SDMZadRIKBHHEwoBkW4hkjpzlkNVwy3oekZuLEPK938NLV4iAIJGcIyHrBniFNG9oZM5FhlkP7TMCrF4QQ9Pil+riVNNOdSfzxW3ch5JNwj9OPakOHigNgC2yl2c21cDqaRDSpFZ0dweoS+oO5AWnWCme14nDZhB2Ufmk6VssldxxdLQ7rla2DIWimhQcPNG6aWUK1d2eriTmsJyJ+uU4BaRNBJxOpNyDjXZducgcKbexgcQjIolsd3ghYN9tokb5HrC+W13JIaYZ77mrdStuGwggqIl6d4eLghYvDOuR9eydw9ZYBfOq7r2K6QRkj8UznxhwAoCcg1S2V1e/p9vreK8fdx50acwDsBpbpIi6fesHcScUaJDILoT+oIKwwy8HMEY3VwLqz1sOS7CS4OKxDRIHgMz9/KZKagW/+tD4N5PLp5JgDYGcs1cty8HZcvWyiz82x79SYA9B4t1LGGZJUzK0U9YhA0MlWSqqG22+JFWmuhpBPLDmLulvh4rBOmRgIoseZq1ArmmEVfDESHW45ROoVc9BNBD2WAyEEv3b9dlyxuc9t09GJBGSpoW4l1XErFbUcnGN2l117rGpSNTyWw+ottqAiFZ0L0c1wcVjHhH1S0SlYq+Vvf/Qa3v/5Z3KOuamsHbrA9fjlujXey69+fu+V4/j3j75xXWXArZaGu5WM0uKwmNQRUkT3c2ffg8WkBoEAfYHVJ1GEfVJDLaH1CBeHdUy9gqqnFpI4fDaeUzvBYg6sArXT6AnIdWu857UcuoWgLCLVwJ02izksFAlIL6W0nOluzCUUTWroDyoQhNWLclDhbqV8uDisYyI+qS4L3HJad3vlMBKqgZBTD9CJRPz2brPWwqdUXsyhWwgojc1WUl3LQcXpaBKffujVnCpob0ZSSJGQUE1EE+qqg9Hue/i4WykfLg7rmIi/PuIQc4qKvBWviUzxjqydAhtilKjx80vrJgIdal2Vo1nZStGkhu8fPIv7nj6F3/raAZgWLbAcwj4J8YzutM5YqziISKncreSFi8M6JuyvT8xhOVVEHEo03esUQo4rqNbdYn62UrcQlEXoJm1YGxeViUNCw4n5JESB4JHX5vC5x445fZWyIrBrYwQHz8RwbiWzpkwlgFkf3HLwwsVhHROpgzhQShFL235drzjYsxw6rzqa4W27sFYopQXZSt0CqwqvxXr45k+nSrbgYG6laFLF8fkErtrSj2u3D+I7L85gKZlrOdx0wQhSmompxfSaLYegIkE1rIa3pVlPcHFYx4R9dkC6ljYaad10O7xO5biV9KKzHDoFZhUla/Cba6YF06LuQtlNuOKwxs/vzHIav//tl/HtF4pX+TO3Uka3cORcHNuHw7jpghEcm0sgqZk5InDt9iH4nOmDa0ljBeB2d0010FW23uDisI6J+CXoZnYK1lpY9tRJdJNbie32a7EcMpr9uXfSIJ9qYZ/fWtM/F50spJkSE9gyuuUmQ6Q0E9uGw7ju/GH3+X6PWymgiG7L/dW2zmDUw5LsNLg4rGMidZiFzMRhKOzrqoB0PRYD5lLpSreSnO1ptBYWU+XFQTXMnN5U24dD2DkSdo8NhHJdnjddMAJgbdXRgHezwC0HBheHdQwTh1riDstOvOHS8V7E0jpijljEO9xycMWhhoA0Wxi7MSDN3ErFWmpXA6tynollij6f0S2M9nrFIQxCCN68cwhAruUAAP/j4lHcsGsYV57Xv6brCftqE7tOhIvDOoa1066lEG7FSWO9yJmlO7WUAqUUCdXo2L5KQNbHXMtOkVkO3RhzqNmtlMy1HB59bdYVDEopMoaJTX12O32fJLiP33bxRkgCKZj3PBT24b4PXb3mFvxBpfaNVqfBxWEd41oOdXArXTJui8PpaApLKR2U2i2oO5X82cNrgQVju9JykGsTB5alNB9XMbOcxq/ctw9ffvY0ADizSoAxZ1Lj1qGQG3+46YIN2P+nb3XFol64AWnuVnLp3K1hF8BM4VpaT7OpWpdN9EEUCA6fXXFF58LRntovsk0JyCII4TGHtVKrW2nRk8L66GtzAOw2LkC2I+tAUIEiCdg+HM55bSM2LfVwM3YaXBzWMT2syreGBS6W1iGLBAMhBReORvDC5BL8sm1QMldTJyIIBEFZrCmVle2aebbS6llKZl2hjxyeBZDNlmOC45cFfPSG7WuOI6yGrCXJLQdGTW4lQsgpQshBQsiLhJB9zrEBQsjDhJCjzt/9nvM/SQg5Rgg5Qgi51XP8Sud9jhFC/pF0cjvLOhJ2s5XWHnNYTunoDSgghODKzf14cWoZByaXsW0o1NFuJcDpp1NLKmsXWw5BN1tp7TEHVqvw1PEoAOC0Iw6sXbdPFvHbbzkfb945XPxN6gibC8ED0lnqEXO4kVJ6GaV0r/PvPwTwCKV0J4BHnH+DELIbwB0A9gC4DcBnCSHsW/U5AHcD2On8ua0O19XxuPNza3ArxdIa+oK2CFxxXj9SmonHX5/HxeOdazUw7GZrtVsO3RiQ9iv20rHmbKWUhj2bbLel5tTpzMdVpDUTqtF8i4xbDoU0IiB9O4D7ncf3A3i35/jXKaUqpfQkgGMAriaEjALooZQ+Q+1S3y95XsMpgyIJ8EkC4jW6lVj/+ys220aeYVFcMt5Xl2tsZ2qd/sUC0mwX3U0oogBRIGveaS+lNGzqDaDf2ZhsHQoBsLPl2Pxov9S8fBlRIPDLAo85eKj106cA/osQsp8QcrdzbAOl9CwAOH+POMfHAHhnWk47x8acx/nHOVVgz3SoLVuJuY/G+wMYCtvtBy7tBstBqRn2KHoAABhNSURBVM2txALSbBfdTRBCnJkOq99pU0qxlNTRH1Lc1NNb92wEYGfLMcvB1+RYTq33Q6dR6139RkrpFQDeBuBjhJDrypxbLI5AyxwvfANC7iaE7COE7Jufn1/91XYgdtvu6mMOS0kNv3Dvszgbs/PLl1M6ep3dGyEEV2zug0CAPZu6QBxq7OGf1kwIxN5FdyN+RVyTWympmdBMCwMh2U1Jve0iWxwmF1tjOQD2/cCnwWWp6dOnlM44f88BeBDA1QBmHVcRnL/nnNOnAUx4Xj4OYMY5Pl7keLGf93lK6V5K6d7h4cYHqdYDq+3MevBMDE8fj+KlqWUAdhFcXyBbbfrRG3fgf91+UVf40e2AdG1FcEFF6uhxoOUIKmuzHLIzoBXsGAljKKzgkrFeRHwSJqNJT7ZSc+/BoCLyIjgPaxYHQkiIEBJhjwHcAuAVAA8BuNM57U4A33UePwTgDkKIjxCyFXbg+XnH9RQnhFzjZCn9kuc1nAqEVzkNjlWmLqd06KaFuGq4AWnArnf44DXn1f0625FQjaMhi82P7iYCa3QrsXtwIKjgN2/egf/4jTdBcKqevZaDT26F5cDFgVFLJG0DgAedXZME4KuU0h8RQn4K4JuEkLsATAJ4HwBQSl8lhHwTwCEABoCPUUrZnfURAPcBCAD4ofOHUwURv4ToQqryiQ4LCRWAXfzGWmd0espqKWpNZbU713axOKzRrbTkFMD1hxQEFcltXbF5IIijc/FstpLU5JiDT3K/E5waxIFSegLApUWORwHcXOI19wC4p8jxfQAuWuu1dDNspkO1eC2H5W4XB0VESjdhWXRNQ+nnVjIYifgrn9ihrNmt5IhD/mCezYNBPHpkLhvob3pAWsTZEl1iu5HujKR1EBG/tKpUViYOsbTmPl5rm+P1TsgngdK1TzObi6sY7lnbcJlOICCvLYC76FRHD+R1Vh2J+KAZFuZWbOvW1+SAdFDhAWkvXBzWOSwgbVnVTYNbSGQth2ii+A6uWwjW2E9nbiWDDV1sOazWrUQpxbf2TeHg9DJEgRR0/R2O2EI7vWTv3pttOYR9Iq9z8MDFYZ3TG5BBqV3MVg2LSSfmkNIRdR6z2oZuI1xD2+6EaiCpmRjpYsvBrnOofjF95cwKPvHAy/jOizPoC8gFrjx2H55ZtmNoTbccaoxBNQPVMPGFJ0/iyLl4w38WF4d1zrZhu7L0hNPRshJuzCGtu6Ma8wendAu1tO2eW7GH1IxEulccAquMORybtxe09++dwIev21bwPBOH6aU0FFFYUxyoFkKKCN2kbjuPdiSa0PAX3zuEFyaXGv6zuq/uv8Ng7YyPzyewfTiEhw/N4r1XjpfMvY+ymENKQzSpoccvQWnyDq1dWMuo0JWMDt2wMBe3ra5uDkiv1q10Yj4JUSD4i3dfVPSeG3JiX2djmZY0Mwx5psEpUntumNw04Ca4grtzVeggxvuDUEQBx+cT+Mpzk/jEAy/j+ZOLRc9VDdOtiYildUSTGga71KUEZBeDl6dj+PWvvoCHXpqpuGv8kwdfwa/cv88Vhw1d7lbSTQrdrG6nfXw+gc0DwZKbkf6gAlEgMC3akvoRdz5Kun1dS2xzN9SEJBIuDuscUSDYOhTC8bkkDjim5ndeLFpg7vbQH+31I6mZmI1lMNilwWjAdiMAwL0/OYHvvXwWv/m1A/irHxwu+5oj5+J49UwMU0576W63HIDq23afmE9iu+MGLYYgEHdH3Ox4A5DN2mOxuHaExQwHQo3flHBx6AC2j4RwfD6BA5N2S4wfHDxbdAfMbvpsnCLRtZlKQNZymIuruP78YewYCbuZMsWglGJyMQXDonj6+AIUSUBPoHs9syzb6FwsU/Fc06I4sZDEtrypbvmwuEMrLIdBZ8Flrpt2pJkZhlwcOoDtw2GcXEgimtTw1t0bEEvreOzIXMF57MZicYqFRJe7lZTswn7zhSPoD8pIqKWzvqJJza2J+OnJJYxEfF3bVwmw5zn7JAH/+tTJiueeWUpDM6yylgOQdZf4m9w6A8guuOx70o5EkxpkkaDH3/hNCReHDsA7Y/c3b9qJ/qCMhw/NFpzHdkTbhrJf0G52KwU9rS9uOH+kYvtzNsYSADTTwoae7nUpAXZdwvuvmsC3X5h2u/yW4vhCAgAqWg7DzmbF1+TWGUDWrbTQzm6lhD1BrxmbEi4OHQATh6AiYvemHmwfLu4eYcGsrZ4vaLdWRwOALApQJAHbhkPYPBh02p+XFgcWZ2DtRro5jZVx93XbQClw39Onyp53fM4Wh+2V3EoR5lZq/tJk93kS3RTvdiSa1JoSbwC4OHQELIZw6XgfRIFgY68f51YK/cCLSRWiQLB5IOge6+aYAwDsHAnj3ZfZs6UqzcZggnvTBfb8Ki4OdrbcnrFevHpmpeQ5Z2NpPHF0AX1BueL95rqVWmA5APb3IdrOMYek2jRrv3ujaR1EyCfhtj0b3UVrtNePHx+eBaU0x/yMJjT0B5WcnjbdWh3N+N5vvMl9zNxK+Z8bYzKawlDYhys29+HBA2cw0uVuJcZEfwAHz8SKPndqIYm3/P3jMCyKD71xS8X3YkHhZrfrdn9+2Od2Lm5HFpMaJvqDlU+sA1wcOoR//uCV7uONvQFkdMueD+0RgmhSw1BYQcQvgRCAUm45eEUg4pdgWBQZ3So67GhqKYWJgQB2b+oBwC0HxuaBIH70yjmYFoWYV9V8KpqEYVF84c69uPnCDRXfy3UrtchyGAopOFtF9lWrWExoTXMFc7dSBzLaa+9o82/y6aU0Rnr8EATi+s27OeaQT8RvfybxEhlLk4spbB4I4vKJfnz6nbvd0ZbdzsRAEIZFiwal3SSICrEGBnMrNXt+NGMgpLRtKqtqmIirRtPcSlwcOpCNjjh4889TmoEj51Zw2bg9G5qJQ7f2VSpGxKl7KBaUNkwLZ2MZTPQHIQgEv/zGra6YdDvMzTG1WFoc8ttzlyKbrdQ6t1I0qYLS6roc14JmWDCr7KYMeFtn8IA0Z40Usxxeno7BosDlm/sBAH0BGX1BGbLIbwEGK+oqJg4zyxmYFs0J5nNsJgYCAGy3Wz5LKQ2iQKouFhwIKZAE4rayaDZDYQW6SbGyitG7a+UD9z5bsSLfS7Nb7POYQwcyHPZBIMA5j5n/4pRdPX3ZRB8Ae7j7aoYEdQOuWykvY0k3LfzZQ69AIMDFjuXFybKpLwCBANOLheKwmNTRH6w+L18SBXzhl6/CBRsj9b7MqmAL72JSa+iERMuiOHgmVhCjKUezh3NxcehAJFHASMSPs7EMXjkTg18WcGByCVsGg+h3bv6P3rC9bE5/N1LKcrjn+4fx2JF5/PV7LsaFoz2tuLS2RhYFjPYGMFWktmYpqWEgtLpF9vrzh+t1aauGdQyIJlRsHSpfzV0LCwkVmmHhTJl2Lfm44sAtB04tbOz1Y2ophTu/+DxMSkEA3LBrxH3+Z7YNtu7i2pSsOGQth4xu4lv7pvCeK8bwgas3t+rS2p6JgUBOBTljMamtq7gWW3gXGlwIx4T03EoGhmnhh6+cQ8Qv5XxHAeD12TjiGQNXntfvptgO8pgDpxZGe/147uQiokkNK2kdSykdl2/ua/VltTVZt1LWcvjJ0QUkNRO3O4VynOJM9AfdCnIviyltXaVLM5dNozOWzizb4mBaFLNxFX/9g8P47GPHC8774wcP4uPfesm9JmkV8Zta4eLQoWzs9bt1DJ/5+UuhSAKu3c6thXKEi2Qr/fDgWfQGZP7ZVWBiIIi5uFow/GcpqbmuzPVAtvleYwvhpj3B+9fPxTETyxSkAqc1Ey9OLWNqMQXdtOwi1ib1VQK4W6ljYRlL77xkFD97+TjecckmnplUAVEgCCmiKw6aYeHhw7O4ZfdG/tlVgGVxTS+lsGPEDiZbFsVSSltXzR19koiIX2p4Cw1v77P/djoon4tlYFnUHY/6wuQSdNNOdZ1ZTuNkNNnUbDl+x3co24fDIAR475UTAMAXtyqxW2jYMYf9p5cQzxi82K0KtjjB2xPz2VnmKxkdFl1/tTTDER9mi/QmqydnltLYOWIXBjJx0E2a0xH22RNR9/HpaArH5xLYUWUxYT3gK0aHctMFI3j84zfy1MtV4u3MeipqL3SsXQanNKz543GPOESbOO+4npw3EMSpaGH8pJ5ML6WwfTiMobCSUzw4s5wVpWdPRLHJ8QC8OLWMaFLDjhEuDpwaIYRg8yAv2FotEb/kts+YXkpBEgg28B5KFenxyxiJ+HBiPuEeW3LEYT3FHADbCjodTTasSppSijPLaYz3BzDWZxcQshblZ51AdVoz8dJUDG+/ZBR+WcAjr9nWxY4NXBw4nJbgHfgzvZTGaJ8fEnfJVcW2YXtcLWO1rTPahS2DIaQ0E/PxxgSlo0kNGd2yxaHfFodrtw8ByGYxHZhcgmZauHb7EM4bCOElp4iVu5U4nBbhdStNL6Ux3setr2rZPhzG8fnsjnsp5YjDOmvuyOInJxeSFc5cPY+/Po//eGkGADDWH8S405dq75Z+BGTRbXnz7IkoBGIfZx6AgCy6lkYz4NlKHI6HXMshhet2tq5ad72xbTiMWFrHTCyDJ16fx9yKvfNeb5bD1kFbHE5HU3UtFk2oBj58/z5opgUAGO8PYGbZXux3bYhgU58fM47l8OyJRVw01ouIX8YWRxy2DYfcTKZmwMWBw/HQ40yDUw0Tc3HV3dlxKrPdCUr/6XdewaOvzaEvKMMvC0VnY7Qzm/r8kEWCk9H6Wg5PvD4PzbTwwWvOQ1Iz3IzCCzZGcPnmfmzqC2AmlkFGt+sbftkZjrTZEatmBqMBLg4cTg5hnwTVsDAZTYFSe3fHqQ42H/pRJ3i6nNLdbJv1hCQKmOgP4lSd3UoPH5pFf1DGp965241jXbCxBz/67esAAJt6A3jt3BxecOIN12wbAADXcmhmvAHgMQcOJwfWX+nQWXsmMheH6hnrC7hzGP7sHbtByPrLVGJsGQrVnM762JE5/O43XoRqmDBMC4++NocbLxgpmeAw2ufHfFzFE68vOPEGWxx2j/ZgJOLDtTuaW6XPLQcOxwPrr/TqjCMOfH5D1QgCwQWjPSAAPvTGLYhnjJbNgq6VLYMhPHsiCkrtsbFfee40PviG86CIAl6YXMZlE31l220nVQO//8DLmIur2DwYxJXn9SOW1nHL7tKjUjf12huRf33qJC4Z70OPn01r9OH5P35LfX/BKuDiwOF4uHSiF4QAX31uktc4rIF7P3glZFEAIQS/9Zadrb6cNbNlKIiUZsed/vu1Ofzl9w9jKOzDUNiHX/zCc/joDdvx+7ddUPL1//z4cczFVVy+uQ//9N/HIAkCBkMK3lwmwYEVW153/jD+5O0X1v13Wi1cHDgcDztGIvjZy8bw7wfOYGIgwGscVslIz/qLMRTjknG7g/GTRxfc9hYPH5pFjzMA6LOPHcfVWwcKWmwDQCyl4/NPnMA7L92ET79zN97x/57Ezg0R/M17LkaozIS7i8Z6cejPb0VQaY9lmd/5HE4ev/PW8yGLpKk55Zz24tLxXoz1BfDggTN48ugCCLFjCP/16jm8dfcGXLAxgj/89kFkdBP/+tRJfPQr+5FwJit+/+BZqIaFu9+8DYNhH576g5vwpV+5GpuquJ/aRRgAbjlwOAVMDATxd++7tGlDVTjtByEE77h0FP/y+AkAwAeunsDXnp9CUjPx7svG0B+S8Qv3Poe//sFhfO35KWimhdkVFfd96Cp858Uz2D4cwkVjtpuombUJ9aRtLAdCyG2EkCOEkGOEkD9s9fVwupvbLxvDm3YOtfoyOC3knZdsAgDIIsEnbr0AQUWETxJww65hXLt9CG/YNoj7nzkNRRLwF7fvwYtTy/jAvc/i+ZOLePdlY02bu9Ao2sJyIISIAP4JwFsBTAP4KSHkIUrpodZeGYfD6Vb2bOrBzpEwxvoDGAgpuPPaLTAt6sYNPn7r+fj5f3kWv/vW8/HBN2zBUNiH3/jaAQDoiMmBpFGdB1d1EYS8AcCnKaW3Ov/+JABQSv+61Gv27t1L9+3b16Qr5HA43ch8XIUsEvSVaAESTagYDGfdj0+8Po+jcwnc9aatzbrEVUMI2U8p3VvpvLawHID/v727i5WqOsM4/n/isTYqKp+NVlpsgkVKVAqJtaWYaLjQmzaxSSGmULxoaWusd37ExKteQNQY5YKSSgNtQ6ihRrBWo6YlpdW2UAh4elKFhpSDpEJEBIymJG8v1pp0wpwD87Hn7D0zzy/ZmZk1e96s9WafeWftM7M2nwUO1z0eBW4pqS9mZkC68M/51BcGSF9DXXx9f6zHVZX/OYx1cq5hSiPpe5J2Sdp17NixCeiWmdlgqkpxGAVm1j2+Fnj33J0iYn1ELIyIhdOn90d1NjOroqoUh78BsyVdJ+lTwFJgW8l9MjMbWJX4n0NEnJV0H/AKcBGwISKGS+6WmdnAqkRxAIiIl4CXyu6HmZlV57SSmZlViIuDmZk1cHEwM7MGlfiFdDsknQL+WUCoacDxAuLUXAmcHKB4UGwOe2G8Rcf0Mdg+5655tVx9PiIu/FuAiOjJDdhVpTh18dYPUryic9gj4y26jz4Gnbuux2s1Vz6tVLztAxavaL0wXuewWvGKVPWxTljuevm00q5oYvGoiYozyJzDzjh/7XPumtdqrnp55rC+YnEGmXPYGeevfc5d81rKVc/OHMzMrHt6eeZgZmZd0nfFQdJMSb+XNCJpWNKPc/sUSa9KeiffTs7tU/P+pyWtrYszSdLeuu24pKfKGtdEKiqH+bllkvZL2ifpZUl9f+3NgvP37Zy7YUlryhjPRGojd0sk7c7H2G5Jt9fFWpDbD0h6Wr1+3c6JVuTXrKqwAVcDX873JwFvA3OBNcBDuf0hYHW+fxmwCFgFrD1P3N3A4rLH10s5JK3d9R4wLT9eQ7riX+lj7JH8TQX+DUzPjzcCd5Q9vorlbj5wTb4/DzhSF+uvwK2k68X8Driz7PH10tZ3M4eIOBoRf8/3TwEjpCvNfYP0x0W+/Wbe50xE7AQ+Hi+mpNnADOCPXex6ZRSYQ+Xtsvyp7QrGuE5Hvykwf18A3o6I2pWtXgPu7nL3S9VG7vZERO2YGgY+LekSSVcDV0TEG5Eqxabaa6w5fVcc6kmaRfpk8RfgMxFxFNIBSHqzb9YyYEs+yAZKJzmMiP8CPwD2k4rCXODZLna3cjo8Bg8AcyTNkjREenObeYHX9I02cnc3sCciPiEVlNG650ZzmzWpb4uDpMuBrcADEfFhh+GWAps771Vv6TSHki4mFYf5wDXAPuDhQjtZYZ3mLyJOkPK3hTRrPQScLbKPVdVq7iR9CVgNfL/WNMZuA/fhrhN9WRzym9JW4FcR8Zvc/J881STfvtdkrJuAoYjY3ZXOVlRBObwZICIO5lnXr4GvdqnLlVLUMRgR2yPiloi4lbSW2Dvd6nNVtJo7SdcCzwPLI+Jgbh4lXW64ZsxLD9v4+q445HPbzwIjEfFk3VPbgBX5/grghSZDLmPAZg0F5vAIMFdSbZGvJaRzyH2tyGNQ0ox8Oxn4IfCzYntbLa3mTtJVwG+BhyPiT7Wd86mnU5K+kmMup/m/eYO+/LbSItL0cR+wN293kb758Trpk9frwJS61xwC3gdOkz5xzK177l/AnLLH1as5JH0DZyTH2g5MLXt8PZa/zcA/8ra07LFVLXfAo8CZun33AjPycwuBt4CDwFryj369Nbf5F9JmZtag704rmZlZ51wczMysgYuDmZk1cHEwM7MGLg5mZtbAxcGsCyStkrS8hf1nSXqrm30ya8VQ2R0w6zeShiJiXdn9MOuEi4PZGPKiby+TFn2bT1o6ejlwA/AkcDlwHPhuRByV9Afgz8DXgG2SJgGnI+JxSTcD64BLST/IujciTkhaAGwAPgJ2TtzozC7Mp5XMxvdFYH1E3Ah8CPwIeAb4VkTU3th/Urf/VRFxW0Q8cU6cTcCDOc5+4LHc/nPg/kjrJplVimcOZuM7HP9fr+eXwCOkC8q8mi8qdhFwtG7/LecGkHQlqWjsyE0bgefGaP8FcGfxQzBrj4uD2fjOXVvmFDB8nk/6Z1qIrTHim1WGTyuZje9zkmqFYBnwJjC91ibp4nwdgXFFxEnghKSv56bvADsi4gPgpKRFuf2e4rtv1j7PHMzGNwKskPRT0mqgzwCvAE/n00JDwFOky1OezwpgnaRLSav8rsztK4ENkj7Kcc0qw6uymo0hf1vpxYiYV3JXzErh00pmZtbAMwczM2vgmYOZmTVwcTAzswYuDmZm1sDFwczMGrg4mJlZAxcHMzNr8D+gZAmcrbNurgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ " sorted_data['inc'][-200:].plot()" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [], "source": [ "first_august_week = [pd.Period(pd.Timestamp(y, 9, 1), 'W')\n", " for y in range(1985,\n", " sorted_data.index[-1].year)]" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [], "source": [ "year = []\n", "yearly_incidence = []\n", "for week1, week2 in zip(first_august_week[:-1],\n", " first_august_week[1:]):\n", " one_year = sorted_data['inc'][week1:week2-1]\n", " \n", " yearly_incidence.append(one_year.sum())\n", " year.append(week2.year)\n", "yearly_incidence = pd.Series(data=yearly_incidence, index=year)" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAD8CAYAAAC2PJlnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAF6FJREFUeJzt3X+QndV93/H3Vz8sYRvZEkgEJGyRsYZakDE2O4LUaRpMg+Q4Y9EJZFQIqA0dWpe0JJMpFoUOHUNnTCcTJww1NVNsC2OMKTEDLVZsWY4nNKUSK2MHC1mREoiQkdF6REF4BoHQt3/cs+hqWe3ee3R1f+y+XzM7e++5z3n23CPtfp7nnPM8NzITSZJqzOh1AyRJg8sQkSRVM0QkSdUMEUlSNUNEklTNEJEkVTNEJEnVDBFJUjVDRJJUbVavG9Bpp556ai5durTXzZCkgbJ169afZebCdutNuRBZunQpw8PDvW6GJA2UiPj7mnoOZ0mSqhkikqRqhogkqZohIkmqZohIkqoZIpJOiH2vvMZvf+EJ9h14rddN0QlkiEg6Ie7YtJMnn9vPHd/Z2eum6ASacteJaHz7XnmN3/vaU9x5xYdZdPLcXjdHU9jZN2/g4KHDbz2/b/Nu7tu8mzmzZrDjto/3sGU6ETwTmSY8KlS3PH7DRXzyvDOYO7vx52Xu7BmsPu8MHv/0RW/b1iGvweeZyBTnUaG6bdG8uZw8ZxYHDx1mzqwZHDx0mJPnzBr3DLj54Oa2f/pLPWitjpchMsU9fsNF3PbN7Xx720957Y3DzJ09g5Xn/AI3feKDvW6aprCfvXqQKy94P1eseB/3b9nNyJgzDQ9upg5DZIpr56hQ6pQvXDX01uPbLj33ba97cDN1GCLTwGRHhVK3eXAzdRgi08BkR4VSL3hwMzVEZva6DR01NDSU3gpektoTEVszc2jyLY/W0hLfiPiDiNgWET+KiK9FxNyIWBARGyNiZ/k+v2n7GyNiV0TsiIiVTeXnR8TT5bU7IiJK+ZyI+Hop3xwRS5vqrC0/Y2dErG33DUqSTpxJQyQiFgP/DhjKzHOBmcAaYB2wKTOXAZvKcyJieXn9HGAV8PmImFl2dxdwLbCsfK0q5dcAL2XmB4DPAbeXfS0AbgEuAFYAtzSHlSSpt1q92HAWcFJEzALeCbwArAbWl9fXA5eWx6uBBzLzYGY+C+wCVkTE6cC8zHwiG2No946pM7qvh4CLy1nKSmBjZu7PzJeAjRwJHklSj00aIpn5E+CPgN3AXuDlzPw2cFpm7i3b7AUWlSqLgeebdrGnlC0uj8eWH1UnMw8BLwOnTLCvo0TEtRExHBHDIyMjk70lSVKHtDKcNZ/GmcJZwBnAuyLidyaqMk5ZTlBeW+dIQebdmTmUmUMLF7b9OfOS1HHT5ZYurQxn/RPg2cwcycw3gG8A/xB4sQxRUb7vK9vvAc5sqr+ExvDXnvJ4bPlRdcqQ2XuA/RPsS5o2pssfo6lmutyvrpUQ2Q1cGBHvLPMUFwPbgUeB0dVSa4FHyuNHgTVlxdVZNCbQt5QhrwMRcWHZz9Vj6ozu6zLgu2Xe5FvAJRExv5wRXVLKpGljuvwxmirOvnkDS9c9xn2bd5PZuKXL0nWPcfbNG3rdtBNi0osNM3NzRDwEfB84BDwF3A28G3gwIq6hETSXl+23RcSDwDNl++sy882yu08BXwZOAjaUL4B7gK9ExC4aZyBryr72R8StwJNlu89k5v7jesfSgPD+UoNput3SxYsNpT6175XXjvnHyNuD9LebHn6a+7fs5h0zZ/D6m4e5csX7+v4uxbUXG3rbE6lPeX+pwTWdbuliiGja6LdPd2ylPdPpj9FUMp3uV2eIaNrotw9AaqU90+mPkQaTcyKa8sZOUI/q1QR1v7WnRr+d1en4ndAbMEqDrJ3P/J6O7anhsmONcjhLU16/TVD3W3va4bJjjeWZiKaF0Qnqh//NR7nygvcz8upB21NhKpxFqbM8E9G00G8T1P3WnlYN8lmUTgxDRFJbXHasZq7OkiS5OkuS1H2GiKS3eNt5tcsQkfQWr/9Qu5xYl+T1H6rmmYgkr/9QNUNE0rS5/sM5n84zRCQBg3sVfTuc8+k8rxORNOVNhTsnn2heJyJJx9DOnI9DXu0xRNTX/IVWJ7Qz5+OQV3tc4qu+1sqn//kBSWrFZPf8cplzHedE1JfaGcO++eGn+eqW3Vy54n198bG3Gkz7XnmN2765nW9v+ymvvXGYubNnsPKcX+CmT3xwWhyc1M6JeCaivvT4DRcd8xd6lEeO6qTpssy505wTUV9q5RfaC+TUadNhmXOneSaitnRz/mGyMWyPHNVpg/phYb1kiKgtrUx0d0orv9B+QJLUW06sqyXtXqzliilpsHixoU6oducfXGsvTQ+GiN4y0YV9rc4/nH3zBpaue4z7Nu8ms7Fiaum6xzj75g3dehuaYrzgtL8ZInrLZGcPraxcccWUOs2z2v7mnIg6fnO6mx5+mvu37OYdM2fw+puHvQiwTwzaPJU3Tewu50RUrdNnD661775WhnwG7Yjes9rB4BJfdfx6C9fad99ES68H9cr+dv5fDtpZ1lRiiAjweotB1UpAtHILmX7V6v/Lbl6/pKM5JyI1aeWItp+Oelu9aeBUnady3qRznBOROqCVeYN+mltodchnqs5TOW/Sew5nSbQ2LNSvcwutDPlM1Xkq75/Wey2diUTEeyPioYj4cURsj4hfjogFEbExInaW7/Obtr8xInZFxI6IWNlUfn5EPF1euyMiopTPiYivl/LNEbG0qc7a8jN2RsTazr116YhWjmj79aj3C1cNcdul57L8jHncdum5RwXGdNCLsywvgDyi1eGsPwX+PDP/AfAhYDuwDtiUmcuATeU5EbEcWAOcA6wCPh8RM8t+7gKuBZaVr1Wl/Brgpcz8APA54PayrwXALcAFwArgluawkjqllSNaj3r7Uy9CtJ+GNHtt0uGsiJgH/CrwzwEy83Xg9YhYDfxa2Ww98D3g08Bq4IHMPAg8GxG7gBUR8RwwLzOfKPu9F7gU2FDq/Keyr4eAO8tZykpgY2buL3U20gierx3He5bG1cqwkKvYprd+HdLspVbmRH4RGAG+FBEfArYC1wOnZeZegMzcGxGLyvaLgf/bVH9PKXujPB5bPlrn+bKvQxHxMnBKc/k4daSOamXeYKrOLag1g7xc+kRpZThrFvAR4K7M/DDwc8rQ1THEOGU5QXltnSM/MOLaiBiOiOGRkZEJmiZJ9RzSfLtWQmQPsCczN5fnD9EIlRcj4nSA8n1f0/ZnNtVfArxQypeMU35UnYiYBbwH2D/Bvo6SmXdn5lBmDi1cuLCFtyRJdfp1uXSvJvsnDZHM/CnwfEScXYouBp4BHgVGV0utBR4pjx8F1pQVV2fRmEDfUoa+DkTEhWW+4+oxdUb3dRnw3WxcBfkt4JKImF8m1C8pZZLUE/26Gq5Xk/2tXifyb4GvRsQ7gL8D/gWNAHowIq4BdgOXA2Tmtoh4kEbQHAKuy8w3y34+BXwZOInGhProh0zcA3ylTMLvp7G6i8zcHxG3Ak+W7T4zOskuSer9ZL+3PZGkAdbqrW8m421PNHC8YEs6fr2e7DdE1DNesCV1Ri8n+x3OUtd551Wp/zicNY0N2rBQv96DSlL7DJEpYNCGhXo9hiv1k0E7CBzLW8EPsF4v7Tse3oNKahj0T2V0TmSAdWppn6Tua2dusBufpumcyDTksJA0uNqZG+znIWuHswacw0LSYGrlIHAQhqwNkQHnrcmlwTXZQeAg3HreEJGkHpnsIHAQhqwNEUnqY/0+ZO3qLOkE6MZqGqmTXJ0l9ZF+Xk0jdZLDWVIHDcJqGqmTPBOROsj7gmm6MUSkDhqE1TRSJzmcJXVYv6+mkTrJ1VmSJFdnSZK6zxCRJFUzRCRJ1QwRSVI1Q0SSVM0QkSRVM0QkSdUMEUlSNUNEklTNEJEkVTNEJEnVDBFJUjVDRJJUzRCRJFUzRCRJ1QwRSVI1Q0SSVM0QkSRVM0QkSdVaDpGImBkRT0XE/yrPF0TExojYWb7Pb9r2xojYFRE7ImJlU/n5EfF0ee2OiIhSPicivl7KN0fE0qY6a8vP2BkRazvxpiVJndHOmcj1wPam5+uATZm5DNhUnhMRy4E1wDnAKuDzETGz1LkLuBZYVr5WlfJrgJcy8wPA54Dby74WALcAFwArgFuaw0qS1FsthUhELAE+Afz3puLVwPryeD1waVP5A5l5MDOfBXYBKyLidGBeZj6RmQncO6bO6L4eAi4uZykrgY2ZuT8zXwI2ciR4JEk91uqZyJ8ANwCHm8pOy8y9AOX7olK+GHi+abs9pWxxeTy2/Kg6mXkIeBk4ZYJ9SZL6wKQhEhG/CezLzK0t7jPGKcsJymvrNLfx2ogYjojhkZGRFpspSTperZyJfBT4ZEQ8BzwAfCwi7gNeLENUlO/7yvZ7gDOb6i8BXijlS8YpP6pORMwC3gPsn2BfR8nMuzNzKDOHFi5c2MJbkiR1wqQhkpk3ZuaSzFxKY8L8u5n5O8CjwOhqqbXAI+Xxo8CasuLqLBoT6FvKkNeBiLiwzHdcPabO6L4uKz8jgW8Bl0TE/DKhfkkpkyT1gVnHUfezwIMRcQ2wG7gcIDO3RcSDwDPAIeC6zHyz1PkU8GXgJGBD+QK4B/hKROyicQaypuxrf0TcCjxZtvtMZu4/jjZLkjooGgf8U8fQ0FAODw/3uhmSNFAiYmtmDrVbzyvWJUnVDBFJUjVDRJJUzRCRJFUzRCRJ1QwRSVI1Q0SSVM0QkSRVM0QkSdUMEUlSNUNEklTNEJEkVTNEJEnVDBFJUjVDRJJUzRCRJFUzRCRJ1QwRSVI1Q0SSVM0QkSRVM0QkSdUMEUlSNUNEklTNEJEkVTNEJEnVDBFJUjVDRJJUzRCRJFUzRCRJ1QwRSVI1Q0SSVM0QkSRVM0QkSdUMEUlSNUNEklTNEJEkVTNEJEnVDBFJUrVJQyQizoyIv4iI7RGxLSKuL+ULImJjROws3+c31bkxInZFxI6IWNlUfn5EPF1euyMiopTPiYivl/LNEbG0qc7a8jN2RsTaTr55SdLxaeVM5BDwh5n5QeBC4LqIWA6sAzZl5jJgU3lOeW0NcA6wCvh8RMws+7oLuBZYVr5WlfJrgJcy8wPA54Dby74WALcAFwArgFuaw0qS1FuThkhm7s3M75fHB4DtwGJgNbC+bLYeuLQ8Xg08kJkHM/NZYBewIiJOB+Zl5hOZmcC9Y+qM7ush4OJylrIS2JiZ+zPzJWAjR4JHktRjbc2JlGGmDwObgdMycy80ggZYVDZbDDzfVG1PKVtcHo8tP6pOZh4CXgZOmWBfkqQ+0HKIRMS7gT8Dfj8zX5lo03HKcoLy2jrNbbs2IoYjYnhkZGSCpkmSOqmlEImI2TQC5KuZ+Y1S/GIZoqJ831fK9wBnNlVfArxQypeMU35UnYiYBbwH2D/Bvo6SmXdn5lBmDi1cuLCVtyRJ6oBWVmcFcA+wPTP/uOmlR4HR1VJrgUeayteUFVdn0ZhA31KGvA5ExIVln1ePqTO6r8uA75Z5k28Bl0TE/DKhfkkpkyT1gVktbPNR4Crg6Yj4QSn7D8BngQcj4hpgN3A5QGZui4gHgWdorOy6LjPfLPU+BXwZOAnYUL6gEVJfiYhdNM5A1pR97Y+IW4Eny3afycz9le9VktRh0TjgnzqGhoZyeHi4182QpIESEVszc6jdel6xLkmqZohIkqoZIpKkaoaIJKmaISJJqmaISJKqGSKSpGqGiCSpmiEiSapmiEiSqhkikqRqhogkqZohIkmqZohIkqoZIpKkaoaIJKmaISJJqmaISJKqGSKSpGqGiCSpmiEiSapmiEiSqhkikqRqhogkqZohIkmqZohIkqoZIpKkaoaIJKmaISJJqmaISJKqGSKSpGqGiCSpmiEiSapmiEiSqhkikqRqhogkqZohIkmqZohIkqoNRIhExKqI2BERuyJiXa/bI0lq6PsQiYiZwH8FPg4sB/5ZRCw/ET9r3yuv8dtfeIJ9B17ri23a2U6SeqHvQwRYAezKzL/LzNeBB4DVJ+IH3bFpJ08+t587vrOzL7ZpZztJ6oXIzF63YUIRcRmwKjP/ZXl+FXBBZv7eeNsPDQ3l8PBwWz/j7Js3cPDQ4beVz5k1gx23fbzr27SznSR1QkRszcyhdusNwplIjFN2VPJFxLURMRwRwyMjI23/gMdvuIhPnncGc2c3umPu7BmsPu8MHv/0RT3Zpp3tJKmXBiFE9gBnNj1fArzQvEFm3p2ZQ5k5tHDhwrZ/wKJ5czl5ziwOHjrMnFkzOHjoMCfPmcWik+f2ZJt2tpOkXprV6wa04ElgWUScBfwEWANc0ekf8rNXD3LlBe/nihXv4/4tuxkZZyK7m9u0s50k9Urfz4kARMRvAH8CzAS+mJn/+Vjb1syJSNJ0VzsnMghnImTmN4Fv9rodkqSjDcKciCSpTxkikqRqhogkqZohIkmqZohIkqoNxBLfdkTECPD347x0KvCzLjenUwa17ba7u2x3d021dr8/M9u+WnvKhcixRMRwzRrofjCobbfd3WW7u8t2NzicJUmqZohIkqpNpxC5u9cNOA6D2nbb3V22u7tsN9NoTkSS1HnT6UxEktRhAx0iEfHFiNgXET9qKvtQRDwREU9HxP+MiHmlfHZErC/l2yPixqY634uIHRHxg/K1qI/a/Y6I+FIp/2FE/FpTnfNL+a6IuCMixvsAr35sd7f7+8yI+Ivy774tIq4v5QsiYmNE7Czf5zfVubH0646IWNlU3rU+73C7u9bn7bY7Ik4p278aEXeO2Vff9vck7e7n/v71iNha+nVrRHysaV/t93dmDuwX8KvAR4AfNZU9Cfzj8vh3gVvL4yuAB8rjdwLPAUvL8+8BQ33a7uuAL5XHi4CtwIzyfAvwyzQ+/XED8PEBaXe3+/t04CPl8cnA3wDLgf8CrCvl64Dby+PlwA+BOcBZwN8CM7vd5x1ud9f6vKLd7wJ+BfjXwJ1j9tXP/T1Ru/u5vz8MnFEenwv85Hj6e6DPRDLzL4H9Y4rPBv6yPN4I/Nbo5sC7ImIWcBLwOvBKN9o5VpvtXg5sKvX2Af8PGIqI04F5mflENv717wUu7fd2n8j2HUtm7s3M75fHB4DtwGJgNbC+bLaeI/23msYBx8HMfBbYBazodp93qt0nqn3H0m67M/Pnmfm/gaM+da3f+/tY7e62inY/lZmjnw67DZgbEXNq+3ugQ+QYfgR8sjy+nCMfrfsQ8HNgL7Ab+KPMbP6D+KVy2vkfT/Sw0DEcq90/BFZHxKxofLrj+eW1xTQ+OnjUnlLWbe22e1RP+jsiltI4EtsMnJaZe6Hxi0jjjAka/fh8U7XRvu1Znx9nu0d1vc9bbPex9Ht/T2YQ+vu3gKcy8yCV/T0VQ+R3gesiYiuNU7vXS/kK4E3gDBqn+n8YEb9YXrsyM38J+Efl66ruNhk4dru/SOMfc5jGpzv+H+AQjdPNsXqx1K7ddkOP+jsi3g38GfD7mTnRWeix+rYnfd6BdkMP+ryNdh9zF+OU9VN/T6Tv+zsizgFuB/7VaNE4m03a31MuRDLzx5l5SWaeD3yNxrgwNOZE/jwz3yjDK39FGV7JzJ+U7weA++nNEMC47c7MQ5n5B5l5XmauBt4L7KTxB3pJ0y6WAC+M3W8ftrsn/R0Rs2n8gn01M79Ril8sp/CjQyf7Svkejj5rGu3brvd5h9rd9T5vs93H0u/9fUz93t8RsQR4GLg6M0f/Rlb195QLkdFVEBExA7gZ+G/lpd3Ax6LhXcCFwI/LcMuppc5s4DdpDNH0Rbsj4p2lvUTErwOHMvOZcnp6ICIuLKfKVwOP9Hu7e9HfpX/uAbZn5h83vfQosLY8XsuR/nsUWFPGic8ClgFbut3nnWp3t/u8ot3jGoD+PtZ++rq/I+K9wGPAjZn5V6MbV/f3ZDPv/fxF48h3L/AGjRS9BriexuqEvwE+y5ELKt8N/A8aE0nPAP8+j6yw2Ar8dXntTykrWvqk3UuBHTQmy75D406bo/sZovGf82+BO0fr9HO7e9Tfv0LjtPyvgR+Ur98ATqEx+b+zfF/QVOem0q87aFqh0s0+71S7u93nle1+jsaijVfL/63lA9Lfb2t3v/c3jYO9nzdt+wNgUW1/e8W6JKnalBvOkiR1jyEiSapmiEiSqhkikqRqhogkqZohIkmqZohIkqoZIpKkav8fPVSNLoPTwy4AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "yearly_incidence.plot(style='*')" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "1986 0\n", "1987 0\n", "1988 0\n", "1989 0\n", "1990 0\n", "2002 516689\n", "2018 542312\n", "2017 551041\n", "1991 553090\n", "1996 564901\n", "2019 584066\n", "2015 604382\n", "2000 617597\n", "2001 619041\n", "2012 624573\n", "2005 628464\n", "2006 632833\n", "2011 642368\n", "1993 643387\n", "1995 652478\n", "1994 661409\n", "1998 677775\n", "1997 683434\n", "2014 685769\n", "2013 698332\n", "2007 717352\n", "2008 749478\n", "1999 756456\n", "2003 758363\n", "2004 777388\n", "2016 782114\n", "2010 829911\n", "1992 832939\n", "2009 842373\n", "dtype: int64" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "yearly_incidence.sort_values()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }