From b65f587a275fb0733ec570fdc21e3128402f59a4 Mon Sep 17 00:00:00 2001 From: 18ad6f5edee516fce221aa66779c2f3b <18ad6f5edee516fce221aa66779c2f3b@app-learninglab.inria.fr> Date: Fri, 27 Mar 2020 09:42:47 +0000 Subject: [PATCH] modified --- module2/exo1/toy_notebook_fr.ipynb | 76 +++++++++++++++++++++++++++--- 1 file changed, 70 insertions(+), 6 deletions(-) diff --git a/module2/exo1/toy_notebook_fr.ipynb b/module2/exo1/toy_notebook_fr.ipynb index 5dc7a1b..339ba7f 100644 --- a/module2/exo1/toy_notebook_fr.ipynb +++ b/module2/exo1/toy_notebook_fr.ipynb @@ -4,30 +4,94 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Amalia exercise\n" + "# 1. A propos de calcul du $\\uppi$\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "1. A propos de calcul du \\uppi\n" + "## 1.1 En demandant à lib maths\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "1.1 En demandant à lib maths \n", + " Mon ordinateur m’indique que $\\uppi$ vaut *approximativement*\n", "\n" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": {}, - "outputs": [], - "source": [] + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "3.141592653589793\n" + ] + } + ], + "source": [ + "from math import *\n", + "print(pi)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 1.2 En utilisant la méthode des aiguilles de Buffon" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Mais calculé avec la **méthode** des aiguilles de Buffon, on obtiendrait comme **approximation** :" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "3.128911138923655" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import numpy as np \n", + "np.random.seed(seed=42)\n", + "N = 10000\n", + "x = np.random.uniform(size=N, low=0, high=1)\n", + "theta = np.random.uniform(size=N, low=0, high=pi/2)\n", + "2/(sum((x+np.sin(theta))>1)/N)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Avec un argument \"fréquentiel\" de surface" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinussebasesurlefaitquesi $X \\sim U(0,1)$ et $Y \\sim U(0,1)$ alors $P[X\\^2+Y\\^2 $\\leq$ 1]$= $\\uppi \\frac 4$ (voir méthode de Monte Carlo sur Wikipedia). Le code suivant illustre ce fait :" + ] } ], "metadata": { -- 2.18.1