From b20d1229a5c280f7c8e44281f065447df1068c96 Mon Sep 17 00:00:00 2001 From: 16fd6933414ad4ae0fb1412e7effdbc7 <16fd6933414ad4ae0fb1412e7effdbc7@app-learninglab.inria.fr> Date: Sun, 14 Jun 2020 15:26:01 +0000 Subject: [PATCH] Replace toy_document_fr.Rmd --- module2/exo1/toy_document_fr.Rmd | 486 +++---------------------------- 1 file changed, 37 insertions(+), 449 deletions(-) diff --git a/module2/exo1/toy_document_fr.Rmd b/module2/exo1/toy_document_fr.Rmd index 22ba455..cb6727f 100644 --- a/module2/exo1/toy_document_fr.Rmd +++ b/module2/exo1/toy_document_fr.Rmd @@ -1,449 +1,37 @@ - - - - -
- - - - - - - - - - -My computer tells me that \(\pi\) is approximatively
-pi
-## [1] 3.141593
-Applying the method of Buffon’s needle, we get the approximation
-set.seed(42)
-N = 100000
-x = runif(N)
-theta = pi/2*runif(N)
-2/(mean(x+sin(theta)>1))
-## [1] 3.14327
-A method that is easier to understand and does not make use of the \(\sin\) function is based on the fact that if \(X\sim U(0,1)\) and \(Y\sim U(0,1)\), then \(P[X^2+Y^2\leq 1] = \pi/4\) (see “Monte Carlo method” on Wikipedia). The following code uses this approach:
-set.seed(42)
-N = 1000
-df = data.frame(X = runif(N), Y = runif(N))
-df$Accept = (df$X**2 + df$Y**2 <=1)
-library(ggplot2)
-ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + theme_bw()
- It is then straightforward to obtain a (not really good) approximation to \(\pi\) by counting how many times, on average, \(X^2 + Y^2\) is smaller than 1:
4*mean(df$Accept)
-## [1] 3.156
-