diff --git a/module2/exo5/exo5_en.ipynb b/module2/exo5/exo5_en.ipynb
index 6a0919d7ba4c9594341883f6d283db9ea050de72..fd81e04f20deb70030a84649502a7e4a60b79ea5 100644
--- a/module2/exo5/exo5_en.ipynb
+++ b/module2/exo5/exo5_en.ipynb
@@ -260,30 +260,30 @@
""
],
"text/plain": [
- " Date Count Temperature Pressure Malfunction\n",
- "0 4/12/81 6 66 50 0\n",
- "1 11/12/81 6 70 50 1\n",
- "2 3/22/82 6 69 50 0\n",
- "3 11/11/82 6 68 50 0\n",
- "4 4/04/83 6 67 50 0\n",
- "5 6/18/82 6 72 50 0\n",
- "6 8/30/83 6 73 100 0\n",
- "7 11/28/83 6 70 100 0\n",
- "8 2/03/84 6 57 200 1\n",
- "9 4/06/84 6 63 200 1\n",
- "10 8/30/84 6 70 200 1\n",
- "11 10/05/84 6 78 200 0\n",
- "12 11/08/84 6 67 200 0\n",
- "13 1/24/85 6 53 200 2\n",
- "14 4/12/85 6 67 200 0\n",
- "15 4/29/85 6 75 200 0\n",
- "16 6/17/85 6 70 200 0\n",
- "17 7/29/85 6 81 200 0\n",
- "18 8/27/85 6 76 200 0\n",
- "19 10/03/85 6 79 200 0\n",
- "20 10/30/85 6 75 200 2\n",
- "21 11/26/85 6 76 200 0\n",
- "22 1/12/86 6 58 200 1"
+ " Date Count Temperature Pressure Malfunction\n",
+ "0 4/12/81 6 66 50 0\n",
+ "1 11/12/81 6 70 50 1\n",
+ "2 3/22/82 6 69 50 0\n",
+ "3 11/11/82 6 68 50 0\n",
+ "4 4/04/83 6 67 50 0\n",
+ "5 6/18/82 6 72 50 0\n",
+ "6 8/30/83 6 73 100 0\n",
+ "7 11/28/83 6 70 100 0\n",
+ "8 2/03/84 6 57 200 1\n",
+ "9 4/06/84 6 63 200 1\n",
+ "10 8/30/84 6 70 200 1\n",
+ "11 10/05/84 6 78 200 0\n",
+ "12 11/08/84 6 67 200 0\n",
+ "13 1/24/85 6 53 200 2\n",
+ "14 4/12/85 6 67 200 0\n",
+ "15 4/29/85 6 75 200 0\n",
+ "16 6/17/85 6 70 200 0\n",
+ "17 7/29/85 6 81 200 0\n",
+ "18 8/27/85 6 76 200 0\n",
+ "19 10/03/85 6 79 200 0\n",
+ "20 10/30/85 6 75 200 2\n",
+ "21 11/26/85 6 76 200 0\n",
+ "22 1/12/86 6 58 200 1"
]
},
"execution_count": 1,
@@ -313,122 +313,17 @@
"Flights without incidents do not provide any information\n",
"on the influence of temperature or pressure on malfunction.\n",
"We thus focus on the experiments in which at least one O-ring\n",
- "was defective."
+ "was defective. --> this is stupid! so:"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "
\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " Date | \n",
- " Count | \n",
- " Temperature | \n",
- " Pressure | \n",
- " Malfunction | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " 1 | \n",
- " 11/12/81 | \n",
- " 6 | \n",
- " 70 | \n",
- " 50 | \n",
- " 1 | \n",
- "
\n",
- " \n",
- " 8 | \n",
- " 2/03/84 | \n",
- " 6 | \n",
- " 57 | \n",
- " 200 | \n",
- " 1 | \n",
- "
\n",
- " \n",
- " 9 | \n",
- " 4/06/84 | \n",
- " 6 | \n",
- " 63 | \n",
- " 200 | \n",
- " 1 | \n",
- "
\n",
- " \n",
- " 10 | \n",
- " 8/30/84 | \n",
- " 6 | \n",
- " 70 | \n",
- " 200 | \n",
- " 1 | \n",
- "
\n",
- " \n",
- " 13 | \n",
- " 1/24/85 | \n",
- " 6 | \n",
- " 53 | \n",
- " 200 | \n",
- " 2 | \n",
- "
\n",
- " \n",
- " 20 | \n",
- " 10/30/85 | \n",
- " 6 | \n",
- " 75 | \n",
- " 200 | \n",
- " 2 | \n",
- "
\n",
- " \n",
- " 22 | \n",
- " 1/12/86 | \n",
- " 6 | \n",
- " 58 | \n",
- " 200 | \n",
- " 1 | \n",
- "
\n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " Date Count Temperature Pressure Malfunction\n",
- "1 11/12/81 6 70 50 1\n",
- "8 2/03/84 6 57 200 1\n",
- "9 4/06/84 6 63 200 1\n",
- "10 8/30/84 6 70 200 1\n",
- "13 1/24/85 6 53 200 2\n",
- "20 10/30/85 6 75 200 2\n",
- "22 1/12/86 6 58 200 1"
- ]
- },
- "execution_count": 2,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
- "data = data[data.Malfunction>0]\n",
- "data"
+ "#data = data[data.Malfunction>0]\n",
+ "#data"
]
},
{
@@ -449,7 +344,7 @@
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEKCAYAAAD9xUlFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAFaNJREFUeJzt3X2QZXV95/H3p2cGGASFwGZiMSAQWFdKCWALGtxkiMRCqxzWwgfYSjRGnWwJlTImRuK6hLCmaiUxJlaIOroaYUuRh1Vnd3ERNK3REmHUCY/BzCJCgwHFUWkY5oH+7h/3zvFOd0/37aHPvUz3+1XVNfec+zvnfvvL4X76PNxzU1VIkgQwMuwCJElPH4aCJKlhKEiSGoaCJKlhKEiSGoaCJKnRWigk+XiSh5Pcvofnk+SDSTYnuTXJKW3VIknqT5t7Cn8PnDXL868Aju/+rAM+1GItkqQ+tBYKVfVV4MezDDkbuLw6bgIOSfLstuqRJM1t+RBf+wjg/p7p8e68H0wdmGQdnb0JVq5c+cIjjzxyIAU+VZOTk4yMeNqmlz2Zzp5MZ09m9lT68t3vfvdHVfVv5ho3zFDIDPNmvOdGVa0H1gOMjo7Wxo0b26xrwYyNjbFmzZphl/G0Yk+msyfT2ZOZPZW+JPl+P+OGGcXjQO+f/KuBB4dUiySJ4YbCBuAN3auQXgz8tKqmHTqSJA1Oa4ePknwaWAMcnmQc+FNgBUBVfRi4DnglsBl4HHhTW7VIkvrTWihU1XlzPF/A+W29viRp/jy9L0lqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqtBoKSc5KcneSzUkunOH5o5L8Q5LvJLk1ySvbrEeSNLvWQiHJMuAy4BXACcB5SU6YMuw9wFVVdTJwLvB3bdUjSZpbm3sKpwKbq+qeqtoOXAmcPWVMAc/sPn4W8GCL9UiS5pCqamfFyWuAs6rqLd3p3wZOq6oLesY8G/gicCjwDODMqvrWDOtaB6wDWLVq1QuvvPLKVmpeaBMTExx00EHDLuNpxZ5MZ0+msyczeyp9OeOMM75VVaNzjVu+V2vvT2aYNzWBzgP+vqren+QlwBVJnl9Vk7stVLUeWA8wOjpaa9asaaPeBTc2Nsa+Uuug2JPp7Ml09mRmg+hLm4ePxoEje6ZXM/3w0JuBqwCq6hvAAcDhLdYkSZpFm6FwC3B8kmOS7EfnRPKGKWPuA14GkOR5dELhhy3WJEmaRWuhUFU7gQuA64G76FxldEeSS5Ks7Q77Q+CtSf4J+DTwO9XWSQ5J0pzaPKdAVV0HXDdl3kU9j+8ETm+zBklS//xEsySpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqthkKSs5LcnWRzkgv3MOZ1Se5MckeST7VZjyRpdsv7GZTk+VV1+3xWnGQZcBnwm8A4cEuSDVV1Z8+Y44E/AU6vqi1JfnE+ryFJWlj97il8OMnNSd6W5JA+lzkV2FxV91TVduBK4OwpY94KXFZVWwCq6uE+1y1JakFfewpV9dLuX/W/C2xMcjPwiaq6YZbFjgDu75keB06bMubfAiT5OrAMuLiq/u/UFSVZB6wDWLVqFWNjY/2UPXQTExP7TK2DYk+msyfT2ZOZDaIvfYUCQFX9S5L3ABuBDwInJwnw7qr6nzMskplWM8PrHw+sAVYD/9g9VPWTKa+9HlgPMDo6WmvWrOm37KEaGxtjX6l1UOzJdPZkOnsys0H0pa/DR0lOTPIB4C7gN4BXVdXzuo8/sIfFxoEje6ZXAw/OMObzVbWjqr4H3E0nJCRJQ9DvOYW/Bb4N/EpVnV9V3waoqgeB9+xhmVuA45Mck2Q/4Fxgw5QxnwPOAEhyOJ3DSffM71eQJC2Ufg8fvRLYWlVPAiQZAQ6oqser6oqZFqiqnUkuAK6nc77g41V1R5JLgI1VtaH73MuT3Ak8Cbyzqh55ir+TJGkv9RsKNwJnAhPd6QOBLwK/OttCVXUdcN2UeRf1PC7gHd0fSdKQ9Xv46ICq2hUIdB8f2E5JkqRh6TcUHktyyq6JJC8EtrZTkiRpWPo9fPR24Ooku64eejbw+nZKkiQNS78fXrslyb8Dnkvn8wf/XFU7Wq1MkjRwfX94DXgRcHR3mZOTUFWXt1KVJGko+r0h3hXALwOb6Fw6Cp1PJxsKkrSI9LunMAqc0L2EVJK0SPV79dHtwC+1WYgkafj63VM4HLize3fUbbtmVtXaVqqSJA1Fv6FwcZtFSJKeHvq9JPUrSZ4DHF9VNyY5kM79jCRJi0i/t85+K3AN8JHurCPo3OFUkrSI9Hui+XzgdOBn0PnCHcDvU5akRabfUNjW/Z5lAJIsZ/q3qEmS9nH9hsJXkrwbWJnkN4Grgf/VXlmSpGHoNxQuBH4I3Ab8Hp3vSNjTN65JkvZR/V59NAl8tPsjSVqk+r330feY4RxCVR274BVJkoZmPvc+2uUA4LXALyx8OZKkYerrnEJVPdLz80BV/TXwGy3XJkkasH4PH53SMzlCZ8/h4FYqkiQNTb+Hj97f83gncC/wugWvRpI0VP1efXRG24VIkoav38NH75jt+ar6q4UpR5I0TPO5+uhFwIbu9KuArwL3t1GUJGk45vMlO6dU1aMASS4Grq6qt7RVmCRp8Pq9zcVRwPae6e3A0QtejSRpqPrdU7gCuDnJZ+l8svnVwOWtVSVJGop+rz768yRfAP59d9abquo77ZUlSRqGfg8fARwI/Kyq/gYYT3JMSzVJkoak36/j/FPgXcCfdGetAP5HW0VJkoaj3z2FVwNrgccAqupBvM2FJC06/YbC9qoqurfPTvKM9kqSJA1Lv6FwVZKPAIckeStwI37hjiQtOv1effSX3e9m/hnwXOCiqrqh1cokSQM3555CkmVJbqyqG6rqnVX1R/0GQpKzktydZHOSC2cZ95oklWR0T2MkSe2bMxSq6kng8STPms+KkywDLgNeAZwAnJfkhBnGHQz8PvDN+axfkrTw+v1E8xPAbUluoHsFEkBV/f4sy5wKbK6qewCSXAmcDdw5Zdx/BS4F/qjfoiVJ7eg3FP5P92c+jmD3u6iOA6f1DkhyMnBkVf3vJHsMhSTrgHUAq1atYmxsbJ6lDMfExMQ+U+ug2JPp7Ml09mRmg+jLrKGQ5Kiquq+qPrkX684M86pn3SPAB4DfmWtFVbUeWA8wOjpaa9as2YtyBm9sbIx9pdZBsSfT2ZPp7MnMBtGXuc4pfG7XgyTXznPd48CRPdOrgQd7pg8Gng+MJbkXeDGwwZPNkjQ8c4VC71/7x85z3bcAxyc5Jsl+wLn8/Et6qKqfVtXhVXV0VR0N3ASsraqN83wdSdICmSsUag+P51RVO4ELgOuBu4CrquqOJJckWTu/MiVJgzDXieZfSfIzOnsMK7uP6U5XVT1ztoWr6jrguinzLtrD2DV9VSxJas2soVBVywZViCRp+ObzfQqSpEXOUJAkNQwFSVLDUJAkNZZMKDwysY1/uv8nPDKxbdilSNK8PTKxja07nmz9PWxJhMLnNz3A6e/7Mr/1sW9y+vu+zIZNDwy7JEnq2673sO/98LHW38MWfSg8MrGNd117K0/smOTRbTt5Ysckf3ztre4xSNon9L6HPVnV+nvYog+F8S1bWTGy+6+5YmSE8S1bh1SRJPVv0O9hiz4UVh+6kh2Tk7vN2zE5yepDVw6pIknq36DfwxZ9KBx20P5ces6JHLBihIP3X84BK0a49JwTOeyg/YddmiTNqfc9bFnS+ntYv1+ys09be9IRnH7c4Yxv2crqQ1caCJL2Kbvew27+xtf4+tqXtvoetiRCATppaxhI2lcddtD+rFyxrPX3sUV/+EiS1D9DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSY1WQyHJWUnuTrI5yYUzPP+OJHcmuTXJl5I8p816JEmzay0UkiwDLgNeAZwAnJfkhCnDvgOMVtWJwDXApW3VI0maW5t7CqcCm6vqnqraDlwJnN07oKr+oaoe707eBKxusR5J0hyWt7juI4D7e6bHgdNmGf9m4AszPZFkHbAOYNWqVYyNjS1Qie2amJjYZ2odFHsynT2Zzp7MbBB9aTMUMsO8mnFg8lvAKPDrMz1fVeuB9QCjo6O1Zs2aBSqxXWNjY+wrtQ6KPZnOnkxnT2Y2iL60GQrjwJE906uBB6cOSnIm8J+BX6+qbS3WI0maQ5vnFG4Bjk9yTJL9gHOBDb0DkpwMfARYW1UPt1iLJKkPrYVCVe0ELgCuB+4CrqqqO5JckmRtd9hfAAcBVyfZlGTDHlYnSRqANg8fUVXXAddNmXdRz+Mz23z9peSRiW2Mb9nK6kNXcthB+7e+3GJmT4Zr80OPsuXxHWx+6FGOW3XwsMtZcloNBQ3G5zc9wLuuvZUVIyPsmJzk0nNOZO1JR7S23GJmT4bros/dxuU33ccfvmAnf/CBr/KGlxzFJWe/YNhlLSne5mIf98jENt517a08sWOSR7ft5Ikdk/zxtbfyyMTs5+z3drnFzJ4M1+aHHuXym+7bbd7l37iPzQ89OqSKliZDYR83vmUrK0Z2/8+4YmSE8S1bW1luMbMnw7Xp/p/Ma77aYSjs41YfupIdk5O7zdsxOcnqQ1e2stxiZk+G66QjD5nXfLXDUNjHHXbQ/lx6zokcsGKEg/dfzgErRrj0nBPnPEG6t8stZvZkuI5bdTBveMlRu817w0uO8mTzgHmieRFYe9IRnH7c4fO+YmZvl1vM7MlwXXL2C3jDi4/mtm/dxI1/8GIDYQgMhUXisIP236s3sL1dbjGzJ8N13KqDGT9whYEwJB4+kiQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUqPVUEhyVpK7k2xOcuEMz++f5DPd57+Z5Og265Ekza61UEiyDLgMeAVwAnBekhOmDHszsKWqjgM+ALyvrXokSXNrc0/hVGBzVd1TVduBK4Gzp4w5G/hk9/E1wMuSpMWaJEmzWN7iuo8A7u+ZHgdO29OYqtqZ5KfAYcCPegclWQes605OJLm7lYoX3uFM+V1kT2ZgT6azJzN7Kn15Tj+D2gyFmf7ir70YQ1WtB9YvRFGDlGRjVY0Ou46nE3synT2Zzp7MbBB9afPw0ThwZM/0auDBPY1Jshx4FvDjFmuSJM2izVC4BTg+yTFJ9gPOBTZMGbMBeGP38WuAL1fVtD0FSdJgtHb4qHuO4ALgemAZ8PGquiPJJcDGqtoA/HfgiiSb6ewhnNtWPUOyzx3yGgB7Mp09mc6ezKz1vsQ/zCVJu/iJZklSw1CQJDUMhQWS5N4ktyXZlGRjd97FSR7oztuU5JXDrnPQkhyS5Jok/5zkriQvSfILSW5I8i/dfw8ddp2DtIeeLNltJclze37vTUl+luTtS3k7maUnrW8nnlNYIEnuBUar6kc98y4GJqrqL4dV17Al+STwj1X1se5VaAcC7wZ+XFX/rXtPrEOr6l1DLXSA9tCTt7PEtxVobo/zAJ0Pup7PEt5OdpnSkzfR8nbinoJak+SZwK/RucqMqtpeVT9h99ubfBL4D8OpcPBm6Yk6Xgb8v6r6Pkt4O5mityetMxQWTgFfTPKt7m05drkgya1JPr6Udn+7jgV+CHwiyXeSfCzJM4BVVfUDgO6/vzjMIgdsTz2Bpb2t7HIu8Onu46W8nfTq7Qm0vJ0YCgvn9Ko6hc5dYc9P8mvAh4BfBk4CfgC8f4j1DcNy4BTgQ1V1MvAYMO0W6kvMnnqy1LcVuofS1gJXD7uWp4sZetL6dmIoLJCqerD778PAZ4FTq+qhqnqyqiaBj9K5c+xSMg6MV9U3u9PX0HlDfCjJswG6/z48pPqGYcaeuK0AnT+ovl1VD3Wnl/J2sstuPRnEdmIoLIAkz0hy8K7HwMuB23dt0F2vBm4fRn3DUlX/Ctyf5LndWS8D7mT325u8Efj8EMobij31ZKlvK13nsfthkiW7nfTYrSeD2E68+mgBJDmWzt4BdA4PfKqq/jzJFXR28wq4F/i9XcdIl4okJwEfA/YD7qFz9cQIcBVwFHAf8NqqWjI3QtxDTz7IEt5WkhxI5zb6x1bVT7vzDmNpbycz9aT19xRDQZLU8PCRJKlhKEiSGoaCJKlhKEiSGoaCJKnR2jevSYPWvYTxS93JXwKepHNLCeh8mHD7UAqbRZLfBa7rfn5BGjovSdWi9HS6Q22SZVX15B6e+xpwQVVtmsf6llfVzgUrUOrh4SMtCUnemOTm7j3o/y7JSJLlSX6S5C+SfDvJ9UlOS/KVJPfsuld9krck+Wz3+buTvKfP9b43yc3AqUn+LMktSW5P8uF0vJ7OB5E+011+vyTjSQ7prvvFSW7sPn5vko8kuYHOzfSWJ/mr7mvfmuQtg++qFiNDQYtekufTuSXAr1bVSXQOm57bffpZwBe7NzPcDlxM59YTrwUu6VnNqd1lTgH+Y5KT+ljvt6vq1Kr6BvA3VfUi4AXd586qqs8Am4DXV9VJfRzeOhl4VVX9NrAOeLiqTgVeROcmjEftTX+kXp5T0FJwJp03zo1JAFbSuX0AwNaquqH7+Dbgp1W1M8ltwNE967i+qrYAJPkc8FI6///sab3b+fmtTwBeluSdwAHA4cC3gC/M8/f4fFU90X38cuB5SXpD6Hg6t4OQ9pqhoKUgwMer6r/sNjNZTufNe5dJYFvP497/P6aefKs51ru1uifsuvew+Vs6d0N9IMl76YTDTHby8z34qWMem/I7va2qvoS0gDx8pKXgRuB1SQ6HzlVKe3Go5eXpfLfygXS+Eezr81jvSjoh86Pu3XTP6XnuUeDgnul7gRd2H/eOm+p64G3dANr1nb4r5/k7SdO4p6BFr6puS/JnwI1JRoAdwH8CHpzHar4GfIrOF5xcsetqoX7WW1WPpPO9zLcD3we+2fP0J4CPJdlK57zFxcBHk/wrcPMs9XyEzt1DN3UPXT1MJ6ykp8RLUqU5dK/seX5VvX3YtUht8/CRJKnhnoIkqeGegiSpYShIkhqGgiSpYShIkhqGgiSp8f8B+Q9eu+sB8EwAAAAASUVORK5CYII=\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEKCAYAAAAfGVI8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAYAElEQVR4nO3dfZRddX3v8fdnkiEPJEJMvCMlQbBErlRyEYaHXGqd1IcGu0xq4Sp0IeoV4r2X3Cq6KtTrolyqaxVapVcvVVNKFbQOD7E4rWlRiqPYK5BEQoDQ4BQwTMAAYwgZCMlM5nv/OHv0zHBmZp/J7HPmnN/ntVZWzt77d/b5/s6eM5/ZD+e3FRGYmVm6WupdgJmZ1ZeDwMwscQ4CM7PEOQjMzBLnIDAzS5yDwMwscYUFgaQbJD0j6aExlkvSFyT1SNoq6ZSiajEzs7EVuUfwVWDlOMvPBpZm/9YAXyqwFjMzG0NhQRARPwR+MU6T1cCNUXIPcKSko4qqx8zMKptZx9c+GniybLo3m/f06IaS1lDaa2DOnDmnLlmypCYF5jU0NERLS/OdbmnWfkHz9s39ajy16tujjz76XES8ptKyegZBbhGxDlgH0N7eHps2bapzRSN1d3fT0dFR7zKmXLP2C5q3b+5X46lV3yT9bKxl9YzYnUD5n/aLs3lmZlZD9QyCLuDC7OqhM4E9EfGKw0JmZlaswg4NSfom0AEsktQL/AnQChARXwY2AO8CeoCXgA8VVYuZmY2tsCCIiPMnWB7AJUW9vpmZ5dOcp+HNzCw3B4GZWeIcBGZmiXMQmJklzkFgZpY4B4GZWeIcBGZmiXMQmJklzkFgZpY4B4GZWeIcBGZmiXMQmJklzkFgZpY4B4GZWeIcBGZmiXMQmJklzkFgZpY4B4GZWeIcBGZmiXMQmJklzkFgZpY4B4GZWeIcBGZmiXMQmJklzkFgZpY4B4GZWeIcBGZmiXMQmJklzkFgZpY4B4GZWeIcBGZmiXMQmJklzkFgZpY4B4GZWeIcBGZmiSs0CCStlLRdUo+kyyssP0bS9yXdL2mrpHcVWY+Zmb1SYUEgaQZwHXA2cCJwvqQTRzX7NHBLRLwZOA/4q6LqMTOzyorcIzgd6ImIxyLiANAJrB7VJoBXZY+PAJ4qsB4zM6tAEVHMiqVzgZURcVE2/X7gjIhYW9bmKOC7wALgcODtEbG5wrrWAGsA2traTu3s7Cyk5snq7+9n3rx59S5jyjVrv6B5++Z+NZ5a9W3FihWbI6K90rKZhb/6+M4HvhoRn5O0HLhJ0psiYqi8UUSsA9YBtLe3R0dHR+0rHUd3dzfTraap0Kz9gubtm/vVeKZD34o8NLQTWFI2vTibV+7DwC0AEfFjYDawqMCazMxslCKDYCOwVNJxkg6jdDK4a1SbHcDbACS9kVIQPFtgTWZmNkphQRARg8Ba4A7gEUpXBz0s6SpJq7JmnwAulvQA8E3gg1HUSQszM6uo0HMEEbEB2DBq3hVlj7cBZxVZg5mZjc/fLDYzS5yDwMwscQ4CM7PEOQjMzBLnIDAzS5yDwMwscQ4CM7PEOQjMzBLnIDAzS5yDwMwscQ4CM7PEOQjMzBLnIDAzS5yDwMwscQ4CM7PEOQjMzBLnIDAzS5yDwMwscQ4CM7PEOQjMzBLnIDAzS5yDwMwscQ4CM7PEOQjMzBLnIDAzS5yDwMwscQ4CM7PEOQjMzBLnIDAzS5yDwMwscQ4CM7PEOQjMzBLnIDAzS5yDwMwscYUGgaSVkrZL6pF0+Rht3itpm6SHJf1dkfWYmdkrzSxqxZJmANcB7wB6gY2SuiJiW1mbpcAfA2dFxG5J/6GoeszMrLJcewSSTprEuk8HeiLisYg4AHQCq0e1uRi4LiJ2A0TEM5N4HTMzOwSKiIkbSXcDs4CvAt+IiD05nnMusDIiLsqm3w+cERFry9rcDjwKnAXMAK6MiH+usK41wBqAtra2Uzs7OyfuWQ319/czb968epcx5Zq1X9C8fXO/Gk+t+rZixYrNEdFeaVmuQ0MR8ZbsMM5/BTZLug/424j43iHWNhNYCnQAi4EfSjopIp4f9frrgHUA7e3t0dHRcYgvO7W6u7uZbjVNhWbtFzRv39yvxjMd+pb7ZHFE/BT4NHAZ8FbgC5L+TdLvj/GUncCSsunF2bxyvUBXRAxExOOU9g6W5q3JzMwOXd5zBMskXQs8Avw28O6IeGP2+NoxnrYRWCrpOEmHAecBXaPa3E5pbwBJi4A3AI9V2wkzM5u8vFcNfRG4HvhUROwbnhkRT0n6dKUnRMSgpLXAHZSO/98QEQ9LugrYFBFd2bJ3StoGHAT+KCL6DqE/ZmZWpbxB8LvAvog4CCCpBZgdES9FxE1jPSkiNgAbRs27ouxxAB/P/pmZWR3kPUdwJzCnbHpuNs/MzBpc3iCYHRH9wxPZ47nFlGRmZrWUNwhelHTK8ISkU4F947Q3M7MGkfccwceAWyU9BQh4LfC+wqoyM7OayfuFso2S/iNwQjZre0QMFFeWmZnVSjWDzp0GHJs95xRJRMSNhVRlZmY1kysIJN0E/DqwhdL1/gABOAjMzBpc3j2CduDEyDNCnZmZNZS8Vw09ROkEsZmZNZm8ewSLgG3ZqKP7h2dGxKpCqjIzs5rJGwRXFlmEmZnVT97LR38g6XXA0oi4U9JcSgPJmZlZg8s7DPXFwG3AV7JZR1MaQtrMzBpc3pPFl1C6neQL8Mub1PhG82ZmTSBvEOzPbkAPgKSZlL5HYGZmDS5vEPxA0qeAOZLeAdwK/ENxZZmZWa3kDYLLgWeBB4GPULrZTMU7k5mZWWPJe9XQEPDX2T8zM2sieccaepwK5wQi4vVTXpGZmdVUNWMNDZsN/Bfg1VNfjpmZ1VqucwQR0Vf2b2dE/CWlG9qbmVmDy3to6JSyyRZKewjV3MvAzMymqby/zD9X9ngQeAJ475RXY2ZmNZf3qqEVRRdiZmb1kffQ0MfHWx4Rn5+acszMrNaquWroNKArm343cB/w0yKKMjOz2skbBIuBUyJiL4CkK4HvRMQFRRVmZma1kXeIiTbgQNn0gWyemZk1uLx7BDcC90n6+2z694CvFVOSmZnVUt6rhj4r6Z+At2SzPhQR9xdXlpmZ1UreQ0MAc4EXIuL/AL2SjiuoJjMzq6G8t6r8E+Ay4I+zWa3A14sqyszMaifvHsF7gFXAiwAR8RQwv6iizMysdvIGwYGICLKhqCUdXlxJZmZWS3mD4BZJXwGOlHQxcCe+SY2ZWVOYMAgkCbgZuA1YD5wAXBERX8zx3JWStkvqkXT5OO3OkRSS2sdqY2ZmxZjw8tGICEkbIuIk4Ht5VyxpBnAd8A6gF9goqSsito1qNx/4KHBvVZWbmdmUyHto6CeSTqty3acDPRHxWEQcADqB1RXa/SlwNfByles3M7MpkPebxWcAF0h6gtKVQ6K0s7BsnOccDTxZNt2breeXshveLImI70j6o7FWJGkNsAagra2N7u7unGXXRn9//7SraSo0a7+gefvmfjWe6dC3cYNA0jERsQP4nal+YUktwOeBD07UNiLWAesA2tvbo6OjY6rLOSTd3d1Mt5qmQrP2C5q3b+5X45kOfZtoj+B2SqOO/kzS+og4p4p17wSWlE0vzuYNmw+8CegunY/mtUCXpFURsamK1zEzs0Mw0TkClT1+fZXr3ggslXScpMOA8/jV/QyIiD0RsSgijo2IY4F7AIeAmVmNTRQEMcbjCUXEILAWuAN4BLglIh6WdJWkVdWVaWZmRZno0NB/kvQCpT2DOdlj+NXJ4leN9+SI2ABsGDXvijHaduSq2MzMptS4QRARM2pViJmZ1Uc1w1CbmVkTchCYmSXOQWBmljgHgZlZ4pIJgr7+/Tzw5PP09e+vdylmVoW+/v3sGzjoz26BkgiCb2/ZyVlX38UF19/LWVffRdeWnRM/yczqbviz+/izL/qzW6CmD4K+/v1ctn4rLw8MsXf/IC8PDPHJ9Vv914XZNFf+2T0Y4c9ugZo+CHp376O1ZWQ3W1ta6N29r04VmVke/uzWTtMHweIFcxgYGhoxb2BoiMUL5tSpIjPLw5/d2mn6IFg4bxbXnLOM2a0tzJ81k9mtLVxzzjIWzptV79LMbBzln90Zkj+7Bcp7Y5qGturkoznr+EX07t7H4gVz/INk1iCGP7v3/fhH/Ouq3/RntyBJBAGU/rrwD5FZ41k4bxZzWmf481ugpj80ZGZm43MQmJklzkFgZpY4B4GZWeIcBGZmiXMQmJklzkFgZpY4B4GZWeIcBGZmiXMQmJklzkFgZpY4B4GZWeIcBGZmiXMQmJklzkFgZpY4B4GZWeIcBGZmiXMQmJklzkFgZpY4B4GZWeIcBGZmiSs0CCStlLRdUo+kyyss/7ikbZK2SvoXSa8rsh4zM3ulwoJA0gzgOuBs4ETgfEknjmp2P9AeEcuA24BriqrHzMwqK3KP4HSgJyIei4gDQCewurxBRHw/Il7KJu8BFhdYj5mZVaCIKGbF0rnAyoi4KJt+P3BGRKwdo/3/BX4eEZ+psGwNsAagra3t1M7OzkJqnqz+/n7mzZtX7zKmXLP2C5q3b+5X46lV31asWLE5ItorLZtZ+KvnIOkCoB14a6XlEbEOWAfQ3t4eHR0dtSsuh+7ubqZbTVOhWfsFzds396vxTIe+FRkEO4ElZdOLs3kjSHo78L+At0bE/gLrMTOzCoo8R7ARWCrpOEmHAecBXeUNJL0Z+AqwKiKeKbAWMzMbQ2FBEBGDwFrgDuAR4JaIeFjSVZJWZc3+HJgH3Cppi6SuMVZnZmYFKfQcQURsADaMmndF2eO3F/n6jayvfz+9u/exeMEcFs6bNWVtG0mz9qsoPbv2svulAXp27eX4tvn1LscayLQ4WWwjfXvLTi5bv5XWlhYGhoa45pxlrDr56ENu20iatV9FueL2B7nxnh184qRBLr32h1y4/BiuWn1SvcuyBuEhJqaZvv79XLZ+Ky8PDLF3/yAvDwzxyfVb6et/5Xn0ato2kmbtV1F6du3lxnt2jJh344930LNrb50qskbjIJhmenfvo7Vl5GZpbWmhd/e+Q2rbSJq1X0XZ8uTzVc03G81BMM0sXjCHgaGhEfMGhoZYvGDOIbVtJM3ar6KcvOTIquabjeYgmGYWzpvFNecsY3ZrC/NnzWR2awvXnLOs4snSato2kmbtV1GOb5vPhcuPGTHvwuXH+ISx5eaTxdPQqpOP5qzjF+W6Yqaato2kWftVlKtWn8SFZx7Lg5vv4c5Lz3QIWFUcBNPUwnmzcv/yq6ZtI2nWfhXl+Lb59M5tdQhY1XxoyMwscQ4CM7PEOQjMzBLnIDAzS5yDwMwscQ4CM7PEOQjMzBLnIDAzS5yDwMwscQ4CM7PEOQjMzBLnIDAzS5yDwMwscQ4CM7PEOQjMzBLnIDAzS5yDwMwscQ4CM7PEOQjMzBLnIDAzS5yDwMwscQ4CM7PEOQjMzBLnIDAzS5yDwMwscQ4CM7PEOQjMzBLnIDAzS1yhQSBppaTtknokXV5h+SxJN2fL75V0bJH1mFWrr38/Dzz5PH39+8dtt+nxPj7/3e1serxvytZZbdueXXvZ/dIAPbv2Tti2GkXVW83r7xs4mPs9uG3Tk033HhS5XoCZU77GjKQZwHXAO4BeYKOkrojYVtbsw8DuiDhe0nnA1cD7iqrJrBrf3rKTy9ZvpbWlhYGhIa45ZxmrTj76Fe0uuP4eftRTCoAv3NXDW45fyE0XnXlI66y27RW3P8iN9+zgEycNcum1P+TC5cdw1eqTJtnz4uut9vX/8I0DXHr1Xbneg2HN8h4Uud5hRe4RnA70RMRjEXEA6ARWj2qzGvha9vg24G2SVGBNZrn09e/nsvVbeXlgiL37B3l5YIhPrt/6ir/GNj3e98sQGHZ3T1/FPYO866y2bc+uvSN+AQLc+OMdh/xXcVH1Tub1D0Yk+R4Uud5yiogpW9mIFUvnAisj4qJs+v3AGRGxtqzNQ1mb3mz637M2z41a1xpgTTZ5ArC9kKInbxHw3IStGk+z9gsm6Jta58ydueCoN6ilZcbwvBgaOji4++lHY2DfS8PzZsxf9GszDj/yqNHPP/ji808f3PvcU5NZZ7VtW+YesXDmq15zLMDBl/YwY+4RAAy+8OwTQy/tmfhY1SG+B9W2nczrD/crz3tQrkHegyn5WczhdRHxmkoLCjs0NJUiYh2wrt51jEXSpohor3cdU61Z+wXN2zdJmwb3PON+NZDp8LNY5KGhncCSsunF2byKbSTNBI4AJp3eZmZWvSKDYCOwVNJxkg4DzgO6RrXpAj6QPT4XuCuKOlZlZmYVFXZoKCIGJa0F7gBmADdExMOSrgI2RUQX8DfATZJ6gF9QCotGNG0PWx2iZu0XNG/f3K/GU/e+FXay2MzMGoO/WWxmljgHgZlZ4hwEVZL0hKQHJW2RtCmbd6Wkndm8LZLeVe86J0PSkZJuk/Rvkh6RtFzSqyV9T9JPs/8X1LvOao3Rr4bfZpJOKKt/i6QXJH2s0bfZOP1qhm12qaSHJT0k6ZuSZmcX1NybDbVzc3ZxTW3r8jmC6kh6Amgv/9KbpCuB/oj4i3rVNRUkfQ24OyKuz34Y5wKfAn4REX+WjRe1ICIuq2uhVRqjXx+jCbbZsGxIl53AGcAlNPg2GzaqXx+igbeZpKOBHwEnRsQ+SbcAG4B3Ad+KiE5JXwYeiIgv1bI27xEYAJKOAH6L0pVcRMSBiHiekcOAfA34vfpUODnj9KvZvA3494j4GQ2+zUYp71czmAnMyb43NRd4GvhtSkPsQJ22l4OgegF8V9LmbOiLYWslbZV0Q6PtimeOA54F/lbS/ZKul3Q40BYRT2dtfg601a3CyRmrX9D426zcecA3s8eNvs3KlfcLGnibRcRO4C+AHZQCYA+wGXg+IgazZr3A1I0ml5ODoHq/GRGnAGcDl0j6LeBLwK8DJ1PawJ+rY32TNRM4BfhSRLwZeBEYMXR49mW/RjuWOFa/mmGbAZAd7loF3Dp6WYNuM6Bivxp6m2XBtZrSHye/BhwOrKxrURkHQZWyVCcingH+Hjg9InZFxMGIGAL+mtLIq42mF+iNiHuz6dso/QLdJekogOz/Z+pU32RV7FeTbLNhZwM/iYhd2XSjb7NhI/rVBNvs7cDjEfFsRAwA3wLOAo7MDhVB5aF4CucgqIKkwyXNH34MvBN4aPhDl3kP8FA96jsUEfFz4ElJJ2Sz3gZsY+QwIB8Avl2H8iZtrH41wzYrcz4jD5809DYrM6JfTbDNdgBnSporSfzqM/Z9SkPsQJ22l68aqoKk11PaC4DSIYe/i4jPSrqJ0u5qAE8AHyk7RtswJJ0MXA8cBjxG6SqNFuAW4BjgZ8B7I+IXdStyEsbo1xdojm12OKVfMK+PiD3ZvIU0/jar1K+G/5xJ+t+Ubr41CNwPXETpnEAn8Ops3gURMfW3IRuvLgeBmVnafGjIzCxxDgIzs8Q5CMzMEucgMDNLnIPAzCxxDXHzerO8sksn/yWbfC1wkNIQE1D68t+BuhRWgaQO4EBE/L9612JpcxBYU4mIPkrXmk+LUWElzSwbR2a0DqAfyB0EE6zPbFJ8aMianqRTJf0gGyjwjrLhF7olXStpU3afgtMkfSsbx/8zWZtjs/sYfCNrc5ukuTnW+5cq3a/io5LenY03f7+kOyW1SToW+G/ApdnY+m+R9FVJ55bV3Z/93yHpbkldlL4VPUPSn0vamA3A9pFavp/WfBwE1uwEfBE4NyJOBW4APlu2/EBEtANfpvTV/kuANwEfzA4zAZwA/FVEvBF4AfgfklonWO9hEdEeEZ+jNAb9mdmgd53AJyPiiew1r42IkyPi7gn6cQrw0Yh4A/BhYE9EnAacBlws6bjq3xqzEh8asmY3i9Iv9u+VhndhBqWRK4d1Zf8/CDw8PGSBpMeAJcDzwJMR8a9Zu68Dfwj88wTrvbns8WLg5myP4TDg8Un0476IGH7eO4FlZXsPRwBLJ7leMweBNT1R+gW/fIzlw2O6DJU9Hp4e/nyMHoclcqz3xbLHXwQ+HxFd2QniK8d4ziDZXrqkFkqhUWl9Av5nRNwxxnrMquJDQ9bs9gOvkbQcQFKrpN+och3HDD8f+ANKh3q2V7HeI/jV0MIfKJu/F5hfNv0EcGr2eBXQOsb67gD+e3Z4CklvKLvZjlnVHATW7IYoDfF7taQHgC3Af65yHdsp3YToEWABpZvcHKhivVcCt0raDDxXNv8fgPcMnyymNMb+W7P1LWfkXkC56ykNX/wTSQ8BX8F793YIPPqo2Tiyq3v+MSLeVOdSzArjPQIzs8R5j8DMLHHeIzAzS5yDwMwscQ4CM7PEOQjMzBLnIDAzS9z/Bxqb4z828mHUAAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
@@ -499,72 +394,19 @@
"metadata": {},
"outputs": [
{
- "data": {
- "text/html": [
- "\n",
- "Generalized Linear Model Regression Results\n",
- "\n",
- " Dep. Variable: | Frequency | No. Observations: | 7 | \n",
- "
\n",
- "\n",
- " Model: | GLM | Df Residuals: | 5 | \n",
- "
\n",
- "\n",
- " Model Family: | Binomial | Df Model: | 1 | \n",
- "
\n",
- "\n",
- " Link Function: | logit | Scale: | 1.0000 | \n",
- "
\n",
- "\n",
- " Method: | IRLS | Log-Likelihood: | -2.5250 | \n",
- "
\n",
- "\n",
- " Date: | Sat, 13 Apr 2019 | Deviance: | 0.22231 | \n",
- "
\n",
- "\n",
- " Time: | 19:12:05 | Pearson chi2: | 0.236 | \n",
- "
\n",
- "\n",
- " No. Iterations: | 4 | Covariance Type: | nonrobust | \n",
- "
\n",
- "
\n",
- "\n",
- "\n",
- " | coef | std err | z | P>|z| | [0.025 | 0.975] | \n",
- "
\n",
- "\n",
- " Intercept | -1.3895 | 7.828 | -0.178 | 0.859 | -16.732 | 13.953 | \n",
- "
\n",
- "\n",
- " Temperature | 0.0014 | 0.122 | 0.012 | 0.991 | -0.238 | 0.240 | \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- "\n",
- "\"\"\"\n",
- " Generalized Linear Model Regression Results \n",
- "==============================================================================\n",
- "Dep. Variable: Frequency No. Observations: 7\n",
- "Model: GLM Df Residuals: 5\n",
- "Model Family: Binomial Df Model: 1\n",
- "Link Function: logit Scale: 1.0000\n",
- "Method: IRLS Log-Likelihood: -2.5250\n",
- "Date: Sat, 13 Apr 2019 Deviance: 0.22231\n",
- "Time: 19:12:05 Pearson chi2: 0.236\n",
- "No. Iterations: 4 Covariance Type: nonrobust\n",
- "===============================================================================\n",
- " coef std err z P>|z| [0.025 0.975]\n",
- "-------------------------------------------------------------------------------\n",
- "Intercept -1.3895 7.828 -0.178 0.859 -16.732 13.953\n",
- "Temperature 0.0014 0.122 0.012 0.991 -0.238 0.240\n",
- "===============================================================================\n",
- "\"\"\""
- ]
- },
- "execution_count": 4,
- "metadata": {},
- "output_type": "execute_result"
+ "ename": "ImportError",
+ "evalue": "cannot import name 'factorial'",
+ "output_type": "error",
+ "traceback": [
+ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
+ "\u001b[0;31mImportError\u001b[0m Traceback (most recent call last)",
+ "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0;32mimport\u001b[0m \u001b[0mstatsmodels\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mapi\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0msm\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mdata\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"Success\"\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mCount\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mMalfunction\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0mdata\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"Intercept\"\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/statsmodels/api.py\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 14\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0;34m.\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mrobust\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 15\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0;34m.\u001b[0m\u001b[0mrobust\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrobust_linear_model\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mRLM\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 16\u001b[0;31m from .discrete.discrete_model import (Poisson, Logit, Probit,\n\u001b[0m\u001b[1;32m 17\u001b[0m \u001b[0mMNLogit\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mNegativeBinomial\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 18\u001b[0m \u001b[0mGeneralizedPoisson\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/statsmodels/discrete/discrete_model.py\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 43\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 44\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mstatsmodels\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbase\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0ml1_slsqp\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mfit_l1_slsqp\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 45\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mstatsmodels\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdistributions\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mgenpoisson_p\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 46\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 47\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/statsmodels/distributions/__init__.py\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0;34m.\u001b[0m\u001b[0mempirical_distribution\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mECDF\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmonotone_fn_inverter\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mStepFunction\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0;34m.\u001b[0m\u001b[0medgeworth\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mExpandedNormal\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0;34m.\u001b[0m\u001b[0mdiscrete\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mgenpoisson_p\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mzipoisson\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mzigenpoisson\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mzinegbin\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/statsmodels/distributions/edgeworth.py\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mnumpy\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mnumpy\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpolynomial\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mhermite_e\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mHermiteE\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 7\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mscipy\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmisc\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mfactorial\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 8\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mscipy\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstats\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mrv_continuous\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 9\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mscipy\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mspecial\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mspecial\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;31mImportError\u001b[0m: cannot import name 'factorial'"
+ ]
}
],
"source": [
@@ -601,22 +443,9 @@
},
{
"cell_type": "code",
- "execution_count": 5,
+ "execution_count": null,
"metadata": {},
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEKCAYAAAAcgp5RAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAGyFJREFUeJzt3X2UVPWd5/H3pxuQBhEjkhkFDWSWtHF9ABRQWZ3WqGhORLPrE2vGMRNCdmeMk83Knng2E43Rc2YHd2I26zgy6jgxiUo8iiSHCahjT2Y8PoCCILAIY4g2JEGND7Q2Snd/9497u6kuqunqpvqhfnxe5/Tpurd+de/3V7fvp27fuvUrRQRmZpaumsEuwMzM+peD3swscQ56M7PEOejNzBLnoDczS5yD3swscT0GvaR7Je2U9HI390vS/5G0VdI6SdMrX6aZmfVVOUf09wEX7Of+C4Ep+c8C4M4DL8vMzCqlx6CPiF8Av9tPk4uBH0TmWeBwSUdVqkAzMzswwyqwjAnA6wXTTfm8Xxc3lLSA7KifkSNHnnLsscdWYPVDU3t7OzU16b4FknL/Uu4buH/V7pVXXnkzIsb35jGVCHqVmFdyXIWIWAwsBqivr4/NmzdXYPVDU2NjIw0NDYNdRr9JuX8p9w3cv2on6Ve9fUwlXvaagGMKpicCOyqwXDMzq4BKBP0y4Or86pvTgHcjYp/TNmZmNjh6PHUj6QGgAThSUhNwIzAcICL+FlgOfBbYCnwAfLG/ijUzs97rMegjYl4P9wfwZxWryMyqwp49e2hqamL37t2DXUoXY8eOZdOmTYNdxgEbOXIkEydOZPjw4Qe8rEq8GWtmB6GmpibGjBnDpEmTkEpdkzE4du3axZgxYwa7jAMSEbz11ls0NTUxefLkA15eutcgmVm/2r17N+PGjRtSIZ8KSYwbN65i/y056M2szxzy/aeSz62D3swscT5Hb2ZVq7a2lhNPPLFzeunSpYwbN24QKxqaHPRmVrXq6upYu3Ztl3m7du3qvN3a2sqwYY45n7oxs6T86Ec/4rLLLuOiiy7i/PPPB2DRokXMmDGDk046iRtvvLGz7a233kp9fT3nnnsu8+bN47bbbgOgoaGB1atXA/Dmm28yadIkANra2li4cGHnsu666y5g77ALl156KccddxxXXXUV2ZXnsGrVKs444wxOPvlkZs6cya5duzjzzDO7vEDNnj2bdevW9dtz4pc6Mztg3/7pBjbueK+iyzz+6MO48aJ/v982LS0tTJ06FYDJkyfz6KOPAvDMM8+wbt06jjjiCFauXMmWLVt4/vnniQjmzp3LL37xC0aPHs2DDz7ImjVraG1tZfr06Zxyyin7Xd8999zD2LFjWbVqFR9++CGzZ8/ufDFZs2YNGzZs4Oijj2b27Nk8/fTTzJw5kyuuuIKHHnqIGTNm8N5771FXV8f8+fO57777uP3223nllVf48MMPOemkkyrwrJXmoDezqlXq1A3AeeedxxFHHAHAypUrWblyJdOmTQOgubmZLVu2sGvXLj7/+c8zatQoAObOndvj+lauXMm6det4+OGHAXj33XfZsmULI0aMYObMmUycOBGAqVOnsm3bNsaOHctRRx3FjBkzADjssMMAuOyyy/jOd77DokWLuPfee7nmmmsO7InogYPezA5YT0feA2306NGdtyOCG264ga985Std2tx+++3dXsI4bNgw2tvbAbpcyx4RfP/732fOnDld2jc2NnLIIYd0TtfW1tLa2kpElFzHqFGjOO+883jsscdYsmRJ52mi/uJz9GaWtDlz5nDvvffS3NwMwPbt29m5cydnnXUWjz76KC0tLezatYuf/vSnnY+ZNGkSL7zwAkDn0XvHsu6880727NkDwCuvvML777/f7bqPO+44duzYwapVq4DsjeLW1lYA5s+fz3XXXceMGTM6//voLz6iN7OknX/++WzatInTTz8dgEMPPZQf/vCHTJ8+nSuuuIKpU6fyiU98gjPPPLPzMddffz2XX345999/P+ecc07n/Pnz57Nt2zamT59ORDB+/HiWLl3a7bpHjBjBQw89xFe/+lVaWlqoq6vjiSee4NBDD+WUU07hsMMO44tfHIBxICNiUH4+9alPRcqeeuqpwS6hX6Xcv5T7FlG5/m3cuLEiy6m09957r0+Pu/HGG2PRokUVrqZ727dvjylTpkRbW1u3bUo9x8Dq6GXe+tSNmdkA+8EPfsCsWbO49dZbB+RrD33qxswMuOmmmwZsXVdffTVXX331gK3PR/Rm1mcRJb8e2iqgks+tg97M+mTkyJG89dZbDvt+EPl49CNHjqzI8nzqxsz6ZOLEiTQ1NfHGG28Mdild7N69u2IBOZg6vmGqEhz0ZtYnw4cPr8i3H1VaY2Nj56dgLeNTN2ZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeLKCnpJF0jaLGmrpG+UuP9YSU9JWiNpnaTPVr5UMzPrix6DXlItcAdwIXA8ME/S8UXNvgksiYhpwJXA31S6UDMz65tyjuhnAlsj4tWI+Ah4ELi4qE0Ah+W3xwI7KleimZkdCPX0De6SLgUuiIj5+fQfAbMi4tqCNkcBK4GPAaOBcyPihRLLWgAsABg/fvwpS5YsqVQ/hpzm5mYOPfTQwS6j36Tcv5T7Bu5ftTv77LNfiIhTe/OYcr4cXCXmFb86zAPui4j/Lel04H5JJ0REe5cHRSwGFgPU19dHQ0NDb2qtKo2Njbh/1SnlvoH7dzAq59RNE3BMwfRE9j018yVgCUBEPAOMBI6sRIFmZnZgygn6VcAUSZMljSB7s3VZUZvXgM8ASPo0WdC/UclCzcysb3oM+ohoBa4FVgCbyK6u2SDpZklz82b/HfiypJeAB4BroqeT/2ZmNiDKOUdPRCwHlhfN+1bB7Y3A7MqWZmZmleBPxpqZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWuLKCXtIFkjZL2irpG920uVzSRkkbJP24smWamVlfDeupgaRa4A7gPKAJWCVpWURsLGgzBbgBmB0Rb0v6eH8VbGZmvVPOEf1MYGtEvBoRHwEPAhcXtfkycEdEvA0QETsrW6aZmfVVj0f0wATg9YLpJmBWUZtPAUh6GqgFboqInxcvSNICYAHA+PHjaWxs7EPJ1aG5udn9q1Ip9w3cv4NROUGvEvOixHKmAA3AROBfJJ0QEe90eVDEYmAxQH19fTQ0NPS23qrR2NiI+1edUu4buH8Ho3JO3TQBxxRMTwR2lGjzWETsiYhfApvJgt/MzAZZOUG/CpgiabKkEcCVwLKiNkuBswEkHUl2KufVShZqZmZ902PQR0QrcC2wAtgELImIDZJuljQ3b7YCeEvSRuApYGFEvNVfRZuZWfnKOUdPRCwHlhfN+1bB7QC+nv+YmdkQ4k/GmpklzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeLKCnpJF0jaLGmrpG/sp92lkkLSqZUr0czMDkSPQS+pFrgDuBA4Hpgn6fgS7cYA1wHPVbpIMzPru3KO6GcCWyPi1Yj4CHgQuLhEu+8AfwXsrmB9ZmZ2gIaV0WYC8HrBdBMwq7CBpGnAMRHxM0nXd7cgSQuABQDjx4+nsbGx1wVXi+bmZvevSqXcN3D/DkblBL1KzIvOO6Ua4LvANT0tKCIWA4sB6uvro6Ghoawiq1FjYyPuX3VKuW/g/h2Myjl10wQcUzA9EdhRMD0GOAFolLQNOA1Y5jdkzcyGhnKCfhUwRdJkSSOAK4FlHXdGxLsRcWRETIqIScCzwNyIWN0vFZuZWa/0GPQR0QpcC6wANgFLImKDpJslze3vAs3M7MCUc46eiFgOLC+a961u2jYceFlmZlYp/mSsmVniHPRmZolz0JuZJc5Bb2aWOAe9mVniyrrqxqxSlq7ZzqIVm9nxTgtHH17Hwjn1XDJtwmCXZf3A23rocNDbgFm6Zjs3PLKelj1tAGx/p4UbHlkP4ABIjLf10OJTNzZgFq3Y3Lnjd2jZ08aiFZsHqSLrL97WQ4uD3gbMjndaejXfqpe39dDioLcBc/Thdb2ab9XL23pocdDbgFk4p5664bVd5tUNr2XhnPpBqsj6i7f10OI3Y23AdLwJ5ysx0udtPbQ46G1AXTJtgnf2g4S39dDhUzdmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOH9nrJmVJSJoaw/aA9oj8h9oa49u72tvL9Eugvb20svYp13RMtoj8mloi6L15u02vbaH15/9Vba89qAtStS+T61BW3vpPnZMd3df5DV31Fiq9s52HevrspyCdlG0vKK+tkfftp2D3gZN4Y7dJRwiiPaCnaI4GPLbe3f0vfdFqeX1cud8eUcrv3uxqcdgiYKAKL1Tlg6P0kGwd3n7C7G2gvW2t5doV+r5KgqSDz7YzSHPPLnf9RSHS1tfE2awbHy57KYS1ErUSNTUQI1ErYQENTUdt0WNoLZmb7u9j8nuqylaRo0K5teI2hoxvOPxUr4sAFFbky1b+bq7PK5omWv68HSUFfSSLgC+B9QCd0fEXxbd/3VgPtAKvAH8SUT8qg/19Nk+r/qljgAKjhpKvcruEzzFO0vnEUL2uP0dtaz/TSvvvbRjnzCIotvdBl3Rq3rbfu7b35HBPvOLQ6rLkcq+Ry7dHYE1N3/AyFVPdd7X2ZcSwVNYb9fneyD/Qnpp3UsH9PDC8FBhQOThURwEtTXZziyU7/D7Pr62RojC8MkeO6y2hkOG7Q2cjmDqWEbn8vL17vztbzn6qCP3CaWOdvvczutUPr+wPqlrqGX9UNewLFFDTan11AhREKI1RcuVgL3PRZdw7QjfGvHsM88we/YZBbUL1RQ9FwXPrfLlVotb+vCYHoNeUi1wB3Ae0ASskrQsIjYWNFsDnBoRH0j6r8BfAVfsb7nbm9s596//uXQQlArtff716Ro8Q9Lavrz2ltbxh93lFb9oR+g86ug4AqnpLmz2hkoWGnuPHrJ1lA6O2jwUJHizpoWjfv/wLjt58Tpqa9Sl9pJHPwV9KWyX9TN7LHmfawtrrum6jNqa7LkR+4ZNjYAuobdvUBTWvnrV85x+2qx9gqXrkV/R9ig6EhzK4dHY2EhDw8mDXUa/+djIGj4+ZuRglzGklHNEPxPYGhGvAkh6ELgY6Az6iHiqoP2zwBd6WujwGlH/e2M6d8CSQdBNKOzdWfNQoGvoFR/xFP6bpOLbRUc1xUddxQGyN/T2hlvx0UiNxIurVzNr1oyCYN7fkR37HAWpKJiGmiwspg12Gf2iaXQNnxg3erDLMKuYcoJ+AvB6wXQTMGs/7b8E/GOpOyQtABYAjB8/nssmvFdmmX0Q+U8FteU/5RirD2ja+EJlCxhCmpubaWxsHOwy+kXKfQP372BUTtCXOpwsGaGSvgCcCvxhqfsjYjGwGKC+vj4aGhrKq7IKZUe8DYNdRr9JuX8p9w3cv4NROUHfBBxTMD0R2FHcSNK5wP8E/jAiPqxMeWZmdqDK+cDUKmCKpMmSRgBXAssKG0iaBtwFzI2InZUv08zM+qrHoI+IVuBaYAWwCVgSERsk3Sxpbt5sEXAo8BNJayUt62ZxZmY2wMq6jj4ilgPLi+Z9q+D2uRWuy6zXlq7ZzqIVm9nxTgtHH17Hwjn1APvMu2TahAGtoT/X1xvfXLqeB557na+dsIcv3bCcebOO4ZZLThzssmwA+JOxloSla7ZzwyPradmTXRe1/Z0WFv7kJRDsaYvOeTc8sh6gX8K3VA39ub7e+ObS9fzw2dc6p9siOqcd9unzoGaWhEUrNncGbIc97dEZ8h1a9rSxaMXmAauhP9fXGw8893qv5ltaHPSWhB3vtPRL20rU0F/r6422bsab6G6+pcVBb0k4+vC6fmlbiRr6a329UdvNp6u7m29pcdBbEhbOqadueG2XecNrxPDarkFWN7y2803agaihP9fXG/NmHdOr+ZYWvxlrSeh4s3Mwr7rprobBfiMW9r7h2nFOvlbyVTcHEQe9JeOSaRNKhupABm13NQwFt1xyIrdcciKNjY3821UNg12ODSCfujEzS5yD3swscQ56M7PEOejNzBLnoDczS5yD3swscQ56M7PEOejNzBLnoDczS5yD3swscQ56M7PEOejNzBLnoDczS5yD3swscQ56M7PEOejNzBLnoDczS5yD3swscQ56M7PEOejNzBLnoDczS5yD3swscQ56M7PEOejNzBLnoDczS5yD3swscQ56M7PEOejNzBJXVtBLukDSZklbJX2jxP2HSHoov/85SZMqXaiZmfVNj0EvqRa4A7gQOB6YJ+n4omZfAt6OiH8HfBf4X5Uu1MzM+qacI/qZwNaIeDUiPgIeBC4uanMx8A/57YeBz0hS5co0M7O+GlZGmwnA6wXTTcCs7tpERKukd4FxwJuFjSQtABbkkx9KerkvRVeJIynqf2JS7l/KfQP3r9rV9/YB5QR9qSPz6EMbImIxsBhA0uqIOLWM9Vcl9696pdw3cP+qnaTVvX1MOadumoBjCqYnAju6ayNpGDAW+F1vizEzs8orJ+hXAVMkTZY0ArgSWFbUZhnwx/ntS4F/ioh9jujNzGzg9XjqJj/nfi2wAqgF7o2IDZJuBlZHxDLgHuB+SVvJjuSvLGPdiw+g7mrg/lWvlPsG7l+163X/5ANvM7O0+ZOxZmaJc9CbmSVuQIJe0khJz0t6SdIGSd/O50/Oh0zYkg+hMGIg6ukPkmolrZH0s3w6pb5tk7Re0tqOS7skHSHp8bx/j0v62GDX2VeSDpf0sKT/J2mTpNNT6Z+k+ny7dfy8J+lrCfXvv+WZ8rKkB/KsSWnf+/O8bxskfS2f1+ttN1BH9B8C50TEycBU4AJJp5ENlfDdiJgCvE02lEK1+nNgU8F0Sn0DODsiphZcn/wN4Mm8f0/m09Xqe8DPI+I44GSy7ZhE/yJic77dpgKnAB8Aj5JA/yRNAK4DTo2IE8guFrmSRPY9SScAXyYbneBk4HOSptCXbRcRA/oDjAJeJPt07ZvAsHz+6cCKga6nQn2amD/h5wA/I/sAWRJ9y+vfBhxZNG8zcFR++yhg82DX2ce+HQb8kvzChNT6V9Sn84GnU+kfez+RfwTZFYQ/A+aksu8BlwF3F0z/BfA/+rLtBuwcfX5qYy2wE3gc+DfgnYhozZs0kW24anQ72QZoz6fHkU7fIPuU80pJL+TDWAD8XkT8GiD//fFBq+7AfBJ4A/j7/NTb3ZJGk07/Cl0JPJDfrvr+RcR24DbgNeDXwLvAC6Sz770MnCVpnKRRwGfJPpja6203YEEfEW2R/fs4kexfkU+XajZQ9VSKpM8BOyPihcLZJZpWXd8KzI6I6WQjmP6ZpLMGu6AKGgZMB+6MiGnA+1ThaYye5Oep5wI/GexaKiU/N30xMBk4GhhN9jdarCr3vYjYRHYa6nHg58BLQOt+H9SNAb/qJiLeARqB04DD8yEToPTQCtVgNjBX0jaykT3PITvCT6FvAETEjvz3TrLzuzOB30o6CiD/vXPwKjwgTUBTRDyXTz9MFvyp9K/DhcCLEfHbfDqF/p0L/DIi3oiIPcAjwBmkte/dExHTI+Issg+jbqEP226grroZL+nw/HYd2QbaBDxFNmQCZEMoPDYQ9VRSRNwQERMjYhLZv8b/FBFXkUDfACSNljSm4zbZed6X6TrsRdX2LyJ+A7wuqWNEwM8AG0mkfwXmsfe0DaTRv9eA0ySNyodF79h2Sex7AJI+nv8+FviPZNuw19tuQD4ZK+kksvHqa8leXJZExM2SPkl2FHwEsAb4QkR82O8F9RNJDcD1EfG5VPqW9+PRfHIY8OOIuFXSOGAJcCzZDndZRFTlQHaSpgJ3AyOAV4Evkv+dkkb/RpG9afnJiHg3n5fE9ssv1b6C7JTGGmA+2Tn5qt/3ACT9C9l7fnuAr0fEk33Zdh4Cwcwscf5krJlZ4hz0ZmaJc9CbmSXOQW9mljgHvZlZ4sr5cnCzAZVfPvZkPvn7QBvZMAUAMyPio0EpbD8k/QmwPL8u32xI8eWVNqRJuglojojbhkAttRHR1s19/wpcGxFre7G8YQVjspj1G5+6saoi6Y+VfbfBWkl/I6lG0jBJ70haJOlFSSskzZL0z5JelfTZ/LHzJT2a379Z0jfLXO4tkp4HZkr6tqRV+Rjhf6vMFWTDbz+UP36EpKaCT4OfJumJ/PYtku6S9DjZQGrDJP11vu51kuYP/LNqqXPQW9XIx+f+PHBGPkDeMPZ+Ef1YYGU++NpHwE1kH4m/DLi5YDEz88dMB/6zpKllLPfFiJgZEc8A34uIGcCJ+X0XRMRDwFrgisjGfu/p1NI04KKI+CNgAdmgeDOBGWSDxh3bl+fHrDs+R2/V5FyyMFydDW1CHdlH+wFaIuLx/PZ64N2IaJW0HphUsIwVEfE2gKSlwH8g2w+6W+5H7B0CAuAzkhYCI4EjyYbF/cde9uOxiNid3z4f+LSkwheWKWQfbTerCAe9VRMB90bEX3SZmY1UWHgU3U72rWYdtwv/zovflIoeltsS+RtZ+Zgx/xeYHhHbJd1CFviltLL3P+biNu8X9elPI+JJzPqJT91YNXkCuFzSkZBdndOH0xznK/uO2FFkY5k/3Yvl1pG9cLyZj+j5nwru2wWMKZjeRvbVfRS1K7YC+NOOYXWVfcdrXS/7ZLZfPqK3qhER6/PRCp+QVEM2ot9/oXfjjf8r8GPgD4D7O66SKWe5EfGWpH8gG6b5V8BzBXf/PXC3pBay9wFuAv5O0m+A5/dTz11koxCuzU8b7SR7ATKrGF9eaQeN/IqWEyLia4Ndi9lA8qkbM7PE+YjezCxxPqI3M0ucg97MLHEOejOzxDnozcwS56A3M0vc/wcowwoTqhaBUgAAAABJRU5ErkJggg==\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {
- "needs_background": "light"
- },
- "output_type": "display_data"
- }
- ],
+ "outputs": [],
"source": [
"%matplotlib inline\n",
"data_pred = pd.DataFrame({'Temperature': np.linspace(start=30, stop=90, num=121), 'Intercept': 1})\n",
@@ -681,6 +510,13 @@
"from all angles in order to to explain what's wrong."
]
},
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### My Analysis"
+ ]
+ },
{
"cell_type": "code",
"execution_count": null,
@@ -706,7 +542,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.7.3"
+ "version": "3.6.4"
}
},
"nbformat": 4,