From 0a612aa738003fe6e5652698004a970417b19414 Mon Sep 17 00:00:00 2001 From: 16fd6933414ad4ae0fb1412e7effdbc7 <16fd6933414ad4ae0fb1412e7effdbc7@app-learninglab.inria.fr> Date: Sun, 14 Jun 2020 15:15:40 +0000 Subject: [PATCH] Replace toy_document_fr.Rmd --- module2/exo1/toy_document_fr.Rmd | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/module2/exo1/toy_document_fr.Rmd b/module2/exo1/toy_document_fr.Rmd index ed14731..22ba455 100644 --- a/module2/exo1/toy_document_fr.Rmd +++ b/module2/exo1/toy_document_fr.Rmd @@ -11,7 +11,7 @@ - + On the computation of pi @@ -365,7 +365,7 @@ summary {

On the computation of pi

Tegegne

-

June 13, 2020

+

14 june 2020

@@ -373,6 +373,7 @@ summary {

Asking the maths library

My computer tells me that \(\pi\) is approximatively

+
pi  
## [1] 3.141593
@@ -394,8 +395,7 @@ df = data.frame(X = runif(N), Y = runif(N)) df$Accept = (df$X**2 + df$Y**2 <=1) library(ggplot2) ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + theme_bw() -

-

It is then straightforward to obtain a (not really good) approximation to \(\pi\) by counting how many times, on average, \(X^2 + Y^2\) is smaller than 1:

+

It is then straightforward to obtain a (not really good) approximation to \(\pi\) by counting how many times, on average, \(X^2 + Y^2\) is smaller than 1:

4*mean(df$Accept)   
## [1] 3.156
-- 2.18.1