Fix analysis

parent 599ba9ff
...@@ -344,7 +344,7 @@ ...@@ -344,7 +344,7 @@
"outputs": [ "outputs": [
{ {
"data": { "data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEKCAYAAAAfGVI8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAYAElEQVR4nO3dfZRddX3v8fdnkiEPJEJMvCMlQbBErlRyEYaHXGqd1IcGu0xq4Sp0IeoV4r2X3Cq6KtTrolyqaxVapVcvVVNKFbQOD7E4rWlRiqPYK5BEQoDQ4BQwTMAAYwgZCMlM5nv/OHv0zHBmZp/J7HPmnN/ntVZWzt77d/b5/s6eM5/ZD+e3FRGYmVm6WupdgJmZ1ZeDwMwscQ4CM7PEOQjMzBLnIDAzS5yDwMwscYUFgaQbJD0j6aExlkvSFyT1SNoq6ZSiajEzs7EVuUfwVWDlOMvPBpZm/9YAXyqwFjMzG0NhQRARPwR+MU6T1cCNUXIPcKSko4qqx8zMKptZx9c+GniybLo3m/f06IaS1lDaa2DOnDmnLlmypCYF5jU0NERLS/OdbmnWfkHz9s39ajy16tujjz76XES8ptKyegZBbhGxDlgH0N7eHps2bapzRSN1d3fT0dFR7zKmXLP2C5q3b+5X46lV3yT9bKxl9YzYnUD5n/aLs3lmZlZD9QyCLuDC7OqhM4E9EfGKw0JmZlaswg4NSfom0AEsktQL/AnQChARXwY2AO8CeoCXgA8VVYuZmY2tsCCIiPMnWB7AJUW9vpmZ5dOcp+HNzCw3B4GZWeIcBGZmiXMQmJklzkFgZpY4B4GZWeIcBGZmiXMQmJklzkFgZpY4B4GZWeIcBGZmiXMQmJklzkFgZpY4B4GZWeIcBGZmiXMQmJklzkFgZpY4B4GZWeIcBGZmiXMQmJklzkFgZpY4B4GZWeIcBGZmiXMQmJklzkFgZpY4B4GZWeIcBGZmiXMQmJklzkFgZpY4B4GZWeIcBGZmiXMQmJklzkFgZpY4B4GZWeIcBGZmiSs0CCStlLRdUo+kyyssP0bS9yXdL2mrpHcVWY+Zmb1SYUEgaQZwHXA2cCJwvqQTRzX7NHBLRLwZOA/4q6LqMTOzyorcIzgd6ImIxyLiANAJrB7VJoBXZY+PAJ4qsB4zM6tAEVHMiqVzgZURcVE2/X7gjIhYW9bmKOC7wALgcODtEbG5wrrWAGsA2traTu3s7Cyk5snq7+9n3rx59S5jyjVrv6B5++Z+NZ5a9W3FihWbI6K90rKZhb/6+M4HvhoRn5O0HLhJ0psiYqi8UUSsA9YBtLe3R0dHR+0rHUd3dzfTraap0Kz9gubtm/vVeKZD34o8NLQTWFI2vTibV+7DwC0AEfFjYDawqMCazMxslCKDYCOwVNJxkg6jdDK4a1SbHcDbACS9kVIQPFtgTWZmNkphQRARg8Ba4A7gEUpXBz0s6SpJq7JmnwAulvQA8E3gg1HUSQszM6uo0HMEEbEB2DBq3hVlj7cBZxVZg5mZjc/fLDYzS5yDwMwscQ4CM7PEOQjMzBLnIDAzS5yDwMwscQ4CM7PEOQjMzBLnIDAzS5yDwMwscQ4CM7PEOQjMzBLnIDAzS5yDwMwscQ4CM7PEOQjMzBLnIDAzS5yDwMwscQ4CM7PEOQjMzBLnIDAzS5yDwMwscQ4CM7PEOQjMzBLnIDAzS5yDwMwscQ4CM7PEOQjMzBLnIDAzS5yDwMwscQ4CM7PEOQjMzBLnIDAzS5yDwMwscYUGgaSVkrZL6pF0+Rht3itpm6SHJf1dkfWYmdkrzSxqxZJmANcB7wB6gY2SuiJiW1mbpcAfA2dFxG5J/6GoeszMrLJcewSSTprEuk8HeiLisYg4AHQCq0e1uRi4LiJ2A0TEM5N4HTMzOwSKiIkbSXcDs4CvAt+IiD05nnMusDIiLsqm3w+cERFry9rcDjwKnAXMAK6MiH+usK41wBqAtra2Uzs7OyfuWQ319/czb968epcx5Zq1X9C8fXO/Gk+t+rZixYrNEdFeaVmuQ0MR8ZbsMM5/BTZLug/424j43iHWNhNYCnQAi4EfSjopIp4f9frrgHUA7e3t0dHRcYgvO7W6u7uZbjVNhWbtFzRv39yvxjMd+pb7ZHFE/BT4NHAZ8FbgC5L+TdLvj/GUncCSsunF2bxyvUBXRAxExOOU9g6W5q3JzMwOXd5zBMskXQs8Avw28O6IeGP2+NoxnrYRWCrpOEmHAecBXaPa3E5pbwBJi4A3AI9V2wkzM5u8vFcNfRG4HvhUROwbnhkRT0n6dKUnRMSgpLXAHZSO/98QEQ9LugrYFBFd2bJ3StoGHAT+KCL6DqE/ZmZWpbxB8LvAvog4CCCpBZgdES9FxE1jPSkiNgAbRs27ouxxAB/P/pmZWR3kPUdwJzCnbHpuNs/MzBpc3iCYHRH9wxPZ47nFlGRmZrWUNwhelHTK8ISkU4F947Q3M7MGkfccwceAWyU9BQh4LfC+wqoyM7OayfuFso2S/iNwQjZre0QMFFeWmZnVSjWDzp0GHJs95xRJRMSNhVRlZmY1kysIJN0E/DqwhdL1/gABOAjMzBpc3j2CduDEyDNCnZmZNZS8Vw09ROkEsZmZNZm8ewSLgG3ZqKP7h2dGxKpCqjIzs5rJGwRXFlmEmZnVT97LR38g6XXA0oi4U9JcSgPJmZlZg8s7DPXFwG3AV7JZR1MaQtrMzBpc3pPFl1C6neQL8Mub1PhG82ZmTSBvEOzPbkAPgKSZlL5HYGZmDS5vEPxA0qeAOZLeAdwK/ENxZZmZWa3kDYLLgWeBB4GPULrZTMU7k5mZWWPJe9XQEPDX2T8zM2sieccaepwK5wQi4vVTXpGZmdVUNWMNDZsN/Bfg1VNfjpmZ1VqucwQR0Vf2b2dE/CWlG9qbmVmDy3to6JSyyRZKewjV3MvAzMymqby/zD9X9ngQeAJ475RXY2ZmNZf3qqEVRRdiZmb1kffQ0MfHWx4Rn5+acszMrNaquWroNKArm343cB/w0yKKMjOz2skbBIuBUyJiL4CkK4HvRMQFRRVmZma1kXeIiTbgQNn0gWyemZk1uLx7BDcC90n6+2z694CvFVOSmZnVUt6rhj4r6Z+At2SzPhQR9xdXlpmZ1UreQ0MAc4EXIuL/AL2SjiuoJjMzq6G8t6r8E+Ay4I+zWa3A14sqyszMaifvHsF7gFXAiwAR8RQwv6iizMysdvIGwYGICLKhqCUdXlxJZmZWS3mD4BZJXwGOlHQxcCe+SY2ZWVOYMAgkCbgZuA1YD5wAXBERX8zx3JWStkvqkXT5OO3OkRSS2sdqY2ZmxZjw8tGICEkbIuIk4Ht5VyxpBnAd8A6gF9goqSsito1qNx/4KHBvVZWbmdmUyHto6CeSTqty3acDPRHxWEQcADqB1RXa/SlwNfByles3M7MpkPebxWcAF0h6gtKVQ6K0s7BsnOccDTxZNt2breeXshveLImI70j6o7FWJGkNsAagra2N7u7unGXXRn9//7SraSo0a7+gefvmfjWe6dC3cYNA0jERsQP4nal+YUktwOeBD07UNiLWAesA2tvbo6OjY6rLOSTd3d1Mt5qmQrP2C5q3b+5X45kOfZtoj+B2SqOO/kzS+og4p4p17wSWlE0vzuYNmw+8CegunY/mtUCXpFURsamK1zEzs0Mw0TkClT1+fZXr3ggslXScpMOA8/jV/QyIiD0RsSgijo2IY4F7AIeAmVmNTRQEMcbjCUXEILAWuAN4BLglIh6WdJWkVdWVaWZmRZno0NB/kvQCpT2DOdlj+NXJ4leN9+SI2ABsGDXvijHaduSq2MzMptS4QRARM2pViJmZ1Uc1w1CbmVkTchCYmSXOQWBmljgHgZlZ4pIJgr7+/Tzw5PP09e+vdylmVoW+/v3sGzjoz26BkgiCb2/ZyVlX38UF19/LWVffRdeWnRM/yczqbviz+/izL/qzW6CmD4K+/v1ctn4rLw8MsXf/IC8PDPHJ9Vv914XZNFf+2T0Y4c9ugZo+CHp376O1ZWQ3W1ta6N29r04VmVke/uzWTtMHweIFcxgYGhoxb2BoiMUL5tSpIjPLw5/d2mn6IFg4bxbXnLOM2a0tzJ81k9mtLVxzzjIWzptV79LMbBzln90Zkj+7Bcp7Y5qGturkoznr+EX07t7H4gVz/INk1iCGP7v3/fhH/Ouq3/RntyBJBAGU/rrwD5FZ41k4bxZzWmf481ugpj80ZGZm43MQmJklzkFgZpY4B4GZWeIcBGZmiXMQmJklzkFgZpY4B4GZWeIcBGZmiXMQmJklzkFgZpY4B4GZWeIcBGZmiXMQmJklzkFgZpY4B4GZWeIcBGZmiXMQmJklzkFgZpY4B4GZWeIcBGZmiSs0CCStlLRdUo+kyyss/7ikbZK2SvoXSa8rsh4zM3ulwoJA0gzgOuBs4ETgfEknjmp2P9AeEcuA24BriqrHzMwqK3KP4HSgJyIei4gDQCewurxBRHw/Il7KJu8BFhdYj5mZVaCIKGbF0rnAyoi4KJt+P3BGRKwdo/3/BX4eEZ+psGwNsAagra3t1M7OzkJqnqz+/n7mzZtX7zKmXLP2C5q3b+5X46lV31asWLE5ItorLZtZ+KvnIOkCoB14a6XlEbEOWAfQ3t4eHR0dtSsuh+7ubqZbTVOhWfsFzds396vxTIe+FRkEO4ElZdOLs3kjSHo78L+At0bE/gLrMTOzCoo8R7ARWCrpOEmHAecBXeUNJL0Z+AqwKiKeKbAWMzMbQ2FBEBGDwFrgDuAR4JaIeFjSVZJWZc3+HJgH3Cppi6SuMVZnZmYFKfQcQURsADaMmndF2eO3F/n6jayvfz+9u/exeMEcFs6bNWVtG0mz9qsoPbv2svulAXp27eX4tvn1LscayLQ4WWwjfXvLTi5bv5XWlhYGhoa45pxlrDr56ENu20iatV9FueL2B7nxnh184qRBLr32h1y4/BiuWn1SvcuyBuEhJqaZvv79XLZ+Ky8PDLF3/yAvDwzxyfVb6et/5Xn0ato2kmbtV1F6du3lxnt2jJh344930LNrb50qskbjIJhmenfvo7Vl5GZpbWmhd/e+Q2rbSJq1X0XZ8uTzVc03G81BMM0sXjCHgaGhEfMGhoZYvGDOIbVtJM3ar6KcvOTIquabjeYgmGYWzpvFNecsY3ZrC/NnzWR2awvXnLOs4snSato2kmbtV1GOb5vPhcuPGTHvwuXH+ISx5eaTxdPQqpOP5qzjF+W6Yqaato2kWftVlKtWn8SFZx7Lg5vv4c5Lz3QIWFUcBNPUwnmzcv/yq6ZtI2nWfhXl+Lb59M5tdQhY1XxoyMwscQ4CM7PEOQjMzBLnIDAzS5yDwMwscQ4CM7PEOQjMzBLnIDAzS5yDwMwscQ4CM7PEOQjMzBLnIDAzS5yDwMwscQ4CM7PEOQjMzBLnIDAzS5yDwMwscQ4CM7PEOQjMzBLnIDAzS5yDwMwscQ4CM7PEOQjMzBLnIDAzS5yDwMwscQ4CM7PEOQjMzBLnIDAzS1yhQSBppaTtknokXV5h+SxJN2fL75V0bJH1mFWrr38/Dzz5PH39+8dtt+nxPj7/3e1serxvytZZbdueXXvZ/dIAPbv2Tti2GkXVW83r7xs4mPs9uG3Tk033HhS5XoCZU77GjKQZwHXAO4BeYKOkrojYVtbsw8DuiDhe0nnA1cD7iqrJrBrf3rKTy9ZvpbWlhYGhIa45ZxmrTj76Fe0uuP4eftRTCoAv3NXDW45fyE0XnXlI66y27RW3P8iN9+zgEycNcum1P+TC5cdw1eqTJtnz4uut9vX/8I0DXHr1Xbneg2HN8h4Uud5hRe4RnA70RMRjEXEA6ARWj2qzGvha9vg24G2SVGBNZrn09e/nsvVbeXlgiL37B3l5YIhPrt/6ir/GNj3e98sQGHZ3T1/FPYO866y2bc+uvSN+AQLc+OMdh/xXcVH1Tub1D0Yk+R4Uud5yiogpW9mIFUvnAisj4qJs+v3AGRGxtqzNQ1mb3mz637M2z41a1xpgTTZ5ArC9kKInbxHw3IStGk+z9gsm6Jta58ydueCoN6ilZcbwvBgaOji4++lHY2DfS8PzZsxf9GszDj/yqNHPP/ji808f3PvcU5NZZ7VtW+YesXDmq15zLMDBl/YwY+4RAAy+8OwTQy/tmfhY1SG+B9W2nczrD/crz3tQrkHegyn5WczhdRHxmkoLCjs0NJUiYh2wrt51jEXSpohor3cdU61Z+wXN2zdJmwb3PON+NZDp8LNY5KGhncCSsunF2byKbSTNBI4AJp3eZmZWvSKDYCOwVNJxkg4DzgO6RrXpAj6QPT4XuCuKOlZlZmYVFXZoKCIGJa0F7gBmADdExMOSrgI2RUQX8DfATZJ6gF9QCotGNG0PWx2iZu0XNG/f3K/GU/e+FXay2MzMGoO/WWxmljgHgZlZ4hwEVZL0hKQHJW2RtCmbd6Wkndm8LZLeVe86J0PSkZJuk/Rvkh6RtFzSqyV9T9JPs/8X1LvOao3Rr4bfZpJOKKt/i6QXJH2s0bfZOP1qhm12qaSHJT0k6ZuSZmcX1NybDbVzc3ZxTW3r8jmC6kh6Amgv/9KbpCuB/oj4i3rVNRUkfQ24OyKuz34Y5wKfAn4REX+WjRe1ICIuq2uhVRqjXx+jCbbZsGxIl53AGcAlNPg2GzaqXx+igbeZpKOBHwEnRsQ+SbcAG4B3Ad+KiE5JXwYeiIgv1bI27xEYAJKOAH6L0pVcRMSBiHiekcOAfA34vfpUODnj9KvZvA3494j4GQ2+zUYp71czmAnMyb43NRd4GvhtSkPsQJ22l4OgegF8V9LmbOiLYWslbZV0Q6PtimeOA54F/lbS/ZKul3Q40BYRT2dtfg601a3CyRmrX9D426zcecA3s8eNvs3KlfcLGnibRcRO4C+AHZQCYA+wGXg+IgazZr3A1I0ml5ODoHq/GRGnAGcDl0j6LeBLwK8DJ1PawJ+rY32TNRM4BfhSRLwZeBEYMXR49mW/RjuWOFa/mmGbAZAd7loF3Dp6WYNuM6Bivxp6m2XBtZrSHye/BhwOrKxrURkHQZWyVCcingH+Hjg9InZFxMGIGAL+mtLIq42mF+iNiHuz6dso/QLdJekogOz/Z+pU32RV7FeTbLNhZwM/iYhd2XSjb7NhI/rVBNvs7cDjEfFsRAwA3wLOAo7MDhVB5aF4CucgqIKkwyXNH34MvBN4aPhDl3kP8FA96jsUEfFz4ElJJ2Sz3gZsY+QwIB8Avl2H8iZtrH41wzYrcz4jD5809DYrM6JfTbDNdgBnSporSfzqM/Z9SkPsQJ22l68aqoKk11PaC4DSIYe/i4jPSrqJ0u5qAE8AHyk7RtswJJ0MXA8cBjxG6SqNFuAW4BjgZ8B7I+IXdStyEsbo1xdojm12OKVfMK+PiD3ZvIU0/jar1K+G/5xJ+t+Ubr41CNwPXETpnEAn8Ops3gURMfW3IRuvLgeBmVnafGjIzCxxDgIzs8Q5CMzMEucgMDNLnIPAzCxxDXHzerO8sksn/yWbfC1wkNIQE1D68t+BuhRWgaQO4EBE/L9612JpcxBYU4mIPkrXmk+LUWElzSwbR2a0DqAfyB0EE6zPbFJ8aMianqRTJf0gGyjwjrLhF7olXStpU3afgtMkfSsbx/8zWZtjs/sYfCNrc5ukuTnW+5cq3a/io5LenY03f7+kOyW1SToW+G/ApdnY+m+R9FVJ55bV3Z/93yHpbkldlL4VPUPSn0vamA3A9pFavp/WfBwE1uwEfBE4NyJOBW4APlu2/EBEtANfpvTV/kuANwEfzA4zAZwA/FVEvBF4AfgfklonWO9hEdEeEZ+jNAb9mdmgd53AJyPiiew1r42IkyPi7gn6cQrw0Yh4A/BhYE9EnAacBlws6bjq3xqzEh8asmY3i9Iv9u+VhndhBqWRK4d1Zf8/CDw8PGSBpMeAJcDzwJMR8a9Zu68Dfwj88wTrvbns8WLg5myP4TDg8Un0476IGH7eO4FlZXsPRwBLJ7leMweBNT1R+gW/fIzlw2O6DJU9Hp4e/nyMHoclcqz3xbLHXwQ+HxFd2QniK8d4ziDZXrqkFkqhUWl9Av5nRNwxxnrMquJDQ9bs9gOvkbQcQFKrpN+och3HDD8f+ANKh3q2V7HeI/jV0MIfKJu/F5hfNv0EcGr2eBXQOsb67gD+e3Z4CklvKLvZjlnVHATW7IYoDfF7taQHgC3Af65yHdsp3YToEWABpZvcHKhivVcCt0raDDxXNv8fgPcMnyymNMb+W7P1LWfkXkC56ykNX/wTSQ8BX8F793YIPPqo2Tiyq3v+MSLeVOdSzArjPQIzs8R5j8DMLHHeIzAzS5yDwMwscQ4CM7PEOQjMzBLnIDAzS9z/Bxqb4z828mHUAAAAAElFTkSuQmCC\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEKCAYAAAAfGVI8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAYMklEQVR4nO3df5TU9X3v8edrAWERIgRSagWiVuqNRy3KBjX2B0STg54TaK6a4D3RNC2h90ROTkyaaHtzreWm59zYJLa5sYnEaxrtSYhKo9xeev0RJak9/gCVgGKwWzW4YFA3qKwg7LLv+8d8txmG2eU7y35ndubzepyzZ+f7/X7mO+/PfHf2Nd8f8xlFBGZmlq62RhdgZmaN5SAwM0ucg8DMLHEOAjOzxDkIzMwS5yAwM0tcYUEg6VZJr0h6epDlkvR1SZ2SNks6u6hazMxscEXuEfw9sGiI5RcBc7Kf5cA3C6zFzMwGUVgQRMRPgF8O0WQJcFuUPApMkXR8UfWYmVl1Yxv42CcAL5VNd2XzXq5sKGk5pb0G2tvb582aNasuBebV399PW1vrnW5p1X5B6/bN/Wo+9erbc88991pEvKvaskYGgarMqzreRUSsAlYBdHR0xMaNG4usq2br169nwYIFjS5jxLVqv6B1++Z+NZ969U3Szwdb1siI7QLK39rPBHY2qBYzs2Q1MgjWAldmVw+dC7wREYcdFjIzs2IVdmhI0veBBcB0SV3AXwDjACLiW8A64GKgE9gLfKKoWszMbHCFBUFEXH6E5QFcVdTjm5lZPq15Gt7MzHJzEJiZJc5BYGaWOAeBmVniHARmZolzEJiZJc5BYGaWOAeBmVniHARmZolzEJiZJc5BYGaWOAeBmVniHARmZolzEJiZJc5BYGaWOAeBmVniHARmZolzEJiZJc5BYGaWOAeBmVniHARmZolzEJiZJc5BYGaWOAeBmVniHARmZolzEJiZJc5BYGaWOAeBmVniHARmZolzEJiZJc5BYGaWOAeBmVniHARmZolzEJiZJc5BYGaWuEKDQNIiSdskdUq6tsry2ZIekvSUpM2SLi6yHjMzO1xhQSBpDHATcBFwGnC5pNMqmn0RuCMizgKWAn9XVD1mZlZdkXsE84HOiHg+Ig4Aq4ElFW0CeEd2+zhgZ4H1mJlZFYqIYlYsXQosiohl2fQVwDkRsaKszfHAfcBU4Fjgwoh4osq6lgPLAWbMmDFv9erVhdQ8XD09PUyaNKnRZYy4Vu0XtG7f3K/mU6++LVy48ImI6Ki2bGyBj6sq8ypT53Lg7yPiq5LOA26XdHpE9B9yp4hVwCqAjo6OWLBgQRH1Dtv69esZbTWNhFbtF7Ru39yv5jMa+lbkoaEuYFbZ9EwOP/Tzx8AdABHxCDABmF5gTWZmVqHIINgAzJF0kqRjKJ0MXlvRZjtwAYCk91AKglcLrMnMzCoUFgQR0QesAO4FnqV0ddAzklZKWpw1+xzwSUk/Bb4P/GEUddLCzMyqKvIcARGxDlhXMe+6sttbgfOLrMHMzIbmTxabmSXOQWBmljgHgZlZ4hwEZmaJcxCYmSXOQWBmljgHgZlZ4hwEZmaJcxCYmSXOQWBmljgHgZlZ4hwEZmaJcxCYmSXOQWBmljgHgZlZ4hwEZmaJcxCYmSXOQWBmljgHgZlZ4hwEZmaJcxCYmSXOQWBmljgHgZlZ4hwEZmaJcxCYmSXOQWBmljgHgZlZ4hwEZmaJcxCYmSXOQWBmljgHgZlZ4hwEZmaJcxCYmSXOQWBmlrhCg0DSIknbJHVKunaQNh+RtFXSM5K+V2Q9ZmZ2uLF5Gkk6PSKermXFksYANwEfALqADZLWRsTWsjZzgD8Dzo+I3ZJ+rZbHMDOzo5d3j+Bbkh6X9ClJU3LeZz7QGRHPR8QBYDWwpKLNJ4GbImI3QES8knPdZmY2QhQR+RqW3r3/EXAZ8DjwnYi4f4j2lwKLImJZNn0FcE5ErChrczfwHHA+MAa4PiL+X5V1LQeWA8yYMWPe6tWr8/WuTnp6epg0aVKjyxhxrdovaN2+uV/Np159W7hw4RMR0VF1YUTk/qH0z/oSYAfwLPAz4D8P0vYy4Jay6SuA/1XR5p+AHwLjgJMoHUKaMlQN8+bNi9HmoYceanQJhWjVfkW0bt/cr+ZTr74BG2OQ/6u5Dg1JOlPSjdk///cDH4qI92S3bxzkbl3ArLLpmcDOKm3uiYjeiHgB2AbMyVOTmZmNjLznCL4BPAn8dkRcFRFPAkTETuCLg9xnAzBH0kmSjgGWAmsr2twNLASQNB34LeD52rpgZmZHI9dVQ8DFwL6IOAggqQ2YEBF7I+L2aneIiD5JK4B7KR1SujUinpG0ktIuytps2QclbQUOAp+PiO6j7JOZmdUgbxA8AFwI9GTTE4H7gPcNdaeIWAesq5h3XdntAD6b/ZiZWQPkPTQ0ISIGQoDs9sRiSjIzs3rKGwRvSTp7YELSPGBfMSWZmVk95T009BngTkkDV/0cD3y0mJLMzKyecgVBRGyQ9J+AUwEBP4uI3kIrMzOzusi7RwDwXuDE7D5nSSIibiukKjMzq5u8g87dDvwmsInSZZ4AATgIzMyaXN49gg7gtOxyTzMzayF5rxp6Gvj1IgsxM7PGyLtHMB3YKulxYP/AzIhYXEhVZmZWN3mD4PoiizAzs8bJe/nojyW9G5gTEQ9Imkhp/CAzM2tyeYeh/iRwF3BzNusESiOHmplZk8t7svgqSt8i9iZARPwb4O8XNjNrAXmDYH+UvncYAEljKX2OwMzMmlzeIPixpD8H2iV9ALgT+D/FlWVmZvWSNwiuBV4FtgB/Quk7Bgb7ZjIzM2siea8a6ge+nf2YmVkLyTvW0AtUOScQESePeEVmZlZXtYw1NGACcBnwzpEvx8zM6i3XOYKI6C772RERfwO8v+DazMysDvIeGjq7bLKN0h7C5EIqMjOzusp7aOirZbf7gBeBj4x4NWZmVnd5rxpaWHQhZmbWGHkPDX12qOUR8bWRKcfMzOqtlquG3guszaY/BPwEeKmIoszMrH5q+WKasyNiD4Ck64E7I2JZUYWZmVl95B1iYjZwoGz6AHDiiFdjZmZ1l3eP4HbgcUk/pPQJ4w8DtxVWlZmZ1U3eq4b+StI/A7+bzfpERDxVXFlmZlYveQ8NAUwE3oyIvwW6JJ1UUE1mZlZHeb+q8i+Aa4A/y2aNA/6hqKLMzKx+8u4RfBhYDLwFEBE78RATZmYtIW8QHIiIIBuKWtKxxZVkZmb1lDcI7pB0MzBF0ieBB/CX1JiZtYS8Vw19Jfuu4jeBU4HrIuL+QiszM7O6OOIegaQxkh6IiPsj4vMR8ad5Q0DSIknbJHVKunaIdpdKCkkdg7UxM7NiHDEIIuIgsFfScbWsWNIY4CbgIuA04HJJp1VpNxn4NPBYLes3M7ORkfeTxW8DWyTdT3blEEBEfHqI+8wHOiPieQBJq4ElwNaKdv8DuAH407xFm5nZyMkbBP83+6nFCRw6OmkXcE55A0lnAbMi4p8kDRoEkpYDywFmzJjB+vXrayylWD09PaOuppHQqv2C1u2b+9V8RkPfhgwCSbMjYntEfHcY61aVeVG27jbgRuAPj7SiiFgFrALo6OiIBQsWDKOc4qxfv57RVtNIaNV+Qev2zf1qPqOhb0c6R3D3wA1Ja2pcdxcwq2x6JrCzbHoycDqwXtKLwLnAWp8wNjOrryMFQfm7+pNrXPcGYI6kkyQdAyzlV19sQ0S8ERHTI+LEiDgReBRYHBEba3wcMzM7CkcKghjk9hFFRB+wArgXeBa4IyKekbRS0uLayjQzs6Ic6WTxb0t6k9KeQXt2m2w6IuIdQ905ItYB6yrmXTdI2wW5KjYzsxE1ZBBExJh6FWJmZo1Ry/cRmJlZC3IQmJklzkFgZpY4B4GZWeKSCYLunv389KXX6e7Z3+hSzKwG3T372dd70K/dAiURBPds2sH5X36Qj93yGOd/+UHWbtrR6JLMLIeB1+4Lr77l126BWj4Iunv2c82azbzd28+e/X283dvPF9Zs9rsLs1Gu/LV7MMKv3QK1fBB07d7HuLZDuzmurY2u3fsaVJGZ5eHXbv20fBDMnNpOb3//IfN6+/uZObW9QRWZWR5+7dZPywfBtEnjueGSM5kwro3J48cyYVwbN1xyJtMmjW90aWY2hPLX7hjJr90C5f1imqa2eO4JnH/KdLp272Pm1Hb/IZk1iYHX7uOPPMy/Lv4dv3YLkkQQQOndhf+IzJrPtEnjaR83xq/fArX8oSEzMxuag8DMLHEOAjOzxDkIzMwS5yAwM0ucg8DMLHEOAjOzxDkIzMwS5yAwM0ucg8DMLHEOAjOzxDkIzMwS5yAwM0ucg8DMLHEOAjOzxDkIzMwS5yAwM0ucg8DMLHEOAjOzxDkIzMwS5yAwM0tcoUEgaZGkbZI6JV1bZflnJW2VtFnSjyS9u8h6zMzscIUFgaQxwE3ARcBpwOWSTqto9hTQERFnAncBNxRVj5mZVVfkHsF8oDMino+IA8BqYEl5g4h4KCL2ZpOPAjMLrMfMzKpQRBSzYulSYFFELMumrwDOiYgVg7T/BvCLiPhSlWXLgeUAM2bMmLd69epCah6unp4eJk2a1OgyRlyr9gtat2/uV/OpV98WLlz4RER0VFs2tsDHVZV5VVNH0seADuD3qy2PiFXAKoCOjo5YsGDBCJU4MtavX89oq2kktGq/oHX75n41n9HQtyKDoAuYVTY9E9hZ2UjShcB/A34/IvYXWI+ZmVVR5DmCDcAcSSdJOgZYCqwtbyDpLOBmYHFEvFJgLWZmNojCgiAi+oAVwL3As8AdEfGMpJWSFmfN/hqYBNwpaZOktYOszszMClLkoSEiYh2wrmLedWW3Lyzy8ZtZd89+unbvY+bUdqZNGj9ibZtJq/arKJ279rB7by+du/ZwyozJjS7HmkihQWDDc8+mHVyzZjPj2tro7e/nhkvOZPHcE466bTNp1X4V5bq7t3Dbo9v53Bl9XH3jT7jyvNmsXHJGo8uyJuEhJkaZ7p79XLNmM2/39rNnfx9v9/bzhTWb6e45/Dx6LW2bSav2qyidu/Zw26PbD5l32yPb6dy1p0EVWbNxEIwyXbv3Ma7t0M0yrq2Nrt37jqptM2nVfhVl00uv1zTfrJKDYJSZObWd3v7+Q+b19vczc2r7UbVtJq3ar6LMnTWlpvlmlRwEo8y0SeO54ZIzmTCujcnjxzJhXBs3XHJm1ZOltbRtJq3ar6KcMmMyV543+5B5V5432yeMLTefLB6FFs89gfNPmZ7ripla2jaTVu1XUVYuOYMrzz2RLU88ygNXn+sQsJo4CEapaZPG5/7nV0vbZtKq/SrKKTMm0zVxnEPAauZDQ2ZmiXMQmJklzkFgZpY4B4GZWeIcBGZmiXMQmJklzkFgZpY4B4GZWeIcBGZmiXMQmJklzkFgZpY4B4GZWeIcBGZmiXMQmJklzkFgZpY4B4GZWeIcBGZmiXMQmJklzkFgZpY4B4GZWeIcBGZmiXMQmJklzkFgZpY4B4GZWeIcBGZmiXMQmJklzkFgZpY4B4GZWeIKDQJJiyRtk9Qp6doqy8dL+kG2/DFJJxZZj1mtunv289OXXqe7Z/+Q7Ta+0M3X7tvGxhe6R2ydtbbt3LWH3Xt76dy154hta1FUvbU8/r7eg7mfg7s2vtRyz0GR6wUYO+JrzEgaA9wEfADoAjZIWhsRW8ua/TGwOyJOkbQU+DLw0aJqMqvFPZt2cM2azYxra6O3v58bLjmTxXNPOKzdx255lIc7SwHw9Qc7+d1TpnH7snOPap21tr3u7i3c9uh2PndGH1ff+BOuPG82K5ecMcyeF19vrY//6ff0cvWXH8z1HAxoleegyPUOKHKPYD7QGRHPR8QBYDWwpKLNEuC72e27gAskqcCazHLp7tnPNWs283ZvP3v29/F2bz9fWLP5sHdjG1/o/o8QGPAvnd1V9wzyrrPWtp279hzyDxDgtke2H/W74qLqHc7jH4xI8jkocr3lFBEjtrJDVixdCiyKiGXZ9BXAORGxoqzN01mbrmz637M2r1WsazmwPJs8FdhWSNHDNx147Yitmk+r9guO0DeNa584durxv6W2tjED86K//2Df7pefi959ewfmjZk8/TfGHDvl+Mr7H3zr9ZcP7nlt53DWWWvbtonHTRv7jnedCHBw7xuMmXgcAH1vvvpi/943jnys6iifg1rbDufxB/qV5zko1yTPwYj8Lebw7oh4V7UFhR0aAqq9s69MnTxtiIhVwKqRKKoIkjZGREej6xhprdovaN2+SdrY98Yr7lcTGQ1/i0UeGuoCZpVNzwR2DtZG0ljgOOCXBdZkZmYVigyCDcAcSSdJOgZYCqytaLMW+Hh2+1LgwSjqWJWZmVVV2KGhiOiTtAK4FxgD3BoRz0haCWyMiLXA/wZul9RJaU9gaVH1FGzUHrY6Sq3aL2jdvrlfzafhfSvsZLGZmTUHf7LYzCxxDgIzs8Q5CIZB0ouStkjaJGljNu96STuyeZskXdzoOmslaYqkuyT9TNKzks6T9E5J90v6t+z31EbXWatB+tUK2+vUsvo3SXpT0meafZsN0a9W2GZXS3pG0tOSvi9pQnZBzWPZ9vpBdnFNfevyOYLaSXoR6Cj/4Juk64GeiPhKo+o6WpK+C/xLRNyS/TFOBP4c+GVE/M9svKipEXFNQwut0SD9+gxNvr3KZUO67ADOAa6iybfZgIp+fYIm3maSTgAeBk6LiH2S7gDWARcD/xgRqyV9C/hpRHyznrV5j8AAkPQO4PcoXclFRByIiNc5dBiQ7wJ/0JgKh2eIfrWaC4B/j4if0+TbrEJ5v1rBWKA9+9zUROBl4P2UhtiBBm0vB8HwBHCfpCey4S8GrJC0WdKtzbY7DpwMvAp8R9JTkm6RdCwwIyJeBsh+/1ojixyGwfoFzb29Ki0Fvp/dbvZtVq68X9DE2ywidgBfAbZTCoA3gCeA1yOiL2vWBYzcaHI5OQiG5/yIOBu4CLhK0u8B3wR+E5hLaSN/tYH1DcdY4GzgmxFxFvAWcNjQ4U1osH41+/b6D9nhrsXAnY2uZSRV6VdTb7MsuJYAJwG/ARxL6X9Ipbofr3cQDENE7Mx+vwL8EJgfEbsi4mBE9APfpjT6ajPpAroi4rFs+i5K/0B3SToeIPv9SoPqG66q/WqB7VXuIuDJiNiVTTf7NhtwSL9aYJtdCLwQEa9GRC/wj8D7gCnZoSKoPhRP4RwENZJ0rKTJA7eBDwJPD7zwMh8Gnm5EfcMVEb8AXpJ0ajbrAmArhw4D8nHgngaUN2yD9avZt1eFyzn08ElTb7Myh/SrBbbZduBcSRMliV+9xh6iNMQONGh7+aqhGkk6mdJeAJQOO3wvIv5K0u2UdlkDeBH4k4HjtM1C0lzgFuAY4HlKV2m0AXcAsyn9IV8WEU01MOAg/fo6Tb69ACRNBF4CTo6IN7J502j+bVatX63wGvtLSl++1Qc8BSyjdE5gNfDObN7HImLkv4ZsqLocBGZmafOhITOzxDkIzMwS5yAwM0ucg8DMLHEOAjOzxBX55fVmdZVdNvmjbPLXgYOUhpeA0of+DjSksCFI+iNgXfZ5B7OG8OWj1pJG02iwksZExMFBlj0MrIiITTWsb2zZ2DRmR82HhiwJkj4u6fFsHPu/k9Qmaayk1yX9taQnJd0r6RxJP5b0/MB495KWSfphtnybpC/mXO+XJD0OzJf0l5I2ZOPQf0slH6X0AakfZPc/RlKXpCnZus+V9EB2+0uSbpZ0P6UB9MZK+lr22JslLav/s2qtwkFgLU/S6ZSGJHhfRMyldEh0abb4OOC+bBDBA8D1lD76fxmwsmw187P7nA38F0lzc6z3yYiYHxGPAH8bEe8FzsiWLYqIHwCbgI9GxNwch67OAj4UEVcAy4FXImI+8F5Kgx/OHs7zY+ZzBJaCCyn9s9xYGuKFdkrDFwDsi4j7s9tbgDciok/SFuDEsnXcGxG7ASTdDfwOpdfPYOs9wK+GIgG4QNLngQnAdErDD/9zjf24JyLezm5/EHiPpPLgmUNpSAmzmjgILAUCbo2I/37IzNKIj+XvwvuB/WW3y18flSfT4gjr3RfZCbhs3JxvUBr1dIekL1EKhGr6+NWeemWbtyr69KmI+BFmR8mHhiwFDwAfkTQdSlcXDeMwygdV+u7jiZTGlP/XGtbbTilYXstGrr2kbNkeYHLZ9IvAvOx2ebtK9wKfGhi+WKXv+W2vsU9mgPcILAERsSUb9fEBSW1AL/BfqW3c94eB71H6YpTbB67yybPeiOhW6XuTnwZ+DjxWtvg7wC2S9lE6D3E98G1JvwAeH6KemymNLropOyz1CqWAMquZLx81O4LsipzTI+Izja7FrAg+NGRmljjvEZiZJc57BGZmiXMQmJklzkFgZpY4B4GZWeIcBGZmifv/4gtsoMkmdNcAAAAASUVORK5CYII=\n",
"text/plain": [ "text/plain": [
"<Figure size 432x288 with 1 Axes>" "<Figure size 432x288 with 1 Axes>"
] ]
...@@ -394,19 +394,85 @@ ...@@ -394,19 +394,85 @@
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
"ename": "ImportError", "name": "stderr",
"evalue": "cannot import name 'factorial'", "output_type": "stream",
"output_type": "error", "text": [
"traceback": [ "/home/friese/miniconda3/lib/python3.7/site-packages/ipykernel_launcher.py:6: DeprecationWarning: Calling Family(..) with a link class as argument is deprecated.\n",
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "Use an instance of a link class instead.\n",
"\u001b[0;31mImportError\u001b[0m Traceback (most recent call last)", " \n"
"\u001b[0;32m<ipython-input-4-2d7fe3483b37>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0;32mimport\u001b[0m \u001b[0mstatsmodels\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mapi\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0msm\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mdata\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"Success\"\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mCount\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mMalfunction\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0mdata\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"Intercept\"\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", ]
"\u001b[0;32m/opt/conda/lib/python3.6/site-packages/statsmodels/api.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 14\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0;34m.\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mrobust\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 15\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0;34m.\u001b[0m\u001b[0mrobust\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrobust_linear_model\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mRLM\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 16\u001b[0;31m from .discrete.discrete_model import (Poisson, Logit, Probit,\n\u001b[0m\u001b[1;32m 17\u001b[0m \u001b[0mMNLogit\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mNegativeBinomial\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 18\u001b[0m \u001b[0mGeneralizedPoisson\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", },
"\u001b[0;32m/opt/conda/lib/python3.6/site-packages/statsmodels/discrete/discrete_model.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 43\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 44\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mstatsmodels\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbase\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0ml1_slsqp\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mfit_l1_slsqp\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 45\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mstatsmodels\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdistributions\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mgenpoisson_p\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 46\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 47\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", {
"\u001b[0;32m/opt/conda/lib/python3.6/site-packages/statsmodels/distributions/__init__.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0;34m.\u001b[0m\u001b[0mempirical_distribution\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mECDF\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmonotone_fn_inverter\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mStepFunction\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0;34m.\u001b[0m\u001b[0medgeworth\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mExpandedNormal\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0;34m.\u001b[0m\u001b[0mdiscrete\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mgenpoisson_p\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mzipoisson\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mzigenpoisson\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mzinegbin\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "data": {
"\u001b[0;32m/opt/conda/lib/python3.6/site-packages/statsmodels/distributions/edgeworth.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mnumpy\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mnumpy\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpolynomial\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mhermite_e\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mHermiteE\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 7\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mscipy\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmisc\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mfactorial\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 8\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mscipy\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstats\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mrv_continuous\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 9\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mscipy\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mspecial\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mspecial\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "text/html": [
"\u001b[0;31mImportError\u001b[0m: cannot import name 'factorial'" "<table class=\"simpletable\">\n",
"<caption>Generalized Linear Model Regression Results</caption>\n",
"<tr>\n",
" <th>Dep. Variable:</th> <td>Frequency</td> <th> No. Observations: </th> <td> 23</td> \n",
"</tr>\n",
"<tr>\n",
" <th>Model:</th> <td>GLM</td> <th> Df Residuals: </th> <td> 21</td> \n",
"</tr>\n",
"<tr>\n",
" <th>Model Family:</th> <td>Binomial</td> <th> Df Model: </th> <td> 1</td> \n",
"</tr>\n",
"<tr>\n",
" <th>Link Function:</th> <td>logit</td> <th> Scale: </th> <td> 1.0000</td>\n",
"</tr>\n",
"<tr>\n",
" <th>Method:</th> <td>IRLS</td> <th> Log-Likelihood: </th> <td> -3.9210</td>\n",
"</tr>\n",
"<tr>\n",
" <th>Date:</th> <td>Tue, 19 May 2020</td> <th> Deviance: </th> <td> 3.0144</td>\n",
"</tr>\n",
"<tr>\n",
" <th>Time:</th> <td>15:08:31</td> <th> Pearson chi2: </th> <td> 5.00</td> \n",
"</tr>\n",
"<tr>\n",
" <th>No. Iterations:</th> <td>6</td> <th> </th> <td> </td> \n",
"</tr>\n",
"<tr>\n",
" <th>Covariance Type:</th> <td>nonrobust</td> <th> </th> <td> </td> \n",
"</tr>\n",
"</table>\n",
"<table class=\"simpletable\">\n",
"<tr>\n",
" <td></td> <th>coef</th> <th>std err</th> <th>z</th> <th>P>|z|</th> <th>[0.025</th> <th>0.975]</th> \n",
"</tr>\n",
"<tr>\n",
" <th>Intercept</th> <td> 5.0850</td> <td> 7.477</td> <td> 0.680</td> <td> 0.496</td> <td> -9.570</td> <td> 19.740</td>\n",
"</tr>\n",
"<tr>\n",
" <th>Temperature</th> <td> -0.1156</td> <td> 0.115</td> <td> -1.004</td> <td> 0.316</td> <td> -0.341</td> <td> 0.110</td>\n",
"</tr>\n",
"</table>"
],
"text/plain": [
"<class 'statsmodels.iolib.summary.Summary'>\n",
"\"\"\"\n",
" Generalized Linear Model Regression Results \n",
"==============================================================================\n",
"Dep. Variable: Frequency No. Observations: 23\n",
"Model: GLM Df Residuals: 21\n",
"Model Family: Binomial Df Model: 1\n",
"Link Function: logit Scale: 1.0000\n",
"Method: IRLS Log-Likelihood: -3.9210\n",
"Date: Tue, 19 May 2020 Deviance: 3.0144\n",
"Time: 15:08:31 Pearson chi2: 5.00\n",
"No. Iterations: 6 \n",
"Covariance Type: nonrobust \n",
"===============================================================================\n",
" coef std err z P>|z| [0.025 0.975]\n",
"-------------------------------------------------------------------------------\n",
"Intercept 5.0850 7.477 0.680 0.496 -9.570 19.740\n",
"Temperature -0.1156 0.115 -1.004 0.316 -0.341 0.110\n",
"===============================================================================\n",
"\"\"\""
] ]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
} }
], ],
"source": [ "source": [
...@@ -443,9 +509,22 @@ ...@@ -443,9 +509,22 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": 5,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEKCAYAAAAcgp5RAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deXhU5d3/8fc3k30nJCxhRyHIJmtAccG6gD4Vl6qIC7hQtXWpT1tbeVqrbfXXBdvauqOgiCu1iNhawYXUqiwBQVbDoiwJQtiTQPbcvz9mwBACWZgwmcnndV25MufMmTPfOyf5zMl9zrmPOecQEZHQFRboAkREpGkp6EVEQpyCXkQkxCnoRURCnIJeRCTEKehFREJcnUFvZtPMLN/MVh3jeTOzv5nZBjNbYWaD/F+miIg0Vn326F8ERh/n+YuBHr6v24CnT7wsERHxlzqD3jn3MbDnOItcBrzkvBYCyWbW3l8FiojIiQn3wzo6AFurTef65n1Tc0Ezuw3vXj/R0dGDO3fu7Ie3b56qqqoICwvdQyCh3L5QbhuofcFu3bp1u5xzaQ15jT+C3mqZV+u4Cs65KcAUgIyMDJeTk+OHt2+esrKyGDlyZKDLaDKh3L5QbhuofcHOzDY39DX++NjLBTpVm+4IbPPDekVExA/8EfRzgPG+s2+GA/udc0d124iISGDU2XVjZq8BI4FUM8sFHgQiAJxzzwDvApcAG4CDwM1NVayIiDRcnUHvnBtXx/MOuNNvFYlIUCgvLyc3N5eSkpJAl3KEpKQk1q5dG+gyTlh0dDQdO3YkIiLihNflj4OxItIC5ebmkpCQQNeuXTGr7ZyMwCgsLCQhISHQZZwQ5xy7d+8mNzeXbt26nfD6QvccJBFpUiUlJbRu3bpZhXyoMDNat27tt/+WFPQi0mgK+abjz5+tgl5EJMSpj15EgpbH46Ffv36Hp2fPnk3r1q0DWFHzpKAXkaAVExPD8uXLj5hXWFh4+HFFRQXh4Yo5dd2ISEh55ZVXuPrqq7n00ku56KKLAJg8eTJDhw6lf//+PPjgg4eXfeSRR8jIyOCCCy5g3LhxPProowCMHDmSJUuWALBr1y66du0KQGVlJffdd9/hdT377LPAt8MuXHXVVfTq1Yvrr78e75nnkJ2dzZlnnsnpp59OZmYmhYWFnH322Ud8QI0YMYIVK1Y02c9EH3UicsJ+/c5q1mwr8Os6e6cn8uClfY67THFxMQMGDACgW7duvPXWWwAsWLCAFStWkJKSwrx581i/fj2LFy/GOceYMWP4+OOPiYuL4/XXX2fZsmVUVFQwaNAgBg8efNz3mzp1KklJSWRnZ1NaWsqIESMOf5gsW7aM1atXk56ezogRI/j000/JzMxk7NixvPHGGwwdOpSCggJiYmKYOHEiL774Io899hjr1q2jtLSU/v37++GnVjsFvYgErdq6bgAuvPBCUlJSAJg3bx7z5s1j4MCBABQVFbF+/XoKCwu54ooriI2NBWDMmDF1vt+8efNYsWIFb775JgD79+9n/fr1REZGkpmZSceOHQEYMGAAmzZtIikpifbt2zN06FAAEhMTAbj66qv57W9/y+TJk5k2bRo33XTTif0g6qCgF5ETVtee98kWFxd3+LFzjkmTJnH77bcfscxjjz12zFMYw8PDqaqqAjjiXHbnHI8//jijRo06YvmsrCyioqIOT3s8HioqKnDO1foesbGxXHjhhbz99tvMnDnzcDdRU1EfvYiEtFGjRjFt2jSKiooAyMvLIz8/n3POOYe33nqL4uJiCgsLeeeddw6/pmvXrixduhTg8N77oXU9/fTTlJeXA7Bu3ToOHDhwzPfu1asX27ZtIzs7G/AeKK6oqABg4sSJ3HPPPQwdOvTwfx9NRXv0IhLSLrroItauXcsZZ5wBQHx8PC+//DKDBg1i7NixDBgwgC5dunD22Wcffs1Pf/pTrrnmGmbMmMF3vvOdw/MnTpzIpk2bGDRoEM450tLSmD179jHfOzIykjfeeIO7776b4uJiYmJi+OCDD4iPj2fw4MEkJiZy880nYRxI51xAvnr27OlC2fz58wNdQpMK5faFctuc81/71qxZ45f1+FtBQUGjXvfggw+6yZMn+7maY8vLy3M9evRwlZWVx1ymtp8xsMQ1MG/VdSMicpK99NJLDBs2jEceeeSk3PZQXTciIsBDDz100t5r/PjxjB8//qS9n/boRaTRnKv19tDiB/782SroRaRRoqOj2b17t8K+CTjfePTR0dF+WZ+6bkSkUTp27Ehubi47d+4MdClHKCkp8VtABtKhO0z5g4JeRBolIiLCL3c/8resrKzDV8GKl7puRERCnIJeRCTEKehFREKcgl5EJMQp6EVEQpyCXkQkxCnoRURCnIJeRCTEKehFREKcgl5EJMQFLOhLKgL1ziIiLUvAgn77wSp+/uYK9h0sC1QJIiItQsCCPinSePPzXC7483/454ptGupURKSJBCzoW0Ubc+4aQXpyDHe9uow7Xl5KfmFJoMoREQlZAT0Y2yc9iVk/OJP7L+7F/JydXPjnj3l7eZ727kVE/CjgZ92Ee8K449xT+PePzqZ7Whw/en05d776OXsOqO9eRMQf6hX0ZjbazHLMbIOZ3V/L853NbL6ZLTOzFWZ2SUMLOSUtnjfvOJOfjc7g/TU7uOgvHzP/y/yGrkZERGqoM+jNzAM8CVwM9AbGmVnvGov9EpjpnBsIXAs81ZhiPGHGD0eeytt3nkXruEhufjGbB99eRUl5ZWNWJyIi1G+PPhPY4Jz7yjlXBrwOXFZjGQck+h4nAdtOpKje6Ym8fdcIbhnRjekLNnPp45+Qs73wRFYpItJiWV0HPs3sKmC0c26ib/pGYJhz7q5qy7QH5gGtgDjgAufc0lrWdRtwG0BaWtrgmTNn1lngql0VTFlRRnGF47pekYzsFI6Z1buBgVJUVER8fHygy2gyody+UG4bqH3B7rzzzlvqnBvSkNfU5+bgtaVqzU+HccCLzrk/mdkZwAwz6+ucqzriRc5NAaYAZGRkuJEjR9b55iOBsaNK+fHM5Uxfs4tdntb8/nv9SIiOqEfpgZOVlUV92hesQrl9odw2UPtaovp03eQCnapNd+TorplbgZkAzrkFQDSQ6o8CAdISoph+cyY/H92L91Zv59LHP2HNtgJ/rV5EJKTVJ+izgR5m1s3MIvEebJ1TY5ktwPkAZnYa3qDf6ddCw4wfjDyF128bTnF5JZc/9SlvZG/x51uIiISkOoPeOVcB3AXMBdbiPbtmtZn9xszG+Bb7CfB9M/sCeA24yTXRVU9Du6bwr3vOJrNrCj//x0omzVqhs3JERI6jPn30OOfeBd6tMe9X1R6vAUb4t7RjS42PYvotmfxpXg5PZW1k9bYCnrlhMOnJMSerBBGRoBHwK2MbyxNm/Gx0L569cTBf7TzApY9/wuKv9wS6LBGRZidog/6QUX3aMfvOM0mMieC65xYyY+HmQJckItKsBH3QA5zaJoHZd47g7B6pPDB7Fb+cvZLyyqq6Xygi0gKERNADJMVE8PyEodx+bndeXriFm15YrJuaiIgQQkEP3n77SRefxuSr+rP46z1c8dRnfL3rQKDLEhEJqJAK+kOuHtKJV78/nH0Hy7jiqU91kFZEWrSQDHrwnm//1g9HkBIbyQ3PL+Lt5XmBLklEJCBCNugBuqbGMeuHZzKwczI/en05T2Vt0N2rRKTFCemgB0iOjeSlWzMZc3o6f3wvhwfeXkVllcJeRFqOel0ZG+yiwj08NnYA6ckxPPOfjewoKOXxcQOJjvAEujQRkSYX8nv0h4SFGfdf3Itfj+nDB2t3cOPURew/WB7oskREmlyLCfpDJpzZlcfHDWT51n1c8+wCtu8vCXRJIiJNqsUFPcB3+6fz4s2Z5O49yFXPfMYmnWsvIiGsRQY9wIhTU3nttuEcKK3gqmcW6EYmIhKyWmzQA/TvmMzf7ziDCI8xdsoClm7WhVUiEnpadNCDd0C0N39wJqnxUdw4dTGfbtgV6JJERPyqxQc9QIfkGN64fTidWsVy84vZfLBmR6BLEhHxGwW9T5uEaN64fTintUvgjpeX8u+V3wS6JBERv1DQV5McG8nLE4dxeqdk7nptmcbHEZGQoKCvISE6gpduyWRo11bc+8Zy3lyaG+iSREROiIK+FnFR4bxwUyZnnZrKfW9+wczsrYEuSUSk0RT0xxAT6eG58UM469RUfvaPFby+eEugSxIRaRQF/XFER3jD/tyeadw/ayWvKexFJAgp6OsQHeHh2RsHMzIjjUmzVqobR0SCjoK+HqIjPDxzw2DO6ZnGz2et0AFaEQkqCvp6io7wMOXGwYcP0L61TGEvIsFBQd8A3rAfwvBurfnJzC/454ptgS5JRKROCvoGion0MPWmIQzu0oofvb6cuau3B7okEZHjUtA3QmxkONNuGkq/Dknc9ernzM/JD3RJIiLHpKBvpIToCKbfkknPtgncMWMpCzbuDnRJIiK1UtCfgKSYCGbcOozOKbHcOj2bpZv3BrokEZGjKOhPUEpcJK9MHEabhChufmGx7lQlIs2Ogt4P2iRG8/LEYcRHhTN+2iI27iwKdEkiIocp6P2kY6tYZkwchnNww/OL2FVcFeiSRESAega9mY02sxwz22Bm9x9jmWvMbI2ZrTazV/1bZnA4JS2eGbcO40BpBZOzS9hZWBrokkRE6g56M/MATwIXA72BcWbWu8YyPYBJwAjnXB/g3iaoNSj0Tk/khZuHsrfEMWHaYvYXlwe6JBFp4eqzR58JbHDOfeWcKwNeBy6rscz3gSedc3sBnHMt+sTywV1SuHtgFOvzC5k4PZvisspAlyQiLZg5546/gNlVwGjn3ETf9I3AMOfcXdWWmQ2sA0YAHuAh59x7tazrNuA2gLS0tMEzZ870VzuanaKiItYURvP0F6X0T/Nw98AowsMs0GX5TVFREfHx8YEuo0mEcttA7Qt255133lLn3JCGvCa8HsvUlk41Px3CgR7ASKAj8F8z6+uc23fEi5ybAkwByMjIcCNHjmxIrUElKyuLn313JB26b+YXb63iXztb8aerTycsRMI+KyuLUN1+odw2UPtaovoEfS7Qqdp0R6DmaF65wELnXDnwtZnl4A3+bL9UGcSuH9aFvQfKeHTeOpJiInjw0t6YhUbYi0hwqE8ffTbQw8y6mVkkcC0wp8Yys4HzAMwsFegJfOXPQoPZneedyi0juvHiZ5t4KmtjoMsRkRamzj1651yFmd0FzMXb/z7NObfazH4DLHHOzfE9d5GZrQEqgfuccxr8xcfM+OX/nMbeg2VMnptD67hIrs3sHOiyRKSFqE/XDc65d4F3a8z7VbXHDvix70tqERZm/PGq/uw5UMb/vbWSVnGRjOrTLtBliUgLoCtjT6IITxhP3zCI/h2Tufu1ZSz+ek+gSxKRFkBBf5LFRobzwk1D6dgqhonTs/lyuwZBE5GmpaAPgFZxkbx0SyYxkR4mTFtM7t6DgS5JREKYgj5AOraKZfotmRwsq2TCtMXsPVAW6JJEJEQp6AOoV7tEnh8/hK17i7lVQyWISBNR0AfYsO6t+evYASzbuo+7X1tGRaWGNxYR/1LQNwMX92vPr8f04YO1O3jg7dXUNf6QiEhD1Os8eml648/oyvb9JTyVtZF2idH86IIegS5JREKEgr4ZuW9UBjsKSvnLB+tomxilq2dFxC8U9M2ImfH77/VjZ1Ep//fWStISojj/tLaBLktEgpz66JuZCE8YT18/iD7pSdz56ucs27I30CWJSJBT0DdDcVHhTLtpKGkJUdw6fQlf7zoQ6JJEJIgp6JuptIQoXrplGAATpi3WjcZFpNEU9M1Yt9Q4pk4YQn5hCbdOz+ZAaUWgSxKRIKSgb+YGdm7Fk9cNYlXefu569XNdUCUiDaagDwLnn9aWhy/vx/ycnfzirVW6oEpEGkSnVwaJ64Z1Zvv+Yv720QbaJUXzvxf2DHRJIhIkFPRB5H8v7Mk3+0v464fraZ8UrQuqRKReFPRBxMz4f1f2I7+wlF/MXkWbxCi+00sXVInI8amPPshEeMJ46vpB9G6fyJ2vLGP51n2BLklEmjkFfRA6dEFVakIkt7yYzSZdUCUix6GgD1JpCVFMvzkT5xzjdUGViByHgj6IdU+LZ+pNQ3VBlYgcl4I+yA3q3IonxnkvqPrhK59TrguqRKQGBX0IuKB3Wx65oh//WbeTSbNW6oIqETmCTq8MEeMyO7Pdd45928Qo7hvVK9AliUgzoaAPIfde0IP8whKenL+RtonRjD+ja6BLEpFmQEEfQsyM317Wl52FZTw4ZzWp8VFc0q99oMsSkQBTH32ICfeE8fi4gQzslMy9byxn4Ve7A12SiASYgj4ExUR6mDphKJ1TYvn+S0v4cntBoEsSkQBS0IeoVnGRTL8lk7jIcCZMW0zu3oOBLklEAkRBH8I6JMcw/ZZMissqGT9tMXsOlAW6JBEJAAV9iMtol8DUm4aSt7eYm19YrKtnRVogBX0LMLRrCk9cN4hV2wq44+WllFXo6lmRlkRB30Jc2Lstv7uyH/9dv4uf/P0Lqqp09axIS1GvoDez0WaWY2YbzOz+4yx3lZk5MxvivxLFX64Z0on7L+7FO19s46F3VmuoBJEWos4LpszMAzwJXAjkAtlmNsc5t6bGcgnAPcCipihU/OOOc09hz4Eypnz8FSlxkdx7ge49KxLq6rNHnwlscM595ZwrA14HLqtlud8CfwRK/FifNIFJF/fiqsEdeeyD9Uz/bFOgyxGRJlafIRA6AFurTecCw6ovYGYDgU7OuX+a2U+PtSIzuw24DSAtLY2srKwGFxwsioqKmnX7Lm7t2NjGw4NzVpO3aQNnpjdsNIzm3r4TEcptA7WvJarPX7fVMu9w566ZhQF/AW6qa0XOuSnAFICMjAw3cuTIehUZjLKysmju7RtxdiU3v5DN1FV7yBzQjwt61/9G48HQvsYK5baB2tcS1afrJhfoVG26I7Ct2nQC0BfIMrNNwHBgjg7INn/RER6emzCEvumJ/PDVz1mwUePiiISi+gR9NtDDzLqZWSRwLTDn0JPOuf3OuVTnXFfnXFdgITDGObekSSoWv4qPCueFmzPpkhLLxOnZLN+6L9AliYif1Rn0zrkK4C5gLrAWmOmcW21mvzGzMU1doDS9lLhIXp44jNbxUUyYtpic7YWBLklE/Khe59E75951zvV0zp3inHvEN+9Xzrk5tSw7UnvzwadtYjSvTBxGdEQYN0xdxNe7DgS6JBHxE10ZK4d1SonllYnDqKxyXP/cQo14KRIiFPRyhFPbJDDj1kyKSiu4/vlF7CjQZREiwU5BL0fpk57Ei7dksquwlOufX8SuotJAlyQiJ0BBL7Ua1LkVU28aSu7eg9zw/CL2aix7kaCloJdjGt69Nc+PH8pXuw5ww9RF7D9YHuiSRKQRFPRyXGf1SOXZGwezfkcR46ctYn/xiYX97GV5jPj9R3S7/1+M+P1HzF6W56dKpbnRtm4+FPRSp/My2vDU9YNY800BE6YtpqCkcWE/e1kek2atJG9fMQ7I21fMpFkrFQAhSNu6eVHQS71c0LstT143iFV5+5kwbTHFFQ0fy37y3ByKyyuPmFdcXsnkuTn+KlOaCW3r5kVBL/V2UZ92PHHdIFbm7ufR7JIG79lv21fcoPkSvLStmxcFvTTI6L7esN9UUMX4qQ3rxklPjmnQfAle2tbNi4JeGmx033bcOSCK1dv2c+PUxfU+QHvfqAxiIjxHzIuJ8HDfqIymKFMCSNu6eVHQS6MMahvO09cPZu22Aq5/fmG9zrO/fGAHfndlPzokx2BAh+QYfndlPy4f2KHpC5aTStu6eWnYbYVEqrmgd1umjB/MbTOWMu65hbw8cRip8VHHfc3lAzvoj72F0LZuPrRHLydkZEYbXrhpKJt2H2DsswvYvl9j44g0Nwp6OWEjTk1l+s2Z7Cgo5epnP2PrHo16KdKcKOjFL4Z1b80rE4dRUFzBVc98xoZ83bxEpLlQ0IvfnN4pmTduH05lFVzz7EJW5u4PdEkigoJe/KxXu0T+fscZxER4GPfcQt1wXKQZUNCL33VLjeMfPziT9knRTHhhMfNWbw90SSItmoJemkS7pGhm3n4Gp7VP5I6Xl/La4i2BLkmkxVLQS5NpFRfJqxOHcXaPNCbNWsnfPlyPcw0fDE1EToyCXppUXFQ4z08YwpUDO/Dn99fxi9mrqKisCnRZIi2KroyVJhfhCePRq0+nTWI0z/xnIzv2l/D4dQOJjdSvn8jJoD16OSnCwoz7L+7Fby/rw/ycfMZNWUh+oa6iFTkZFPRyUt14RleevXEI63YUccWTn7Fuhy6sEmlqCno56S7s3ZaZt59BWWUV33vqM/67fmegSxIJaQp6CYh+HZOYfecIOrSK4aYXspmxYFOgSxIJWQp6CZgOyTG8+YMzGdkzjQfeXs0Ds1dRrjNyRPxOQS8BFR8VzpTxQ7j9nO7MWLiZCdMW1+smJiJSfwp6CThPmDHpktN49OrTWbJ5L5c+8QlrthUEuiyRkKGgl2bjqsEdmXn7GVRUOr739Ge888W2QJckEhIU9NKsDOiUzJy7R9AnPZG7X1vGb/+5Rv32IidIQS/NTpuEaF79/nBuOrMrUz/5muufW0R+gS6uEmksBb00S5HhYTw0pg9/vXYAK/P2c8nfPuGzDbsCXZZIUKpX0JvZaDPLMbMNZnZ/Lc//2MzWmNkKM/vQzLr4v1RpiS4b0IG37xpBcmwEN0xdxN8+XE9llUbAFGmIOoPezDzAk8DFQG9gnJn1rrHYMmCIc64/8CbwR38XKi1Xz7YJvH3nCC4b4B0B84bnF7FDXTki9VafPfpMYINz7ivnXBnwOnBZ9QWcc/Odcwd9kwuBjv4tU1q6uKhw/nzN6fzxqv4s37qPi//6Xz76ckegyxIJClbXjSDM7CpgtHNuom/6RmCYc+6uYyz/BLDdOfdwLc/dBtwGkJaWNnjmzJknWH7zVVRURHx8fKDLaDKBbN+2oiqe/qKUrYVVnN85nLEZkUR6zG/r17YLbqHevvPOO2+pc25IQ15TnwHBa/sLqvXTwcxuAIYA59b2vHNuCjAFICMjw40cObJ+VQahrKws1L6mc+WoSv74Xg7TPv2aLSXRPHbtAPqkJ/ll3YFuW1NT+1qe+nTd5AKdqk13BI66ksXMLgB+AYxxzpX6pzyR2kVHePjVpb156ZZM9heXc/mTn/LER+t19yqRWtQn6LOBHmbWzcwigWuBOdUXMLOBwLN4Qz7f/2WK1O6cnmnMvfccRvVpx6Pz1vG9ZxawIb8o0GWJNCt1Br1zrgK4C5gLrAVmOudWm9lvzGyMb7HJQDzwdzNbbmZzjrE6Eb9rFRfJE9cN4vFxA9m8+wCX/O2/PJ21UXv3Ij71ummnc+5d4N0a835V7fEFfq5LpMEqqxzR4R72HSznD+99yauLNnPt0M68ungL2/YVk54cw32jMrh8YIcmq2H2sjwmz805ae/XEL+cvZLXFm3l3r7l3DrpXcYN68TDl/cLdFlyEujuzBISZi/LY9KslRSXVx6et3VvMZPn5RyezttXzKRZKwGaJHxr1tDU79cQv5y9kpcXbjk8Xenc4WmFfejTEAgSEibPzTki5I+luLySyXNz6lzOXzU05fs1xGuLtjZovoQWBb2EhG37iuu9bF4DlvVHDQ2pralUHuN6mWPNl9CioJeQkJ4cU+9lDXhy/gZK6vEfgD9qaEhtTcVjtV9Qdqz5EloU9BIS7huVQUyE54h5EWFGRI0rZqPCw+jXMYnJc3O46C8f896q7dR1dfiJ1BAT4eG+URl+Wf+JGDesU4PmS2jRwVgJCYcOdtY846W2eZcP7MCnG3bx63dWc8fLSxnWLYUHvtubvh1O7MraY9UQ6AOx8O0B10N98h4znXXTgtQ51k1TycjIcDk5gT9I1VRC/TLsUGhfRWUVr2dv5S/vr2PPwTIuH9CBH1/Yk40rFgd9244nFLbd8YR6+8ysSca6EQlJ4Z4wbhjehTED0nk6ayPTPvmaf634hvM6htFvSCmt46MCXaKIX6iPXlq8xOgIfj66F1n3jeTKQR2Yt7mCs/84n0fn5rC/uDzQ5YmcMO3Ri/i0T4rh99/rT/+oXXxWkMwT8zcwfcEmbhnRjVvO6kZSTESgSxRpFO3Ri9SQHh/GE9cN4t17zubMU1rz1w/Xc9bvP+JP83LYc6As0OWJNJiCXuQYeqcn8uyNQ3j3nrM5q0cqj3+0gRG//4hfv7O6WVwEJVJf6roRqUPv9ESevmEw63cU8vR/NvLSgs3MWLCZ7/Zvz/fP6e63G56INBUFvUg99WibwJ+vGcCPL+zJC59u4vXFW5i9fBtndG/NzSO6cv5pbfGE6UpTaX4U9CIN1LFVLA98tzf3nN+D1xZv4aXPNnHbjKV0SonhhmFduGZIJ1rFRQa6TJHD1Ecv0khJMRHcce4pfPyz83jq+kG0T4rhd//+kmG/+5Afz1zOkk17/Da8gsiJ0B69yAkK94RxSb/2XNKvPTnbC5mxcBOzl21j1ud5nNomnmuHduLygR1I1QVYEiDaoxfxo4x2CTx8eT8W/d/5/OF7/YiPCufhf61l+P/7kO+/tIT3Vn1DaYV/R80UqYv26EWaQFxUOGOHdmbs0M6s21HIP5bmMmtZHu+v2UFSTAT/0789Y05PZ2jXFB3AlSanoBdpYj3bJjDpktO4b1QGn27czexlebz1eR6vLtpC28QoLunXnv/p155BnVsRptCXJqCgFzlJwj1hnNszjXN7pvHIFRV8uDafd77YxisLt/DCp5tokxDFqD7tGNWnHcO6pxDhUc+q+IeCXiQAYiPDufT0dC49PZ3CknI++jKfd1d+w9+XbmXGws0kRoczMqMN55/WhnN7ppEcq9M1pfEU9CIBlhAdwWUDOnDZgA4Ul1XyyYZdzFu9nfk5+cz5YhthBoM6t/L+N5CRRt/0JHXxSIMo6EWakZhIDxf2bsuFvdtSVeX4IncfH32Zz3/W7eRP76/jT++vo1VsBGeemspZp6ZyRvfWdGkdi+ner3IcCnqRZioszBjYuRUDO7fiJ2DVNmMAAA2wSURBVBdlsKuolE/W7+K/63fxyYad/GvFNwC0T4rmjO6tyeyWQma3FLqlxin45QgKepEgkRofxeUDO3D5wA4459i48wALvtrNgo27+M+6ncxalnd4ucFdkhnSJYVBXZLpk55EdI2blkvLoqAXCUJmxqlt4jm1TTw3Du9yOPgXfb2bpZv2smTzXuau3gFAhMfo3T6R/h2T6d8xibLCKiqrnM7fb0EU9CIhoHrwXz+sCwD5BSUs27qP5Vv3sWzLXmZ9nsuMhZsBeHjxXE5rn0DfDkn0bp9I7/REerZN0J5/iFLQi4SoNonRh8/LB6iscny1s4iZHyykIjGdVXn7+cfSXF4q8w7JEGbQNTWOXu0S6NEmgYx2CfRsG0+X1nE6pz/IKehFWghPmNGjbQIjOkQwcmQfAKqqHFv3HmT1tgK+3F7Il98UsHpbAf9etZ1DA2+GhxldWsdySlo83dPi6Z4aR7e0OLq2jiM1PlIHfoOAgl6kBQsLM7q0jqNL6zgu6df+8Pzisko27ixi3Y5CNu4sYkN+ERt3HmB+Tj7lld8OvRwfFU7nlFi6tI6lc0osnVJi6dgqhk4psXRIjlFXUDOhoBeRo8REeujbIYm+HY68TWJFZRW5e4v5evcBNu3yfm3ec5CcHYV8uDafssqqI5ZPjY+kQ3IM6ckxtE+KIT05mnZJ0bRPiqZtYjRtEqKJDFe3UFNT0ItIvYV7wuiaGkfX1DjIOPK5qipHfmEpW/ceZOueg+TtLSZvn/dr3Y5CsnJ2Ulx+9BDNKXGRtEmIIi0hijYJ0aT5HqfGR5IaH0VqfBQpcZG0io0gXMcKGkVBLyJ+ERZmtEvy7rEP7Zpy1PPOOQqKK/imoJhv9peQX1DCjoJStheUkF9Qys7CEjbkF7GrqPSI7qFDzLx39UqJiyQlNpJWvvBvFRtJcmwkybERJMVEsGl3Jal5+0mKiSApNoL4yPAWP2SEgl5ETgozIynWG7692iUec7lDHwg7i0rYVVTGrqJSdheVsftAGXsOlLL3QDl7DpSxdc9BVuSWsfdgOWUVR3YZ/TH7k2rv6z2WkBgdQUJ0uO8rgviocOKjw0mICic+Kpy4qHDiojze75He6dhID7GR3nkxkR5iIzxB+V9FvYLezEYDfwU8wPPOud/XeD4KeAkYDOwGxjrnNvm3VJGWYfayPCbPzWHbvmLSk2O4b1QGlw/swPXPLeDTjXsOLzfilBSuHtK51mVrW8eSzXt4bdFW7u1bzq2T3mXcsE48fHm/BtVwrPkNWccvZ6/ktUVbqXQOj9lRdVT/QFiVd/Q6gCPm/eHKfozq2479xeXsO1hO1mfZdMvoQ0FxOQUl5WRv2sMn63eRt6+Y6PAwOqbEUlxeycadFRSVVFBUWkFpjQ+K44nwGDERHmIiPcREeIj2PY4O9xAdEUa0b150RBhR4R6iIsKI9n2PCvcQGR5GlO8r0hPmm/bOjzw8z4jwPRfhCSMiLIwI37zGqDPozcwDPAlcCOQC2WY2xzm3ptpitwJ7nXOnmtm1wB+AsY2qSKQFm70sj0mzVh7uy87bV8ykWSt5cv561ucfOGLZTzfuOSL4Dy27ZPMe/rE074h1/PiN5VSPskrneHnhFoCjwv5YNdS23kmzVgIcFfbHWsffl2w5ouaG1nHf378A43DXTt6+Yv7vrVWYGZcP7ED7pBh2tPYwsm+7w+v4eN2uw+soqagib28xv7uy3xE1l1dWcaC0ggNlld7vpRUcKK3kQFkFxWWVHCyr5GBZhe97JcVlFZSUV3GwvJIS31dxWSWFpeWUlFdRUl5JaYXve3nVUQepT7b67NFnAhucc18BmNnrwGVA9aC/DHjI9/hN4AkzM+fc0R1tInJMk+fmHHXAsri88qiQP5bi8srDe8vVHStmXlu09aiAPVYNta23uLySyXNzjgr6Y62jesg3po7yqqMj5Vg1HK+OmstHeMJ8/fy1lnfCqqocZZVVlJZXUVr5bfiXVVRRWlFFue9xWcW388sqqqioqqKs0nkfV3qXu/sPDX9/qyuLzewqYLRzbqJv+kZgmHPurmrLrPItk+ub3uhbZleNdd0G3Oab7AusanjJQSMV2FXnUsErlNsXsLZFtjt1cFO/R+XB/Xhivz1tsmz7hqUnWkNzWEe11x/efsdbR833CyIZzrmEhrygPnv0tR2urvnpUJ9lcM5NAaYAmNkS59yQerx/UFL7glcotw287avYnx/S7Qv17dfQ19SnZz8X6FRtuiOw7VjLmFk4kATU/j+aiIicVPUJ+mygh5l1M7NI4FpgTo1l5gATfI+vAj5S/7yISPNQZ9eNc67CzO4C5uI9vXKac261mf0GWOKcmwNMBWaY2Qa8e/LX1uO9p5xA3cFA7Qteodw2UPuCXYPbV+fBWBERCW7Bd4mXiIg0iIJeRCTEnZSgN7NoM1tsZl+Y2Woz+7VvfjczW2Rm683sDd/B3qBkZh4zW2Zm//RNh1LbNpnZSjNbfujULjNLMbP3fe1738xaBbrOxjKzZDN708y+NLO1ZnZGqLTPzDJ82+3QV4GZ3RtC7ftfX6asMrPXfFkTSn97P/K1bbWZ3eub1+Btd7L26EuB7zjnTgcGAKPNbDjeoRL+4pzrAezFO5RCsPoRsLbadCi1DeA859yAaucn3w986Gvfh77pYPVX4D3nXC/gdLzbMSTa55zL8W23AXjHojoIvEUItM/MOgD3AEOcc33xnixyaAiWoP/bM7O+wPfxjk5wOvBdM+tBY7adc+6kfgGxwOfAMLxXr4X75p8BzD3Z9fipTR19P/DvAP/EewFZSLTNV/8mILXGvBygve9xeyAn0HU2sm2JwNf4TkwItfbVaNNFwKeh0j6gA7AVSMF7BuE/gVGh8rcHXI13EMlD0w8AP2vMtjtpffS+ro3lQD7wPrAR2Oecq/Atkot3wwWjx/BugENDirQmdNoG3quc55nZUt8wFgBtnXPfAPi+twlYdSemO7ATeMHX9fa8mcUROu2r7lrgNd/joG+fcy4PeBTYAnwD7AeWEjp/e6uAc8ystZnFApfgvTC1wdvupAW9c67Sef997Ij3X5HTalvsZNXjL2b2XSDfOVd93Ix6DQkRREY45wYBFwN3mtk5gS7Ij8KBQcDTzrmBwAGCsBujLr5+6jHA3wNdi7/4+qYvA7oB6UAc3t/RmoLyb885txZvN9T7wHvAF0DFcV90DCf9rBvn3D4gCxgOJPuGTIDah1YIBiOAMWa2CXgdb/fNY4RG2wBwzm3zfc/H27+bCewws/YAvu/5gavwhOQCuc65Rb7pN/EGf6i075CLgc+dczt806HQvguAr51zO51z5cAs4ExC629vqnNukHPuHLwXo66nEdvuZJ11k2Zmyb7HMXg30FpgPt4hE8A7hMLbJ6Mef3LOTXLOdXTOdcX7r/FHzrnrCYG2AZhZnJklHHqMt593FUcOexG07XPObQe2mtmhO6Cej3cI7pBoXzXj+LbbBkKjfVuA4WYWa2bGt9suJP72AMysje97Z+BKvNuwwdvupFwZa2b9gel4j4qHATOdc78xs+5494JTgGXADc650iYvqImY2Ujgp86574ZK23zteMs3GQ686px7xMxaAzOBznj/4K52zgXlQHZmNgB4HogEvgJuxvd7Smi0LxbvQcvuzrn9vnkhsf18p2qPxdulsQyYiLdPPuj/9gDM7L94j/mVAz92zn3YmG2nIRBEREKcrowVEQlxCnoRkRCnoBcRCXEKehGREKegFxEJcfW5ObjISeU7fexD32Q7oBLvMAUAmc65soAUdhxmdgvwru+8fJFmRadXSrNmZg8BRc65R5tBLR7nXOUxnvsEuMs5t7wB6wuvNiaLSJNR140EFTObYN57Gyw3s6fMLMzMws1sn5lNNrPPzWyumQ0zs/+Y2VdmdonvtRPN7C3f8zlm9st6rvdhM1sMZJrZr80s2zdG+DPmNRbv8Ntv+F4faWa51a4GH25mH/geP2xmz5rZ+3gHUgs3sz/73nuFmU08+T9VCXUKegkavvG5rwDO9A2QF863N6JPAub5Bl8rAx7Ce0n81cBvqq0m0/eaQcB1ZjagHuv93DmX6ZxbAPzVOTcU6Od7brRz7g1gOTDWecd+r6traSBwqXPuRuA2vIPiZQJD8Q4a17kxPx+RY1EfvQSTC/CG4RLv0CbE4L20H6DYOfe+7/FKYL9zrsLMVgJdq61jrnNuL4CZzQbOwvt3cKz1lvHtEBAA55vZfUA0kIp3WNx/N7AdbzvnSnyPLwJOM7PqHyw98F7aLuIXCnoJJgZMc849cMRM70iF1feiq/De1ezQ4+q/5zUPSrk61lvsfAeyfGPGPAEMcs7lmdnDeAO/NhV8+x9zzWUO1GjTD51zHyLSRNR1I8HkA+AaM0sF79k5jejmuMi894iNxTuW+acNWG8M3g+OXb4RPb9X7blCIKHa9Ca8t+6jxnI1zQV+eGhYXfPe4zWmgW0SOS7t0UvQcM6t9I1W+IGZheEd0e8OGjbe+CfAq8ApwIxDZ8nUZ73Oud1mNh3vMM2bgUXVnn4BeN7MivEeB3gIeM7MtgOLj1PPs3hHIVzu6zbKx/sBJOI3Or1SWgzfGS19nXP3BroWkZNJXTciIiFOe/QiIiFOe/QiIiFOQS8iEuIU9CIiIU5BLyIS4hT0IiIh7v8Dh/QV83uje2AAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [ "source": [
"%matplotlib inline\n", "%matplotlib inline\n",
"data_pred = pd.DataFrame({'Temperature': np.linspace(start=30, stop=90, num=121), 'Intercept': 1})\n", "data_pred = pd.DataFrame({'Temperature': np.linspace(start=30, stop=90, num=121), 'Intercept': 1})\n",
...@@ -517,6 +596,13 @@ ...@@ -517,6 +596,13 @@
"### My Analysis" "### My Analysis"
] ]
}, },
{
"cell_type": "markdown",
"metadata": {},
"source": [
"proba that it fails at 30 F is > 90 %"
]
},
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
...@@ -542,7 +628,7 @@ ...@@ -542,7 +628,7 @@
"name": "python", "name": "python",
"nbconvert_exporter": "python", "nbconvert_exporter": "python",
"pygments_lexer": "ipython3", "pygments_lexer": "ipython3",
"version": "3.6.4" "version": "3.7.3"
} }
}, },
"nbformat": 4, "nbformat": 4,
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment