diff --git a/module2/exo1/toy_notebook_en.ipynb b/module2/exo1/toy_notebook_en.ipynb index 0bbbe371b01e359e381e43239412d77bf53fb1fb..47d1ded714316a9aebcee187d316d255880c9d30 100644 --- a/module2/exo1/toy_notebook_en.ipynb +++ b/module2/exo1/toy_notebook_en.ipynb @@ -1,5 +1,109 @@ { - "cells": [], + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "3.141592653589793\n" + ] + } + ], + "source": [ + "from math import *\n", + "print(pi)" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "3.128911138923655" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import numpy as np\n", + "np.random.seed(seed=42)\n", + "N = 10000\n", + "x = np.random.uniform(size=N, low=0, high=1)\n", + "theta = np.random.uniform(size=N, low=0, high=pi/2)\n", + "2/(sum((x+np.sin(theta))>1)/N)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAP8AAAD8CAYAAAC4nHJkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvVlwXNeZJvhdZGJNJDKR2ImNAJiQSIIUJYICJduivEmW7ZJdbneX3YqemqqIdjjKVc/91vMwLzUdEzFd0+WZake3u1weRzm6NhVdXijJtijbkkCC2ggSJJIAsZEAsSSQWDKxJHDn4ePvc/Li3ps3gQRFWPgjEAByuffcc/59NUzTxAEcwAF89KDgw17AARzAAXw4cED8B3AAH1E4IP4DOICPKBwQ/wEcwEcUDoj/AA7gIwoHxH8AB/ARhQPiP4AD+IjCAfEfwAF8ROGA+A/gAD6i4P+wblxdXW0ePnz4w7r9ARzA7yxcuXJl1jTNmmyf+9CI//Dhw+jr6/uwbn8AB/A7C4ZhjHr53IHafwAH8BGFA+I/gAP4iMIB8R/AAXxE4YD4D+AAPqJwQPwHcAAfUTgg/gM4gI8oHBD/ARzARxSyEr9hGN81DGPaMIx+h/cNwzD+b8MwbhmG8YFhGE/kf5kHcAAHkG/wkuTz1wD+EsDfOLz/AoDo/Z8eAP/v/d8H8DBAPA7EYsDCAhAOA9EoEIl82Ks6AIEP8XyyEr9pmm8YhnHY5SNfAvA3JjuBvm0YRtgwjAbTNCfztEbP4HkfvXzwd4Fo4nGgtxcIBICqKiCZ5P89PQ/+Wez2E/jw93ivztl63epqYHZ2+/N/iOeTj/TeRgDj2v8T9197oMSfDc/lLFbG4zg03ouGaACheocNzwfRPAhkz4a4sRifIRDg//I7FuOzPCiw28/XXgNME2hoAPx+4Ne/Br77XaC1FThzBjh9Ovve7JZw88kc9bUYBjA/z2erqgKmpoALF4AnngDq69V9fD51PokEMD4OzMwAk5PAl7+85wwgH8Rv2Lxm2w/cMIxvAPgGALS0tOTh1gquXAFGR4F0GggGgeZm7mksRpyQM25YjmHVH0D/cAAtm8DCQgDJGSAwGcOhL/dwv3dLNHZI9eqrwPIysLHBn8JCYGQE+Oxnd3bITojb2akkzI0bQFdX5vfKyoC5udzvtxuw2894nH/X1ACXLwN37/LgpqeBf/5n4Je/BJ59Fujutt+ffBBuvpijrGVzk3t/5QqwtcWzDQS435WV/N3QoO7z7rvAxz5Gwu/vB0pLgdpa7sED0ADy4e2fANCs/d8E4K7dB03T/I5pmt2maXbX1GQtOsoA2d8LF/hbcEd/r6AACIWA9XXu5cYGaUA/Y9/yAorDZdjaAt64CGysA8HaMpjxBXXdhQUSiQ5lZXzdywJffpmIEAhQCgQCwMQE8M475PbhMH+PjhJRdgL6Q8k9NjeB8+eBtTUSRHExr59IqO8lk7z/gwS7/RQmOD7O9VVUUAOYmCARmCYwPLz9sAXsnl+4/W7Wle2c7SAW494PD/OZSkr4DL/6FZ9taYmIubSUeR+A5zE+zs+XlvLsampyf5YdQD6I/zyA/+W+1/8sgES+7X2hK8HptTWFE/E4ae3ePQrSlRW1j7EY8Vw/481gGAWrSSwskDmXlgK+tSRWS8IYHQW+/32g/04Yialk5iLciMa6wHgcGBpSRJdIAH19wJ07/FlZIbLE48A//IMzgruBHeLOzmYync5Ovj44SGJaWeGPmCAPCsJh7p8OhYX8WVqiulZUxEMMBvmTTvPHiQicGMrbb9tLCK/r2glzXFjg3gvilZeT8W5ukrCDQeJAMJh5n6YmMudf/YpMb3YWSKWotu6ECeUIWdV+wzD+FsCzAKoNw5gA8L8BKAQA0zT/CsBPAHwewC0ASQB/lO9FOmlnfX2Kho4epZY7MAA8+igF69gY0N7O19NpMuSi5SjapnsxGweqW8pQkEoiNbuCd9CFgipqD4u1UQy+04vOJ4BQfRkPamVluwrttMCaGmBxkQcPUA1ZXyf3T6f5P8AFBQKKm7mpebpNWVAA3LzJa9bUEFlCISJPdbX6TihE27m/nypnOMxn2KkquVMbW+wugEidTPJ7pkmkHxujrXvvHtViIZTWVmczRQhX9jyRICFVVDibQdY1263L7ZydIBwGrl4F6upo2q2s8HxCIdrvXV3U8tra+MzJJF83DK4hHqeqv7QEPPMMv7eysucamhdv/9ezvG8C+FbeVmQDCws8Tx3KymgyPf448X99HTh2jHs8NEQcKisjfbW0AD/6EYXLyZMRDJs9mB2K4XD9HLaKwhio6EJBERGiogJYLYvgZqAHQz+P4bHDczh0LIxQjwvRWBfY3ExkmJnhYRsGESOd5vvLy/w7EgEeeSS7rTk0RHV+c5MPNDfH6xYVkclcvQp0dJDj6cQPULqePbt7B59uY/v93PxXXuF1OzqcCQzg3z09fD5hQqdPA++9B1y6xNf9fq7/3j0ifnk5iWFqigdsBSvhDg7y785OZQYsLnLfTp+29wvYrWsnzDEaBd58k1rd7Czv39ysTJcnngBeeonvyX0qKxXz/+QnyaANg3sYieyMCeUI+yLDz0k7A3juzc3Ulnw+agD19RSOp04pHDh5kvs9PAwUN0TQ9gc9eK/2ecy09WB2KwLT5DXC4fv+gmAEM+09mHn8ebyZ7kEcLghhXWAoRIKIRIgQwSDw3HNUQzY3idQbG+RQR4+qB7FT8+JxIrDfTwZy545CoIoK/mxsUHK8+CI3YWVl52q+k3NFtJt0Grh2jfepqyPj+cEPyOisNpkOQmjPP8/1XLlCwjdN7ktxMffJ76fq3NBABiAeWytEIiT0W7e41ps3+blQSH3GagbZ+QX0dQmDdHIuOUEkwr2fmlLayJEjZOyf/CS1m1u3+NkzZ3gf01RmSyhEQg8Geb7FxQ8k3PehdfLJBZy0s2PH+Lfs3fg4aSAS4T7W1/M7S0vEy6oqaoddXdz7wkLu89YWf+QapaX8XkWFRwew3QJ9PoZrYjESRCDAC46PK8dET49CVidbU5xJ1dVE4M1NPtzCAl+ThxGPss9HqQxwg3INTzp50BcWSJgXL5KbVlbSMz05SfXc6sl227C+Pjpo1taovRQVkXm0tQGHDnGPlpb4nOXlzt7+wUES2cmTvGYsxv2UPbWaQXI+TtGO3UQQZD8mJpSzqbWVz1lYyDVOTVFDaG7mHooAALjm9nYKgwcUht0Xkl+Yc3Exz00Y4+nTSrhVVBB3jh8nzbW0KGEcDAKrq/wR34v43wDgi1/kOfn9PBPRAprvxzCy+l6cFhiJkDFYF/mxj3Hxfn92CS1EvrrK/4W4FhaUAymZJGPo7aUq+bGP0R4SM8MruHnQCwoorYXwNzboTEml7D3Zbhs2MKBU38JC3isYJCPx+3l4x4/zme/csZfA1rXaOTftzCA3h95OIwjCNIqLec9Dh8jc796lHVpayn0bHubzLS+TUbzzDp/5Q3LG7gvJDyj6soKTyaYLY3GqAny9r484UF1NR6vPRz/L3BzPJ52mxibgyQHstEA7u/Kzn+V7loXHEUGs12I6h8MktOFhfqe2Fnj/fS5yaooPs74OHD4MnDiRW8za6sAbGyNz0kEkpWGo/9fX+b+orhKqy2nDQLNhZkZ5yhMJ/l1Tw9fLysgk7RyiVj+LnXPzxRfJDFZWvDn0rNdMJLgnIiWcHJzCNEpKuC/Fxdyb8XGeF6BUypISXvfECfoCpqfJAHfrjN0B7BvidwIvNJdKURCaJoWOz8fzSacpsKanaTKeOQN8+tP0r5lmph9tN76XOCKIoQcLAMJgEUQkgoyFO2mcZzujqIzHqRLOzhJxIhE+1OAgkau2lkgvxChqr5OKG4+TG/b2kgNGoyQwibGLKgooQl5YIHENDKgklvJyZrL5fGQaklQxO8tni8ftkfnYMZomlZWU8IODtImPHOF7y8s8oJIS3i8Y5KbojMzq7QfsnZuVld4devo1JfHGMIDGRveIjDAN06TaPj3NZ/D7eW6mqWL9c3Pcl7fe4v4Fg/Q3fAiw74nfDewYg2lS01pYIK6XlNA38P77xMevfIVMeWCAODMyArzwws7X4NWMdApnDs5G0CNcrLCQyLW4SA7l89EHcPs2Fzo8TGJ84QUimp0ElgWNjpJpGAYdeF1dZAKxmHIixmKUwD09VPsLC0mcS0tcQzJJBO7sJHG8+y6l9lNP8bNOxHL6NNcxP6/UrLNnVbbj3/0dVeaiIh7Q6iqfN5VSB5qvMJ0O+jXHxpR209LirEnF49QMrl7lnkQilBipFLUx8e+UlPBzIyOMRYdCRML5eWcmucfwO038VpBzeustCq5QiAJmbY344/OR6AEy/VCItFNSsvNsS68ZpE7hzLk5bOdiFy6QOE2Tav/oKB9ofp7hs0iEHMxOZdG99qGQUufHx5WdLVKuuhp4+mki8nvvkcA2N8ktq6v5elcXJdytW8C5c5mSeHGRGViNjZkhwEiEhO6UM7C0RGYjntfSUq5L9yt4CdPl6sDTr3nnDtfd0uKsScn1a2u5trIyIlBbG9fc0cF7VlbyOaemyBCqqvg8pqkY7oOstbgPHxni18+pvJzCcm2NuF9QoPxC/f3Eo0iEpu30NOlkc9Mej7OBG1HrJvedO5nOX8DFdA6HKVlv3CDhi6PJ5yMTGBqiPW1XHCILEi+obocmk8rL+cwzSv0dHlac8OZN/nR18ScUUurUyZP8biJBIrh6letsbd2uNjvZawA1j6UlMheR/FtbmX4FwP0awM5y9/VrSpRGwHog+vXLyshA19a49iNHqAXpiGIYNAckiamjg880MqLO5gFWN35kiF8/p2efJRNeXiZudXURz4aGeBaSbSoa38AAX9vYIH5LUVplJXHS7bzsTNNkkgxHF0obG3T+6oVfjlpsNKqymba2eLHVVS6gqUnZqVYpGIuRYRQXk8uM3p/tYJqU3nLDy5cVx7I6qrq7KdGDwcwwZUMDf0sG4+QkuWxhoTIrAgGVheeG6M3NKplJCKWhwT7Zxw1c1aks4MWs0K8vIcbjx3l9Ozu+uXk7Q5mcVI7BB1zWuy9CffkAPRW8qQn4gz+gLwYgDp44QdwS/8zWFpl3VRW1hIICvm8YxO+REdKeW14LkBnp0yM6ppkZVWpoUM5fa7RwG0QiwGc+owh9bQ2pSAMmSjsQmyzF3bENJAo0CaXXHnR1kXhv3iRn29xkVl17u7qhnrS0tKSkr5RLbm2p7EV5oHPn+HtwkJ9Ppfj91lYyj/FxcjinIg3rpokT8exZ/vb5cg+D7SZ33y18u9Pr2yGDJDHtpkBph/CRkfxWCdzcDHzqUyS2hga+/8lPEm+PHaPw8vmIw+vrxHfRiMfH+XmJeLlpk06m6eXL2+tS6uspKD05fyMReid/8xsk78YxsRhE0SYQXJ9DsrIZ1+ejeEL8SFb1t7ubRDo6SuKySl9d6pWXk3OaJtVUyV4ULqXb2pWVvG5BAaV7JMLvmyYleCxG+yqbGp7PtNvdOAWzmRVO129s5OtW7cbuuZqaVDaawAMqu953xJ/P2hJJwrPr4XH8uIpaHTlCwSha7tISzQK9SMvtvOxwyMkcyKmW477X/F58AiWJuyhKryNd14SV576GokhE0ZRdTLy7mwvOFicNBOhIjEZJ0JI88+Uv87OxGDmZHMbZs5Toov6nUsqsmJmhAxFQzSsWF8lZneoBdgP5YiK5XL+xkQzQyclo91y7RoSdgcG6nAcP3d3dZq6DOnXi1BmtnXq800Y6Tt/T79vXR5zt7lYMYWVFaYb5fpZsF3r7+zFEChawWRHGWnMUm6HIbzN+n38eStXWESyXBXvZFHmAzk6F/BIulLi/aVK1EsYgdftbWzQPPoz2YtmeM9f1yF6n0ypNWeL9zz1nf8+8IIICwzCumKbZnfVz+4n4rTicSBDP1tYytVev+5nLWTt1adrNeeWrfVxW2t4DBHO9qYSvrA+m5xgUFHAj9XBhLtwzXyCHMD7On2g00+Oa6x5duMBnuXZNOUpTKfpVvvUt5zqFPLZ380r8+0rt17VXScAqKSEe6ZEkLxGenYaABeS8vGiTTmcracjynvh+8m7a7kb9dVq8nSd9Y4OJPvLZM2fsVXndLyB+BFFVHiToSDA1ReIfHOTeHD2qHG9uDMm6P4bB/6WxB8DXamqcr5UPE2cHsK+IX7eTBwYYJZGqPj0WPzmZPT9jt+3bvJ6XG5MBMt/Ti76am70zAk+0vRMEc1u812YaVm4aiSi/wIO0c+2YmLVMORIhwU5MEJmOH1dRC6drWvdnfp7ZgYcPk6GtrvIax4/veWeeXGFfEb9IuMVF+piWl2lOhsM8r8ZGEntjI02t/n6Vh2LFrZ2EgHeinVnxS0xAn4/rEgYkuTRS9OWluc+egxuH9NJMQz5rZTp7kZrrBk5MbHmZYcRr15TULiri69IH7vHHna9rtz/Smam/n9dqa1NmTXm5+xofcBvzfUX8Irx+8ANKybU1EnpxMWPx9+4xrb2lRdVkSCsvK27l6m332hpcumyZJn9u3OB6JFcmFKIg6O1lircU0cn74guTuhCfj34iN9zIZW2e8SoeZz88Uc+lVZhwSDmMK1eo6g8MeO8U7KSqACpEJpu4uKiSilpasi/eTcJbmZiojktLvPbQkNJITJPRCbfcArsqwKEhlfBTUMADldBSV5e781S6/169ShXwxRdpFu0R7CviB3juW1sknKkp2vxSEr64yN+hEM/yyhXuYXs7w3V6U5hEgvstGZiFhfbCR87q7bfJZOwEm94a3O9X5cOnT/M7r73Gz4gJODNDQfnOO7ze008T/3w+MgspzBMm0dHhHj3yIqBz6k+h16enUkwIevttbk5ra2amXTpN6Sg1/W7qlvUgrU4U6yYmk1yDtPQqLeXnnBafTcLrUFamQpd+Pwm1slJFIVKp7T4LK1glyPg4r9PaSmYpffinp1Vo1G59UqA1PMx7BwKslfhP/wn46le9zTDYAew74hcwTZ7n3Bz3UKSq5JOMjXEP6+v5s7jIcxgdVbMinn6aBPLWW8Qnu2iAnFVBAX/6+8lYEgkKjnv3SAuRCAl5YoI4BPDvzk6aKFNTPO+xMc6nED9XIsE29Z2dxBFJZ796VfWiuHiRzMvJP+FmwuzItyFfamgAfvpTSl3pgTY3x350+ucCARLCBx/wAaQSMFsttLW4obaW1+rv5/3m55lJJX3a5uZ46E6LzybhrWqeOFb8fs4JmJ5mTYRk3yUS7hV3VvNlZoZSRLQk3ZEZiShksq7v3Xf52dJSMoGhIRUSHRri7z2w//Zleu/Ro9yjdJoJUi0tVP+rqniOUo05PU0mXFhIIn39dQqUiQmFr2fOsIZFEtJ00HGpooLX3NoC3niDeHn3rjItUinirGgjJSWqhPvxx4lrohUeOaImOJ06RTwfHVV9Of1+pYmsrfE7bu3l3bJMd9SaXr60sEAVq7ycnnzDYA7y7Gzm54TbtrSo1l6xGDmaWwjEqd25pBRLQQWgNtRt8U4PKxLerrehVBiePs17ADyQI0d4IG5zFawpwFLOq/cR1LUfp/UB3NOSEoVAhsF1uLUv3yXsS+Lv7iYOJpPc8+VlEmUwSEFx6xb/rqvjuQwNcS8Ng87XWCxzjoWOT3r/yrffVrgnwmdqSqXDS/eoykoymtJS4pTeMgyg47etjUVB0qdydZUaSXk58NhjZGLd3XxvY4O+omPHMjt16aDjlFP9QDS6w/R2+ZI0P+zoADo7sXT4BK7O1uPyaxxwkigIZw6dqK7mg3ziEyQmYRJ2YG2ZVVND1Ur63K+uKi4IqA11W7zTwzY3Z8/Tn5jgAXV3k/Crq3m969ft7yWIcvky/z9zhqq9WwNVp/UdO8bvLSyo766t8fPB4J718N+XxB+JcJ+/9CUSeCpFbeCLX6Qkrari2dXXUyAVFys7vaxMVV8KCD5ZhZE+8EaahCaTxMmNDSUUW1pU+ntZGbWC+XnSgWTDvviiak6ztkb8EudvIqGa1cq5b22pStYjR7YT99QUTZkLF0hHtbWqke2tW0roujEGR5Av+f3c3FQK02Mp/Ox6M/ovJTG1GsbMDHB5PorFyRWqu+If8Dp0wioF9YKhpiZuoHDK+XlufFWV++LdHlaktHTp3Y0K7TRFBsjsKKwfhNv6Tp8mgqTT6tAbG8kMm5v3LAy6b23+SIRe8FBoe8hYHLzRKPFGiKypSYVtpShNjzJZTcbOTqbyDg5SIPj9lODRKAXI+jo/5/fz+zIB6NgxlYQE8P/KSgrQ6mpGKzY2+PlEgmt8+mmaE3V1xC2ZyfH442Rs3d3KOS4NZoqLST9TU6ocWEqOr1yhib61xfVJuNlTfo8Qit8P9PZiqbQaF2ePwyjyo6ZwBXerurAwDLS3RzBY1IPulUmqPjU1/BFHl4Qa7EIOhrHdDk+nafsXFnKzgsFMb7+1Pt5p3XoUIRBQyR8NDaw+tPOgHz3KhiWGoaoYFxYoTazg5FuQKTLSUTiZJPJUVjoX9shhRCLAH/4hryGNWMUfsUdh0H2V3msHFy6Q+UpDGoCEMTJCpvnaa6q7Un29YqTT09sbc9hda2GBRPzoo8pOHxxUfpmCAhKY9Prr6SExy4yN6mr+yHuRCL938WImPs7Okl76+9XIN2lc88ILwO//vsJ5a2Ztfz+fsaKCOCLdiSsqyDR2lc0bj6P/5RgG3lpA4FAYyw1RrJdHkEqRRhsagOfPxFWoym5T9Hx/ievLxJr6ej6sHiIRh8duJfTQEDltZaXyrs7P02FpZQDxOJElHleDVKV02roGJ6T7zW/IrXdaQ6GvZRcx/9/J9F47KCggouvTef1+ZebpoS6naj6BXHtCrq5uF0qAmrEhHbeHhxluFCd1R8d23Lt1i3Rw/TrP3OfjfQoKlN9Jmv5avfviWFxc5P+5lBxnxbNIBHcae7DyMWBhQ4UrS0ro9zh6FEqivfwyCUcfIbayYh+uaGggBysupre7ooJMQneW7ba91cWL3EQJv8jvixe3H4AQuheic0oSAewdetK2qa9P9Yk7dsw5hPeA0n33NfFLD8jFRZ7H2hr3t7VVEUouae1eE8/kmnbnIwJQZmwIsczOKt+VHQg+TU9zHeIb8Pv53qVLqgHOnTt89vV11X14eVm1APNacuy1vsHaPbykRDGo35rfkQhVqZMnMyViWVlmiy/9dWnIKdzM+j2919nYGB9MEo68SMPJSdWEQSAUynT46OCV6LJNkbFWnsXjdAym0+zpD5DhxeNUzdxGne0h7Gvij8VUL0mpnqyoUCaWgNczzUf5tz5jw1ZK3gerxBVzYn2dhLu2xmuIs290VPmX5ueBf/kXahOGwWefnGQ+iIQKFxaIVwJ2PiOvOQAyS1K6h9+7p5yYujlv3ggjWJxEU2dACXC9xZddOqXe/VbXGPReZ5ubjKsWFKgwoFuyj4AM/RSJDyjvqldwUo3cMhSBTFOmooIpqOm0CvEYhhrjJX3cCgt50Hamxh7AviZ+XWAIsu22OCyXgh07nHCTktXVxA2pHm1oIIFLQs8zz5DY33+f3nsxmYeGMud5rq0pM6KuTiWUSfPR9nYyCBkI5KTBZKtv0J9RUo1lvKBd+XSwK4qtK70Y6AOOni5DqDCpWnxJ7r94KGMxLvbNN1ULI+vQUZ+PF759m9+TzLtsyT4Cjz0G/Nf/yuvU1vL76+vA5z+f/YBlA9xUI7t7C1PQTZnr18m4ysvJOcvLiRjvvMP1SHLT6iqdVX199rX/eYZ9TfxOppdMrnLKg99JQw+nzD8rTjhJyWeeUT4vKdx5/XU6EuvqeK833qA0ra9XfifDIA7pTuelJTX4V6S7afJe4uvwUnLsVt9g94x2Pjhde9hCBJvdPSgajOFu/xxCZ7Ubi6Pk9m1KvGiUGyQdflpbKZX1dFjpdSZODUA1EvVShTU9zV5t165RuygvB/7dv/OeL7+b7r+6ZJIBpAA3ESChS5sovUW5TJZ5WIjfMIzPAfgLAD4A/800zT+3vB8C8P8BaLl/zf/TNM3/ka9FOhGjbnpJ05ixMeLFqVOqJ4O1hNatfsKLHZwNJ6wzNiT0KPM1Ll0iwxc8lnySe/e4rtOn6ZOS2ZfiABcIBonPdXXqtdVVXkdC6140GDcfh9MzWpvvjo8ziUlgMxSB2d2DsTngqH5/fUF1dbzgyAgvsrqaOUFVsuWEO+ltxr0k++iHVFurHBOTk1SrpBQ0W3un3XT/1Tlrc7Oa21dZydclz0HGeX0IkJX4DcPwAfg2gM8CmABw2TCM86Zp6qlP3wJw3TTN3zMMowbATcMwfmCa5vpuF+hF85LQaE0N/SkyFl2fXCXZkdb6iViM9RP/6l+pWHo2Zp8NJ+wIb3ycwkfOWxqRrK3x/fl54vT162Raeqh4akqFBcvK6BOYnFSzO8NhapXSiNQruPk4nHp19PZSi5GzGB/nc3iaNwCQO6+sUP2RoQgyPtn6ZeFOVVW0fSQBpqHBPfZtV5EI8Bp6//VXX1XhRjvkMgz7UJJb6addu6eKCraH3tzkmmR+XEeHmkSUTnNvpqcpuYaG9twR6EXyPwnglmmawwBgGMYPAXwJgE78JoCgYRgGgHIAcQA5joi1h2zEGImQwGVYzFtvKWEyPp5ZhQqomZA6E5C/NzeJU7okA7Yzezt1eWqK53bhgv1ZLS6qITT19fTzJBL8TjhMnAoEKJhqajKft76ez1NcTGE5NcVsxuvX+f1EQtXR2CW/uZkxThqCXQg1FqN2ofcm2NrimisqPJTmx+NU+YWA0mmWMR4+zIeUjDf5ss6dUinl0XVL9tErEgsKqGL196vKLOm/HgiQOAGl9lnLIe1CSYcP0yHndF9dSt1vq45Uivf9kz/Zbj+m02qsd1kZ11JTw/wEfYjDHjR38EL8jQD02MgEACu6/CWA8wDuAggC+APTNLfysUAvmpf+GdEQRaUGMoXJ1avUOoeHiR9AZv2EUwGYzuz1piKzs9Tm7txh628nUyEYVENoAgGaAxcuqCw9ielXVvKauiTVo2KA8g+1t6tkumSSZqLVt2HXmi4bHjmFUOfngSefVFWvUnY8O+sxg/CUEBQyAAAgAElEQVQ+Ua1cHcbk5CqSG1Wo8B1G7cgUyo4c4WZYv+wWV7UDsa+EQ4XD3LBYjOqUHvrb2CCz6e/n4QSDKg00FlODQqyhJGC7U8lOStXXuyf4SFHRyy+rCT9SClxZqew+T6WYuYMX4jdsXrOmBT4P4D0AnwLQAeBVwzB+ZZrmYsaFDOMbAL4BAC0tLZ4W6KXphtW86u8nMhoGfUbSPLa9XdVPLC9TfV5fJyJPT1OCLS3RL1Rf7yzJpHxXsvjSaV57ZoaMRTc15KxaWngfGULT1MSU3sJCnrlI17Gx7fUw1sIw65AY3UwGMoWQNAWxM4PsehLq1bXd3Zl4LyFLa3u61lZeNyteLiwgUVqPGyhDhTmOEBJIVtTjhnEEhz/1Va5fFr9TdVe3r06e5P83b3Kh1oq7hQUeelOT0kTu3aPabQ0lSeXi668Twazc1IvK6ARLS0oSyf961lYu18oBvBD/BAA9U6IJlPA6/BGAPzeZK3zLMIzbAB4FcEn/kGma3wHwHYDpvV4WaHVKSZRIGHg0mvmZigoSosyVbGlRQ2MHB2mvvvEGpZnPp5xWjz7K/S8szGy95iTJxDEnpkYo5GxqyDrjcUaohKnE43xdl/LV1ZSwTiPlvTBDXQgtL7ubQcB2jfXqVeLfiRPqvpIyPTCgSt5zbk8XDmPi3SQKq0NAcwhJAAWpFWCzmMwo6sHbmi0Uo9tXABNv5ue5YJ+Pqt3sLAlZbMRAQMVnxdaXXINAIHNcd0EBuenVq6o5hN+fGbJzOhgrDA1RggwPU+JsbvJePh9/67MJ96C4x0tV32UAUcMw2gzDKALwNVDF12EMwKcBwDCMOgCPABjOxwJFyt66BfzTPzH9ur6eTFYvptIrNmtq+P/nPsdKSznfQIDM/Q//EPi93+N+Ly6qGPrqKu/V0MCzdysA04vSdFND8vGtZ6WXft++zecJh4nHk5OqyEuvALSrPs1WpSe+rvffV4VF2dbmVl0roFfGSkFSURGZQ2GhR7yMRpGaWUGZycUXpFZgpFZgRKNkHtaFyN/irXWqptPHfYl9de0aN0GcEw0NPNxYjMQvU1EjEdU3IBAg95UhIrK5+rju8nIS+9QUbXVp1zU5ydecSi+t64zHVR74sWP8/O3bZACrq2RYVVU5lGLmDlklv2maacMw/hTABTDU913TNK8ZhvHN++//FYD/HcBfG4ZxFTQT/oNpmi7F3N4hHqfEPnJEJXg5qde62nnhguozIapreTnPt6dH9W/4/vd53aKi7F2knabq6qZGMLjdbyUg4cl4nOvXNZnVVV5HtAynULSbhz4epwP77l1eLxAgMykr47M7rc3qV2lupmCzq3wEiJ96rYTnorP7i08Ox1CemMNmMIy1ji4s+SMIl9ssBMhUU7J5f+NxEuH163xwses2N7kBw8OZ6prU3st9VlZoIkgZbmcnY65vvMFNOX2aCHXjRmaDE7F9KisV17aWXtr1XtPzwI8doyYxMUF19aWXyKT2YtLQffAU5zdN8ycAfmJ57a+0v+8C2JOsBL37rWhekm129qyzKRQOk7DEox8KkWCnpvi+9IL02kVaNDQ5r9LSzKm6knFXXm7vt7I+j9xPIkG5FH45eeivXCH+NDQQhzY2lG9DHJp2a7OaEm7j+IDsvTfdTPX27gh6N3uwbMc8Yllsmmzzznt7+dCRCAnvzh3WGxiGilM+9RS/FwxyU2ZmKB1OnFBdV+fneeAidZJJSuULF2i3SU+2QED1MDh+XLXbAoBXXuF1ZmaUQ0ef837jhiodLi0l4hw7Rp/D2bP21V95hoc+w09SS69dIxJL7Udfn7I79bJxgWiUCTx+v5r2PDJCc0HaY/X2qmpTwFmS6Rqa5O0vLvIe09PKaff009mZ827yRrLB9eukk7Iy5ZxbX+f6nYbFAN7mGOpgZT65DEBx01zmq6O4d74XiU2grLoMLdVJhHxZHB4SY5XR4+k0QynvvEOVbmGByR9DQyTC997jjPbmZhUOCod56AUFVAkrK1UlYjpNtVG45/y88hrX1CiVUaqyLlwgkr7+OpFNnEG9vUTYoiLV0mlqir+rqx2qpfYWHnriD4eZJl1aqrorp1I8q+Fhalu1tduRLRLh+S4vqz6Mjz6q8kkEfyQS4JYKa9XQxJckrcOtU3XdfFK5tgy3gtdS7/Jy/jQ0cL/cmNJuC5pyzYK101zicaB3MIJQtAeVszGkZ+dwbT6Moy92oVJ3eFi9v6J+CfHeu0eCqqzkYd+6RRu+pkYh0yOPKHXt2jVKXLHfxO6TSsRr13jwlZWK0Rw9SoJ+6im1jl//mvdYWaHaNTdHxJSahKUlIoxUPXZ2UoL4fKrJpF4t9QDgoSf+aJR2rDhSZfqxxMVPnFBl41Zka25WKr3ukZdSV2sLeicYGyPDkM68kp1qrdQDskvB3cyryHZtu2Y0d++qRiVuzGI3JeT50GaEgRQHIkg2cCHpFWBwFugR7dfKpaanSfgNDaq1kgxJkIyokhLVrtnnY7GPrq599av8rJUbSyWihN0Mg8jX1kYV//ZtZd/fvk0Cl3jorVtEzps3ed2SEqVuSpgqFKIPob9/e7XUA4KHnvjlvKWxa2Wl6nhbXOw8jgvIJDTrmHnAm8SVpDQx75aXiQ/V1WompQ5eMhJ3KmWzXVvi8oODFCoyz6C7O4ee/R7ByfkpkGtkyjMD0bmUdNQBlNe1rIxEXVjIsMfJk6pKMJUi8qTTSl0Tjio3FG4slYjSx1CGioqK39Ki1nHjBh9eVMLKSt4/maSan0iQAejz4wD7TjEPEB564gfIIMXkkmw3L/XqOqGVl28fM+82pEPUarHth4eZC7KwQMExNQX82Z9tJyIvSOxkM2dT5bNde35eZSiWlSnfV1lZ9o4+uYCsVwqkJiaoWX3608o/Jnvr1UzZkTmkf0k6rA4OkgjPnqVNODtL5NnaojR+991MJ5Fbbb7fz8+NjlJNP3XKW089acmUTivHlMw+cErgOBjXZQ/6+YyMULubn+c569N2xCSw67vgpczVTq3+xS94XfEzBAJMcTVN4pXE6/V6/lyQOBdnWbYS3PPnSQOtrcS3d94ho5PkHiA/zkXxgUgkpa2NAu7ttylgW1oyIwCBAGnm3XfpBBctxeqgzdkcsn7J7+fDy+ZVV3NTlpaIFFLTb3USWbmxHto5dEh5+ONx9XD64q32ls+negfMzqpGjisrlBx37vB7x47xd64jo/ME+6Z1t9jLgQAZsNRWvPmmSs4ZHHTO/xgaYpTltde499XV2/dVV6ulr0R/P+8hxWGlpVT3Fxbs75Vrq+xseS06uF1bCFIa48o6332Xa3v7bf68/rpqA7ZTWFhQBVKlpcoclgEqeihbwrTXrpEmpK7CmvOiJ0E5tdYHkDlYQQaD2H1JEkSiUapAq6skvMOHVb683SbroZ26On5XZvbpD6dDdzevu7nJzb11i8wiGqVP4sQJdc/xcZVQ8v77wPe+x2lBXpEgj7BviB/IJJRwmNl7585xH2dnnfdPmriurJCAV1b4/9BQ5vX1ATT9/VRnjxyhnX/jBpFYGoUII7LeyzMSW+6pg1PLe7dr6+3DAOWbuHWLTr9f/pIO6eFh4t/3vrf9+b1COKwGzAhY+wnozyYzPeTHaQiNPJ9jZqVdhp8QuPVLgiwyEKG2lqq/DGJw2mQ7Llpaqspr7SASoTRqbyezaGujNhAMEpEkpDg7S6ki7Znr6shkXnlFTYcR2KNBHTrsC7VfIJvN6/TetWvemrhKYtClSzwjSRU+epTm4tAQNT4p/HFaRy6e81zNBKdrW9uHDQ9TYNXWqjTme/fIKNvbuZfnzzPV2YtmaZ1CLG3tpW4gldreT0CeTW/EI+bvjsyPXGKKgiyJhAqjyfy//n5ugj5wVP+elyaMVrDWlvf3q6oxyZN+5x0ygMOHqUVIxlo8TrW0uzuzh6FbS6o8wL4i/myE4vReX5+3Jq7V1dQmZ2dJNGLTnzvH/xMJ4szWlvs6cvHd5GtUvbV9mCSQ9fQQb6Wib2WFOCWdg9ycf3rjXOm8JYVsDQ10Lq6tcd8kkqabN/JsTg7znOtUcmk6KCGIuTkS2sSEqnIyDH7u6ae330PnoisrysNbVMQH9bq+UAj41a9U3cDt22qmnGGopKOrV/n+xARtp4UFtUGmyUPcIz/AvlL73Wxeu/cmJ0mws7P0xywvq2vZNXGdnaWJJpV1jY38zOwsf8bHqS1UVPDaduvwUnuiQzYzQTdxvVynpoZr7uhgDorkJCwtqTZygL2aroP+HDK5a3iYGkQgwGft6eFYPil7t+KlrElShTc3GSIXh3nOiWzC/XWwNh2Uja+tpaQdGOBhLi+TIQgBNjfbE5EgUiLBw756lYfc06PacGdbn5T/ytiymRn+nD3LzZN6g4sXuZ72djoqZ2ZUh5fKSuUn2CM/wL6S/Nli5Pp7BQXK+frMM8CPfkQGcPIk931+fnsTV+kwJaWwDQ08k3ffJd489hidjYWFNA+kSYu+DqcpzF56PlohVyewfh2JaqVSpINr17gvjz6q0tHd2n55KQvWG4y4nZkUUYlQ3twkA7h8OUdtNpemgw0N/PzLL/PidXV8+IICcj07lV/AMPjQLS1qyq/Y524HKesbHVWTdmWTKyv54M88Q41ANJPWVq6ps1Nl+zU0kCk4DQDJE+wr4gfcCUVvn3bjhiLO5mZmTb71FkfIP/kkCV+394eGOG1pbY3EUlVFZiCNYJ56KlNTsGvSYtc6zql+3otZsJPmsQKnT6uOPOk0Hc6S7yD45ZZGnkt3JDuwe0YJt1onKHnWZm24/3xjFwZjERS8toCSxqrMPJq1Naoa4TBtb8mfd1L5h4aA736X9lAyqaq2UilyvePH1UHazVzr6FAagiBBRwe/u7ZG9aurC/jCF1ifXlCgcvulHHh1ldeScJN1lkEea/r3xay+XFppy6yEmzdV19tUinteUcGzs8vF/973eD6zs6oaU7L4mpvpo7GOZtOvJT6bX/5Sdb5pbWVrL79fMQo75HcaS+c2O7CxUY0KkwpF6/ftBoN47QmpzwPUe1kEg9RS3UbpuT1jLLa9inIn4+ys96kZ7sXa0hpWzAC6uu4zgF/+kg8tKb96Xfe//teZF5OQ0O3b5IrikX/uOR5+IqEKcmTaqtMMQOswRbvhiVeukLGMjJCBBIP8jjgcJQ3ZbhhkFi75OzOrL9dW2v39PBNp2xYO81zGxsigpXekjvgS3ZHBnffu8Tuzs/zMnTv8Wx8lZ2XCv/gFQ2nhMBnD+jrDuEVFPG9x4OUiza0OzkSCOOPzcU3S36C01H6AjZ2W5LVK1K47kpeS5WzPmM+qRv0+ay1RlPX3AgYwNlaGE+1JNSlF+p0BitNY4eJFHtbGBpGhpYWM4PXX2S21tFSZGC+/7B4+sks+OnxY9eWT0dsDA7TzCwpUYVJnp0oQOnFCNWmUWQYfJW9/rq20l5Z45svLVME7O3n+16+TQH7v95QTzi5GLtVwS0tk1qIeX75MLewzn1Fj4nWP/G9+o6I95eWMrd+7x6Sis2fV53JBfisOSelxcTF/ch1g4wROGsLUFKMdhkHi1+cbuIHbM0o4dW5O9cysqnI3wZ3WnGliRYCuHhSPxbB8Zw44GlY9227cyByXbBdKmZwkwdXVkdB8PqpuQ0P8/le/qgZrZpsBaOeckhFcIs1qa8kMXn6ZiHfiBEOJ16/zgRYXnZs05gkeem+/lyQYqxP4xg0iWGUlz/GNN2junTypvNW641QQXhxhpqneW18noXV38/fPfsazskrZVIqCQ2Bri5pEVRW/J556N4e1FayRgLU14h/A5xEHdm8vtdSxsdz2FtjuJJ+ZoUYrnv36ehJmbW12Z7eA2zNWV9MJLyPFFxf5f7Yomt2ahQlKd+44Iphp78HWZ55XzRaiUcXNJCPQjogaGvjwoRBTFX0+Lrqzkx7Lz35WfU9mAOpgDR85ZSxZM9W6u+lLKC/nvYNBXkufsroH/fuAfSD5vSTB6BISUK272ttJJDIT4e5dJT2lQ7N83zpia2VF4Ynkejz+uEqUseLP8eOq9Fuk+Ooqr6lrK7nG9XXVXcLTIyN8nnRapapPTW3vUrSTSsG5OTLNgQGVzpyrdpHNKf/EE7yeMIC2Nu57rlO0OjtVG/GSEp5ta6t0BdIeTIhyZcX5RufO0SMsElZ68507t13KnztHDglk2vx2MwCtapV1xJG1Z1pVFaMF1dV8fXZW1fnnGR56ye8lV16XkDL+qrVVNVZtbOQZ3L1LKba+TttZHGnWGPknPsEJPj5f9hRWgc9/XjGquTnV6/HjH+f7urYiRS6/+Y29FmEX29d76Tc28lnGxni/wkIyBJl7kS23QAerZiXZeHr6bjpNPHz/fara2a6bLQ25vp4E+tRT/F1fn1smq6xZCvlkqvHamraXueRNA2QI3/ymmp5bUkIiFweR9bMvvaRy9QMB5ezTwU6t+vWvgR//WKX9Ss+0SESllH7hC+TkUhQUjXpXu3KAh17ye61/1yXkr36lJiGZJv02iQQZqgy8TCYZETDNzFAUwD3u6+N+373L99bWVOhva2t727CODuDf/3v6fJJJnulTTymhoWdrBgLAxz6mJKIOTg5Ovz9zhoQMejVNrs2uS5FM2LGLSIlAku5X4swUrVNvV3bpkspEranxFpqTQiwReqL17LaTEbC9klcyF4uLlVl9904YK1eTKKsJoOV+pCzrjU6fVupNtpCIlx57uvaRSNCWqq+n+midSKw78155RRVBGIZyGn4IQzs+dMglV15698ko9EuXKM2iUUqIoSGeb3GxYsh6BAFQxPfCC8DPf04JHQwqbWJ+Hvj2t7eXplZWUv2XMlrriGwZyeXmvHRycL77LhmGPo58bY1aDGDfpejqVTX8RVrW/eAHFCzT07x2Vxe1oL4+4r5onUePUpu4dInab2srn0OS07LhoRMTy9Yz0Sl8bj1jJ7NC7huqjaJ6qRfJRaD/ahm6Oiz9AK2L3Ytaet3zKdVNlZVq9LKdF18eQNpTr65SSzh+XNmpeYJ9QfxO4HRmL77IopXRUSJOYyMR9tgxMtnxcUqwiortTS4ARXyBAPCVr1D9TiZVFKCigkQm8/2sTOPwYUrlWIznJSXgMnFaB7fRY/pngEyJ2dxMR6b4M0yTtv+TT6rP3rpFBmiNSP3jP9IPJdfq7iZB9vczMiFdo2/fVpWtoRB/+3x8T58abAdWJpZO8zwGB3kOdkNRJNRuZVYvvaQmfMtZd3aqNcqZxGLKoVsciCBZ1oPi8Rh8M3MYnw4j9GUblXEva+l1FUXsqdVVZffYefFjMTVPUG8YGYvR6ZRH2LfE73ZmHR2sVpOe/BIP9/ko8Scn+R3dj+NWHSjOtelp5QA0TaViW5kGYN+S24vK6xQKO3o0s8V8Mkk8qq1VdSGrq5l+EV1LEAiFKOl1JhQKkQHMzam1dnSoxrcbG3zm5WXe5+5dRqYkGcpOWOpMTJKESkpUUpueJCRn+cMf8v3aWjW3EKCJLCXUVVXcnzff5H0XFrZPzpLu3JuhCJKhnt/SWJcdLe8mjTIb6EMd791jGE98CYC9GSIPdO0a/xfbbnb2wQ/teJjAbp6c05lFIpk9+SUCMD3N71nHttlVB46PU7qOjFDqiwovzVqspak605DaDmnaYh0r5uTpl8pCPXlsYIDEPzFBHJDZfh//uHJkJxKZ0rurSxU2CRHJ5xobvdnd1gI3mQXg8/Es3nuPpoI1b0K+K0zs6lWaXBLalvteucI9lfHqiYSaYHzkiIp+vfkmfTW66SyFRrW1mXMIq6uJA2fOuD/bb2Eve6lHImqoY2EhEae2lgjl89nnHITD3NCuLiJgIsGH3YOuPg+9t1/A6jiNx1VTTwGrM1ePFEhI6fhx4I//WA1rcaoOnJwk4W9uksBKSmjrp1IkaqkZEMTSY9si6ZaWSGhOY8XsGn1IZaHEwAvun9Dly6q3gN/P9YlGCCjp/eij6prnznHN8/N0UsrfX/mKt25D0Sj3qb2dhC+NQCRLUkKCt29TUL38snJI6/F8w6Cv4MYNRYQyQ2N4WJkTiQQJ984dMgZpu15aqjQVMZ3DYeUA1kvmo1Ga0m7jzPRISqIgh8SLnYBI7NZWPmgyqcqE7QhaENDvJ7KePMnvSoJHHmHfEL+13ZU+T06IzdqiyinkJPUXdkQo35meJuJWVlLFlQ7Rd++SqK2lqU6j3Vpa7Dv9OHWrkVBYczOl++3bvOfGBglAxnmL000HK846RaROn/bWbUjWWlTE/ZB8F7+fzCCRINHLjEohrHg8k4nJrIpHH1XMWSIRkqsgE7WmpsgIlpaoWdy5Qw1H6HNpSbUll4iEPoewsND52ezKrS/PR7E4mUPfNa8gN/vRj+g1npigxFhcVNVnbqWZXltB7QL2jdrvNE9uZER1lykszN6bUcAtghCJUGJ//OPK3gVINOKMSqeJrHYlxTIlSqaQ9/fzzGX+o9s5irosYeCRERXuXV5WIb7KSiXh3JKFnCJSTqE4OwYQCrEITvpSVlZyLVev0icgiUA1NYrJLSyofaupIfMwTe7DygrX/vTTar6FMJFIhHu7vq60mU9+0r4F+xNPkNFaZyQ60YqteV8fweBqD7qLY2rG3o7qjaHs0uvXmRQhhSFbW1zo4cMqnv/++9vjxfqmP4B23vuG+K3OMsmNeOstEqhe+Wg3wCNXKCjgGUl33pYWImVFhbcxVmtrar6gNNPc2spkTHbRChlSMjGhaubjcV7r+nV681dX+fn2diUgcp2yk4uT2+qDqq3lPaem+PlUigyqooI4vbXFDMqhITKKQ4e4zliMTFGEWWEhz+utt2iOlJeTwZSXc8KytMD7xS+o/Swvq3F6p05RQ5Lwt1PBkb7HN25sZ45lZcBcKuKt3tgtJCgdf5eWeFChEDmdzDaPRFQVVmGhCk9kq0/fwzbe+4b4nebJPf749nLbXP01doUt8/NURTs76ajt66PP4Otfz34O1p4OAAm2pSUz3DU/TwS2El9BAb83Okoc8vv52Xff5Ro2NvjM1vbXds+Sj14BVh/U2hrNUL9fOUABqvamSeIfGCDDEmdjIMDvnDqVSWdTU5yelUrxGR99VA0alTOWCsZAQHW40sexy4xEu3McHFQMrriYvoTubofqTLdNkUO145aA6vi7tUXEEUklHE6cLocOkTNKqCLboiW0Ia2R88gI9g3xO2X6xWK7n31nPdPz57nHMgGnsJDE1t7uLf9c1qr3dKipoeYn4a6hIQoGmf+n41kgQAFx9CgRNpmk8JiY4DVeeMGZ8HOR5l7b4RUUKEZ1/LgyMb78ZT7j6Ki61uoqz2V5mc8qA2uCQTV8xbpHfj+98/okpMuXqcnJNaw1BnaNVJzOUVqHT07ydyzGhKltRX5um+LGGAA1zFGyqmS8U0kJ1ZJkkpsnQyCKi5lieukSkUPSSGXR1tCGnredJx+AJ+I3DONzAP4CgA/AfzNN889tPvMsgP8MoBDArGma53a9OgvYmUK7bYBpd6YyiUbmAAIqHyOXteqhRlH/ATKDpSVV52EdqHHsGDsO1dfzvj4f8ePUKa5tYECF/3QmkIs0NwxqM4mEal0mnX3tCEkGz4gjNBhUPQ6sjWsk5DY7q2LuAO9TXu68R3o41u8nsxgYUJqFdBKy0+ycznFkhEJ3a4v3r6+nJjE2RoaWMRfTLRFDxkVLGCcYzKwOE++j3FjstePHyQzef185psrL1YLr6ngY164RaQX5GhpUaEMePJ85CPBA/IZh+AB8G8BnAUwAuGwYxnnTNK9rnwkD+H8AfM40zTHDMGp3vTKP4DX33wnsmL0gLqDi7Ddu8OwLClRZdzbQGdPiIpn96ur2zk4CgmfyvXicji+/nwQ1N0cEfuwxfv6997h+KRX3GrKWIqF79/icMoQklSKeXrlCHJTsOUk0Aoh/Mnw2mSThHz1K/NRpRkynbA5Ja9OQtjZe/+RJ0om0ECstVY49p9wYu3N85x0y8Tt3uMaSEpWqva2a0E2S9PVxYyQBY3WV/586xf8lISIU4qbJvDRJCPmP/5EqiCSpPPEEOZNMPQGIFDry6VmB1umyeQAvkv9JALdM0xwGAMMwfgjgSwCua5/5twD+0TTNMQAwTXM6L6vzCLtxjtoxe0HcyUlK4LExqp4tLbS74/HM8u5s64rFKHkkTHX5Ms93cpJa4NGjauSYMK6vf11NjJIy4du3iZ8S8zYMpZ739HgvmonFVFfi1VUVZpMW3L/+tfJ5Ce4NDXF9H//4ds1COvwCmTTT3Mz9AqjNOIUTOzu35/NXVpIOq6p479VV7mFDw3YmEo+Tnqwt76qruTaJ4BUVkZm2tyv6zKAjN0miO5V0MIztNeGJBAn97Fk+uNVOv3CBHH16mveqrFRxzooKXmtycufTZT2CF+JvBKB3uJ8AYCW1TgCFhmG8DiAI4C9M0/wb64UMw/gGgG8AQIvEwT5kcHIkvviiQshIhIRfXq4cU141L8Enafsm05/SaZ5/eTm93T09mcQhKcpidycSfG9+np7vsjJqjCJMnJ7FTtqKlDRN4qbkJIhKPTNDQSNmSmmpytQLBrc3J5UuvtbOybW19JXYVS8KyFStI0co7UWbkP2IxVR1YTCozGNrHUxtLQnaWiz33HOqVF5oyOdT+7ONjpwkydYWVT5JcNCdGDrTKCykU88w+B07MAxqDZGIqgG/coWb2tysYrDhMK+fbbrsDsEL8duxPGvXTz+A0wA+DaAUwFuGYbxtmuZgxpdM8zsAvgOwgWfuy905OHnB5dx+8QtW76VSNNM6OymVV1bUnAdANYDNdZKSJL1cuqS84G1t6reUo+pgbeRx/jwJMRikBBsYoPoqCOzVBBINQVep5+a4R6+/zj0QLaWkRGkdEk6TzjldXSrbT1+rdNnx4nvI5qeQHyfQvy+jwX1UIrAAACAASURBVPRiOVmPhB43NqgN2GkQriAhj+Zm1Qz0vfdUhZMg1fy8CvltbHCD3nwzsweaIJOEL95+W7XqFkeTxESFEezEps0CXoh/AoDeyqQJwF2bz8yaprkCYMUwjDcAPAZgEA8BZPOCz88zNNvervLpf/ADSsXCwszJTaurfC1XzUsy92preZ5WaZvNjDMMag/xuGoXtr7O9dg1NnED0RBEpRbibmvjs0WjxN31deJ7PM73dGaxrXOO5Vm9psvvNrXeOiTHruWdFw0iK0gCxuioKnq4do0qod/PjXrtNRW+kLxm0yQR67PRdC1ibU1NPNna2u793cOEHy/EfxlA1DCMNgB3AHwNtPF1+GcAf2kYhh9AEWgW/F/5XOhuIJt0uXjRvhnr5CRV65ERniFAZGttzT370yptNzeJRyIc2tvdv7+1xQ5DN26QUAESXV1d7oJA1xBSKQowmU4klY59fVSPu7upDRQW0jchPfdmZsgA7HwfuTTs2G1zDy/fl+f1SkP2WmJEzfqTGfEnT/LGExOqmcC9e4rAZVrqwgKZhO6ckcQJgEghPc12sgk7hKzEb5pm2jCMPwVwAQz1fdc0zWuGYXzz/vt/ZZrmgGEYPwPwAYAtMBzYn69F7jbhKZt0cWvG+tJLJISBAb7++OP23v54nGbb9ftuUGsYTpe2uhNRRr/LAFcx+ewIam2NPqSzZ1UV3927ampwLnuiE0RFxfb5AKdPU7UX4VN7P34jU6iamojfg4OkCf3euYRfdxuqzdesQwFXLdE0eaiGQUeNSGmpLtvY4KHKAI7iYuXAk/7xPT3bFy0dVNraMru/5Mm2d4KHfmhHLkMunMA6QwHIHBTx3e/yf730dX6en//jP85+/Xg8UyMEyHAOH1ZhOPlcLMY6D3HgSYOQQMB9IIbdYJJkUoWXxUnptQlmLvsj9x4dVc48GYSiDySx7olXhr1b5p6PbFi5xttvZ7Y18yXi2BqMoXRtAUeD9+vIGxrUFF6ABC/dWlZWKC2k0cHKCrnkiRP8riCU20QVaeSxtbWjB/qdGdqRj14L2aRDLs1YddAR5u5d4oRTGA5Q0lbyRSYm6JmWDNDlZefn00Nily4R38JhImoolPvI7Vz2xy5jUZJ5nJKfcjFV3T7rhbB3axbrjFWav/T3A6da4qgf68VWSQDzBVVA7QZtnieeoOpz5QovcPo0N0xMg+lpqo2zszyo48fpKNHVertFS3PFHc8zyw0eeuK3qux2TTJyibfbOU2l9PXiRZ5ZQ8P2WX5WsCLM6qpq+iqVdxIVsCLw8rIqejEMfv/GDeVHcErMkZDYygqfXzrtZBu5nY2A9P0ZGVFOMb3Sz5qNJ7CXpqloVPPz1HakS7GXHAuv17dK+4oKCvTSUmDxnRjqmgNIIoDyChAxnniCxN3YSBvQNFWJ52c+wwtLymQ6zd9SwOFlMsledhaywENP/LpDR58ZpzfJ8MIUs0kHvfRVkEIq+uwYjH5GFRUk2HSa5t6RIyoqoHfsFRtSL3oJBFQpudjcTok5+v1kvPu9e8Q7p7biVhtWb4FlmipmLxWF8XhmBp++v/m2r7PBlSs0NWSfVlf5/5UrZAC7ASdp39KiajDSMwtYaapCalUTBPX1PFjrwEcdvvxle1tV9xI7ceS97CxkgYee+HWEu36dhy81EsJYd8IUrVN9xcQyDEqahoZMYtHzL6xn1NxMtf/uXUoNadYi1YZWRi7xcylYWVykr0fyz90Sc+R+H3yguve6jdy26x69tsbvS6ZbSQn3I1t34d2mUns9D6GF69dVpx5A9RH8yU92bA7b7otI+60tavWBADWrQoQR3UqioyugWr4lk+QUvb3eVCm7jXLzKuajt7lHeOiJX/axr4+2bmMjJavUWOyko7GUXm9uEvFnZ8lcZYb84iI1tMVFVVS1vJypaVh7x/f0MJVVGracOkXHsF3HXr3opatLee7X1pyHYFrv94lPUCWWWhGnkdt23aPjcUp9KT6TSjlpD66DVejkO+wcj3OY7iuvkBk+8giZZjxOJqi3KlteZphTBttkM4fdzB0rM+3tJfOWxqErK8BESRSPzfUCSQAV9yX45CQ5enGx+yLcNspL6TCw5+rVQ0/8APfR2k1GINeOxvG4Kr2urqYKvrxM5JiYoDYh1XaAc1GV3SDWY8eAP/qjTBxwqx2Qohe/n7kDbuaL9X6RCOdQVlbad9C1G8ohdSJCDEBmpRzwwITOb9f46qscshIMcp2Dg1yndAf+4AOVRbiwoIbXWsug7fwcTnMDZme3DyuRNvprazz7I0eAsrII3l/qwWoshq7UHCpawtxwvYopm01ux4HcVPu9VK8ssC+IH8hfR+NYTBXLGIbKB+/rozknY9Sk2s6pqErO6MoVVbxy9Oj2+7nVDszOej9fO5xwcnzpiK8P5ZAGpwUFiqD1Sjm79uB7adPHYmSCfr+aoWAYPI+REVXfv7bGzw0Ps6JR32cnc9hOuC4ukvGfPr19WEkqpRqUiDlmmkBiPYL0yR4MSDjzwoXswxcEnDiQDAF14rJ7mNWnw74gfqnaisdJ9Ovran5dKOTcf84O9HHcm5tEKoB/FxUR4dbWyAjEY+9WVDU/TwkiFZ16iS3gzshzjcl7xQkr4stQjnicSP3kk3QUzs9T6ykqorTr6VGScY+FDgDu1cYG7yPTkOUMbt5UNRaSSi+9CwFVVu/32++jXZSot5dMRXI4xFHa368SmUZGMrsvWduz52STO6n3MzOUYiKFrF1FDtp4EfSqrakp2mXinGpqIsLm4vXXe9FPTvK6o6Pce2nMubmphlbMzzsXVfX1EVl0b/TICF9/7jl1zwfEyH8LVsTXh3KcOUO88vn4/IuLqr1WYaGqqLP6pvYiWSccVnUSErqVNmDr6/y+5OsDlPivvcb9DYfJKOSMrL0w7aJEd+6oPhvSCkwGuX7qU2omYiqlEpmkbdhvaTsXm9xOvd/YoK156hS57OxsZleRvZwgZIGHnviFeabTatpLKqWm72Sz/aygl16PjhIZZBrzq6/ymh0dKoVXEFpKVX0+1di1r49MW/dGmybPVif+Bw1uwklP67XL7APUPuaChzvB2WiUzHJ0lPkKo6N0xkoJ9Xvv8TyCQTJmcWxKXX4wSKZmN8NSp1FppZ5KcW0VFXzuyUni1cgIr9/ZyfOVISJ6e/bf0nYuNrndQUjP8oYG+9HhB3F+BcI8r13j76Ym1QdOWqZJXbmXUKh+dtKRV+rl6+qIFAsLZARiUzs1dh0dzRwo8bCAVThNTfF5m5rU+15Cyrng4U5wNhLhHl+5QoaaSgHPPkvG/P77PPMTJ3gmfX30xxw6tL1hq12WoX7O0kq9s1O1wkun6fRrbeU119aU1tPdrTQYa3v2jItnAzstQXqW66Bv+kGcX4EwT/FUA5QApqk81UBuXmlJWFlcBP7+73nt+nrlcDpyZHvDDjvk7uykpCovJzKNjTH5q6ODzGNhQQ2RdCrYcYLdmH3WjL3xcX6/tJTOyVdf5fuG4W6+PojSXGEAIo0DAarojY1cRzyuOl1XVvJ3Msn9Fl+Ak92v0+jamsrhmJxUmbkbG1yjRBX8fq4nL0LWTkuQnuU66Jt+EOdXIMxTt8XE876wkDmswatXWpfiEt8eHSXRd3TwdWvDDjvkPnWKZ7q4yPMtK6MUWV9nYpD0oNMTabyYbvkw+3TEr63NnCFQW5uZXlxfb2++PsjSXH1/hdGXlPDcn3qK7wtTePddajPl5Vy3NEJxmoGhV1TeuaNCm4cO8f/6eqr7krvjtUejJ7BqCXK4gP2mH8T5Fcje+f3ck+pqeqtTKRKcdViDF4mpS/GGBtVyrbRUteqyNuywQ+7CQqqpExNkHDU1yns+PKx69euJNBKZcFtjPs0+3WwqLc2cMNzQoBKL7MxXNzx0ajdv91kd5Hvj46qGoKWFhCf7Kz0PAP6dSFBSi/S/d4/XKShQoctgMDPt17o+iWIA96v1fDwr0Yju3SNjkUGfss95d7xn8xkcxPkzQVRDycBbWFDDGgC+dvmyUusCAR701avbOygB27O7JicpAfTUXGvDDidC6OkhMZ08qcq8S0qUXwLITKQZGSFCuUl1NxXarm9AR4eqBrUiqJ3ZpIewpP+e077b5TLMz5PQpcv01askpmee4XM74awIvc1NNYhDhthIe/CGhu0Fc8JUJOxXXq4YbGUlmdf4OJ9F5llaNSex52VvFxeBv/s7nk1hodIajh9XGt+ONLB8lCEexPm3g5MGJYfT10d1sLiYHLyuzr7U1Zoq++STmam5dg073Biyfj2RWn5tZ/VEmsVF99Hi1vUJSEq5tW/Am2+y/+DHP545o95ajJM1hOUC6TT3RJje+fN8noEBEnI4TCJ64w33kmLRaG7f5rWsgzhWV1U059QprjWdpnZy+jTP6vp1En5/P5lFKESmPTxMRh6LqX2122PZW4BM5NYt3qepSfUnkNkCXjQwndZrl4bQefM8AsX34/cbG95tvQ8B9hXxW5mqpNzKoQiirK+rzjx2pa5eU3Ot4MSQ9euJ1BKJIuOxpWGkSFwdrI4xJy3D5+P1KitVeHF9XTmtGhqci3GyhrAcwClTrrdXdfBdX1ez+txME5G6uhaia0VOWoh0MQK4fxsb/Kyc1cYGryPzBwBnzenMGcVAxcsvA0Il+1L2xMtUIxE+tf44gr88j5FNP1oeq0ZwY5Ucqb19T8J0+YB9M6Lbbrxyby8PXkCkq/6aXamrEEQuU5Dl/jLXPR63v146Tan19NNq6lJjo+rR2NKiJI+AnQT2+aiN/OY3fFYxLwTRBTY2lPosIGm8+vqeew741rcowdNp75OfFxa2M6t0mvZyMKhqXAyDa3HramztYwi4D+IQ0MefNzWpMWfl5WQcppk5wFSX7gJ6noNEDQoLaUqcOKHGkOt74nYdIJMxlkzEUOzfREFVGFPThnKwiD32EMK+kfx2Eqimhq+fOcPXmptZ+Sfz3cfGuO9HjpAAge3aw5kz2QlArwJ00ubstAL9XgLZnLm6NPnYxzJ73ktGnN5NuLCQzEEiIAC/I30ErKankwAaGto+OKOjw9nRKVEMaSNumtm7Glu7BrsN4tBBN7nEJFhYYLZnOKzyNaTFPeC+x3orPgFrx18vZ6VrBr6lBaTD1ShJr2Jp5f7hlJRQ7bQr+ngIYN8Qv50KFo3SwaZXx50+TcTq6yNz6Owksc7PUx1/4w17IgbsvdDV1ZlVgKsetTk3Z5GbMzdbtadkxEnrxaIiEpAM4Ugm6feQPAgvjqqhIbYxq6wkA5XW5S+9lEkAGxtcx8QEE2303HwZsOlWZKUTca5ttHXGdeaMchxKhqwUS8k13PbYjqFNTVHyX7iwnVl6uc5mMAwjzbzxsnIA5v3CELs664cEHvoGngJOTSbX1qjC6RKur48Emk6r1NBkknnhIs1WVylFZMa95PQPDVGN3tpS2ZZLS3RIiaSQUGBDg3NDl95eJnPNzWXOuxP13wkuXNjeSVdGvDc3U5uZmlJNP8XbPzSkOgwXFHC9kj0qe2XXaBPI3sBUIgwSaq2r475IA9G5OX7+scfsp1PtBpz6XFqZdK4JVHq25tSUas0nTlOJ5ADOznv9OuZcHMs/70ViYRNd9bNoD86ivGIXXVV3Ab8zDTwF3EJt1kO3U+vGxlTdvmEotVlGqz3+uL0XenOT0k1Xtb1oc2NjaqyWPu/OLbQGOEul8XFGCdraSHyTk6qWf2iIxCce+ddf52tyb9kzp2w7t9blAPe3ooKhPFlXKKQqBSsqqHEJ4bz6qnOfgVzAam7Nz5M5PvFE5hiwnbYtF4k+Pc1rCrOUZ7xyRXWL8vszsyMlGiSh0N5rETS29eB4cQzGaiE+8B3F0RejqOx4+Lz8AvvG4efFSSec+MYNNX5aQKYei6MJUF18VlaoKfT2UqWVsepSTy6FWH19DA3duZNdm1taogSWIaylpdsdc3agO7dkwKSo/IGACn+NjnLNVVX8PTrK1w2D2kVBgSJewN2hJolOOkgSkIDV8SeVgoEACaGhwX5t4pjVHaReYGgI+C//hc++vMz7S9fiubnM9mgS3ssFBJ+ef57+oPr6zPfLyhhWlKKya9d45pIdKc+kM8aTz0bge6oH6598HunTPRicfXgJH9hHkh9wd1g5NbA4fZoqus/HENf0/fnBUqsvU1yXlniwKysk8KYmSi9Bto4OSu3paTKDb37TXdoYBglAes1JKq3evdntGXU7s6kpEznHx1UNvBCcdB8KhSjFr15VAyqzZYh6aV0uGok1p355OZMpWNcmUrSvL7OLULbS4PPnVV+FjQ0y3GRSzREU0JOfdpqJ55RXIde3y44UpqMnDumwR7U4eYV9RfxOMDREu3V6WnVXlgYW/f20Q5ubKb3LyigVEwkiV0EBkev2beU029hQuf6xGGu919eJdO3t/JyewWeFeJwIUVdHTWNhgUTS3b1dvbYDOyanI+fSEpmSePiDQT6L3n2oo4P74SVD1Evr8miUPpORkcxaetOkWSJDMnt71ZxJgY0Nvn7unDcHpHRbCgZ5v81NMu90mgxNH22mRzb0jEO7zE4ncDIpjx7dnh0pjOb998nYo9EHWouTV9j3xC+e6vl5NVX3Zz8DPvc5Etvt20Sa2lpK31iMCHL0KJFlbIzfi8f5dzDIQ93aovqcSmU6+wDnQRUCoqaL6iuNQaam3Ds+O4FdUtLCAp8PIEPp66NWIZLe52MHaa/ST29dbgcSHx8fV+m2hw/z3m+9RWYq+fLJJNeSSJBo3nuPr3/wgXLAbm4CL7+sqveszTVFM0ul+MymSd8EkBnZWFnhfmxucr9LS50zO92ezc6rD2RmRyaTNCkffZRm59aW6gvopa7hYYN9T/w//rEqnU2lqCYGg/TeRiJ8va5OceUzZ5Rqf+QIv7O2Rts+EFDz83TPeK5cXSbyijRMJFT57OXL1DZkXrybiqqrsj4f13nvnpoTOTjI7xYWkhArK/e2FiSRICE88giJUzoXDQ2RiAsKVJ8Aw1D97197jR750lIy4rv3ZzwXFrImwqoJSEafjCNfXOTzhsNskVZTk/mcly+ToYtqDthndrqBk0mpZ0cuL/PZA4HMcWWzsw+sFievsK+JPx6nxGtq4s/ICCV9ayulxMqKGqihQ1kZ3z95klKov5+fnZ9XvQJffJGfzbXCUvoNXr1KJNWn3lZVEVn0ohWnFmR2eQLSNfrUKfov3nsP+J//k8975kyeS1FtYHFROTEB/p6ZodSVXHxA9QC8dYsE095OgkinuTfimHzsMftOTDIN+/BhMhwxAZ55hve0Emk4zP2uq1Ov2WV27sQvINmR3d3A97/P5y8q2j6u7EG3assH7Dvi1w/wzh3Vk6+igsgiXWuOHlXc2E5yNzTwdyhEqfTGG2rwRTSaOX3WK1fX+w1KV+CrV5V/QKrSJJ4uk52B7RLKLtlHmo12dJAoCgv5fWl7vUet3n4LktWXSinJn0ySyemhUPGJSIl1IEDtQAhFzKFnnuFzSMxebGjZ86EhPmNbG5moDAW1QjRKG1+IWnI49CEmu+2REImocWXpNP1Ht2/z/85Ob5miDxt4In7DMD4H4C/AEd3/zTTNP3f43BkAbwP4A9M0/z5vq7wP1gO8ejUzHl1eztc3N5mcole1AZmS+9w5EvjiIiWxIG93t0o3tRbHWNdhlSA6wYrKPzNDJvXFL6qqNOtkZzvPsFPvRwEZwGGdKSB173vR+FVU97k53jMYVOFOGZxSoiW2BYPKodrQQFNMuiQfOqSSkiQ7UGxoiaNLjD2bxhWJUFM7f56qvrTI08Ox+eiREI0C//RP9HHMzKhmIjJ/oLvbubT6YYSsxG8Yhg/AtwF8FsAEgMuGYZw3TfO6zef+DwAX9mKhQGYzz2vXKOW3tijxt7Z48MEg8KUvKedVNsl9/jyvc+gQJfLoKK9hmkzqsB6kmwTRCVa6zpomi3Okc5O1UQVg70NwyqkXEA+0PlNAvOrPPKOSUl55RfWl2yki6g04JBpgmmrIRUMDtZ3ZWZ6BPpdgZoaSfnaW5yQVdM3NjEZI+bU0PhkdJVM+eza3NuIdHXTueZnQI7CTcNzkJM+ltJRMTKYkT0zQl3H69A67Lz2gdt06eJH8TwK4ZZrmMAAYhvFDAF8CcN3yuT8D8A8AzuR1hRrIaGuJu3Z0UJrEYiyCOXmSBPzJT2Z+z0lyv/02r/PYYzxEyewbGFD+AutBukkQp5DPsWOqOMdusrOdRLPTWCRXYGWFUsc6U0AawwpzFM/38DAl7k5MAp3ZHT5MBvOLX9DB19rK+62skBAaGmhuCd5WVmZ2Sk6nyRief54MS5y1RUU0HcRBWFCQ2VDTumanIiQ3u9sw6HfRU75lEpDdM9vRYSzG9TU2qopGGSiyvJxZUp2TZvEA23Xr4CXDrxGAliuGifuv/RYMw2gE8PsA/ip/S9sO4TA3U7y6Mt46GKSE4Vrcr6GXBst01qUlSphUikzg5k1+trNzeyaZXYmrlNDaZeetrJDI9ZLfxx+ng8yttNYuo/Gzn6W3u7hYNQ1tb1czBWZmuAYxCeRHH2iaK+jMzjDUuKzDh/lbOlCHQiRqu0rHmhpK9aNHaf40NfHz0SgZr8wrlDOtqHDO3pPQ7soKCXhlhf8PDbmf+fw8TbyiItUNeGpqe5amU+m45G5UV5NprK/z85LvsL7O93Swllbb3ujCBcY8NzdVs4Tbt8m9X34599TIHMCL5LcjJ2s10H8G8B9M09w0XKjPMIxvAPgGALS0tHhd428hGqUaW1dH4hobIyGcOsW9kzCeG7fVkVmms1ZX87fUdPt8qnOMgKiIXnriO5kY+fAGyz2knbjcyzC4XmluKdqA7dSZHMCqLou5sbioXnO7tqxX7ygkMXpdk1lc5FmuauOw7a578SK/J05T+X3xonOeQixGBlVSQq1rdpZ7ItqC9bNumt3GhhoeI8lV6TSvbyV+x5CwnfNqaUm1gJYuq9PTe6oBeCH+CQB6XloTgLuWz3QD+OF9wq8G8HnDMNKmab6sf8g0ze8A+A7Aqr5cFyuINDxMSbG+Tmni9ytpnA3Jrf37+vuJFFtb9CrX1tJ8EPtavNEzM7z/kSPuCR35Cvno+OFkv8u95LPt7ZSAW1s0Xdrbqdnk0rLLClZmJw019TRlL9e2Y4zSbDMWU4lVXV2K6VqvG48zvz8Y5DXq66kB6U5fOxBzcXRUtVAX887a8dfNN3DmDD/f1cX7ymTl556jABocVOXlriFhK4eRkdDiHBL7qKkpM484z+CF+C8DiBqG0QbgDoCvAfi3+gdM02yTvw3D+GsA/2Il/J2CxPLFM9zUxMOSg5c6bInxStmsE1j793V18dC2tlQXYIDEtLioSnwLC8kYBgcfzDw7q3PTzX63Rhn8fvpCJieJmF5bdtmB1fdQVUUiamvzVjegg84YrXb1F7/IvdU1A7smJ6EQnz+dVolaEk1wgnCYzFNPAjKM7Z165bNeNLvCQjID3S8nGaRZ8cLKYZqb6YD64ANVjCKxYulZtgeQlfhN00wbhvGnoBffB+C7pmleMwzjm/ff3zM7Px7PzCcHSIxVVfxfylk7OlRl2ugo89SdQHLU43Hua2EhD0gfrgnwkF9+mZ+RZJ1QSE1W2uuEDr3l9tYWw4XiS2hqykRaa5Th7Fk6pS5eJE6JUwzwPndPwCqxa2q4v7thfnb+rWxMVRjc008DP/0pibeoiK/L+HanZ7Oai5IHoHfqFciW1OWm2emamHSUtt1nK4cJhSh5amuVPXTsGKV/LJbbDPocwFOc3zTNnwD4ieU1W6I3TfN/3f2yCLEYN1JvWCm94iSUJqmei4tURdva1Ngz5+dx/x/gYTU2qpbcAvmu1nLyLAt+TE3R5CgpIbILw1tdde72m0iQmB55hCZCMkntSQZ05OpQtkP43fSncLKr3ZiqMLhAAHjhBdrusi9f+AK1P6uzXJjJwgJxZWlJzfjr6Mjs1Gt91p2m6npy3NtxmFQK+MpXMhM4Uinlxd0DeKgz/KRNlGlSxZP4ammp4tj19Zkqn7Xoxkpci4v8/JEj6jNOTsK9rtZyQxTBD93Zu75OpN3YyHS4WXFJ73Mv0Qo9OxDYWZJLvmAnMXf9LCSdW7oTSTTD2mH4/HkVd29vpyn0yCOZ3XqsA0i81l04gadkIjsOI6EdcWBIIcUehvseauKXuvBYjFK9vJzce26OZbuhkHN/+95elZQSjaoDlxg1oOK9FRX2iLfXk5OyIUpPD23VsTGaJ+3tqsBHb9hpxSW9zz1APJI059JSZcLsVotxy0txe28nTNXuLKamqBVeusQzbWlRzzw7q6JngCr1np5WjUZ1/444Vr3UXbiBU2bm9oQxizplbVt0+DAPW0o39wAe6k4+0SjVW+kOu7amKvAMwz6uPjlJKbe2xsQLv59OssVFSojFRf4v/eb7+4lEdojnpXuQG7i1+wbccwbk/p/+NJ1hjz6qUmM7Oojodmt9/nna/Hq0QgZcCDPt7+fru9Fi3OLhbu8B289NBmdKPwC70Lb1LFZX+d3iYhL+0pJ6LoDEbw291dfzs3o+gs6AJyZU3P6nP2W4fXPTe35EPE6t63vfA/72b+lvmZjgsxUXu3Q2ki9Go6pJYSxG1W0Pk3weaskfifD5QyE6/QCqbY8+qgpHrNpTZSXNpUBA9exbXVWhoCNH6FQdGCBH3twkQ/iTP3Few07UYi+2ny4BrSFFCUFFo/y7rS1T+3AzA+1m0+sRkJIS4lpr6861GDetRf530mj0c7t9mwSia2dO0lY/i95edc4tLSR8KSMWDclL3H1sjPu5vEyckLi9zFyU+oVsOCD5/TpR37xJid/UpHpK2poB+maKDSue5T1s/vlQEz/Ag62r46RWAUlvBbYT54ULSppKHr0+yhtQ7ZgAcmRJvc0neLH9hEjtwzYCQgAAIABJREFUQoo6AXR2ZqazPvaYexq4Tlwym/74cb6nV9Dtxpy0qreJBAlJzIu6Oq7VycTQz02KhUZGVJfjbL4Ia4Sjq4v3v3OHdRotLWoEm/Q8sJps8TjflzTfuTnuj4STCwoYPdLNEyeIxahxHjrEZ793j/8nEswBsEsYc9xM2w/lHx564s/V7talqSTxSJbb6io7sXR2KqmQSinVLp+OLy/nKQTgFFKUjkCDg9RYTp6kifLjH2e2mbaTlDpx6S3P5doy1nqnYNVa+vuV09owSITCdKXphZ2Jka8ux6EQJX5jIyW3DHKNxViFJz4U/Zn1jkurq/xeQYGaHQiQaSwv269B92vcuME1Nzby+cvLKWB8vsymsYCNBvIh9QF76Ik/19CLziykH5+ouI88opp7ZIv37ha8qPTyfG4hRasGMTenOvbYzeZz2498OS3jcTWvTwqJDIPOtJYWMtNf/Yp97goLgZ//nOO0vva17dfSuxwD/L266q3LsdM8Q32/JOXbjtnpHZeuX+eeysyGlRU+m2RJ2u2Bni9y965q9Z5Oq/Zi4TDX5Jr5t9eeZQd4qB1+ArozS7f53Obmra6ywUMgAPybf8MptmVl9OJubZEgi4q4v9nGTO0ExKk1OcnU7cVFpdK/+iqTTmT90uJLB2H8Vqeg5Na7zebTYbdOSyuIL6O4WJlily7xGerq+Prt2ySIpSXu9fQ0JeN//+98bv28Kir4mVSKDDmV4v9euxxbn8s03Z2oOgiDBnjPxx6jtnbokIq6bWzYz2fo66OZ4vPxOpJkdvGi6mwcjxMHnnkmy/7n+5A8wkMv+a3gxZEWifDgzp3bbq9JHYBTk4h8lVU7qfQApcz8vErAmZ9XCTjWNVk7Ee0kt94trXa3cWyZkwhw/Tdvcu1bW6p6T8aHmeb29OTmZpoHeoOQhgb3FG275xLIRYOWUWzDw1TTa2rUvmxskHGfPm0fbRsY4OdEY6mupgYn1X5S/djaSk0gq0mZr6KQHGBfSH4drCWmTqWfTmE0cXRZmSxAqfTtb9NR5PfvfOCEgKj0zz6rClakr72oyuLgray0Z/zV1QwV/fKX1CCKisgspIOthMy8JIFlC8F5Abt9jUZp0lRV8VpLS9S8JH+irk7NF7CWF0ejlJ5tbQxRtrXtbrydU1m1XemuRNeKisggZG6jVHuur+fWF9E06Zv5+tf5c/YsGeJDOqR3/0l+LzPT///2viy2ruNM8yvey03cN5G0REokTdmkJduy6DhOlMROvCaA0+nkIY6R7gm6ESRIBvPSQAbz0DPAYIDMW3ejkw6CIAimgU6A9HSnM0AyhjVJJ2nEi8jIi0QtFElxkUiREvd9q3n4+Lvqnlvn3LrkJX3Zuj8giLw895w6VfXXv39/Tw/huzc2GBbs6DAJQXaBhpAwxdCQ2ajnz1MKLS9TAqQDg21TUBKNj5vMRTvJyOXgsjeo3ZDy7FmqnO+8Y/L2fcaWCSirsOYdHR2mbn9x0WD7i4YyPc13Li5OrFXZbTptkHzvZ8/Fww+T0QXV+cEHqbVsbSViOdrU2UkhoZTBM9zcTM6/SNtvt4+IPgeO+SsryUCuBpgSax0a4iIMDlJazs5ygWMxtw/FrqATb/itW/yso2N3ZdXBLrcjI3zOI4+YhJvWVrea6wr/jo2R6c+cMbDXYRs0SJmIKAmO3YULnE9JQ6+q4t8EeffKFR5WCwumIUpNDcfY08Pwl1CmNV6f+7lKu2/fNmCrKysmSuE6HM+cMSAhMzP055w+zf3oVdbron1G9DlwzB+PA//yL5zsujpuLqnkk1irFAIVFzOUNDZG9StMeku998QET/7FRS7i5iZV47q6nZdV25LowgWqtWtrfJ5IjL4+hqVc4woyazBtNR3p7RuBSEXj45TqsZiRfPb8PPss7/XWWybkV1Ji4uaSbSloPnvs10ogEaxXrtC8kiQy8a8UFLihuYNUXc33DAppYBdaTCZUszToQDH/1BQhttvaTBus+XmGkaR6a33dzFlpKSX3zAxt77BFyMujNKquNg642Vl6fZeX+bzd5FzIASDMPDdHxrt1i4fX1paJOdtjdDmvXGmrvmPzTSqKor4+Ms3p04kty+/cMSnFwhjPPgv89Kf8zvw83/XmTTKV4PTtA1Td+5Sqn2NrK+fILhSLUtvDNIwd8+k+J/scKIdfXx+l3pEjdKx0dZG55SCQ3PXeXqbwXr/OeUsVypNsv5ISw+gLCwYX3/YX7IaEmaWZpqA1tbe7nW8u55Vv2iqQXFsAGCSk69cphWMxE/3wyWEXHDtXt2PXGCSOL5DeJSX8WQ61nWIL7oRswVpZyf1TXk6Vv7CQiMMSk0/XmZoRkg0iWVOvv87TyZVokAE6UMyfauPV1lKNnZ42HWTffZdqXNQCas3Tv6DAhKE+9jE6/wQcMxObwGZmybnXmv4JFyO4wr++GzTMsy9azalTBrX44kVqTD5eaZnn5WUTmxecftf8KEWbf2GB10rXHtEaIkEuM0xhbcYffJDz3Nb2gYTbDbW300bt7uaCFRSYXmV7AOSZ9Wq/jRl/4QKZc32dkrOmJnHj9fXREz40xA0HMHuvqSl6AaU3nO2YGRvz73LrS66ce7sM1aXhuVTLMLioYDejw4eTzcff/IY+DKX4T+LUvoAxUmjU2pqI0//xj7ud1FrTz7GywufF4zSnRNuK0qh24vjebSlxlLMwE474yHtUV3Nxp6cN6khXV7jXcZeU1cwv0mtzkx7tmRkytbTaamigZH7pJc6bpGs2NjLGCqTuqAu4syvT7XLrS7K5xO7u7U2NIx92D5vCAGElZ17ebWyMc3PpEj8rKuIc3bnjp9nYB1h+Ps2u2lquj8tJXV7OcdTUUJO6coV/v3OHuQvS4CNIO3F8p/rObrJoM+GId4GyvvYa7/F+PoHWpgRQyGcT74CyWu0XG21oyAA3SDnv2hp//9M/NVWPdrqmUCrJ8uabjOnH45RO+6HuheHIj43t3LQIJj/V1dFUtFFtpUeh+DIKCmgCpFvhF0y3vnMnPPGqvJzrdfUqD7vKSj5PfBdSuBTUan2TudL5zm6yaH3Gkwq/IQjKGotRO+vvt65PdxPvgrJa8ovzc3DQNKMsKCCjSntte+HSOdldJ/ni4s6ZPh2VsK+PGkptrUmUKS/3i9WHkQsQ9r336AOx0XClR2FJCU0i6f6rNTdtMGSVCtpqaoqgFXl5fAe7hPfGDWpt4qSdmCCUVn09QUok3dkFoybvIyHJ+XlGb0pKUuP82RRVSryb+ZV7C87E8HBqXAIblFVC0VqbXot9fcAT+1jkk9XM7zoE19bC66vTyRbbaUjVxeRAeiqhbAJptAHsXrNzlbi2tbn9FrbPIC/PxOplr732mqk1iIK2kvcuLOR9JGlJkmPm5nhIFxayym9zk88oLSWzlJeHw4lJMtfAAJmkooLzJr6v4Ly6WqNnKkrjml+A4xsZofSWKr6BgURTy95Pcg8pzgIcTVUynfIYQVnN/HIINjZS9Rc4L+m77nJQiW0nDOqKnwM7C6mG2X3BMtKNjcSGkz7x+91u0lR+izDNRJjXPgRtsM+LF8Nbisv1jY10JG5tmfTdzk6zqQcHDQyZJGUdOsQD48kn3e8ubbftZCitzdq60rODrdHb2sKzOjMxv7K3XKhRrkPN7lokuAeSR5IwB/tU5JPVNr/MwalTlBZ5eWT8oiJWS505k/wd3+KVnZhWYXbf5csmhCQhWukD6Bu/jwrXhdmQrrmy7dkTJzjmn/6UuHJSfBPsPxcs1FlfN+3A5+c530VFpoxYwnOSVCXp1DKngsHf3Gwk3cYGbVtRd0VLGBtzv7tU/EkVo5RfuwplZF0aG7lXyss5rokJPzPOZ55d83v0KMcDJKJGyTyFRRJaWxkl2dyk6SVNVd6fg3QWfheU1ZIf4IQ99xwdoD42dU+P6QgrXnRXam7wJB8f5zVih/pqC+vrtPukbHd+3oTPpOEkkPh8H81uJ97lYOmufD9MJe3udqvKdivwVC3F7U44Ev/f3DTRA5F0Q0O8vqiIh7YkX01MhEdVmpoSUYgAUzSUal0KC1MDggTnKdU8uwRyGGpUWPdl134uLbXW3w5x3bnDxfn97xkSyTCeX9Yzv5CPJmSrfwIJdfEiT9dgxyObAX1BJIMVbWLzNTRwI8/N0ZnzwANUN6MaToaF61LF6X3DvbaW4gIy7e2lHV5fz3GXlJjuPnl5/F/alJ87x++ePk1JbavSUZ1w5B1jMe5fyWuIxzlfn/qUAWJ1ka/vy16Xixd5EBUW0gyx19Fl+uwmnd4eX3k5JXpfH5lZWr/5HNRJC7e5aZwd9fUc8M9/ztBWBm3/A8P8Pt70nh7TbruqivNWXByewGIvQH19+AawE42uXjVdWWdmTE/F48dNddf4OMNgroaTYe/hG6f3dQra0tBWSW/dohp99arpTxiL8bARZ+pTT3HMk5PUDuJxXie5Fi+/bOZe0oUFiCPYCUckHcDrNjb4HmEdc1zrk8r3JUw4NMR3BJKr8uSaoIRfWDB4fUK+81xdnQyuumsBPTPDDWw3FqyspJ2Q4USfA8H8PpqQXNPQwI28sEDmOXKEP0fFz6MaLdiNP44f5wYbGOAmW19nimw8znucPEk78Nw5Mor0AqyqYpFLlIoZlEDSuPXyZdOsJB7331hhQKYLCybZ5/hxSiw5LO+7j2q2SP233+bnra3G6XbzJgFEH3iAz2hrM1WGUdK5qyv8uqgD0cfUk0Pi2jUTcgxW5YVJ+LGxnTtfBW9BwFWjyqu9Q8GVldzg0nkW4MSLlzuDlNUOPyFbE1pf57zE49SExBfS3U0GEVy1vDzTSz2V0yfo/JudNY0Wgo0/CgvJ8A0NdC6JN1rsy+Xl5FCkJGsFkzzefZeHSU9PsuOtqYnP/sMfEtO8h4cT8f/CfEG2U1FU0o0NSnuByhLBIgg7NgmopUBVKcU1EEYSx6E491IlzoQl2ABuB60kvviiDlVXM7LyyCPuNt9hyE527cbMDBO+fvtbznXYs+QQ//u/N/6lqEQk2wktmX3f/W4yzv/7CxeLcTACari8TObPcKLPgZD8qTQhUelE6m9tcd6OHycDpep4FNXrThhA7OWyMi7i/DzDWUEnT18fgSrsslD5XPwEly7xns3NprXYhz6UHKcvKOCaS5r3iRNGoxD8P5dvQqSMAIiWlfFZAmW9usq/Xb3KTRuLmUYVoiFJay+bbt8m0wKJDShcDTbDJF3wOtGEghgD//ZvDAOmY4tH+QiCWIjyjk1N/F53N79bV8fn5ueHz62MWSI6ktsQlrMQPPSlmrO/3+D7JeT3v/QSJdvt29wAjY27wzYLoQMh+SsrucHEngMSNaG+Pi5aaSlVsNJSTqqP1AeSpZLd6y4YwmlqMuAftkQtKeH3m5p4CNlVmQMDPERGRvhzdTXXsr+fG1Daj9lov7/+tckTePJJbq7Z2WT8v7AU09VVHn4yH8J8ohEcO2acm4BB4+noMJLw7Fm+q1TvSb2JbSO7qvLSwQoUiSzztbZGxpiY4PzYzVZSVQBGpe9GhVdlf9TVcW5HR5OxBoVs86G83BRHiSPVZTLIO0oDXvkX9gy0tdG597GPGTTTPcg395L8SqkXAPw1gBiAH2itvx34+ysAvrX96wKAr2ut38nUICXhQ6SIeJUbG41K195uTtXWVv59YsK/z6EtlaTKD0gO4cTjZBzBzpfmEPa6uDLT+vvJyNeu8XPJ6R8eZovpjQ1KdrtXo1LcGNKOfH7etJASCuIX/uxn/N8O3QFGYtpOtPZ2HgyCD1BaSgZvajI2++amyQcQPPuFBc5JWDFSOh50MblsxpC1ldoEl+NU3tdHu7DXN6wa8s03aU6mihLZ7b2UonkgAC1jY7z/0aO8VsYj7zg+zvtJAtbRoxHOxX1I9EnJ/EqpGIDvAHgWwCiA80qpn2ute63LBgF8Qms9rZR6EcD3AWRs5FGaUG0tmX5qitJrbc3YVjs9LMNCOCLdBaYq7LuuzLSqKuOBHh3l5ikp4WbPzyfj3blDjUOYZXaW6ui1a6ayc2Ym8UAThpANPDVFybm6atTRYBdi2Ve2BzzYB1De75lnjMki8FtVVaYY6fhxXmNTOtmTMobJSY5bTNzHHqM9HaxNsCHWd5MHYZNojqJ9SautmzcZjhQKtveSMuX5ec6HHKjBcHF7O53Aw8MmDCmZiOPjETDlewzm6SP5PwTgutZ6AACUUj8B8FkA7zO/1vr31vVvADiasRFuk2hC9lxIKamkdWpNSSVpna4MQB+STdLdTecMwE3nA+NcXW16x9vhr+FhMvdjj3GMUtQh0vTkSTqbbKapqOAzL14k47S1GaCSIEPI4VRXx40o9vrICNV0l6/IR0LbDHP4cCJqb1gxUjrpy3J/wU+oqzOeesFVdIX5Mgl3J5rj+fMMhUpashwCUksgzC3tvQSbcGOD/QuCadL2eCRqcv06tbeODn4vDL9xP8A8fZj/CACrMBSjiJbqfwbgl64/KKW+CuCrANAcxDj2oODJbTuLxKaanIzOGkuHNjeZH7C+zkV64w0+v6sr+t7NzcmZabW1hnEfeoj3m5xMvF+QaWZnjT3oAojMy+Mhd/486+RPnjRmCsDNODFh7Hm7ak/wD3wldDrFSOkWplVXc71sLUQgy6JAV2Xs4iiUBqTpCkgx88rK+Pz1da7T6dPUMIWB7fZeIyPmcC8t5XPFdxGsQmxvp8+noIBrL5ET+a5zrPsA5unD/MrxmXZeqNTTIPOfdf1da/190CRAV1eX8x5h5NKAgp1a7bjubhnf5aGtr+epPzNDZtracmtjYUU2L71E6b+8zI0VTPCxcwqKi8Or6STxyGaWwkJe39VFJhsZIeMXFiZX7b35Jv0L6VTBpZLmwfU5cYLv6luYlm4xm29Wnw/Jei0vUyKvrvLnzs7Ew1ApaoOSOt7ZaRKgALevZ3SUe1IqH6WYRxKQ5LtJtA9gnj7MPwqgyfr9KIBbwYuUUg8D+AGAF7XWGYUdCdOA4vG9a24aVnt965aJAYeF22Qj9/QYs6GjgwdGMEnHfrfjx8mkb79NxszPZzKNq697UDCcOJHoH2hpoZoeixn1FOD/c3PAj3/Md7p+nSr3zZuJvQ2CzCwm1txcYgORl15yr8+1a6lRd3yddS7yyerzvVeU6SG1BDYAi2gKQZ+Hy9dTXMzvnjhhDqnNTWphZWXmIJe1lfl4MK8SFXu1ubfJJ9R3HkC7UqpFKVUA4IsAfm5foJRqBvBPAL6stb6WsdFtU1g1nR2yyTTaql17bW8u2QypEjsAXnP6NPDRj/IeUegu8m6HDhnAkq4u/nzxItVJO9QlFXUSThSNYXU1dePKGzdYz1BebkA8+/sptcISb8S30tdn4MMFhae7270+Yag7mWgbJgy7umqSoOxYe6pkOBey8R/9EdXylpZk4Na+PpoAXV2cr7W1RJ9HWBViQQHXSXoDrK0xv2JpiSHcwkI6A197LXE+zk+3Y25sjzb3NqWU/FrrDaXUNwG8Cob6fqi1vqSU+tr2378H4C8B1AD4rmI624bW2jPIlprCNCBpceWrKtrSJgqdBkiuvV5aotNOmO6o5dKMSuxIZbIF3016+U1MRDvulKJmUVVlwlOSYCS59IBbXb96lYws9+7spAQTZCTbl2KPXToFBavsLlzgAWdTlIbqmpu5OYYpy8v5syQmRdnvktUX9K9EQZlL5EIOy6BnPmw/+fg8pApRnKK9vVT7Dx/m3ysqaOM/9BDf0zaZAOZkvD/fDdW4tvIEugo9N/cOyCvOr7X+BYBfBD77nvXznwP484yNKkBR9mYqVdG14FH2dFB1j8eZcDM3R1VQGmWWl/OED7OTfU224LtJLL+lxcSYxXF3+LBxmimXJ8bxucv/IIk0YRQ29rExmgbBz4H0zK/g/WdnqXmIypuXZ0qjb9zgAWcf0kDiIT48bDAI7FoKm2zTxE7ZlvFHga8AfhEMaVU2NMTPCwr4DpOTpmvU5CTH2GQZ0oKdEJzXu8t7G+s/EOm9O4E1m5pKTNnc2DALHouFo9PYc11dbTaRpGKKY0ygqFpb3WMJOofCEmKC7xaM5YvjTg4j2ZRbWzy4RkeN1/nMmeQcfZcj7bnn+D7Ly8Y+tZGRwja6oCYHP+/s5Bz4rk/w/iMjZGKB+ZJEn6Eh3sduZ37uHA+CxkYeIILDUFdHZpO5D1JYifPly3xuUVF0FyGfPVhdnYy8/fGP89qJCTJ9dbUpORey8RPsed0DzM4EOhDMH9zAgv9+/rxbZXd13X3nHUqteJxq7yOP8FpJHxWp7HJEbW0loinPzpLxb96kI88FxJHKORT2bq2tJiR46JBx3LmwBVZXeahIaKmvj98Pmz+h9nYeEnaTSRsZSZJSpqaMNK2uNuCfMl826ClgsBEkByAMQi3ISCINS0qMf6WoiOt04gQZSXwJQRX57l1WbpaXG0YMAoIGQUaVMnH6q1fpVAXCwVdc6xSmhc/N8b4LC+YzwXt4/nmzN+1mntXVxqzfY8zOBDoQzA+YyQ+GuFzedjtMV1HBxa6sJJN0dPAaFzqNUn5RhYoKMllHR3jGmIxPmKWxMRydN8iccgClqmE/d45qsaiYUQCXwee5mkza39GBQKxkKUYxgDT0qK8PXxv7feU+Ig3v3uW6FBcndmWy05lFRZZ4umh2S0uGWYIpz0GQ0bk5/q201Ph9VlaiwVfscYfR1BTHZGcAurowS2UfwD0kAsHXd5UpOjDML+TjSLOdM729VOsASpjGRkpgAak8c8Y4UuNx973Fyw/4ncwjI9QKDh2ihrGywu/YRSpR5BPyEhVzampnzV2iniGebZGuQKI0jfqeb16KFNv09ZEZ+/oMPt/KCrUtAUyx05nz8zkWCZsdPsy1nJ93+2BkTHaorabG4ArW1PBZrjLgdMmVAWh3YbYF10c/avaRzMc+YHYm0IFjfh88d4F9npvjBJeWUkWOxfg9AaKQ3nGCoXb+vLvmO92owtgYTQ45TOrrKXVE4mSKguYIkJnmLjvNL3E58oaHOW+XLiV68AHDCC0tBnFJ1qWsjD8H05mrqzmOggIyl6z18eM86ONxU2IsBUkiCCT5aW6O1335y2YcrpTpMArLUQjLAJRDMFXR1X7TgWN+WewoPHcpriktJWS0VGJ1dNDuD3qC7Xu7HFp5ebTZL1/mZ52d4eObmiLzr68blNreXm4KQXrdDQVx/tbXzWYLQ/tJtz7ENzc/eN+8PPM9KdFdWuJ1Ei5tbzcefLuO/+5damhaJ6b0Bk2gZ57hcxYW+L2qKuCFF+j4fOstSli7Hj8WM2OSLFBJ5hGfUTrZiFEp9zJv8pzZWZp9t25xfPPzPKSiiq72k7Ke+V2ZZqnw3KW45vZterUBxlalmCKMXB5dgZYeHuaiSfba8DDwuc8lb5K+Pkq3lRUu/uKiqQb0KWewQ5PBeDeQuPHW1wl6UVxMFdll9++kPsTHs+267/S08cRLF+KRkUQv/p07/L2/n1EHOSREhZ+YSByfSx12ofqOj5PxH3888VoBLpF3GR8nOtJjj/lnI9oUZdrY87a+bsLJ5eWmM49Un46NcY7uvz/joLzelNVgHq5MsGvXeAikwnOvqOBGy8/nJrx5k2i1YfFxwA0GIaGbqSnD/LdvA7/8JfCrXyXfQyrE8vKIiXfqFNVakXo+7zs5yfEuLlJqTE7y856exEw6wXmQ2H1hIc2AhgaTXReWHRmWfRc2D0HmcN23oYHzVVjI8Yujrq6OnxUWkvErK/lOwTr+1VVem2p8tbWci1//mrUJY2PuRqOHDpk+hPIuExNk/MZG//mw1+eNNxg5kqxLeY6NVixtz8vLjb+ispKH1rVr1CAFGer8eQNbtt+U1ZI/7JTVmqdlMNPMVkvn53my1tRQ/V9YINOeOhX9zKCkefVVMmA8zg1bUMB73r1LLL1PftIdghP7cnbWH1tA3ndwMDHeffcuDxBXJl1BAbWcJ580n9l2/07t91QOqFRZl4BRb4XsVmt1dVyzYB1/W1v0+AQ0s73d1BhMT1OrC8bLXYlgr766s/lwRQ3s1mSy9+RZtq9B0KDkd6UYYtSa8zA1BfzkJ8DXv773Hn6bslryh4Eu2k0RwtKeR0dNp5/FRf5/6hQ/T4cqK7nQU1NktIIC4yQsLEyWGAIXJaW7Dz/MGLoPopC8r11PIPBhdiadTfn5ZiO+/jr/Hx83mzEITir32G0CSar7yjw0NhrgipUVzsu77/KaWIzzOTGRmJsfNT45IKU7z9NPM2Lj2hNjYzx8bbBT17jHx6mpRIGi2lEDCUMWFfEgkr1n1wvcvMn7ApT4y8tcX1nXeJy+I0mzHhigX2k/Kaslf5jjSWzgVN73kpLE+OrSUjIsUyqS/O+BAYOQs7REle6BB6hdAInOtGBk4MgRP4ebvK9ICol3S7bg4iLVXTsnPT/faCTiZBoaAl55xYw/3exIoShHYar72unR4swrKKAWJZB0+fkmCUu85GGdboR86zwWFvhzURHNhPV1U11nJyq5fABBn0gwSai5mfMs+AF2MZTtj5H7NjQYNKiaGlZt3n9/Yp3G4cM0B6QuY49BfABkueT37Wnnos7ORPBJOXk7O9PvgffFL/L0npujlG1ooBpeU0NNIlidBnBDPP64KZ+9cIGMEFXBJu9rO9AmJ/lvbs5AQkkmnQCGnj1rCmLKy7nh7twx4xc79MYNlvAKY0S9d6rKOx+/gCQT/cVfAH/8x2TCU6eY8lpZaSS4+AmioL+FwjQOwTuUfP/Ll3kY1teTEQcGTN+HdHwAtrov1XzDw5z3Rx5hLYCg/AT9MY89ZpCI6uqIRPW1rxkYNCn+GRxMFHCZqHr0IaWDqVz7RF1dXbrbQ8+xT0CxlwQkwZaAkmZqn9avvUYGsgs+urpMf/pgimrUydrfnwiuWVtrPLxBmO7CwsQe3Fk1AAAT7ElEQVR68zAQB5dNHfT2j49zXCdOmLiwPOOJJ4wN64r1P/984n1deH1h7y2bL+hXCRu3D/mONYpc7zE+bqIMhw5RSzp/nmstTsflZe6BxsbEZ8mY5uYS80ZKS4EvfMHMgw0aIvBrx46Z+Uvn3X70I+Af/9HkKRQXc24/8xng85/nvpVaErsuxHfulVI9PlW1Wa32A+60Xp9e6GEprEGEHomNx+Ph8X/AYAj29PC0np3lhgpi24vzyJViDHCDPfRQuINJ3jfooLI3le2g8o3Jd3eHNzCVeQlDSXI9dycULHaqqCDjrq76q7auHHvRHGQONjaoRg8Pc64BMtrt2ya9WyiYNxKLMYKwsGBySFpakpOERN2X8aaDW3jkCA8mOVTicc51eXl6/SZ3S1nP/EJhVVlhvdABt8d6eJiboKeHCyjFHENDBqAzyt4SgA6RMAKd5eoQU1OTaL8XFfHQ8HG4yRiuXDHttl3pp+nE5EtL+fzr1+l0O3uW7zM1lZwHsLhIdTRVVaIvBYudpqbY4665mfD0YdV0LnJFZGzHcFkZmefaNVO5ODPj7nthoy1vbNBcUIrJYVL5KHkUkryzuMg1FUEAMOKyuWl8F1G+la0tvrMk/pSV8fsC6Cmw7dITAODnrn6Tu6EDw/xhjScl1urLUKOj3PxLSyYpBuCC9PTwALAdN+Pj3BxHj3Kh7M65QeisIJru0lIioKbWphd7lMPNNjGKikyq8pkzJrc96FiLcn729XFDCnpPdTXf5dw5Oi0ffTQZWOPqVT4rVVVi1FwHbXAJ9a2v0xsuSVv2uu0k1TUodZuaeMDffz/f4fZtAzkWPFgkIUzqBUpLeSBJ5qFoReXliWbG/LyZb1mzmhr+vrwcnSloh4MBkwkovSKam00TkKIi7pvJyYw37Dk4zG8vsG8v9CCJivu735EJFxa40ScnKQV7e40mIIs/MGAYdmSEKqGk6jY1JUJr2wtuY+KHofW6aGqKjB+PkzFWVkwn3YsX6WAKbiqXhmMz35UryYARBQW8Rhp32rUSt2+TaZ58MjVMt2v8No5CQwM39tWr5vBaXubfGhsT6x18zYowfEG5h6jRi4s8ZBobWY4clkknaMui6ot/pqyM45c1sM2MqSn+L5JZKQPXlerwCssEPHOG79XXR8EyO5tenki6dGCYfze90GWznDtHe0tCPLEY77W+TjVYVEc5RCT7zG5tvbXFjbG2xvEI3l7QPLAlssSxH3wwEcTBRX19iR17iov5szirfKRiMPW2sJDvJ624BMnm9Gky329+Q22ospKMYLdGk7lIVTBkM/3kJKX93bu898mT1JhGRw3wx9WrNLVqa6MRkcKeUVdnMAulWajk5+flkXHb2420DuueCyRDtgnzt7UZ7S1oZqyvJ9r3Ylr4NNK198aFC9yDYtaJNjk+nqhN+naeSocODPMH1VtXmywX2Yxw5AilmNhxhw/zVL99mxumuTkRAnt+3jhdFhf599FRLnB9PTewNAK9cIGb+ZlnEsc0O0uVt66On6eybWdmjMQXqRLmrAojF7LvxYs8wE6fNu3OpDpSQk2inivF94tqleWa46EhHsbd3Ryz9DG8cIHf7e01lXeFhTzQDh2iNiWNVsK0NxdAy6VLvL6kJLFZqITmfEqLAbO3YjFzsDz0kNH4jhzh53YBU35+4hqtrBgzyYdcmYBAcqOWvaztz+o4f5BkwqR4Q/Kio+KfNiM0N1OClZebXnm3bpm867o6MgpASVFaanIFRIoePcrvS8VaTQ03RyzGOLpEL2WzDgxws8Zipq3Y0BDbO7vGLmqspLtqbWrc5+b8chOCmZEVFWw7Ja2o8vPJmOPjjFU3NfFd19f5/7FjBnvOJ7/CjmzMzhq/wTvv8HAcHKRNfOwYnzE6ync7e5bazPo6taMo1dZ+ht3scmQkGa03LDM0VZPP554DvvENHpAbGwaH4R/+ITFPY3qaczg9zb9LToaYez4k++PKFe4ZG+shP5/m3fPP7426L3SgmB9IPwHC3ggCnywNEltbGcY5edLkDMjJu7pquv22tpKBxXn11FPceM3NLN4R9byy0pT9ujbr1hb9DdLa2TV2ac/e2mqcVbOzZJLCQr93diXC1NQwbm03fj161PgvjhxhKnJHB8fd1mZq58MSb2Qtzp3jIQcwpXZjw/xbXeW8LS2R+cvL+X9zswHReOopPj9qk8s6irMXMKnPQa1kNynNtoDZ3OQBaB/eGxvG33P6tDmkH300WesLI3sPnzzJg7K7m++4BwjdoXRg1H6hdNBigGRPsDhkqqvJ5AMDps+fIKrKySv5BX19XODpaS5KebnxzNpoNza5Qn3T09xQSoXjxdnmTX4+D5erV/ndwcFEEIieHt4nGJIMC/+5GDgsIhHVKgtwm1MLC6aS8vBhU9IsHv2tLR6oZWW8//y8GUMqxpR19Ime7CalWShVnsbyMjWFqNyQVPeW9ZfEszCH7l5R1jN/MOOtv5+L29xsmCDKS1xbm5yZZ7fOkrbUwtRSEBLsbWcfBHfvmkKOlRWqzzMz3ChPP83nujbrzIyp1GtrSwQCBQzzBhObVlf5jleuMMf8oYfIcJcuMVXWlZPugzyUbkQiCCQiYc/mZhMmk1bi0u5qbY2mVVUVNYuFBRMbB2i6yTOjsAftsTY1cR7EKXbiRDRG4E7s5t3maQTnK4j4E2zI2tXFse4nok9WM79s/s1NbjZBipG4d6oqsKkpk8wj0Fr19cDLL5P52tqSmVpScYO97WymAqgW/vM/0xaMxUy/POln72KslRUyysmTZJBXX6VaX1jI5924kdj+WyREcTEZX2L0t27x95aWcA3IFwdQmCTYP9CeQzl87UYX771nqg3FnBoepi/lwx82CLZ37phIweQk7ymq7d27PBA+8hGDvBNm48pYu7t50LS0UPLm57s9+bvFxEtH03CRD+KPTzbgXlJWM7+rvv3YMW6ylhaDmz8+7u5C291tIKME6urKFeA732EM2+4Ik66nuLqaG2N9PTkLzga6tBnr2We5UZeWCAZy6xbfqaGBB9PCgklLBoyE0NqondI0ZHk5ucnjTtJvw5gkqu/BoUP8TPLhJfOttZVmyuamQetpbuYzNjZYzQaQ4QsLDXKuqxdh2FgrKhizt1uFS3q2xMkzUQnnOrwlouDTqt0X8UfCzn19xuzciwo+F2U188vml5AbYBxeZWXUBu67z3RBDUrq7m5+d2SEm7migsx644bxaE9NGWkTLN0U+zqMqbSOBtB0MVZVFYEcpeAHMHH3/n5qKOXl3AC24+rBB+kRl25B99+fCG8N7F56iJQfHqZHfmsrse9BWxvfTQ7f+XmuhQ18Ke/7s59xriVsVlFBFR+g1vT666lTtF1q88wM50oaqFZU8CD81a84Nw0NmWln76MVRVFUbYR978HB5CK13Yw7Hcpq5g+rb5eSWol7B7vQAlT3h4b43dVVMtrgoEFTlYVoaUk8jQWpZXqaG76+nhusri4x1mszZzrqW3U1mbe4OLFWQWCv6uqMN19qz+NxAwtWVUWVc2mJ415cJJPZkikVbr+LXIVTvb2U0mVlnJe33uJ7K2UaUJaVue1qiR7YB6OdZZgqRTtMbY7F+K4SQQH4jK0tfkey+Hw0ibB58NEeUl0neyOooUhTFVsw1Nf7O7AzSVkd6nPVt0tsXcIhYTHd3l4yz/q6sU3X1niP++5LRMiZmUlEarl7lwdFXh7/Nj5uHFN2qK22dmd4A3NzJr69vs7vKMX/W1vNoSDM3NpK38Dmpkk+EaflygprDwDT9XUntd+uwqmqKgNWUljI97ahuIqLWRvgike7wm35+QZqy0a3EbQle+7CsAeVMvkHgtOwvMyxBlOYfbr12uQbRva5rr2d+6a723QRnpszeJBCO8lJyBRlNfPL6VhXR0lSUkKpOTFhmkgo5Y7pAoy9NjRwk0hIb2HBZPaVlSVW4YnzSoo4JF9bni+twoLM6QtEIVRWZlpMbW2ZBiL19UabsUEhg8kn8hzpIf+JT1CVFoAMX0BKm+xNKFK5qYkb+NIlhhuLijjvxcXczGfOJHf2EXIBsYhTbnHRpGjPztL3IUk0QDRQppTSbm0lArhWVoZj+PmSL9ipfd3cHAXFpUsGlx/ge1ZV8T2np6naa82fJZcf2DuYNR/yUvuVUi8A+GuwRfcPtNbfDvxdbf/90wCWAPwHrfUfMjFAu759asr0kBPv/d27nNRjx7jhpOpNAB07Oqh2LS9zIaRssrmZammwCq+khPfr7CQDFBQYn4OrCGUnXuXmZmOvDg5SMlRVcaxh6bRhz0m37j5MXbVNmMpK5uRPT5PBiovJDLW1TAx6/HFT2lpa6n6OK9wmjkz5rKAgUQPq76emIfUaYUCZ7e3UgmxAj6oqoz3tNLbvO5d245go2PGtLY710iX+XlTEffjmm8ZpmImchJ1SSsmvlIoB+A6AFwF0AnhZKRVsW/EigPbtf18F8HcZHicA472PxbgRhocNKCNAJ9LqqolTLy5Scj36KOPvx47x54oKg5wqC2VLKjutt6nJwITbPeN2czpLFt+pU4QI+9KXKPWPH08friwdyRGlrsr7j41xjgVRV5BmPv95qvjSndhnjHIA2GaB/ZlSZKxYjM+JxYh7NzoaDZTpghB79llm2KWrhe1kLuW6VLDjlZWJ/gmp0RcUKHuOdjPunZKP5P8QgOta6wEAUEr9BMBnAVipGvgsgP+liQn2hlKqUinVqLUey+RgL182m7G/n8xYWkob8JlnDMyUTNwTT3DT5OWZJBNh/GBChS2pSkoSE39qaqhltLT4t3SKIleR0iuv+HeNsSkdyZEqO/KJJ4yXXjDt7ruPTLi5aWL5Yd2J06XeXrOeAP+Px2kGPPVUNHJOmCa0GyeZ71zKdalgx9vbCe9eX2+agS4v029j2/S7zUnYKfkw/xEAI9bvowCCQ3VdcwRARpnfJpHQkmYLJKto1dVMOAli0YVJxqCJkQnmDCPXgu+kc0s62Wyp1Nrq6mQvve2RT9WdOBMkCL5AInKOfajvFfnOpVwnbb/q6oz/xe4fIdcNDBjNsa2NB1yYubSf5MP8rh43QTePzzVQSn0VNAvQ7NO7KkCdnXQMKWXw7dfWjOrpYuqd2lSZYs79IF/J4ROazARoii91dDDxRzIqBTRDwo37bQMD/nNZXc3aBxtM1DU/XV3J/on9fJ8o8vH2jwJosn4/CuDWDq6B1vr7WusurXVXnQ2o70lnztBuF3grCfEISIXLBv0gbapsIx8odPsa8cjbTUoyOXddXfRzbG5SK9nc5AH/8ssHY7189lY277+U0N1KqTiAawA+BeAmgPMAvqS1vmRd8xkA3wS9/U8A+But9Yei7usL3R2kIDacxHv3qrHBvzfySWLZj4YRH8Sz7hXyhe72wu1XSn0awF+Bob4faq3/h1LqawCgtf7edqjvbwG8AIb6vqK1juTsnTJ/jnKUo2jKKG6/1voXAH4R+Ox71s8awDfSHWSOcpSjD46yOsMvRznK0d5RjvlzlKN7lHLMn6Mc3aOUY/4c5egepRzz5yhH9yjlmD9HObpHKcf8OcrRPUpeST578mClJgEMeV5eC+DOHg5np5St4wKyd2zZOi7g38/YjmmtU+bPf2DMnw4ppbp9Mpb2m7J1XED2ji1bxwXce2PLqf05ytE9Sjnmz1GO7lE6KMz//Q96ACGUreMCsnds2Tou4B4b24Gw+XOUoxxlng6K5M9RjnKUYcoa5ldKvaCUuqqUuq6U+s+Ovyul1N9s//1dpdRjWTS2V7bH9K5S6vdKqUeyZWzWdY8rpTaVUl/IlnEppZ5SSr2tlLqklPrNfozLZ2xKqQql1P9RSr2zPbav7NO4fqiUmlBKXQz5e2Z5QGv9gf8DQUL6AbQCKADwDoDOwDWfBvBLEC/wwwDezKKxfQRA1fbPL2bT2KzrfgViMnwhG8YFoBJEgG7e/v1wtswZgP8C4H9u/1wHYApAwT6M7eMAHgNwMeTvGeWBbJH878ODa63XAAg8uE3vw4Nrrd8AUKmUasyGsWmtf6+13u67gzdADMP9IJ95A4D/COB/A5jIonF9CcA/aa2HAUBrnU1j0wDKthGqSkHm39jrgWmtf7v9rDDKKA9kC/OHQX+ne81eULrP/TPwdN4PSjk2pdQRAJ8D8D3sH/nM2QkAVUqpf1VK9Sil/iSLxva3ADpAENr3APwnrfXW/gwvkjLKA9nSpTdj8OB7QN7PVUo9DTL/2T0dkfVIx2fBsf0VgG9prTeVcl2+J+QzrjiAMyAwbDGA15VSb2itr2XB2J4H8DaATwJoA/CaUup3Wuu5pG/uL2WUB7KF+TMGD74H5PVcpdTDAH4A4EWtdUinvA9kbF0AfrLN+LUAPq2U2tBa/+wDHtcogDta60UAi0qp3wJ4BESK3kvyGdtXAHxb09C+rpQaBPAggLf2eGypKLM8sB9OFg9HRxzAAIAWGCfMQ4FrPoNEZ8dbWTS2ZgDXAXwk2+YtcP2PsD8OP5856wDw/7avPQTgIoCTWTK2vwPw37Z/rgch62v3aU2PI9zhl1EeyArJr7XeUEp9E8CrMPDgl2x4cNBT/WmQyZbA0zlbxvaXAGoAfHdbwm7ofSgQ8RzbvpPPuLTWl5VS/xfAuwC2wO7PzhDXfo8NwH8H8COl1Hsgo31La73n1X5KqR8DeApArVJqFMB/BZBvjSujPJDL8MtRju5RyhZvf45ylKN9phzz5yhH9yjlmD9HObpHKcf8OcrRPUo55s9Rju5RyjF/jnJ0j1KO+XOUo3uUcsyfoxzdo/T/AUC7Rv8D5vBgAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", + "np.random.seed(seed=42)\n", + "N = 1000\n", + "x = np.random.uniform(size=N, low=0, high=1)\n", + "y = np.random.uniform(size=N, low=0, high=1)\n", + "accept = (x*x+y*y) <= 1\n", + "reject = np.logical_not(accept)\n", + "fig, ax = plt.subplots(1)\n", + "ax.scatter(x[accept], y[accept], c='b', alpha=0.2, edgecolor=None)\n", + "ax.scatter(x[reject], y[reject], c='r', alpha=0.2, edgecolor=None)\n", + "ax.set_aspect('equal')\n" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "3.112" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "4*np.mean(accept)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], "metadata": { "kernelspec": { "display_name": "Python 3", @@ -16,10 +120,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.3" + "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 } - diff --git a/module2/exo2/exercice.ipynb b/module2/exo2/exercice.ipynb index 0bbbe371b01e359e381e43239412d77bf53fb1fb..2b953641d72573e7cf60bfe1f6cdbe4dd0c32d92 100644 --- a/module2/exo2/exercice.ipynb +++ b/module2/exo2/exercice.ipynb @@ -1,5 +1,211 @@ { - "cells": [], + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pandas\n", + "import math" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[14.0, 7.6, 11.2, 12.8, 12.5, 9.9, 14.9, 9.4, 16.9, 10.2, 14.9, 18.1, 7.3, 9.8, 10.9, 12.2, 9.9, 2.9, 2.8, 15.4, 15.7, 9.7, 13.1, 13.2, 12.3, 11.7, 16.0, 12.4, 17.9, 12.2, 16.2, 18.7, 8.9, 11.9, 12.1, 14.6, 12.1, 4.7, 3.9, 16.9, 16.8, 11.3, 14.4, 15.7, 14.0, 13.6, 18.0, 13.6, 19.9, 13.7, 17.0, 20.5, 9.9, 12.5, 13.2, 16.1, 13.5, 6.3, 6.4, 17.6, 19.1, 12.8, 15.5, 16.3, 15.2, 14.6, 19.1, 14.4, 21.4, 15.1, 19.6, 21.7, 11.3, 15.0, 14.3, 16.8, 14.0, 6.8, 8.2, 19.9, 20.4, 14.6, 16.4, 18.7, 16.8, 15.8, 20.4, 15.8, 22.4, 16.2, 20.3, 23.4, 12.1, 15.5, 15.4, 18.4, 15.7, 10.2, 8.9, 21.0]\n" + ] + } + ], + "source": [ + "DataSet = [14.0, 7.6, 11.2, 12.8, 12.5, 9.9, 14.9, 9.4, 16.9, 10.2, 14.9, 18.1, 7.3, 9.8, 10.9,12.2, 9.9, 2.9, 2.8, 15.4, 15.7, 9.7, 13.1, 13.2, 12.3, 11.7, 16.0, 12.4, 17.9, 12.2, 16.2, 18.7, 8.9, 11.9, 12.1, 14.6, 12.1, 4.7, 3.9, 16.9, 16.8, 11.3, 14.4, 15.7, 14.0, 13.6, 18.0, 13.6, 19.9, 13.7, 17.0, 20.5, 9.9, 12.5, 13.2, 16.1, 13.5, 6.3, 6.4, 17.6, 19.1, 12.8, 15.5, 16.3, 15.2, 14.6, 19.1, 14.4, 21.4, 15.1, 19.6, 21.7, 11.3, 15.0, 14.3, 16.8, 14.0, 6.8, 8.2, 19.9, 20.4, 14.6, 16.4, 18.7, 16.8, 15.8, 20.4, 15.8, 22.4, 16.2, 20.3, 23.4, 12.1, 15.5, 15.4, 18.4, 15.7, 10.2, 8.9, 21.0]\n", + "print(DataSet)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The average of DataSet is 14.11\n" + ] + } + ], + "source": [ + "# average\n", + "\n", + "def averageOfList(num):\n", + " sumOfNumbers = 0\n", + " for t in num:\n", + " sumOfNumbers = sumOfNumbers + t\n", + "\n", + " avg = sumOfNumbers / len(num)\n", + " return avg\n", + "\n", + "\n", + "print(\"The average of DataSet is \" '%.2f' %averageOfList(DataSet))" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2.8" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# minimum\n", + "\n", + "min(DataSet)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "23.4" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# maximum\n", + "\n", + "max(DataSet)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "14.5" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# median\n", + "\n", + "import statistics\n", + "statistics.median(DataSet)" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "standard deviation is 4.31\n" + ] + } + ], + "source": [ + "# standard deviation\n", + "\n", + "print(\"standard deviation is \" '%.2f' %np.std(DataSet)) \n" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Standard Deviation: 4.31\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "dataset=[14.0, 7.6, 11.2, 12.8, 12.5, 9.9, 14.9, 9.4, 16.9, 10.2, 14.9, 18.1, 7.3, 9.8, 10.9,12.2, 9.9, 2.9, 2.8, 15.4, 15.7, 9.7, 13.1, 13.2, 12.3, 11.7, 16.0, 12.4, 17.9, 12.2, 16.2, 18.7, 8.9, 11.9, 12.1, 14.6, 12.1, 4.7, 3.9, 16.9, 16.8, 11.3, 14.4, 15.7, 14.0, 13.6, 18.0, 13.6, 19.9, 13.7, 17.0, 20.5, 9.9, 12.5, 13.2, 16.1, 13.5, 6.3, 6.4, 17.6, 19.1, 12.8, 15.5, 16.3, 15.2, 14.6, 19.1, 14.4, 21.4, 15.1, 19.6, 21.7, 11.3, 15.0, 14.3, 16.8, 14.0, 6.8, 8.2, 19.9, 20.4, 14.6, 16.4, 18.7, 16.8, 15.8, 20.4, 15.8, 22.4, 16.2, 20.3, 23.4, 12.1, 15.5, 15.4, 18.4, 15.7, 10.2, 8.9, 21.0]\n", + "print('Standard Deviation:', '%.2f' %np.std(dataset))" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEICAYAAABPgw/pAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAADkdJREFUeJzt3X+M5HV9x/Hnq6CkBbRHbyGgnFuRNNAaD3MFGhoLVSw/0gAh2lKlV0NzaCHR1MZcrKnUaoJ/qKRpQ3sGeqcCDYkgNGALRSzYUMpBCRxFw48eAne9O4otP6xV4N0/5nvtuOzuzO7M7ex97vlILjPfHzPfz32Ze+6Xz87spqqQJO39fmLSA5AkjYdBl6RGGHRJaoRBl6RGGHRJaoRBl6RGGHTttZJsTPLpeba/kOTNSzkmaZIMupZEkq1Jfphk5Yz19yepJNPjPmZVHVRVjw8Y18lJnhr3saVJMOhaSv8GnLd7IclbgZ+c3HD2vCT7TXoM2ncYdC2lLwO/3be8FvjS7oUkv5hkR5L9+9adm+T+eZ5zRZKbkjyf5O4kR/U9tpK8pbt/RpJ/7fZ7OskfJDkQ+DpwRDc980KSI5IckOSyJNu6P5clOaDveT+WZHu37XdnHGdjksuT3JzkReCUJGcm+ZckzyV5Msklfc813T3+A9227yX5YHcuHkjyn0n+bLEnXPsWg66l9E/A65Ic0125/gbwld0bq+oe4D+AU/se8356Xwjmch7wx8AK4FHgM3PsdwVwYVUdDPwC8I2qehE4HdjWTc8cVFXbgD8ETgRWA28Djgc+AZDkNOD3gXcBbwF+ZZZj/VY3joOBbwEv0vtC9tPAmcCHkpw94zEnAEd35+SybgzvAn4eeG+S2Y4j/RiDrqW2+yr9VODbwNMztm+iF3GSHAL8GnD1PM93XVX9c1W9BFxFL8Kz+RFwbJLXVdX3quq+eZ7zfcCnqmpnVe2i9wXj/G7be4G/qqqHqur73baZbqiqf6yqV6rqB1X1zap6sFt+ALiGV38h+JNu31vofQG4pjv+08CdwHHzjFcCDLqW3pfpXcH+Dn3TLX2+Avx6koPoxfPOqto+z/P9e9/97wMHzbHfucAZwBNJ/iHJL83znEcAT/QtP9Gt273tyb5t/fdnXZfkhCS3J9mV5L+ADwIrZzxmR9/9/55lea6/l/R/DLqWVFU9Qe+bo2cA182y/WngLuAcelfF8023LOS491TVWcChwNeAa3dvmmX3bcCb+pZXdesAtgNv7Nt25GyHm7F8NXAjcGRVvR74CyAL+gtIQzDomoQLgF/t5rBn8yXgY8BbgetHPViS1yZ5X5LXV9WPgOeAl7vNO4CfSfL6vodcA3wiyVT3Nss/4v/n+q8FPtB9H+Cnum2DHAw8W1U/SHI8vf9DkcbOoGvJVdVjVbV5nl2up3eFfP080V+o84GtSZ6jN+Xx/m4s36YX8Me7d5QcAXwa2Aw8ADwI3Neto6q+DvwpcDu9b8Le1T3//8xz7N8DPpXkeXpfAK6dZ19p0eIvuNBylOQxeu9K+ftJj2U+SY4BtgAHdN+YlSbGK3QtO0nOpTcP/Y1Jj2U2Sc7ppnFWAJ8F/saYazkw6FpWknwTuBy4qKpemfBw5nIhsAt4jN5c/IcmOxypxykXSWqEV+iS1Ij9B+8yPitXrqzp6emlPKQk7fXuvffeZ6pqatB+Sxr06elpNm+e791qkqSZkjwxeC+nXCSpGQZdkhph0CWpEQZdkhph0CWpEQZdkhph0CWpEQZdkhph0CWpEUv6SVFJrza9/qaJHHfrpWdO5Ljac7xCl6RGGHRJaoRBl6RGGHRJaoRBl6RGGHRJaoRBl6RGGHRJaoRBl6RGGHRJaoRBl6RGGHRJaoRBl6RGGHRJasTAoCc5MsntSR5O8lCSD3frD0lya5JHutsVe364kqS5DHOF/hLw0ao6BjgRuCjJscB64LaqOhq4rVuWJE3IwKBX1faquq+7/zzwMPAG4CxgU7fbJuDsPTVISdJgC5pDTzINHAfcDRxWVduhF33g0HEPTpI0vKF/BV2Sg4CvAh+pqueSDPu4dcA6gFWrVi1mjNIeN6lfAyeN01BX6EleQy/mV1XVdd3qHUkO77YfDuyc7bFVtaGq1lTVmqmpqXGMWZI0i2He5RLgCuDhqvp836YbgbXd/bXADeMfniRpWMNMuZwEnA88mOT+bt3HgUuBa5NcAHwXeM+eGaIkaRgDg15V3wLmmjB/53iHI0laLD8pKkmNMOiS1AiDLkmNMOiS1AiDLkmNMOiS1AiDLkmNMOiS1AiDLkmNMOiS1AiDLkmNMOiS1AiDLkmNMOiS1AiDLkmNMOiS1AiDLkmNMOiS1AiDLkmNMOiS1AiDLkmNMOiS1AiDLkmNMOiS1AiDLkmNMOiS1AiDLkmNMOiS1AiDLkmNMOiS1AiDLkmNMOiS1Ij9Jz0Aqd/0+psmPQRpr+UVuiQ1wqBLUiMMuiQ1wqBLUiMMuiQ1YmDQk1yZZGeSLX3rLknydJL7uz9n7NlhSpIGGeYKfSNw2izrv1BVq7s/N493WJKkhRoY9Kq6A3h2CcYiSRrBKHPoFyd5oJuSWTG2EUmSFmWxQb8cOApYDWwHPjfXjknWJdmcZPOuXbsWeThJ0iCLCnpV7aiql6vqFeCLwPHz7LuhqtZU1ZqpqanFjlOSNMCigp7k8L7Fc4Atc+0rSVoaA384V5JrgJOBlUmeAj4JnJxkNVDAVuDCPThGSdIQBga9qs6bZfUVe2AskqQR+ElRSWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWrEwKAnuTLJziRb+tYdkuTWJI90tyv27DAlSYMMc4W+EThtxrr1wG1VdTRwW7csSZqggUGvqjuAZ2esPgvY1N3fBJw95nFJkhZosXPoh1XVdoDu9tC5dkyyLsnmJJt37dq1yMNJkgbZ498UraoNVbWmqtZMTU3t6cNJ0j5rsUHfkeRwgO525/iGJElajMUG/UZgbXd/LXDDeIYjSVqsYd62eA1wF/BzSZ5KcgFwKXBqkkeAU7tlSdIE7T9oh6o6b45N7xzzWCRJI/CTopLUCIMuSY0w6JLUiIFz6Nr3TK+/adJD0BKY5H/nrZeeObFjt8wrdElqhEGXpEYYdElqhEGXpEYYdElqhEGXpEYYdElqhEGXpEb4wSJJS25SH2pq/QNNXqFLUiMMuiQ1wqBLUiMMuiQ1wqBLUiMMuiQ1wqBLUiMMuiQ1wqBLUiMMuiQ1wqBLUiMMuiQ1wqBLUiMMuiQ1wqBLUiMMuiQ1wqBLUiMMuiQ1wqBLUiMMuiQ1wqBLUiMMuiQ1wqBLUiMMuiQ1wqBLUiP2H+XBSbYCzwMvAy9V1ZpxDEqStHAjBb1zSlU9M4bnkSSNwCkXSWrEqFfoBdySpIC/rKoNM3dIsg5YB7Bq1aoRD7dvmV5/06SHIGkvMuoV+klV9XbgdOCiJO+YuUNVbaiqNVW1ZmpqasTDSZLmMlLQq2pbd7sTuB44fhyDkiQt3KKDnuTAJAfvvg+8G9gyroFJkhZmlDn0w4Drk+x+nqur6m/HMipJ0oItOuhV9TjwtjGORZI0At+2KEmNMOiS1AiDLkmNGMdH/5fEJD9ks/XSMyd2bEnj03pHvEKXpEYYdElqhEGXpEYYdElqhEGXpEYYdElqhEGXpEYYdElqhEGXpEbsNZ8UnSR/FZykvYFX6JLUCIMuSY0w6JLUCIMuSY0w6JLUCIMuSY0w6JLUCIMuSY0w6JLUCIMuSY0w6JLUCIMuSY0w6JLUCIMuSY0w6JLUCIMuSY0w6JLUCIMuSY0w6JLUCIMuSY0w6JLUCIMuSY0w6JLUCIMuSY0YKehJTkvynSSPJlk/rkFJkhZu0UFPsh/w58DpwLHAeUmOHdfAJEkLM8oV+vHAo1X1eFX9EPhr4KzxDEuStFD7j/DYNwBP9i0/BZwwc6ck64B13eILSb4zwjEnbSXwzKQHsRfwPA3mORpOM+cpnx3p4W8aZqdRgp5Z1tWrVlRtADaMcJxlI8nmqloz6XEsd56nwTxHw/E8LcwoUy5PAUf2Lb8R2DbacCRJizVK0O8Bjk7ys0leC/wmcON4hiVJWqhFT7lU1UtJLgb+DtgPuLKqHhrbyJanJqaOloDnaTDP0XA8TwuQqldNe0uS9kJ+UlSSGmHQJakRBn0ISbYmeTDJ/Uk2T3o8y0WSK5PsTLKlb90hSW5N8kh3u2KSY1wO5jhPlyR5untN3Z/kjEmOcTlIcmSS25M8nOShJB/u1vuaGpJBH94pVbXa98T+mI3AaTPWrQduq6qjgdu65X3dRl59ngC+0L2mVlfVzUs8puXoJeCjVXUMcCJwUffjRHxNDcmga9Gq6g7g2RmrzwI2dfc3AWcv6aCWoTnOk2aoqu1VdV93/3ngYXqfSPc1NSSDPpwCbklyb/ejDDS3w6pqO/T+gQKHTng8y9nFSR7opmScRuiTZBo4DrgbX1NDM+jDOamq3k7vJ0telOQdkx6Q9nqXA0cBq4HtwOcmO5zlI8lBwFeBj1TVc5Mez97EoA+hqrZ1tzuB6+n9pEnNbkeSwwG6250THs+yVFU7qurlqnoF+CK+pgBI8hp6Mb+qqq7rVvuaGpJBHyDJgUkO3n0feDewZf5H7dNuBNZ299cCN0xwLMvW7kB1zsHXFEkCXAE8XFWf79vka2pIflJ0gCRvpndVDr0flXB1VX1mgkNaNpJcA5xM70ec7gA+CXwNuBZYBXwXeE9V7dPfEJzjPJ1Mb7qlgK3AhbvnifdVSX4ZuBN4EHilW/1xevPovqaGYNAlqRFOuUhSIwy6JDXCoEtSIwy6JDXCoEtSIwy6JDXCoEtSI/4XfaVuDbJvIrIAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Histogram plot\n", + "\n", + "\n", + "import matplotlib.pyplot as plt\n", + " \n", + "# frequencies\n", + "DataSet = [14.0, 7.6, 11.2, 12.8, 12.5, 9.9, 14.9, 9.4, 16.9, 10.2, 14.9, 18.1, 7.3, 9.8, 10.9,12.2, 9.9, 2.9, 2.8, 15.4, 15.7, 9.7, 13.1, 13.2, 12.3, 11.7, 16.0, 12.4, 17.9, 12.2, 16.2, 18.7, 8.9, 11.9, 12.1, 14.6, 12.1, 4.7, 3.9, 16.9, 16.8, 11.3, 14.4, 15.7, 14.0, 13.6, 18.0, 13.6, 19.9, 13.7, 17.0, 20.5, 9.9, 12.5, 13.2, 16.1, 13.5, 6.3, 6.4, 17.6, 19.1, 12.8, 15.5, 16.3, 15.2, 14.6, 19.1, 14.4, 21.4, 15.1, 19.6, 21.7, 11.3, 15.0, 14.3, 16.8, 14.0, 6.8, 8.2, 19.9, 20.4, 14.6, 16.4, 18.7, 16.8, 15.8, 20.4, 15.8, 22.4, 16.2, 20.3, 23.4, 12.1, 15.5, 15.4, 18.4, 15.7, 10.2, 8.9, 21.0]\n", + "\n", + " \n", + "# plot title\n", + "plt.title('My histogram')\n", + " \n", + "# function to show the plot\n", + "plt.hist(DataSet)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], "metadata": { "kernelspec": { "display_name": "Python 3", @@ -16,10 +222,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.3" + "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 } - diff --git a/module2/exo3/exercice.ipynb b/module2/exo3/exercice.ipynb index 0bbbe371b01e359e381e43239412d77bf53fb1fb..104dad66000b25198d8af8dcbdc1ef319351d2a4 100644 --- a/module2/exo3/exercice.ipynb +++ b/module2/exo3/exercice.ipynb @@ -1,5 +1,90 @@ { - "cells": [], + "cells": [ + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEICAYAAABPgw/pAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAADkdJREFUeJzt3X+M5HV9x/Hnq6CkBbRHbyGgnFuRNNAaD3MFGhoLVSw/0gAh2lKlV0NzaCHR1MZcrKnUaoJ/qKRpQ3sGeqcCDYkgNGALRSzYUMpBCRxFw48eAne9O4otP6xV4N0/5nvtuOzuzO7M7ex97vlILjPfHzPfz32Ze+6Xz87spqqQJO39fmLSA5AkjYdBl6RGGHRJaoRBl6RGGHRJaoRBl6RGGHTttZJsTPLpeba/kOTNSzkmaZIMupZEkq1Jfphk5Yz19yepJNPjPmZVHVRVjw8Y18lJnhr3saVJMOhaSv8GnLd7IclbgZ+c3HD2vCT7TXoM2ncYdC2lLwO/3be8FvjS7oUkv5hkR5L9+9adm+T+eZ5zRZKbkjyf5O4kR/U9tpK8pbt/RpJ/7fZ7OskfJDkQ+DpwRDc980KSI5IckOSyJNu6P5clOaDveT+WZHu37XdnHGdjksuT3JzkReCUJGcm+ZckzyV5Msklfc813T3+A9227yX5YHcuHkjyn0n+bLEnXPsWg66l9E/A65Ic0125/gbwld0bq+oe4D+AU/se8356Xwjmch7wx8AK4FHgM3PsdwVwYVUdDPwC8I2qehE4HdjWTc8cVFXbgD8ETgRWA28Djgc+AZDkNOD3gXcBbwF+ZZZj/VY3joOBbwEv0vtC9tPAmcCHkpw94zEnAEd35+SybgzvAn4eeG+S2Y4j/RiDrqW2+yr9VODbwNMztm+iF3GSHAL8GnD1PM93XVX9c1W9BFxFL8Kz+RFwbJLXVdX3quq+eZ7zfcCnqmpnVe2i9wXj/G7be4G/qqqHqur73baZbqiqf6yqV6rqB1X1zap6sFt+ALiGV38h+JNu31vofQG4pjv+08CdwHHzjFcCDLqW3pfpXcH+Dn3TLX2+Avx6koPoxfPOqto+z/P9e9/97wMHzbHfucAZwBNJ/iHJL83znEcAT/QtP9Gt273tyb5t/fdnXZfkhCS3J9mV5L+ADwIrZzxmR9/9/55lea6/l/R/DLqWVFU9Qe+bo2cA182y/WngLuAcelfF8023LOS491TVWcChwNeAa3dvmmX3bcCb+pZXdesAtgNv7Nt25GyHm7F8NXAjcGRVvR74CyAL+gtIQzDomoQLgF/t5rBn8yXgY8BbgetHPViS1yZ5X5LXV9WPgOeAl7vNO4CfSfL6vodcA3wiyVT3Nss/4v/n+q8FPtB9H+Cnum2DHAw8W1U/SHI8vf9DkcbOoGvJVdVjVbV5nl2up3eFfP080V+o84GtSZ6jN+Xx/m4s36YX8Me7d5QcAXwa2Aw8ADwI3Neto6q+DvwpcDu9b8Le1T3//8xz7N8DPpXkeXpfAK6dZ19p0eIvuNBylOQxeu9K+ftJj2U+SY4BtgAHdN+YlSbGK3QtO0nOpTcP/Y1Jj2U2Sc7ppnFWAJ8F/saYazkw6FpWknwTuBy4qKpemfBw5nIhsAt4jN5c/IcmOxypxykXSWqEV+iS1Ij9B+8yPitXrqzp6emlPKQk7fXuvffeZ6pqatB+Sxr06elpNm+e791qkqSZkjwxeC+nXCSpGQZdkhph0CWpEQZdkhph0CWpEQZdkhph0CWpEQZdkhph0CWpEUv6SVFJrza9/qaJHHfrpWdO5Ljac7xCl6RGGHRJaoRBl6RGGHRJaoRBl6RGGHRJaoRBl6RGGHRJaoRBl6RGGHRJaoRBl6RGGHRJaoRBl6RGGHRJasTAoCc5MsntSR5O8lCSD3frD0lya5JHutsVe364kqS5DHOF/hLw0ao6BjgRuCjJscB64LaqOhq4rVuWJE3IwKBX1faquq+7/zzwMPAG4CxgU7fbJuDsPTVISdJgC5pDTzINHAfcDRxWVduhF33g0HEPTpI0vKF/BV2Sg4CvAh+pqueSDPu4dcA6gFWrVi1mjNIeN6lfAyeN01BX6EleQy/mV1XVdd3qHUkO77YfDuyc7bFVtaGq1lTVmqmpqXGMWZI0i2He5RLgCuDhqvp836YbgbXd/bXADeMfniRpWMNMuZwEnA88mOT+bt3HgUuBa5NcAHwXeM+eGaIkaRgDg15V3wLmmjB/53iHI0laLD8pKkmNMOiS1AiDLkmNMOiS1AiDLkmNMOiS1AiDLkmNMOiS1AiDLkmNMOiS1AiDLkmNMOiS1AiDLkmNMOiS1AiDLkmNMOiS1AiDLkmNMOiS1AiDLkmNMOiS1AiDLkmNMOiS1AiDLkmNMOiS1AiDLkmNMOiS1AiDLkmNMOiS1AiDLkmNMOiS1AiDLkmNMOiS1Ij9Jz0Aqd/0+psmPQRpr+UVuiQ1wqBLUiMMuiQ1wqBLUiMMuiQ1YmDQk1yZZGeSLX3rLknydJL7uz9n7NlhSpIGGeYKfSNw2izrv1BVq7s/N493WJKkhRoY9Kq6A3h2CcYiSRrBKHPoFyd5oJuSWTG2EUmSFmWxQb8cOApYDWwHPjfXjknWJdmcZPOuXbsWeThJ0iCLCnpV7aiql6vqFeCLwPHz7LuhqtZU1ZqpqanFjlOSNMCigp7k8L7Fc4Atc+0rSVoaA384V5JrgJOBlUmeAj4JnJxkNVDAVuDCPThGSdIQBga9qs6bZfUVe2AskqQR+ElRSWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWrEwKAnuTLJziRb+tYdkuTWJI90tyv27DAlSYMMc4W+EThtxrr1wG1VdTRwW7csSZqggUGvqjuAZ2esPgvY1N3fBJw95nFJkhZosXPoh1XVdoDu9tC5dkyyLsnmJJt37dq1yMNJkgbZ498UraoNVbWmqtZMTU3t6cNJ0j5rsUHfkeRwgO525/iGJElajMUG/UZgbXd/LXDDeIYjSVqsYd62eA1wF/BzSZ5KcgFwKXBqkkeAU7tlSdIE7T9oh6o6b45N7xzzWCRJI/CTopLUCIMuSY0w6JLUiIFz6Nr3TK+/adJD0BKY5H/nrZeeObFjt8wrdElqhEGXpEYYdElqhEGXpEYYdElqhEGXpEYYdElqhEGXpEb4wSJJS25SH2pq/QNNXqFLUiMMuiQ1wqBLUiMMuiQ1wqBLUiMMuiQ1wqBLUiMMuiQ1wqBLUiMMuiQ1wqBLUiMMuiQ1wqBLUiMMuiQ1wqBLUiMMuiQ1wqBLUiMMuiQ1wqBLUiMMuiQ1wqBLUiMMuiQ1wqBLUiMMuiQ1wqBLUiP2H+XBSbYCzwMvAy9V1ZpxDEqStHAjBb1zSlU9M4bnkSSNwCkXSWrEqFfoBdySpIC/rKoNM3dIsg5YB7Bq1aoRD7dvmV5/06SHIGkvMuoV+klV9XbgdOCiJO+YuUNVbaiqNVW1ZmpqasTDSZLmMlLQq2pbd7sTuB44fhyDkiQt3KKDnuTAJAfvvg+8G9gyroFJkhZmlDn0w4Drk+x+nqur6m/HMipJ0oItOuhV9TjwtjGORZI0At+2KEmNMOiS1AiDLkmNGMdH/5fEJD9ks/XSMyd2bEnj03pHvEKXpEYYdElqhEGXpEYYdElqhEGXpEYYdElqhEGXpEYYdElqhEGXpEbsNZ8UnSR/FZykvYFX6JLUCIMuSY0w6JLUCIMuSY0w6JLUCIMuSY0w6JLUCIMuSY0w6JLUCIMuSY0w6JLUCIMuSY0w6JLUCIMuSY0w6JLUCIMuSY0w6JLUCIMuSY0w6JLUCIMuSY0w6JLUCIMuSY0w6JLUCIMuSY0YKehJTkvynSSPJlk/rkFJkhZu0UFPsh/w58DpwLHAeUmOHdfAJEkLM8oV+vHAo1X1eFX9EPhr4KzxDEuStFD7j/DYNwBP9i0/BZwwc6ck64B13eILSb4zwjEnbSXwzKQHsRfwPA3mORpOM+cpnx3p4W8aZqdRgp5Z1tWrVlRtADaMcJxlI8nmqloz6XEsd56nwTxHw/E8LcwoUy5PAUf2Lb8R2DbacCRJizVK0O8Bjk7ys0leC/wmcON4hiVJWqhFT7lU1UtJLgb+DtgPuLKqHhrbyJanJqaOloDnaTDP0XA8TwuQqldNe0uS9kJ+UlSSGmHQJakRBn0ISbYmeTDJ/Uk2T3o8y0WSK5PsTLKlb90hSW5N8kh3u2KSY1wO5jhPlyR5untN3Z/kjEmOcTlIcmSS25M8nOShJB/u1vuaGpJBH94pVbXa98T+mI3AaTPWrQduq6qjgdu65X3dRl59ngC+0L2mVlfVzUs8puXoJeCjVXUMcCJwUffjRHxNDcmga9Gq6g7g2RmrzwI2dfc3AWcv6aCWoTnOk2aoqu1VdV93/3ngYXqfSPc1NSSDPpwCbklyb/ejDDS3w6pqO/T+gQKHTng8y9nFSR7opmScRuiTZBo4DrgbX1NDM+jDOamq3k7vJ0telOQdkx6Q9nqXA0cBq4HtwOcmO5zlI8lBwFeBj1TVc5Mez97EoA+hqrZ1tzuB6+n9pEnNbkeSwwG6250THs+yVFU7qurlqnoF+CK+pgBI8hp6Mb+qqq7rVvuaGpJBHyDJgUkO3n0feDewZf5H7dNuBNZ299cCN0xwLMvW7kB1zsHXFEkCXAE8XFWf79vka2pIflJ0gCRvpndVDr0flXB1VX1mgkNaNpJcA5xM70ec7gA+CXwNuBZYBXwXeE9V7dPfEJzjPJ1Mb7qlgK3AhbvnifdVSX4ZuBN4EHilW/1xevPovqaGYNAlqRFOuUhSIwy6JDXCoEtSIwy6JDXCoEtSIwy6JDXCoEtSI/4XfaVuDbJvIrIAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Histogram plot\n", + "\n", + "import numpy as np\n", + "import pandas\n", + "import math\n", + "import matplotlib.pyplot as plt\n", + " \n", + "# frequencies\n", + "DataSet = [14.0, 7.6, 11.2, 12.8, 12.5, 9.9, 14.9, 9.4, 16.9, 10.2, 14.9, 18.1, 7.3, 9.8, 10.9,12.2, 9.9, 2.9, 2.8, 15.4, 15.7, 9.7, 13.1, 13.2, 12.3, 11.7, 16.0, 12.4, 17.9, 12.2, 16.2, 18.7, 8.9, 11.9, 12.1, 14.6, 12.1, 4.7, 3.9, 16.9, 16.8, 11.3, 14.4, 15.7, 14.0, 13.6, 18.0, 13.6, 19.9, 13.7, 17.0, 20.5, 9.9, 12.5, 13.2, 16.1, 13.5, 6.3, 6.4, 17.6, 19.1, 12.8, 15.5, 16.3, 15.2, 14.6, 19.1, 14.4, 21.4, 15.1, 19.6, 21.7, 11.3, 15.0, 14.3, 16.8, 14.0, 6.8, 8.2, 19.9, 20.4, 14.6, 16.4, 18.7, 16.8, 15.8, 20.4, 15.8, 22.4, 16.2, 20.3, 23.4, 12.1, 15.5, 15.4, 18.4, 15.7, 10.2, 8.9, 21.0]\n", + "\n", + " \n", + "# plot title\n", + "plt.title('My histogram')\n", + " \n", + "# function to show the plot\n", + "plt.hist(DataSet)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEICAYAAABPgw/pAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXmYJFd55vuejNyX2rqqq/dNUrcWgyQQktiXsRBwbYPNxQxgwAYbe4aZYQyeGcbXM49h7Hu94GVm7Du2MDIYG+7YxgZsbIwQwgK0IAkktLXU6lZ3V1fXXpWVe0Zk5Ll/RJxYTyy1RC6R5/c8/VRXZlZmnMyM73zxfhuhlEIgEAgEw0+i3wcgEAgEgt1BGHSBQCCICcKgCwQCQUwQBl0gEAhigjDoAoFAEBOEQRcIBIKYIAy6QCAQxARh0AU9hRBynhAiE0KmHbc/SgihhJBj/TkygWD4EQZd0A+eB/AO9gsh5AUAcv07HIEgHgiDLugHnwXwHsvv7wXwZ+wXQshLCCFLhJCk5ba3EkIe5T0ZIeRNhJCnCCFVQsg8IeSXLPf9iO79lwkh9xFCXmi570ZCyPf0v/vfhJD/jxDya/p9P00I+bbjdSgh5Er9/xlCyCcIIRf1Y/0jQkhOv+81hJBLhJCPEEKWCSELhJCfsTxPjhDyO4SQC4SQTULIty1/e6t+nGVCyGOEkNds5w0WjCbCoAv6wQMAxggh1xBCJABvB/Dn7E5K6UMA1gDcZvmbn4K2EfD4FICfp5SWAPwQgG8AACHkRQDuBPDzAPYA+GMAX9aNcRrAF/XnnALwVwDeuoU1/CaAkwBuAHAlgIMA/qvl/n0AxvXb3w/gDwkhk/p9nwDwYgAv01/7PwLoEkIOAvgKgF/Tb/8lAF8ghMxs4bgEI4ww6IJ+wbz02wCcBjDvuP8z0Iw4CCFTAG4H8DmP51IAXEsIGaOUblBKv6ff/nMA/phS+iClVKWUfgZAG8Ct+r8UgN+nlCqU0r8G8FCYAyeEEP25f5FSuk4prQL4vwH8S8cxfVx/7n8AUANwihCSAPA+AB+ilM7rx3UfpbStr/cfKKX/QCntUkrvAvAwgDeFOS6BIBn8EIEgEj4L4F4Ax2GRWyz8OYCnCSFFAD8J4FuU0gWP53orgF8B8BuEkB8A+Cil9H4ARwG8lxDyby2PTQM4AIACmKf27nQXQh77DIA8gEc02w4AIAAky2PWKKUdy+8NAEUA0wCyAM5ynvcogLcRQn7UclsKwD0hj0sw4ggPXdAXKKUXoAVH3wTgbzj3zwO4H8CPA3g3vOUWUEofopS+GcBeaDLKX+p3zQH4dUrphOVfnlL6eQALAA4Si0UGcMTy/zo0ow0AIITss9y3CqAJ4DrL845TSoshlr4KoAXgCs59cwA+6zjeAqX0N0I8r0AgDLqgr7wfwOsopXWP+/8Mmr78AgB/y3sAISRNCHkXIWScUqoAqABQ9bs/CeAXCCG3EI0CIeT/IISUoG0WHQD/jhCSJIT8BICbLU/9GIDrCCE3EEKyAH6V3UEp7erP/XuEkL36cRwkhNwetGD9b+8E8LuEkAOEEIkQ8lJCSAbaVcmPEkJu12/P6gHWQ0HPKxAAwqAL+gil9Cyl9GGfh/wtNBnib32MPqB58OcJIRUAvwBde9ef++cA/AGADQDPAfhp/T4ZwE/ov29AC8waVwqU0mcBfBzA1wGcAWDLeAHwn/Tne0B/3a8DOBW0Zp1fAvA4NM1+HVqANUEpnQPwZgC/DGAFmsf+HyDOU0FIiBhwIRhkCCFnoWWwfL0Hr/VpAJcopb8S9WsJBFEgdn7BwEIIeSu04OU3+n0sAsEwILJcBAMJIeSbAK4F8G5ddxYIBAEIyUUgEAhigpBcBAKBICb0VHKZnp6mx44d6+VLCgQCwdDzyCOPrFJKA1tA9NSgHzt2DA8/7JelJhAIBAInhJBQVcxCchEIBIKYIAy6QCAQxARh0AUCgSAmCIMuEAgEMUEYdIFAIIgJwqALBAJBTBAGXSAQCGKCMOgCgWCkeej8Op5eqPT7MHYFYdAFAsFI89Ev/AC/d9ez/T6MXUEYdIFAMNIsbrbQVNTgBw4BwqALBIKRpdbuoC6rkDvx6NAsDLpAIBhZFjdbAIC2MOgCgUAw3CxXNIMuPHSBQCAYchaZQVeFQRcIBIKhZqnSBiA8dIFAIBh6lipMQxdZLgKBQDDULAkNXSAQCAYftUvxnju/i+88t+r5mEVh0AUCgWDwqbYU3PvsCh46v+75mGWmoYugqEAgEAwutXYHAFDXfzrpdimWq5qHrqgU3S7t2bFFhTDoAoEgljRkLdBZ8zDo6w0ZikqxbywLIB5eujDoAoEgljBDXmvzM1hYQPTwVA5APKpFhUEXCASxpKEbci/JxTToeQDxCIwKgy4QCAzWau1+H8KuYXroXgZdW+sR3aDHIRddGHSBQAAAeODcGm769a/j4lqj34eyKzRk3aC3+AZ9cbMFQoCDE5rkIjx0gUAQGx6bK4NSYKXW6veh7Ap1PShal/kGfbnawp5CBoVMEoAIigoEgiGh3u7g3ErN9zHnVuoAgLYy/IYNMLVzLw19cbOF2bEMMknNDMZh3cKgCwQjwJ3ffh5v/sPvgFLvXOtzq5rBj0O2BwA0Qmjo+8aySOsGXXjoAoFgKFiptVFtdXyNteGhxyA4CJjpii2liw7HWC9VWtg7lkVa0g16DDYyYdAFghGAFdl4yQ/lhoy1ugwgRh66RTuvO3LR5U4Xa3XZ7qHHYN3CoAsEIwAzbk7Dxjire+dAPLRkwC611ByB0RU9PVPT0CUA0V2ZLG628AffOIMLa/XgB+8QYdAFghGAGXIvPdkaMG3HQEsGzKsSwH1lwmaJzo6bHnpUVyaXNhr4xNeexYUepIMKgy4QjADNgBS+c6tWDz0eGrrViFcduehsluhsKWtkuUQlubBga0qK3twKgy4QjADMkPt56Icm49PTBNDWPJbVcsxdHrpu0PeNWwx6RFcmbKNgVwJRIgy6QDACBAVFz63UcfW+EoD4GPRGW8Ws3knRue6lShtpKYHJfMqUXCKKHTCDnhEGXSDoD196dB53P73U78PYNfyKbNQuxYW1Bq6YKSKTTMQobbGDvWMZ4/9WtJTFDAghkeehs+cVHrpA0Cf+4BvP4dP3ne/3YewaTaM3uNtYX9poQFa7ODFT0Ax6j7Jc/vHxBdxx79kdP09LUfHLf/s4Vh2NxRqyitmSl4feMrz3qPPQ2fMKDV0g6BMrtXZspAdKqaGh8zx0VlB0YqaITErqybrn1hv4yF89hk99+/kdP9eTlyv43IMXbbND2ZpnPDz0xYpW9g8ASSkBKUEiM+jKIHnohJDDhJB7CCFPE0KeJIR8SL99ihByFyHkjP5zMvKjFQh6gNzpotxQYmPQ250u2HQ1nkE/q6csnpguIC1FL7lQSvF/ffEJNGTVsxPiVthsyvpPxbitqaigFJjMp5GWEq4rk7WajOlixvg9ynUbQdEB8dA7AD5CKb0GwK0APkgIuRbARwHcTSm9CsDd+u8CwdCzVtcHB8fEoFvzsXlZLudW6xjPpTBVSCOTSkS+kX3p0cu499kVHJzIoS6rUHc4y7Pc0Az5ZsM06GydhbSEQkaybWQdtYvNpoKpQtq4LZ1MRPZ5twcpy4VSukAp/Z7+/yqApwEcBPBmAJ/RH/YZAG+J6iAFgl6yWmUl8PEIDlqNGdegr9RwYqYAQggySSnSjWyt1sbH/u5J3HhkAu956VHt+Dxy48PCPPOyxUNn04oKmSSK2aTtPWCPcxn0iIOiA5flQgg5BuBGAA8CmKWULgCa0Qew1+NvPkAIeZgQ8vDKysrOjlYg2CGUUrznzu/intPLno9h/cDjUgLvVzEJaBr6FTNFANCzXKJb93+/+wxq7Q5+860vxHguBcB7AEVYmIdetnjobJPIp5MopJOoWta9ofesmcybBj3KdSsd7QpkoIKihJAigC8A+PeU0krYv6OU3kEpvYlSetPMzMx2jlEg2DXqsop7n13BQ+fXPR9jeujxMOhWD9jpoVdbCparbZyYKQDQDVuElaLnVur4oYPjODlbQlEv+nFWcW4V5qEzLR0wWx0UM0kUM3YPfV036E4PParPW1ZVSAkCKUEieX4roQw6ISQFzZj/BaX0b/Sblwgh+/X79wPwdnkEggGhHtAjGzAbN8kxkVxYymIhLbmacz2vl/yfmNY99IizXORO1wgOlrK6h95W/P4kkHJD1n9yPPSMhILDoG803B56WopOQ7euOWrCZLkQAJ8C8DSl9Hctd30ZwHv1/78XwJd2//AEgt0laHAwAKxUNYMeGw9dX+tMKeOSXAyDbvXQI1x3W+0awcFiZnc89DJHQ2frZB56zeahuzX0TIRBUbnT7UlAFAjnob8cwLsBvI4Q8qj+700AfgPAbYSQMwBu038XCAaaoLFkAIwClXan6zvhZ1hgGvreUta1ka3WZP0+LYUv6kpRudM1goMlXXLx21zDYGS5cIKi+bTkMujMQ5/Ip4zbogwGyyrtiX4OAMmgB1BKvw3AS/z5F7t7OAJBtNQMg+5ttJiHDgCKSpFORq99Rgkz6DNjGTx5edN232ZDBiHAmC5/ZJJSpMFguaO6PPSdBkUrTTNtkVIKQoglbTGpSy7m571el1FIS8imJOO2dDJhG4ixm1g3sagRlaKCkSKoLzgAWwl5HFIXmaHaW8qgLqvoWvK+y00F47kUEnrALsrgIKCl8DE9ubhbHrpu0GW1i6Ye0GVrLmSSKGYk1OWOcbW1UZcxaZFbgOjTFgdJchEIYkOooGi1jaRu4Hqlo1/aaOy4wAbQ1sXS8hhsE5vRZZWGJYul3FAwkbNKD4lIg8FWPbmQ3rmG3u1SlBtm1SeTX+qyipSkNd4qZJKg1LxSWW/INv0ciDooqg5OUFQgiBO1AA293VFRaXWwfyKr/x69Qb+00cBrfvub+NqTizt+ro99+Un87J89bLutIXeQSSYMWcVZZDNuzceOuFLUatClBEExk9yRQa/JHXQpcHRPHoDFoLc7KOiSjvNKYKMu2zJcAG3doxIUFQhiQ5CHzoKEBye0YQ+9KP9/5MIGOl1qDF3YCRfXG7i0YR911pBVIzgI2NdebsiYdAQHowwGayl8pnatBSy3n7bIyv0Ng67notfbqnEF4Fy3l4ceWWGRSpGSehOHEQZdMFJYs1x4RmtVD4genNAMRC809O9fLNuObSdsNhVbPjag5WTn9eCg83V4kgsQbW9wq7dazCZ3pKGztR7bo6VdsgCp5qFrGwcz7HXDQ1dcHnqUvVyEhy4YGLpdinueWY5F+h5g9gPvUhgBNCssIHqQjWPrQfn/Y5fKtmPbCaxLZMuytkZbRSEjGQbO6aFPOErggWikpm6X6llDFoMeILk0ZdXWFtcJS1V0SS76JgbA2Mhq7Q7aHRW1dgdThZTteSJtzqV2kU5KwQ/cBYRBF/jyz2dW8DN/+hAen98MfvAQENSoiqUsHprozXxNudPFk5crrmPbLkxyqFhzshUV+XTSkB5YkFTtUlRaHaOnCqBVigLRbGS8JlWlAA/9fz90Ee/6kwddMhKDrZd56GWLh87Wa02PZAbfmeWSSUpoRzhTVARFBQPB8/rwg51W8w0KNUuuMS8X3emhR62hP71QMV5jp+l7LUVFSzfE9s6DHeTTkktyYd6tvcCGeei7LzUZo9gku4ful4d+Vv/+PbNY5d7PDPS+8SzSUsL4ncUNADMoWpc7Zh8XD8kliitRRe32rJZBGHSBL3O6ZxSHfGzA7gXzPOKVahulbNKoYox63Uxumcindq1iErBXTdZlu4fOXqfM6WkSpeRiDHpwSC5+676wrn3/nl2qce9n6xzPpTCeTxkNumqWLBdTalLNTosuDz187ODSRgP/+PhC4OMYwkMXDAxz600A8WklW293wJre8a46VmsyZkoZZHTNM2rJ5dGLZcyUMrhiprhjyaVs6TZoNe4NuaNr6HYPnXnx4zwPPQrJhWPQS9mU79XfhTXNQ392yctDl5FNJZBNSZjIpQwD35BVw5AXLeteb7g7LQJbmyv6mfvO419/7nu2OIUfIigqGBiYdtmKiYdea6tGEYqXhz5dzEQqPVh5dK6M6w9NuDoCbgcvD53JD3ldHzckF/3x9iwX7TFRZLnwRrGxLJcup6hKUbuY39AcCm+DrmAipxnniXzKnoeuB0VzKQkJomnoG5zWuYCWh249Rj8ub7ZAKbC4GS7NVFSKDij/9OQivnF6qd+H0TMopbi0ET8Pfd+4Pgme07tjtdbGTCljnIBRauibDQXnVuu48cgEihlpVyUXJqcATENPIpEgKKQlI5uGefTcLJcIeqLLnGHJpYypbzu5XG6i06WYzKfw3HKNW0m72VSMGMB4Lo1yQ0FH7aLd6RpXJIQQFHRph3VatG5igLnJhLkiW9IN+Xy5GfhYwJ17HyXCoG+B3//6Gdxx77l+H0bPKDcUw8gMWytZRe3i43/3lK0vC6AZ9L0lzaBzs1xqbczYPPTo1s308xsOT6CQTnKDtFvBasRZlku3S9FQVBT0AKH1SmBDN262wqJUjzV0n34u59e0q8PXXT2LdqeLuXV3pgvrRQNoOvpmU0FdNjstGq+jr3ujIWM8l0LSoWlvZQNf2KpBV7tIiaDo4LFSbQ2dYfPj8Uub+O1/Ou15/5wlVSysXjgonF6o4s7vPI9vPmMfe1hrdzA7pkkuzuyKlqKi2upoGnqE6XuMR+fKIAR4waHx3ZFcdCOeTiaM/7c6KigF8pYUPpbpU24qIMQcNAEg0tgBb1iyX8fFi7p+ftu1swD4sstmw/TQNclFtvVCZxQySSPLxSm3WI8pSGrqdimWq5pBvxzCoFNKtW6LIig6WChqF6s1OTaT4AHgK48v4A/vOeupE7OAKDB8HvqGMcXG9FrZpThrUuU0oMybny6mzSBZRLnJAPDYXBlXzBQxlk1pHqTMr14NS7mhICUR7B/P2oKDgOmtWjeOzYaMsWzKNhot0rRF/TuUkdweetXDQ8+mEnj5lXsAAGeW3Zku5aZseOgTuRTqsmqsPe8w6NWW5qFbr0gYRuwg4Hu+3pChqNpnxPR9P9hjhYY+YMRtig2gzZPUfvI9w2H20I0pNtaxZI45k87KTPYZz5QySEkEhESjJQOa5/boXBk3HJ4AoBkcr+rVsGw2tarPiZwZHDQHPZgpfNYslwmHcTM89AgLi6zGbSzr7aFfWKvj6FQBpWwKBydy3Fz0ckMxYgBsLcxzLmaskou27iAPPWgjswZCL28GG3TemqNEGPSQLFfZnMk4GXS9UZWHQb+00cB4TvMeh20jY575hsVDZ1JDMZO0GTYGa8w1XcyAEBLpOLb5chNrdRnX6wZ9N3qDs74sY5b0PRZsZBq6dSPbsBhDRs819IxmhHlOxYW1hlHSf9Vs0SW5tBQV7U7X1ND1tTCDzjYx7XW0GAWv0yIQPijKDPqhyRwul4OzXBT9+Xo1sUgY9JAs6Z3w4lJgA5geupcRmVtv4vBULvKxZFHAAn5WD51tXIWM1qiq5sissHrogNl5MArY5sFaDDBvcieB0Y2GjIl8ChP5tBEUZZJLzkNy8c72iE5y4QdF7Q3Ful2KC+sNHJvWSvpPzZZwbqWOjkUCY5+tmeWi/bykG/RC2i651PQ8dF8NPcig63bgxUcnMV9uctMtbWsWHvpgsqx/kHHy0Jkhr7T47UvnNho4PJlHNiUZJeXDAkvJsxbbsPUWs0luyTnT0PcUNIMe5fQeJuU4hz3sJDBabigYz6UxnksakpN1cg/76Su5ROmhq/qaJXdQ1OmhL1ZakDtdHJliHnoJsto1KkcBS+sCloeeY5KLdq4WMvYsl9VaGy2l66oSBcJXyC5utiAlCK4/NAG508WaY5iIa82c3PsoEQY9JMux1NC9JZduV8tBPzyVj3wSfBQw74156oB7EjwvKDqRTxlGNsorE2ejKl6v8q2y2VQwmU8Z6XuUUsPjz9skF1b6r3h66FE4Ll6l/4B73Rf0lEXWdOvkbBEAcMYiu5Qdw56dGnrBERRl32FnHxfAUvofwkOfKWZwWN9ogjJdeJk9USIMekhMyWW4DJsfzKDz9MuVWhtyp4tDkznNUx22oCgny4UZcDY42GlEWJUoI8qNzGnceL3Kt0pZT+GbyKWhdilq7Y7pobOgaFozbNpkJreGnpQSSCZIzyQXKUGQT0sup4KV/DMN/cq9mkF/ZtHMdClb+rgApqfOM+jWFEaehx5WclmqtDA7njUGoATlohuZPcKgDxbMQ1e71KbjDTMVHw2dFXEYksuQbWQbuodu7TpYc3rosttDny5aqyalyPLQnZ5bYYceektR0VRUTOTThoHbbCqctEXt56Jevu6UXAB9I4tg3WzNGUfVJK9B14X1BlISwQHdcObTSRyeyuHZZdNDZ60L2HpL2SQIMZ0v1uqAvQbD2QsdCJ+HvrDZwv4x06AHeeiKKoKifaHdUX0DHEsVs+IwytzkXtHVPTiAb0RYyb8RFI3QQ1e71PAkdwvmmTdk1fA2DQ9dH/bg9AqdHnqkk+ANz83ZQGp777Oz6yCgeezsfbUWFgHm58s16KlogsFeAcJSNunKQ7+wVsfhybwtR/7k3pJdcmnaJZdEgmA8l0KXahtYwvK3Vm+dl+Vipmv6v/9Lmy3sG89iLJdEIS0Fe+giKNp7KKV4zW9/E3/x3Yuej1m2zHuMQ2BUK2LR/s8LijIP/dBkPrITnPFfv/QEXvirX8O7P/UgPnv/eSPbZCeUm4qhB1snwQNmlovTeC5X20ZbAACRbmRuycXeOGurGIMbLB56pakYa8ylzCwXwCyKYTKFla3EDiothdtjhQdPcgGAIqfj4vlVM2WRcdVsCc+v1g2vt9xQjEHTDLZ2a8oiYM9J326laK3dQbXdwexYFoQQHJzMBRYXiaBoH5DVLhY2Wzi/Wufer6haNHuvns4WBx3degLxgqJzGw3MlDLIpiRkk4lIC4sWNlsoZJK4tNHEf/nSk/iXd9y/o+dTuxSbTQVHHGPJau0Okgktv7yUSUJWu8YJV2930JBV7B2zaOgRbmTMYLITnWnc25VcrAFC5rGWmwqaiopsKmF4uoaHXvbx0EPGDhS1i1f/1j347P3nQx2j3OkimSA2rxvQGnTVLE4FpRQX1xs4qgdEGVfvK0FRqVFgtNnUgrqEmM/HgrzWDBftd23dCQKMZTmSS4hgMMtB3683dzswkQssLvLaxKJCGHRocwsBeF72M4+RpVDFofOg1aDzgqJz600c1qf2ZFJSpFclcqeLK/cW8Y2PvBo/desRm7y1HSpNBZSaGRKsuKiuDz1g3ffYbYAZI2GbNhBtUNTQk/U0wYQeHNy2h26VXCwaurWNLMDx0D3khzDf8cXNFjYaCk57TBNy4tUX3Kmhr9Vl1Nodl4f+iqumQQhw11Nax9NyU7H1cgfM4qKCy0PXfp/Mp21SDCMlEeMYvWDa/OyYZtAPTgQXF8lCQ+89LHDkpV+yk52lKrF82mGm2nIHC63MbTSM9UbtoctqVy+1J9hTyKDW7oS+jOfBjNvxaeahm1Ns2IntDEIySc0quWhjyaJNW7Reihc4gdqwbFqKbJhB1zR0FXmLt8o8V9bn3pm2CLD8++B1M1luK10HuQY9a68JYBkuxxwe+nQxg5ccm8I/PbkIQG/M5Th+Lw/dMOgcuQVAqMpg5qHvs3jo63XZN/4jslz6gGnQ+R8M25mZxzpsRTY8mFeeTSVckktHl6AOGR56tHnoito1PJjSLpTAM4/8+LSW6mYbeuCYYlNzeuhjPfLQFY/5mtsMim5YxsnlUhLSUoLrobN1MyM8xjHomZDBYNbrZyHsoAePUWzFjD0oynLQnR46ALzhun04vVjF+dW6rTEXg0lI1iCo9XdeDjojqJCMVYnus3joAHy9dCG59AEmuXh5R8x7O2R46MNv0Fkg9MB4zhUUXdhsQe1SHJ7U1htlCTygfemZB8P0zapH9WoYmLd6TPfQNwyDrtoqJrXb/CSX6NYtq5pxs2di+EsuT17eNFq3Oik3tU6L+bQEQojRz6WpqEbZv/Ya2roXN1sYyyZdejagb+AhnBbWjXOh3AzVJdJLchnTpxax5zi3UoeUIDg06Tbot//QPgDasJkypxcNM/BOyaVgeOjuDYwRtJEtbrYwnksZ7ycbJO6XuiiyXPoAu2RinrqT5WobCaIZPyBeGvqBiZzLG2aelyG5pKKVXHgeut+cySCYt7p/XCuK4kkubg+9hbSUsHl8UWe5OE/yQtp7YHK1peBtf3Q/Pvblp7j3s7J/FiCc0Acme3nonS71lB/CbmTse1KXVVSawZ9X20dyodQ8/04vVnF8usB97MGJHF54aBxffXIRmw3F5aGPB0guvAwXRlpK+AdFKy3DOwdg5Mj7SU4KR1qLEmHQATSUYMllppQxduZha1TFgxnM/eNZlxFZ0C8h2SVlJimhE2FBlaJSi0H37r4Xlg0jhS+FSY85k86875WqNnrOmjERVnoAgLVaG/c+uxL8QJ12R3Wn7/kMufjio5fRkFX887MrhpGworXONY0bK/9n80QZmaSZ8cLTz9ljwnzHL1lS9kK1kvWUXOyf+TNLFVy9r+T5PLdftw/fv1hGtd1xZekwj92ZtiglCK7cW8TV+8Y8nzcoq2lRz0FnzJYykBLE30Nn3RaFh947mgFB0aWKlp8ctt/DoPHcchUPnluz3VZtaTm8M6UMqi37YIV1veHQHr1qMhMiR3cnWL1V00PfieQig+jpaZP5tCvLBTA9ONbljxl0K0xDDyMnfPq+8/jpP/1u6AIpnnHzmlpEKcXnHryITDKBWruDh86vux5Tbii2wQ2sJ7rToBNCjFa64x56ctjYwdx6A1fpJfkLIQ06Lzho7bhYa3cwt97ENfu9De8bdNkFcG9K7PeiQ0MHgK9/+NV478uOeT6v5qF7b2RODz0pJbBvLOvroRsVwcJD7x2BGnq1jdmx3syZjILf+/oZ/NJfP2a7rdbuoJRNopRNQe1SW6B3rS4jJZkFG1m9KCWqYLC865KLdinOKgeteehFV1BU++yXK22bfg5oHhul5tRyjlqVAAAgAElEQVQZP+Y3mujScFNsAN24pdwGnRcUfezSJp5eqODDt51EWkq4xuoBbM2mgTY99I5tcg9grt3bQw9OW2wpKparbdx8fAoAMB+iN7iXhs4GRVdbHSPH/NSst4d+xUzR2EicGjrz2PMOySUMWlYTf93axLI2Zi0eOgAcmMj6fuaisKgPMMmlIatcb2y50sJMKRt6TNWgsVZrY7nStq2t2mIG3e0Rb+hTXZj8EOVYMkA7WdJ6HnBpF4Ki2pgx7USfzKdRbspa50HZLyjasmW4ANjSGDqW6XEpZApfm+OhFz2Cop978AJyKQnvvOUIbjkxhW+cXnY9ZrNhl1zGcilsNrRK0UKaX2TDG8UGsKwm/8+ayS0vOjKJZIJgIcS6/dIWAW3DPb1YAQBcvd/boAOml+7MQzeyXNJuDz0IP4ltudoGpWZREeNgQHERS8nl5b5HgTDoAJq6Z652qcv7ZlWis2MZy5iq6A16vd3B737tmdA5vn6UGwrana5NK6+2FJQyKdOgOwo7rP0umCcZlYeucCSXio+Hvlxp4X/efcYzV33TMgl+Ip/Chr5+tUsNY5aSEsgkE6i3O5A7XWw0FFsOOmDpDR4iMMokh0tb8NBdQdFMEk1Fta2r0lLwd48t4MeuP4BSNoXXnNqL55ZrRg44o9y052RP5FOotjt6lgs/48NLcklLwZILC4ge3ZPH7Fg2VOqil4Zesoyhe2axilImacRvvHjriw7h2v1juMahiR+cyOPFRydx45GJwONxkvZpSmbkoI85PfQcFvWsMB5Kp9uzoiJAGHQA9uwWp4fEqkRnx7KRe6qMzYaCn/rUg/gf33gOd+lFFDuBachrNbOVbMXhoVtz0TcasqGfA0A2GW0w2Cq5ZPUcaj/J5S8evIjfuetZPHW5wr3fOgh4Ip/GZkOxdVpksPznlZo7ZREIP/SAUmoYtNCSi+rWk41ArUX6+9L359FUVLzzliMAgNddvRcAcM8zppfe7qhoyKota8Wa/eH00AMllxB1B5fWzUyoAxPZwK6DgH+lKKA5FacXqji1r2QLTvM4Nl3AP3zolbYgJaBNZvrCv3oZXnhoewbdy0N3Voky9pYyUFRqNEdz4nVVEhXCoMPU0AF36uKSUUGYMTy2KCWX5WoLb7/jfjwxvwlgZwU2gGZsWNYHm8gDMMklxZ3puO7hoUeRrkkptWW5AHrlYNtbcnlAD/A+tbDJvV8LEDLJJQVZ7Robs3PoQb3dcY2eYxgd+AI+b3YFBJgVmEG0Fb6HDtidis9/dw7X7h/DCw+NAwCOTxdwbE8e91hkF2cbWcDeo8WpobOAMK+PC6CtO6hN9KWNJtLJBGaKGewfD+5pAjDj5ta2S5bv4NOLlUC5JSqcaYt3P72EX/ni4/jG6SWc16tXnZJLkETodVUSFcKgw+GhOwKjyxYPPewg2e3SUlS8/Y8fwIW1Bu786ZdonuoODXpTUY0vqd2gKyjpo9gA+0zH9bqMPQV7X3B2fLsNCzhajVspm/T00FuKiu/PlQEAT3p46OWG2eODGS0mhRQz9iKbervDLfu3HlPQBm6VG8JKZG2OcXMa9Jai4qmFCt7wQ/tsHutrr96L+86uGY4Ia3XgTFs0ntdTQ/fOcgH8YwdzGw0cmsghkSCG7BA4X9PDuLEN5sxSFdVWB6d8UgujxNmz6LMPXMCfP3AR7/v0w/itrz6DdDLh2gSDgvheVyVRIQw6nJKLo6WqxUNPSloOb1Qe+rmVOp5freNjP3YdXnnVDIpZ77zksDDvHABWLJKLMyjKNGtF7WqjzCwGPRvpnEl3FoCfQX9srgy5owWaeJKLrMcKmLFiWRDMc7Z66CW9KRSv7B8IHwxm+vnJ2eKWNHS35MJSKbXXYzLG4Sm7nvzaU3vR7nSNKxVjWLIty8X8f95DcnEGFBnGun2uyObWm0bl9IGJLBSVYrXu31St7WHcklICuZRkpGNe45ODHiXO2MFKtY1XXjWNz7zvZrzrliP4hVedcElBzEP3mss7cJILIeROQsgyIeQJy22/SgiZJ4Q8qv97U7SHGS1NxTQeTgO6VNGqRPfogw+0Dz3ahk3TJb1jHGcIw1bZsAyxXdUNF6XUkrZo19CZcZjieOhRGHSFFV5I5olSyqQ8L2EffH4dhABvesF+PL1QcXmFTMtkGjoz7EzbtksukmHQCYHtqgQIv27mod90bAor1XaoKxleYZFzUDTz9lmFMuOWE1PIpSR8jXUddMzWBOweurPIphCooQevWxsgrh3X/vHgniYAIHdUzyZVxWwSZ1c0WeNkvwx60m3QD07k8OqTM/j1H38BPvz6U66/CeWhD5jk8mkAb+Dc/nuU0hv0f/+wu4fVWxqyarzpzsKQ5apWJcqq66JsVOUcV1XMpHasoZctHvqa7kE1ZC2TQtPQ7SXwrKhoiuOhRyO5uCvp/Dz0B59fw6nZEl52xR7UZRUXndkeunEbNzx0p+Ti1NBVrFRb2FPQrsCspEN4qoA5Cf7Gw1ogLmyAMMMpLALMz4I9zwFHxkcmKeFHr9+PL3zvEubLzWDJxaMMntc6V3t+/yuTaktBuaEYrSGYrhyUuujnrbJc9IMTOW6/8l6QsXTXVLsUa3XZFVdxMhZQ2TxwHjql9F4A7tK0GNGQVWOWpFNyYVWijIxP8cFOcRYhMElgJ7AMl5REsFrV/s++fKVs0rjcZR6xYdDzvfHQeZV0Jc4EG0B7fx65sIFbT+zBtfu1IKFTR7eW/QMWg152Sy6sDzevqAiwaslBkksLe0sZo19+GNmFV1hUdGjo8xtNJAhcmRwA8KEfPglQ4PfvetbiofOzXHIpu4f+Y9cfwH9+49XeeeiOz7vaUvCWP/wOvn9xA4DZlIs1bzO6DgakLvp5q8zTvaZPAVHAnoe+XpehdmmgQQ+qbB5ED92Lf0MI+YEuyUx6PYgQ8gFCyMOEkIdXVsL3uoiCWruDH/mf3zIySBhNWcW0/sG5PXT7yR7UYnMnyA5vtZjdPYN+fLpgBEXZl4/pf9bXMQy6bVhy9B66MyjK0yQfny+jpXRx64kpXDVbRDJBXJkuZUsbWcDUlZnkUky7s1yWOWX/QPjsnoXNJvaPZw1NOUxglFdY5AyKzpdbmB3LcvOYD07k8O6XHsUXvncJD53fQDJBbMHPdDLhGgzNODyVx8+/+grP1ECnhn52pY5H58r43bueBWDGI1h75Yl8CtlUwvfKpKN20aXeXQdZcdGpPsktgHluU0rNzKeiv0EvxiQo+r8AXAHgBgALAH7H64GU0jsopTdRSm+amZnZ5svtDhfXGnhivoJH9SwJRkPuGMOBnaXXrGqSkUlGN73H6aEXMsld0NA1w3jFTNEw6BWLh85+stvWGxwPPYSmul1YlovVaLF2qk59/IFz2oXizcf3IJuScOXeoiswWnak8KWTCRTSkuG5W41bMZNEQ1axWGl5eOjh1r242cL+8ZzRrClM6iLvRHe2I7hcbvoW2HzwtVeikE7irqeWMJFPuww008idGnoQaYfkwmIv3zqziqcuVzBnDBDXNjBCCA6M53z7uQS1kWVr92ueFTVpKQFKtU6UrDYhyENPOa5wnVg7ifaCbb0SpXSJUqpSSrsAPgng5t09rGhgXp9zN23KKibzaRDi9tA3m4pNm9zKAN2t4vRWdzLwgLHRkFHKJDE7lsVqjUku2vswxgy6ZeNY1x8zWXB76FGsm9fropRNgVJ3CumDz6/j5GzR2GCv3T+GpxYcBr3pPn4mRWSSCZtOzozISrXtynAB3IaNBysq2jeeRVJKYP+4f28PhlZYZPecs6kEEsQeFHXq51amCml84FUn9DW65ZMxj1ayQTgLqljsRUoQfPJb5zC33kAhLdkkmwMB49iCepqwegi/LotRY01T9apN4OEX8/HK7ImKbb0SIWS/5dcfB/CE12MHCZYB4dxNG4qKQkZCIW2fBN/uqGgqqk2PjFRycWroAQU2YSg3ZEwUUpgpaaPdWopq0dDdkstGQ0Ypm7R5FabkErxuSile94lv4i8evBDq+Jwyk3Zc7stYRe3ikfPruOX4HuO2aw+MYanStuXXbzS0QQ9W+YENNXB24LPq6c4cdMCioft83pWmVl7PAoOHJnOBGnpH1doQOE90NuuUXZ0sbPobdAB43yuOY7qYcWXoAKaRz3KKefxgV2Rm/YK2Sb79JYfxd49dxsMX1nF4Km+7Itg/nvX30AMm90zqss3x6QL3/l6QicCgD1xQlBDyeQD3AzhFCLlECHk/gN8ihDxOCPkBgNcC+MWIj3NXqDT5HnpD1qa6FDKSzUNnG8B43u6tRp7lon8BCukkWkp3R33IN/SqSRb0Xa21DeNtSC6WNME1R1ERYJ23GOyhr9TaOLdaxyPnN0Idn5nZY0lb5GQOPDG/ibqs4pYTU8Zt1+otVq2yS7kh2wY9AKaO7h5LZho6v6Co3+fNKiRZ6t7BiXyghu4nP7Ce6Cu1NhSVGlNxvChkkvjs+2/Gx958neu+8VwK+bS05cZQziuytZqMQlrCv37NFaAAnpivGPo5Y/9EDsvVtufm1w4w6D/3qhP47PtvcWUa9ZK0RWJbqbZRzCRDyVXFbMo7D52TzRQlgUdLKX0H5+ZPRXAskcPz0NUuhdzpIp9Kah66pciIV1KdTkqefRt2itNDZwGXelvFeH57X4pyQ8ZEPm3ECFZrMj8oqhvPjbrMnWST8WlcZIVlQMyFLIFnBt2an1zkZA5876IW92DtWgHNQweApxYqeNVJLT7j7AsOeM+ZtHrsPMkljIbuHBx8aDKHxUrLNxjmNziYDYpmm8LBCfeVgxOv3uGzY1nfCT1e8CSX6VIGhybz+NEX7scXH73sGg93cCILSrVWGUxbtyJzPmfnsTr7pPQam+RS4wfKeYz5eOjKoHnocYIF/qyZI8wjz6cl5B3tSw0P3TGWLLKgKCuDt6QtAkB1B7LLhm7gDINebaPa6oAQsyTcesnI89ABNs0lzBSbhv4zfMUkYA+K8jpAXi43UUhLNmlkIp/GwYmczUO3ts5lsN+LHvnYAF9yYVcNfgadFRUxyeXgZA6Umoaeh5+3ynqie+Wgb4V//8Mn8emf2Xp4ywiCK2bLCPad+Dlds79C70fOYFcoXl0Xe90XfDsYBl1VtZbZARkujJJPNposui1GB5NcrK1Zm3oqXi4tIZ+2l9qbJdW9CYo6dUZnocl2YAaOdU9cq2sGvZhJGrJEKZNETdZ024262yACWsAujIfODPlipRXqfXIWUwFmsNbq9SxWWlwP7hpHYNTax4URNAke4GulYaSmxU0tV5xJNkyK8Mt08TNurCc6C6wGtZH1Y6qQxpUOwxsGnuTCKqWvOzCOf/zQK/G2Fx+y/c0B/UrCK3UxSEMfBKxXJlvx0P0qm4clbbGnnF6s2LrLbReehs4aHOXTkpHGxuB56H49k3eKU082JZftGfSO2kW1pc1dtEoulZZiq8ZjQ3rrcgfrddmWg84IPThYr9ykNLgUHDCvSlKOLBfALrksV9wDKABNdjm3UjMbVXElF76Gzjz0UjZpTGVyEiQ1Xd5sYW8pa2i/hyaCi4vY+5jhvGZBdyoul5vGRKle45RcVmuyEYMBtE3U+X4Z5f8egdGgtMVBwDrvgDeS0IuhCooOAn/xwEV8+C8f3fHzmGmLpqFoWAx6Pi3ZUuV4JdWZpBTpbM0EgWEcjD7R28xFLxt9TdLIpiSUMkms6JILkzUA04AuVVqQ1a4tB52RSSZCFRbNbTSQ1INwziEMPHh6Mi/LxTnPkXHj4Ql0KfDZB84D8JJc9FiBR08TXkCUsdXBwfvGs0gQ/8lFzPPle+ja5ft8ubUj73wnWA1bt0uxXm9jT8HfuBUyWl+g5Qq/QdcwSC4seFltdVBtdbZg0FNoyKoreaHb1VpDD0ulaM9gPTd2yibHQ2cGPZdOGt6R8/FWL0nz2KLLQ09x8qS3K7k4mzZNlzJYrbWN1rnO17mwphlgXiAtG2DYGJc2mrhB72kSJjDKk1xyKQlSghgbL6UUS5U2V3J5zakZvOG6ffiNfzyNrz+1hHanG1pyYe8BTz9nOHtkO9FSC82/TycTmB3LhpJcPIOibS0o2jeDztpEKyrKTQVdCtvAEy/8WlUMg+TCjo3JXVvR0AH3eap0e7/mwX13LRQzmle802BkpWkGRdl8TXapnktpQdGGZeOoNBWMZZNGYy7Af+7gTnEWIexUctlwdE6cLqZ1g96xbVLsC8kaXfEMehgPXe1SXC438eJjk0hJJFRglJe2SAixXcaWGwrkTpdr0Akh+MRPXo8rZor4t5//PgB3n+8Jj6BoJqm1Q+ZJOcZjfOZrGkVFY3bDe2gyF2pwsJdBr+mSy04CojvBiB3og5EBGJKdH7m0ZBsWYyUobXEQYFlN83rfn61ILoD7SrofVyWD++5aYLmgzirOrcIkF7VLDc/cmuVS1FPGmLEvN2SXt8fy0HnDpHeKNizZ7aFvV3JhrXOZgdtTyGCtJnMkl93x0BcrLSgqxdGpAg5O5LYkuThPdKtBX6ryx38xipkkPvmem4xNwamhT3po6IQQXL2vhBccHPc8Pr/YQaXVQUNWuYODw2jo/Dx0yRhpFpSDHiUsdsAMehgPPZ9Oep6jQWmLgwD7PNhntxXJBXD3RO/HVcngvrsWdio9MDabitGwiBkLZ5ZLl5on3GZTsQ0NALQPh1KzB8lu4oyIs7TC7a57wyW5pD0kF+3+IA89KGtlzpgzmcOhybzR88MPmSO5APbMATPX2/sEOzZdwP94x42YyKdcmR37xrI4PJXj5mt/5d+9Ej/7yhOez+tXGcyOa78jV/zQZB6LlZZnQZjfiW7ddPrloQNm7IDNoQ3joWsxKP53xPRWt1a12kuckotfbMUKLysL6E8geCgMutmFbvvataJ20ZBVI62MGQtrULSQsRvQsmV6PINdlkUhuzg1dNbadqeSC/NQp4sZbDQUfUC0W3K5oM9N9JZcAibBr7MufHkcnsoZg4T9UDr23HvrMbH0UhZo89O6AeA1p/bi+//lNly5194PJJeW8K3/+Dqj+GgrWHtkO1kwqkTtxzU7loHapUbnSiemt8rJcrEY9DBFRVHBNvA15qGHKFDK+0guw6ShX9poghD+ecDDq+Oi13c7Sgb33bXgNLTbgaUsskATMxaGQU+ZZb5MR99sunOazaEHETSq4qQ47aSF7kZDRloy26gyL0sbbmHx0PX/z200kZKIq+cJwCQX/zWzE+HARBaHJvNYq8uBm5GsqkgmiKs83Sq5LLIxgD5aNyNoWvxW8Wv1sGBcOdg9aWaUnQPHGUaWi0fpP+PghLvislewda/VZSSI9zAMK76Si8+aBwUmBy1VW9hTSIduQ+A1KJr10U8JD92Os/H/dmAGnJUssze/qX8Bc2nJCJqx1MXNBs9DZ9VkEczX7FCX9FDM8HNc1S7Fd59fx2999TTuO7vKfb5yXesUyYyc9bLZ6qGzdD6508VUwd2GFQjXw2Zuo4F9Y1lkkpJR/h3U10RR3Wtmx8c+o6VKC1OFNNejjZpMUvLMQ1/YbIEQ96U520C9DHoYySWZIKE13Chg616tyZgqZGyJAV7k05L3mocoD53ScBITwysoyhveEjVba5TcJ3YjKGp46IbkYnroyQTRBwKYr0OpFphyGfSQQw+2A9dDz7gHRf/O157B5x68iDX9kv6eZ1bwjx96pev5nDnZ1uKQMYuHnkgQI//ZcxJ8SgrMcrm03jSm2LB5k3PrDZyc9W6JygY+O7EFRT36lfcCr9gBpRRfe3IRp2ZLrg0p6Pvql+XCnIr9E9lQRjQqWHbPaq1t+9744WvQhyAP3XpsW9lMvaYW+X3OUTG4764FZ+P/7bDpkFyYjME6LQJWaUdFXVbR6VLXIF0W1IlqYHLaYdyKjtzebpfi//3mWRyeyuMP3nkj/sPtp/D0QgXPLlVdz1du2Hu5W70Op6zCfvfKZsiGyO6Z22jgkD6hnl0JBWW6eDUvYv0xWA46bwxbL/BKU/3WmVWcXqzifa847rovyEP3z3LRPi/nYOheow1D72Kt1g6V4QIA+Yyf5OJOTx00tmvQM0kJ6WTCraGz3kzCoNthhnZnkotm0J1B0aasGiegqaF3uGX/QLge2duF56EXHJLLekObdfjjNx7Ej7zwAH7ypsOQEgRf/P686/lcHnqJL7lov2tr9/PQKfWWmtodbfIP89Cni2nkUlJgpovXzMVSNgW1S9FUtOedDQiIRkXGo4fNHfeew95SBm++4YDrvlxYg85ZN/uu96uoiGFkudTlwCpRRj6lpVwqnO9IW/9u73aMYzdJJIjxmWxV7hrLJm3N5AB+47moGRKDHpy2eGGtjg9+7nu4uMb3CJmB3j+eQ4JYJBdFNQy5odXLqtE61zkJJswUm+3CG1dVyiZt7QicjfdnShm8/MppfOnRy66RbRsNxRjuAGhpkNmUOTzDCguMemUzBPUGXyi3QKm5YRJCcGgyOBddUbvcoBE7vo2GgtVaG7N989DdeehPzG/i28+t4n2vOM7PVNmR5KL9bT9z0AGzq6jWmCuch+63kfW6L/h2Yed3UEaVE95gcxYUFR66g0wygWSC+HroX370Mr7ygwX8n390H55ZdMsPrEp0PJeyBRqbcge5FPPQ2ReyY4wyG+ulh87xVouOuaK8SSpvueEA5stNPHLRHCpBKTV6oTMIIYa35TTozGPn9UIH3C1VnbAyf2sv7MNT+cBqUb+gKAA8v1IHpVoqYD9Ic9ol33HvORQzSbzzliPcvwkjuaQlvrc6nkvhX73mCvzY9W7Pv5dkkglUmgpq7U7oAKGZ3eM+T3vddXC7sGPcqoeuxXw8CouEh26HEOIbcAGAx+c3sbeUASHA2++43zUIutJSkJYSyKYSKFkmjDQskov1SoAFUZ2FRVEOTPaSXKxXJrxp5K+/bh+yqYRNdqm1O+h0qatqkskuLsklE85D9wqMssEWVoN+aDIX2M+l7Sm5aMdzZlnbnPsmuehBURY7uLTRwFceX8A7bj5s61hpJe9j2AB/40YIwX96w9W4yieQ3AsySclIF91KUBTw9tCHwqAzyWULWS4Av+NiP9odDP47rOMMDjp5fH4Tt57Yg7/6+ZdhLJvCuz75AJYqZvvWzaaCsVzS1SfEGhTNJLUhvY22ak6Pd0ouUnSSC89DL2WTUFRqvB5vGnkxk8Trr92Hrzy+YHgFRi93hyY+U0wbf2OF/e7loWcDNrK5jQZSErF1RDw8mUe11THkKx5ekgvLwnluuQYAfQ2KdvVJ8ADw2fsvgAD4mZe7g6EMdsXnncKnDnQJPKDFDlR9zWE1dGPdnOSFXreR3S4si23LHjqnJzoLioosFw4FTvoeY7XWxsJmCy88NI4je/L43Z+8HnVZxQ8ubRqP0RptacbZennUUkwPnQ3prctmUNSZ5WKkLUaR5eKRtgjAkF1Wqm0U0pKrL8lbbjyAckPBvc+uADDL/p1BzplSBiVHwzHA9Ii9quOcQw+cXNrQmklZn/ewnvHi56Vr/Wt4aYva+35GN+hhioqiIO2IHTx5uYLrDo77luVLCa25lWejKmXwjZvVCIXV0AMll2HQ0LcZFC1yPHQRFPXBKT1YeXxeM9w/pDdZOrpHmxw+bzEkmofODHrK5qFbB8EW0knNQ28qSCaIYewZpocejYbu/PCdAWGvxvuvvGoGU4U0/vLhOQDWsn/7hvSzrzyBT7ztetffF0MadK/y/7n1hpHhwgiTuuh1Kc42mLPLNUgJgumQXuJuY7R60D/v+XLTNSCZB3MMeAyDt2oN9obV0I2gKEeWGxrJJZlAOpmw1WmEgSe59KM6dvDfYR1egQ3jCd0Tv04fGjxdTCOTTNgCcpVWx2LQ+ZILAOQzEmq6h26tsmQwDz1MUPRLj87jVb91T+gAqqJSbw89wKCnpATefetRfO2pJfzgUtnotOiUXK6YKeL26/a5/t7a74WHKbl4eegNl6FjerpfYJSX2QOY616ry9hbymx5cv1uYb0y6XYp5jfCGfRcyr/IZtAll/R2PHRH6wwrw7CJAdq6Z4qZLadXlrIp1NodQ6YCRHMuX/JpybM51w/mN3FipmBcphNCcHAyZys7r+q9zQG75GLNcgGYh67pvs4MFyDcJHjG3/9gARfXG77DDqzwPHSjeT5rVFVteV4O/uwrj2OqkMZvfvW0RXIJN8LsLTcexJ+85yZPg24YNoeHrqhd/K9vnsVqTTaujBjjuRRK2aT/sAePLJdCOgl2TvVzGry1Mni11oasdnEoRI54IePfG3zQjRv7vPN6F9IwWLPEnHgFvweNYibparYWBmZbrCqCova+OddQlP4DMHqV83hifhM3H5+y3XZo0p4yZy3jZ5ILpVTPQ7cY9IzWAlRR3VWiQLCWzOh2KR46vw5A6zN+YsZ/WC+l1DPLBTD7y6xU23jFldPc5yhlU/g3r70SH//7p9BWuiDEXRjlxXguhR++dtbzfnMjM9f9yIUN/PLfPI5nlqq4/bpZvPNmdxrfGCc/14rcUblfeNaOoNrq9C1lEbBXBrNWC4cmg5tm5dJJ31ayg27c2Pc8rHcOmJJL00NycabKDiK/+mPXbWvWgbX8n51z7U7vq2MH+1tlwSsoygKiziEFhyweOqVUG4xskVw6Xa1XC6WwSS4FvWNcuSlzjSE7EYNklGeWqkamyXm9La0f5m7uLv0HtEKolqKiEjDr8F23HsHBiRwevrCBsWwqdMe4ILKOYPBqrY13fPIBVFoK7nj3i/HH777JlREEaBukX7opT2ZisCA2b5Zor7DWHbDvU5iin3xKMhq/OdEkl8HtCw6Y6blhM1wAU3LhXUkPg8wEaJKks/1yGMyOi+ZnzjbuXlbHDv47rOM1V9QZEGUcnMhhvS6jIXfQVDSP2+qhA8CS3mc7n7Jq6Nrr8BpzAZrnmJJIoI6m6YEAABvYSURBVOTy4Lk1AFrXvAse1atWvPQ267zCVU7KopNMUsKHbzsJILzcEgZ2grM89POrdcidLv6fn3gBXs/R5Bm5dJIbJGNoGjr/C2/M/BwEyaWjGtJRmLL8QsZbImx31KGRXMLmoAPapk8IuBvZsGjo24XXcbEfgeCheYe95oo+fmkThJgBUQYLXM1vNI0qUebxMb1rWR9tZs9y0QZKbDYUzx7QmaQU6KE/+Pw6Dk7kcHK2ZAyO8EPxSHEyh3t0uFWiPN5y40Fcva+0qxNvnKX/rOhkf0ATKT9PFfAOigLmSdJXDd0SM7m00cRkPuVKGeWRSye50gN7rkE3bobksgUPnRCCfIo/tWgYZKadwOuJLqu937gHX9TSyadNw5ZOmob28flNHJ8uuCofmUHX8qO128ZyZlAUMD10m+Si67ZNReUGRYHgcWyUar3KX31qBk1Z5bYicOLloedTEgjRgqLMoAf1mZASBJ//uVuh7uLc06yj9N8YCxdgbPNpCYsV78IiP+NWGgDJxdq7R8twCTd0opCWfOdrDrr8wDay6VJ4Dx3Qr8iGuFJ0u/A8dKVDe76JDc077DVX9In5Te6QX3biXSo3jTJ/t+TCPHSrhi4ZnhUvKArocyZ9+qE/t1zDWl3Grcf34OieAuY2GrZ0Jh5eRQiJBEExrXVy41WJejFZSG+pSX8QztL/xc0WcinJ2CS98JsED7gHY1sxPfR+DnowNfRLG43QXRBzaYmbvgcMSWFRauseOsDG0I2w5GKxT7LaRSrZ23TboXmHeWO9Vqr8gCig9WJISwlc2mgYfVmslaIAsKwbdHseummgvDJEvHpkMx54XstuueXEFI7tyUNRKS4HTO7xm4rOAsIr1faWZh3uJskEQYLYJZd949nAgE9QDx6v5lyAxaD3qewfsBdUhS0qAvR1Kyo3Y2I4PPStZ7kA3oOiNcllsAPBO6GU4UgufZCZBvtbZYE3V/QJPSDKM+iJBMGBiSzmN5qu3ubM2zeCog4NneFsncsI8tAfPLeGfWNZHJnK48ge7UohKDDKekhzi2z0YQ/L1Tam8umelhIzCCG2uaKLm61QnrPfnEm1S6F2vbNcrpwp4shU3mgc1g/YsV3ebKKldEO3tc2nk1C7lBs8H4Ysl0MTeaSlBE7t21rGh9eg6LhLLtmU1hHWKrlocmJvP+eh0dB5c0VZJ76r949x/4blohseulNyqXIkl1AeuuTpoVNK8cC5dbz8yj0ghOCYXmxzYb2OV4CfPw74t9pk+diKSvs8ZzJhlP4vVlp4ybGpgL/QJReP4KDfJgYA733ZMbznpcf6OhSBGd5zK1pgO6yGzr5TTVk14g+MYchyObInj9P/7Q1brtDNp931Il41FnHCbPpneuhe07iiZGjeYWtQlLFak5FNefddODiRw6WNJjb1LBd2Cc82h2UWFLWmLVq8dS8P3S8oem61jtVaG7cc3wNAC+ilk4nwHrrH0AMmufTToDMPvdulWK60Q2WfsCk2vKwgWfUvvCCE9K3kn8G05HMrWpOwsJKLUQbv1ddkCDI+tvPe8zx0PzkxTjiHXMickZJRMzTvMC8oulptY9qn78KhyRxWa20sV1sopCXDE5T0KsRlrodu/t8ry8VPcnnwnKmfA9pJcWQqj/Or/qmLfmPJWOvglWp7y32adxPmoa83ZMhqF/tCSC45i6fqpB9DdLcKO7azuoceVnIxGlU5gvgdtYsuHew17wRezGQYBkTvBs4GXf24Khmad5gZWltQtNbGHh8Dx06+04tVl3FmfcYBu1du/f92gqLfeW4Ve0sZnJg2+5oc25PHxcBRbGygrHtzKma1qUUrtf566No4NtVMWQwxyNiY06q4dfQgyWUQYEZoU+8F5DXUwonXsId+DD3oJbxB0XLM18xwSi4iKOoDb67oak02BjbwYHrn6YWKyzgz+YUQs6wdMK8EcinJM3Dl5aErahf3PruC157aa7tqODJVwPm1um+PCNOLcb+mdjXRhtzp9lly0SbBmwY9WHLhbcQMpaO9H4Ns0AkhhiE6GFI/BywS4YgZtzyny2Q/ug72A67kIjx0Pry5oqu1tm+uNfPQ67Lq8qxYYDSXkmzGl3lWfk2tvIKiD5/fQLXdwWuv3mu7/dh0Hi2li2W9MIiHqaFzPPRM0piY028PvaWoRpVomIIfFp/gSi76EF1e3GCQYPJIWP0csAdFrZh68mBnuWyXvB4Etw4sH1XJRQuK9vZzHpp32JgmpBv0bpdivS77GvTZUgZJPbDjLIBhHnrOkYHArgS8AqKAHhTlBLu++cwyUhLBK66yZ7OwtrJ+gVHfLBdL0LevBl330JcqLUgJEupYDMmFq6H3vr3odmDGN2xREeB9ZcKu7OLqreYzSVAKtCxJA3G/KmGMWWYVA5q81stOi8AQGXRAyxGv6dV35aYCtUt9Cx+SUgL7JzQv0q2h6x66YyIR86y8AqKALrlwsja+cXoZNx+fcs3rPKoPevDruij76MnWVMq9/dbQlS4WNluYKWZcY+x4GMFBTi66YlyK9zeTJYjteOg5YyNzSC5q76fY9BJe7CDucQNGSa8XYVcn/SggG6p32Oqhs86DQeXtzKtySy7aCeccMcekHa+yf+0x7uZcc+sNnFmu4bWn9roef3BSm7V5MYSHzvsCWAtrZor97TzY6qhY0qtEw+AlPQD+m9ggsS3JxWNQtF82UxzgDYoeFQ29qF+dsLjJQAZFCSF3EkKWCSFPWG6bIoTcRQg5o/+cjPYwNaxzGler4Qw6C4x6BUVzjmkshGhzRP00dJ6H/s1nlgHApZ8DmsE6NJnz9dB9K0V1g56WEoG9U6IkoweDFzdboRtmeWV7AGaHyUE3bmnDoG8hKOolubCNOzXYa94uRosOxR4cBIDMgH/OO4Vd9Vd0HX1QC4s+DeANjts+CuBuSulVAO7Wf48c61zRVX16zExANzjDQ3cYaOax51PuoMVH33gN3nXrUc/nZGmL1qyVe55ZwdE9eVu6opUjU/lwGrpHLxdA08/7WTXJCosWN8N76L6Dg32KqQYJ1gt+Kxp6WkpAShDPFL64GrccZwMfFQ39xIx27j99uQKAP1IyagJfjVJ6L4B1x81vBvAZ/f+fAfCWXT4uLtahAeE9dCa58IOiTskFAN55yxHccHjC8zkzjuk9LUXFfWdXXemKVo7t8U9d9PPQ2bFO91E/B7SNbLOpoNrubEFy0Y6d14GvHzMXt0NGSqCQlnwD5U5Yb3DPIpuYGjfeoOi4r5lxw+EJpJMJPPj8Grpdio5Pn6Ko2O6rzVJKFwBA/+nWGXQIIR8ghDxMCHl4ZWVlmy+nUUgnjTz01VobyQQJLPRgl8nOYRVGvjnHoAdhjKHTjfD9Z9fQUrpcuYVxdE8e1VbHGEvnxGyfy09bBPobEAU0D50Z4bCSS85DSwaG50TPpiUcmsxv+eoon3G30DUklxinLQL2YPCoaOjZlIQbDk/gwefX+7bmyF+NUnoHpfQmSulNMzMzO3oum4Zea2NPMR3Yb+Lm41P4b2++Dq86aU8lZHoXz0MPIuMY9vDPz64gm0rgluPezapYy1vW+dGJrFLP+YNWyaWfWAO2YacISQmCTDLB19CHJCj64dtO4uNvvm7Lf5fnjN8blk1su/hKLgP+Oe8Gtx6fwhPzm8ZA8YELinqwRAjZDwD6z+XdOyRv7Fku/jnoDClB8O6XHnN5RKbksvUgI9M/WYOusys1nJwtubrqWfGqHGT4VZWVskkkSH8n9wB2r3L/FnqU5z2m9wQ15xoUbjg8gVtO7Nny3/GGPcQ9bbHAqTuI+yZm5ZYTe9Cl2lU70PuePdt9tS8DeK/+//cC+NLuHI4/xYzZuW8toEo0CDPLZTseujnFBtDG3B0OyIDwy/YA/IclZ1MSPv0zN+PdPoHaXmBtkRBWQwdYT3QfySWmnls+7R4Uza7q4tqci1d30B4RyQUAXnRkEimJ4FtnNHl54IKihJDPA7gfwClCyCVCyPsB/AaA2wghZwDcpv8eOdaByas1ecvTVKz4ZbkEYR2Y3O1SfdakfwaEX08TILjvw6tOzmCyD5OKrDAPfTyX8r0aceI19ECJ+Yme40kuMV8zz3ExM3viGTewkktLuP7QBL59ZhVA7z/nQL2BUvoOj7v+xS4fSyDscq6mz9fcSSvZiXwKKYlgahubAvuQ5I7Wn0VWuzg0FeShs+g/X3LRPPTBPsnZRrYVuQXwHkM3LBr6dimkJSw4Rg/GXX5ISQmkpcTISi6A1jr74QsbAGIYFN1NmIe+VGlB7nR3KLmk8KUPvgJvfdGhLf8t81TbnS7mNrTc8sNBHrqhoXsMDh6CiS7MKw8bEGV4DYr2GowdF3KcjczMconnmgH2ebsLiwb9+71bsOE2QO/lxKEZQQeYssV5vUBnOqCoKIhrD/BH1wWRTppB0RU9H/5wgIfu19ME0KomB11LZkZoq8HZfNocJmJFVln73MEOim6XQjrpGr8X99J/QLsysTousqoimSChev/EgRcfnYSUIFC7tOdFc0P1rWL52Bf1EvqdeOg7IWORXObWtUvqoCrCQA19CDx0FgzeSkAU4HuqgF4a7ZGqGQe0oKi7UjTOawbcV2RxHxDtpJBJGoPre10RPFTvMpNcLujTf/YU+mXQTcnl0kYDe0uZwCBhNimBkOHW0Nkat2rQ8ylvySWu3jmgGbZ2pwvV0hu83VFjLbcA7kHRo2bQAXMEpdDQfWA69G5JLtvFGhSd22gEyi2ANls0l5I8NfRhGBy8fzyLZILgmv1bk6r8gqJxPtELnBa6o2DcnJ+3rA7+d3u3+eFrZpFMkC3Hm3bKUGroF9bqIASYyvfHoGcsGvrcehMvORau2aRXPjag6cm59GB/6Q9N5vHEx27fUsoioKXveaUtDvpVyU6wDshmlcmjYtBXa7Lxe3sE1uzkJcemtnWu7JShepeZ5FJuKJjKp5HskzFgX856W8XCZjOUhw5oG5JXUHQYPHQA2/qC5tPayD6WpsiQOzTWBp0XN2l3ej/0oNfkM0JyAbZ3ruyUoXqX2fAJADsqKtqN4wC0CURdisAqUUY+nXRVDjI0+SGeerJXlewwBIJ3Qi7lbvcwCsbNGTMZFmclDgzVu8zmigL9y3ABzKDo2ZUagPCTbLx6mgDx/tJbpQcrw5CquRN405rivokB7uyefoxiG1WG7l0u6CdJPw06y8w4u6ylT4aVXLyCg0C89WRecBDQ1xzTqxLAS3JRY9s6l5HP2PPvR+GqZFAYund5EDx0QrSWsIuVFqQECV0KX0gn/T30mH7peS1VAc1zi+smBpiSiyvLJcZrBjTJhTXRA+L93R40hu5dNgx6n1IWGda+JmGDs7zue4w4GzdDeuD0Bo+zceN56KNg3KwSG6UUcxuNHfVdEoRnqNIWAbNadLpPRUWMdFIC0AkdEAW0CTZOo8aQY5z94BUUVdSusUHHEWbY6iOW5WIdFF1tK1iqtPHioz2ZIz/yDN3ZxLyeQfHQwwZEAU1ycZaCM+KsoTPpwT3soYuJmK4Z4M9THQUP3bqBPzG/CQB4kTDoPWHovlkswNZPDR0wDXrYgCigneDOUnAA6KhddGl8u9F5eugdGmvJhTdPdRSKbPKWQdEPn99AIS3h6n3ba4Qn2BpD980ahKAoYBrfw1PhPXTeAF3AOopt6D6OUPhJLr3uRtdLpARBNpXgFBbFPMvF8j1/5MIGbjwyOTKdFvvN0J1NRX103FS/p/fo3tdWNXSA76kC8fXQvfLQ2zFvzgW4M5vkEWjOxT7v5WobpxcrQj/vIUOnob/txYdwZCrfl7JaK6wt5lYkF2PIhUNHb7PBwTE1bnnO4GBA89BHwbg12qNVWMS+5/edXUOXQhj0HjJ0Bv3ETBEnZor9PgxkUgmkk4ktpWN5Sw/x9tClBEE6meAXFsVUZmJYi8kopSOR5cK+5986s4IEAW48MtHnIxod4v3NipB8WsLhyRwSW9AGvTzVURjRxauSVdR4N+cC9A6beqpqp0tBabynFQGmQb+00cSpfWNGp0lB9Aydhz4ofOT1p1DzSEH0gmnodY6nCsQ3KAowLdm9kcV5zYC+kenfk1HYuAHTcQGAFx8V3nkvEQZ9m5ycLW35bwqWdC4rxokeY+OWS0toKuZGRikdCT05n06i3NDGFI7CgGgAyKYSIASgFLjp6FS/D2ekiPc3a8AITFuM8YnulFw6ei5+XAPBjHzarA42PfR4py0SQpDXkxZEQLS3CA+9h3j2BWeeW5w99JTk6mkCxFtmAuytZEdFcgG0KVWFTHJLldSCnSMMeg9hRVGeGnqMT3TnWDK25rgbt7xl/F67o/2Mu+QCADOlDE7OFkFIvK/ABg1h0HtIJplAgrgLbEZBQ9fmqTaM3+NeHcvIpyXU5Y6RsgjEfxMDgD/96ZcYBUaC3iEMeg8hhHDH0I1Clksu7R5LBsR7EwO0zKYu1QKi8ohclQDAvpAzAgS7S/y/WQMGbwzdKHhu+bRk5GMD8S+mYrDgYFNWsa5LTqMguQj6g/DQe0whk7T1xwYsxi3G3mrOkeUyClclgJmT/bY/vh/PLddACMSwB0FkCIPeY3Ipyd0XfBQ89FQScqeLjtpFUkpYslziHTQ7PlOAlCAYyybx0Tdejduv24fj04V+H5YgpgiD3mMKGfcYOtNbja9xM1I2FRVjUmIkcu8B4CXHpvDsr71RtI8V9IR4n00DSJ4zKHoUPHRnC11lBHLvGcKYC3pF/M+mAaOQcTepGoUUPufAZBY3iLuHLhD0EnE29Zhcit+kCoh5UDTFOk3qVZN6D/g4b2ICQa8RZ1OPKWQkbqVoMkG21Ip32Mg7JBe5E//MHoGg14izqcfk00lut8U46+eAu4+NWfof301MIOg18bYiA0ghLUFWu4ZBA0Zjck/OYdBHpTmXQNBLxNnUY5yGDRiNOZOswIb1RB+V5lwCQS8RZ1OPYR0X7ZPgaey1ZC/JRXjoAsHusaPCIkLIeQBVACqADqX0pt04qDjD64k+Ch66Mw+9LSQXgWDX2Y1K0ddSSld34XlGgjxnDJ3S6ca6ShQwm1Q589DjfmUiEPQScTb1mELaPSh6FDz0pJRAWkpwslzivW6BoJfs9GyiAL5GCHmEEPIB3gMIIR8ghDxMCHl4ZWVlhy83/OR1Db3p6Dw4CtJDztI6WO50kSCiLF4g2E12akVeTil9EYA3AvggIeRVzgdQSu+glN5EKb1pZmZmhy83/PA89HanOxLSQ8HSQndUNjGBoJfs6IyilF7Wfy4D+FsAN+/GQcUZI22xbffQR0F6KGSSWK9rQx5GQWYSCHrNts8oQkiBEFJi/wfwegBP7NaBxZVC2j0oWh4RD/3lV07jW2dWsFZra5vYCKxZIOglOzmjZgF8mxDyGIDvAvgKpfSru3NY8SWfcactjor88M5bjkBRKf76kUuQO6OxZoGgl2w7bZFSeg7A9bt4LCNBWkpAShBHYdFoyA8nZ0u46egkPv/di7jh8MRIrFkg6CXijOoxhBDk0/apRYpKR8ZbfectR3B+rYH7zq7FPvdeIOg1o2FFBoxCOmlLW2yPiIcOAG96wX6M51JYrrZHZhMTCHqFOKP6QN7RE10LEI6Gt5pNSfiJFx0EAGRGZBMTCHqFOKP6QD5tH0M3Kho64503HwEg+rgIBLvNbvRyEWyRfDqJetvuoY+ScbtqtoRXn5zBRD7V70MRCGKFMOh9oJCWsKYX2HS7FJ0uHSkPHQD+5L03QSKjITMJBL1itKzIgJDPmB66PKJ9wVNSItYzVAWCfjBaVmRAyKdMDZ0ZdBEgFAgEO0VYkT5QyCTFbE2BQLDrCCvSB/KWNrKiL7hAINgthBXpA/m0BEWlkDtd4aELBIJdQ1iRPsDG0DVlVXjoAoFg1xBWpA8UMuaQCzYseVQqRQUCQXSIPPQ+wDz0O7/9PE7OlgAID10gEOwcYdD7wE3HJnHz8Sl86jvPg1LtNqGhCwSCnSIMeh/YP57DX/78S7Faa+Pup5fw5OUKbjwy2e/DEggEQ44w6H1kupjB219ypN+HIRAIYoK4zhcIBIKYIAy6QCAQxARh0AUCgSAmCIMuEAgEMUEYdIFAIIgJwqALBAJBTBAGXSAQCGKCMOgCgUAQEwhltee9eDFCVgBc2OafTwNY3cXDGRZGcd2juGZgNNc9imsGtr7uo5TSmaAH9dSg7wRCyMOU0pv6fRy9ZhTXPYprBkZz3aO4ZiC6dQvJRSAQCGKCMOgCgUAQE4bJoN/R7wPoE6O47lFcMzCa6x7FNQMRrXtoNHSBQCAQ+DNMHrpAIBAIfBAGXSAQCGLCUBh0QsgbCCHPEEKeI4R8tN/HEwWEkMOEkHsIIU8TQp4khHxIv32KEHIXIeSM/jN2o40IIRIh5PuEkL/Xfx+FNU8QQv6aEHJa/8xfGvd1E0J+Uf9uP0EI+TwhJBvHNRNC7iSELBNCnrDc5rlOQsh/1m3bM4SQ23fy2gNv0AkhEoA/BPBGANcCeAch5Nr+HlUkdAB8hFJ6DYBbAXxQX+dHAdxNKb0KwN3673HjQwCetvw+Cmv+7wC+Sv//9s4mJKooDMPPR5akEVRQmAYaSEFBGRFREZEtyqJp6UJw0T5aBeGqfUSr2hglFbkoKWnVokU7+yMi+rUMtSyF6IcWKfS2OGdxESfCZrzO4XvgMvd+M8P9Hu69L3PPmWGk9cAmgn+y3mZWDxwDtkraCCwA2knT+RKwf1ptRs94jbcDG+J7zsXMmxXzPtCBbcCgpHeSJoFeoJBzTyVH0pikx3H9B+ECrye49sSX9QBH8umwPJhZA3AQ6M6UU3deCuwGLgBImpT0lcS9CX95udjMqoAa4CMJOku6B3yZVi7mWQB6Jf2SNAQMEjJvVlRCoNcDI5nt0VhLFjNrBFqAAWCVpDEIoQ+szK+zsnAWOAH8ztRSd14LTAAX41BTt5nVkrC3pA/AaWAYGAO+SbpDws7TKOZZ0nyrhEC3GWrJftfSzJYAN4Djkr7n3U85MbNDwLikR3n3MsdUAVuA85JagJ+kMdRQlDhmXACagNVArZl15NvVvKCk+VYJgT4KrMlsNxBu1ZLDzBYSwvyqpL5Y/mxmdfH5OmA8r/7KwE7gsJm9Jwyl7TWzK6TtDOGcHpU0ELevEwI+Ze99wJCkCUlTQB+wg7SdsxTzLGm+VUKgPwCazazJzBYRJhD6c+6p5JiZEcZUX0g6k3mqH+iM653ArbnurVxIOimpQVIj4bjeldRBws4Akj4BI2a2LpZageek7T0MbDezmniutxLmiVJ2zlLMsx9oN7NqM2sCmoH7s96LpHm/AG3Aa+At0JV3P2Vy3EW41XoKPIlLG7CCMCv+Jj4uz7vXMvnvAW7H9eSdgc3Aw3i8bwLLUvcGTgEvgWfAZaA6RWfgGmGeYIrwCfzo3zyBrphtr4AD/7Nv/+m/4zhOIlTCkIvjOI7zD3igO47jJIIHuuM4TiJ4oDuO4ySCB7rjOE4ieKA7juMkgge64zhOIvwB45jb74hF12cAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Sequence plot\n", + "\n", + "import numpy as np\n", + "import pandas\n", + "import math\n", + "import matplotlib.pyplot as plt\n", + " \n", + "# frequencies\n", + "DataSet = [14.0, 7.6, 11.2, 12.8, 12.5, 9.9, 14.9, 9.4, 16.9, 10.2, 14.9, 18.1, 7.3, 9.8, 10.9,12.2, 9.9, 2.9, 2.8, 15.4, 15.7, 9.7, 13.1, 13.2, 12.3, 11.7, 16.0, 12.4, 17.9, 12.2, 16.2, 18.7, 8.9, 11.9, 12.1, 14.6, 12.1, 4.7, 3.9, 16.9, 16.8, 11.3, 14.4, 15.7, 14.0, 13.6, 18.0, 13.6, 19.9, 13.7, 17.0, 20.5, 9.9, 12.5, 13.2, 16.1, 13.5, 6.3, 6.4, 17.6, 19.1, 12.8, 15.5, 16.3, 15.2, 14.6, 19.1, 14.4, 21.4, 15.1, 19.6, 21.7, 11.3, 15.0, 14.3, 16.8, 14.0, 6.8, 8.2, 19.9, 20.4, 14.6, 16.4, 18.7, 16.8, 15.8, 20.4, 15.8, 22.4, 16.2, 20.3, 23.4, 12.1, 15.5, 15.4, 18.4, 15.7, 10.2, 8.9, 21.0]\n", + "\n", + " \n", + "# plot title\n", + "plt.title('My sequence')\n", + " \n", + "# function to show the plot\n", + "\n", + "plt.plot(DataSet)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], "metadata": { "kernelspec": { "display_name": "Python 3", @@ -16,10 +101,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.3" + "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 } - diff --git a/module3/exo2/exercice.ipynb b/module3/exo2/exercice.ipynb index 0bbbe371b01e359e381e43239412d77bf53fb1fb..49bf054c0efa33fcc2b9a69f9f66db126031934a 100644 --- a/module3/exo2/exercice.ipynb +++ b/module3/exo2/exercice.ipynb @@ -1,5 +1,2306 @@ { - "cells": [], + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", + "import pandas as pd\n", + "import isoweek" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "data_url = \"http://www.sentiweb.fr/datasets/incidence-PAY-3.csv\"" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
0202126364343844.09024.0106.014.0FRFrance
1202125380335587.010479.0128.016.0FRFrance
2202124348553011.06699.074.010.0FRFrance
3202123367104455.08965.0107.013.0FRFrance
4202122378795495.010263.0128.016.0FRFrance
5202121378275403.010251.0128.016.0FRFrance
62021203102787540.013016.01612.020.0FRFrance
7202119395396860.012218.01410.018.0FRFrance
82021183121359165.015105.01814.022.0FRFrance
92021173120588891.015225.01813.023.0FRFrance
1020211631650512735.020275.02519.031.0FRFrance
1120211531930615398.023214.02923.035.0FRFrance
1220211432107317099.025047.03226.038.0FRFrance
1320211332641322094.030732.04033.047.0FRFrance
1420211233065825919.035397.04639.053.0FRFrance
1520211132498820718.029258.03832.044.0FRFrance
1620211031953915951.023127.03025.035.0FRFrance
1720210931757213926.021218.02721.033.0FRFrance
1820210832088216907.024857.03226.038.0FRFrance
1920210732239318303.026483.03428.040.0FRFrance
2020210632318319134.027232.03529.041.0FRFrance
2120210532242618445.026407.03428.040.0FRFrance
2220210432580421491.030117.03932.046.0FRFrance
2320210332181017894.025726.03327.039.0FRFrance
2420210231732013906.020734.02621.031.0FRFrance
2520210132179917778.025820.03327.039.0FRFrance
2620205332122016498.025942.03225.039.0FRFrance
2720205231642812285.020571.02519.031.0FRFrance
2820205132161917370.025868.03327.039.0FRFrance
2920205031684513220.020470.02620.032.0FRFrance
.................................
188419852132609619621.032571.04735.059.0FRFrance
188519852032789620885.034907.05138.064.0FRFrance
188619851934315432821.053487.07859.097.0FRFrance
188719851834055529935.051175.07455.093.0FRFrance
188819851733405324366.043740.06244.080.0FRFrance
188919851635036236451.064273.09166.0116.0FRFrance
189019851536388145538.082224.011683.0149.0FRFrance
18911985143134545114400.0154690.0244207.0281.0FRFrance
18921985133197206176080.0218332.0357319.0395.0FRFrance
18931985123245240223304.0267176.0445405.0485.0FRFrance
18941985113276205252399.0300011.0501458.0544.0FRFrance
18951985103353231326279.0380183.0640591.0689.0FRFrance
18961985093369895341109.0398681.0670618.0722.0FRFrance
18971985083389886359529.0420243.0707652.0762.0FRFrance
18981985073471852432599.0511105.0855784.0926.0FRFrance
18991985063565825518011.0613639.01026939.01113.0FRFrance
19001985053637302592795.0681809.011551074.01236.0FRFrance
19011985043424937390794.0459080.0770708.0832.0FRFrance
19021985033213901174689.0253113.0388317.0459.0FRFrance
190319850239758680949.0114223.0177147.0207.0FRFrance
190419850138548965918.0105060.0155120.0190.0FRFrance
190519845238483060602.0109058.0154110.0198.0FRFrance
1906198451310172680242.0123210.0185146.0224.0FRFrance
19071984503123680101401.0145959.0225184.0266.0FRFrance
1908198449310107381684.0120462.0184149.0219.0FRFrance
190919844837862060634.096606.0143110.0176.0FRFrance
191019844737202954274.089784.013199.0163.0FRFrance
191119844638733067686.0106974.0159123.0195.0FRFrance
19121984453135223101414.0169032.0246184.0308.0FRFrance
191319844436842220056.0116788.012537.0213.0FRFrance
\n", + "

1914 rows × 10 columns

\n", + "
" + ], + "text/plain": [ + " week indicator inc inc_low inc_up inc100 inc100_low \\\n", + "0 202126 3 6434 3844.0 9024.0 10 6.0 \n", + "1 202125 3 8033 5587.0 10479.0 12 8.0 \n", + "2 202124 3 4855 3011.0 6699.0 7 4.0 \n", + "3 202123 3 6710 4455.0 8965.0 10 7.0 \n", + "4 202122 3 7879 5495.0 10263.0 12 8.0 \n", + "5 202121 3 7827 5403.0 10251.0 12 8.0 \n", + "6 202120 3 10278 7540.0 13016.0 16 12.0 \n", + "7 202119 3 9539 6860.0 12218.0 14 10.0 \n", + "8 202118 3 12135 9165.0 15105.0 18 14.0 \n", + "9 202117 3 12058 8891.0 15225.0 18 13.0 \n", + "10 202116 3 16505 12735.0 20275.0 25 19.0 \n", + "11 202115 3 19306 15398.0 23214.0 29 23.0 \n", + "12 202114 3 21073 17099.0 25047.0 32 26.0 \n", + "13 202113 3 26413 22094.0 30732.0 40 33.0 \n", + "14 202112 3 30658 25919.0 35397.0 46 39.0 \n", + "15 202111 3 24988 20718.0 29258.0 38 32.0 \n", + "16 202110 3 19539 15951.0 23127.0 30 25.0 \n", + "17 202109 3 17572 13926.0 21218.0 27 21.0 \n", + "18 202108 3 20882 16907.0 24857.0 32 26.0 \n", + "19 202107 3 22393 18303.0 26483.0 34 28.0 \n", + "20 202106 3 23183 19134.0 27232.0 35 29.0 \n", + "21 202105 3 22426 18445.0 26407.0 34 28.0 \n", + "22 202104 3 25804 21491.0 30117.0 39 32.0 \n", + "23 202103 3 21810 17894.0 25726.0 33 27.0 \n", + "24 202102 3 17320 13906.0 20734.0 26 21.0 \n", + "25 202101 3 21799 17778.0 25820.0 33 27.0 \n", + "26 202053 3 21220 16498.0 25942.0 32 25.0 \n", + "27 202052 3 16428 12285.0 20571.0 25 19.0 \n", + "28 202051 3 21619 17370.0 25868.0 33 27.0 \n", + "29 202050 3 16845 13220.0 20470.0 26 20.0 \n", + "... ... ... ... ... ... ... ... \n", + "1884 198521 3 26096 19621.0 32571.0 47 35.0 \n", + "1885 198520 3 27896 20885.0 34907.0 51 38.0 \n", + "1886 198519 3 43154 32821.0 53487.0 78 59.0 \n", + "1887 198518 3 40555 29935.0 51175.0 74 55.0 \n", + "1888 198517 3 34053 24366.0 43740.0 62 44.0 \n", + "1889 198516 3 50362 36451.0 64273.0 91 66.0 \n", + "1890 198515 3 63881 45538.0 82224.0 116 83.0 \n", + "1891 198514 3 134545 114400.0 154690.0 244 207.0 \n", + "1892 198513 3 197206 176080.0 218332.0 357 319.0 \n", + "1893 198512 3 245240 223304.0 267176.0 445 405.0 \n", + "1894 198511 3 276205 252399.0 300011.0 501 458.0 \n", + "1895 198510 3 353231 326279.0 380183.0 640 591.0 \n", + "1896 198509 3 369895 341109.0 398681.0 670 618.0 \n", + "1897 198508 3 389886 359529.0 420243.0 707 652.0 \n", + "1898 198507 3 471852 432599.0 511105.0 855 784.0 \n", + "1899 198506 3 565825 518011.0 613639.0 1026 939.0 \n", + "1900 198505 3 637302 592795.0 681809.0 1155 1074.0 \n", + "1901 198504 3 424937 390794.0 459080.0 770 708.0 \n", + "1902 198503 3 213901 174689.0 253113.0 388 317.0 \n", + "1903 198502 3 97586 80949.0 114223.0 177 147.0 \n", + "1904 198501 3 85489 65918.0 105060.0 155 120.0 \n", + "1905 198452 3 84830 60602.0 109058.0 154 110.0 \n", + "1906 198451 3 101726 80242.0 123210.0 185 146.0 \n", + "1907 198450 3 123680 101401.0 145959.0 225 184.0 \n", + "1908 198449 3 101073 81684.0 120462.0 184 149.0 \n", + "1909 198448 3 78620 60634.0 96606.0 143 110.0 \n", + "1910 198447 3 72029 54274.0 89784.0 131 99.0 \n", + "1911 198446 3 87330 67686.0 106974.0 159 123.0 \n", + "1912 198445 3 135223 101414.0 169032.0 246 184.0 \n", + "1913 198444 3 68422 20056.0 116788.0 125 37.0 \n", + "\n", + " inc100_up geo_insee geo_name \n", + "0 14.0 FR France \n", + "1 16.0 FR France \n", + "2 10.0 FR France \n", + "3 13.0 FR France \n", + "4 16.0 FR France \n", + "5 16.0 FR France \n", + "6 20.0 FR France \n", + "7 18.0 FR France \n", + "8 22.0 FR France \n", + "9 23.0 FR France \n", + "10 31.0 FR France \n", + "11 35.0 FR France \n", + "12 38.0 FR France \n", + "13 47.0 FR France \n", + "14 53.0 FR France \n", + "15 44.0 FR France \n", + "16 35.0 FR France \n", + "17 33.0 FR France \n", + "18 38.0 FR France \n", + "19 40.0 FR France \n", + "20 41.0 FR France \n", + "21 40.0 FR France \n", + "22 46.0 FR France \n", + "23 39.0 FR France \n", + "24 31.0 FR France \n", + "25 39.0 FR France \n", + "26 39.0 FR France \n", + "27 31.0 FR France \n", + "28 39.0 FR France \n", + "29 32.0 FR France \n", + "... ... ... ... \n", + "1884 59.0 FR France \n", + "1885 64.0 FR France \n", + "1886 97.0 FR France \n", + "1887 93.0 FR France \n", + "1888 80.0 FR France \n", + "1889 116.0 FR France \n", + "1890 149.0 FR France \n", + "1891 281.0 FR France \n", + "1892 395.0 FR France \n", + "1893 485.0 FR France \n", + "1894 544.0 FR France \n", + "1895 689.0 FR France \n", + "1896 722.0 FR France \n", + "1897 762.0 FR France \n", + "1898 926.0 FR France \n", + "1899 1113.0 FR France \n", + "1900 1236.0 FR France \n", + "1901 832.0 FR France \n", + "1902 459.0 FR France \n", + "1903 207.0 FR France \n", + "1904 190.0 FR France \n", + "1905 198.0 FR France \n", + "1906 224.0 FR France \n", + "1907 266.0 FR France \n", + "1908 219.0 FR France \n", + "1909 176.0 FR France \n", + "1910 163.0 FR France \n", + "1911 195.0 FR France \n", + "1912 308.0 FR France \n", + "1913 213.0 FR France \n", + "\n", + "[1914 rows x 10 columns]" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + " raw_data = pd.read_csv(data_url, skiprows=1)\n", + "raw_data" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
167719891930NaNNaN0NaNNaNFRFrance
\n", + "
" + ], + "text/plain": [ + " week indicator inc inc_low inc_up inc100 inc100_low inc100_up \\\n", + "1677 198919 3 0 NaN NaN 0 NaN NaN \n", + "\n", + " geo_insee geo_name \n", + "1677 FR France " + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "raw_data[raw_data.isnull().any(axis=1)]" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
0202126364343844.09024.0106.014.0FRFrance
1202125380335587.010479.0128.016.0FRFrance
2202124348553011.06699.074.010.0FRFrance
3202123367104455.08965.0107.013.0FRFrance
4202122378795495.010263.0128.016.0FRFrance
5202121378275403.010251.0128.016.0FRFrance
62021203102787540.013016.01612.020.0FRFrance
7202119395396860.012218.01410.018.0FRFrance
82021183121359165.015105.01814.022.0FRFrance
92021173120588891.015225.01813.023.0FRFrance
1020211631650512735.020275.02519.031.0FRFrance
1120211531930615398.023214.02923.035.0FRFrance
1220211432107317099.025047.03226.038.0FRFrance
1320211332641322094.030732.04033.047.0FRFrance
1420211233065825919.035397.04639.053.0FRFrance
1520211132498820718.029258.03832.044.0FRFrance
1620211031953915951.023127.03025.035.0FRFrance
1720210931757213926.021218.02721.033.0FRFrance
1820210832088216907.024857.03226.038.0FRFrance
1920210732239318303.026483.03428.040.0FRFrance
2020210632318319134.027232.03529.041.0FRFrance
2120210532242618445.026407.03428.040.0FRFrance
2220210432580421491.030117.03932.046.0FRFrance
2320210332181017894.025726.03327.039.0FRFrance
2420210231732013906.020734.02621.031.0FRFrance
2520210132179917778.025820.03327.039.0FRFrance
2620205332122016498.025942.03225.039.0FRFrance
2720205231642812285.020571.02519.031.0FRFrance
2820205132161917370.025868.03327.039.0FRFrance
2920205031684513220.020470.02620.032.0FRFrance
.................................
188419852132609619621.032571.04735.059.0FRFrance
188519852032789620885.034907.05138.064.0FRFrance
188619851934315432821.053487.07859.097.0FRFrance
188719851834055529935.051175.07455.093.0FRFrance
188819851733405324366.043740.06244.080.0FRFrance
188919851635036236451.064273.09166.0116.0FRFrance
189019851536388145538.082224.011683.0149.0FRFrance
18911985143134545114400.0154690.0244207.0281.0FRFrance
18921985133197206176080.0218332.0357319.0395.0FRFrance
18931985123245240223304.0267176.0445405.0485.0FRFrance
18941985113276205252399.0300011.0501458.0544.0FRFrance
18951985103353231326279.0380183.0640591.0689.0FRFrance
18961985093369895341109.0398681.0670618.0722.0FRFrance
18971985083389886359529.0420243.0707652.0762.0FRFrance
18981985073471852432599.0511105.0855784.0926.0FRFrance
18991985063565825518011.0613639.01026939.01113.0FRFrance
19001985053637302592795.0681809.011551074.01236.0FRFrance
19011985043424937390794.0459080.0770708.0832.0FRFrance
19021985033213901174689.0253113.0388317.0459.0FRFrance
190319850239758680949.0114223.0177147.0207.0FRFrance
190419850138548965918.0105060.0155120.0190.0FRFrance
190519845238483060602.0109058.0154110.0198.0FRFrance
1906198451310172680242.0123210.0185146.0224.0FRFrance
19071984503123680101401.0145959.0225184.0266.0FRFrance
1908198449310107381684.0120462.0184149.0219.0FRFrance
190919844837862060634.096606.0143110.0176.0FRFrance
191019844737202954274.089784.013199.0163.0FRFrance
191119844638733067686.0106974.0159123.0195.0FRFrance
19121984453135223101414.0169032.0246184.0308.0FRFrance
191319844436842220056.0116788.012537.0213.0FRFrance
\n", + "

1913 rows × 10 columns

\n", + "
" + ], + "text/plain": [ + " week indicator inc inc_low inc_up inc100 inc100_low \\\n", + "0 202126 3 6434 3844.0 9024.0 10 6.0 \n", + "1 202125 3 8033 5587.0 10479.0 12 8.0 \n", + "2 202124 3 4855 3011.0 6699.0 7 4.0 \n", + "3 202123 3 6710 4455.0 8965.0 10 7.0 \n", + "4 202122 3 7879 5495.0 10263.0 12 8.0 \n", + "5 202121 3 7827 5403.0 10251.0 12 8.0 \n", + "6 202120 3 10278 7540.0 13016.0 16 12.0 \n", + "7 202119 3 9539 6860.0 12218.0 14 10.0 \n", + "8 202118 3 12135 9165.0 15105.0 18 14.0 \n", + "9 202117 3 12058 8891.0 15225.0 18 13.0 \n", + "10 202116 3 16505 12735.0 20275.0 25 19.0 \n", + "11 202115 3 19306 15398.0 23214.0 29 23.0 \n", + "12 202114 3 21073 17099.0 25047.0 32 26.0 \n", + "13 202113 3 26413 22094.0 30732.0 40 33.0 \n", + "14 202112 3 30658 25919.0 35397.0 46 39.0 \n", + "15 202111 3 24988 20718.0 29258.0 38 32.0 \n", + "16 202110 3 19539 15951.0 23127.0 30 25.0 \n", + "17 202109 3 17572 13926.0 21218.0 27 21.0 \n", + "18 202108 3 20882 16907.0 24857.0 32 26.0 \n", + "19 202107 3 22393 18303.0 26483.0 34 28.0 \n", + "20 202106 3 23183 19134.0 27232.0 35 29.0 \n", + "21 202105 3 22426 18445.0 26407.0 34 28.0 \n", + "22 202104 3 25804 21491.0 30117.0 39 32.0 \n", + "23 202103 3 21810 17894.0 25726.0 33 27.0 \n", + "24 202102 3 17320 13906.0 20734.0 26 21.0 \n", + "25 202101 3 21799 17778.0 25820.0 33 27.0 \n", + "26 202053 3 21220 16498.0 25942.0 32 25.0 \n", + "27 202052 3 16428 12285.0 20571.0 25 19.0 \n", + "28 202051 3 21619 17370.0 25868.0 33 27.0 \n", + "29 202050 3 16845 13220.0 20470.0 26 20.0 \n", + "... ... ... ... ... ... ... ... \n", + "1884 198521 3 26096 19621.0 32571.0 47 35.0 \n", + "1885 198520 3 27896 20885.0 34907.0 51 38.0 \n", + "1886 198519 3 43154 32821.0 53487.0 78 59.0 \n", + "1887 198518 3 40555 29935.0 51175.0 74 55.0 \n", + "1888 198517 3 34053 24366.0 43740.0 62 44.0 \n", + "1889 198516 3 50362 36451.0 64273.0 91 66.0 \n", + "1890 198515 3 63881 45538.0 82224.0 116 83.0 \n", + "1891 198514 3 134545 114400.0 154690.0 244 207.0 \n", + "1892 198513 3 197206 176080.0 218332.0 357 319.0 \n", + "1893 198512 3 245240 223304.0 267176.0 445 405.0 \n", + "1894 198511 3 276205 252399.0 300011.0 501 458.0 \n", + "1895 198510 3 353231 326279.0 380183.0 640 591.0 \n", + "1896 198509 3 369895 341109.0 398681.0 670 618.0 \n", + "1897 198508 3 389886 359529.0 420243.0 707 652.0 \n", + "1898 198507 3 471852 432599.0 511105.0 855 784.0 \n", + "1899 198506 3 565825 518011.0 613639.0 1026 939.0 \n", + "1900 198505 3 637302 592795.0 681809.0 1155 1074.0 \n", + "1901 198504 3 424937 390794.0 459080.0 770 708.0 \n", + "1902 198503 3 213901 174689.0 253113.0 388 317.0 \n", + "1903 198502 3 97586 80949.0 114223.0 177 147.0 \n", + "1904 198501 3 85489 65918.0 105060.0 155 120.0 \n", + "1905 198452 3 84830 60602.0 109058.0 154 110.0 \n", + "1906 198451 3 101726 80242.0 123210.0 185 146.0 \n", + "1907 198450 3 123680 101401.0 145959.0 225 184.0 \n", + "1908 198449 3 101073 81684.0 120462.0 184 149.0 \n", + "1909 198448 3 78620 60634.0 96606.0 143 110.0 \n", + "1910 198447 3 72029 54274.0 89784.0 131 99.0 \n", + "1911 198446 3 87330 67686.0 106974.0 159 123.0 \n", + "1912 198445 3 135223 101414.0 169032.0 246 184.0 \n", + "1913 198444 3 68422 20056.0 116788.0 125 37.0 \n", + "\n", + " inc100_up geo_insee geo_name \n", + "0 14.0 FR France \n", + "1 16.0 FR France \n", + "2 10.0 FR France \n", + "3 13.0 FR France \n", + "4 16.0 FR France \n", + "5 16.0 FR France \n", + "6 20.0 FR France \n", + "7 18.0 FR France \n", + "8 22.0 FR France \n", + "9 23.0 FR France \n", + "10 31.0 FR France \n", + "11 35.0 FR France \n", + "12 38.0 FR France \n", + "13 47.0 FR France \n", + "14 53.0 FR France \n", + "15 44.0 FR France \n", + "16 35.0 FR France \n", + "17 33.0 FR France \n", + "18 38.0 FR France \n", + "19 40.0 FR France \n", + "20 41.0 FR France \n", + "21 40.0 FR France \n", + "22 46.0 FR France \n", + "23 39.0 FR France \n", + "24 31.0 FR France \n", + "25 39.0 FR France \n", + "26 39.0 FR France \n", + "27 31.0 FR France \n", + "28 39.0 FR France \n", + "29 32.0 FR France \n", + "... ... ... ... \n", + "1884 59.0 FR France \n", + "1885 64.0 FR France \n", + "1886 97.0 FR France \n", + "1887 93.0 FR France \n", + "1888 80.0 FR France \n", + "1889 116.0 FR France \n", + "1890 149.0 FR France \n", + "1891 281.0 FR France \n", + "1892 395.0 FR France \n", + "1893 485.0 FR France \n", + "1894 544.0 FR France \n", + "1895 689.0 FR France \n", + "1896 722.0 FR France \n", + "1897 762.0 FR France \n", + "1898 926.0 FR France \n", + "1899 1113.0 FR France \n", + "1900 1236.0 FR France \n", + "1901 832.0 FR France \n", + "1902 459.0 FR France \n", + "1903 207.0 FR France \n", + "1904 190.0 FR France \n", + "1905 198.0 FR France \n", + "1906 224.0 FR France \n", + "1907 266.0 FR France \n", + "1908 219.0 FR France \n", + "1909 176.0 FR France \n", + "1910 163.0 FR France \n", + "1911 195.0 FR France \n", + "1912 308.0 FR France \n", + "1913 213.0 FR France \n", + "\n", + "[1913 rows x 10 columns]" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data = raw_data.dropna().copy()\n", + "data" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "def convert_week(year_and_week_int):\n", + " year_and_week_str = str(year_and_week_int)\n", + " year = int(year_and_week_str[:4])\n", + " week = int(year_and_week_str[4:])\n", + " w = isoweek.Week(year, week)\n", + " return pd.Period(w.day(0), 'W')\n", + "\n", + "data['period'] = [convert_week(yw) for yw in data['week']]" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "sorted_data = data.set_index('period').sort_index()" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1989-05-01/1989-05-07 1989-05-15/1989-05-21\n" + ] + } + ], + "source": [ + "periods = sorted_data.index\n", + "for p1, p2 in zip(periods[:-1], periods[1:]):\n", + " delta = p2.to_timestamp() - p1.end_time\n", + " if delta > pd.Timedelta('1s'):\n", + " print(p1, p2)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEKCAYAAAA1qaOTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztnXncHEWd/z/fOZ4zeZ7cIQch4SZcAhGi4pnl8FhhRRRdNasoqz9+67GHgvtTPJYV3AMXFRAFAS9OFVwQjBxyBUJCuBIICbmvJ0/y5EmePPfM1O+Prurpnqnq6pnpmenJ832/XvBMuquqq6ur61vfo6pJCAGGYRiGqZREvSvAMAzDHBywQGEYhmEigQUKwzAMEwksUBiGYZhIYIHCMAzDRAILFIZhGCYSWKAwDMMwkcAChWEYhokEFigMwzBMJKTqXYFaMmXKFDF37tx6V4NhGKahWLFixW4hxFRbujElUObOnYvly5fXuxoMwzANBRFtCpOOTV4MwzBMJLBAYRiGYSKBBQrDMAwTCSxQGIZhmEhggcIwDMNEglWgENHNRLSLiF7xHJtEREuIaK38O9Fz7nIiWkdEa4joHM/x04joZXnuWiIiebyZiO6Qx58lormePIvlNdYS0WLP8Xky7VqZt6nypmAYhmEqIYyGcguAcwuOXQbgYSHEUQAelv8GEc0HcBGA42We64goKfNcD+ASAEfJ/1SZFwPYK4Q4EsA1AK6WZU0CcAWAMwCcDuAKj+C6GsA18vp7ZRkMwzBMHbEKFCHE4wB6Cg6fB+BW+ftWAOd7jt8uhBgWQmwAsA7A6UQ0A0CHEGKpcL45fFtBHlXW3QAWSe3lHABLhBA9Qoi9AJYAOFeee49MW3j9g5qu/UNYsrqr3tVgGIbRUq4PZboQYgcAyL/T5PFZALZ40m2Vx2bJ34XHfXmEEBkA+wBMDihrMoBembawrIOaD9/wND5323I4MplhGCZeRO2UJ80xEXC8nDxBZRVXiOgSIlpORMu7u7tNyRqCLT2DAACWJwzDxJFyBUqXNGNB/t0lj28FcKgn3WwA2+Xx2ZrjvjxElALQCcfEZiprN4AJMm1hWUUIIW4UQiwQQiyYOtW6FU1DwPKEYZg4Uq5AuQ+AirpaDOBez/GLZOTWPDjO92XSLNZHRAulD+RTBXlUWR8G8Ij0szwE4Gwimiid8WcDeEiee1SmLbz+mCDHKgrDMDHEujkkEf0GwLsATCGirXAir64CcCcRXQxgM4ALAUAIsYqI7gSwGkAGwKVCiKws6gtwIsZaAfxR/gcANwH4BRGtg6OZXCTL6iGi7wJ4Tqb7jhBCBQd8DcDtRPRvAFbKMsYMLFAYhokjVoEihPiY4dQiQ/orAVypOb4cwAma40OQAklz7mYAN2uOr4cTSjwmYXnCMEwc4ZXyDQgLFIZh4ggLlAZEsFueYZgYwgKlAcmxPGEYJoawQGlA2CnPMEwcYYHSgLA8YRgmjrBAaUB46xWGYeIIC5QGhOUJwzBxhAVKA8I+FIZh4ggLlAaEo7wYhokjLFAaEF6HwjBMHGGB0oCwxYthmDjCAqUBYYHCMEwcYYHSgLBTnmGYOMICpQFhgcIwTBxhgdKAxFme7OobwtzL7scfX95R76owDFNjWKA0IHEWKGt29gEAfvnspjrXhGGYWsMCpQGJs8mLQPWuAsMwdYIFSgMSX3HCMMxYhgVKAxJnDYVhmLELC5QGhHcbZhgmjrBAYaoCyzyGGXuwQGlA4jxYE/vkGWbMwgKlAYmxPGEYZgzDAoWpCnHWohiGqQ4sUBqQOA/WbPFimLELCxSGYRgmEligNCCN8IGtRqgjwzDRwgKlAYmzyYttXgwzdmGBwjAMw0QCC5QGxKShDI1mcdK3HsKDr9R/6/hYa1EMw1SFigQKEX2FiFYR0StE9BsiaiGiSUS0hIjWyr8TPekvJ6J1RLSGiM7xHD+NiF6W564lcpbHEVEzEd0hjz9LRHM9eRbLa6wlosWV3MfBQtf+IewfyuDfH3itbnXg3YYZZuxStkAholkAvghggRDiBABJABcBuAzAw0KIowA8LP8NIpovzx8P4FwA1xFRUhZ3PYBLABwl/ztXHr8YwF4hxJEArgFwtSxrEoArAJwB4HQAV3gF18GOzeEdB4d4/WvAMEytqdTklQLQSkQpAG0AtgM4D8Ct8vytAM6Xv88DcLsQYlgIsQHAOgCnE9EMAB1CiKXC2fXwtoI8qqy7ASyS2ss5AJYIIXqEEHsBLEFeCB30mMxJrB0wDFNPyhYoQohtAP4TwGYAOwDsE0L8CcB0IcQOmWYHgGkyyywAWzxFbJXHZsnfhcd9eYQQGQD7AEwOKIsB+y8YhqkPlZi8JsLRIOYBmAmgnYg+EZRFc0wEHC83T2E9LyGi5US0vLu7O6B6jQ9vzMgwTD2pxOT1VwA2CCG6hRCjAH4L4K0AuqQZC/LvLpl+K4BDPflnwzGRbZW/C4/78kizWieAnoCyihBC3CiEWCCEWDB16tQyb5UJCws1hhm7VCJQNgNYSERt0q+xCMCrAO4DoKKuFgO4V/6+D8BFMnJrHhzn+zJpFusjooWynE8V5FFlfRjAI9LP8hCAs4lootSUzpbHxgRs0mIYJo6kys0ohHiWiO4G8DyADICVAG4EMA7AnUR0MRyhc6FMv4qI7gSwWqa/VAiRlcV9AcAtAFoB/FH+BwA3AfgFEa2Do5lcJMvqIaLvAnhOpvuOEKKn3HtpNOIQxWWlAarIMEy0lC1QAEAIcQWc8F0vw3C0FV36KwFcqTm+HMAJmuNDkAJJc+5mADeXWOUxQT01GLZ4MczYhVfKNyCNYPJqCC2KYZhIYYHSgJiG6jg4xCkOlWAYpi6wQGEYhmEigQVKAyIsNi/b+VoQgyowDFNjWKAcRMTB3BRFFbr2D+GjP1mKnv6RygtjGKZmsEBpQEyT/zhoJlHwsyfW49kNPbhr+RZ7YoZhYgMLlAbEJDfiJE+iqEoMFC6GYUqABQoTKSwDGGbswgKlIdHP/5WGUk9FJUZKEsMwNYYFykFInExf5dDo9WeYsQoLlAbE6EOJgX7AJi+GGbuwQGlAzFFeNa1GIJVEnOU/hsPiiWEaCRYoBxFxkCdRRmZxlBfDNBYsUBoQc9iwc6Kepq84aUkMw9QWFigHEXEayyupCwslhmlMWKA0ICb/RBwG4hhUgWGYOsECpQExD9r1H87jINQYhqkPLFAOQuIwqMehDgzD1BYWKA2IbS+vuq6Uj0CSxGE9DcMwpcMCpQExDbhxGIajqIOSSXHYjp9hmPCwQDmIiJOZKZLdhiMog2GY2sECpRGJ8dYrcRJqDMPUFhYoBxGuD4UHdYZh6gALlAYkznt5xUFLYhimPrBAaUDivNtwHKrAMEx9YIFyUBKDUT0CdSkoyGtX3xBGMrmKr8EwTHSwQCmBV7btw5LVXfWuhjlsOA5yJIoyQtzI6Vc+jC/dvjKCqzEMExWpelegkfjAD58EAGy86v11rkkw9RQsUV7bpKAogfPHV3ZGdzGGYSqGNZQGxLZSPg5Usyq5GN0nwzB5WKA0IMYorxj4TqKog62EXJwkJ8MwLixQDiLiNM5GURfT1issUBgmnlQkUIhoAhHdTUSvEdGrRPQWIppEREuIaK38O9GT/nIiWkdEa4joHM/x04joZXnuWpIjCRE1E9Ed8vizRDTXk2exvMZaIlpcyX00GsbvoRT8rQe1GOvze31V/1oMw4SnUg3lfwA8KIQ4FsDJAF4FcBmAh4UQRwF4WP4bRDQfwEUAjgdwLoDriCgpy7kewCUAjpL/nSuPXwxgrxDiSADXALhaljUJwBUAzgBwOoArvILrYMe8sLH+M/da1EBpKCxPGCZelC1QiKgDwDsA3AQAQogRIUQvgPMA3CqT3QrgfPn7PAC3CyGGhRAbAKwDcDoRzQDQIYRYKpwR8baCPKqsuwEsktrLOQCWCCF6hBB7ASxBXgiNWeovTvJU4kuxaSA59zyLFIaJE5VoKIcD6AbwcyJaSUQ/I6J2ANOFEDsAQP6dJtPPArDFk3+rPDZL/i487ssjhMgA2AdgckBZYwPLWF1PTSXK76GYxAVrKAwTTyoRKCkApwK4XghxCoB+SPOWAd37LwKOl5vHf1GiS4hoOREt7+7uDqhe4xMDi1dNtCQhF8izgsIw8aISgbIVwFYhxLPy33fDETBd0owF+XeXJ/2hnvyzAWyXx2drjvvyEFEKQCeAnoCyihBC3CiEWCCEWDB16tQybjN+mM1JwvP/g5e8hsIShWHiRNkCRQixE8AWIjpGHloEYDWA+wCoqKvFAO6Vv+8DcJGM3JoHx/m+TJrF+ohoofSPfKogjyrrwwAekX6WhwCcTUQTpTP+bHlsTBDrhY01qAOHDTNMPKl065V/APArImoCsB7Ap+EIqTuJ6GIAmwFcCABCiFVEdCccoZMBcKkQIivL+QKAWwC0Avij/A9wHP6/IKJ1cDSTi2RZPUT0XQDPyXTfEUL0VHgvoRFCxNIhHIdhNpKFjZYickEGUYZh6kZFAkUI8QKABZpTiwzprwRwpeb4cgAnaI4PQQokzbmbAdxcSn2jIieAZB0Hs1hrKJJI6mIQ2oKd8gwTS3ilfBlkY7qZVCzWoURQBVsR9b/LeHH/Szsw97L7sfvAcL2rwoxxWKCUQb1t+MEu+XhoKpFsvWI47jrlWUUBANy6dCMAYG3XgbrWg2FYoJRBvTUUmyZS33Uo1b+Gu7DxIDd6CSHw4Cs7kbP0t4O7FZhGggVKGWTjoAJoiEO1ovnAVvB52wB7sHDXiq34/C9X4FfLNodKH4fdppmxDQuUMqj3gBbn7esVVfTJj5nNIXftHwIA7Nw3GJguDu2wY98gXtzSW+9qMHWGBUoZ1NvkZUT4/tSnCjVQk2q19cq9L2zDLU9tqPJVzKjQ9NBNWscH/7arHsF5P36qfhVgYgF/ArgM6m3yMoYN17YaWmq623CVp+Zfuv0FAMDfvW1eVa9jwzZ/iYMvKa5zLKa2sIZSBrlcvWtg+B5KjF7qamoqY2XwUvIyrClzjDRLVfnhw2sx97L7kcnW/SVvSFiglEGm/hJFSxx8KNHIEdteXdGZvHbuG8JIJp7P071/m4ZSfwXloOHGJ9YDAPqHs5aUjA4WKGVQb3kS75Xy0W29YvseSqWMZHJY+L2H8c93vRhNgRGj7j/suqd4PP/Gpr3J8QL0j2TqXJPGhAVKGdTdh1JxgsYmquYfyjiz0Edf22VJWV8SFhWENZToaGtyPiLbP8wCpRxYoJRBXKO8xsw35SO6w1Fp6krVc2O2AFzNJGT14mDybHSSCaexMzF9x+MOC5QyqPvWK0aT18HxEthuI6rbVINGKhn8GlQygdjSM4DXdu4vK2+CwvlQmOip9zveqLBAKYO4ayj1JMo6GF3yEfpQAKDJIlBGK4j4efv3H8W5P3iirLyJEn0olbBiUw/WdvVV/Tpxx5XhcXiZGhBeh1IG9RYoRtNGDF6C2uzlVZopyMRwSJPXSDaHlnSysouVgYrysrVpFOtQLrh+KQBg41Xvr7isgwHWUMqDNZQyCOps1z22Dpv29Ff1+uaFjfITwDF4GSqpQmhfQIW3qTSUtEVDyWTr056lWrxi8NjrSnffME781kN4Zdu+sstQwjmmRojYwwKlDEwaSnffML7/4Bp88qZlNa6RQxwGlFo4hqO6zwEZGqoie0xUYvKqBLUTgG22zFFeDk+u60bfUAY/k2tJKoE1lPJggVIGts5W7ZBD4+aQsdjLq/plRCW0+kecsOFWizmrbgJF/g3bpmN9CGxJOc9xaLTy5xUHLb8RYYFSBqbxpd5BOXF6BSL5trzheFTflB+Qgr/VoqHUe2xp9NnySCZXE4d/c9oZztT6onLILyaNokZjDxYoZWAyeakXv9oDgP0DW1W9fPC1oyyryuHRoypsOBH8GtRrQHfXFYXVUGIqeP7xzhdw1jWPV11zVxrK/sHRisuq9ycqGhUWKGVgGmDUliz16oxqQInDArdovi1v2ASz8qKdckJ+SrheY4sIOUGp9q7LlfK/L+0AUP3ghmZputzcM1BxWSxPyoMFShmYNBS1aeRYNnlFOUuu9p5lYTWPepucwg5ucXj+QVR/yyIV5RhBSTHV9uIOC5QSUAvNTC+G0lCq3RdtA22jvwv26kdzg3E3JeUFmUVDUT9i8NyD2qra67eifEysoZQHC5QSUFthZA2qezakiaJ6xOctqKQmtmi1qF52VY7NYFSvx1nqBKHemhQQXNdqC+acpd+EIWyoNqOHBUoJuALF0NnUDKzqGorlA1uNHjZsKyxqk1dsfSju9cOtQ4nDrDqoCtU2eUUpsFiglAcLlBJwX1zDm6sESrV9pPH+BHCEPhTT8Yhe9rDlRDG4lFPnRtRQgupQbYHnaiiRPK+KixiTsEApgbAaSr1ibkKa3BuGagvOvMkr+IlFI1DKyINwE5T8Asj6P/igKlQ7+jGKyYxqyzgI50aEBUoJuE55yzqUaodx1moleTlUM1xY4bZzhdcJa/KK4p7KGaBKzRIHk1ewhlIbp3xF/jv5Nw5t2YiwQCmBRCLYYVczk5fxeG18OEFEeW3jjDsiX5GroVh9KJXfVCUDlE2DahRHcmNFecW7LeMKC5QScE1ehq1XMnExecWAiswvFoER1W2G96FUfq3yNJTSJihxmFXX14cSnckrDubDRqRigUJESSJaSUT/K/89iYiWENFa+XeiJ+3lRLSOiNYQ0Tme46cR0cvy3LUkp1xE1ExEd8jjzxLRXE+exfIaa4locaX3EYaExSlfq1mNqbPHwYVSgyCvyARnLZ3d5RQRVoOK0yAY6EOpethwdBp6HIRzIxKFhvIlAK96/n0ZgIeFEEcBeFj+G0Q0H8BFAI4HcC6A64hI7cp3PYBLABwl/ztXHr8YwF4hxJEArgFwtSxrEoArAJwB4HQAV3gFV7UI7ZSv01YYcRhQFFHYsc3no7nPvC8m+HlFEjVURp1L96HU//nX1Yei/kZioqx/WzYiFQkUIpoN4P0AfuY5fB6AW+XvWwGc7zl+uxBiWAixAcA6AKcT0QwAHUKIpcLpCbcV5FFl3Q1gkdRezgGwRAjRI4TYC2AJ8kKoapBr8goWKIk6+VDc83V8GSLdesVwPOyCRBthZ6HRmLxKz5MXQuHuNFefXfZ9BN1m9X0owloHG/wJ4MqoVEP5AYCvAvB25elCiB0AIP9Ok8dnAdjiSbdVHpslfxce9+URQmQA7AMwOaCsqqI+7Gd3ytdHoqhq5QTw7Po91a2DgWhNXgbTXtTrUGxO+QgGwtpEedV/FBQaoVarQZqd8vWnbIFCRB8AsEsIsSJsFs0xEXC83Dz+ixJdQkTLiWh5d3d3qIqaSNg0lIjCWcvFa1b56I3P1KkWkiq+j1EVHTb8OIqJtW6gteYJma7e3+HxEmTaq7aG4hZfSURdDDSU4UwW/73kdQyNlv9dl3pRiYbyNgAfJKKNAG4H8B4i+iWALmnGgvy7S6bfCuBQT/7ZALbL47M1x315iCgFoBNAT0BZRQghbhRCLBBCLJg6dWp5dyqxCZRcjTSUOGxPbyTSsOHqXiP0Lr71ssmXuFI1Dj40XZvafI9RcbBsvfKrZzbj2ofX4vrH3qhbHcqlbIEihLhcCDFbCDEXjrP9ESHEJwDcB0BFXS0GcK/8fR+Ai2Tk1jw4zvdl0izWR0QLpX/kUwV5VFkfltcQAB4CcDYRTZTO+LPlsaqS3zNJ39kyNVqHYiIG40k0X2q03EhUL3vYhah1CxsOnVKtQyn5EpGje3a1ikKLYnPIwrLqgfriZCVfnqwXqSqUeRWAO4noYgCbAVwIAEKIVUR0J4DVADIALhVCqBb7AoBbALQC+KP8DwBuAvALIloHRzO5SJbVQ0TfBfCcTPcdIURPFe7Fh5ppZSwaSrWpZjjtzn1DeHXHfrz72Gn2xAFEEeVl2wSzUmoaNlxOHuH/a6Oas+qh0Sz6hjKYOr7ZUgfzOdP6reio/P7JFc71l8626MM4EolAEUI8BuAx+XsPgEWGdFcCuFJzfDmAEzTHhyAFkubczQBuLrfO5WBbh1IrH0o1LUEXXP80tvUOYuNV7y8rf7Qr5Q3HIys/rA+lPiavsHlqsdvwp25ehmUbeqz9QquhWDT7qIjy/uNgPmxEeKV8CaitV0wzrXzYcOOuQ9nWOwgAyFR/OmnFKDgjM3mFrEcUTvmywoZLy1vNQXDZhnAGAF0N3Fl/1Z3yMmy4zlvlVEojyzIWKGUwbLBtHgzb16u6j5QpUKING9Yfj+4DW+GeV700lLBZ3B1yY+BE0d5njb7XEsVAXCtt6mCFBUopyD7WP5zRnq7V9vVGx3cE70BaLrYZyZQpUGoym288DaWShY1hAx1iIE+0baXeh2pHebkaSiRlRVDIGIQFSgmoPtY/otdQarV9vYkoIqyaKhQobl2quF1JdE55pyDb4BGJhlKeRHH+WLLGaVatq0Oc6mcjTvui1StatBJYoJSA6mSDhgVHpuiv6OtR2vFSSCedXjxcroYS5Rcbq+yUD2tzr/cngEOnr/8YWNcPbEW6OWQMVJQGlCcsUEpBdbFsNjhsuBFnFoqkG3hQ3gsVicmrBtcAwq9bqNfCxrB7U1Ua6lrK/dnS6k1etVknE+3WK9GVNZZggVICqsPadxuucj1KPF4KFNGq5ijqYhq8ojIt1lJDKcviVWKecutZynVs19BpqOox1WrrlYq05Ab5WFlcYYFSAqqjmvfycv5WPWzYuGli5UVXakOupiCJ8hrOdfx/TdRvHYrzt9o+lFJy2a6hezVq5ZeIdKfrOsqTOPhvyoUFSgmo52zylWTl/uFx2ByyXPKzyXIrUQMfSlTrUHLhbO7RfGCrDJNXic+z7ElACflsbRFUVvX38vL/rYQ4aCiNaDpngVICrsnL8OEJNQhXf3NIw/FINJRoVP5a+FIqJayJpG5hwyHrV+lK+VLy2b65Erg5ZI2c8pXgrumpvzxpSFiglEHG5JSPaOuV/uEM9g+NlpwvincgUaG9O8r30LywMfxVtvQM4HO3LdduBa7KqUnYcA1mvOWbvKLTULQ9oFbfQ4mwrHpqKDFQjsqGBUoJKHXe9sXGSiXKGf/+ME761p8C6lHqifBQRE7JSsxvUUZ5ffsPq7FkdRcef734WzhuFJVVoIS/nomytl7JqyihqIVT3ma2Ct4csjYaSiVXyX8Ppf6jeiNuDskCpQRUFzP5UKJah3LAsBLfrYfJKR/BtSs1n0TyHlpMPaVcQ22T05xOFp3L36NtkKyPhiIK/hrLlmao8n0oJaS1mLyCVsoHtcFzG3tw6neXYMPu/vCVCXHtcmGTV3mwQCkB1WFNL0Yub5RvWCoN8axFpE0pV1ALNJtTxV09rMkrklX/FfhQrOmg7qO8enrzVfotGv1KebvW+8DLO9DTP4In1pb/VdVSNbogguq6YXc/jvvGg9i0p3zhF0QDDx8sUEpBvbgmH0pW2F/s1dv3o6d/pMJ6GI5H6JSvp8qf38PKcL6Euo0ECpRw5dXvA1vKJBeufmVrld7fljLsJi+dQFHnAuogz1ViFovWh2I+99vnt2JwNIvfr9R+JDaQJ9Z24yM/WRrqPjnK6yDH1unV8aC+8r5rn8C5P3g86qoBiEYIxMEp795GBOttRmXondoBwF+OWXB52zIak1f18lQaLuu9V6t5rayV8g5BfarSHRoATxh4Bb0wzCSjknH+y7e/gGUberBvsPSgm0aABUoJ5H0oprDhcKaHXX3DldUjAlOQibx5Ijjd0jf2oFtzH5GEC9tMUCXcqXomujKD9n7yHqubhhLaghNOkzGR892rRQMpx4dCdq03lQj+GqrioVU7sV1+s6fo2sFVC0V+w9AwrV76FRtpo8xyYIFSAmE1lHqFR0Zi8grZ4T/202fwoeufMp6vpC52k1f4soKEfN5UpDsX3q8QhvKKCJcp6D5KvUylizyDBtkg7SMRUkP5+1+swN9cp+93YXcWCCLvJw1I5ArIcq5gz9vIsoYFSklIH4rpm/KWsOJqE4mGIv8GDRxqgN3SUzxTjNLkFYUmFuTXCrpH36w94Hn+4M+v46YnN1jrUdZK+ZADZNht+E1426Ecp7v/fPGxMIsFlYbyy2c2mcuWBXTt12v4UW7iGXSflZi8EiHCkpVQbkAXSjTflB8ruLMXS9hwtdVZY9hwJD4U+0wx2LkawWze/RssuK3O6pzA+u5+mUdznYAB26ehBFzjB39eCwC4+Mx5wXUpo1nCNmWlGkopuewmr+LSwmi9LTKse8e+IWMaW0BAFK9dFFpOEKotavWpi1rDGkoJ5H0ohoHO4pSPw2IpG/mFXeY0Jh+Sl8rMDsGmw1BmCQC3Lt3o/tZNAoJmo7HwoVhMf/l08m9MNRQ11w6apKgPux0+td2Yxqb5R7Gw0dX2Aq4VVP5wJosbH3/D+IE6CtEWjQwLlBIIu1LeJDgaoROF6fDVvg+7U97BNrht2jPg/tZVOWg2GrUPpSKnvHVmXplm7M2mK8L7vO0bPAZpKOZcqtwgM4/df1M5YSYrStjoIgd/+vh6/PsDr+GuFVu0eRMhNJQGGCaMsEApAZuGYluHUupuq2bTlil9ScVrCWOeqLa6Lgr+FicIN4CmPC+8ri3zM1rzuTDXCUM5RYTNkh8EzTnue3E7+gz7w3nvX1fGqGfr6XLW7ITxy7mTsYCybf0urCk0iDCLRNV7rBMoyq9oqqr7vaEALb9Sn1g9YYFSAmGjvEznQ1iKtOWFJZrt6+2rmk0LO4GowoYtJi/519Y83hde70Mxv7j+UNrg64ShnHYJa8Kxrfhf330AX/zNSvzjnS9a66ZvCxF83nNQd5/uJCXIjGR55rb8trxhCbMOJRugoahtkzSnfAQJx7DLD+IIC5QSUJ3Mvg5Fn79UDcWUPoo9rkyEicgJ8qGUItR6B0Zw6neX4IUtvQVlBJeV/45J8LX8AkWjhajbCBA2prylUlYZIbO4E50AQQ8Aa7v6AvObruntC7pJTjZkWwX1/zDf37FpKGE/mRxEmO14XIGiWcqutDnTZDAhR9ygSZlqp2p/P6YasEApAfV4jRpISB9LWEzjdhSpNNk9AAAgAElEQVThtCZUh6/UhxLG7PDM+h709I/gx4+uK8irfhjKDlmPlE2gBJq8NPWpgEo2h7Q9WFX2qKHDpKXD27TpqM28521n2/lADSPwnH1WHlZDqeh5CX99dARHQMpJp0FghIqirNF6tmrAAqUULCYv1Yls35wPS+k+l5KSawnzga0wJq8wVTFFlNnyho3ySlgFiv76heltA5kJ35YmAUXcs2IrVm3fF5g/8Dry76hpjzlZf9N5i4Li19Y0MssvUIpLcJ9XiIE4cCJTVoRZaZSioZS6WBbIWwDCOOUbIYinEF6HUgLq8eaE83IkCgylUWsopvSmUqL8BHC5Tnl1ppJFWTbTRdi79GkomoEwKDrK5jcIg983YS7kn+5yfBsbr3q/P7/7N5ypZ9QQquoOkpZwd1M9bVuzePuD7gph1smEEShBExnn2pX3/zA+FHW/OgGn6m96R8JoKOxDGSN4O1lQZ7KZxMJS6sw4migv1eHNaYIiVEq5R08Mlu+4sLzUYWfuyUS+ewebvHTXKE5XKt5c1VzYqNKNGh5aGHNS0DVtJjGbQHLD7UP4UMKYk8zni69ZKmGivIJMUrYxQHX6TMALFvbDb3GEBUoJeJ+v3jmZ/60TBiX7UHwmk3Dmk0oJE+IZqKEoYRDmWoY9kfLbtgdfw0bKEuVV7XUolZbhaiiWrOo6I4ZByh2sjQLa+9umrQVrKNpoOs11TNcI1FBCOuVN9QiDmiuFWTMTtFjWdB9hTF7ZEG0RV1iglID3hdAKFM/MPUiDCUvWIEQqVe0PDGdw5/It2sEjESLE02Z6AEoTeoVJbT6SsPefCLsOxWrmCXU5Y/nllhF2pqpOmzQUW/ShbZsZYWkLm+C0ztphNxUBdo3d6yOq1FwUxikf1BaVmLzCmAjjStkChYgOJaJHiehVIlpFRF+SxycR0RIiWiv/TvTkuZyI1hHRGiI6x3P8NCJ6WZ67luTUlYiaiegOefxZIprrybNYXmMtES0u9z5KQUC4oai6DuNbURyFhuIZH8LkDDsL/ubvX8FX734Jz2/eW3QuzPb1QfeR93+U/zIIywsVlYYSpE3ZzDhhsM38g44X5g9CVdXkdLf5UIQmrS4/oH/2Ph+KbpAN4RMII3RsGorXjFTuM8sFdYqCeugmjW5gjsEsHGYvrzDtFVcq0VAyAP5JCHEcgIUALiWi+QAuA/CwEOIoAA/Lf0OeuwjA8QDOBXAdEakPfV8P4BIAR8n/zpXHLwawVwhxJIBrAFwty5oE4AoAZwA4HcAVXsFVLYQA0knzDMPbh7ThlSV2kKxh5lepKWjnfmcDvsGR4k7vfgwp0OQV5EMJXxeT4972pULfABjwYtqjvMwvrm1WHoYwZQQHOIQUzsopX6YPxbpwUejTusd8TvmAdg4UFsHrN2znnDLs78g3730FJ17xkLGMMP6mP7y4XV7DLFxNLpJEiJXy+fYyJsGdy7cY1xXVk7IFihBihxDiefm7D8CrAGYBOA/ArTLZrQDOl7/PA3C7EGJYCLEBwDoApxPRDAAdQoilwnlCtxXkUWXdDWCR1F7OAbBECNEjhNgLYAnyQqhqOALFaTLbAi+9wClVQynNZBK2dFVN3SdG86G8AS9/5GHD/tRu2GSIATBI8HlvL1CgaF7cKHwoti1NAJu2F+46qgjThoQ2k5ew3KttJbzPh6ILK66RU340hIZy29JN6DOsxwHCh6SbrpHXtIJXagavlDeXr/jq3S/hrGuq8+XXSojEhyJNUacAeBbAdCHEDsAROgCmyWSzAHh3TNsqj82SvwuP+/IIITIA9gGYHFCWrm6XENFyIlre3d1d3g1KckIEChRvJ7EJnDBkDTM/o+kiZPFB31ugEsIag8oOpaEogVJw3L5rc7i6WKOTlOAKcK6a8obBNrMHQgY42BQUhNNQTHiz6ZLafYfefqq5fhhHt0wUpP3aTV6lTcB02PwXvkhPTVVVHU11Ve9X8KTMLoDjSsUChYjGAbgHwJeFEPuDkmqOiYDj5ebxHxTiRiHEAiHEgqlTpwZUz46A91Olxb0pZxMoETnlS92SpShdQOuG23olzKzaXhfT+xIURVOUNqQTN2gdivZZCv3vUggjiALDR0M+T1V9sw/Fkt9iTq10JX0Yk1fWI3RMGqHVKZ8L70MxtbstEGJoNHijTFWuqa5N0mQ+nMka65az1KHchba1oCKBQkRpOMLkV0KI38rDXdKMBfl3lzy+FcChnuyzAWyXx2drjvvyEFEKQCeAnoCyqopXQ7GtGI4iystkaqhcQ3GggOWHwS9/kIYi84eoi+mTybZZYs7SzoXlmMoK0lCi2MtLWK4PRBOCrc7borxM2DW58AJFd5u2XbidMjwRkob6lqKhCMveYIOj+gE933/11+obzu/YHNQWpro2pxy38cCIWaBkA/plUNlxoJIoLwJwE4BXhRD/7Tl1H4DF8vdiAPd6jl8kI7fmwXG+L5NmsT4iWijL/FRBHlXWhwE8Iv0sDwE4m4gmSmf82fJY1RBCQAigKeU0mX5WGzwj9s3kwsy+vTNHz7Bi1lBCIhMG+VCCOq1p4ALyA3GYQdi0sFC1jeky3vRBGyKGnXnr7tV7qNyZom3LEsBi+ggsvfg6Jh+KrZ62aEKfYC5x6xX13jjpzHXwNoPtA3YmwvhQ8mlN2lxw/+0byvtfgkxepvzNaWf8MAm0MHUI84G7elHJ1itvA/BJAC8T0Qvy2NcBXAXgTiK6GMBmABcCgBBiFRHdCWA1nAixS4UQqlW/AOAWAK0A/ij/AxyB9QsiWgdHM7lIltVDRN8F8JxM9x0hRE8F92JFPVtl8rL6UCwzvawQSFg2KPGbErzHQ1XZSJAPRYVFl7s5nuvUDGWuUnlEwXGhPa4I65SvxIdi25/Kdm0nn74uXgJ3braYPgqvY9xDzlKArZ1s2pp/4lNwLkQ7OunswsB2H0OeQbp8k5fKr893wCNQAjUUg8BS48f+QXNggG1zSJMwjANlCxQhxJMwR34uMuS5EsCVmuPLAZygOT4EKZA0524GcHPY+laK6jyppNJQNAOURQPx9uFsTiCdLEriw9uhQplgQppmgpIlQjgNMwX36VtA6G5dYa+HaTC1h7l6fgc65fW/Fe4eWJp7DbMosRRTkqnNw31bJtx1zFv+BGY3+up0+fWDqFkY+CIfAzqetx1MGorN1DPoEyiBSTFqbKvgyYy3z+rS2LavV4fXdx8w1s32PIP8bvWGV8qHRD3apoB1KLawYdvCx6D0wnBcV0cbbocNeMH/8vou4znv9Qu3TM/P8Oy1sYXSGsdaYR98CssP8g3oQjz924nYNSX9eXvaMBtt2lDpwmz+qM3vEyilC9egKLF7VmwLzKu7hsmMabsPm8PcS7kailfwBe7nZ+kzgT4US9hwnLdkYYESEvVwA8OGs8Jd+GhbSR/GseabORZoNzpK9R0Hrb94fnNv8UmJt+6Fs3ubQ92LaaJlc+L6zX8BAsViblH3b3tWYTQU7bbtsJcRhcnLNkGwDUDe56BLal8pb9ZQduwbzJ8LqIfNXFyYRofX5GUzjxm38rf0PVu/sIUN5wVK0FqY4DqYtKs4wAIlJK4PJUBg5IRAk4oCs9iaw/gYTCuQjTHynjQnz+40lqtS6UOfrdXyze4KZ3qlmLxMtmJ3HYrlpSz8XZwu/ztIY7StQzGHseqvlc/n+W3QN6JwyrsfhTI8O7smpe9n7nnLDhBBfca2uFQRRnu3vTPDGa9gC0waYG4Nzp+xTCLcPmX5Nk1wlFfwO8Qmr4OAQg3F5JBLp8wajPeFCKWh+Dqv/rgXIRyn3xFT2zF7Ypux3CAtItTaCc/1i3a4dQe30soJWz/PJQLLKMyvS6bqrisjE2KjQZuJ0++U19cxOEJK/tVnLapfmJ0FbOeDVrp76+QlSEPxlRPwrMJo7zatwxvlZut/JkFu86HYBJ/rQ7FMQoIEiq3/x9kpzwIlJOrZKoGi65C2lfS2BWDOdfSqf5hZuYAT9ku6eGD/RWR9jKeK6uLF9/IXtIP6VyiTl3p5C4bMvOagz+cfAMNpKLr6qAHIvlJeX74tTDWMluMdjAsHirDDhm27c9uE1h82rOu3wWtEgoIPEpYNOnXlmp6pzXQ3nMmhJW2e8Hmx78xsel7B/SLsN5ECBYqljDiHDbNACYkb5WUJGw4yeWVCzMJ8g6BhfUCQhqIWKwatslZnyh1I/T6UQqd8sLruu5bJ5GWZJXoPh93uXFfUsEegmEKXvfUp5O9+/pz729qWpsHBF93kb8t8+1g0DK9JSjeRKcXkpdNALNqaz1FdcP3DJuc15bDai1FDsQqULFpl6GQpG0kqhBD5dSQm/16ANubNb9Oydh8Ytm6VY2quMJ+PqBcsUEKwpWcAD7/qRD25Ji2DyaspyOQVYoAxrbHwm7wCKkv2z++qsmx1NM/izLNqb5G2gdC0Ut42S/TvpxSkoQQPhCOe7S8KBwDb6m8AeHVHfqch/foNb130ZQQFOISdiXrT6fql9TlYBIpJU9Yd87bbxt39+ModzueNp4xrCnxW/n3w9PdtMxOPZHJokQLFNqHR9W2bRltYh8J32D8ZNLzfnuOvbNunTWPTcuK8Up6/KR+C9/3PE+4OpWlXQ9Hv5aWivGxbVISZhZmilMI45YPGEJVOv/gy/9tUR+/AV6yh+MtKBkg3m1nANBEL8+IXpys+7/X/FK4LCqOh+K5lMR+GGaAKna1qJmq7um19U6GfptAkal24aDHzmHxqL2zJRwo2p5KWZ+UVKIY0AQOpEAIj2ZyrodgXNmo0Ld8aE32+oLbwvgtBTv/mVALDmRx6B0e1adS1jX2GnfKNjXe765TrIylOlxVeDaX4vP+lse+7VOo6FAhHOyGyCBTVYQ1qv8LUcYN9KOG0B8DuQwmzUj54LyyR/wKlwYfSnNIvVPXPyo2X0KZ3rx/CC+KLmCu4UMZth+AybJqYbSJj23rFJly9572O8damvGRrTicCB/kg01/+uH6Cpc4JAY+GYhEommuEmUSoeqaTVJTGPxnUXzebEzikswUA0G/YRt99Lwy3wE75g4ggH0rW40OxdVjTJMO0cMpn8rI55S1Gr2CTV/63qeMGRXmFmZUrbJtDhllvY9vEMuVu5lkwAGVzyAmgTQ56hWGepWootrYMo6EUanthTV62yCPvtXf0DgXWwaqhGPq9whu62+YVKKlkYHixE9AS/OmEoPUwSpApIWabzOj6dpjFrKrcdDJR1G/DCMWcEBjX7BiGTI55W9QeO+UPIlIGk9ZIJofRrHB3E9Wr1GFmYfrVvmH8L0KISJ3ypjr6fSh6p7zz21gFp3zZRokCE4ztE6jhfSjwCPiC5yXr3daUkuf99xF2D6qgNGHMOL5BqNCHEtLkZdum33vrXX06gRK8wtym4Zg0FO9zbU4lLF8BzU/GzNFqXuGrFygqyits3zMds/m80slEUT0zlmg4p1yBdilQhgwbRNr6PzvlDyJSCX2nv+bPrwMAnt2wB4DB6RdSJc7/zh8XhjT+vM7mjnaTl3kG5POhhNBQTGHDTlm2WWJO5inQDmQ+80I9T1qLUz5BTpuYZrRthhmt+ndTMhFqsafNGW52NJvt7qqd39hl3vdJXdsdjC0Cwbu5oXsd77bvmuY0CQzteYMJrzmVCBTMuVxwQIutHuq64aO8dNvt2LduUc8xnSw24YVZ7Z/NCbTLPjdo1FDkX6MPM1/Pe1/Ypk1TL1iglIjJ6a42e1N9QKdSZ0PM/k2d0v85YPPsJ2EL8UKwycvnQzFFmYR0ylu3vzB8R9wW5WWKhNOlSyQIyQQV7TlWKFBMUV4pja1chymMXGEyHwbNutW5bb2DCCJjGYy99d8/VOwI9q+n0Zev0AoUoT/v9Q/pZvSF12gy+LPc6wSYWodHlYaSLKqTDu37aQk+8NatKUnBTnnj1i5Am8Xkle//+jp46/ml21/QJ6oTLFBKJGnQUNTGdGqA0mkopTj9gIC1CwHqtFpIFkYptoWAhnHKFwkUb6SZZWY/mnHSFt6PqkOYlfI2DSVJhHSCinwkwwU298IBQA1IqUTxwKG9li5II6CdFEEmr6DvzvivLYym2MJ6DFs0DJvJq2hnhMLzGb2GkrC0YzaXNxeH6feFbTOSdQZnJVCCvqZY+NstM2N/P10fSkqjoQSsx3GPC4F0gtCSTphNXpb+793L64RZHdo09YIFSomYdhtWnWN8i94mDxTO3kwvjd4O65v5B8zgkkTWlfJq0Nev9s9/E8XslA9Y3e35Z9hIG5OGYjIVeweLvQMjxvJzwtk1IJmgsn0ojvPVLlHKDRP3Hi/cMDCMQALkIBXgf/Dm1WkY3gFKV03vwKfLr/pRcyph7OMJCu4P3jVc5nB1s+/OnSC4Jq/i/F5hqNtg0bv9vW0NSFMFJq8EEVrTSeNHtlynvNFC4NxHR0sKU8Y1a9PUCxYoIfCakTpa0wCKX44h2aHHtzjnvbMdhW/dg2UGVJgmzNYrOZHf6iJoDHRttAYNJShSrbCORau7SxAoalDw2/CFW0bQpoyd8jls3mM2B6mw4XQyUVRPW1SQ1+RluovxLan8AFZCOK0Xb70KhaNXWJtCTN0viQYIFO+1dRqKd7auC+bwmmZ0+dVzbmtKFvhQnN9//sd3IEnBpsMwTvkggVL4PIO22gH0Gooa4Mc3p4zag3eiYXLKN6XM5j0h39HWdDIgyiufVod6X8Y1p4z9ql6wQCmR/ACUP/bl21fiRbmIa4aMMS+02QP+Dm3qcN4X0rSZpDGCJOcMoGGNXqaIHRUpY9JQhj3fnSju0PZZWj6vMnl5naH+uugQEGhrSqK9KYl9hsVhKn9CaSiGqKB2gw/FuxmoeZO+HCa1NznpDW2pMPrMPPXa0+8XKF5HvlkgqXqaTV4jnmsMZ4oHMZtTftCjfetMXqoOremkVkNJJxMgImOkm6q3+jyueWZuNt3lo7zMZrNhi4VAaYgT25t831bxourW2pQ0RuW1pBJGC0RWvqMtTQEaiquhm0xeeeHJAqUB8fbNBYdNAuB/2L9/Ybv7+9/Odz48Oap50GEEyt7+/ADpvYbPcWqKEBPK5KU/r1Aal66OmaxwX0qTD6V/JONqCIUDsfcdsIZuakxeYRYU5oQTktrZmtY6md3ys45vwdFQ/IX1y8FDmbyKZpuewVBXDyEEhjO5/ATDoqHoNFagQEMpEChBA6hbbrbAGW0wean1U7oBqGt/PpRY98wGRjJIkDNzD4ryam1K+uqZ1/ISSCaCw68z2ZwxxDt/H0L7G/CaMKUP06Kp6SZ8SiuZ2N6EIY3g9datOZUo0pLUv5vT5l0BskIgmSC0NSUxZFmHYvPjtDenjP2iXrBAKYEPnDQDU8aZZ6RtTUl3xqp7Ka577A33t0mgbNidDxH1aSiWL8UBBU75gMFcndPPNnOBgxPgmEAmtEnTXgULG3WfS7UtovOW29GaDtRQMjmBVEJpKP56fvu+1QDyM3aThpJKkN7Bm3NMTe0Gp37hvegGMO9100kq0lC8ddJpFkBeUAXtYaV2BEgnSTsA/ezJDe5v3TMbHMmhrSmFJrllSCFegeL3Uzi/UwlCgopDt73kBKxhw2FMXmqiozNZedtQr6FIgdKWDjB5OcK5SSNQ1PNqSRdPYBSOGTbY5GVbKZ/Xrtnk1dDMn9nhOqx1nX5gJOs6RwsH69e7+nz/Nr0037h3lTbNqMFZ7yUnTTw2DUXlN8021XYkpi/DHRjOYEKrEiiFdmS7hqEY0UR5hfEVQTg7AtgFSg6pZAIpjVN+c88AAK+GYnbK6+qhBtbONmcCoTNf+DVMw2xTHp82vqVoFbtXezGZYEZcDcW8y/VoNod0KoHmVNJnrtShFSijGbQ2JdGUSvg21HTvwWfyKnZspxKERIIsCxvz2+CEWSFeqF0PhxIoFh+KHOAntTkmL/034/Na74jB5NWcSgYGziSI0BLglFflmMpQ9zGhLW2caNQLFigheOfRUwEAf/+OI1wNwDTYKdNC4Qxod9+w79+6AUa3P5H7W6Zv0oQrKrIiH6EVNJarl03roM3ZTV4Dw1k3OGGwKDJJ7wPSoTV5GYSLl9GcE9U0vjmlXajnpss6GkoqWexDWfzWuQCARcdOc9P665bXHHTKxQ65NmSS1NQOaJzmQRs/eu8FAI6YNg5rCiYdmZxwowZNpo2RkCavpmTCEQjZ4AFI1+IDI1m0uQJFPwlJkDOQ6nwoqWQCCSLrNjl5DcVwrx6z4bBFQ9EtGvSbvHSC08kzQU4SdG0+kpFtmdRpKNLkFeCUz+Y8Ji+DQFHXNfX/wZEskglCOzvlG5N//9CJ+Mu/vAvJBCGd0GsgCrVSvbCz9csOfs1HTwYAXPrr54vy/uX1bgDA/3nXEQD8syxVXmdrWjt4AfmFjQS9mUahXhztWpmscCOXTLPq/pEMJrU3IZ0kbNg94Ds3GkIguGk1X0y0fVYXcAbnlHyhgr7NnZWCJ5koNkEMZ7IY15zybPZZYPLy2P919/HlO5wFZRv2OPevE2zeATToUwCpBGHWhFbfc81Kk9qJs5xPOQ8bBh81Uw9aIT6cySGdTDi73Go0lCnjmtz1DLp+MzDifGekOZXUm7ykX6A5ldBGeaUSJAfgYIEStG0R4GhKiqKV8oUCRdNe3mOBGkq7U4aurYYzOTSlkkgnqagOrlM+bddQgkxe6lmbBPDgqPM8TCbIesLb14dg1oRW93dLOoFkgjAwXNwZblq8AESO0Cl8eVTYZ2vh3uIe1Aeb5k1pR4L8MyQ1IE0d14yd+4v3YwLyJq9UstjE40WZT7RrCjxRXqbIpP7hDMa3pDB3cjsODPtNTt4X1WbyUm2U0djdnfxm52wqmUB7cxIHNM8hny7nCvjCexkadb7upxYEFk4QvOsNdMKgd8C57zb5PHVhvSpfk8Y84l4nm5+xDnjKUPVV+z6FdcrrTV7O7F8FEhTiaCDOdbRRXlJDGd+Swp4Dxet+1Ky7UIPJuEKZ0Jw2D34qVDzo43Sqnu1NSfSPZItm98NZu0DxCn2dcFMDvDJjDmWy6ETal8bR9hyTl9EpH6ChjGSdftcaEOU15Goo2tMYHM2iJZ0sWvcTB1hDKREiwrjmlDubVDO65lQCi46bDsAxkxR2NrXGYN6UcdpyvbbQ0w6biJa0XyVWQuC4GR3o6R/RbsehXmxHoOk7Wi4n3AgW06rnoJniSCaHvQOjmDKuGW3NKQyO6mdpQHkaivcFGRzJ4qM/WYq//uGT/mvkckgnCe1NwRpKJuvsYKvby2tYvpTuzq8FgsmZiTpmIp15RD33jlYn/zc9vi9F35AKQ00bTV5bewfzAmU0685K+4fzDmKnPvrBRw2C7c0BJq+M0146k5UQAoOjWTe4QDeIPbN+D5pTSUww+KzUglqnz2pMXgmpHRnuQeUZJ817pkFyYDiLSTIoplB7UHnGt6RABG0EVd9QscD21yOL5lTCnSToTFIjsl+kNU551fYmgZLLCVe4t6STWrNcJpuzbj00NJJFa5PTNwtNf/WGBUoZNKUSeGrdbgBwtQXv7GtcSwr7C168nv4REAFHThuHjy441LfCdSSTwzH/70H3381y9uH9RO3nf7kCAPC2IycDyO8dpnij+wBWbNqLBBHSKTKaF970nT/lo7y0q6ZznnUoxee7Dzi+oOkdLWhNJ4peXO/ga9sVVQ3iuhXhU8c3o3dwFM9u6MHLBV+2y0jfiGPyygZs1ZFDKpHQCtihjCNQlAZQqGmpwSWdJG14tXIcq4WsI9lckdB4dkMPAGBSe7O2Ld/oPoD7X9qBgZEsDulsgRD5fbt2yV2BD53ofELXNLv/+u9eBpCfmevXoTiDoGOyKhacQuTvo/AeVm3fh0xOYOn6PegfyWJzzwD2DfjbamAki9amFMa3pNDnCeNWZTnmML25DMjvLza9w3kndDP3TDaHZRt7XEFbmEZpiC3ppHEVupoEpjTrktR9tDUlXW1PFwihBEpTslg4q77fkk7qd8pwNZgkxjen0D+SKeq7/Z6Jjam9lMlL+ay8Zspbntrg+7BZrWGBUgbdfcNYu+sAdu0fwud/6fhCLnnH4e75OZPasGr7fl+eXz6zCUI6zaeMb8LegRG3M/30ifW+tM3y5VczpHtWbHXPzZ3SDgDYP+ifmS/6r79gT/8IEgm5Mtwwc9nvU/v9aQZHshAivxuAbpa1Sg7uh3S0oK0pVfTieh2qfQFrRLI54TqhdRrKtPHNxpnqSNaJ3lLaRb9BSxkazaFZmigL72VwJIuWdALjmpRAKR5om1NJ7Sr7N7oPoGu/I1j/+uSZblRdYdjv3fK5zehswW6NqWjb3ryWOVmGm6tZ9C5Z/uFTHY22cIKiUP1sQquTv3AisW9wFI+8tgt7+0d9kxRvOwBww90L7fo9nntasroLAPCHl7b70gyMZNDenERHi6PBqH6lBmggvy2Lrk+pfjJtfIusU/FzX7+731efwn63Zmcf5kxqcycJhe+H9zoT2pq0E643ug9g9sQ2d0Kl01A27unH9I4WGTZcGOWVN3nlRLE/SmlVzakExrWkIAQwUHCNTT3OfU5ub8KB4YzWp5UXKH5/7q6+IXzrD6vx+V+sKMpTK1igVMCOfUPuCvl3yUgwADj1sIlYu6vPfXmeXb8Hez2zuoltzve11eDx8lb/DLwlnUSLx+asVhADzkAOmAfrXM4xMehs9oWLAAsHuR5plpsur6GbIf351S6Mb07hjMMnaWeCox6nflBI71fvfsn9PZLJz+7Vy6HqoCOTdUw4bdLMo3Nu3vHcZry8bR/Gt6SRShZrbEOjObSkkq6pqNAHMpxxBE5a40z+y5pu9/dbDp+MH33sVAB5vwrgF8ZvOnQCNuzuLzJxeNtHhZuPuoODI1COOWQ8EgR0awSSl0MnOZpMYXDAHc9tBuBoPjqTl3p+an1V4QCnvq9z8uxOXHjabFKxOhYAABphSURBVABw1yAp+ocdH8yR08YhJ/Ih8n1DGTdKbY6s39pd/kg2ANgnB/8JbWk0pRIYGC0WBptl8MOXFh0FoHiw37inH0dMdSZbMztbsH1fsUm4byiDJul702kQ23sHcdjkNo+GUtyv9g6MYGZnq9as7W4Q26xfLKtMzc3pBMY1y+jAguf1mOxb0zpakM2Jor49nMnisTXdEMj7nNR7unOfo9WafKy1gAVKGSgnfbcnFFiFGgLA3MntGM0K7JCd+qM3PuPLr2aDagB/cNVO3/lCDUXNbB7953e5duY+Q7hs/0gGTanizg7kX0rFC1t63RmQEAJf/61jPlFBAXsO+EOd73txO+5cvhVHTR+HtqaU1g48ms1hshycTALlxS29uOd5Z/Z+uBwE1Pe11eA9bbx507vRrBO9Nc41VxW3xdfuce5l575BrQN1YMRZW5FKJtCSTvjKePqN3diwu1+avIoHYe9A4RVsXk3J+1tplWr2qfB+U1yFzKp6fv/B1wA42s2k9mZfX1N4BzzVjt77GMnk3H7ypkMnaDWUAVdDcdp7oKAtVXlX/s2JrhZeOGnuHRjBhNa0u+1Q78Aodu4bwh3Lt7hpTpztRKstfWNP0X2oic74lrRxBflnb1sOADhr/nQ0pxJFE5n9Q6PuOzixvUnb91bv2I9DOlu0Ji8hBLr2D2N6R4uroRRe48BwBl37h9HalHR3X/CarJQ/L79BbLG2CAAdLWn3PS40tap+cMGpswAUv+cPvuKMFS9t3edONEcKBIri3he24R9+s7KoHaoJC5Qy+NHHTwEAn61SCQkgPxvb3DPgU1n/68KTfWn/tGqn1rmekttbq5dffdN+UlsTxjU5TkedrRrIL67c7zE9KDZJgaIGYiDvE3lhS68btjy5vckZxAoEyhdl51SD/o59g9jWO+i7Tv9wxhW4JoFy3o+fcn//n3cdCcBjypCDifrutsJ7jX2Do+hsTaNdmqtMGycCwHMb92JCa9rVHoQQuPnJDXhx6z7Xj+UNsgCAj//0Wazc3IvmVFIrnL2bOKogDQD4mTRdvrpjP0761p8AAB86ZRYOlwJl426/QNkny/n1Z88oWhCrBtn25hRmdLZgyeqdvr70zPo9OPYbeb/bxDZlMnPyjWRyePv3H8EPH1kHALj9koVobUoWtZUSSpPHNaElnSgSXKpdOlrSrr+pMBCiq28I0zua3We2ZmcfrnvMua4yDao+/+0/rEYhatDsbE0FhtOqclrSxUKnd2AUHXKQHt+SLhqIB0YyeGLtbpx86ATtBOP5zXsxOJrF9I5mdLbqJ0Tfvs8JvFi5pVe7gFn13YmGdSyqvM7WNMY36yeGPf0jaE4lXA290BKh3r2Fh09yNRQlUC7xmLo+duMz+NLtL+APL27H7gPFk5FqwQKlDE6ePQFEwI8eXece886oXYGyZ8AdlD/39nm4QJoM1Mv1vT++hkX/9VhR+USEtqaUO+PocweXJBIJJ7ppt8e27bXdf+jUWZjQmsauvmEs/PeH3eN/Xt3lrn159uuLXOGmbPPbPau0p3W0YMq4Ju2sGADeKgMDnpazTSWoevpH8HrXAUxoSyOdJK3q7R0UP7nwMMyUg1BP/wiEEPjFMxsBOFqSl60ef8Pe/hFMbGtyZ4LLpPNbcdUfX3N//+STp2HK+GZs6x3Ecxt7sHXvIL7zv86gpvwW7c0pd6D11m9oNIvWdKpoEN5b4JRWdX3g5Z14cUsv3vs/T7jnzj9lFg6f2o6mVALLN+51jw9nsvjPPzlf+XzrkVM8Ji/n+jM7W/H+k2YAcPZe231gBLc8vdHNf/Etz7m/b/vM6W5bKB/Z8k097mAOOGbUwya3Y3PPgDsAre3qwwdkBF17UwqzJ7b52nk4k8U/3/UiACfQpF3jb/LO7A+b3I7J7U14vavPHRA/dvocAPmggUJ2Hxh2JyodLekiM6oQAnMvu9/99yEdLb40mWwO87/5IPqGMpgu+1JhcAAALL55GQDg+JkdmNTe5PpkAMdEd8H1SwE4plZl/vOGSD+3sQd3SZ9YZ2vavR+v0NnTP4KWdMI9Vyh4VTBDZ2vajQ7sLehLKzbtxeT2JreM3gKhtmr7PqQShNs+c4br69R9wmHp+rwm+MLm2jnpG1qgENG5RLSGiNYR0WW1um4iQfjc2/NO+O9fcJK7gh7I7zh82W9fxha5xcdbj5zinp/rGSyHRnOYO7nNHTwUi46bhtd29mHTnn70DWXQJs0zgDNr/PWzm/GRG5Zi/9Cou7nf1ReciK+dc6yrTnsFzVfuyH/Zrb05hSlSAN6+zDFLqBnxGfMm4bBJbZg6vhkbPSYy9YKeNX86/vnsYwDkF2mqyKF3fv9RAM7gP39mJx59bZfvnn6zbDPmXf4AAOCiNx+K755/AiZLLeF3z2/Dyi29eOBlR6WfP6MDR08fh/kznAV3anY/NJpF33AGE9rSOPnQCQCAf7v/VeySbfDwq1244S/Onmn/cs4xOOf4Q9wB4sIblrrReQDca7c35Vfcewez9bv7cUhnM/pHsvjp4+tdf1lvwQs8ZVwz/u6tc9GSTvi0LwA4fd4ktDWlMH9GB3725Ab8y10voqd/xBfVB+Tt4aOZHIZGs1i/ux/TpZNaiTjv7L5/xG/uUhFpasbrnQy894RDAABHTRuHTE5g617nuf562WY3zfSOZsye2Iqtvfln/q+/e8X9Pb4l5W6E6TWL9fSPYCSTwzQpQA6b3IaNe/pxzRJHWH7tXKevpJMJvP2oKWhJ+78v82PPpGx8SxqtTX4N5b4X8wEAH1kwG4kEYVJ7frKzrXfQTa/8PeNbUth9YARzL7sf23oH5WTCEeYnze7Eu46ZinW7DribcW7wCJeZE1rR0ZJGMkHY059vwwtvWOr+/u55x2OqfH9UPV7dsR+3PL0RJ8+e4AYieCciT67d7ZrtOlvTmCm1eK+FQgiBN7oPYO6UdtcntqnATP3ill6cMmcCmlIJHD3dCdh4ftPeQC394de6jOeipmEFChElAfwYwHsBzAfwMSKaX6vrf/19x7m/p3X47f1q4AfgznyU1gI4MzEvG/cM4Igp7a7DHQDeJgXQO//jMdz05AbX3OBl2cYenPStP+H+l3YAcNaoJBKELy06GoAzs31+817s3DfkDpTf//BJAIBT5ziD8c+e3IAVm3rQtX8IRMBtF5+ORIIwo7MF63YdwJ+kf2elnOV8/PQ57mx66jinvj/481ps6RlwTXM/+vipOHv+dLzedQBru/owJNdXKPsvAHz13GMBALMmOi/WHcu3+Paymja+BX/6yjtxy2feDMCxGedywjXz7O0fQUs66Q7EN/zFMTc945mZKc3BG6J9mfQTAcDbj3LaeHxLyvVnXe45D+Q1hisfeBXn/fgp9A2NYu+AY5Z44qvvdtOdMW+SNsxUOXiVBnvXiq3ubBkAPnb6oQCA1ibnPm58fL3rmJ05wWnfT5xxmJv+vf/zBH6/cps7mBw2uQ3TO1pARJg2vgU3P7kBw5msO1i+ee5E/Ov7nb6qTDFPSqG6YlNeYzpq+njMntiKTXsG8NS63RBCuFFq5x5/CNJy65bWdNIdgN/oPoAzr3YmESriaM6kNjyzvsf1H3jNq+ccfwiGRnNYuaUXr2zbh017+n2Rbq1NSRw+dRxe2NLr+qn+tCo/GH7vQ07fnTWxFdt7h5DLCdzr2en7TPnOeN+vp9ftxjvkRAcA3nrEFMyd7PSL5fL+v/F7R3DO7GzBSbM7kUgQpoxrcrV2ZQoGnMnjYZPbiwTKZ291hMUhnS2Y0en06Vuf3uTm++xteY1yekcLJkuflXeH6R89sg69A6N47wmHYPbEVqQS5Nss9s7ntuD5zb1uvz5y2njM7GzBQ6u68E93Oprk37/Tmeh+8OSZWPavizBvSjt+s2wLfv7UBtSCRl4pfzqAdUKI9QBARLcDOA9AsZG2Slz67iPw40ffcGcTXq6+4ETXMQz4BQoA/PzTb8anf57vZCfOnoCLzzwcfdJJd+wh433pvTPOVd8+B8df8ZD775887gymSiA1pRL48cdPxaW/fh4fuu5pTO9oRjqZwEffPAsfWeAMYONb0nj3MVPx6JpuV+jN7GxxFzX+41nH4M7lW312WQA44/BJ7m9luluyussNKf3yXx2FeVPacdwMp/5nXfN4UdvccclCN++45hTOnj8df1rdhev/4sxWX/zm2eiUkUTTxjsv+TV/ft030/rSXzlC89efOwMfvmEpbn5qA3717Caf3XrRcc4+XZMLvmqXTBCWfX2Re3xSexP++MpOn2mlOZXAh06djfNPmYX/eGiNe/xE6Rs59pDxvuc+b6rfRNfRksIvLj7D/bd30qHW1UzvaMa/nX8iAOAwOcgt29iDZRsdE96ZUuB95M2H4qv3OFFxr+7Y72778oV3HYGvScEM5Ge7Xu3njkve4mrPyiz2zXtXYW//KF6S0YVflVrErAlt6BvK4G9/9qyb/7gZHbjhk6fl73NKO367cht+u3Kb734vONUx577tyCnu5xw+sXCOb3L1brlv2oeuexqFKMH6vhMOwR9e3I4jvv6A7/zfnjHH3adu6vhmLFndhcM9aZZ9fZGrJR0zPf/u/IsnmvD2SxYCyLf156TGoHjqsve4Xzvt2j+M363chkntTe5E6PeXvg1vklrxTCk0Pu0xPQLAP551tOtD/MUzmzCxvQmPvNblTjZOmTPB1fQA4L+WvI7nN+/FnEltuHXpJred0skE5kxqw48ffQPHHNKBllTC7QNnzz/Ezb9g7iSfFnfxmfPwlb862p3IfOGdR+Cr97yEb/9hNRYePhnHzajuJ4MbVkMBMAvAFs+/t8pjNeOfzz4Gz3/jLBwxtXj1+0ffPMcVIh9ZMNud1Svefcw0XH2BM5j8/TsOx6Jjp6GzLY3ZciEbEflmwPde+jb3d3tzChuvej9++qkF7rGTZ3f6ZuKnz8sP/F37hzE4mvUdA4CffHIBPrkwP/s9yvMiHtLZ4u4pppg9sdXdogNwBtXCaKzz3uQ8grccPkVrN//4GXNwxuGTfce+cpYjHF7Zth8LD5/k2pcV58sy1QB49+ff4gqkBXMnueZCJUxOPnQCNnzvfa5wXHDYRDfkVZXnFTLnnpB/QRVr/u29+N6HTsSsCa24/4tnFp1fWHAPRxb0gf/7niNdkxwAn4lU8czli9xBMp1M4K9Pnuk7r/oCALz0rbNdrVKhBnHFF2VIrRevKfZozyTlmj87Jql/fd9xbmDEu46ZikJmFARHqBmwl/u/eKY7SF644FB857zjcd6bZrrCUjFrQit++LFTivLf84W3uNrHOccXP4t/OutofPuDx7v/XnDYRN/542Z0uMIEAN5yhP/ZAMBl7z3WfWaHFwh/wDHfej+d/RU5YbnpyQ3Y1juIeVPaXWECOO9H4fP69efOwGGT25FKJrD4Lc57de3Da/HKNmet0D+850j8+rMLi6796Jpu3Lp0E6Z3NOOXF5/hPnc1Ifrib1a6E7tfXnwG/mr+dDfvR998qPv76+87FtPGt7jCBHAmI9/8wHzMmdRW5JesBhTme9lxhIguBHCOEOKz8t+fBHC6EOIfCtJdAuASAJgzZ85pmzZtKiqrWvQPZ3D3iq344MkzMdETBaZQ2154B+lSWbfrAIZGszhBbiLo5eFXu7D7wDDueX4bTpkzAV8951h3APPygjRBnPemme6KaUVGLiIczmTdAbqQA8MZ7OgdxBFTx/kGMMCx+f70ifVoSSfxlbOOxoyOlqI0gBMx9ruV2/CxN8/RttXarj7ctWIrDulowaffNtf38g+NZrFpzwCWbdgDEOETZ8zxnVf0Doxg6Rt7cNb86b6ZsyqDyHHwn3nkFG3+N7oP4APXPolv/vV8fOjUWUXtkcsJPLpmF+59YTuuvuAk30xUsW7XATz62i6885ipOHq6XwvNZHPYuKcf67v7kUoS3nPs9KL8gOPc3dY7iPkz/bNNtVfX8o178cr2ffjEwsN8JifFS1t78cEfPYVFx07D9Z84zQ1VBRyfyMrNe/EfD63BIZ0t+N6HTnRNOIqVm/fiWdlOALR9L4hXtu3D5HFNuPnJDXjH0VPx9qP8gmxoNIvuvmHctWIrPrJgtk+wAk47v76rz/0swbGHFM+6n163G+lUAq939eGwSe2utqfI5gR29Q25wS9HTSvuu8OZLNZ39+OBl3fgzCOnFE2EACey63crt+Gk2Z2+dti5bwg3PbkeqWQC7z5mGqZ3NGPOpDZfv+raP4QfPrIW7zl2GgZGslh4+OSiHTR++/xWrOnqw5RxzThxVifecXSx0B+RW+vo+mxUENEKIcQCa7oGFihvAfAtIcQ58t+XA4AQ4numPAsWLBDLly83nWYYhmE0hBUojWzyeg7AUUQ0j4iaAFwE4L4614lhGGbM0rBOeSFEhoj+L4CHACQB3CyEKN7ylWEYhqkJDStQAEAI8QCAB6wJGYZhmKrTyCYvhmEYJkawQGEYhmEigQUKwzAMEwksUBiGYZhIYIHCMAzDRELDLmwsByIaBBAUWtwJYF/A+TkANgecD1NGpefDpLHVM4prVHqe2zK682OlLWvR1mOlLcOk8Z4/RggxPiCtgxBizPwHoNty/sZK8ocso6LzUdQzomtUep7bktuyHnXgtiyjngCW28oTQow5k5ftSzN/qDB/mDIqPR8mTaX3GSZNpee5LaM7P1bashZtPVbaMkyaMGX4GGsmr+UixH401cpfKxqhno1QR6Ax6tkIdQQao56NUEeg9vUMe72xpqHcWOf8taIR6tkIdQQao56NUEegMerZCHUEal/PUNcbUxoKwzAMUz3GmobCMAzDVIkxL1CI6GYi2kVEr3iOnUxES4noZSL6AxF1yONpIrpVHn9VfYNFnnuMiNYQ0Qvyv2l1qmMTEf1cHn+RiN7lyXOaPL6OiK6liL/IE2E9q9mWhxLRo/L5rSKiL8njk4hoCRGtlX8nevJcLttsDRGd4zlelfaMuI6xaUsimizTHyCiHxWUFYu2tNQxTm15FhGtkG22goje4ymrqu95IGFCwQ7m/wC8A8CpAF7xHHsOwDvl788A+K78/XEAt8vfbQA2Apgr//0YgAUxqOOlAH4uf08DsAJAQv57GYC3ACAAfwTw3pjWs5ptOQPAqfL3eACvA5gP4PsALpPHLwNwtfw9H8CLAJoBzAPwBoBkNdsz4jrGqS3bAZwJ4PMAflRQVlzaMqiOcWrLUwDMlL9PALCt2m0Z5r8xr6EIIR4H0FNw+BgAj8vfSwBcoJIDaCeiFIBWACMA9sesjvMBPCzz7YITXriAiGYA6BBCLBVOr7sNwPlxq2eU9THUcYcQ4nn5uw/AqwBmATgPwK0y2a3It815cCYRw0KIDQDWATi9mu0ZVR2jqEuU9RRC9AshngQw5C0nTm1pqmO1KaOeK4UQ2+XxVQBaiKi5Fu95EGNeoBh4BcAH5e8LARwqf98NoB/ADjirVP9TCOEdQH8uVeFv1EDNNNXxRQDnEVGKiOYBOE2emwVgqyf/Vnms2pRaT0XV25KI5sKZ6T0LYLoQYgfgvNxwtCbAaaMtnmyq3WrSnhXWURGXtjQRp7a0Ece2vADASiHEMOr3ngNggWLiMwAuJaIVcNTPEXn8dABZADPhmBb+iYgOl+f+VghxIoC3y/8+Wac63gynEy0H8AMATwPIwFF/C6lFiF+p9QRq0JZENA7APQC+LIQI0jJN7Vb19oygjkC82tJYhOZYvdoyiNi1JREdD+BqAH+vDmmS1SyUlwWKBiHEa0KIs4UQpwH4DRybNOD4UB4UQoxKM81TkGYaIcQ2+bcPwK9RZZODqY5CiIwQ4itCiDcJIc4DMAHAWjiD92xPEbMBbC8sNwb1rHpbElEazkv7KyHEb+XhLmkuUCaYXfL4Vvg1J9VuVW3PiOoYt7Y0Eae2NBK3tiSi2QB+B+BTQgg1RtXlPVewQNGgojeIKAHg/wG4QZ7aDOA95NAOYCGA16TZZorMkwbwATimnprXkYjaZN1ARGcByAghVkt1uY+IFkpV/VMA7q1mHcupZ7XbUt77TQBeFUL8t+fUfQAWy9+LkW+b+wBcJO3T8wAcBWBZNdszqjrGsC21xKwtTeXEqi2JaAKA+wFcLoR4SiWu13vuErWXv9H+gzNr3gFgFI50vxjAl+BEWbwO4CrkF4COA3AXHCfYagD/IvKRISsAvCTP/Q9klE0d6jgXwBo4Tr0/AzjMU84COC/BGwB+pPLEqZ41aMsz4ZgAXgLwgvzvfQAmwwkSWCv/TvLk+VfZZmvgiZipVntGVceYtuVGOIEbB2QfmR/DtiyqY9zaEs7krN+T9gUA02rxngf9xyvlGYZhmEhgkxfDMAwTCSxQGIZhmEhggcIwDMNEAgsUhmEYJhJYoDAMwzCRwAKFYWICEX2eiD5VQvq55NnZmWHqTareFWAYxlk4J4S4wZ6SYeILCxSGiQi5qd+DcDb1OwXOYs5PATgOwH/DWRi7G8DfCSF2ENFjcPYwexuA+4hoPIADQoj/JKI3wdlVoA3OArXPCCH2EtFpcPZBGwDwZO3ujmHssMmLYaLlGAA3CiFOgvNpg0sB/BDAh4Wzn9nNAK70pJ8ghHinEOK/Csq5DcDXZDkvA7hCHv85gC8KId5SzZtgmHJgDYVhomWLyO+t9EsAX4fzAaQlcrfzJJztaRR3FBZARJ1wBM1f5KFbAdylOf4LAO+N/hYYpjxYoDBMtBTuZdQHYFWARtFfQtmkKZ9hYgObvBgmWuYQkRIeHwPwDICp6hgRpeU3LIwIIfYB2EtEb5eHPgngL0KIXgD7iOhMefxvo68+w5QPaygMEy2vAlhMRD+Bs0PsDwE8BOBaabJKwfmg2CpLOYsB3EBEbQDWA/i0PP5pADcT0YAsl2FiA+82zDARIaO8/lcIcUKdq8IwdYFNXgzDMEwksIbCMAzDRAJrKAzDMEwksEBhGIZhIoEFCsMwDBMJLFAYhmGYSGCBwjAMw0QCCxSGYRgmEv4/iROFVTJHjbYAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "sorted_data['inc'].plot()" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEKCAYAAADuEgmxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xl8nWWZ8PHflZOTfU/TtDSlpQuUsttSCoggSIv6Kqig9VXozDAyIG6vM+PIOO/goLwDbjDMDDgo1YIooKggClh22VpaKF1pG0qXdE2bpWlOctbr/eO5T3qSnCQnyTlZr+/nk09O7vM8T+/zNDnXue/rXkRVMcYYY1KRNdwVMMYYM3pY0DDGGJMyCxrGGGNSZkHDGGNMyixoGGOMSZkFDWOMMSmzoGGMMSZlFjSMMcakzIKGMcaYlGUPdwXSbcKECTp9+vThroYxxowqa9asOaSqVX0dN+aCxvTp01m9evVwV8MYY0YVEdmZynHWPWWMMSZlFjSMMcakLOWgISI+EXlLRJ5wP1eIyAoR2ea+lycce5OI1IrIFhFZnFA+T0TWu+fuEhFx5bki8rArXyki0xPOWer+jW0isjQdL9oYY8zA9Kel8VVgc8LP3wSeVdXZwLPuZ0RkLrAEOAW4DLhbRHzunHuA64DZ7usyV34t0Kiqs4A7gNvdtSqAm4FzgAXAzYnByRhjzNBKKWiISA3wUeCnCcWXA8vd4+XAFQnlD6lqUFXfA2qBBSIyGShR1dfU28Tj/i7nxK/1G+AS1wpZDKxQ1QZVbQRWcCzQGGOMGWKptjTuBL4BxBLKqlV1H4D7PtGVTwF2JxxX58qmuMddyzudo6oRoBmo7OVanYjIdSKyWkRW19fXp/iSjDHG9FefQUNE/hdwUFXXpHhNSVKmvZQP9JxjBar3qup8VZ1fVdXnMGNjjDEDlEpL43zg4yKyA3gIuFhEfgEccF1OuO8H3fF1wNSE82uAva68Jkl5p3NEJBsoBRp6uZYxSf1lWz3vHWod7moYM2b1GTRU9SZVrVHV6XgJ7udU9fPA40B8NNNS4DH3+HFgiRsRdQJewnuV68JqEZGFLl9xTZdz4te60v0bCjwNLBKRcpcAX+TKjEnqqw+t5d6Xtg93NYwZswYzI/w24BERuRbYBVwFoKobReQRYBMQAW5U1ag75wbg50A+8KT7ArgPeEBEavFaGEvctRpE5DvAG+64W1S1YRB1NmNYJBqjMRCiLRQZ7qoYM2b1K2io6gvAC+7xYeCSHo67Fbg1Sflq4NQk5e24oJPkuWXAsv7U04xPTW1hVKE9HOv7YGPMgNiMcDNmNLaGAGiPRPs40hgzUBY0zJjREA8aYQsaxmSKBQ0zZjQG4kHDuqeMyRQLGmbMaGgNA9bSMCaTLGiYMaOhNQhAMGItDWMyxYKGGTOspWFM5lnQMGPGsZyGBQ1jMsWChhkzjo2esu4pYzLFgoYZMxoS5ml4q9AYY9LNgoYZM+JBQxVCUWttGJMJFjTMmNEYCOHL8lbTty4qYzLDgoYZE9rDUQKhKJNK8gAIWjLcmIywoGHGhHjX1ORSL2hYS8OYzLCgYcaEeNA4riwfsEULjckUCxpmTIjP0ZhcFm9pWNAwJhMsaJgxoaOlUepaGtY9ZUxG9Bk0RCRPRFaJyNsislFE/s2Vf1tE9ojIWvf1kYRzbhKRWhHZIiKLE8rnich699xdbttX3NawD7vylSIyPeGcpSKyzX0txZgkmgLeEiKTSq2lYUwmpbJzXxC4WFWPiogfeFlE4tu03qGqP0g8WETm4m3XegpwHPCMiJzotny9B7gOeB34E3AZ3pav1wKNqjpLRJYAtwOfEZEK4GZgPqDAGhF5XFUbB/eyzVgTDxLlBTmdfjbGpFefLQ31HHU/+t1Xb9NtLwceUtWgqr4H1AILRGQyUKKqr6k3Xfd+4IqEc5a7x78BLnGtkMXAClVtcIFiBV6gMaaTkFvZtiTf+xzUbivdGpMRKeU0RMQnImuBg3hv4ivdU18SkXUiskxEyl3ZFGB3wul1rmyKe9y1vNM5qhoBmoHKXq7VtX7XichqEVldX1+fyksyY0woGkMECnNc0LCWhjEZkVLQUNWoqp4J1OC1Gk7F62qaCZwJ7AN+6A6XZJfopXyg5yTW715Vna+q86uqqnp9LWZsCkVi+H1Z5Pq9X2mb3GdMZvRr9JSqNgEvAJep6gEXTGLAT4AF7rA6YGrCaTXAXldek6S80zkikg2UAg29XMuYToKRGLm+LPL8PsBGTxmTKamMnqoSkTL3OB/4EPCOy1HEfQLY4B4/DixxI6JOAGYDq1R1H9AiIgtdvuIa4LGEc+Ijo64EnnN5j6eBRSJS7rq/FrkyYzoJR2PkZGeRlx0PGtbSMCYTUhk9NRlYLiI+vCDziKo+ISIPiMiZeN1FO4C/A1DVjSLyCLAJiAA3upFTADcAPwfy8UZNxUdh3Qc8ICK1eC2MJe5aDSLyHeANd9wtqtowiNdrxqhQxAsafp+QJTYj3JhM6TNoqOo64Kwk5Vf3cs6twK1JylcDpyYpbweu6uFay4BlfdXTjG8h19IQEfL8PuueMiZDbEa4GRPiiXDABQ1raRiTCRY0zJgQisTIiQeN7CxraRiTIRY0zJgQ754C19KwnIYxGWFBw4wJ8UQ4QK7fZ/M0jMkQCxpmTAhFY+R2tDSse8qYTLGgYcaETonwbEuEG5MpFjTMmNApEe7PspyGMRliQcOMCeGuiXDrnjImIyxomDEhMRFu8zSMyRwLGmZM6DzkNoug7adhTEZY0DBjQjAhp5FriXBjMsaChhkTunZPBS2nYUxGWNAwY0I42nn0VCgaIxrrbVdiY8xAWNAwo14kGiOmdGppAARt2K0xaWdBw4x6oajXFdURNNx3G3ZrTPpZ0DCjXsiNlMrxdW5pWDLcmPRLZbvXPBFZJSJvi8hGEfk3V14hIitEZJv7Xp5wzk0iUisiW0RkcUL5PBFZ7567y237itsa9mFXvlJEpiecs9T9G9tEZCnGdBEPGv6OBQuzOpUbY9InlZZGELhYVc8AzgQuE5GFwDeBZ1V1NvCs+xkRmYu3XespwGXA3W6rWIB7gOvw9g2f7Z4HuBZoVNVZwB3A7e5aFcDNwDnAAuDmxOBkDBzrnsp1LY3sLO97OGpBw5h06zNoqOeo+9HvvhS4HFjuypcDV7jHlwMPqWpQVd8DaoEFIjIZKFHV11RVgfu7nBO/1m+AS1wrZDGwQlUbVLURWMGxQGMMkNA95Voa8YULQxY0jEm7lHIaIuITkbXAQbw38ZVAtaruA3DfJ7rDpwC7E06vc2VT3OOu5Z3OUdUI0AxU9nKtUen17Yd54PWdw12NMadrIjwnWwCIRG3IrTHpllLQUNWoqp4J1OC1Gk7t5XBJdoleygd6zrF/UOQ6EVktIqvr6+t7qdrweuSN3dy5YutwV2PM6ZoIj7c0rHvKmPTr1+gpVW0CXsDrIjrgupxw3w+6w+qAqQmn1QB7XXlNkvJO54hINlAKNPRyra71uldV56vq/Kqqqv68pCEVCEVpDUWGuxpjTtdEeDynYd1TxqRfKqOnqkSkzD3OBz4EvAM8DsRHMy0FHnOPHweWuBFRJ+AlvFe5LqwWEVno8hXXdDknfq0rgedc3uNpYJGIlLsE+CJXNiq1hiK0h22mcrp1dE/5OndPha17ypi0y07hmMnAcjcCKgt4RFWfEJHXgEdE5FpgF3AVgKpuFJFHgE1ABLhRVeMD5m8Afg7kA0+6L4D7gAdEpBavhbHEXatBRL4DvOGOu0VVGwbzgodTW8i7DYFQhOI8/zDXZuzoKREesZaGMWnXZ9BQ1XXAWUnKDwOX9HDOrcCtScpXA93yIarajgs6SZ5bBizrq56jQaAjaEQtaKRRPGjkZltOw5hMsxnhQ6jNzVA+GrS8Rjp1HT11bMitdU8Zk24WNIZQwCXBA0Fb3iKdOhLhHaOnXE7DZoQbk3YWNIZQPFjYCKr0CvfQ0rDuKWPSz4LGEFFVAuFjiXCTPj3O07BRasaknQWNIZK4KdBR655Kq2CX0VPx4GHdU8aknwWNIRIfbgsQsER4WnUsWBif3BfPaVj3lDFpZ0FjiAQSgkZryFoa6dQ9EW45DWMyxYLGEEnMY1hLI73C0Ri+LMGX5bUwOkZP2ZBbY9LOgsYQsZZG5oQisY48BoCI4PeJtTSMyQALGkOkU9CwlkZahSKxjiR4nN+XZUHDmAywoDFE2jq1NCxopFMo2j1oZGeJdU8ZkwEWNIZIvKWRJTYjPN2CXbqnwBt+a0ujG5N+FjSGSLx1UVGYay2NNAtHNWn3lK1ya0z6WdAYIvHuqariXMtppFkoEu3W0vByGtY9ZUy6WdAYIvHuqQlFOZ2S4mbwkiXCs31i3VPGZIAFjSHSFoogApWFOdY9lWbJEuE5vixbRsSYDEhlu9epIvK8iGwWkY0i8lVX/m0R2SMia93XRxLOuUlEakVki4gsTiifJyLr3XN3uW1fcVvDPuzKV4rI9IRzlorINve1lFEqEIqS7/dRmJttifA0C0ViHRP64vy+LCK2YKExaZfKdq8R4O9V9U0RKQbWiMgK99wdqvqDxINFZC7edq2nAMcBz4jIiW7L13uA64DXgT8Bl+Ft+Xot0Kiqs0RkCXA78BkRqQBuBuYD6v7tx1W1cXAve+gFwlEKcnwU5WbbJkxpFooqpTmdf5Vtcp8xmdFnS0NV96nqm+5xC7AZmNLLKZcDD6lqUFXfA2qBBSIyGShR1ddUVYH7gSsSzlnuHv8GuMS1QhYDK1S1wQWKFXiBZtQJBCMU5GRTkJNNMBKzkT1p1HVGOEC2L6tjTSpjTPr0K6fhuo3OAla6oi+JyDoRWSYi5a5sCrA74bQ6VzbFPe5a3ukcVY0AzUBlL9cadQIhr6VRmOvzfg5bF1W6hCLRjhVu43JsRrgxGZFy0BCRIuBR4GuqegSvq2kmcCawD/hh/NAkp2sv5QM9J7Fu14nIahFZXV9f3+vrGC5t4Sj5OT4KXDeK5TXSJ1ki3OuespyGMemWUtAQET9ewHhQVX8LoKoHVDWqqjHgJ8ACd3gdMDXh9BpgryuvSVLe6RwRyQZKgYZertWJqt6rqvNVdX5VVVUqL2nIdW1pWF4jfXpKhFtLw5j0S2X0lAD3AZtV9UcJ5ZMTDvsEsME9fhxY4kZEnQDMBlap6j6gRUQWumteAzyWcE58ZNSVwHMu7/E0sEhEyl331yJXNup4o6eyKYy3NGzYbdoknRGebUHDmExIZfTU+cDVwHoRWevK/hn4rIicidddtAP4OwBV3SgijwCb8EZe3ehGTgHcAPwcyMcbNfWkK78PeEBEavFaGEvctRpE5DvAG+64W1S1YWAvdXgFQhEKcnwUuJZGq3VPpY2XCPd1KvPbgoXGZESfQUNVXyZ5buFPvZxzK3BrkvLVwKlJytuBq3q41jJgWV/1HOkCoSiFud6QW+9na2mkiy2NbszQsRnhQ6TNdU/FE+GW00iPWEwJRWPk+ZN1T1lLw5h0s6AxBFS1o3uq0Lqn0iro5mLkZnfunrIht8ZkhgWNIRCMxIgp5Of4KMnzA3CkPTzMtRobghEv+Hadp+FtwmRBw5h0s6AxBOKr2hbk+CjI8ZGbnUVDa2iYazU2xFsaef4uiXAbPWVMRljQGALxpHdBjg8RoaIwx4JGmrSHk7c04vtpeCO3jTHpYkFjCLSHO38atqCRPh05DX/XZUS8AX+20q0x6WVBYwgc63c/FjQOW9BIi2A8IHdJhPvdAobWRWVMelnQGAJdPw1XFubQ0BocziqNGR0B2d99lVuAcMRaGsakkwWNIRD/NBzvd68ozKXhqLU00qE93NOQW697yrZ8NSa9LGgMgfgbV/yNrbIoh9ZQtCOJawaupyG38e6pSMyChjHpZEFjCAS7jPApL8gBoDFgrY3B6nHIrXVPGZMRFjSGwLFZy/HuKS9oHLYuqkHrcXKfdU8ZkxEWNIZA16UuKou8oGHDbgevI6fRbcitjZ4yJhMsaAyBriN84i0NCxqDF+/662nIbcQWLTQmrSxoDIFQl+6pynj3lAWNQetpcp/f3WvrnjImvSxoDIH4G1t8z4eSPD++LLG5GmnQ05Db+Pav1j2VOlWlrjEw3NUwI1wq271OFZHnRWSziGwUka+68goRWSEi29z38oRzbhKRWhHZIiKLE8rnich699xdbttX3NawD7vylSIyPeGcpe7f2CYiSxmF4vM04v3sWVlCeYHfuqfSIBiJ4vcJvqzue4SDBY3++OP6fVz4/RfY19w23FUxI1gqLY0I8PeqejKwELhRROYC3wSeVdXZwLPuZ9xzS4BTgMuAu0Uk/jHwHuA6vH3DZ7vnAa4FGlV1FnAHcLu7VgVwM3AOsAC4OTE4jRbBSJTsLOmYpQy2/lS6BCOxbq0MsKAxEOvqmonGlHcPtg53VcwI1mfQUNV9qvqme9wCbAamAJcDy91hy4Er3OPLgYdUNaiq7wG1wAIRmQyUqOpr6i09en+Xc+LX+g1wiWuFLAZWqGqDqjYCKzgWaEaNUCTWbUioBY30CEai3e4tJHZPWSI8VbUHjwKwq8G6qEzP+pXTcN1GZwErgWpV3QdeYAEmusOmALsTTqtzZVPc467lnc5R1QjQDFT2cq1RJRiJkdtl8lllYa4lwtOgPdw9IIMNuR2IbQdbAAsapncpBw0RKQIeBb6mqkd6OzRJmfZSPtBzEut2nYisFpHV9fX1vVRteAQj0Y43sbjyQr9N7kuDYCTWbTY4JCxYaEEjJYFQhLpGL5ex24KG6UVKQUNE/HgB40FV/a0rPuC6nHDfD7ryOmBqwuk1wF5XXpOkvNM5IpINlAINvVyrE1W9V1Xnq+r8qqqqVF7SkPJaGp1vdU15Ac1tYZrbbNvXwQiGox2j0hJ1dE/ZMiIp2V7fiir4soTdNoLK9CKV0VMC3AdsVtUfJTz1OBAfzbQUeCyhfIkbEXUCXsJ7levCahGRhe6a13Q5J36tK4HnXN7jaWCRiJS7BPgiVzaqBJN0ocysKgJge/3R4ajSmNGepOsPErqnbMHClMTzGfOmlVv3lOlVKi2N84GrgYtFZK37+ghwG3CpiGwDLnU/o6obgUeATcBTwI2qGl/O9Qbgp3jJ8XeBJ135fUCliNQCX8eNxFLVBuA7wBvu6xZXNqqEot1H+MyoKgS8T3hm4ILhKHlJWxrxBQstaKRi28EWfFnChSdW0RSwFrDpWXZfB6jqyyTPLQBc0sM5twK3JilfDZyapLwduKqHay0DlvVVz5Es2Qif4ysKyM4S3rWWxqAEIzFK8v3dyuMzwm30VGq2HTjK9MoCZkzwPszsbghQOqV0mGtlRiKbET4EguFYt353vy+L4ysLrKUxSMEkw5kBsrNsldv+qK0/yqyJRUytKACwmeGmRxY0hkBPb2wzq4qspTFIwXBP8zRs9FR/HD4aYlJJHsdXekHD8hqmJxY0hoDXPdU9WTujqpCdhwNE7I1twHoacuvL8pYWsVVuUxMIRSjIzaYkz09Zgd+ChumRBY0hEEoy5Ba8lkYoGusYH2/6r6cZ4eANu7WWRt9CkRjhqFKY4wXfyaX57G9uH+ZamZHKgsYQCEZi3Sb3AcyMj6A6ZF1UA+UNZ+7e0gDwZ2VZTiMFbSFvcGNBjjcuprzAT2PARk+Z5CxoDIFkk/vg2FyNJ9fvx5uWYvqrPRIlL8m9BW8ElbU0+tYaigBQmOsF3/LCHNu/3vTIgsYQ8JK13T8NlxXk8LfvP4Ffr6njX36/YRhqNrpFY0o4qj23NHyW00hFwAWNTi0NWxfN9MCCxhDwJvclv9Xf+ujJfO6c43lw5S77Q+2nUA+79sX5fdY9lYrWoNc9FW9pVBTk0NwWJhqzgGu6s6CRYX19GhYRFp0yCYCtB1qGsmqjXnvH/uDJf41zfFkdgcX0rLVLS6OsIIeYwhGbFW6SsKCRYaEuW70mc1J1MQBbLGj0y7H9wZMH5JzsrI5jTM8CwXgi3LU03B72ltcwyVjQyLBgxPuD7Kl7CqC6JJeSvGy27Leg0R993ds8v6+jNWJ61r2l4S3LYkHDJGNBI8OCffS7g9dFddKkYuue6qeOe9tD11+eP8uCRgoCoS45DdfSaGi17inTnQWNDAv18cYWd2J1MVv2t9jQ237oyGn0EJDz/T7aw9Y91ZdAt3ka1j1lemZBI8NS6Z4CmDOpmCPtEQ4cCQ5FtcaEvlsa1j2VikAw3j11bJ4GYKP5TFIWNDIs/km3t0Q4eC0NgHf297aTrkkUDPfe9Zfn99EesaDRl9aQt/thfJHHwhwfOb4smxVukrKgkWHHPg2nFjQsGZ66Y0Nue25ptIWse6ovgVCkY90p8HJsZTbBz/Qgle1el4nIQRHZkFD2bRHZ02Unv/hzN4lIrYhsEZHFCeXzRGS9e+4ut+UrblvYh135ShGZnnDOUhHZ5r7i28GOKse6p3rPaZQX5jChKJdtB20dqlT1Ncggz59F0Lqn+tQajHbkM+IqbCkR04NUWho/By5LUn6Hqp7pvv4EICJzgSXAKe6cu0Uk/m55D3Ad3p7hsxOueS3QqKqzgDuA2921KoCbgXOABcDNbp/wUaWvWcuJZk0stP01+iGlIbfWPdWnQCjSkc+IKyvwW9AwSfX5TqaqLwGp7st9OfCQqgZV9T28vcAXiMhkoERVX1NveND9wBUJ5yx3j38DXOJaIYuBFaraoKqNwAqSB68RLf5pONkqt13NmlhE7cGjNoIqRfF7m2w/DfC6rcJRtf1K+tAailKQm6ylYTkN091gchpfEpF1rvsq3gKYAuxOOKbOlU1xj7uWdzpHVSNAM1DZy7VGlWNvbCkEjaoiWtoj1LfYCKpUxHMaPbU08nO88nabFd6rti45DfCWErGchklmoEHjHmAmcCawD/ihK5ckx2ov5QM9pxMRuU5EVovI6vr6+t7qPeSC4dRyGgCzJnrJ8FrLa6QklSG3gA277UPSnEaBl9OI2aKFposBBQ1VPaCqUVWNAT/ByzmA1xqYmnBoDbDXldckKe90johkA6V43WE9XStZfe5V1fmqOr+qqmogLyljUh09BV73FECt5TVSEg8GPQ1njo+qsqDRu0Ao0jEbPK6swE9MoaU9Mky1MiPVgIKGy1HEfQKIj6x6HFjiRkSdgJfwXqWq+4AWEVno8hXXAI8lnBMfGXUl8JzLezwNLBKRctf9tciVjSqpzggHbw2qotxsa2mkqC3kbfXqy0rWKD02+MCCRu9aQ8lHTwE0WDLcdJHd1wEi8ivgImCCiNThjWi6SETOxOsu2gH8HYCqbhSRR4BNQAS4UVXjf7E34I3EygeedF8A9wEPiEgtXgtjibtWg4h8B3jDHXeLqqaakB8xgimschsnIsx0yfDt9UeZUJxLSZ4/01UctdrC0W6jfhLld3RPWU6jN4Fg95xGPGgcPhrkhAmFw1EtM0L1GTRU9bNJiu/r5fhbgVuTlK8GTk1S3g5c1cO1lgHL+qrjSBYfFppK0AAvGf6HdXv50I9e5ONnHMedS87KZPVGtUCST8iJLKfRt1hMCSQJvhOKcgE4dNQGZZjObEZ4hgUjMfw+6bELpauTJxcTisQoK8hhxaYD9obXi7ZQlPxeWhp51tLoU3skiirdhtxOLPaCRv1R654ynfXZ0jCDE4rEUspnxF197jTOnFpGIBTlmmWreHFrPYvdzn6ms2ST0hLFhzm3WeDtUcey6Em6p0Sw4d+mG2tpZFgwEk1p5FRcbraP+dMrOHdmJWUFfp5cvy+DtRvdAqFojxP7IDGnYUGjJ8d27ev8+THbl0VFQY51T5luLGhkWDAcSzmfkcjvy2LR3Gqe2XywIy9iOusrEW45jb7Fd+3rOuQWoKo411oaphsLGhkWjMT61dJIdMHsKo4GI7x7sDXNtRobvER4z0GjY8itzQjvUaDLVq+JJhRZ0DDdWdDIsPZwtF85jUTTKgsA2N0YSGeVxoy2UJR8fwqjp0LW0uhJa7DzVq+JqopzrXvKdGNBI8PawtGkf5CpOL7CBY0GCxrJ9JUIt5xG33pvaeRQ3xK0BTRNJxY0Mqw1GOl1LkFvSvP9FOdmW9DoQV85Db/Pmy1uy6P3rLUjEZ68pRGMxDgatKVEzDEWNDKsr3733ogIUysK2N3YluZajX6xmNIejvU6TwMgLzvL5mn0IuBaYcnuY1V8roblNUwCCxoZ1hqKUJg78OkwUyvy2WUtjW7icy/yexlyC27LV+ue6tGRNm/PjGTL1RybFW4T/MwxFjQyLBAceEsDYGp5AbsbAtav3EV8Ulpf9zbP77OcRi+a28Lk+bOSznexloZJxoJGhg22pXF8ZQHBSMz+cLtoC8W7VXq/t94+4dY91ZOmQIiy/Jykz8VbGvUt7UNZJTPCWdDIoKjrdx9sSwNs2G1XgXB81I91Tw1Gc1uYsoLkKymXF+Tgy5KO7qlgJGqtNmNBI5Pib1aFAxw9BTC1Y9itJcMTBUI9J3ATWfdU75oCYUrykwcNX5ZQWZjT0cq9/oE1fPp/XrPd/MY5CxoZFHBDFft6Y+tNTXk+gCXDu4h3TxX0kQjPt6DRq+a2MGU9BA3w8hrvHWpl5+FWnt9Sz7q6Zh57e88Q1tCMNBY0Mqg11PNs21Tl+X1Ul+Ra0OjiWCK875yGDbntWVOg5+4pgI+ePplVOxr459+tJ0tgRlUhP3h6K/e+9C4vbDk4hDU1I0WfQUNElonIQRHZkFBWISIrRGSb+16e8NxNIlIrIltEZHFC+TwRWe+eu8tt+4rbGvZhV75SRKYnnLPU/RvbRCS+Jeyo0RrsebZtf5xYXczmfUfSUaUxo62X+QWJcq2l0Ssvp5E8EQ7wN+efwOTSPF6pPcxFJ03kO5efyp6mNv7fn97h5sc3DmFNzUiRSkvj58BlXcq+CTyrqrOBZ93PiMhcvO1aT3Hn3C0i8b/qe4Dr8PYNn51wzWuBRlWdBdwB3O6uVYG3tew5wALg5sTgNBoc26tgcEHjtCmlbNnfYm9+CdpCqXX95WVb0OhJezhKWzhKaS/dU3l+H3+/6CQAPrvgeM6fNYGX/vGDLDl7KodsRN+41GfQUNWX8PbuTnSArOf3AAAgAElEQVQ5sNw9Xg5ckVD+kKoGVfU9oBZYICKTgRJVfU29CQf3dzknfq3fAJe4VshiYIWqNqhqI7CC7sFrRIsvO10wiO4pgNNrSonElHf2t6SjWmNCINWcRk6WrXLbg/jEvt6CBsCn3jeFp752AR86eSLgDQOfWlFAa8hGU41HA81pVKvqPgD3faIrnwLsTjiuzpVNcY+7lnc6R1UjQDNQ2cu1Ro22dLU0asoAWF/XNOg6jRUpj56ylkaPmlzQ6C2nAd5yNnMmleB6lAGoLPS6tA632mzx8SbdifBkG2FrL+UDPafzPypynYisFpHV9fX1KVV0KBzLaQyupXFcaR6VhTmsq2tOR7XGhLZQlCyhz71K4vM0bEZ9d83xoNHD5L7eVLig0WBLjIw7Aw0aB1yXE+57fBhFHTA14bgaYK8rr0lS3ukcEckGSvG6w3q6Vjeqeq+qzlfV+VVVVQN8SemX6lIXfRERTqspZf0eCxpx3kKQ2Z0+/SaT589CFUJR66LqqimQWvdUMpXxdalaLa8x3gw0aDwOxEczLQUeSyhf4kZEnYCX8F7lurBaRGShy1dc0+Wc+LWuBJ5zeY+ngUUiUu4S4Itc2ahxbCvNwXVPgZcM33bwaEeX13jXFo6kNP/l2JavFjS6agp4rYS+uqeSmVDkuqespTHu9PluJiK/Ai4CJohIHd6IptuAR0TkWmAXcBWAqm4UkUeATUAEuFFV4+9yN+CNxMoHnnRfAPcBD4hILV4LY4m7VoOIfAd4wx13i6p2TciPaIFgal0oqTjluBKiMaX24FFOqylNQ+1Gt1SXnI8HjWA4CgP4RD2WxbunSgcQNDq6p6ylMe70GTRU9bM9PHVJD8ffCtyapHw1cGqS8nZc0Eny3DJgWV91HKlaQxEKU+hCScVxZd7M8H3NbRY08IJGX8uiw7GgYetPddfcFsaXJRQPoCVclJtNTnaWtTTGIZsRnkGBYHTQw23jJpXmAXDgiK04Ct4cg9S6p7Lc8dY91VVTIExJ3sA+1Ih461LZ6Knxx4JGBgXC0UEPt42bUJhLdpawr9mCBqTePVXsNhdqaQ9nukqjTlMfs8H7UlmUw+Gj1j013ljQyKBAMJK2lkZWllBdksd+a2kA8e6pvgNyZUffu30i7qopEBrQyKm4ysJcu6/jkAWNDGoNRShI4Y0tVdUluey3lgbgLSOSSkuj3IJGj470spdGKioLc2wr2HHIgkYGBULpy2kATC7Nt5aGk2r3VIXrfmkI2JtbV01t4cG1NIpyOGyjp8YdCxoZ1BqMpC2nAXjdU83tNrsZb0Z4Konw/Bwfef4sGq2l0U1ToPe9NPpSWZRLezhGwM1HMuODBY0MSvXTcKoml+YRCEVpCY7vP1JVJRBO/d5WFOTQ0GqJ8ETt4SjNbWGqinMHfI34XA0bdju+WNDIoNZgJC2zweOq3bDb8Z7XaAtHicY05XtbUZRDo3VPdVLX6G0fXOP2oB+Ijlnh1oobVyxoZFBbPz4Np2KyBQ0A9jZ5b3jHleandHx5QY4lwrvY4+7hlPLU7mEylYVeK8WG3Y4vFjQyJBSJEY6m/mk4FZNKLGjAsU/Jqb7hVRRaS6OrukZv++ApZYMIGq6lcciCxrhiQSND4snBVJa6SNXEEu+T3XgfQdXxKTnFN7zyghxbwruLPY1tZLu5PwMVz4ccPGJBYzyxoJEhrfENmNI45DY320dlYc64nxXe3ze8isIcWoIRQraDX4c9TW1MLsvDlzXwddFys32UFfg5aNu+jisWNDIk0LEBU/q6pwAml+V1dC2MV3ua2phUmvobXnyUT5N1UXWoa2yjpmzgSfC46uI8Ww9tnLGgkSHxZaeL89IbNE6bUsrbu5uIxcbvXI09jW396ovvWMbbgkaHPY1tg0qCx00sybWWxjhjQSND9roupOMGkWhMZt60Co60R6itP5rW644me5v694ZXXmBLiSQKRWIcaGmnJg1Bo6o4l4PW0hhXLGhkSHxYaHyYbLrMn1YOwBs7RtV+VGkTjsbYf6SdmgG0NBptgh/g7cmiOriRU3HVJXnUHw2O65bveGNBI0P2NbVRkpfdsTR3ukyrLGBCUS5rdjSm9bqjxf7mdmLavxac7TLXWX+HLPdmYnEu4ajakOZxZFBBQ0R2iMh6EVkrIqtdWYWIrBCRbe57ecLxN4lIrYhsEZHFCeXz3HVqReQut484bq/xh135ShGZPpj6DqU9Te1p75oCb/Ob+dPKeWPn+GxpDGRSWnwlV1tKxLPHBY2pg5gNHhcfwWZ5jfEjHS2ND6rqmao63/38TeBZVZ0NPOt+RkTm4u3/fQpwGXC3iMTHo94DXAfMdl+XufJrgUZVnQXcAdyehvoOib1NbRkJGgDzp5ezu6FtXI5aib/h9adrxe/LoiQv2z4NOzsOt+LLko7dIAdjopurMR5/F8erTHRPXQ4sd4+XA1cklD+kqkFVfQ+oBRaIyGSgRFVfU2/51vu7nBO/1m+ASyQdG24Pgb3NbRxXlt58RtxZx5cBsL6uOSPXH8niLY3+BuSKQltKJG7L/hZmVhXi9w3+z99aGuPPYH9rFPiziKwRketcWbWq7gNw3ye68inA7oRz61zZFPe4a3mnc1Q1AjQDlV0rISLXichqEVldX18/yJc0eIFQhKZAOGMtjVlVxQBsPzT+RlBt3NtMTXk+ef2caV9VnDvuZ9LHbd53hJMnl6TlWsdmhdu9HS8GGzTOV9X3AR8GbhSRD/RybLIWgvZS3ts5nQtU71XV+ao6v6qqqq86Z9zeJu8PKB2jU5IpLfAzoSiXdw+2ZuT6I5Wqsuq9Bs45odvnhj7NrCqi9uD4C7JdNQfC7G1uZ86k9ASNPL+Pkrxsa2mMI4MKGqq6130/CPwOWAAccF1OuO8H3eF1wNSE02uAva68Jkl5p3NEJBsoBUZ8BvjYcNvMBA2AmVWF426uxraDR2kMhDlnRkW/z51dXUxDa2jcr8j6zv4jAJw8uTht16wuGT2zwrceaOHf/rCRv/rZKl7aOvy9EqPRgIOGiBSKSHH8MbAI2AA8Dix1hy0FHnOPHweWuBFRJ+AlvFe5LqwWEVno8hXXdDknfq0rged0FGxb17F0d4ZyGgAzJ3qfnEfB7UibldsPA7BwAC2NE6uLANh6YHwF2q4274sHjfS0NGD0zAqPxZS/+fkb/HLlLjbtPcI1y1bx38/XDne1Rp3BtDSqgZdF5G1gFfBHVX0KuA24VES2AZe6n1HVjcAjwCbgKeBGVY26a90A/BQvOf4u8KQrvw+oFJFa4Ou4kVgj3d6mNrKEQa0g2peZVUU0t4XHRXI3GlOCkSivv9fA5NI8plb0vwU3e6L3yXrbwZZ0V29UeWd/C+UF/o5RT+lQXZzHgVGwiOaaXY3UNbZx+6dO56VvfJBzZ1Tyy5W7hrtao86AF0ZS1e3AGUnKDwOX9HDOrcCtScpXA6cmKW8HrhpoHYfL3uZ2qkvy0jI6pSezJnqfnN+tb6WyKH1vACPRbU9u5oHXdyIIi0+pZiAD6KpLcinOy2brgfEdNDbvb+HkySUDuoc9mVFVyG/f2kNLezjtk1nT6bG1e8j3+7h0bjV5fh/vnz2B7z+9ZcTXe6SxGeEZsONQa8aS4HEzqwoBeHcc5DWe2rifkjw/MVUWnzJpQNcQEU6sLh7X3VPhaIyt+1vSlgSPi19vJAfkcDTGH9ft49K51R0bo51YHW99jt/fiYGwoJFm7eEo6+qaed+08r4PHoTjSvPJ82eN+RFBuw4H2N3QxpcunsWW736YD582ecDXOrG6iG0HWsZNHuitXY088saxUe5/2VZPWzjK+bP6nxPqzRyXVN+8b+QGjRe31NMYCPPxM47rKDvJBY2t+0duvUciCxpp9vbuJkLRGAum93+ET39kZQkzJhSN+U9Jr7x7CIDzZk4Y9LVmTyymMRDm0DjZxe+WJzbxjUfX8fw73gDGx9bupTTfzwWz0zssfUpZPsV52R0js0aiX6zcSXVJLheedOy115Tnk+/3sWUEt5BGIgsaaRZffXb+9My2NADOPL6MNTsaCEaifR88Sr1ce4hJJXkd3XGDMWeS98ly/Z6mQV9rpNt5uJW3djWRnSV849F17DzcyopNB/jIaZPJyU7vn72IcPKkEt4ZoS2NnYdbeXFrPZ9dcHynPGNWlnBiddGQd6s1t4X58q/eYu3u0fl7aEEjzVa+18CcScWUuT0cMunSk6tpDUV5ffuIn7oyILGY8mrtIc6fNSEtidt508spys3m6Q0H0lC7ke2xtd5Upx9/fh7NgTCX/PBFAqEol595XB9nDsycycW8s39kdv39cuUuskRYcvbx3Z47sbqYLfuHtrV+9/O1/OHtvdz44Jsdm7WNJhY00igSjbFmZyMLTshs11TcuTMryff7eGbT2HwTfHNXI42BMBfMHnzXFHh7Wl88ZyJ/3rSfSHTs7heuqvx+7R4WnFDBh+ZW88evvJ8PzpnI2dPLM9ZtOmdSCUeDkY5l14dLNKbsbji2HXJ7OMojq3ezaG510gUaT5pUzKGjwUFN+gxGoqx6ryGlgFnXGOBnr+7g7Onl7D/Szr8+tmHA/+5wsaCRRhv3HiEQinJ2hvMZcXl+Hx84cQLPbD4wIj/hDdavV9dRkOMNkUyXD586icZAmFXvjc3WGcB9L7/H9vpWPnmWt4Tb7OpifnLNfH59/Xlkpbiven8dS4YPb17jxy++y0U/eKEjv/Kn9ftoDIS5euG0pMfHR1Bt2Duweqsq3/jNOj79P69x17PeRMFoLxtS/ejPWwH4jyVn8aUPzuKxtXt57d3DA/q3h4sFjTSKJ20Xzkjv6JTefOjkavY1t7N+z9ha8TYQivDEur189LTJHUMk0+GikyaS7/fxpw370nbNkeTRNXV894+b+chpk7hq/tS+T0iTOZOKKczx8fjbe/s+OENCkRjLX91BNKb84OktADzw+k5mVBVy7szkf5PzppVTWZjD3c/XJv3gFY7GOi2RsrepjeffOdgxqfbBlbt4bO1eZkwo5I5ntnLR959n9rf+xMf+82XueeFdjgYjHedu2NPM79bu4W/OP4HjyvK54aKZTCnL5ztPbOo10Iw0FjTS6NXaw8yZVNyx8udQuHRuNQU5Pn72yo4h+zcz7b1DrfzkpfdoDUXT/saXn+Nj0SnV/O7NPRwaY+tQrd7RwDd/u47zZlZyx2fOxJehVkUyBTnZLD1vOn9cv2/Y5ms8uWEfB1uCvH/WBJ7ZfJCbfruet3Y18flzpvWYEyvMzeZrH5rNyvcaeGbzwU7PqSpffPBNLvr+C9Q1Brj7hVrOu+05/vrnb3D9A2vYeqCFW57YxIUnVvHk1y7g8wuPZ1plIde+/wRysrO4/al3uOD251iz0+u6+vcnN1OW7+eGi2YCXk/BNz88h037jvD1R9aOmpWCLWikSXs4yhs7GtIyNLQ/ygpy+N8Ljufxt/ey63Cg7xNGuIdW7eKDP3iBO57ZyoyqQs7OwCi0r1wym/ZIjP96buysO7T1QAvX/2INU8ryuedz88jN7t/S8enwhQtmUOD38b2nthCKDH3O6Oev7mDGhEJ+fPU8JpXk8fAbuzh7ejlXzq/p9bwlC45nRlUh//7kZsIJua4nN+xnxaYDtIWjfP3ht7ljxVY+dPJE/nHxSaza0cCV97xKYY6P7191OrnZPr57xWks/5sFfOujc3n0hvN47MbzKSvI4a9/9gZfuH8Nr9Qe5ssXz6Y0/9js8/91+mS+9MFZPLl+P4vufIk3d438bZwtaKTJmzsbCUZiaZ84lYovfGAGPhHuefHdIf+30+nlbYf4l99v4ILZE/j19efy6PXnpXW5i7iZVUV8ev5UHly5k+1jYEb969sP86l7XkVE+OnSsyktGJ4lMcoLc7jhopk8s/kAi+98iQ1D2GX6zv4jvLWric8tnEZRbjYrvv4B1n97Mb++/jxK+lgixO/L4qYPn8z2+lYecpMhDx0NcvPjGzl1SglfuWQ2q3Y0UJibzW2fOp0vXjSTS+dWc6Q9wnevOI2JxcnXmDtjahkPXLuA/BwfL22r5xuXncTS86Z3OkZE+IfFJ/HU1y6gLN/P536ysmNhzpHKgkYvHnh9J1f89yusq+t5PHVbKMpDq3bx6zV1+LKEc4YwnxFXXZLHx844jifW7R1VfaOJmgIhvvbwW8yoKuTuz72Ps6dXUF6YuWHLX/vQbApysvnig28SCEX6PmGEag9H+epDb1FVnMvvbzy/Y02y4XLjB2fxs786m7ZQlK889Bbt4aGZQ/Tomjr8PuETLvlfnOfvVy7sQydPZMEJFdy5Yis7D7fylV+9xZG2MN/71Bl88aKZXHbKJL5/5RlMKMpFRLjjM2fyyy+cw0dP732FgpryAp748gW8+I8X8cWLZvXYZTijqohfX38ek0vz+NrDa0f0UFwLGj14cv0+/vWxDWzY08yn7nmVq+9byS1/2ERLe+f/zDuf3co3f7ue3721h/cdX0ZRGpO2/XHRSVW0tEdGZUI8FlNueWITTYEwd37mrCFZPK66JI+7PnsWWw608H9/vzHj/16mPLhyFweOBPnuFadmfL2zVIgIH5wzke9deTrb61v5z+e2ZfzfDEdj/O6tvVw8ZyIVA/ygISL8y0dPprktzIXff4FX3z3Md684lbnHlZDn9/Hjq+d1GsVXlJudcld0VXFuSnvrVBXncsdnzuRgS5Av/+ot/vv5WmpH4KrMw/MON4K1tIf54Z+38sDrOzlrahn3fH4edz6zjc37jrD8tR28UnuIny6dz9SKAnY3BPjZKzv42BnH8cmzpjCzavg+5Z3nRoe8UnuIM6eWDVs9+iMWU778q7d4csM+YgpfvngWc49L72J6vbnwxCquu2AG9/5lOzd+cCYzhvH/L1WqytFghOI8P82BMPe8UMv5syqHPJfWlw+cWMWV82r47+ffxZeVxVcvmZ2RxPzL2w7x5IZ9HDoa5Mp5gxs0cXpNGSu+fiErNu0nz+8b0tFncWdMLeMfFp3E955+h5e21nP387V866NzaWoLcfb0iiEbzt8bGWvj++fPn6+rV68e8Plff2Qtv39rD59dcDzfWDynU//wy9sOccODa8jNzuLmj53Cr1btYs3ORl74x4syuktfqj78H3+hvMDPL7+wcLirwpH2MHnZPtojUfY2tbG+rpmYKlPKCjhnRgV+XxbLX93BzY9v5NPza5g3rZxPnFWT9iUu+lLfEuT8257jqvk13PqJ04b03+7LrsMBHly1k6qiXK44awrvHjzKnc9s47Xth/nQydVsPdDC3qY2fnPDeSPyg0J7OMq3freBR9+s4+NnHJfyiK4Xt9bzuzfrqD8a5LjSfD582iQuntN9rs4f1+3jxl++SZZ4E11//tcLMrodwVBqD0c53BriuvtXs9HNIckS+PLFs5lRVciJ1cUdG2kFI1Ge2rCfC0+sGtRKFCKyRlXn93mcBY1jDhxp5/zbnuPzC6fx7Y+fkvSY2oNHuXb5G+w8HCAnO4tvfeTkbsmt4XLrHzex/NWdvH3zIvJzhn70DHgttb9/5G3+3Mss9YnFuZxeU8rLtYdYOKOSn/3V2RlJeKfqn36zjt+v3cPL/3TxkA6X7kkoEuMHf97CT/+yHRHplKcqL/DzkdMm89javRTnZfNf//t9zMvwisqDoarc8+K7fO+pLXx6fg3//snTew0cWw+08LH/fJnivGymlHut+aZAiAeuPYcpZfms2tFAMBKjLRThzme2MWdSMQ/+7cJh+33PtPZwlA17mqkpL+Df/rCRJzfs73ju9JpS/mHRSdz/2g6e2XyQ4rxsrr9wJl+8aOaA/p7GVNAQkcuA/wB8wE9V9baejh1M0Pj+0+9w9wvv8sI/XMS0yp4XyGtsDfHcOwe5eM7EjCZr++uFLQf5q5+9wXcuP4Wrz51OQ2uI8gJ/r79AwUiUx9bu5fV3D3PG1DLed3w5MycWUpDTv55LVeWFLfXc8sQmdjUE+Nv3n0BRbjZ5fh8TS3I55bhS8vxZbNp7hEdW72ZvUztVxbl878rTM7rDYSpqD7Zw2Z1/obokj3/92FzOm1nZkVdR1SENaCu3H+bbf9jE5n1HWHL2VP7PpSdy4Eg7f9l2iFkTizh3ZiUleX6OtIfxiaR14mMm/WjFVu56dhsXz5nIJ983hfqWIBfPmci0ykIi0Rh/2XaIHYdbeWjVbg4dDfLU1z5AVXEurcEIn7j7FfY0ttEeiXUKoDXl+Tx6w3nD/vszVFSVHYcDRKIxXqk9xH2vvMfuBm/Zlq9eMpuNe4/gy4L/ubrP9/2kxkzQEBEfsBVv69g64A3gs6q6KdnxAw0abaEo5972LAumV3DvNQO76cMtGIny+Z+u5I0djUwpy2dPUxsXz5nI9RfOZPlrO2gNRmgPR9m8r4VzZ1Ty0dMnc9uT77CnqY2SvGyOtHujiPw+4XPnTOPCE6toaA0RTfI7kiXCCRMKmVKWz97mNu5YsZW/bDvE9MoC/v2Tp/c4A3ekWrOzgb9/5G12HA6QJfDJ99Vw2pRS7np2G6FIjKqSXKqL85hYkkt1SR4Ti3OZP72CM2pKqW8JsrsxwL7mdtbVNVNekMNHT5vMpn3N7G9uJ9fvY39zO9lZwrxp5RTkZrs3P2XGhCLaI1EefmM3z2w+wIY9R5hcmse/ffwUFg1ww6mR6hev7+Tmxzd2euOvLsklHNWOGda52Vn8+PPz+OCciR3HvHeolRt+sYbzZk7gcwuPpzg3m5zsLIpys8keI91RA9EejnLfy+9RVZTLp8/28i+hSGzAXbxjKWicC3xbVRe7n28CUNV/T3b8QIPG/uZ2/u9jG/jCBTOGbMHBTAhHY/z387Wsq2tmemUhy1/zllUoK/BzfEUBIsKMCYX8af0+gpEYM6sKufljp3DB7Ansbmhj075mXthSz6/X1PVr+G5pvp+vXjKbzy+cNuR5iXRpD3sLzz2/5SC/eH0n4aiy4IQK5k4u4WBLOwePBDngvgfd5LXivGxa2o8N2c3xZRFKshhivLGS7M8tS0CB+dPKWXzKJD53zrQx292yvf4ogVCUkjw/T27Yx/b6VsKxGItPmcSC6RXk+X1j9rWPdGMpaFwJXKaqf+t+vho4R1W/lHDMdcB1AMcff/y8nTt3DktdR6KV2w+zemcjn184rdNM1O31R3lt+2E+9b4a8vzd/0jrGgMcONJOZWEu2b7u3TPhqLL1QAuHjgYpys0edBJupNl5uJU9TW2cO6OyW/eUqvfJeMWmA6zZ2cicySXMqCpkYnEusycWs6uhlRe21HPalFJmTSwiGIlRWZRDeyjGuj1NhKMxskRQhS0HWmgLRblyXg1TKwqG6dUaM7aCxlXA4i5BY4GqfjnZ8YMdPWWMMeNRqkFjNPQj1AGJA6ZrgOFbStMYY8ax0RA03gBmi8gJIpIDLAEeH+Y6GWPMuDTix+upakREvgQ8jTfkdpmqjt51H4wxZhQb8UEDQFX/BPxpuOthjDHj3WjonjLGGDNCWNAwxhiTMgsaxhhjUmZBwxhjTMpG/OS+/hKRNiCdo6tKgUzsbDQBOJSG66S7fpl4vem+ZrruXdxIv4fj6f7ZvRue600AClW1qs8jVXVMfQH1ab7evRmq5+qRWL9MvN4M1DEt92603MPxdP/s3g3P9frzusZi91TPG3oPzB/SfL10S3f9MvF67R6OrOulWzrrZ/duZF2vm7HYPbVaU1g/ZbiNlnqORHbvBsfu38CN1XvXn9c1Flsa9w53BVI0Wuo5Etm9Gxy7fwM3Vu9dyq9rzLU0jDHGZM5YbGkYY4zJEAsaaSIiU0XkeRHZLCIbReSrrrxCRFaIyDb3vdyVV7rjj4rIf3W51mdFZL2IrBORp0RkwnC8pqGS5nv3GXffNorI94bj9Qy1Ady/S0VkjfsdWyMiFydca54rrxWRu2QoN0gfBmm+d7eKyG4ROTpcr2dIpHO413j+AiYD73OPi/H2NZ8LfA/4piv/JnC7e1wIvB+4HvivhOtkAweBCe7n7+Ftdzvsr3EU3LtKYBdQ5X5eDlwy3K9vBN6/s4Dj3ONTgT0J11oFnAsI8CTw4eF+faPo3i101zs63K8rk1/W0kgTVd2nqm+6xy3AZmAKcDnemxfu+xXumFZVfRlo73IpcV+F7lNeCWN806k03rsZwFZVrXc/PwN8KsPVH3YDuH9vqWr8d2ojkCciuSIyGShR1dfUexe8P37OWJWue+eee11V9w1l/YeDBY0MEJHpeJ9IVgLV8V8k931ib+eqahi4AViPFyzmAvdlsLojymDuHVALzBGR6SKSjfeHPrWPc8aUAdy/TwFvqWoQ782yLuG5Olc2Lgzy3o0bFjTSTESKgEeBr6nqkQGc78cLGmcBxwHrgJvSWskRarD3TlUb8e7dw8BfgB1AJJ11HMn6e/9E5BTgduDv4kVJDhsXwyvTcO/GDQsaaeTe8B8FHlTV37riA67Zj/t+sI/LnAmgqu+6LoJHgPMyVOURI033DlX9g6qeo6rnAluAbZmq80jS3/snIjXA74BrVPVdV1wH1CRctoYx3jUKabt344YFjTRx+Yf7gM2q+qOEpx4HlrrHS4HH+rjUHmCuiMQXDrsUr591zErjvUNEJrrv5cAXgZ+mt7YjT3/vn4iUAX8EblLVV+IHu26YFhFZ6K55DSnc89EsXfduXBnuTPxY+cIbzaN43Ulr3ddH8Eb0PIv3ifdZoCLhnB1AA3AU71PeXFd+PV6gWIe3lkzlcL++UXTvfgVscl9Lhvu1jcT7B/wL0Jpw7FpgontuPrABeBf4L9wE4LH6leZ79z33uxhz37893K8vE182I9wYY0zKrHvKGGNMyixoGGOMSZkFDWOMMSmzoGGMMSZlFjSMMcakzIKGMUNMRK4XkWv6cfx0EdmQyToZk6rs4a6AMeOJiGSr6o+Hux7GDJQFDZY/OYEAAAGDSURBVGP6yS1s9xTewnZn4S2nfQ1wMvAjoAg4BPyVqu4TkReAV4HzgcdFpBhv+ewfiMiZwI+BArwJdX+jqo0iMg9YBgSAl4fu1RnTO+ueMmZgTgLuVdXTgSPAjcB/AleqavwN/9aE48tU9UJV/WGX69wP/JO7znrgZlf+M+Ar6q2hZcyIYS0NYwZmtx5be+gXwD/jbcqzwm125wMS91Z4uOsFRKQUL5i86IqWA79OUv4A8OH0vwRj+s+ChjED03X9nRZgYy8tg9Z+XFuSXN+YEcG6p4wZmONFJB4gPgu8DlTFy0TE7/Zc6JGqNgONInKBK7oaeFFVm4BmEXm/K/9c+qtvzMBYS8OYgdkMLBWR/8FbCfU/gaeBu1z3UjZwJ96WoL1ZCvxYRAqA7cBfu/K/BpaJSMBd15gRwVa5Naaf3OipJ1T11GGuijFDzrqnjDHGpMxaGsYYY1JmLQ1jjDEps6BhjDEmZRY0jDHGpMyChjHGmJRZ0DDGGJMyCxrGGGNS9v8BMSmPoilKt0gAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "sorted_data['inc'][-200:].plot()" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + " first_august_week = [pd.Period(pd.Timestamp(y, 8, 1), 'W')\n", + " for y in range(1985,\n", + " sorted_data.index[-1].year)]" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + " year = []\n", + "yearly_incidence = []\n", + "for week1, week2 in zip(first_august_week[:-1],\n", + " first_august_week[1:]):\n", + " one_year = sorted_data['inc'][week1:week2-1]\n", + " assert abs(len(one_year)-52) < 2\n", + " yearly_incidence.append(one_year.sum())\n", + " year.append(week2.year)\n", + "yearly_incidence = pd.Series(data=yearly_incidence, index=year)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAD8CAYAAABQFVIjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3X+QldWd5/H3B0FxElEg6PBDhY3GCppZHLrQLfdHxB0gPyrgjJmwOkrVWEXijy1nNrWiE7fMKFMVU5M4y7ohMWNG1FF0TCzdRIa0UWucWQSaoFE0TjMrgygjWI2KUwVj43f/eL53fLhpbt9ubve9t/vzqrrVT5/nnHNPPzT9vefH8xxFBGZmZkdrTLMbYGZmI4MDipmZNYQDipmZNYQDipmZNYQDipmZNYQDipmZNYQDipmZNYQDipmZNYQDipmZNcTYZjdgOH3sYx+LmTNnNrsZZmZtZcuWLW9FxJT+8o2qgDJz5ky6urqa3Qwzs7Yi6R/ryechLzMzawgHFDMzawgHFDMza4i6AoqkHZJekPScpK5M+7qk1zPtOUmfLeW/UdJ2Sa9IWlhKn5v1bJe0SpIy/ThJD2b6RkkzS2WWSerO17JS+qzM251ljz36y2FmZoM1kB7KhRExJyI6Smm3Z9qciHgcQNJsYClwNrAI+I6kYzL/amA5cGa+FmX6lcC+iDgDuB24LeuaBNwMnAfMA26WNDHL3JbvfyawL+swM7MmGYohr8XA2og4GBGvAtuBeZKmAhMiYkMUu3rdAywplVmTxw8DF2XvZSHQGRE9EbEP6AQW5bn5mZcsW6mrre159wC/+70N7Nl/oNlNMTMbkHoDSgA/lbRF0vJS+rWSfiHpB6Wew3TgtVKeXZk2PY+r0w8rExG9wDvA5Bp1TQbezrzVdbW1VT/rZvOOHlY90d3sppiZDUi996FcEBFvSDoZ6JT0S4rhq1spgs2twLeA3wfUR/mokc4gytSq6zAZAJcDnHbaaX1laQln3bSOg70f/Ov3923cyX0bd3Lc2DG8svIzTWyZmVl96uqhRMQb+XUP8AgwLyLejIhDEfEB8H2KOQ4oegunlorPAN7I9Bl9pB9WRtJY4ESgp0ZdbwEnZd7quqrbfmdEdEREx5Qp/d7o2TTPXH8hX5gzjfHjin+S8ePGsHjONJ5ZcWGTW2ZmVp9+A4qkj0g6oXIMLABezDmRiouBF/P4MWBprtyaRTH5vikidgP7JZ2fcyBXAI+WylRWcF0CPJnzLOuBBZIm5pDaAmB9nnsq85JlK3W1pZMnjOeE48ZysPcDjhs7hoO9H3DCcWM5+YTxzW6amVld6hnyOgV4JFf4jgXuj4i/lnSvpDkUQ007gC8DRMQ2SQ8BLwG9wDURcSjrugq4GzgeWJcvgLuAeyVtp+iZLM26eiTdCmzOfLdERE8erwDWSloJbM062tpb7x3ksvNO59J5p3H/pp3s9cS8mbURFR/2R4eOjo7ws7zMzAZG0paqW0b65DvlzcysIRxQzMysIRxQzMysIRxQzMysIRxQzMysIRxQ2pCf92VmrcgBpQ35eV9m1opG1Z7y7c7P+zKzVuYeShvx877MrJU5oLQRP+/LzFqZh7zajJ/3ZWatys/yqsOedw9w7QNbuePSc90bMLNRx8/yaiCvqjIz65+HvGrwqiozs/q5h1KDV1WZmdXPAaUGr6oyM6tfXQFF0g5JL0h6TlJXpk2S1CmpO79OLOW/UdJ2Sa9IWlhKn5v1bJe0KrcCJrcLfjDTN0qaWSqzLN+jW9KyUvqszNudZY89+svxqyqrqh65+gIuO+909r53cCjexsys7dW1ykvSDqAjIt4qpX0T6ImIb0i6AZgYESskzQYeAOYB04AngE9ExCFJm4DrgGeBx4FVEbFO0tXAb0TEVyQtBS6OiC9JmgR0AR0UWw1vAeZGxL7cZvhHEbFW0neB5yNida2fwzs2mpkN3HCs8loMrMnjNcCSUvraiDgYEa8C24F5kqYCEyJiQxRR7J6qMpW6HgYuyt7LQqAzInoiYh/QCSzKc/Mzb/X7m5lZE9QbUAL4qaQtkpZn2ikRsRsgv56c6dOB10pld2Xa9DyuTj+sTET0Au8Ak2vUNRl4O/NW12VmZk1Q77LhCyLiDUknA52Sflkjr/pIixrpgylTq67DG1MEwOUAp512Wl9ZzMysAerqoUTEG/l1D/AIxfzImzmMRX7dk9l3AaeWis8A3sj0GX2kH1ZG0ljgRKCnRl1vASdl3uq6qtt+Z0R0RETHlClT6vlxzcxsEPoNKJI+IumEyjGwAHgReAyorLpaBjyax48BS3Pl1izgTGBTDovtl3R+zoFcUVWmUtclwJM5z7IeWCBpYq4iWwCsz3NPZd7q9zczsyaoZ8jrFOCRXOE7Frg/Iv5a0mbgIUlXAjuBLwJExLZcgfUS0AtcExGHsq6rgLuB44F1+QK4C7hX0naKnsnSrKtH0q3A5sx3S0T05PEKYK2klcDWrMPMzJrED4c0M7Oa/HBIMzMbVg4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEHUHFEnHSNoq6cf5/dclvS7puXx9tpT3RknbJb0iaWEpfa6kF/Lcqtxbntx//sFM3yhpZqnMMknd+VpWSp+Vebuz7LFHdynMzOxoDKSHch3wclXa7RExJ1+PA0iaTbEn/NnAIuA7ko7J/KuB5cCZ+VqU6VcC+yLiDOB24LasaxJwM3AeMA+4WdLELHNbvv+ZwL6sw8zMmqSugCJpBvA54M/ryL4YWBsRByPiVWA7ME/SVGBCRGyIYiP7e4AlpTJr8vhh4KLsvSwEOiOiJyL2AZ3Aojw3P/OSZSt1mZlZE9TbQ/kz4Hrgg6r0ayX9QtIPSj2H6cBrpTy7Mm16HlenH1YmInqBd4DJNeqaDLydeavrMjOzJug3oEj6PLAnIrZUnVoNfByYA+wGvlUp0kc1USN9MGVq1XUYScsldUnq2rt3b19ZzMysAerpoVwAfEHSDmAtMF/SfRHxZkQciogPgO9TzHFA0Vs4tVR+BvBGps/oI/2wMpLGAicCPTXqegs4KfNW13WYiLgzIjoiomPKlCl1/LhmZjYY/QaUiLgxImZExEyKyfYnI+L3ck6k4mLgxTx+DFiaK7dmUUy+b4qI3cB+SefnHMgVwKOlMpUVXJfkewSwHlggaWIOqS0A1ue5pzIvWbZSl5mZNcHY/rMc0TclzaEYatoBfBkgIrZJegh4CegFromIQ1nmKuBu4HhgXb4A7gLulbSdomeyNOvqkXQrsDnz3RIRPXm8AlgraSWwNeswM7MmUfFhf3To6OiIrq6uZjfDzKytSNoSER395fOd8mZm1hAOKGZm1hAOKGZm1hAOKGZm1hAOKGZm1hAOKGZm1hAOKGZm1hAOKGZm1hAOKGY2Kux59wC/+70N7Nl/oNlNGbEcUMxsVFj1s2427+hh1RPdzW7KiHU0z/IyM2t5Z920joO9H27ldN/Gndy3cSfHjR3DKys/08SWjTzuoZjZiPbM9RfyhTnTGD+u+HM3ftwYFs+ZxjMrLmxyy0YeBxQza5rhmNc4ecJ4TjhuLAd7P+C4sWM42PsBJxw3lpNPGD9k7zlaOaCYWdMM17zGW+8d5LLzTueRqy/gsvNOZ+97B4f0/UYrP77ezIZd9bxGhec1WpMfX29mLcvzGiOTA4qZDTvPa4xMdQcUScdI2irpx/n9JEmdkrrz68RS3hslbZf0iqSFpfS5kl7Ic6tyb3ly//kHM32jpJmlMsvyPbolLSulz8q83Vn22KO7FGY2nDyvMfLUPYci6b8BHcCEiPi8pG8CPRHxDUk3ABMjYoWk2cADwDxgGvAE8ImIOCRpE3Ad8CzwOLAqItZJuhr4jYj4iqSlwMUR8SVJk4CufN8AtgBzI2Jf7lv/o4hYK+m7wPMRsbrWz+A5FDOzgWvoHIqkGcDngD8vJS8G1uTxGmBJKX1tRByMiFeB7cA8SVMpgtGGKKLYPVVlKnU9DFyUvZeFQGdE9ETEPqATWJTn5mfe6vc3M7MmqHfI68+A64HysoxTImI3QH49OdOnA6+V8u3KtOl5XJ1+WJmI6AXeASbXqGsy8Hbmra7rMJKWS+qS1LV37946f1wzMxuofgOKpM8DeyJiS511qo+0qJE+mDK16jo8MeLOiOiIiI4pU6b0lcXMzBqgnh7KBcAXJO0A1gLzJd0HvJnDWOTXPZl/F3BqqfwM4I1Mn9FH+mFlJI0FTgR6atT1FnBS5q2uy6wmP3XWbGj0G1Ai4saImBERM4GlwJMR8XvAY0Bl1dUy4NE8fgxYmiu3ZgFnAptyWGy/pPNzDuSKqjKVui7J9whgPbBA0sRcRbYAWJ/nnsq81e9vVpOfOms2NI7macPfAB6SdCWwE/giQERsyxVYLwG9wDURcSjLXAXcDRwPrMsXwF3AvZK2U/RMlmZdPZJuBTZnvlsioiePVwBrJa0EtmYdZkfkp86aDS0/esVGjT3vHmDl4y/z023/xIH3P2D8uDEsPPvX+drnPukb6sxq8KNXzKoM5O7sdpxnacc228jigGKjSr13Z7fjPEs7ttlGFg95mZW041Nw27HN1l485GU2CO34FNx2bLONTA4oZiXt+BTcdmyzjUxHs2zYbESqzLNcOu807t+0k71tMMndjm22kcdzKGZmVpPnUMzMbFg5oJiZWUM4oJiZDYBvID0yBxQzswHwDaRH5lVe1lb2vHuAax/Yyh2XnutlsTas/HDR/rmHYm3Fnw6tWXwDaf/cQ7G2MNo/Hbpn1ny+gbR/7qFYWxjtnw7dM2sN9T5cdLRyD8VaRq1P4aP10+Fo75m1mu9d/uG9fSuXnNPElrSmfnsoksZL2iTpeUnbJP1xpn9d0uuSnsvXZ0tlbpS0XdIrkhaW0udKeiHPrcqtgMntgh/M9I2SZpbKLJPUna9lpfRZmbc7yx7bmEtiA9WoZZT9fQofjZ8OR3vPzNpLPT2Ug8D8iHhP0jjgbyVVtu69PSL+tJxZ0myKLXzPBqYBT0j6RG4DvBpYDjwLPA4sotgG+EpgX0ScIWkpcBvwJUmTgJuBDiCALZIei4h9mef2iFgr6btZx+rBXwobrHIgWHnxpwZcvt5P4aPx0+Fo7ZlZe+q3hxKF9/Lbcfmq9QCwxcDaiDgYEa8C24F5kqYCEyJiQxQPELsHWFIqsyaPHwYuyt7LQqAzInoyiHQCi/Lc/MxLlq3UZcPkrJvWMfOGn3Dfxp1EFIFg5g0/4ayb1vVfuMSfwmsbjT0za091zaFIOgbYApwB/O+I2CjpM8C1kq4AuoCv5h/96RQ9kIpdmfZ+Hlenk19fA4iIXknvAJPL6VVlJgNvR0RvH3XZMHnm+guPuEf7QPhTeG2jsWdm7amuVV4RcSgi5gAzKHob51AML30cmAPsBr6V2dVXFTXSB1OmVl2HkbRcUpekrr179/aVxQapkYHAn8JHHj+iZPQZ0CqviHhb0tPAovLciaTvAz/Ob3cBp5aKzQDeyPQZfaSXy+ySNBY4EejJ9E9XlXkaeAs4SdLY7KWU66pu853AnVA8vn4gP6/1r1H7cPhT+MhztHNr1n763Q9F0hTg/QwmxwM/pZgQ3xIRuzPPHwLnRcRSSWcD9wPzKCblfwacGRGHJG0G/iuwkWJS/n9FxOOSrgE+FRFfyUn5346I381J+S3Ab2Zzfg7MjYgeSX8F/LA0Kf+LiPhOrZ/F+6GYDT3vcT/y1LsfSj09lKnAmpxHGQM8FBE/lnSvpDkUQ007gC8DRMQ2SQ8BLwG9wDW5wgvgKuBu4HiK1V2V2du7gHslbafomSzNunok3Qpszny3RERPHq8A1kpaCWzNOsysyRo1t2btp9+AEhG/AM7tI/3yGmX+BPiTPtK7gF8Zz4iIA8AXj1DXD4Af9JH+/yh6QWbWQrzIYvTynfJm1nDe43508p7yZmZWk/eUNzOzYeWAYmZmDeGAYmZmDeGAYmZmDeGAYmZmDeGAYmZmDeGAYmZmDeGAYmZmDeGAYmZmDeGAYjaEvCeIjSYOKGZDqLwniNlI54dDmg2B6j1B7tu4k/s27vSeIDaiuYdiNgSeuf5CvjBnGuPHFf/Fxo8bw+I503hmxYVNbpnZ0HFAMRsC3hPERiMHFBtRWmkSvLInyCNXX8Bl553O3vcONrtJZkOq34AiabykTZKel7RN0h9n+iRJnZK68+vEUpkbJW2X9IqkhaX0uZJeyHOrJCnTj5P0YKZvlDSzVGZZvke3pGWl9FmZtzvLHtuYS2LtrJUmwb93eQcrl5zD7GkTWLnkHL53eb/bSZi1tX432Mo/+h+JiPckjQP+FrgO+G2gJyK+IekGYGJErJA0G3iAYnveacATwCci4pCkTVn2WeBxYFVErJN0NfAbEfEVSUuBiyPiS5ImAV1AB8Xe9VuAuRGxL/et/1FErJX0XeD5iFhd62fxBlsjV/UkeIUnwc2OXsM22IrCe/ntuHwFsBhYk+lrgCV5vBhYGxEHI+JVYDswT9JUYEJEbIgiit1TVaZS18PARRnIFgKdEdETEfuATmBRnpufeavf30YhT4IPr1YaWrTWUdcciqRjJD0H7KH4A78ROCUidgPk15Mz+3TgtVLxXZk2PY+r0w8rExG9wDvA5Bp1TQbezrzVdVW3fbmkLklde/furefHtTbkSfDh1UpDi9Y66roPJSIOAXMknQQ8IumcGtnVVxU10gdTplZdhydG3AncCcWQV195bGSoTIJfOu807t+0k73+9Nxwvr/GahnQjY0R8bakp4FFwJuSpkbE7hzO2pPZdgGnlorNAN7I9Bl9pJfL7JI0FjgR6Mn0T1eVeRp4CzhJ0tjspZTrslGqPOm9ckmtzzw2WM9cfyErH3+Zn277Jw68/wHjx41h4dm/ztc+98lmN81aQD2rvKZkzwRJxwP/Gfgl8BhQWXW1DHg0jx8DlubKrVnAmcCmHBbbL+n8nAO5oqpMpa5LgCdznmU9sEDSxFxFtgBYn+eeyrzV729mQ8RDi1ZLPT2UqcAaScdQBKCHIuLHkjYAD0m6EtgJfBEgIrblCqyXgF7gmhwyA7gKuBs4HliXL4C7gHslbafomSzNunok3Qpszny3RERPHq8A1kpaCWzNOsxsiHlo0Y6k32XDI8lQLhve8+4Brn1gK3dceq4/rZk1UDv+32rHNtfSsGXDVh+vejEbGu34f6sd29wI7qEcJd9QZzY02vH/Vju2uR7uoQwT31BnNjTa8f9WO7a5kRxQjtJAVr347mJrB63ye9qOK8rasc2N5IDSAPU+VXa0jqtae2ml39N2fGJzO7a5UTyHMgxG6riqjSz+PbUj8RxKCxnt46rWHvx72npaZfixXg4ow6Cdx1Xb7RfaBq+df09HqlYafqzHgJ7lZYPXrncXl3+hV178qWY3x4ZYu/6ejjTt+hBOz6FYnzyebtY8e949cMSHcDajx+g5FDsqHk83a552HX70kJf1qV1/oc1GinYcfnRAsSNqx19os5GiHff38RzKKDbSnohqZkPDcyjWr3Zbkmhmrc1DXqNQuy5JbDXu4Zkdrp4tgE+V9JSklyVtk3Rdpn9d0uuSnsvXZ0tlbpS0XdIrkhaW0udKeiHPrcqtgMntgh/M9I2SZpbKLJPUna9lpfRZmbc7yx7bmEsy8nkFV2O4h2d2uHp6KL3AVyPi55JOALZI6sxzt0fEn5YzS5pNsYXv2cA04AlJn8htgFcDy4FngceBRRTbAF8J7IuIMyQtBW4DviRpEnAz0AFEvvdjEbEv89weEWslfTfrWD34SzF6eAXX0XEPz6xv/fZQImJ3RPw8j/cDLwPTaxRZDKyNiIMR8SqwHZgnaSowISI2RLES4B5gSanMmjx+GLgoey8Lgc6I6Mkg0gksynPzMy9ZtlKX1WE0PxH1aLmHZ9a3Ac2h5FDUucBG4ALgWklXAF0UvZh9FMHm2VKxXZn2fh5Xp5NfXwOIiF5J7wCTy+lVZSYDb0dEbx91WR3acUliq3APz6xvda/ykvRR4IfAH0TEuxTDSx8H5gC7gW9VsvZRPGqkD6ZMrbqq271cUpekrr179/aVxWzA3MMz+1V19VAkjaMIJn8ZET8CiIg3S+e/D/w4v90FnFoqPgN4I9Nn9JFeLrNL0ljgRKAn0z9dVeZp4C3gJEljs5dSruswEXEncCcU96HU8/Oa9cc9PLNfVc8qLwF3AS9HxLdL6VNL2S4GXszjx4CluXJrFnAmsCkidgP7JZ2fdV4BPFoqU1nBdQnwZM6zrAcWSJooaSKwAFif557KvGTZSl1mZtYE9fRQLgAuB16Q9Fym/RHwXyTNoRhq2gF8GSAitkl6CHiJYoXYNbnCC+Aq4G7geIrVXesy/S7gXknbKXomS7OuHkm3Apsz3y0R0ZPHK4C1klYCW7MOMzNrEj96xczMavKjV8zMbFg5oJiZNcFI3F7bAcVsFBmJf8Ta1Uh8dI8fDmk2ipT/iK28+FPNbs6oNJIf3eNJebNRoPqPWMVI+CPWbhq5X/xwPfHak/Jm9q/8/LHW0chH97TasJmHvMyabDg+Zfr5Y63laLfXbtVhMwcUsyYbrnmNo/0jZo1ztI/ueeb6C484bNZMDihmTTLcnzL9/LGRo1V7nJ5DMWsSz2s0zmhcDt2KT7x2D8WsSVr1U2Y7Go3LoVuxx+mAYtZEntc4Oq06OT1a+T4UM2tbjbynw47M96GY2YjnYcPW4iEvM2trHjZsHR7yMjMbwRpx46yHvMzMbFgfz1LPnvKnSnpK0suStkm6LtMnSeqU1J1fJ5bK3Chpu6RXJC0spc+V9EKeW5V7y5P7zz+Y6RslzSyVWZbv0S1pWSl9VubtzrLHNuaSmJm1v7NuWsfMG37CfRt3ElGsgJt5w08466Z1/RcepHp6KL3AVyPik8D5wDWSZgM3AD+LiDOBn+X35LmlwNnAIuA7ko7JulYDy4Ez87Uo068E9kXEGcDtwG1Z1yTgZuA8YB5wcylw3Qbcnu+/L+swMzOac+NsvwElInZHxM/zeD/wMjAdWAysyWxrgCV5vBhYGxEHI+JVYDswT9JUYEJEbIhi4uaeqjKVuh4GLsrey0KgMyJ6ImIf0AksynPzM2/1+5uZjXrNWAE3oFVeORR1LrAROCUidkMRdCSdnNmmA8+Wiu3KtPfzuDq9Uua1rKtX0jvA5HJ6VZnJwNsR0dtHXWZmxvCvgKs7oEj6KPBD4A8i4t2c/ugzax9pUSN9MGVq1XV4Y6TlFMNsnHbaaX1lMTMbkYb78Sx1rfKSNI4imPxlRPwok9/MYSzy655M3wWcWio+A3gj02f0kX5YGUljgROBnhp1vQWclHmr6zpMRNwZER0R0TFlypR6flwzMxuEelZ5CbgLeDkivl069RhQWXW1DHi0lL40V27Noph835TDY/slnZ91XlFVplLXJcCTOc+yHlggaWJOxi8A1ue5pzJv9fubmVkT1DPkdQFwOfCCpOcy7Y+AbwAPSboS2Al8ESAitkl6CHiJYoXYNRFxKMtdBdwNHA+syxcUAeteSdspeiZLs64eSbcCmzPfLRHRk8crgLWSVgJbsw4zM2sS3ylvZmY1+U55aymjcQMks9HGAcWGxXA+/sHMmsNPG7Yh5Q2QzEYP91BsSHnfdLPRwwHFhpQ3QDIbPTzkZUPOGyCZjQ5eNmxmZjV52bCZmQ0rBxQzM2sIB5QRyjcSmtlwc0AZoXwjoZkNN6/yGmF8I6GZNYt7KCOMbyQ0GzwPFR8dB5QRxjcSmg2eh4qPjoe8RiDfSGg2MB4qbgzf2Ghmo96edw+w8vGX+em2f+LA+x8wftwYFp7963ztc590754G3tgo6QeS9kh6sZT2dUmvS3ouX58tnbtR0nZJr0haWEqfK+mFPLcqtwEmtwp+MNM3SppZKrNMUne+lpXSZ2Xe7ix7bD0XxcysLx4qbox65lDuBhb1kX57RMzJ1+MAkmZTbN97dpb5jqRjMv9qYDnFHvNnluq8EtgXEWcAtwO3ZV2TgJuB84B5wM25rzyZ5/aIOBPYl3WYmQ1aZaj4kasv4LLzTmfveweb3aS20+8cSkT8TbnX0I/FwNqIOAi8mnvEz5O0A5gQERsAJN0DLKHYU34x8PUs/zBwR/ZeFgKdlT3kJXUCiyStBeYDl2aZNVl+dZ1tNDP7Fd+7/MMRnZVLzmliS9rX0azyulbSL3JIrNJzmA68VsqzK9Om53F1+mFlIqIXeAeYXKOuycDbmbe6LjMza5LBBpTVwMeBOcBu4FuZrj7yRo30wZSpVdevkLRcUpekrr179x4pm5mZHaVBBZSIeDMiDkXEB8D3KeY4oOgtnFrKOgN4I9Nn9JF+WBlJY4ETgZ4adb0FnJR5q+vqq613RkRHRHRMmTJloD+qmZnVaVABRdLU0rcXA5UVYI8BS3Pl1iyKyfdNEbEb2C/p/JwfuQJ4tFSmsoLrEuDJKNYyrwcWSJqYQ2oLgPV57qnMS5at1GVmZk3S76S8pAeATwMfk7SLYuXVpyXNoRhq2gF8GSAitkl6CHgJ6AWuiYhDWdVVFCvGjqeYjF+X6XcB9+YEfg/FKjEiokfSrcDmzHdLZYIeWAGslbQS2Jp1mJlZE/nGRjMzq6neGxtHVUCRtBf4xz5OfYxibqaduM1Dr93aC27zcGm3Nh9te0+PiH4noUdVQDkSSV31RN9W4jYPvXZrL7jNw6Xd2jxc7fXThs3MrCEcUMzMrCEcUAp3NrsBg+A2D712ay+4zcOl3do8LO31HIqZmTWEeyhmZtYQIzKgHGEPl38raUPuyfJ/JE3I9HGS1mT6y5JuLJV5Ovd1qez7cnKLtPlYSX+R6c9L+nSpTJ/7zrR4m4flOks6VdJT+e+8TdJ1mT5JUmfur9NZetjpgPf3afE2t+R1ljQ5878n6Y6qulryOvfT5iG/zoNo729J2pLXcouk+aW6GneNI2LEvYD/CPwm8GIpbTPwn/L494Fb8/hSikfuA/waxZ3/M/P7p4GOFmzzNcBf5PHJwBZgTH6ruEO0AAADpklEQVS/Cfh3FA/RXAd8pg3aPCzXGZgK/GYenwD8PTAb+CZwQ6bfANyWx7OB54HjgFnAPwDHDOd1bnCbW/U6fwT498BXgDuq6mrV61yrzUN+nQfR3nOBaXl8DvD6UFzjEdlDiYi/oXiMS9lZwN/kcSfwO5XswEdUPGzyeOBfgHeHo51lA2zzbOBnWW4P8DbQoeIZaxMiYkMUvymVfWdats1D1ba+RMTuiPh5Hu8HXqbY+mAxxb465NfKNfvX/X0i4lWgsr/PsF3nRrV5KNrWqDZHxD9HxN8CB8r1tPJ1PlKbh8sg2rs1IioP0d0GjFfxzMWGXuMRGVCO4EXgC3n8RT58kvHDwD9TPIZ/J/Cn8eEzwwD+Irut/2Moh4+O4Ehtfh5YLGmsiodwzs1ztfadGS4DbXPFsF5nFZvGnQtsBE6J4gGm5NfKEMVg9vcZMkfZ5opWvM5H0srXuT/Ddp0H0d7fAbZGsRFiQ6/xaAoovw9cI2kLRRfxXzJ9HnAImEYxRPBVSf8mz10WEZ8C/kO+Lh/eJh+xzT+g+IfvAv4M+L8UD+Mc0F4xQ2SgbYZhvs6SPgr8EPiDiKjVG23InjyN0IA2Q+te5yNW0Udaq1znWobtOg+0vZLOpthC/cuVpD6yDfoaj5qAEhG/jIgFETEXeIBibBmKOZS/joj3cyjm78ihmIh4Pb/uB+5n+IcO+mxzRPRGxB9GxJyIWAycBHRTe9+ZVm3zsF5nSeMo/gP+ZUT8KJPfzK5/ZZhlT6YPZn+fVm1zK1/nI2nl63xEw3WdB9peSTOAR4ArIqLy96+h13jUBJTKSgtJY4CbgO/mqZ3AfBU+ApwP/DKHZj6WZcYBn+fDfV+a2mZJv5ZtRdJvAb0R8VLU3nemJds8nNc5r8ldwMsR8e3SqfKePOX9dQazv09LtrnFr3OfWvw6H6meYbnOA22vpJOAnwA3RsTfVTI3/BoPdja/lV8Un4x3A+9TROArgesoVkL8PfANPryp86PAX1FMVL0E/Pf4cBXHFuAXee5/kqtlWqDNM4FXKCbinqB4Emilng6KX+B/AO6olGnVNg/ndaZYlRP5Xs/l67PAZIoFA935dVKpzNfyWr5CafXLcF3nRrW5Da7zDooFHu/l79LsNrjOv9Lm4brOA20vxYe7fy7lfQ44udHX2HfKm5lZQ4yaIS8zMxtaDihmZtYQDihmZtYQDihmZtYQDihmZtYQDihmZtYQDihmZtYQDihmZtYQ/x/rFzgxQKYDrwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "yearly_incidence.plot(style='*')" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2014 1600941\n", + "1991 1659249\n", + "1995 1840410\n", + "2020 2053781\n", + "2012 2175217\n", + "2003 2234584\n", + "2019 2254386\n", + "2006 2307352\n", + "2017 2321583\n", + "2001 2529279\n", + "1992 2574578\n", + "1993 2703886\n", + "2018 2705325\n", + "1988 2765617\n", + "2007 2780164\n", + "1987 2855570\n", + "2016 2856393\n", + "2011 2857040\n", + "2008 2973918\n", + "1998 3034904\n", + "2002 3125418\n", + "2009 3444020\n", + "1994 3514763\n", + "1996 3539413\n", + "2004 3567744\n", + "1997 3620066\n", + "2015 3654892\n", + "2000 3826372\n", + "2005 3835025\n", + "1999 3908112\n", + "2010 4111392\n", + "2013 4182691\n", + "1986 5115251\n", + "1990 5235827\n", + "1989 5466192\n", + "dtype: int64" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "yearly_incidence.sort_values()" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'geo_insee'" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "min(data)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], "metadata": { "kernelspec": { "display_name": "Python 3", @@ -16,10 +2317,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.3" + "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 } - diff --git a/module3/exo3/exercice.ipynb b/module3/exo3/exercice.ipynb index 0bbbe371b01e359e381e43239412d77bf53fb1fb..1fd533de0c053d1872e2231958377ac10b33e051 100644 --- a/module3/exo3/exercice.ipynb +++ b/module3/exo3/exercice.ipynb @@ -1,5 +1,1510 @@ { - "cells": [], + "cells": [ + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Collecting arviz\n", + " Downloading arviz-0.11.2-py3-none-any.whl (1.6 MB)\n", + "\u001b[K |████████████████████████████████| 1.6 MB 21.0 MB/s eta 0:00:01\n", + "\u001b[?25hCollecting typing-extensions<4,>=3.7.4.3\n", + " Downloading typing_extensions-3.10.0.0-py3-none-any.whl (26 kB)\n", + "Collecting xarray>=0.16.1\n", + " Downloading xarray-0.16.2-py3-none-any.whl (736 kB)\n", + "\u001b[K |████████████████████████████████| 736 kB 41.3 MB/s eta 0:00:01\n", + "\u001b[?25hCollecting matplotlib>=3.0\n", + " Downloading matplotlib-3.3.4-cp36-cp36m-manylinux1_x86_64.whl (11.5 MB)\n", + "\u001b[K |████████████████████████████████| 11.5 MB 45.8 MB/s eta 0:00:01\n", + "\u001b[?25hCollecting pandas>=0.23\n", + " Downloading pandas-1.1.5-cp36-cp36m-manylinux1_x86_64.whl (9.5 MB)\n", + "\u001b[K |████████████████████████████████| 9.5 MB 67.4 MB/s eta 0:00:01\n", + "\u001b[?25hRequirement already satisfied: setuptools>=38.4 in /opt/conda/lib/python3.6/site-packages (from arviz) (45.2.0.post20200209)\n", + "Requirement already satisfied: packaging in /opt/conda/lib/python3.6/site-packages (from arviz) (20.1)\n", + "Collecting netcdf4\n", + " Downloading netCDF4-1.5.7-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.7 MB)\n", + "\u001b[K |████████████████████████████████| 4.7 MB 34.4 MB/s eta 0:00:01 |▍ | 51 kB 35.1 MB/s eta 0:00:01\n", + "\u001b[?25hRequirement already satisfied: numpy>=1.12 in /opt/conda/lib/python3.6/site-packages (from arviz) (1.15.2)\n", + "Requirement already satisfied: scipy>=0.19 in /opt/conda/lib/python3.6/site-packages (from arviz) (1.1.0)\n", + "Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.3 in /opt/conda/lib/python3.6/site-packages (from matplotlib>=3.0->arviz) (2.4.6)\n", + "Requirement already satisfied: pillow>=6.2.0 in /opt/conda/lib/python3.6/site-packages (from matplotlib>=3.0->arviz) (7.0.0)\n", + "Requirement already satisfied: cycler>=0.10 in /opt/conda/lib/python3.6/site-packages (from matplotlib>=3.0->arviz) (0.10.0)\n", + "Requirement already satisfied: python-dateutil>=2.1 in /opt/conda/lib/python3.6/site-packages (from matplotlib>=3.0->arviz) (2.8.1)\n", + "Requirement already satisfied: kiwisolver>=1.0.1 in /opt/conda/lib/python3.6/site-packages (from matplotlib>=3.0->arviz) (1.1.0)\n", + "Requirement already satisfied: pytz>=2017.2 in /opt/conda/lib/python3.6/site-packages (from pandas>=0.23->arviz) (2019.3)\n", + "Requirement already satisfied: six in /opt/conda/lib/python3.6/site-packages (from packaging->arviz) (1.14.0)\n", + "Collecting cftime\n", + " Downloading cftime-1.5.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (216 kB)\n", + "\u001b[K |████████████████████████████████| 216 kB 70.9 MB/s eta 0:00:01\n", + "\u001b[31mERROR: pandas 1.1.5 has requirement numpy>=1.15.4, but you'll have numpy 1.15.2 which is incompatible.\u001b[0m\n", + "\u001b[?25hInstalling collected packages: typing-extensions, pandas, xarray, matplotlib, cftime, netcdf4, arviz\n", + " Attempting uninstall: pandas\n", + " Found existing installation: pandas 0.22.0\n", + " Uninstalling pandas-0.22.0:\n", + " Successfully uninstalled pandas-0.22.0\n", + " Attempting uninstall: matplotlib\n", + " Found existing installation: matplotlib 2.2.3\n", + " Uninstalling matplotlib-2.2.3:\n", + " Successfully uninstalled matplotlib-2.2.3\n", + "Successfully installed arviz-0.11.2 cftime-1.5.0 matplotlib-3.3.4 netcdf4-1.5.7 pandas-1.1.5 typing-extensions-3.10.0.0 xarray-0.16.2\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "pip install arviz" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Collecting git+https://github.com/pymc-devs/pymc3\n", + " Cloning https://github.com/pymc-devs/pymc3 to /tmp/pip-req-build-ygnbehco\n", + " Running command git clone -q https://github.com/pymc-devs/pymc3 /tmp/pip-req-build-ygnbehco\n", + " Running command git submodule update --init --recursive -q\n", + " Installing build dependencies ... \u001b[?25ldone\n", + "\u001b[?25h Getting requirements to build wheel ... \u001b[?25ldone\n", + "\u001b[?25h Preparing wheel metadata ... \u001b[?25ldone\n", + "\u001b[31mERROR: Package 'pymc3' requires a different Python: 3.6.4 not in '>=3.7'\u001b[0m\n", + "\u001b[?25hNote: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "pip install git+https://github.com/pymc-devs/pymc3" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Requirement already satisfied: bokeh in /opt/conda/lib/python3.6/site-packages (0.12.16)\n", + "Requirement already satisfied: six>=1.5.2 in /opt/conda/lib/python3.6/site-packages (from bokeh) (1.14.0)\n", + "Requirement already satisfied: PyYAML>=3.10 in /opt/conda/lib/python3.6/site-packages (from bokeh) (5.3)\n", + "Requirement already satisfied: python-dateutil>=2.1 in /opt/conda/lib/python3.6/site-packages (from bokeh) (2.8.1)\n", + "Requirement already satisfied: Jinja2>=2.7 in /opt/conda/lib/python3.6/site-packages (from bokeh) (2.11.0)\n", + "Requirement already satisfied: numpy>=1.7.1 in /opt/conda/lib/python3.6/site-packages (from bokeh) (1.15.2)\n", + "Requirement already satisfied: packaging>=16.8 in /opt/conda/lib/python3.6/site-packages (from bokeh) (20.1)\n", + "Requirement already satisfied: tornado>=4.3 in /opt/conda/lib/python3.6/site-packages (from bokeh) (6.0.3)\n", + "Requirement already satisfied: MarkupSafe>=0.23 in /opt/conda/lib/python3.6/site-packages (from Jinja2>=2.7->bokeh) (1.1.1)\n", + "Requirement already satisfied: pyparsing>=2.0.2 in /opt/conda/lib/python3.6/site-packages (from packaging>=16.8->bokeh) (2.4.6)\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "pip install bokeh" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Collecting package metadata (current_repodata.json): - Killed\n", + "\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "conda create -n py35 python=3.5 anaconda" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Collecting package metadata (current_repodata.json): \\ Killed\n", + "\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "conda install spyder" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Collecting package metadata (current_repodata.json): | Killed\n", + "\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "conda install theano" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Collecting package metadata (current_repodata.json): / Killed\n", + "\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "conda install tensorflow" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Collecting package metadata (current_repodata.json): | Killed\n", + "\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "conda install keras" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Collecting pymc3\n", + " Downloading pymc3-3.10.0-py3-none-any.whl (1.9 MB)\n", + "\u001b[K |████████████████████████████████| 1.9 MB 13.5 MB/s eta 0:00:01\n", + "\u001b[?25hRequirement already satisfied: pandas>=0.18.0 in /opt/conda/lib/python3.6/site-packages (from pymc3) (1.1.5)\n", + "Collecting theano-pymc==1.0.11\n", + " Downloading Theano-PyMC-1.0.11.tar.gz (2.8 MB)\n", + "\u001b[K |████████████████████████████████| 2.8 MB 54.3 MB/s eta 0:00:01\n", + "\u001b[?25hCollecting fastprogress>=0.2.0\n", + " Downloading fastprogress-1.0.0-py3-none-any.whl (12 kB)\n", + "Requirement already satisfied: typing-extensions>=3.7.4 in /opt/conda/lib/python3.6/site-packages (from pymc3) (3.10.0.0)\n", + "Requirement already satisfied: dill in /opt/conda/lib/python3.6/site-packages (from pymc3) (0.2.9)\n", + "Collecting contextvars; python_version < \"3.7\"\n", + " Downloading contextvars-2.4.tar.gz (9.6 kB)\n", + "Requirement already satisfied: arviz>=0.9.0 in /opt/conda/lib/python3.6/site-packages (from pymc3) (0.11.2)\n", + "Requirement already satisfied: scipy>=0.18.1 in /opt/conda/lib/python3.6/site-packages (from pymc3) (1.1.0)\n", + "Requirement already satisfied: numpy>=1.13.0 in /opt/conda/lib/python3.6/site-packages (from pymc3) (1.15.2)\n", + "Collecting dataclasses; python_version < \"3.7\"\n", + " Downloading dataclasses-0.8-py3-none-any.whl (19 kB)\n", + "Requirement already satisfied: patsy>=0.5.1 in /opt/conda/lib/python3.6/site-packages (from pymc3) (0.5.1)\n", + "Requirement already satisfied: pytz>=2017.2 in /opt/conda/lib/python3.6/site-packages (from pandas>=0.18.0->pymc3) (2019.3)\n", + "Requirement already satisfied: python-dateutil>=2.7.3 in /opt/conda/lib/python3.6/site-packages (from pandas>=0.18.0->pymc3) (2.8.1)\n", + "Collecting immutables>=0.9\n", + " Downloading immutables-0.15-cp36-cp36m-manylinux1_x86_64.whl (100 kB)\n", + "\u001b[K |████████████████████████████████| 100 kB 19.6 MB/s ta 0:00:01\n", + "\u001b[?25hRequirement already satisfied: setuptools>=38.4 in /opt/conda/lib/python3.6/site-packages (from arviz>=0.9.0->pymc3) (45.2.0.post20200209)\n", + "Requirement already satisfied: packaging in /opt/conda/lib/python3.6/site-packages (from arviz>=0.9.0->pymc3) (20.1)\n", + "Requirement already satisfied: netcdf4 in /opt/conda/lib/python3.6/site-packages (from arviz>=0.9.0->pymc3) (1.5.7)\n", + "Requirement already satisfied: matplotlib>=3.0 in /opt/conda/lib/python3.6/site-packages (from arviz>=0.9.0->pymc3) (3.3.4)\n", + "Requirement already satisfied: xarray>=0.16.1 in /opt/conda/lib/python3.6/site-packages (from arviz>=0.9.0->pymc3) (0.16.2)\n", + "Requirement already satisfied: six in /opt/conda/lib/python3.6/site-packages (from patsy>=0.5.1->pymc3) (1.14.0)\n", + "Requirement already satisfied: pyparsing>=2.0.2 in /opt/conda/lib/python3.6/site-packages (from packaging->arviz>=0.9.0->pymc3) (2.4.6)\n", + "Requirement already satisfied: cftime in /opt/conda/lib/python3.6/site-packages (from netcdf4->arviz>=0.9.0->pymc3) (1.5.0)\n", + "Requirement already satisfied: pillow>=6.2.0 in /opt/conda/lib/python3.6/site-packages (from matplotlib>=3.0->arviz>=0.9.0->pymc3) (7.0.0)\n", + "Requirement already satisfied: cycler>=0.10 in /opt/conda/lib/python3.6/site-packages (from matplotlib>=3.0->arviz>=0.9.0->pymc3) (0.10.0)\n", + "Requirement already satisfied: kiwisolver>=1.0.1 in /opt/conda/lib/python3.6/site-packages (from matplotlib>=3.0->arviz>=0.9.0->pymc3) (1.1.0)\n", + "Building wheels for collected packages: theano-pymc, contextvars\n", + " Building wheel for theano-pymc (setup.py) ... \u001b[?25ldone\n", + "\u001b[?25h Created wheel for theano-pymc: filename=Theano_PyMC-1.0.11-py3-none-any.whl size=2572022 sha256=90d446d4df3d178ea00a08d0294bf165e0fa75a3412a4f0f1b1053cdd9b5ae59\n", + " Stored in directory: /home/jovyan/.cache/pip/wheels/0c/3f/12/4300ed97dce181098755583aea62c4b59f6e5c43fe53a3f097\n", + " Building wheel for contextvars (setup.py) ... \u001b[?25ldone\n", + "\u001b[?25h Created wheel for contextvars: filename=contextvars-2.4-py3-none-any.whl size=7664 sha256=0b279e2f13ddef2e3289e2b4a86bb76a004675afc18ccb264ccd1e7186d58c23\n", + " Stored in directory: /home/jovyan/.cache/pip/wheels/41/11/53/911724983aa48deb94792432e14e518447212dd6c5477d49d3\n", + "Successfully built theano-pymc contextvars\n", + "Installing collected packages: theano-pymc, fastprogress, immutables, contextvars, dataclasses, pymc3\n", + "Successfully installed contextvars-2.4 dataclasses-0.8 fastprogress-1.0.0 immutables-0.15 pymc3-3.10.0 theano-pymc-1.0.11\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "pip install pymc3" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Collecting numpy==1.15.4\n", + " Downloading numpy-1.15.4-cp36-cp36m-manylinux1_x86_64.whl (13.9 MB)\n", + "\u001b[K |████████████████████████████████| 13.9 MB 24.9 MB/s eta 0:00:01\n", + "\u001b[?25hInstalling collected packages: numpy\n", + " Attempting uninstall: numpy\n", + " Found existing installation: numpy 1.15.2\n", + " Uninstalling numpy-1.15.2:\n", + " Successfully uninstalled numpy-1.15.2\n", + "Successfully installed numpy-1.15.4\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "pip install numpy==1.15.4" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
YrMnDateDateCO2seasonallyfitseasonallyCO2seasonally
0adjustedadjusted fitfilledadjusted filled
1Excel[ppm][ppm][ppm][ppm][ppm][ppm]
2195801212001958.0411-99.99-99.99-99.99-99.99-99.99-99.99
3195802212311958.1260-99.99-99.99-99.99-99.99-99.99-99.99
4195803212591958.2027315.70314.43316.19314.90315.70314.43
.................................
765202108444232021.6219-99.99-99.99-99.99-99.99-99.99-99.99
766202109444542021.7068-99.99-99.99-99.99-99.99-99.99-99.99
767202110444842021.7890-99.99-99.99-99.99-99.99-99.99-99.99
768202111445152021.8740-99.99-99.99-99.99-99.99-99.99-99.99
769202112445452021.9562-99.99-99.99-99.99-99.99-99.99-99.99
\n", + "

770 rows × 10 columns

\n", + "
" + ], + "text/plain": [ + " Yr Mn Date Date CO2 seasonally fit \\\n", + "0 adjusted \n", + "1 Excel [ppm] [ppm] [ppm] \n", + "2 1958 01 21200 1958.0411 -99.99 -99.99 -99.99 \n", + "3 1958 02 21231 1958.1260 -99.99 -99.99 -99.99 \n", + "4 1958 03 21259 1958.2027 315.70 314.43 316.19 \n", + ".. ... ... ... ... ... ... ... \n", + "765 2021 08 44423 2021.6219 -99.99 -99.99 -99.99 \n", + "766 2021 09 44454 2021.7068 -99.99 -99.99 -99.99 \n", + "767 2021 10 44484 2021.7890 -99.99 -99.99 -99.99 \n", + "768 2021 11 44515 2021.8740 -99.99 -99.99 -99.99 \n", + "769 2021 12 44545 2021.9562 -99.99 -99.99 -99.99 \n", + "\n", + " seasonally CO2 seasonally \n", + "0 adjusted fit filled adjusted filled \n", + "1 [ppm] [ppm] [ppm] \n", + "2 -99.99 -99.99 -99.99 \n", + "3 -99.99 -99.99 -99.99 \n", + "4 314.90 315.70 314.43 \n", + ".. ... ... ... \n", + "765 -99.99 -99.99 -99.99 \n", + "766 -99.99 -99.99 -99.99 \n", + "767 -99.99 -99.99 -99.99 \n", + "768 -99.99 -99.99 -99.99 \n", + "769 -99.99 -99.99 -99.99 \n", + "\n", + "[770 rows x 10 columns]" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data_url = \"https://scrippsco2.ucsd.edu/assets/data/atmospheric/stations/in_situ_co2/monthly/monthly_in_situ_co2_mlo.csv\"\n", + "data_monthly= pd.read_csv(data_url,skiprows=54)\n", + "data_monthly" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
YrMnDateDateCO2seasonallyfitseasonallyCO2seasonally
1Excel[ppm][ppm][ppm][ppm][ppm][ppm]
2195801212001958.0411-99.99-99.99-99.99-99.99-99.99-99.99
3195802212311958.1260-99.99-99.99-99.99-99.99-99.99-99.99
4195803212591958.2027315.70314.43316.19314.90315.70314.43
5195804212901958.2877317.45315.16317.30314.98317.45315.16
.................................
765202108444232021.6219-99.99-99.99-99.99-99.99-99.99-99.99
766202109444542021.7068-99.99-99.99-99.99-99.99-99.99-99.99
767202110444842021.7890-99.99-99.99-99.99-99.99-99.99-99.99
768202111445152021.8740-99.99-99.99-99.99-99.99-99.99-99.99
769202112445452021.9562-99.99-99.99-99.99-99.99-99.99-99.99
\n", + "

769 rows × 10 columns

\n", + "
" + ], + "text/plain": [ + " Yr Mn Date Date CO2 seasonally fit \\\n", + "1 Excel [ppm] [ppm] [ppm] \n", + "2 1958 01 21200 1958.0411 -99.99 -99.99 -99.99 \n", + "3 1958 02 21231 1958.1260 -99.99 -99.99 -99.99 \n", + "4 1958 03 21259 1958.2027 315.70 314.43 316.19 \n", + "5 1958 04 21290 1958.2877 317.45 315.16 317.30 \n", + ".. ... ... ... ... ... ... ... \n", + "765 2021 08 44423 2021.6219 -99.99 -99.99 -99.99 \n", + "766 2021 09 44454 2021.7068 -99.99 -99.99 -99.99 \n", + "767 2021 10 44484 2021.7890 -99.99 -99.99 -99.99 \n", + "768 2021 11 44515 2021.8740 -99.99 -99.99 -99.99 \n", + "769 2021 12 44545 2021.9562 -99.99 -99.99 -99.99 \n", + "\n", + " seasonally CO2 seasonally \n", + "1 [ppm] [ppm] [ppm] \n", + "2 -99.99 -99.99 -99.99 \n", + "3 -99.99 -99.99 -99.99 \n", + "4 314.90 315.70 314.43 \n", + "5 314.98 317.45 315.16 \n", + ".. ... ... ... \n", + "765 -99.99 -99.99 -99.99 \n", + "766 -99.99 -99.99 -99.99 \n", + "767 -99.99 -99.99 -99.99 \n", + "768 -99.99 -99.99 -99.99 \n", + "769 -99.99 -99.99 -99.99 \n", + "\n", + "[769 rows x 10 columns]" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data_monthly = data_monthly.iloc[1:]\n", + "data_monthly" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
YrMnDateDateCO2seasonallyfitseasonallyCO2seasonally
3195802212311958.1260-99.99-99.99-99.99-99.99-99.99-99.99
4195803212591958.2027315.70314.43316.19314.90315.70314.43
5195804212901958.2877317.45315.16317.30314.98317.45315.16
6195805213201958.3699317.51314.71317.86315.06317.51314.71
7195806213511958.4548-99.99-99.99317.24315.14317.24315.14
.................................
765202108444232021.6219-99.99-99.99-99.99-99.99-99.99-99.99
766202109444542021.7068-99.99-99.99-99.99-99.99-99.99-99.99
767202110444842021.7890-99.99-99.99-99.99-99.99-99.99-99.99
768202111445152021.8740-99.99-99.99-99.99-99.99-99.99-99.99
769202112445452021.9562-99.99-99.99-99.99-99.99-99.99-99.99
\n", + "

767 rows × 10 columns

\n", + "
" + ], + "text/plain": [ + " Yr Mn Date Date CO2 seasonally fit \\\n", + "3 1958 02 21231 1958.1260 -99.99 -99.99 -99.99 \n", + "4 1958 03 21259 1958.2027 315.70 314.43 316.19 \n", + "5 1958 04 21290 1958.2877 317.45 315.16 317.30 \n", + "6 1958 05 21320 1958.3699 317.51 314.71 317.86 \n", + "7 1958 06 21351 1958.4548 -99.99 -99.99 317.24 \n", + ".. ... ... ... ... ... ... ... \n", + "765 2021 08 44423 2021.6219 -99.99 -99.99 -99.99 \n", + "766 2021 09 44454 2021.7068 -99.99 -99.99 -99.99 \n", + "767 2021 10 44484 2021.7890 -99.99 -99.99 -99.99 \n", + "768 2021 11 44515 2021.8740 -99.99 -99.99 -99.99 \n", + "769 2021 12 44545 2021.9562 -99.99 -99.99 -99.99 \n", + "\n", + " seasonally CO2 seasonally \n", + "3 -99.99 -99.99 -99.99 \n", + "4 314.90 315.70 314.43 \n", + "5 314.98 317.45 315.16 \n", + "6 315.06 317.51 314.71 \n", + "7 315.14 317.24 315.14 \n", + ".. ... ... ... \n", + "765 -99.99 -99.99 -99.99 \n", + "766 -99.99 -99.99 -99.99 \n", + "767 -99.99 -99.99 -99.99 \n", + "768 -99.99 -99.99 -99.99 \n", + "769 -99.99 -99.99 -99.99 \n", + "\n", + "[767 rows x 10 columns]" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data = data_monthly.iloc[1:]\n", + "data" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [], + "source": [ + "# replace '-99.99' values with 'nan'\n", + "from numpy import nan\n", + "data.replace(to_replace=-99.99, value=np.nan, inplace=True)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [], + "source": [ + "# fix column names\n", + "cols = [\n", + " \"year\",\n", + " \"month\",\n", + " \"--\",\n", + " \"--\",\n", + " \"CO2\",\n", + " \"seasonaly_adjusted\",\n", + " \"fit\",\n", + " \"seasonally_adjusted_fit\",\n", + " \"CO2_filled\",\n", + " \"seasonally_adjusted_filled\",\n", + "]\n", + "data.columns = cols\n", + "cols.remove(\"--\")\n", + "cols.remove(\"--\")\n", + "data= data[cols]\n" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/opt/conda/lib/python3.6/site-packages/ipykernel_launcher.py:5: SettingWithCopyWarning: \n", + "A value is trying to be set on a copy of a slice from a DataFrame\n", + "\n", + "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", + " \"\"\"\n" + ] + } + ], + "source": [ + "# drop rows with nan\n", + "import numpy as np\n", + "import pandas as pd\n", + "data.dropna()\n", + "data.dropna(inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/opt/conda/lib/python3.6/site-packages/ipykernel_launcher.py:2: SettingWithCopyWarning: \n", + "A value is trying to be set on a copy of a slice from a DataFrame.\n", + "Try using .loc[row_indexer,col_indexer] = value instead\n", + "\n", + "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", + " \n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
CO2seasonaly_adjustedfitseasonally_adjusted_fitCO2_filledseasonally_adjusted_filled
1958-02-15-99.99-99.99-99.99-99.99-99.99-99.99
1958-03-15315.70314.43316.19314.90315.70314.43
1958-04-15317.45315.16317.30314.98317.45315.16
1958-05-15317.51314.71317.86315.06317.51314.71
1958-06-15-99.99-99.99317.24315.14317.24315.14
\n", + "
" + ], + "text/plain": [ + " CO2 seasonaly_adjusted fit seasonally_adjusted_fit \\\n", + "1958-02-15 -99.99 -99.99 -99.99 -99.99 \n", + "1958-03-15 315.70 314.43 316.19 314.90 \n", + "1958-04-15 317.45 315.16 317.30 314.98 \n", + "1958-05-15 317.51 314.71 317.86 315.06 \n", + "1958-06-15 -99.99 -99.99 317.24 315.14 \n", + "\n", + " CO2_filled seasonally_adjusted_filled \n", + "1958-02-15 -99.99 -99.99 \n", + "1958-03-15 315.70 314.43 \n", + "1958-04-15 317.45 315.16 \n", + "1958-05-15 317.51 314.71 \n", + "1958-06-15 317.24 315.14 " + ] + }, + "execution_count": 34, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# fix time index\n", + "data[\"day\"] = 15\n", + "data.index = pd.to_datetime(data[[\"year\", \"month\", \"day\"]])\n", + "cols.remove(\"year\")\n", + "cols.remove(\"month\")\n", + "data = data[cols]\n", + "\n", + "data.head(5)" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "metadata": {}, + "outputs": [], + "source": [ + "# function to convert datetimes to numbers that are useful to algorithms\n", + "# this will be useful later when doing prediction\n", + "\n", + "def dates_to_idx(timelist):\n", + " reference_time = pd.to_datetime(\"1958-03-15\")\n", + " t = (timelist - reference_time) / pd.Timedelta(365, \"D\")\n", + " return np.asarray(t)\n", + "\n", + "\n", + "t = dates_to_idx(data.index)\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "metadata": {}, + "outputs": [], + "source": [ + "# split into training and test set\n", + "sep_idx = data.index.searchsorted(pd.to_datetime(\"2003-12-15\"))\n", + "data_early = data.iloc[: sep_idx + 1, :]\n", + "data_later = data.iloc[sep_idx:, :]" + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "metadata": {}, + "outputs": [], + "source": [ + "# make plot\n", + "#import matplotlib.pyplot as plt\n", + "from bokeh.plotting import figure, show\n", + "from bokeh.models import BoxAnnotation, Label, Legend, Span\n", + "from bokeh.io import output_notebook\n", + "from bokeh.palettes import brewer\n", + "\n", + "p = figure(\n", + " x_axis_type=\"datetime\",\n", + " title=\"Monthly CO2 Readings from Mauna Loa (1958-2021)\",\n", + " plot_width=550,\n", + " plot_height=350,\n", + ")\n", + "p.yaxis.axis_label = \"CO2 [ppm]\"\n", + "p.xaxis.axis_label = \"Date\"\n", + "predict_region = BoxAnnotation(\n", + " left=pd.to_datetime(\"2003-12-15\"), fill_alpha=0.1, fill_color=\"firebrick\"\n", + ")\n", + "p.add_layout(predict_region)\n", + "ppm400 = Span(location=400, dimension=\"width\", line_color=\"red\", line_dash=\"dashed\", line_width=2)\n", + "p.add_layout(ppm400)\n", + "\n", + "p.line(data.index, data[\"CO2\"], line_width=2, line_color=\"black\", alpha=0.5)\n", + "p.circle(data.index, data[\"CO2\"], line_color=\"black\", alpha=0.1, size=2)\n", + "\n", + "train_label = Label(\n", + " x=100,\n", + " y=165,\n", + " x_units=\"screen\",\n", + " y_units=\"screen\",\n", + " text=\"Training Set\",\n", + " render_mode=\"css\",\n", + " border_line_alpha=0.0,\n", + " background_fill_alpha=0.0,\n", + ")\n", + "test_label = Label(\n", + " x=585,\n", + " y=80,\n", + " x_units=\"screen\",\n", + " y_units=\"screen\",\n", + " text=\"Test Set\",\n", + " render_mode=\"css\",\n", + " border_line_alpha=0.0,\n", + " background_fill_alpha=0.0,\n", + ")\n", + "\n", + "p.add_layout(train_label)\n", + "p.add_layout(test_label)\n", + "show(p)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Collecting package metadata (current_repodata.json): - Killed\n", + "\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "conda install mkl-service" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[31mERROR: Could not find a version that satisfies the requirement pymc3==3.11.2 (from versions: 3.0rc1, 3.0rc2, 3.0rc4, 3.0rc5, 3.0rc6, 3.0, 3.1rc1, 3.1rc2, 3.1rc3, 3.1, 3.2rc1, 3.2, 3.3rc1, 3.3rc2, 3.3, 3.4rc1, 3.4rc2, 3.4.1, 3.5rc1, 3.5, 3.6, 3.7rc1, 3.7, 3.8, 3.9.0, 3.9.1, 3.9.2, 3.9.3, 3.10.0)\u001b[0m\n", + "\u001b[31mERROR: No matching distribution found for pymc3==3.11.2\u001b[0m\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "pip install pymc3==3.11.2" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "ename": "AttributeError", + "evalue": "module 'arviz' has no attribute 'geweke'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0;32mimport\u001b[0m \u001b[0mpymc3\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mpm\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0marviz\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0maz\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mmatplotlib\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpyplot\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mnumpy\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pymc3/__init__.py\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 62\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0;34m.\u001b[0m\u001b[0msampling\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 63\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0;34m.\u001b[0m\u001b[0msmc\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 64\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0;34m.\u001b[0m\u001b[0mstats\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 65\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0;34m.\u001b[0m\u001b[0mstep_methods\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 66\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0;34m.\u001b[0m\u001b[0mtests\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mtest\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pymc3/stats/__init__.py\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 45\u001b[0m \u001b[0mcompare\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmap_args\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0maz\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcompare\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 46\u001b[0m \u001b[0mess\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmap_args\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0maz\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mess\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 47\u001b[0;31m \u001b[0mgeweke\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmap_args\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0maz\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgeweke\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 48\u001b[0m \u001b[0mhpd\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmap_args\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0maz\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mhpd\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 49\u001b[0m \u001b[0mloo\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmap_args\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0maz\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mloo\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mAttributeError\u001b[0m: module 'arviz' has no attribute 'geweke'" + ] + } + ], + "source": [ + "import pymc3 as pm\n", + "import arviz as az\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "\n", + "x = np.linspace(0, 150, 5000)\n", + "priors = [\n", + " (\"ℓ_pdecay\", pm.Gamma.dist(alpha=10, beta=0.075)),\n", + " (\"ℓ_psmooth\", pm.Gamma.dist(alpha=4, beta=3)),\n", + " (\"period\", pm.Normal.dist(mu=1.0, sigma=0.05)),\n", + " (\"ℓ_med\", pm.Gamma.dist(alpha=2, beta=0.75)),\n", + " (\"α\", pm.Gamma.dist(alpha=5, beta=2)),\n", + " (\"ℓ_trend\", pm.Gamma.dist(alpha=4, beta=0.1)),\n", + " (\"ℓ_noise\", pm.Gamma.dist(alpha=2, beta=4)),\n", + "]\n", + "\n", + "colors = brewer[\"Paired\"][7]\n", + "\n", + "p = figure(\n", + " title=\"Lengthscale and period priors\",\n", + " plot_width=550,\n", + " plot_height=350,\n", + " x_range=(-1, 8),\n", + " y_range=(0, 2),\n", + ")\n", + "p.yaxis.axis_label = \"Probability\"\n", + "p.xaxis.axis_label = \"Years\"\n", + "\n", + "for i, prior in enumerate(priors):\n", + " p.line(\n", + " x,\n", + " np.exp(prior[1].logp(x).eval()),\n", + " legend_label=prior[0],\n", + " line_width=3,\n", + " line_color=colors[i],\n", + " )\n", + "show(p)" + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "metadata": {}, + "outputs": [], + "source": [ + "mkdir data-visualization\n" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "/home/jovyan/work/module3/exo3/data-visualization\n" + ] + } + ], + "source": [ + "cd data-visualization\n" + ] + }, + { + "cell_type": "code", + "execution_count": 75, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Collecting plotnine\n", + " Downloading plotnine-0.8.0-py3-none-any.whl (4.7 MB)\n", + "\u001b[K |████████████████████████████████| 4.7 MB 16.0 MB/s eta 0:00:01\n", + "\u001b[?25hCollecting descartes>=1.1.0\n", + " Downloading descartes-1.1.0-py3-none-any.whl (5.8 kB)\n", + "Collecting mizani>=0.7.3\n", + " Downloading mizani-0.7.3-py3-none-any.whl (63 kB)\n", + "\u001b[K |████████████████████████████████| 63 kB 4.5 MB/s eta 0:00:01\n", + "\u001b[?25hCollecting scipy>=1.5.0\n", + " Downloading scipy-1.5.4-cp36-cp36m-manylinux1_x86_64.whl (25.9 MB)\n", + "\u001b[K |████████████████████████████████| 25.9 MB 54.9 MB/s eta 0:00:01 |██████████████████████▋ | 18.3 MB 54.9 MB/s eta 0:00:01\n", + "\u001b[?25hCollecting numpy>=1.19.0\n", + " Downloading numpy-1.19.5-cp36-cp36m-manylinux2010_x86_64.whl (14.8 MB)\n", + "\u001b[K |████████████████████████████████| 14.8 MB 14.5 MB/s eta 0:00:01 |██████████████████████▋ | 10.5 MB 14.5 MB/s eta 0:00:01\n", + "\u001b[?25hRequirement already satisfied: patsy>=0.5.1 in /opt/conda/lib/python3.6/site-packages (from plotnine) (0.5.1)\n", + "Requirement already satisfied: matplotlib>=3.1.1 in /opt/conda/lib/python3.6/site-packages (from plotnine) (3.3.4)\n", + "Requirement already satisfied: pandas>=1.1.0 in /opt/conda/lib/python3.6/site-packages (from plotnine) (1.1.5)\n", + "Collecting statsmodels>=0.12.1\n", + " Downloading statsmodels-0.12.2-cp36-cp36m-manylinux1_x86_64.whl (9.5 MB)\n", + "\u001b[K |████████████████████████████████| 9.5 MB 49.3 MB/s eta 0:00:01\n", + "\u001b[?25hCollecting palettable\n", + " Downloading palettable-3.3.0-py2.py3-none-any.whl (111 kB)\n", + "\u001b[K |████████████████████████████████| 111 kB 65.3 MB/s eta 0:00:01\n", + "\u001b[?25hRequirement already satisfied: six in /opt/conda/lib/python3.6/site-packages (from patsy>=0.5.1->plotnine) (1.14.0)\n", + "Requirement already satisfied: cycler>=0.10 in /opt/conda/lib/python3.6/site-packages (from matplotlib>=3.1.1->plotnine) (0.10.0)\n", + "Requirement already satisfied: kiwisolver>=1.0.1 in /opt/conda/lib/python3.6/site-packages (from matplotlib>=3.1.1->plotnine) (1.1.0)\n", + "Requirement already satisfied: pillow>=6.2.0 in /opt/conda/lib/python3.6/site-packages (from matplotlib>=3.1.1->plotnine) (7.0.0)\n", + "Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.3 in /opt/conda/lib/python3.6/site-packages (from matplotlib>=3.1.1->plotnine) (2.4.6)\n", + "Requirement already satisfied: python-dateutil>=2.1 in /opt/conda/lib/python3.6/site-packages (from matplotlib>=3.1.1->plotnine) (2.8.1)\n", + "Requirement already satisfied: pytz>=2017.2 in /opt/conda/lib/python3.6/site-packages (from pandas>=1.1.0->plotnine) (2019.3)\n", + "Requirement already satisfied: setuptools in /opt/conda/lib/python3.6/site-packages (from kiwisolver>=1.0.1->matplotlib>=3.1.1->plotnine) (45.2.0.post20200209)\n", + "Installing collected packages: descartes, palettable, numpy, mizani, scipy, statsmodels, plotnine\n", + " Attempting uninstall: numpy\n", + " Found existing installation: numpy 1.15.4\n", + " Uninstalling numpy-1.15.4:\n", + " Successfully uninstalled numpy-1.15.4\n", + " Attempting uninstall: scipy\n", + " Found existing installation: scipy 1.1.0\n", + " Uninstalling scipy-1.1.0:\n", + " Successfully uninstalled scipy-1.1.0\n", + " Attempting uninstall: statsmodels\n", + " Found existing installation: statsmodels 0.9.0\n", + " Uninstalling statsmodels-0.9.0:\n", + " Successfully uninstalled statsmodels-0.9.0\n", + "Successfully installed descartes-1.1.0 mizani-0.7.3 numpy-1.19.5 palettable-3.3.0 plotnine-0.8.0 scipy-1.5.4 statsmodels-0.12.2\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "pip install plotnine" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Requirement already satisfied: pandas in /opt/conda/lib/python3.6/site-packages (1.1.5)\n", + "Requirement already satisfied: plotnine in /opt/conda/lib/python3.6/site-packages (0.8.0)\n", + "Requirement already satisfied: pytz>=2017.2 in /opt/conda/lib/python3.6/site-packages (from pandas) (2019.3)\n", + "Requirement already satisfied: python-dateutil>=2.7.3 in /opt/conda/lib/python3.6/site-packages (from pandas) (2.8.1)\n", + "Requirement already satisfied: numpy>=1.15.4 in /opt/conda/lib/python3.6/site-packages (from pandas) (1.19.5)\n", + "Requirement already satisfied: mizani>=0.7.3 in /opt/conda/lib/python3.6/site-packages (from plotnine) (0.7.3)\n", + "Requirement already satisfied: matplotlib>=3.1.1 in /opt/conda/lib/python3.6/site-packages (from plotnine) (3.3.4)\n", + "Requirement already satisfied: patsy>=0.5.1 in /opt/conda/lib/python3.6/site-packages (from plotnine) (0.5.1)\n", + "Requirement already satisfied: scipy>=1.5.0 in /opt/conda/lib/python3.6/site-packages (from plotnine) (1.5.4)\n", + "Requirement already satisfied: statsmodels>=0.12.1 in /opt/conda/lib/python3.6/site-packages (from plotnine) (0.12.2)\n", + "Requirement already satisfied: descartes>=1.1.0 in /opt/conda/lib/python3.6/site-packages (from plotnine) (1.1.0)\n", + "Requirement already satisfied: six>=1.5 in /opt/conda/lib/python3.6/site-packages (from python-dateutil>=2.7.3->pandas) (1.14.0)\n", + "Requirement already satisfied: palettable in /opt/conda/lib/python3.6/site-packages (from mizani>=0.7.3->plotnine) (3.3.0)\n", + "Requirement already satisfied: pillow>=6.2.0 in /opt/conda/lib/python3.6/site-packages (from matplotlib>=3.1.1->plotnine) (7.0.0)\n", + "Requirement already satisfied: cycler>=0.10 in /opt/conda/lib/python3.6/site-packages (from matplotlib>=3.1.1->plotnine) (0.10.0)\n", + "Requirement already satisfied: kiwisolver>=1.0.1 in /opt/conda/lib/python3.6/site-packages (from matplotlib>=3.1.1->plotnine) (1.1.0)\n", + "Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.3 in /opt/conda/lib/python3.6/site-packages (from matplotlib>=3.1.1->plotnine) (2.4.6)\n", + "Requirement already satisfied: setuptools in /opt/conda/lib/python3.6/site-packages (from kiwisolver>=1.0.1->matplotlib>=3.1.1->plotnine) (45.2.0.post20200209)\n" + ] + } + ], + "source": [ + "!pip install pandas plotnine" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "from plotnine.data import mpg\n", + "from plotnine import ggplot\n", + "from plotnine import ggplot, aes, labs\n", + "mpg = ggplot(data = data, aes(x = datetime, y = CO2)),\n", + " labs(title = \"Evolution of CO2 concentration in Hawaii\",\n", + " subtitle = \"(1958-2020)\",\n", + " caption = \"Datafrom Scripps CO2 Program\",\n", + " tag = \"Figure 1\",\n", + " x = \"Date\",\n", + " y = \"CO2 Concentration (ppm)\") + theme_bw() + geom_point(size = 0.5, color = \"grey50\")\n", + "\n", + "ggplot(mpg)" + ] + } + ], "metadata": { "kernelspec": { "display_name": "Python 3", @@ -16,10 +1521,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.3" + "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 } - diff --git a/module3/exo3/monthly.csv b/module3/exo3/monthly.csv new file mode 100644 index 0000000000000000000000000000000000000000..fa9ffff47802471e1e9114c9a4f060de50759394 --- /dev/null +++ b/module3/exo3/monthly.csv @@ -0,0 +1,769 @@ + Yr, Mn, Date, Date,CO2,seasonally adjusted,fit,seasonally adjusted fit,CO2 filled,seasonally adjusted filled +1958,1,21200,1958.0411,-99.99,-99.99,-99.99,-99.99,-99.99,-99.99 +1958,2,21231,1958.126,-99.99,-99.99,-99.99,-99.99,-99.99,-99.99 +1958,3,21259,1958.2027,315.7,314.43,316.19,314.9,315.7,314.43 +1958,4,21290,1958.2877,317.45,315.16,317.3,314.98,317.45,315.16 +1958,5,21320,1958.3699,317.51,314.71,317.86,315.06,317.51,314.71 +1958,6,21351,1958.4548,-99.99,-99.99,317.24,315.14,317.24,315.14 +1958,7,21381,1958.537,315.86,315.19,315.86,315.22,315.86,315.19 +1958,8,21412,1958.6219,314.93,316.19,313.99,315.29,314.93,316.19 +1958,9,21443,1958.7068,313.21,316.09,312.45,315.35,313.21,316.09 +1958,10,21473,1958.789,-99.99,-99.99,312.43,315.41,312.43,315.41 +1958,11,21504,1958.874,313.33,315.2,313.61,315.46,313.33,315.2 +1958,12,21534,1958.9562,314.67,315.43,314.76,315.51,314.67,315.43 +1959,1,21565,1959.0411,315.58,315.54,315.62,315.57,315.58,315.54 +1959,2,21596,1959.126,316.49,315.85,316.27,315.63,316.49,315.85 +1959,3,21624,1959.2027,316.65,315.37,316.98,315.69,316.65,315.37 +1959,4,21655,1959.2877,317.72,315.41,318.09,315.77,317.72,315.41 +1959,5,21685,1959.3699,318.29,315.48,318.66,315.85,318.29,315.48 +1959,6,21716,1959.4548,318.15,316.02,318.05,315.94,318.15,316.02 +1959,7,21746,1959.537,316.54,315.87,316.67,316.03,316.54,315.87 +1959,8,21777,1959.6219,314.8,316.07,314.82,316.12,314.8,316.07 +1959,9,21808,1959.7068,313.84,316.73,313.31,316.22,313.84,316.73 +1959,10,21838,1959.789,313.33,316.33,313.32,316.31,313.33,316.33 +1959,11,21869,1959.874,314.81,316.69,314.53,316.39,314.81,316.69 +1959,12,21899,1959.9562,315.58,316.35,315.72,316.47,315.58,316.35 +1960,1,21930,1960.041,316.43,316.39,316.61,316.56,316.43,316.39 +1960,2,21961,1960.1257,316.98,316.35,317.28,316.64,316.98,316.35 +1960,3,21990,1960.2049,317.58,316.27,318.03,316.71,317.58,316.27 +1960,4,22021,1960.2896,319.03,316.7,319.15,316.79,319.03,316.7 +1960,5,22051,1960.3716,320.04,317.21,319.68,316.86,320.04,317.21 +1960,6,22082,1960.4563,319.58,317.47,319.02,316.93,319.58,317.47 +1960,7,22112,1960.5383,318.18,317.53,317.6,316.98,318.18,317.53 +1960,8,22143,1960.623,315.9,317.2,315.68,317.01,315.9,317.2 +1960,9,22174,1960.7077,314.17,317.08,314.12,317.05,314.17,317.08 +1960,10,22204,1960.7896,313.83,316.84,314.08,317.07,313.83,316.84 +1960,11,22235,1960.8743,315,316.88,315.25,317.11,315,316.88 +1960,12,22265,1960.9563,316.19,316.96,316.39,317.15,316.19,316.96 +1961,1,22296,1961.0411,316.89,316.85,317.25,317.2,316.89,316.85 +1961,2,22327,1961.126,317.7,317.07,317.91,317.26,317.7,317.07 +1961,3,22355,1961.2027,318.54,317.25,318.63,317.33,318.54,317.25 +1961,4,22386,1961.2877,319.48,317.15,319.75,317.41,319.48,317.15 +1961,5,22416,1961.3699,320.58,317.75,320.33,317.5,320.58,317.75 +1961,6,22447,1961.4548,319.77,317.63,319.71,317.59,319.77,317.63 +1961,7,22477,1961.537,318.56,317.89,318.33,317.68,318.56,317.89 +1961,8,22508,1961.6219,316.79,318.07,316.45,317.76,316.79,318.07 +1961,9,22539,1961.7068,314.99,317.9,314.92,317.85,314.99,317.9 +1961,10,22569,1961.789,315.31,318.33,314.91,317.92,315.31,318.33 +1961,11,22600,1961.874,316.1,318,316.12,317.99,316.1,318 +1961,12,22630,1961.9562,317.01,317.78,317.3,318.06,317.01,317.78 +1962,1,22661,1962.0411,317.94,317.9,318.18,318.13,317.94,317.9 +1962,2,22692,1962.126,318.55,317.91,318.84,318.19,318.55,317.91 +1962,3,22720,1962.2027,319.68,318.39,319.56,318.26,319.68,318.39 +1962,4,22751,1962.2877,320.57,318.24,320.67,318.32,320.57,318.24 +1962,5,22781,1962.3699,321.02,318.17,321.23,318.39,321.02,318.17 +1962,6,22812,1962.4548,320.62,318.47,320.58,318.45,320.62,318.47 +1962,7,22842,1962.537,319.61,318.93,319.16,318.5,319.61,318.93 +1962,8,22873,1962.6219,317.4,318.69,317.24,318.56,317.4,318.69 +1962,9,22904,1962.7068,316.25,319.17,315.66,318.6,316.25,319.17 +1962,10,22934,1962.789,315.42,318.45,315.62,318.64,315.42,318.45 +1962,11,22965,1962.874,316.69,318.59,316.8,318.68,316.69,318.59 +1962,12,22995,1962.9562,317.7,318.47,317.96,318.72,317.7,318.47 +1963,1,23026,1963.0411,318.74,318.7,318.82,318.76,318.74,318.7 +1963,2,23057,1963.126,319.07,318.43,319.46,318.81,319.07,318.43 +1963,3,23085,1963.2027,319.86,318.56,320.16,318.85,319.86,318.56 +1963,4,23116,1963.2877,321.38,319.05,321.26,318.91,321.38,319.05 +1963,5,23146,1963.3699,322.25,319.39,321.81,318.96,322.25,319.39 +1963,6,23177,1963.4548,321.48,319.32,321.15,319.01,321.48,319.32 +1963,7,23207,1963.537,319.74,319.06,319.71,319.06,319.74,319.06 +1963,8,23238,1963.6219,317.77,319.06,317.78,319.1,317.77,319.06 +1963,9,23269,1963.7068,316.21,319.14,316.19,319.14,316.21,319.14 +1963,10,23299,1963.789,315.99,319.02,316.16,319.18,315.99,319.02 +1963,11,23330,1963.874,317.07,318.97,317.34,319.23,317.07,318.97 +1963,12,23360,1963.9562,318.35,319.13,318.51,319.27,318.35,319.13 +1964,1,23391,1964.041,319.57,319.53,319.37,319.32,319.57,319.53 +1964,2,23422,1964.1257,-99.99,-99.99,320.02,319.37,320.02,319.37 +1964,3,23451,1964.2049,-99.99,-99.99,320.75,319.41,320.75,319.41 +1964,4,23482,1964.2896,-99.99,-99.99,321.84,319.45,321.84,319.45 +1964,5,23512,1964.3716,322.25,319.39,322.35,319.49,322.25,319.39 +1964,6,23543,1964.4563,321.89,319.75,321.65,319.53,321.89,319.75 +1964,7,23573,1964.5383,320.44,319.78,320.19,319.56,320.44,319.78 +1964,8,23604,1964.623,318.69,320.01,318.23,319.58,318.69,320.01 +1964,9,23635,1964.7077,316.71,319.66,316.63,319.6,316.71,319.66 +1964,10,23665,1964.7896,316.87,319.92,316.59,319.62,316.87,319.92 +1964,11,23696,1964.8743,317.68,319.59,317.75,319.64,317.68,319.59 +1964,12,23726,1964.9563,318.71,319.49,318.89,319.66,318.71,319.49 +1965,1,23757,1965.0411,319.44,319.4,319.74,319.68,319.44,319.4 +1965,2,23788,1965.126,320.44,319.8,320.38,319.72,320.44,319.8 +1965,3,23816,1965.2027,320.89,319.59,321.09,319.77,320.89,319.59 +1965,4,23847,1965.2877,322.14,319.78,322.2,319.83,322.14,319.78 +1965,5,23877,1965.3699,322.17,319.3,322.78,319.91,322.17,319.3 +1965,6,23908,1965.4548,321.87,319.7,322.15,320,321.87,319.7 +1965,7,23938,1965.537,321.21,320.52,320.76,320.1,321.21,320.52 +1965,8,23969,1965.6219,318.87,320.16,318.88,320.21,318.87,320.16 +1965,9,24000,1965.7068,317.82,320.77,317.35,320.32,317.82,320.77 +1965,10,24030,1965.789,317.3,320.36,317.38,320.43,317.3,320.36 +1965,11,24061,1965.874,318.87,320.78,318.65,320.55,318.87,320.78 +1965,12,24091,1965.9562,319.42,320.2,319.9,320.66,319.42,320.2 +1966,1,24122,1966.0411,320.62,320.58,320.84,320.78,320.62,320.58 +1966,2,24153,1966.126,321.6,320.95,321.56,320.9,321.6,320.95 +1966,3,24181,1966.2027,322.39,321.08,322.33,321.01,322.39,321.08 +1966,4,24212,1966.2877,323.7,321.34,323.5,321.12,323.7,321.34 +1966,5,24242,1966.3699,324.08,321.2,324.1,321.22,324.08,321.2 +1966,6,24273,1966.4548,323.75,321.57,323.48,321.32,323.75,321.57 +1966,7,24303,1966.537,322.38,321.69,322.06,321.4,322.38,321.69 +1966,8,24334,1966.6219,320.36,321.66,320.15,321.48,320.36,321.66 +1966,9,24365,1966.7068,318.64,321.6,318.57,321.55,318.64,321.6 +1966,10,24395,1966.789,318.1,321.18,318.56,321.62,318.1,321.18 +1966,11,24426,1966.874,319.78,321.71,319.78,321.68,319.78,321.71 +1966,12,24456,1966.9562,321.03,321.81,320.97,321.74,321.03,321.81 +1967,1,24487,1967.0411,322.33,322.29,321.86,321.8,322.33,322.29 +1967,2,24518,1967.126,322.5,321.85,322.52,321.86,322.5,321.85 +1967,3,24546,1967.2027,323.03,321.72,323.23,321.9,323.03,321.72 +1967,4,24577,1967.2877,324.42,322.05,324.35,321.96,324.42,322.05 +1967,5,24607,1967.3699,325,322.11,324.9,322.01,325,322.11 +1967,6,24638,1967.4548,324.09,321.9,324.24,322.07,324.09,321.9 +1967,7,24668,1967.537,322.54,321.85,322.8,322.14,322.54,321.85 +1967,8,24699,1967.6219,320.92,322.22,320.86,322.2,320.92,322.22 +1967,9,24730,1967.7068,319.25,322.23,319.28,322.27,319.25,322.23 +1967,10,24760,1967.789,319.39,322.47,319.28,322.35,319.39,322.47 +1967,11,24791,1967.874,320.73,322.66,320.51,322.42,320.73,322.66 +1967,12,24821,1967.9562,321.96,322.75,321.72,322.49,321.96,322.75 +1968,1,24852,1968.041,322.57,322.52,322.63,322.57,322.57,322.52 +1968,2,24883,1968.1257,323.15,322.5,323.31,322.65,323.15,322.5 +1968,3,24912,1968.2049,323.89,322.55,324.09,322.73,323.89,322.55 +1968,4,24943,1968.2896,325.02,322.62,325.24,322.83,325.02,322.62 +1968,5,24973,1968.3716,325.57,322.67,325.82,322.92,325.57,322.67 +1968,6,25004,1968.4563,325.36,323.18,325.18,323.03,325.36,323.18 +1968,7,25034,1968.5383,324.14,323.47,323.78,323.14,324.14,323.47 +1968,8,25065,1968.623,322.11,323.44,321.88,323.25,322.11,323.44 +1968,9,25096,1968.7077,320.33,323.32,320.36,323.37,320.33,323.32 +1968,10,25126,1968.7896,320.25,323.33,320.41,323.49,320.25,323.33 +1968,11,25157,1968.8743,321.32,323.26,321.7,323.62,321.32,323.26 +1968,12,25187,1968.9563,322.89,323.69,322.97,323.75,322.89,323.69 +1969,1,25218,1969.0411,324,323.96,323.94,323.89,324,323.96 +1969,2,25249,1969.126,324.42,323.76,324.69,324.03,324.42,323.76 +1969,3,25277,1969.2027,325.63,324.31,325.5,324.16,325.63,324.31 +1969,4,25308,1969.2877,326.66,324.28,326.71,324.3,326.66,324.28 +1969,5,25338,1969.3699,327.38,324.47,327.35,324.44,327.38,324.47 +1969,6,25369,1969.4548,326.71,324.51,326.75,324.57,326.71,324.51 +1969,7,25399,1969.537,325.88,325.19,325.36,324.69,325.88,325.19 +1969,8,25430,1969.6219,323.66,324.98,323.45,324.8,323.66,324.98 +1969,9,25461,1969.7068,322.38,325.37,321.89,324.9,322.38,325.37 +1969,10,25491,1969.789,321.78,324.88,321.9,324.99,321.78,324.88 +1969,11,25522,1969.874,322.85,324.8,323.16,325.08,322.85,324.8 +1969,12,25552,1969.9562,324.12,324.91,324.38,325.16,324.12,324.91 +1970,1,25583,1970.0411,325.06,325.02,325.3,325.24,325.06,325.02 +1970,2,25614,1970.126,325.98,325.33,325.99,325.32,325.98,325.33 +1970,3,25642,1970.2027,326.93,325.6,326.74,325.4,326.93,325.6 +1970,4,25673,1970.2877,328.13,325.74,327.89,325.48,328.13,325.74 +1970,5,25703,1970.3699,328.08,325.16,328.47,325.55,328.08,325.16 +1970,6,25734,1970.4548,327.67,325.46,327.82,325.63,327.67,325.46 +1970,7,25764,1970.537,326.34,325.64,326.37,325.7,326.34,325.64 +1970,8,25795,1970.6219,324.69,326,324.42,325.77,324.69,326 +1970,9,25826,1970.7068,323.1,326.1,322.81,325.83,323.1,326.1 +1970,10,25856,1970.789,323.06,326.18,322.78,325.89,323.06,326.18 +1970,11,25887,1970.874,324.01,325.96,324,325.93,324.01,325.96 +1970,12,25917,1970.9562,325.13,325.93,325.19,325.97,325.13,325.93 +1971,1,25948,1971.0411,326.17,326.13,326.06,326.01,326.17,326.13 +1971,2,25979,1971.126,326.68,326.02,326.72,326.05,326.68,326.02 +1971,3,26007,1971.2027,327.18,325.85,327.43,326.09,327.18,325.85 +1971,4,26038,1971.2877,327.79,325.38,328.55,326.14,327.79,325.38 +1971,5,26068,1971.3699,328.93,326,329.12,326.19,328.93,326 +1971,6,26099,1971.4548,328.57,326.36,328.46,326.26,328.57,326.36 +1971,7,26129,1971.537,327.36,326.66,327,326.33,327.36,326.66 +1971,8,26160,1971.6219,325.43,326.75,325.05,326.4,325.43,326.75 +1971,9,26191,1971.7068,323.36,326.37,323.44,326.47,323.36,326.37 +1971,10,26221,1971.789,323.56,326.69,323.43,326.54,323.56,326.69 +1971,11,26252,1971.874,324.8,326.75,324.69,326.62,324.8,326.75 +1971,12,26282,1971.9562,326.01,326.81,325.91,326.7,326.01,326.81 +1972,1,26313,1972.041,326.77,326.73,326.84,326.78,326.77,326.73 +1972,2,26344,1972.1257,327.63,326.97,327.55,326.88,327.63,326.97 +1972,3,26373,1972.2049,327.75,326.39,328.35,326.98,327.75,326.39 +1972,4,26404,1972.2896,329.72,327.29,329.55,327.1,329.72,327.29 +1972,5,26434,1972.3716,330.07,327.13,330.16,327.23,330.07,327.13 +1972,6,26465,1972.4563,329.09,326.88,329.56,327.38,329.09,326.88 +1972,7,26495,1972.5383,328.04,327.37,328.18,327.54,328.04,327.37 +1972,8,26526,1972.623,326.32,327.67,326.33,327.72,326.32,327.67 +1972,9,26557,1972.7077,324.84,327.87,324.86,327.91,324.84,327.87 +1972,10,26587,1972.7896,325.2,328.33,324.99,328.1,325.2,328.33 +1972,11,26618,1972.8743,326.5,328.46,326.37,328.31,326.5,328.46 +1972,12,26648,1972.9563,327.55,328.36,327.72,328.51,327.55,328.36 +1973,1,26679,1973.0411,328.55,328.5,328.77,328.72,328.55,328.5 +1973,2,26710,1973.126,329.56,328.9,329.6,328.93,329.56,328.9 +1973,3,26738,1973.2027,330.3,328.96,330.46,329.11,330.3,328.96 +1973,4,26769,1973.2877,331.5,329.09,331.74,329.3,331.5,329.09 +1973,5,26799,1973.3699,332.48,329.53,332.43,329.48,332.48,329.53 +1973,6,26830,1973.4548,332.07,329.84,331.85,329.64,332.07,329.84 +1973,7,26860,1973.537,330.87,330.17,330.45,329.77,330.87,330.17 +1973,8,26891,1973.6219,329.31,330.64,328.52,329.88,329.31,330.64 +1973,9,26922,1973.7068,327.52,330.55,326.91,329.96,327.52,330.55 +1973,10,26952,1973.789,327.19,330.33,326.88,330.02,327.19,330.33 +1973,11,26983,1973.874,328.17,330.13,328.1,330.05,328.17,330.13 +1973,12,27013,1973.9562,328.65,329.45,329.28,330.07,328.65,329.45 +1974,1,27044,1974.0411,329.36,329.31,330.15,330.1,329.36,329.31 +1974,2,27075,1974.126,330.71,330.05,330.8,330.12,330.71,330.05 +1974,3,27103,1974.2027,331.49,330.14,331.51,330.15,331.49,330.14 +1974,4,27134,1974.2877,332.65,330.23,332.63,330.19,332.65,330.23 +1974,5,27164,1974.3699,333.1,330.14,333.18,330.22,333.1,330.14 +1974,6,27195,1974.4548,332.26,330.02,332.49,330.27,332.26,330.02 +1974,7,27225,1974.537,331.18,330.48,331,330.32,331.18,330.48 +1974,8,27256,1974.6219,329.4,330.74,329,330.37,329.4,330.74 +1974,9,27287,1974.7068,327.44,330.49,327.36,330.42,327.44,330.49 +1974,10,27317,1974.789,327.38,330.54,327.33,330.47,327.38,330.54 +1974,11,27348,1974.874,328.46,330.44,328.57,330.53,328.46,330.44 +1974,12,27378,1974.9562,329.58,330.39,329.8,330.59,329.58,330.39 +1975,1,27409,1975.0411,330.41,330.36,330.72,330.66,330.41,330.36 +1975,2,27440,1975.126,331.41,330.74,331.42,330.74,331.41,330.74 +1975,3,27468,1975.2027,332.05,330.7,332.19,330.83,332.05,330.7 +1975,4,27499,1975.2877,333.32,330.88,333.37,330.92,333.32,330.88 +1975,5,27529,1975.3699,333.98,331.01,333.98,331.01,333.98,331.01 +1975,6,27560,1975.4548,333.61,331.37,333.34,331.11,333.61,331.37 +1975,7,27590,1975.537,331.91,331.2,331.89,331.21,331.91,331.2 +1975,8,27621,1975.6219,330.06,331.41,329.93,331.3,330.06,331.41 +1975,9,27652,1975.7068,328.57,331.62,328.33,331.4,328.57,331.62 +1975,10,27682,1975.789,328.35,331.51,328.33,331.48,328.35,331.51 +1975,11,27713,1975.874,329.5,331.48,329.61,331.57,329.5,331.48 +1975,12,27743,1975.9562,330.77,331.58,330.85,331.65,330.77,331.58 +1976,1,27774,1976.041,331.76,331.71,331.78,331.73,331.76,331.71 +1976,2,27805,1976.1257,332.58,331.91,332.49,331.81,332.58,331.91 +1976,3,27834,1976.2049,333.5,332.13,333.27,331.88,333.5,332.13 +1976,4,27865,1976.2896,334.59,332.13,334.44,331.96,334.59,332.13 +1976,5,27895,1976.3716,334.89,331.91,335.01,332.04,334.89,331.91 +1976,6,27926,1976.4563,334.34,332.11,334.33,332.12,334.34,332.11 +1976,7,27956,1976.5383,333.06,332.38,332.86,332.2,333.06,332.38 +1976,8,27987,1976.623,330.95,332.32,330.89,332.3,330.95,332.32 +1976,9,28018,1976.7077,329.31,332.39,329.31,332.4,329.31,332.39 +1976,10,28048,1976.7896,328.95,332.12,329.35,332.51,328.95,332.12 +1976,11,28079,1976.8743,330.32,332.3,330.68,332.64,330.32,332.3 +1976,12,28109,1976.9563,331.69,332.51,331.99,332.78,331.69,332.51 +1977,1,28140,1977.0411,332.94,332.89,333,332.94,332.94,332.89 +1977,2,28171,1977.126,333.43,332.76,333.8,333.12,333.43,332.76 +1977,3,28199,1977.2027,334.71,333.35,334.65,333.28,334.71,333.35 +1977,4,28230,1977.2877,336.08,333.63,335.93,333.47,336.08,333.63 +1977,5,28260,1977.3699,336.76,333.77,336.63,333.65,336.76,333.77 +1977,6,28291,1977.4548,336.28,334.02,336.07,333.83,336.28,334.02 +1977,7,28321,1977.537,334.93,334.21,334.68,334,334.93,334.21 +1977,8,28352,1977.6219,332.76,334.11,332.78,334.16,332.76,334.11 +1977,9,28383,1977.7068,331.6,334.68,331.23,334.32,331.6,334.68 +1977,10,28413,1977.789,331.17,334.36,331.29,334.47,331.17,334.36 +1977,11,28444,1977.874,332.41,334.41,332.64,334.61,332.41,334.41 +1977,12,28474,1977.9562,333.86,334.67,333.95,334.75,333.86,334.67 +1978,1,28505,1978.0411,334.98,334.93,334.94,334.89,334.98,334.93 +1978,2,28536,1978.126,335.4,334.72,335.7,335.02,335.4,334.72 +1978,3,28564,1978.2027,336.65,335.29,336.52,335.14,336.65,335.29 +1978,4,28595,1978.2877,337.77,335.31,337.74,335.26,337.77,335.31 +1978,5,28625,1978.3699,338.02,335.02,338.38,335.38,338.02,335.02 +1978,6,28656,1978.4548,337.91,335.64,337.75,335.5,337.91,335.64 +1978,7,28686,1978.537,336.55,335.83,336.29,335.61,336.55,335.83 +1978,8,28717,1978.6219,334.69,336.05,334.32,335.71,334.69,336.05 +1978,9,28748,1978.7068,332.77,335.85,332.71,335.81,332.77,335.85 +1978,10,28778,1978.789,332.56,335.75,332.72,335.9,332.56,335.75 +1978,11,28809,1978.874,333.93,335.93,334.02,336,333.93,335.93 +1978,12,28839,1978.9562,334.96,335.78,335.29,336.09,334.96,335.78 +1979,1,28870,1979.0411,336.24,336.19,336.26,336.2,336.24,336.19 +1979,2,28901,1979.126,336.77,336.09,337,336.32,336.77,336.09 +1979,3,28929,1979.2027,337.97,336.61,337.81,336.42,337.97,336.61 +1979,4,28960,1979.2877,338.89,336.43,339.03,336.55,338.89,336.43 +1979,5,28990,1979.3699,339.48,336.48,339.68,336.68,339.48,336.48 +1979,6,29021,1979.4548,339.3,337.02,339.07,336.81,339.3,337.02 +1979,7,29051,1979.537,337.74,337.02,337.64,336.95,337.74,337.02 +1979,8,29082,1979.6219,336.1,337.46,335.7,337.09,336.1,337.46 +1979,9,29113,1979.7068,333.93,337.02,334.12,337.23,333.93,337.02 +1979,10,29143,1979.789,333.87,337.08,334.19,337.38,333.87,337.08 +1979,11,29174,1979.874,335.3,337.31,335.55,337.54,335.3,337.31 +1979,12,29204,1979.9562,336.74,337.56,336.89,337.69,336.74,337.56 +1980,1,29235,1980.041,338.03,337.99,337.92,337.86,338.03,337.99 +1980,2,29266,1980.1257,338.37,337.69,338.72,338.03,338.37,337.69 +1980,3,29295,1980.2049,340.09,338.69,339.6,338.19,340.09,338.69 +1980,4,29326,1980.2896,340.78,338.28,340.86,338.35,340.78,338.28 +1980,5,29356,1980.3716,341.48,338.47,341.51,338.5,341.48,338.47 +1980,6,29387,1980.4563,341.18,338.92,340.89,338.65,341.18,338.92 +1980,7,29417,1980.5383,339.57,338.88,339.44,338.78,339.57,338.88 +1980,8,29448,1980.623,337.61,339,337.49,338.91,337.61,339 +1980,9,29479,1980.7077,335.9,339.01,335.9,339.04,335.9,339.01 +1980,10,29509,1980.7896,336.03,339.24,335.95,339.15,336.03,339.24 +1980,11,29540,1980.8743,337.12,339.13,337.27,339.26,337.12,339.13 +1980,12,29570,1980.9563,338.23,339.06,338.55,339.36,338.23,339.06 +1981,1,29601,1981.0411,339.25,339.2,339.52,339.46,339.25,339.2 +1981,2,29632,1981.126,340.5,339.81,340.26,339.56,340.5,339.81 +1981,3,29660,1981.2027,341.4,340.03,341.04,339.65,341.4,340.03 +1981,4,29691,1981.2877,342.52,340.04,342.24,339.74,342.52,340.04 +1981,5,29721,1981.3699,342.93,339.9,342.85,339.83,342.93,339.9 +1981,6,29752,1981.4548,342.27,339.98,342.18,339.91,342.27,339.98 +1981,7,29782,1981.537,340.51,339.78,340.69,340,340.51,339.78 +1981,8,29813,1981.6219,338.45,339.82,338.68,340.09,338.45,339.82 +1981,9,29844,1981.7068,336.71,339.83,337.05,340.18,336.71,339.83 +1981,10,29874,1981.789,336.88,340.1,337.07,340.28,336.88,340.1 +1981,11,29905,1981.874,338.38,340.4,338.39,340.39,338.38,340.4 +1981,12,29935,1981.9562,339.63,340.46,339.69,340.5,339.63,340.46 +1982,1,29966,1982.0411,340.77,340.73,340.67,340.61,340.77,340.73 +1982,2,29997,1982.126,341.63,340.95,341.41,340.72,341.63,340.95 +1982,3,30025,1982.2027,342.72,341.34,342.2,340.81,342.72,341.34 +1982,4,30056,1982.2877,343.59,341.1,343.41,340.9,343.59,341.1 +1982,5,30086,1982.3699,344.16,341.12,344.02,340.98,344.16,341.12 +1982,6,30117,1982.4548,343.37,341.07,343.34,341.06,343.37,341.07 +1982,7,30147,1982.537,342.07,341.35,341.83,341.14,342.07,341.35 +1982,8,30178,1982.6219,339.83,341.2,339.81,341.22,339.83,341.2 +1982,9,30209,1982.7068,338,341.12,338.16,341.3,338,341.12 +1982,10,30239,1982.789,337.88,341.12,338.17,341.4,337.88,341.12 +1982,11,30270,1982.874,339.28,341.31,339.51,341.51,339.28,341.31 +1982,12,30300,1982.9562,340.51,341.34,340.83,341.64,340.51,341.34 +1983,1,30331,1983.0411,341.4,341.35,341.85,341.79,341.4,341.35 +1983,2,30362,1983.126,342.54,341.86,342.66,341.97,342.54,341.86 +1983,3,30390,1983.2027,343.12,341.73,343.53,342.13,343.12,341.73 +1983,4,30421,1983.2877,344.96,342.46,344.84,342.33,344.96,342.46 +1983,5,30451,1983.3699,345.78,342.73,345.56,342.52,345.78,342.73 +1983,6,30482,1983.4548,345.34,343.03,344.99,342.71,345.34,343.03 +1983,7,30512,1983.537,344,343.27,343.59,342.89,344,343.27 +1983,8,30543,1983.6219,342.4,343.78,341.65,343.06,342.4,343.78 +1983,9,30574,1983.7068,339.88,343.02,340.08,343.23,339.88,343.02 +1983,10,30604,1983.789,340,343.25,340.14,343.38,340,343.25 +1983,11,30635,1983.874,341.16,343.19,341.52,343.53,341.16,343.19 +1983,12,30665,1983.9562,342.99,343.82,342.86,343.67,342.99,343.82 +1984,1,30696,1984.041,343.82,343.77,343.87,343.82,343.82,343.77 +1984,2,30727,1984.1257,344.62,343.94,344.65,343.96,344.62,343.94 +1984,3,30756,1984.2049,345.39,343.97,345.51,344.08,345.39,343.97 +1984,4,30787,1984.2896,347.15,344.62,346.76,344.21,347.15,344.62 +1984,5,30817,1984.3716,347.52,344.47,347.39,344.34,347.52,344.47 +1984,6,30848,1984.4563,346.88,344.59,346.73,344.46,346.88,344.59 +1984,7,30878,1984.5383,345.47,344.76,345.24,344.57,345.47,344.76 +1984,8,30909,1984.623,343.34,344.75,343.24,344.68,343.34,344.75 +1984,9,30940,1984.7077,341.13,344.29,341.63,344.8,341.13,344.29 +1984,10,30970,1984.7896,341.4,344.65,341.67,344.91,341.4,344.65 +1984,11,31001,1984.8743,343.02,345.06,343.02,345.03,343.02,345.06 +1984,12,31031,1984.9563,344.25,345.08,344.34,345.15,344.25,345.08 +1985,1,31062,1985.0411,344.99,344.95,345.34,345.28,344.99,344.95 +1985,2,31093,1985.126,346.01,345.32,346.11,345.4,346.01,345.32 +1985,3,31121,1985.2027,347.43,346.04,346.92,345.51,347.43,346.04 +1985,4,31152,1985.2877,348.34,345.83,348.16,345.63,348.34,345.83 +1985,5,31182,1985.3699,348.92,345.86,348.79,345.73,348.92,345.86 +1985,6,31213,1985.4548,348.24,345.92,348.12,345.82,348.24,345.92 +1985,7,31243,1985.537,346.53,345.8,346.62,345.91,346.53,345.8 +1985,8,31274,1985.6219,344.64,346.03,344.58,346,344.64,346.03 +1985,9,31305,1985.7068,343.06,346.21,342.91,346.08,343.06,346.21 +1985,10,31335,1985.789,342.77,346.04,342.91,346.17,342.77,346.04 +1985,11,31366,1985.874,344.21,346.26,344.23,346.26,344.21,346.26 +1985,12,31396,1985.9562,345.53,346.37,345.53,346.35,345.53,346.37 +1986,1,31427,1986.0411,346.28,346.23,346.51,346.45,346.28,346.23 +1986,2,31458,1986.126,346.93,346.24,347.26,346.56,346.93,346.24 +1986,3,31486,1986.2027,347.83,346.43,348.08,346.67,347.83,346.43 +1986,4,31517,1986.2877,349.53,347.01,349.33,346.79,349.53,347.01 +1986,5,31547,1986.3699,350.19,347.12,349.99,346.92,350.19,347.12 +1986,6,31578,1986.4548,349.53,347.2,349.35,347.05,349.53,347.2 +1986,7,31608,1986.537,347.92,347.18,347.88,347.17,347.92,347.18 +1986,8,31639,1986.6219,345.88,347.27,345.88,347.3,345.88,347.27 +1986,9,31670,1986.7068,344.83,348,344.25,347.43,344.83,348 +1986,10,31700,1986.789,344.15,347.43,344.29,347.55,344.15,347.43 +1986,11,31731,1986.874,345.64,347.69,345.65,347.69,345.64,347.69 +1986,12,31761,1986.9562,346.88,347.72,346.99,347.82,346.88,347.72 +1987,1,31792,1987.0411,348,347.95,348.02,347.96,348,347.95 +1987,2,31823,1987.126,348.47,347.77,348.82,348.11,348.47,347.77 +1987,3,31851,1987.2027,349.4,348,349.68,348.26,349.4,348 +1987,4,31882,1987.2877,350.97,348.44,350.98,348.44,350.97,348.44 +1987,5,31912,1987.3699,351.84,348.75,351.69,348.61,351.84,348.75 +1987,6,31943,1987.4548,351.25,348.91,351.11,348.8,351.25,348.91 +1987,7,31973,1987.537,349.5,348.76,349.69,348.98,349.5,348.76 +1987,8,32004,1987.6219,348.09,349.48,347.75,349.18,348.09,349.48 +1987,9,32035,1987.7068,346.44,349.61,346.18,349.37,346.44,349.61 +1987,10,32065,1987.789,346.09,349.38,346.29,349.56,346.09,349.38 +1987,11,32096,1987.874,347.54,349.6,347.73,349.77,347.54,349.6 +1987,12,32126,1987.9562,348.69,349.54,349.14,349.97,348.69,349.54 +1988,1,32157,1988.041,350.16,350.12,350.23,350.17,350.16,350.12 +1988,2,32188,1988.1257,351.47,350.77,351.09,350.38,351.47,350.77 +1988,3,32217,1988.2049,351.96,350.52,352.02,350.58,351.96,350.52 +1988,4,32248,1988.2896,353.33,350.77,353.36,350.78,353.33,350.77 +1988,5,32278,1988.3716,353.97,350.88,354.06,350.97,353.97,350.88 +1988,6,32309,1988.4563,353.55,351.23,353.45,351.15,353.55,351.23 +1988,7,32339,1988.5383,352.14,351.43,352.01,351.33,352.14,351.43 +1988,8,32370,1988.623,350.19,351.62,350.03,351.5,350.19,351.62 +1988,9,32401,1988.7077,348.5,351.69,348.44,351.65,348.5,351.69 +1988,10,32431,1988.7896,348.66,351.95,348.51,351.79,348.66,351.95 +1988,11,32462,1988.8743,349.85,351.91,349.89,351.93,349.85,351.91 +1988,12,32492,1988.9563,351.12,351.97,351.23,352.05,351.12,351.97 +1989,1,32523,1989.0411,352.55,352.5,352.23,352.17,352.55,352.5 +1989,2,32554,1989.126,352.86,352.16,352.99,352.28,352.86,352.16 +1989,3,32582,1989.2027,353.48,352.07,353.81,352.38,353.48,352.07 +1989,4,32613,1989.2877,355.22,352.67,355.05,352.49,355.22,352.67 +1989,5,32643,1989.3699,355.47,352.37,355.69,352.59,355.47,352.37 +1989,6,32674,1989.4548,354.92,352.57,355.02,352.69,354.92,352.57 +1989,7,32704,1989.537,353.7,352.95,353.5,352.79,353.7,352.95 +1989,8,32735,1989.6219,351.47,352.87,351.45,352.88,351.47,352.87 +1989,9,32766,1989.7068,349.61,352.8,349.77,352.98,349.61,352.8 +1989,10,32796,1989.789,349.79,353.1,349.78,353.08,349.79,353.1 +1989,11,32827,1989.874,351.1,353.17,351.13,353.18,351.1,353.17 +1989,12,32857,1989.9562,352.32,353.17,352.45,353.28,352.32,353.17 +1990,1,32888,1990.0411,353.46,353.42,353.44,353.38,353.46,353.42 +1990,2,32919,1990.126,354.5,353.8,354.2,353.48,354.5,353.8 +1990,3,32947,1990.2027,355.19,353.77,355.01,353.58,355.19,353.77 +1990,4,32978,1990.2877,356,353.45,356.25,353.68,356,353.45 +1990,5,33008,1990.3699,356.96,353.85,356.9,353.79,356.96,353.85 +1990,6,33039,1990.4548,356.04,353.68,356.24,353.9,356.04,353.68 +1990,7,33069,1990.537,354.62,353.88,354.73,354.02,354.62,353.88 +1990,8,33100,1990.6219,352.71,354.12,352.71,354.15,352.71,354.12 +1990,9,33131,1990.7068,350.77,353.98,351.07,354.29,350.77,353.98 +1990,10,33161,1990.789,350.99,354.31,351.13,354.43,350.99,354.31 +1990,11,33192,1990.874,352.64,354.72,352.53,354.59,352.64,354.72 +1990,12,33222,1990.9562,354.02,354.87,353.9,354.73,354.02,354.87 +1991,1,33253,1991.0411,354.53,354.48,354.94,354.88,354.53,354.48 +1991,2,33284,1991.126,355.55,354.85,355.73,355.02,355.55,354.85 +1991,3,33312,1991.2027,356.96,355.54,356.57,355.14,356.96,355.54 +1991,4,33343,1991.2877,358.4,355.84,357.83,355.25,358.4,355.84 +1991,5,33373,1991.3699,359.14,356.01,358.47,355.35,359.14,356.01 +1991,6,33404,1991.4548,358.04,355.68,357.77,355.42,358.04,355.68 +1991,7,33434,1991.537,355.98,355.23,356.2,355.49,355.98,355.23 +1991,8,33465,1991.6219,353.81,355.23,354.1,355.55,353.81,355.23 +1991,9,33496,1991.7068,351.95,355.17,352.37,355.6,351.95,355.17 +1991,10,33526,1991.789,352.02,355.35,352.34,355.66,352.02,355.35 +1991,11,33557,1991.874,353.55,355.63,353.66,355.73,353.55,355.63 +1991,12,33587,1991.9562,354.79,355.64,354.96,355.79,354.79,355.64 +1992,1,33618,1992.041,355.79,355.74,355.92,355.86,355.79,355.74 +1992,2,33649,1992.1257,356.52,355.82,356.65,355.93,356.52,355.82 +1992,3,33678,1992.2049,357.61,356.16,357.46,356,357.61,356.16 +1992,4,33709,1992.2896,358.95,356.36,358.67,356.06,358.95,356.36 +1992,5,33739,1992.3716,359.46,356.33,359.24,356.11,359.46,356.33 +1992,6,33770,1992.4563,359.05,356.7,358.49,356.16,359.05,356.7 +1992,7,33800,1992.5383,356.82,356.1,356.88,356.2,356.82,356.1 +1992,8,33831,1992.623,354.8,356.24,354.75,356.23,354.8,356.24 +1992,9,33862,1992.7077,352.81,356.04,353.01,356.26,352.81,356.04 +1992,10,33892,1992.7896,353.11,356.44,352.97,356.29,353.11,356.44 +1992,11,33923,1992.8743,353.96,356.05,354.26,356.33,353.96,356.05 +1992,12,33953,1992.9563,355.2,356.06,355.53,356.37,355.2,356.06 +1993,1,33984,1993.0411,356.5,356.45,356.48,356.42,356.5,356.45 +1993,2,34015,1993.126,356.97,356.26,357.2,356.48,356.97,356.26 +1993,3,34043,1993.2027,358.18,356.75,357.99,356.55,358.18,356.75 +1993,4,34074,1993.2877,359.26,356.68,359.22,356.62,359.26,356.68 +1993,5,34104,1993.3699,360.08,356.94,359.85,356.7,360.08,356.94 +1993,6,34135,1993.4548,359.4,357.02,359.16,356.8,359.4,357.02 +1993,7,34165,1993.537,357.38,356.62,357.62,356.9,357.38,356.62 +1993,8,34196,1993.6219,355.33,356.75,355.55,357.01,355.33,356.75 +1993,9,34227,1993.7068,353.5,356.74,353.89,357.14,353.5,356.74 +1993,10,34257,1993.789,353.8,357.15,353.94,357.28,353.8,357.15 +1993,11,34288,1993.874,355.15,357.25,355.35,357.43,355.15,357.25 +1993,12,34318,1993.9562,356.62,357.48,356.75,357.59,356.62,357.48 +1994,1,34349,1994.0411,358.19,358.14,357.82,357.76,358.19,358.14 +1994,2,34380,1994.126,358.73,358.02,358.65,357.93,358.73,358.02 +1994,3,34408,1994.2027,359.79,358.36,359.53,358.08,359.79,358.36 +1994,4,34439,1994.2877,361.09,358.5,360.86,358.25,361.09,358.5 +1994,5,34469,1994.3699,361.52,358.36,361.57,358.42,361.52,358.36 +1994,6,34500,1994.4548,360.77,358.39,360.95,358.59,360.77,358.39 +1994,7,34530,1994.537,359.38,358.62,359.47,358.75,359.38,358.62 +1994,8,34561,1994.6219,357.31,358.73,357.46,358.93,357.31,358.73 +1994,9,34592,1994.7068,355.68,358.92,355.84,359.11,355.68,358.92 +1994,10,34622,1994.789,355.83,359.19,355.93,359.28,355.83,359.19 +1994,11,34653,1994.874,357.42,359.53,357.38,359.47,357.42,359.53 +1994,12,34683,1994.9562,358.88,359.74,358.8,359.65,358.88,359.74 +1995,1,34714,1995.0411,359.81,359.76,359.89,359.83,359.81,359.76 +1995,2,34745,1995.126,360.84,360.13,360.74,360.02,360.84,360.13 +1995,3,34773,1995.2027,361.48,360.05,361.63,360.18,361.48,360.05 +1995,4,34804,1995.2877,363.3,360.71,362.96,360.35,363.3,360.71 +1995,5,34834,1995.3699,363.65,360.48,363.68,360.52,363.65,360.48 +1995,6,34865,1995.4548,363.11,360.72,363.06,360.68,363.11,360.72 +1995,7,34895,1995.537,361.75,360.99,361.57,360.84,361.75,360.99 +1995,8,34926,1995.6219,359.31,360.74,359.54,361.01,359.31,360.74 +1995,9,34957,1995.7068,357.91,361.17,357.9,361.17,357.91,361.17 +1995,10,34987,1995.789,357.62,360.99,357.97,361.33,357.62,360.99 +1995,11,35018,1995.874,359.42,361.54,359.4,361.49,359.42,361.54 +1995,12,35048,1995.9562,360.56,361.42,360.8,361.64,360.56,361.42 +1996,1,35079,1996.041,361.91,361.86,361.86,361.8,361.91,361.86 +1996,2,35110,1996.1257,363.11,362.39,362.67,361.95,363.11,362.39 +1996,3,35139,1996.2049,363.88,362.42,363.56,362.08,363.88,362.42 +1996,4,35170,1996.2896,364.58,361.96,364.85,362.2,364.58,361.96 +1996,5,35200,1996.3716,365.29,362.11,365.49,362.32,365.29,362.11 +1996,6,35231,1996.4563,364.84,362.46,364.78,362.43,364.84,362.46 +1996,7,35261,1996.5383,363.52,362.79,363.22,362.53,363.52,362.79 +1996,8,35292,1996.623,361.35,362.81,361.12,362.62,361.35,362.81 +1996,9,35323,1996.7077,359.32,362.59,359.42,362.71,359.32,362.59 +1996,10,35353,1996.7896,359.48,362.85,359.42,362.79,359.48,362.85 +1996,11,35384,1996.8743,360.64,362.75,360.78,362.87,360.64,362.75 +1996,12,35414,1996.9563,362.21,363.07,362.1,362.94,362.21,363.07 +1997,1,35445,1997.0411,363.06,363.02,363.09,363.03,363.06,363.02 +1997,2,35476,1997.126,363.87,363.16,363.84,363.12,363.87,363.16 +1997,3,35504,1997.2027,364.44,363,364.66,363.2,364.44,363 +1997,4,35535,1997.2877,366.23,363.62,365.94,363.31,366.23,363.62 +1997,5,35565,1997.3699,366.68,363.5,366.61,363.42,366.68,363.5 +1997,6,35596,1997.4548,365.52,363.11,365.95,363.56,365.52,363.11 +1997,7,35626,1997.537,364.36,363.6,364.44,363.71,364.36,363.6 +1997,8,35657,1997.6219,362.39,363.83,362.41,363.89,362.39,363.83 +1997,9,35688,1997.7068,360.08,363.35,360.8,364.09,360.08,363.35 +1997,10,35718,1997.789,360.67,364.06,360.93,364.31,360.67,364.06 +1997,11,35749,1997.874,362.32,364.45,362.45,364.55,362.32,364.45 +1997,12,35779,1997.9562,364.17,365.04,363.95,364.8,364.17,365.04 +1998,1,35810,1998.0411,365.22,365.17,365.13,365.07,365.22,365.17 +1998,2,35841,1998.126,366.04,365.32,366.08,365.35,366.04,365.32 +1998,3,35869,1998.2027,367.2,365.75,367.07,365.6,367.2,365.75 +1998,4,35900,1998.2877,368.5,365.89,368.51,365.87,368.5,365.89 +1998,5,35930,1998.3699,369.19,366,369.33,366.14,369.19,366 +1998,6,35961,1998.4548,368.77,366.35,368.8,366.4,368.77,366.35 +1998,7,35991,1998.537,367.53,366.76,367.38,366.64,367.53,366.76 +1998,8,36022,1998.6219,365.68,367.12,365.4,366.88,365.68,367.12 +1998,9,36053,1998.7068,363.8,367.09,363.8,367.1,363.8,367.09 +1998,10,36083,1998.789,364.13,367.54,363.9,367.29,364.13,367.54 +1998,11,36114,1998.874,365.36,367.49,365.36,367.47,365.36,367.49 +1998,12,36144,1998.9562,366.87,367.74,366.76,367.62,366.87,367.74 +1999,1,36175,1999.0411,368.05,368,367.81,367.75,368.05,368 +1999,2,36206,1999.126,368.77,368.05,368.6,367.86,368.77,368.05 +1999,3,36234,1999.2027,369.49,368.03,369.42,367.95,369.49,368.03 +1999,4,36265,1999.2877,371.04,368.41,370.68,368.03,371.04,368.41 +1999,5,36295,1999.3699,370.9,367.7,371.3,368.1,370.9,367.7 +1999,6,36326,1999.4548,370.25,367.83,370.57,368.17,370.25,367.83 +1999,7,36356,1999.537,369.17,368.4,368.97,368.24,369.17,368.4 +1999,8,36387,1999.6219,366.83,368.28,366.83,368.31,366.83,368.28 +1999,9,36418,1999.7068,364.54,367.83,365.07,368.39,364.54,367.83 +1999,10,36448,1999.789,365.04,368.45,365.07,368.47,365.04,368.45 +1999,11,36479,1999.874,366.58,368.72,366.44,368.55,366.58,368.72 +1999,12,36509,1999.9562,367.92,368.79,367.78,368.64,367.92,368.79 +2000,1,36540,2000.041,369.05,369,368.79,368.73,369.05,369 +2000,2,36571,2000.1257,369.37,368.65,369.56,368.82,369.37,368.65 +2000,3,36600,2000.2049,370.42,368.94,370.42,368.92,370.42,368.94 +2000,4,36631,2000.2896,371.57,368.91,371.71,369.03,371.57,368.91 +2000,5,36661,2000.3716,371.74,368.53,372.35,369.15,371.74,368.53 +2000,6,36692,2000.4563,371.6,369.19,371.66,369.28,371.6,369.19 +2000,7,36722,2000.5383,370.02,369.29,370.12,369.41,370.02,369.29 +2000,8,36753,2000.623,368.03,369.51,368.04,369.56,368.03,369.51 +2000,9,36784,2000.7077,366.53,369.85,366.37,369.7,366.53,369.85 +2000,10,36814,2000.7896,366.64,370.06,366.44,369.85,366.64,370.06 +2000,11,36845,2000.8743,368.2,370.34,367.87,369.99,368.2,370.34 +2000,12,36875,2000.9563,369.44,370.31,369.26,370.12,369.44,370.31 +2001,1,36906,2001.0411,370.2,370.15,370.31,370.24,370.2,370.15 +2001,2,36937,2001.126,371.41,370.69,371.1,370.37,371.41,370.69 +2001,3,36965,2001.2027,372.04,370.57,371.95,370.47,372.04,370.57 +2001,4,36996,2001.2877,372.78,370.14,373.25,370.59,372.78,370.14 +2001,5,37026,2001.3699,373.94,370.72,373.93,370.71,373.94,370.72 +2001,6,37057,2001.4548,373.23,370.79,373.26,370.84,373.23,370.79 +2001,7,37087,2001.537,371.54,370.76,371.71,370.98,371.54,370.76 +2001,8,37118,2001.6219,369.47,370.93,369.63,371.12,369.47,370.93 +2001,9,37149,2001.7068,367.88,371.19,367.94,371.28,367.88,371.19 +2001,10,37179,2001.789,368.01,371.45,368.01,371.43,368.01,371.45 +2001,11,37210,2001.874,369.6,371.75,369.47,371.59,369.6,371.75 +2001,12,37240,2001.9562,371.16,372.04,370.9,371.76,371.16,372.04 +2002,1,37271,2002.0411,372.36,372.31,371.99,371.93,372.36,372.31 +2002,2,37302,2002.126,373,372.28,372.84,372.1,373,372.28 +2002,3,37330,2002.2027,373.44,371.97,373.75,372.26,373.44,371.97 +2002,4,37361,2002.2877,374.77,372.13,375.12,372.45,374.77,372.13 +2002,5,37391,2002.3699,375.48,372.25,375.87,372.64,375.48,372.25 +2002,6,37422,2002.4548,375.33,372.89,375.28,372.85,375.33,372.89 +2002,7,37452,2002.537,373.95,373.17,373.81,373.07,373.95,373.17 +2002,8,37483,2002.6219,371.41,372.87,371.8,373.29,371.41,372.87 +2002,9,37514,2002.7068,370.63,373.95,370.19,373.53,370.63,373.95 +2002,10,37544,2002.789,370.18,373.62,370.33,373.76,370.18,373.62 +2002,11,37575,2002.874,372.01,374.17,371.86,373.99,372.01,374.17 +2002,12,37605,2002.9562,373.71,374.59,373.35,374.21,373.71,374.59 +2003,1,37636,2003.0411,374.61,374.56,374.5,374.44,374.61,374.56 +2003,2,37667,2003.126,375.55,374.82,375.4,374.66,375.55,374.82 +2003,3,37695,2003.2027,376.04,374.57,376.34,374.85,376.04,374.57 +2003,4,37726,2003.2877,377.58,374.92,377.74,375.06,377.58,374.92 +2003,5,37756,2003.3699,378.28,375.04,378.51,375.27,378.28,375.04 +2003,6,37787,2003.4548,378.07,375.62,377.9,375.47,378.07,375.62 +2003,7,37817,2003.537,376.54,375.77,376.41,375.66,376.54,375.77 +2003,8,37848,2003.6219,374.42,375.88,374.36,375.86,374.42,375.88 +2003,9,37879,2003.7068,372.92,376.25,372.69,376.04,372.92,376.25 +2003,10,37909,2003.789,372.94,376.39,372.76,376.2,372.94,376.39 +2003,11,37940,2003.874,374.29,376.45,374.22,376.36,374.29,376.45 +2003,12,37970,2003.9562,375.63,376.51,375.64,376.51,375.63,376.51 +2004,1,38001,2004.041,376.73,376.68,376.71,376.65,376.73,376.68 +2004,2,38032,2004.1257,377.31,376.58,377.52,376.78,377.31,376.58 +2004,3,38061,2004.2049,378.33,376.83,378.42,376.9,378.33,376.83 +2004,4,38092,2004.2896,380.44,377.75,379.73,377.02,380.44,377.75 +2004,5,38122,2004.3716,380.56,377.31,380.38,377.14,380.56,377.31 +2004,6,38153,2004.4563,379.49,377.06,379.67,377.25,379.49,377.06 +2004,7,38183,2004.5383,377.71,376.96,378.09,377.38,377.71,376.96 +2004,8,38214,2004.623,375.78,377.27,375.98,377.51,375.78,377.27 +2004,9,38245,2004.7077,373.99,377.35,374.29,377.66,373.99,377.35 +2004,10,38275,2004.7896,374.17,377.63,374.38,377.83,374.17,377.63 +2004,11,38306,2004.8743,375.79,377.96,375.87,378.01,375.79,377.96 +2004,12,38336,2004.9563,377.39,378.28,377.33,378.2,377.39,378.28 +2005,1,38367,2005.0411,378.29,378.24,378.47,378.4,378.29,378.24 +2005,2,38398,2005.126,379.56,378.82,379.36,378.62,379.56,378.82 +2005,3,38426,2005.2027,380.06,378.58,380.31,378.82,380.06,378.58 +2005,4,38457,2005.2877,382.02,379.34,381.73,379.04,382.02,379.34 +2005,5,38487,2005.3699,382.21,378.95,382.51,379.25,382.21,378.95 +2005,6,38518,2005.4548,382.05,379.58,381.92,379.48,382.05,379.58 +2005,7,38548,2005.537,380.63,379.85,380.44,379.69,380.63,379.85 +2005,8,38579,2005.6219,378.64,380.11,378.39,379.9,378.64,380.11 +2005,9,38610,2005.7068,376.38,379.74,376.74,380.11,376.38,379.74 +2005,10,38640,2005.789,376.77,380.24,376.85,380.31,376.77,380.24 +2005,11,38671,2005.874,378.27,380.45,378.36,380.51,378.27,380.45 +2005,12,38701,2005.9562,379.93,380.82,379.83,380.7,379.93,380.82 +2006,1,38732,2006.0411,381.33,381.28,380.94,380.88,381.33,381.28 +2006,2,38763,2006.126,381.98,381.25,381.8,381.05,381.98,381.25 +2006,3,38791,2006.2027,382.53,381.04,382.7,381.2,382.53,381.04 +2006,4,38822,2006.2877,384.33,381.65,384.06,381.36,384.33,381.65 +2006,5,38852,2006.3699,384.89,381.62,384.77,381.5,384.89,381.62 +2006,6,38883,2006.4548,383.99,381.52,384.1,381.65,383.99,381.52 +2006,7,38913,2006.537,382.25,381.46,382.54,381.79,382.25,381.46 +2006,8,38944,2006.6219,380.44,381.92,380.43,381.94,380.44,381.92 +2006,9,38975,2006.7068,378.77,382.13,378.71,382.09,378.77,382.13 +2006,10,39005,2006.789,379.03,382.51,378.76,382.24,379.03,382.51 +2006,11,39036,2006.874,380.11,382.3,380.23,382.39,380.11,382.3 +2006,12,39066,2006.9562,381.63,382.52,381.66,382.53,381.63,382.52 +2007,1,39097,2007.0411,382.55,382.5,382.75,382.68,382.55,382.5 +2007,2,39128,2007.126,383.68,382.94,383.59,382.84,383.68,382.94 +2007,3,39156,2007.2027,384.31,382.82,384.49,382.98,384.31,382.82 +2007,4,39187,2007.2877,386.2,383.51,385.85,383.14,386.2,383.51 +2007,5,39217,2007.3699,386.38,383.1,386.58,383.3,386.38,383.1 +2007,6,39248,2007.4548,385.84,383.36,385.92,383.46,385.84,383.36 +2007,7,39278,2007.537,384.42,383.63,384.37,383.62,384.42,383.63 +2007,8,39309,2007.6219,381.81,383.3,382.26,383.78,381.81,383.3 +2007,9,39340,2007.7068,380.83,384.2,380.56,383.95,380.83,384.2 +2007,10,39370,2007.789,380.83,384.33,380.62,384.1,380.83,384.33 +2007,11,39401,2007.874,382.32,384.51,382.09,384.26,382.32,384.51 +2007,12,39431,2007.9562,383.58,384.48,383.53,384.41,383.58,384.48 +2008,1,39462,2008.041,385.04,384.99,384.62,384.55,385.04,384.99 +2008,2,39493,2008.1257,385.81,385.07,385.45,384.7,385.81,385.07 +2008,3,39522,2008.2049,385.8,384.28,386.38,384.84,385.8,384.28 +2008,4,39553,2008.2896,386.74,384.01,387.73,384.99,386.74,384.01 +2008,5,39583,2008.3716,388.49,385.2,388.43,385.15,388.49,385.2 +2008,6,39614,2008.4563,388.02,385.56,387.76,385.32,388.02,385.56 +2008,7,39644,2008.5383,386.22,385.47,386.2,385.48,386.22,385.47 +2008,8,39675,2008.623,384.05,385.57,384.1,385.65,384.05,385.57 +2008,9,39706,2008.7077,383.05,386.45,382.41,385.82,383.05,386.45 +2008,10,39736,2008.7896,382.75,386.25,382.49,385.98,382.75,386.25 +2008,11,39767,2008.8743,383.98,386.17,383.97,386.14,383.98,386.17 +2008,12,39797,2008.9563,385.08,385.98,385.41,386.29,385.08,385.98 +2009,1,39828,2009.0411,386.63,386.57,386.51,386.44,386.63,386.57 +2009,2,39859,2009.126,387.1,386.36,387.35,386.6,387.1,386.36 +2009,3,39887,2009.2027,388.5,387,388.26,386.75,388.5,387 +2009,4,39918,2009.2877,389.54,386.84,389.64,386.91,389.54,386.84 +2009,5,39948,2009.3699,390.15,386.85,390.38,387.08,390.15,386.85 +2009,6,39979,2009.4548,389.6,387.1,389.74,387.27,389.6,387.1 +2009,7,40009,2009.537,388.05,387.26,388.21,387.45,388.05,387.26 +2009,8,40040,2009.6219,386.07,387.56,386.13,387.66,386.07,387.56 +2009,9,40071,2009.7068,384.64,388.03,384.46,387.87,384.64,388.03 +2009,10,40101,2009.789,384.32,387.84,384.58,388.08,384.32,387.84 +2009,11,40132,2009.874,386.05,388.25,386.13,388.31,386.05,388.25 +2009,12,40162,2009.9562,387.49,388.39,387.65,388.53,387.49,388.39 +2010,1,40193,2010.0411,388.55,388.5,388.83,388.76,388.55,388.5 +2010,2,40224,2010.126,390.08,389.33,389.75,388.99,390.08,389.33 +2010,3,40252,2010.2027,391.02,389.52,390.71,389.19,391.02,389.52 +2010,4,40283,2010.2877,392.39,389.68,392.13,389.4,392.39,389.68 +2010,5,40313,2010.3699,393.24,389.93,392.9,389.59,393.24,389.93 +2010,6,40344,2010.4548,392.26,389.75,392.26,389.78,392.26,389.75 +2010,7,40374,2010.537,390.35,389.55,390.71,389.95,390.35,389.55 +2010,8,40405,2010.6219,388.53,390.03,388.6,390.13,388.53,390.03 +2010,9,40436,2010.7068,386.85,390.25,386.87,390.3,386.85,390.25 +2010,10,40466,2010.789,387.18,390.71,386.94,390.45,387.18,390.71 +2010,11,40497,2010.874,388.69,390.9,388.42,390.6,388.69,390.9 +2010,12,40527,2010.9562,389.83,390.74,389.86,390.74,389.83,390.74 +2011,1,40558,2011.0411,391.33,391.28,390.94,390.88,391.33,391.28 +2011,2,40589,2011.126,391.96,391.21,391.77,391.01,391.96,391.21 +2011,3,40617,2011.2027,392.49,390.98,392.65,391.13,392.49,390.98 +2011,4,40648,2011.2877,393.41,390.69,394.01,391.27,393.41,390.69 +2011,5,40678,2011.3699,394.33,391.01,394.73,391.41,394.33,391.01 +2011,6,40709,2011.4548,393.74,391.23,394.06,391.57,393.74,391.23 +2011,7,40739,2011.537,392.64,391.85,392.5,391.74,392.64,391.85 +2011,8,40770,2011.6219,390.25,391.75,390.38,391.92,390.25,391.75 +2011,9,40801,2011.7068,389.05,392.46,388.67,392.1,389.05,392.46 +2011,10,40831,2011.789,388.98,392.52,388.76,392.28,388.98,392.52 +2011,11,40862,2011.874,390.3,392.51,390.27,392.47,390.3,392.51 +2011,12,40892,2011.9562,391.86,392.77,391.76,392.65,391.86,392.77 +2012,1,40923,2012.041,393.13,393.08,392.9,392.83,393.13,393.08 +2012,2,40954,2012.1257,393.42,392.67,393.78,393.03,393.42,392.67 +2012,3,40983,2012.2049,394.43,392.89,394.77,393.21,394.43,392.89 +2012,4,41014,2012.2896,396.51,393.75,396.19,393.41,396.51,393.75 +2012,5,41044,2012.3716,396.96,393.63,396.94,393.62,396.96,393.63 +2012,6,41075,2012.4563,395.97,393.48,396.31,393.84,395.97,393.48 +2012,7,41105,2012.5383,394.6,393.84,394.79,394.06,394.6,393.84 +2012,8,41136,2012.623,392.61,394.14,392.72,394.3,392.61,394.14 +2012,9,41167,2012.7077,391.2,394.63,391.09,394.54,391.2,394.63 +2012,10,41197,2012.7896,391.09,394.63,391.25,394.77,391.09,394.63 +2012,11,41228,2012.8743,393.03,395.24,392.83,395.02,393.03,395.24 +2012,12,41258,2012.9563,394.42,395.32,394.36,395.25,394.42,395.32 +2013,1,41289,2013.0411,395.69,395.64,395.55,395.48,395.69,395.64 +2013,2,41320,2013.126,396.94,396.19,396.47,395.71,396.94,396.19 +2013,3,41348,2013.2027,397.35,395.84,397.44,395.91,397.35,395.84 +2013,4,41379,2013.2877,398.44,395.71,398.88,396.12,398.44,395.71 +2013,5,41409,2013.3699,400.06,396.72,399.66,396.33,400.06,396.72 +2013,6,41440,2013.4548,398.95,396.43,399.03,396.53,398.95,396.43 +2013,7,41470,2013.537,397.45,396.66,397.48,396.72,397.45,396.66 +2013,8,41501,2013.6219,395.49,397,395.37,396.91,395.49,397 +2013,9,41532,2013.7068,393.48,396.91,393.65,397.1,393.48,396.91 +2013,10,41562,2013.789,393.77,397.33,393.74,397.28,393.77,397.33 +2013,11,41593,2013.874,395.27,397.5,395.26,397.46,395.27,397.5 +2013,12,41623,2013.9562,396.9,397.81,396.74,397.64,396.9,397.81 +2014,1,41654,2014.0411,398.01,397.96,397.87,397.81,398.01,397.96 +2014,2,41685,2014.126,398.18,397.43,398.74,397.98,398.18,397.43 +2014,3,41713,2014.2027,399.56,398.04,399.67,398.13,399.56,398.04 +2014,4,41744,2014.2877,401.44,398.69,401.06,398.3,401.44,398.69 +2014,5,41774,2014.3699,401.99,398.64,401.8,398.46,401.99,398.64 +2014,6,41805,2014.4548,401.41,398.88,401.13,398.62,401.41,398.88 +2014,7,41835,2014.537,399.17,398.37,399.54,398.77,399.17,398.37 +2014,8,41866,2014.6219,397.3,398.81,397.38,398.93,397.3,398.81 +2014,9,41897,2014.7068,395.49,398.93,395.64,399.1,395.49,398.93 +2014,10,41927,2014.789,395.74,399.3,395.7,399.26,395.74,399.3 +2014,11,41958,2014.874,397.32,399.55,397.21,399.43,397.32,399.55 +2014,12,41988,2014.9562,398.89,399.8,398.69,399.59,398.89,399.8 +2015,1,42019,2015.0411,399.94,399.89,399.83,399.76,399.94,399.89 +2015,2,42050,2015.126,400.39,399.64,400.71,399.94,400.39,399.64 +2015,3,42078,2015.2027,401.6,400.07,401.65,400.11,401.6,400.07 +2015,4,42109,2015.2877,403.53,400.77,403.07,400.3,403.53,400.77 +2015,5,42139,2015.3699,404.04,400.68,403.85,400.5,404.04,400.68 +2015,6,42170,2015.4548,402.81,400.27,403.23,400.72,402.81,400.27 +2015,7,42200,2015.537,401.54,400.73,401.72,400.95,401.54,400.73 +2015,8,42231,2015.6219,398.93,400.44,399.66,401.21,398.93,400.44 +2015,9,42262,2015.7068,397.43,400.88,398.03,401.5,397.43,400.88 +2015,10,42292,2015.789,398.21,401.79,398.23,401.79,398.21,401.79 +2015,11,42323,2015.874,400.17,402.41,399.89,402.11,400.17,402.41 +2015,12,42353,2015.9562,401.82,402.74,401.52,402.42,401.82,402.74 +2016,1,42384,2016.041,402.58,402.53,402.8,402.73,402.58,402.53 +2016,2,42415,2016.1257,404.09,403.33,403.81,403.04,404.09,403.33 +2016,3,42444,2016.2049,404.79,403.23,404.89,403.32,404.79,403.23 +2016,4,42475,2016.2896,407.5,404.71,406.4,403.6,407.5,404.71 +2016,5,42505,2016.3716,407.59,404.22,407.21,403.85,407.59,404.22 +2016,6,42536,2016.4563,406.94,404.42,406.59,404.09,406.94,404.42 +2016,7,42566,2016.5383,404.43,403.66,405.05,404.31,404.43,403.66 +2016,8,42597,2016.623,402.17,403.72,402.95,404.54,402.17,403.72 +2016,9,42628,2016.7077,400.94,404.42,401.26,404.76,400.94,404.42 +2016,10,42658,2016.7896,401.43,405.01,401.4,404.97,401.43,405.01 +2016,11,42689,2016.8743,403.57,405.81,402.96,405.18,403.57,405.81 +2016,12,42719,2016.9563,404.48,405.4,404.47,405.37,404.48,405.4 +2017,1,42750,2017.0411,406,405.95,405.63,405.56,406,405.95 +2017,2,42781,2017.126,406.57,405.81,406.52,405.74,406.57,405.81 +2017,3,42809,2017.2027,406.99,405.45,407.45,405.9,406.99,405.45 +2017,4,42840,2017.2877,408.88,406.11,408.86,406.07,408.88,406.11 +2017,5,42870,2017.3699,409.84,406.46,409.6,406.23,409.84,406.46 +2017,6,42901,2017.4548,409.05,406.5,408.92,406.39,409.05,406.5 +2017,7,42931,2017.537,407.13,406.32,407.31,406.54,407.13,406.32 +2017,8,42962,2017.6219,405.17,406.7,405.13,406.7,405.17,406.7 +2017,9,42993,2017.7068,403.2,406.67,403.36,406.85,403.2,406.67 +2017,10,43023,2017.789,403.57,407.17,403.42,407,403.57,407.17 +2017,11,43054,2017.874,405.1,407.36,404.92,407.15,405.1,407.36 +2017,12,43084,2017.9562,406.68,407.61,406.4,407.3,406.68,407.61 +2018,1,43115,2018.0411,407.98,407.93,407.52,407.45,407.98,407.93 +2018,2,43146,2018.126,408.28,407.51,408.38,407.61,408.28,407.51 +2018,3,43174,2018.2027,409.19,407.65,409.32,407.76,409.19,407.65 +2018,4,43205,2018.2877,410.24,407.46,410.74,407.94,410.24,407.46 +2018,5,43235,2018.3699,411.23,407.85,411.52,408.13,411.23,407.85 +2018,6,43266,2018.4548,410.81,408.25,410.9,408.36,410.81,408.25 +2018,7,43296,2018.537,408.83,408.02,409.36,408.59,408.83,408.02 +2018,8,43327,2018.6219,407.02,408.56,407.28,408.85,407.02,408.56 +2018,9,43358,2018.7068,405.52,409.01,405.62,409.12,405.52,409.01 +2018,10,43388,2018.789,405.93,409.54,405.79,409.39,405.93,409.54 +2018,11,43419,2018.874,408.05,410.31,407.43,409.66,408.05,410.31 +2018,12,43449,2018.9562,409.16,410.09,409.02,409.92,409.16,410.09 +2019,1,43480,2019.0411,410.85,410.8,410.25,410.18,410.85,410.8 +2019,2,43511,2019.126,411.59,410.83,411.2,410.43,411.59,410.83 +2019,3,43539,2019.2027,411.93,410.39,412.2,410.64,411.93,410.39 +2019,4,43570,2019.2877,413.46,410.68,413.67,410.86,413.46,410.68 +2019,5,43600,2019.3699,414.76,411.36,414.48,411.08,414.76,411.36 +2019,6,43631,2019.4548,413.89,411.32,413.85,411.3,413.89,411.32 +2019,7,43661,2019.537,411.78,410.97,412.29,411.51,411.78,410.97 +2019,8,43692,2019.6219,410.01,411.55,410.16,411.74,410.01,411.55 +2019,9,43723,2019.7068,408.48,411.98,408.45,411.96,408.48,411.98 +2019,10,43753,2019.789,408.37,411.99,408.57,412.18,408.37,411.99 +2019,11,43784,2019.874,410.22,412.49,410.16,412.4,410.22,412.49 +2019,12,43814,2019.9562,411.78,412.71,411.7,412.61,411.78,412.71 +2020,1,43845,2020.041,413.38,413.32,412.89,412.83,413.38,413.32 +2020,2,43876,2020.1257,414.03,413.26,413.81,413.03,414.03,413.26 +2020,3,43905,2020.2049,414.44,412.87,414.82,413.23,414.44,412.87 +2020,4,43936,2020.2896,416.11,413.29,416.27,413.43,416.11,413.29 +2020,5,43966,2020.3716,417.1,413.69,417.03,413.63,417.1,413.69 +2020,6,43997,2020.4563,416.23,413.68,416.36,413.83,416.23,413.68 +2020,7,44027,2020.5383,414.47,413.68,414.78,414.03,414.47,413.68 +2020,8,44058,2020.623,412.53,414.1,412.63,414.23,412.53,414.1 +2020,9,44089,2020.7077,411.19,414.7,410.9,414.44,411.19,414.7 +2020,10,44119,2020.7896,411.15,414.78,411.02,414.63,411.15,414.78 +2020,11,44150,2020.8743,412.88,415.15,412.58,414.82,412.88,415.15 +2020,12,44180,2020.9563,413.89,414.82,414.09,415,413.89,414.82 +2021,1,44211,2021.0411,415.17,415.11,415.24,415.17,415.17,415.11 +2021,2,44242,2021.126,416.47,415.7,416.13,415.35,416.47,415.7 +2021,3,44270,2021.2027,417.14,415.59,417.06,415.5,417.14,415.59 +2021,4,44301,2021.2877,418.24,415.44,418.48,415.66,418.24,415.44 +2021,5,44331,2021.3699,418.92,415.5,419.23,415.81,418.92,415.5 +2021,6,44362,2021.4548,418.73,416.14,-99.99,-99.99,418.73,416.14 +2021,7,44392,2021.537,-99.99,-99.99,-99.99,-99.99,-99.99,-99.99 +2021,8,44423,2021.6219,-99.99,-99.99,-99.99,-99.99,-99.99,-99.99 +2021,9,44454,2021.7068,-99.99,-99.99,-99.99,-99.99,-99.99,-99.99 +2021,10,44484,2021.789,-99.99,-99.99,-99.99,-99.99,-99.99,-99.99 +2021,11,44515,2021.874,-99.99,-99.99,-99.99,-99.99,-99.99,-99.99 +2021,12,44545,2021.9562,-99.99,-99.99,-99.99,-99.99,-99.99,-99.99 diff --git a/module3/exo3/monthly_in_situ_co2_mlo.csv b/module3/exo3/monthly_in_situ_co2_mlo.csv new file mode 100644 index 0000000000000000000000000000000000000000..c7a302bb2015491a30fe2b28a3d0c4022850613f --- /dev/null +++ b/module3/exo3/monthly_in_situ_co2_mlo.csv @@ -0,0 +1,825 @@ +"-------------------------------------------------------------------------------------------" +" Atmospheric CO2 concentrations (ppm) derived from in situ air measurements " +" at Mauna Loa, Observatory, Hawaii: Latitude 19.5°N Longitude 155.6°W Elevation 3397m " +" " +" Source: R. F. Keeling, S. J. Walker, S. C. Piper and A. F. Bollenbacher " +" Scripps CO2 Program ( http://scrippsco2.ucsd.edu ) " +" Scripps Institution of Oceanography (SIO) " +" University of California " +" La Jolla, California USA 92093-0244 " +" " +" Status of data and correspondence: " +" " +" These data are subject to revision based on recalibration of standard gases. Questions " +" about the data should be directed to Dr. Ralph Keeling (rkeeling@ucsd.edu), Stephen Walker" +" (sjwalker@ucsd.edu) and Stephen Piper (scpiper@ucsd.edu), Scripps CO2 Program. " +" " +" Baseline data in this file through 01-Jul-2021 from archive dated 02-Jul-2021 09:04:47 " +" " +"-------------------------------------------------------------------------------------------" +" " +" Please cite as: " +" " +" C. D. Keeling, S. C. Piper, R. B. Bacastow, M. Wahlen, T. P. Whorf, M. Heimann, and " +" H. A. Meijer, Exchanges of atmospheric CO2 and 13CO2 with the terrestrial biosphere and " +" oceans from 1978 to 2000. I. Global aspects, SIO Reference Series, No. 01-06, Scripps " +" Institution of Oceanography, San Diego, 88 pages, 2001. " +" " +" If it is necessary to cite a peer-reviewed article, please cite as: " +" " +" C. D. Keeling, S. C. Piper, R. B. Bacastow, M. Wahlen, T. P. Whorf, M. Heimann, and " +" H. A. Meijer, Atmospheric CO2 and 13CO2 exchange with the terrestrial biosphere and " +" oceans from 1978 to 2000: observations and carbon cycle implications, pages 83-113, " +" in "A History of Atmospheric CO2 and its effects on Plants, Animals, and Ecosystems", " +" editors, Ehleringer, J.R., T. E. Cerling, M. D. Dearing, Springer Verlag, " +" New York, 2005. " +" " +"-------------------------------------------------------------------------------------------" +" " +" The data file below contains 10 columns. Columns 1-4 give the dates in several redundant " +" formats. Column 5 below gives monthly Mauna Loa CO2 concentrations in micro-mol CO2 per " +" mole (ppm), reported on the 2012 SIO manometric mole fraction scale. This is the " +" standard version of the data most often sought. The monthly values have been adjusted " +" to 24:00 hours on the 15th of each month. Column 6 gives the same data after a seasonal " +" adjustment to remove the quasi-regular seasonal cycle. The adjustment involves " +" subtracting from the data a 4-harmonic fit with a linear gain factor. Column 7 is a " +" smoothed version of the data generated from a stiff cubic spline function plus 4-harmonic " +" functions with linear gain. Column 8 is the same smoothed version with the seasonal " +" cycle removed. Column 9 is identical to Column 5 except that the missing values from " +" Column 5 have been filled with values from Column 7. Column 10 is identical to Column 6 " +" except missing values have been filled with values from Column 8. Missing values are " +" denoted by -99.99 " +" " +" CO2 concentrations are measured on the '12' calibration scale " +" " + Yr, Mn, Date, Date, CO2,seasonally, fit, seasonally, CO2, seasonally + , , , , , adjusted, ,adjusted fit, filled,adjusted filled + , , Excel, , [ppm], [ppm] , [ppm], [ppm], [ppm], [ppm] +1958, 01, 21200, 1958.0411, -99.99, -99.99, -99.99, -99.99, -99.99, -99.99 +1958, 02, 21231, 1958.1260, -99.99, -99.99, -99.99, -99.99, -99.99, -99.99 +1958, 03, 21259, 1958.2027, 315.70, 314.43, 316.19, 314.90, 315.70, 314.43 +1958, 04, 21290, 1958.2877, 317.45, 315.16, 317.30, 314.98, 317.45, 315.16 +1958, 05, 21320, 1958.3699, 317.51, 314.71, 317.86, 315.06, 317.51, 314.71 +1958, 06, 21351, 1958.4548, -99.99, -99.99, 317.24, 315.14, 317.24, 315.14 +1958, 07, 21381, 1958.5370, 315.86, 315.19, 315.86, 315.22, 315.86, 315.19 +1958, 08, 21412, 1958.6219, 314.93, 316.19, 313.99, 315.29, 314.93, 316.19 +1958, 09, 21443, 1958.7068, 313.21, 316.09, 312.45, 315.35, 313.21, 316.09 +1958, 10, 21473, 1958.7890, -99.99, -99.99, 312.43, 315.41, 312.43, 315.41 +1958, 11, 21504, 1958.8740, 313.33, 315.20, 313.61, 315.46, 313.33, 315.20 +1958, 12, 21534, 1958.9562, 314.67, 315.43, 314.76, 315.51, 314.67, 315.43 +1959, 01, 21565, 1959.0411, 315.58, 315.54, 315.62, 315.57, 315.58, 315.54 +1959, 02, 21596, 1959.1260, 316.49, 315.85, 316.27, 315.63, 316.49, 315.85 +1959, 03, 21624, 1959.2027, 316.65, 315.37, 316.98, 315.69, 316.65, 315.37 +1959, 04, 21655, 1959.2877, 317.72, 315.41, 318.09, 315.77, 317.72, 315.41 +1959, 05, 21685, 1959.3699, 318.29, 315.48, 318.66, 315.85, 318.29, 315.48 +1959, 06, 21716, 1959.4548, 318.15, 316.02, 318.05, 315.94, 318.15, 316.02 +1959, 07, 21746, 1959.5370, 316.54, 315.87, 316.67, 316.03, 316.54, 315.87 +1959, 08, 21777, 1959.6219, 314.80, 316.07, 314.82, 316.12, 314.80, 316.07 +1959, 09, 21808, 1959.7068, 313.84, 316.73, 313.31, 316.22, 313.84, 316.73 +1959, 10, 21838, 1959.7890, 313.33, 316.33, 313.32, 316.31, 313.33, 316.33 +1959, 11, 21869, 1959.8740, 314.81, 316.69, 314.53, 316.39, 314.81, 316.69 +1959, 12, 21899, 1959.9562, 315.58, 316.35, 315.72, 316.47, 315.58, 316.35 +1960, 01, 21930, 1960.0410, 316.43, 316.39, 316.61, 316.56, 316.43, 316.39 +1960, 02, 21961, 1960.1257, 316.98, 316.35, 317.28, 316.64, 316.98, 316.35 +1960, 03, 21990, 1960.2049, 317.58, 316.27, 318.03, 316.71, 317.58, 316.27 +1960, 04, 22021, 1960.2896, 319.03, 316.70, 319.15, 316.79, 319.03, 316.70 +1960, 05, 22051, 1960.3716, 320.04, 317.21, 319.68, 316.86, 320.04, 317.21 +1960, 06, 22082, 1960.4563, 319.58, 317.47, 319.02, 316.93, 319.58, 317.47 +1960, 07, 22112, 1960.5383, 318.18, 317.53, 317.60, 316.98, 318.18, 317.53 +1960, 08, 22143, 1960.6230, 315.90, 317.20, 315.68, 317.01, 315.90, 317.20 +1960, 09, 22174, 1960.7077, 314.17, 317.08, 314.12, 317.05, 314.17, 317.08 +1960, 10, 22204, 1960.7896, 313.83, 316.84, 314.08, 317.07, 313.83, 316.84 +1960, 11, 22235, 1960.8743, 315.00, 316.88, 315.25, 317.11, 315.00, 316.88 +1960, 12, 22265, 1960.9563, 316.19, 316.96, 316.39, 317.15, 316.19, 316.96 +1961, 01, 22296, 1961.0411, 316.89, 316.85, 317.25, 317.20, 316.89, 316.85 +1961, 02, 22327, 1961.1260, 317.70, 317.07, 317.91, 317.26, 317.70, 317.07 +1961, 03, 22355, 1961.2027, 318.54, 317.25, 318.63, 317.33, 318.54, 317.25 +1961, 04, 22386, 1961.2877, 319.48, 317.15, 319.75, 317.41, 319.48, 317.15 +1961, 05, 22416, 1961.3699, 320.58, 317.75, 320.33, 317.50, 320.58, 317.75 +1961, 06, 22447, 1961.4548, 319.77, 317.63, 319.71, 317.59, 319.77, 317.63 +1961, 07, 22477, 1961.5370, 318.56, 317.89, 318.33, 317.68, 318.56, 317.89 +1961, 08, 22508, 1961.6219, 316.79, 318.07, 316.45, 317.76, 316.79, 318.07 +1961, 09, 22539, 1961.7068, 314.99, 317.90, 314.92, 317.85, 314.99, 317.90 +1961, 10, 22569, 1961.7890, 315.31, 318.33, 314.91, 317.92, 315.31, 318.33 +1961, 11, 22600, 1961.8740, 316.10, 318.00, 316.12, 317.99, 316.10, 318.00 +1961, 12, 22630, 1961.9562, 317.01, 317.78, 317.30, 318.06, 317.01, 317.78 +1962, 01, 22661, 1962.0411, 317.94, 317.90, 318.18, 318.13, 317.94, 317.90 +1962, 02, 22692, 1962.1260, 318.55, 317.91, 318.84, 318.19, 318.55, 317.91 +1962, 03, 22720, 1962.2027, 319.68, 318.39, 319.56, 318.26, 319.68, 318.39 +1962, 04, 22751, 1962.2877, 320.57, 318.24, 320.67, 318.32, 320.57, 318.24 +1962, 05, 22781, 1962.3699, 321.02, 318.17, 321.23, 318.39, 321.02, 318.17 +1962, 06, 22812, 1962.4548, 320.62, 318.47, 320.58, 318.45, 320.62, 318.47 +1962, 07, 22842, 1962.5370, 319.61, 318.93, 319.16, 318.50, 319.61, 318.93 +1962, 08, 22873, 1962.6219, 317.40, 318.69, 317.24, 318.56, 317.40, 318.69 +1962, 09, 22904, 1962.7068, 316.25, 319.17, 315.66, 318.60, 316.25, 319.17 +1962, 10, 22934, 1962.7890, 315.42, 318.45, 315.62, 318.64, 315.42, 318.45 +1962, 11, 22965, 1962.8740, 316.69, 318.59, 316.80, 318.68, 316.69, 318.59 +1962, 12, 22995, 1962.9562, 317.70, 318.47, 317.96, 318.72, 317.70, 318.47 +1963, 01, 23026, 1963.0411, 318.74, 318.70, 318.82, 318.76, 318.74, 318.70 +1963, 02, 23057, 1963.1260, 319.07, 318.43, 319.46, 318.81, 319.07, 318.43 +1963, 03, 23085, 1963.2027, 319.86, 318.56, 320.16, 318.85, 319.86, 318.56 +1963, 04, 23116, 1963.2877, 321.38, 319.05, 321.26, 318.91, 321.38, 319.05 +1963, 05, 23146, 1963.3699, 322.25, 319.39, 321.81, 318.96, 322.25, 319.39 +1963, 06, 23177, 1963.4548, 321.48, 319.32, 321.15, 319.01, 321.48, 319.32 +1963, 07, 23207, 1963.5370, 319.74, 319.06, 319.71, 319.06, 319.74, 319.06 +1963, 08, 23238, 1963.6219, 317.77, 319.06, 317.78, 319.10, 317.77, 319.06 +1963, 09, 23269, 1963.7068, 316.21, 319.14, 316.19, 319.14, 316.21, 319.14 +1963, 10, 23299, 1963.7890, 315.99, 319.02, 316.16, 319.18, 315.99, 319.02 +1963, 11, 23330, 1963.8740, 317.07, 318.97, 317.34, 319.23, 317.07, 318.97 +1963, 12, 23360, 1963.9562, 318.35, 319.13, 318.51, 319.27, 318.35, 319.13 +1964, 01, 23391, 1964.0410, 319.57, 319.53, 319.37, 319.32, 319.57, 319.53 +1964, 02, 23422, 1964.1257, -99.99, -99.99, 320.02, 319.37, 320.02, 319.37 +1964, 03, 23451, 1964.2049, -99.99, -99.99, 320.75, 319.41, 320.75, 319.41 +1964, 04, 23482, 1964.2896, -99.99, -99.99, 321.84, 319.45, 321.84, 319.45 +1964, 05, 23512, 1964.3716, 322.25, 319.39, 322.35, 319.49, 322.25, 319.39 +1964, 06, 23543, 1964.4563, 321.89, 319.75, 321.65, 319.53, 321.89, 319.75 +1964, 07, 23573, 1964.5383, 320.44, 319.78, 320.19, 319.56, 320.44, 319.78 +1964, 08, 23604, 1964.6230, 318.69, 320.01, 318.23, 319.58, 318.69, 320.01 +1964, 09, 23635, 1964.7077, 316.71, 319.66, 316.63, 319.60, 316.71, 319.66 +1964, 10, 23665, 1964.7896, 316.87, 319.92, 316.59, 319.62, 316.87, 319.92 +1964, 11, 23696, 1964.8743, 317.68, 319.59, 317.75, 319.64, 317.68, 319.59 +1964, 12, 23726, 1964.9563, 318.71, 319.49, 318.89, 319.66, 318.71, 319.49 +1965, 01, 23757, 1965.0411, 319.44, 319.40, 319.74, 319.68, 319.44, 319.40 +1965, 02, 23788, 1965.1260, 320.44, 319.80, 320.38, 319.72, 320.44, 319.80 +1965, 03, 23816, 1965.2027, 320.89, 319.59, 321.09, 319.77, 320.89, 319.59 +1965, 04, 23847, 1965.2877, 322.14, 319.78, 322.20, 319.83, 322.14, 319.78 +1965, 05, 23877, 1965.3699, 322.17, 319.30, 322.78, 319.91, 322.17, 319.30 +1965, 06, 23908, 1965.4548, 321.87, 319.70, 322.15, 320.00, 321.87, 319.70 +1965, 07, 23938, 1965.5370, 321.21, 320.52, 320.76, 320.10, 321.21, 320.52 +1965, 08, 23969, 1965.6219, 318.87, 320.16, 318.88, 320.21, 318.87, 320.16 +1965, 09, 24000, 1965.7068, 317.82, 320.77, 317.35, 320.32, 317.82, 320.77 +1965, 10, 24030, 1965.7890, 317.30, 320.36, 317.38, 320.43, 317.30, 320.36 +1965, 11, 24061, 1965.8740, 318.87, 320.78, 318.65, 320.55, 318.87, 320.78 +1965, 12, 24091, 1965.9562, 319.42, 320.20, 319.90, 320.66, 319.42, 320.20 +1966, 01, 24122, 1966.0411, 320.62, 320.58, 320.84, 320.78, 320.62, 320.58 +1966, 02, 24153, 1966.1260, 321.60, 320.95, 321.56, 320.90, 321.60, 320.95 +1966, 03, 24181, 1966.2027, 322.39, 321.08, 322.33, 321.01, 322.39, 321.08 +1966, 04, 24212, 1966.2877, 323.70, 321.34, 323.50, 321.12, 323.70, 321.34 +1966, 05, 24242, 1966.3699, 324.08, 321.20, 324.10, 321.22, 324.08, 321.20 +1966, 06, 24273, 1966.4548, 323.75, 321.57, 323.48, 321.32, 323.75, 321.57 +1966, 07, 24303, 1966.5370, 322.38, 321.69, 322.06, 321.40, 322.38, 321.69 +1966, 08, 24334, 1966.6219, 320.36, 321.66, 320.15, 321.48, 320.36, 321.66 +1966, 09, 24365, 1966.7068, 318.64, 321.60, 318.57, 321.55, 318.64, 321.60 +1966, 10, 24395, 1966.7890, 318.10, 321.18, 318.56, 321.62, 318.10, 321.18 +1966, 11, 24426, 1966.8740, 319.78, 321.71, 319.78, 321.68, 319.78, 321.71 +1966, 12, 24456, 1966.9562, 321.03, 321.81, 320.97, 321.74, 321.03, 321.81 +1967, 01, 24487, 1967.0411, 322.33, 322.29, 321.86, 321.80, 322.33, 322.29 +1967, 02, 24518, 1967.1260, 322.50, 321.85, 322.52, 321.86, 322.50, 321.85 +1967, 03, 24546, 1967.2027, 323.03, 321.72, 323.23, 321.90, 323.03, 321.72 +1967, 04, 24577, 1967.2877, 324.42, 322.05, 324.35, 321.96, 324.42, 322.05 +1967, 05, 24607, 1967.3699, 325.00, 322.11, 324.90, 322.01, 325.00, 322.11 +1967, 06, 24638, 1967.4548, 324.09, 321.90, 324.24, 322.07, 324.09, 321.90 +1967, 07, 24668, 1967.5370, 322.54, 321.85, 322.80, 322.14, 322.54, 321.85 +1967, 08, 24699, 1967.6219, 320.92, 322.22, 320.86, 322.20, 320.92, 322.22 +1967, 09, 24730, 1967.7068, 319.25, 322.23, 319.28, 322.27, 319.25, 322.23 +1967, 10, 24760, 1967.7890, 319.39, 322.47, 319.28, 322.35, 319.39, 322.47 +1967, 11, 24791, 1967.8740, 320.73, 322.66, 320.51, 322.42, 320.73, 322.66 +1967, 12, 24821, 1967.9562, 321.96, 322.75, 321.72, 322.49, 321.96, 322.75 +1968, 01, 24852, 1968.0410, 322.57, 322.52, 322.63, 322.57, 322.57, 322.52 +1968, 02, 24883, 1968.1257, 323.15, 322.50, 323.31, 322.65, 323.15, 322.50 +1968, 03, 24912, 1968.2049, 323.89, 322.55, 324.09, 322.73, 323.89, 322.55 +1968, 04, 24943, 1968.2896, 325.02, 322.62, 325.24, 322.83, 325.02, 322.62 +1968, 05, 24973, 1968.3716, 325.57, 322.67, 325.82, 322.92, 325.57, 322.67 +1968, 06, 25004, 1968.4563, 325.36, 323.18, 325.18, 323.03, 325.36, 323.18 +1968, 07, 25034, 1968.5383, 324.14, 323.47, 323.78, 323.14, 324.14, 323.47 +1968, 08, 25065, 1968.6230, 322.11, 323.44, 321.88, 323.25, 322.11, 323.44 +1968, 09, 25096, 1968.7077, 320.33, 323.32, 320.36, 323.37, 320.33, 323.32 +1968, 10, 25126, 1968.7896, 320.25, 323.33, 320.41, 323.49, 320.25, 323.33 +1968, 11, 25157, 1968.8743, 321.32, 323.26, 321.70, 323.62, 321.32, 323.26 +1968, 12, 25187, 1968.9563, 322.89, 323.69, 322.97, 323.75, 322.89, 323.69 +1969, 01, 25218, 1969.0411, 324.00, 323.96, 323.94, 323.89, 324.00, 323.96 +1969, 02, 25249, 1969.1260, 324.42, 323.76, 324.69, 324.03, 324.42, 323.76 +1969, 03, 25277, 1969.2027, 325.63, 324.31, 325.50, 324.16, 325.63, 324.31 +1969, 04, 25308, 1969.2877, 326.66, 324.28, 326.71, 324.30, 326.66, 324.28 +1969, 05, 25338, 1969.3699, 327.38, 324.47, 327.35, 324.44, 327.38, 324.47 +1969, 06, 25369, 1969.4548, 326.71, 324.51, 326.75, 324.57, 326.71, 324.51 +1969, 07, 25399, 1969.5370, 325.88, 325.19, 325.36, 324.69, 325.88, 325.19 +1969, 08, 25430, 1969.6219, 323.66, 324.98, 323.45, 324.80, 323.66, 324.98 +1969, 09, 25461, 1969.7068, 322.38, 325.37, 321.89, 324.90, 322.38, 325.37 +1969, 10, 25491, 1969.7890, 321.78, 324.88, 321.90, 324.99, 321.78, 324.88 +1969, 11, 25522, 1969.8740, 322.85, 324.80, 323.16, 325.08, 322.85, 324.80 +1969, 12, 25552, 1969.9562, 324.12, 324.91, 324.38, 325.16, 324.12, 324.91 +1970, 01, 25583, 1970.0411, 325.06, 325.02, 325.30, 325.24, 325.06, 325.02 +1970, 02, 25614, 1970.1260, 325.98, 325.33, 325.99, 325.32, 325.98, 325.33 +1970, 03, 25642, 1970.2027, 326.93, 325.60, 326.74, 325.40, 326.93, 325.60 +1970, 04, 25673, 1970.2877, 328.13, 325.74, 327.89, 325.48, 328.13, 325.74 +1970, 05, 25703, 1970.3699, 328.08, 325.16, 328.47, 325.55, 328.08, 325.16 +1970, 06, 25734, 1970.4548, 327.67, 325.46, 327.82, 325.63, 327.67, 325.46 +1970, 07, 25764, 1970.5370, 326.34, 325.64, 326.37, 325.70, 326.34, 325.64 +1970, 08, 25795, 1970.6219, 324.69, 326.00, 324.42, 325.77, 324.69, 326.00 +1970, 09, 25826, 1970.7068, 323.10, 326.10, 322.81, 325.83, 323.10, 326.10 +1970, 10, 25856, 1970.7890, 323.06, 326.18, 322.78, 325.89, 323.06, 326.18 +1970, 11, 25887, 1970.8740, 324.01, 325.96, 324.00, 325.93, 324.01, 325.96 +1970, 12, 25917, 1970.9562, 325.13, 325.93, 325.19, 325.97, 325.13, 325.93 +1971, 01, 25948, 1971.0411, 326.17, 326.13, 326.06, 326.01, 326.17, 326.13 +1971, 02, 25979, 1971.1260, 326.68, 326.02, 326.72, 326.05, 326.68, 326.02 +1971, 03, 26007, 1971.2027, 327.18, 325.85, 327.43, 326.09, 327.18, 325.85 +1971, 04, 26038, 1971.2877, 327.79, 325.38, 328.55, 326.14, 327.79, 325.38 +1971, 05, 26068, 1971.3699, 328.93, 326.00, 329.12, 326.19, 328.93, 326.00 +1971, 06, 26099, 1971.4548, 328.57, 326.36, 328.46, 326.26, 328.57, 326.36 +1971, 07, 26129, 1971.5370, 327.36, 326.66, 327.00, 326.33, 327.36, 326.66 +1971, 08, 26160, 1971.6219, 325.43, 326.75, 325.05, 326.40, 325.43, 326.75 +1971, 09, 26191, 1971.7068, 323.36, 326.37, 323.44, 326.47, 323.36, 326.37 +1971, 10, 26221, 1971.7890, 323.56, 326.69, 323.43, 326.54, 323.56, 326.69 +1971, 11, 26252, 1971.8740, 324.80, 326.75, 324.69, 326.62, 324.80, 326.75 +1971, 12, 26282, 1971.9562, 326.01, 326.81, 325.91, 326.70, 326.01, 326.81 +1972, 01, 26313, 1972.0410, 326.77, 326.73, 326.84, 326.78, 326.77, 326.73 +1972, 02, 26344, 1972.1257, 327.63, 326.97, 327.55, 326.88, 327.63, 326.97 +1972, 03, 26373, 1972.2049, 327.75, 326.39, 328.35, 326.98, 327.75, 326.39 +1972, 04, 26404, 1972.2896, 329.72, 327.29, 329.55, 327.10, 329.72, 327.29 +1972, 05, 26434, 1972.3716, 330.07, 327.13, 330.16, 327.23, 330.07, 327.13 +1972, 06, 26465, 1972.4563, 329.09, 326.88, 329.56, 327.38, 329.09, 326.88 +1972, 07, 26495, 1972.5383, 328.04, 327.37, 328.18, 327.54, 328.04, 327.37 +1972, 08, 26526, 1972.6230, 326.32, 327.67, 326.33, 327.72, 326.32, 327.67 +1972, 09, 26557, 1972.7077, 324.84, 327.87, 324.86, 327.91, 324.84, 327.87 +1972, 10, 26587, 1972.7896, 325.20, 328.33, 324.99, 328.10, 325.20, 328.33 +1972, 11, 26618, 1972.8743, 326.50, 328.46, 326.37, 328.31, 326.50, 328.46 +1972, 12, 26648, 1972.9563, 327.55, 328.36, 327.72, 328.51, 327.55, 328.36 +1973, 01, 26679, 1973.0411, 328.55, 328.50, 328.77, 328.72, 328.55, 328.50 +1973, 02, 26710, 1973.1260, 329.56, 328.90, 329.60, 328.93, 329.56, 328.90 +1973, 03, 26738, 1973.2027, 330.30, 328.96, 330.46, 329.11, 330.30, 328.96 +1973, 04, 26769, 1973.2877, 331.50, 329.09, 331.74, 329.30, 331.50, 329.09 +1973, 05, 26799, 1973.3699, 332.48, 329.53, 332.43, 329.48, 332.48, 329.53 +1973, 06, 26830, 1973.4548, 332.07, 329.84, 331.85, 329.64, 332.07, 329.84 +1973, 07, 26860, 1973.5370, 330.87, 330.17, 330.45, 329.77, 330.87, 330.17 +1973, 08, 26891, 1973.6219, 329.31, 330.64, 328.52, 329.88, 329.31, 330.64 +1973, 09, 26922, 1973.7068, 327.52, 330.55, 326.91, 329.96, 327.52, 330.55 +1973, 10, 26952, 1973.7890, 327.19, 330.33, 326.88, 330.02, 327.19, 330.33 +1973, 11, 26983, 1973.8740, 328.17, 330.13, 328.10, 330.05, 328.17, 330.13 +1973, 12, 27013, 1973.9562, 328.65, 329.45, 329.28, 330.07, 328.65, 329.45 +1974, 01, 27044, 1974.0411, 329.36, 329.31, 330.15, 330.10, 329.36, 329.31 +1974, 02, 27075, 1974.1260, 330.71, 330.05, 330.80, 330.12, 330.71, 330.05 +1974, 03, 27103, 1974.2027, 331.49, 330.14, 331.51, 330.15, 331.49, 330.14 +1974, 04, 27134, 1974.2877, 332.65, 330.23, 332.63, 330.19, 332.65, 330.23 +1974, 05, 27164, 1974.3699, 333.10, 330.14, 333.18, 330.22, 333.10, 330.14 +1974, 06, 27195, 1974.4548, 332.26, 330.02, 332.49, 330.27, 332.26, 330.02 +1974, 07, 27225, 1974.5370, 331.18, 330.48, 331.00, 330.32, 331.18, 330.48 +1974, 08, 27256, 1974.6219, 329.40, 330.74, 329.00, 330.37, 329.40, 330.74 +1974, 09, 27287, 1974.7068, 327.44, 330.49, 327.36, 330.42, 327.44, 330.49 +1974, 10, 27317, 1974.7890, 327.38, 330.54, 327.33, 330.47, 327.38, 330.54 +1974, 11, 27348, 1974.8740, 328.46, 330.44, 328.57, 330.53, 328.46, 330.44 +1974, 12, 27378, 1974.9562, 329.58, 330.39, 329.80, 330.59, 329.58, 330.39 +1975, 01, 27409, 1975.0411, 330.41, 330.36, 330.72, 330.66, 330.41, 330.36 +1975, 02, 27440, 1975.1260, 331.41, 330.74, 331.42, 330.74, 331.41, 330.74 +1975, 03, 27468, 1975.2027, 332.05, 330.70, 332.19, 330.83, 332.05, 330.70 +1975, 04, 27499, 1975.2877, 333.32, 330.88, 333.37, 330.92, 333.32, 330.88 +1975, 05, 27529, 1975.3699, 333.98, 331.01, 333.98, 331.01, 333.98, 331.01 +1975, 06, 27560, 1975.4548, 333.61, 331.37, 333.34, 331.11, 333.61, 331.37 +1975, 07, 27590, 1975.5370, 331.91, 331.20, 331.89, 331.21, 331.91, 331.20 +1975, 08, 27621, 1975.6219, 330.06, 331.41, 329.93, 331.30, 330.06, 331.41 +1975, 09, 27652, 1975.7068, 328.57, 331.62, 328.33, 331.40, 328.57, 331.62 +1975, 10, 27682, 1975.7890, 328.35, 331.51, 328.33, 331.48, 328.35, 331.51 +1975, 11, 27713, 1975.8740, 329.50, 331.48, 329.61, 331.57, 329.50, 331.48 +1975, 12, 27743, 1975.9562, 330.77, 331.58, 330.85, 331.65, 330.77, 331.58 +1976, 01, 27774, 1976.0410, 331.76, 331.71, 331.78, 331.73, 331.76, 331.71 +1976, 02, 27805, 1976.1257, 332.58, 331.91, 332.49, 331.81, 332.58, 331.91 +1976, 03, 27834, 1976.2049, 333.50, 332.13, 333.27, 331.88, 333.50, 332.13 +1976, 04, 27865, 1976.2896, 334.59, 332.13, 334.44, 331.96, 334.59, 332.13 +1976, 05, 27895, 1976.3716, 334.89, 331.91, 335.01, 332.04, 334.89, 331.91 +1976, 06, 27926, 1976.4563, 334.34, 332.11, 334.33, 332.12, 334.34, 332.11 +1976, 07, 27956, 1976.5383, 333.06, 332.38, 332.86, 332.20, 333.06, 332.38 +1976, 08, 27987, 1976.6230, 330.95, 332.32, 330.89, 332.30, 330.95, 332.32 +1976, 09, 28018, 1976.7077, 329.31, 332.39, 329.31, 332.40, 329.31, 332.39 +1976, 10, 28048, 1976.7896, 328.95, 332.12, 329.35, 332.51, 328.95, 332.12 +1976, 11, 28079, 1976.8743, 330.32, 332.30, 330.68, 332.64, 330.32, 332.30 +1976, 12, 28109, 1976.9563, 331.69, 332.51, 331.99, 332.78, 331.69, 332.51 +1977, 01, 28140, 1977.0411, 332.94, 332.89, 333.00, 332.94, 332.94, 332.89 +1977, 02, 28171, 1977.1260, 333.43, 332.76, 333.80, 333.12, 333.43, 332.76 +1977, 03, 28199, 1977.2027, 334.71, 333.35, 334.65, 333.28, 334.71, 333.35 +1977, 04, 28230, 1977.2877, 336.08, 333.63, 335.93, 333.47, 336.08, 333.63 +1977, 05, 28260, 1977.3699, 336.76, 333.77, 336.63, 333.65, 336.76, 333.77 +1977, 06, 28291, 1977.4548, 336.28, 334.02, 336.07, 333.83, 336.28, 334.02 +1977, 07, 28321, 1977.5370, 334.93, 334.21, 334.68, 334.00, 334.93, 334.21 +1977, 08, 28352, 1977.6219, 332.76, 334.11, 332.78, 334.16, 332.76, 334.11 +1977, 09, 28383, 1977.7068, 331.60, 334.68, 331.23, 334.32, 331.60, 334.68 +1977, 10, 28413, 1977.7890, 331.17, 334.36, 331.29, 334.47, 331.17, 334.36 +1977, 11, 28444, 1977.8740, 332.41, 334.41, 332.64, 334.61, 332.41, 334.41 +1977, 12, 28474, 1977.9562, 333.86, 334.67, 333.95, 334.75, 333.86, 334.67 +1978, 01, 28505, 1978.0411, 334.98, 334.93, 334.94, 334.89, 334.98, 334.93 +1978, 02, 28536, 1978.1260, 335.40, 334.72, 335.70, 335.02, 335.40, 334.72 +1978, 03, 28564, 1978.2027, 336.65, 335.29, 336.52, 335.14, 336.65, 335.29 +1978, 04, 28595, 1978.2877, 337.77, 335.31, 337.74, 335.26, 337.77, 335.31 +1978, 05, 28625, 1978.3699, 338.02, 335.02, 338.38, 335.38, 338.02, 335.02 +1978, 06, 28656, 1978.4548, 337.91, 335.64, 337.75, 335.50, 337.91, 335.64 +1978, 07, 28686, 1978.5370, 336.55, 335.83, 336.29, 335.61, 336.55, 335.83 +1978, 08, 28717, 1978.6219, 334.69, 336.05, 334.32, 335.71, 334.69, 336.05 +1978, 09, 28748, 1978.7068, 332.77, 335.85, 332.71, 335.81, 332.77, 335.85 +1978, 10, 28778, 1978.7890, 332.56, 335.75, 332.72, 335.90, 332.56, 335.75 +1978, 11, 28809, 1978.8740, 333.93, 335.93, 334.02, 336.00, 333.93, 335.93 +1978, 12, 28839, 1978.9562, 334.96, 335.78, 335.29, 336.09, 334.96, 335.78 +1979, 01, 28870, 1979.0411, 336.24, 336.19, 336.26, 336.20, 336.24, 336.19 +1979, 02, 28901, 1979.1260, 336.77, 336.09, 337.00, 336.32, 336.77, 336.09 +1979, 03, 28929, 1979.2027, 337.97, 336.61, 337.81, 336.42, 337.97, 336.61 +1979, 04, 28960, 1979.2877, 338.89, 336.43, 339.03, 336.55, 338.89, 336.43 +1979, 05, 28990, 1979.3699, 339.48, 336.48, 339.68, 336.68, 339.48, 336.48 +1979, 06, 29021, 1979.4548, 339.30, 337.02, 339.07, 336.81, 339.30, 337.02 +1979, 07, 29051, 1979.5370, 337.74, 337.02, 337.64, 336.95, 337.74, 337.02 +1979, 08, 29082, 1979.6219, 336.10, 337.46, 335.70, 337.09, 336.10, 337.46 +1979, 09, 29113, 1979.7068, 333.93, 337.02, 334.12, 337.23, 333.93, 337.02 +1979, 10, 29143, 1979.7890, 333.87, 337.08, 334.19, 337.38, 333.87, 337.08 +1979, 11, 29174, 1979.8740, 335.30, 337.31, 335.55, 337.54, 335.30, 337.31 +1979, 12, 29204, 1979.9562, 336.74, 337.56, 336.89, 337.69, 336.74, 337.56 +1980, 01, 29235, 1980.0410, 338.03, 337.99, 337.92, 337.86, 338.03, 337.99 +1980, 02, 29266, 1980.1257, 338.37, 337.69, 338.72, 338.03, 338.37, 337.69 +1980, 03, 29295, 1980.2049, 340.09, 338.69, 339.60, 338.19, 340.09, 338.69 +1980, 04, 29326, 1980.2896, 340.78, 338.28, 340.86, 338.35, 340.78, 338.28 +1980, 05, 29356, 1980.3716, 341.48, 338.47, 341.51, 338.50, 341.48, 338.47 +1980, 06, 29387, 1980.4563, 341.18, 338.92, 340.89, 338.65, 341.18, 338.92 +1980, 07, 29417, 1980.5383, 339.57, 338.88, 339.44, 338.78, 339.57, 338.88 +1980, 08, 29448, 1980.6230, 337.61, 339.00, 337.49, 338.91, 337.61, 339.00 +1980, 09, 29479, 1980.7077, 335.90, 339.01, 335.90, 339.04, 335.90, 339.01 +1980, 10, 29509, 1980.7896, 336.03, 339.24, 335.95, 339.15, 336.03, 339.24 +1980, 11, 29540, 1980.8743, 337.12, 339.13, 337.27, 339.26, 337.12, 339.13 +1980, 12, 29570, 1980.9563, 338.23, 339.06, 338.55, 339.36, 338.23, 339.06 +1981, 01, 29601, 1981.0411, 339.25, 339.20, 339.52, 339.46, 339.25, 339.20 +1981, 02, 29632, 1981.1260, 340.50, 339.81, 340.26, 339.56, 340.50, 339.81 +1981, 03, 29660, 1981.2027, 341.40, 340.03, 341.04, 339.65, 341.40, 340.03 +1981, 04, 29691, 1981.2877, 342.52, 340.04, 342.24, 339.74, 342.52, 340.04 +1981, 05, 29721, 1981.3699, 342.93, 339.90, 342.85, 339.83, 342.93, 339.90 +1981, 06, 29752, 1981.4548, 342.27, 339.98, 342.18, 339.91, 342.27, 339.98 +1981, 07, 29782, 1981.5370, 340.51, 339.78, 340.69, 340.00, 340.51, 339.78 +1981, 08, 29813, 1981.6219, 338.45, 339.82, 338.68, 340.09, 338.45, 339.82 +1981, 09, 29844, 1981.7068, 336.71, 339.83, 337.05, 340.18, 336.71, 339.83 +1981, 10, 29874, 1981.7890, 336.88, 340.10, 337.07, 340.28, 336.88, 340.10 +1981, 11, 29905, 1981.8740, 338.38, 340.40, 338.39, 340.39, 338.38, 340.40 +1981, 12, 29935, 1981.9562, 339.63, 340.46, 339.69, 340.50, 339.63, 340.46 +1982, 01, 29966, 1982.0411, 340.77, 340.73, 340.67, 340.61, 340.77, 340.73 +1982, 02, 29997, 1982.1260, 341.63, 340.95, 341.41, 340.72, 341.63, 340.95 +1982, 03, 30025, 1982.2027, 342.72, 341.34, 342.20, 340.81, 342.72, 341.34 +1982, 04, 30056, 1982.2877, 343.59, 341.10, 343.41, 340.90, 343.59, 341.10 +1982, 05, 30086, 1982.3699, 344.16, 341.12, 344.02, 340.98, 344.16, 341.12 +1982, 06, 30117, 1982.4548, 343.37, 341.07, 343.34, 341.06, 343.37, 341.07 +1982, 07, 30147, 1982.5370, 342.07, 341.35, 341.83, 341.14, 342.07, 341.35 +1982, 08, 30178, 1982.6219, 339.83, 341.20, 339.81, 341.22, 339.83, 341.20 +1982, 09, 30209, 1982.7068, 338.00, 341.12, 338.16, 341.30, 338.00, 341.12 +1982, 10, 30239, 1982.7890, 337.88, 341.12, 338.17, 341.40, 337.88, 341.12 +1982, 11, 30270, 1982.8740, 339.28, 341.31, 339.51, 341.51, 339.28, 341.31 +1982, 12, 30300, 1982.9562, 340.51, 341.34, 340.83, 341.64, 340.51, 341.34 +1983, 01, 30331, 1983.0411, 341.40, 341.35, 341.85, 341.79, 341.40, 341.35 +1983, 02, 30362, 1983.1260, 342.54, 341.86, 342.66, 341.97, 342.54, 341.86 +1983, 03, 30390, 1983.2027, 343.12, 341.73, 343.53, 342.13, 343.12, 341.73 +1983, 04, 30421, 1983.2877, 344.96, 342.46, 344.84, 342.33, 344.96, 342.46 +1983, 05, 30451, 1983.3699, 345.78, 342.73, 345.56, 342.52, 345.78, 342.73 +1983, 06, 30482, 1983.4548, 345.34, 343.03, 344.99, 342.71, 345.34, 343.03 +1983, 07, 30512, 1983.5370, 344.00, 343.27, 343.59, 342.89, 344.00, 343.27 +1983, 08, 30543, 1983.6219, 342.40, 343.78, 341.65, 343.06, 342.40, 343.78 +1983, 09, 30574, 1983.7068, 339.88, 343.02, 340.08, 343.23, 339.88, 343.02 +1983, 10, 30604, 1983.7890, 340.00, 343.25, 340.14, 343.38, 340.00, 343.25 +1983, 11, 30635, 1983.8740, 341.16, 343.19, 341.52, 343.53, 341.16, 343.19 +1983, 12, 30665, 1983.9562, 342.99, 343.82, 342.86, 343.67, 342.99, 343.82 +1984, 01, 30696, 1984.0410, 343.82, 343.77, 343.87, 343.82, 343.82, 343.77 +1984, 02, 30727, 1984.1257, 344.62, 343.94, 344.65, 343.96, 344.62, 343.94 +1984, 03, 30756, 1984.2049, 345.39, 343.97, 345.51, 344.08, 345.39, 343.97 +1984, 04, 30787, 1984.2896, 347.15, 344.62, 346.76, 344.21, 347.15, 344.62 +1984, 05, 30817, 1984.3716, 347.52, 344.47, 347.39, 344.34, 347.52, 344.47 +1984, 06, 30848, 1984.4563, 346.88, 344.59, 346.73, 344.46, 346.88, 344.59 +1984, 07, 30878, 1984.5383, 345.47, 344.76, 345.24, 344.57, 345.47, 344.76 +1984, 08, 30909, 1984.6230, 343.34, 344.75, 343.24, 344.68, 343.34, 344.75 +1984, 09, 30940, 1984.7077, 341.13, 344.29, 341.63, 344.80, 341.13, 344.29 +1984, 10, 30970, 1984.7896, 341.40, 344.65, 341.67, 344.91, 341.40, 344.65 +1984, 11, 31001, 1984.8743, 343.02, 345.06, 343.02, 345.03, 343.02, 345.06 +1984, 12, 31031, 1984.9563, 344.25, 345.08, 344.34, 345.15, 344.25, 345.08 +1985, 01, 31062, 1985.0411, 344.99, 344.95, 345.34, 345.28, 344.99, 344.95 +1985, 02, 31093, 1985.1260, 346.01, 345.32, 346.11, 345.40, 346.01, 345.32 +1985, 03, 31121, 1985.2027, 347.43, 346.04, 346.92, 345.51, 347.43, 346.04 +1985, 04, 31152, 1985.2877, 348.34, 345.83, 348.16, 345.63, 348.34, 345.83 +1985, 05, 31182, 1985.3699, 348.92, 345.86, 348.79, 345.73, 348.92, 345.86 +1985, 06, 31213, 1985.4548, 348.24, 345.92, 348.12, 345.82, 348.24, 345.92 +1985, 07, 31243, 1985.5370, 346.53, 345.80, 346.62, 345.91, 346.53, 345.80 +1985, 08, 31274, 1985.6219, 344.64, 346.03, 344.58, 346.00, 344.64, 346.03 +1985, 09, 31305, 1985.7068, 343.06, 346.21, 342.91, 346.08, 343.06, 346.21 +1985, 10, 31335, 1985.7890, 342.77, 346.04, 342.91, 346.17, 342.77, 346.04 +1985, 11, 31366, 1985.8740, 344.21, 346.26, 344.23, 346.26, 344.21, 346.26 +1985, 12, 31396, 1985.9562, 345.53, 346.37, 345.53, 346.35, 345.53, 346.37 +1986, 01, 31427, 1986.0411, 346.28, 346.23, 346.51, 346.45, 346.28, 346.23 +1986, 02, 31458, 1986.1260, 346.93, 346.24, 347.26, 346.56, 346.93, 346.24 +1986, 03, 31486, 1986.2027, 347.83, 346.43, 348.08, 346.67, 347.83, 346.43 +1986, 04, 31517, 1986.2877, 349.53, 347.01, 349.33, 346.79, 349.53, 347.01 +1986, 05, 31547, 1986.3699, 350.19, 347.12, 349.99, 346.92, 350.19, 347.12 +1986, 06, 31578, 1986.4548, 349.53, 347.20, 349.35, 347.05, 349.53, 347.20 +1986, 07, 31608, 1986.5370, 347.92, 347.18, 347.88, 347.17, 347.92, 347.18 +1986, 08, 31639, 1986.6219, 345.88, 347.27, 345.88, 347.30, 345.88, 347.27 +1986, 09, 31670, 1986.7068, 344.83, 348.00, 344.25, 347.43, 344.83, 348.00 +1986, 10, 31700, 1986.7890, 344.15, 347.43, 344.29, 347.55, 344.15, 347.43 +1986, 11, 31731, 1986.8740, 345.64, 347.69, 345.65, 347.69, 345.64, 347.69 +1986, 12, 31761, 1986.9562, 346.88, 347.72, 346.99, 347.82, 346.88, 347.72 +1987, 01, 31792, 1987.0411, 348.00, 347.95, 348.02, 347.96, 348.00, 347.95 +1987, 02, 31823, 1987.1260, 348.47, 347.77, 348.82, 348.11, 348.47, 347.77 +1987, 03, 31851, 1987.2027, 349.40, 348.00, 349.68, 348.26, 349.40, 348.00 +1987, 04, 31882, 1987.2877, 350.97, 348.44, 350.98, 348.44, 350.97, 348.44 +1987, 05, 31912, 1987.3699, 351.84, 348.75, 351.69, 348.61, 351.84, 348.75 +1987, 06, 31943, 1987.4548, 351.25, 348.91, 351.11, 348.80, 351.25, 348.91 +1987, 07, 31973, 1987.5370, 349.50, 348.76, 349.69, 348.98, 349.50, 348.76 +1987, 08, 32004, 1987.6219, 348.09, 349.48, 347.75, 349.18, 348.09, 349.48 +1987, 09, 32035, 1987.7068, 346.44, 349.61, 346.18, 349.37, 346.44, 349.61 +1987, 10, 32065, 1987.7890, 346.09, 349.38, 346.29, 349.56, 346.09, 349.38 +1987, 11, 32096, 1987.8740, 347.54, 349.60, 347.73, 349.77, 347.54, 349.60 +1987, 12, 32126, 1987.9562, 348.69, 349.54, 349.14, 349.97, 348.69, 349.54 +1988, 01, 32157, 1988.0410, 350.16, 350.12, 350.23, 350.17, 350.16, 350.12 +1988, 02, 32188, 1988.1257, 351.47, 350.77, 351.09, 350.38, 351.47, 350.77 +1988, 03, 32217, 1988.2049, 351.96, 350.52, 352.02, 350.58, 351.96, 350.52 +1988, 04, 32248, 1988.2896, 353.33, 350.77, 353.36, 350.78, 353.33, 350.77 +1988, 05, 32278, 1988.3716, 353.97, 350.88, 354.06, 350.97, 353.97, 350.88 +1988, 06, 32309, 1988.4563, 353.55, 351.23, 353.45, 351.15, 353.55, 351.23 +1988, 07, 32339, 1988.5383, 352.14, 351.43, 352.01, 351.33, 352.14, 351.43 +1988, 08, 32370, 1988.6230, 350.19, 351.62, 350.03, 351.50, 350.19, 351.62 +1988, 09, 32401, 1988.7077, 348.50, 351.69, 348.44, 351.65, 348.50, 351.69 +1988, 10, 32431, 1988.7896, 348.66, 351.95, 348.51, 351.79, 348.66, 351.95 +1988, 11, 32462, 1988.8743, 349.85, 351.91, 349.89, 351.93, 349.85, 351.91 +1988, 12, 32492, 1988.9563, 351.12, 351.97, 351.23, 352.05, 351.12, 351.97 +1989, 01, 32523, 1989.0411, 352.55, 352.50, 352.23, 352.17, 352.55, 352.50 +1989, 02, 32554, 1989.1260, 352.86, 352.16, 352.99, 352.28, 352.86, 352.16 +1989, 03, 32582, 1989.2027, 353.48, 352.07, 353.81, 352.38, 353.48, 352.07 +1989, 04, 32613, 1989.2877, 355.22, 352.67, 355.05, 352.49, 355.22, 352.67 +1989, 05, 32643, 1989.3699, 355.47, 352.37, 355.69, 352.59, 355.47, 352.37 +1989, 06, 32674, 1989.4548, 354.92, 352.57, 355.02, 352.69, 354.92, 352.57 +1989, 07, 32704, 1989.5370, 353.70, 352.95, 353.50, 352.79, 353.70, 352.95 +1989, 08, 32735, 1989.6219, 351.47, 352.87, 351.45, 352.88, 351.47, 352.87 +1989, 09, 32766, 1989.7068, 349.61, 352.80, 349.77, 352.98, 349.61, 352.80 +1989, 10, 32796, 1989.7890, 349.79, 353.10, 349.78, 353.08, 349.79, 353.10 +1989, 11, 32827, 1989.8740, 351.10, 353.17, 351.13, 353.18, 351.10, 353.17 +1989, 12, 32857, 1989.9562, 352.32, 353.17, 352.45, 353.28, 352.32, 353.17 +1990, 01, 32888, 1990.0411, 353.46, 353.42, 353.44, 353.38, 353.46, 353.42 +1990, 02, 32919, 1990.1260, 354.50, 353.80, 354.20, 353.48, 354.50, 353.80 +1990, 03, 32947, 1990.2027, 355.19, 353.77, 355.01, 353.58, 355.19, 353.77 +1990, 04, 32978, 1990.2877, 356.00, 353.45, 356.25, 353.68, 356.00, 353.45 +1990, 05, 33008, 1990.3699, 356.96, 353.85, 356.90, 353.79, 356.96, 353.85 +1990, 06, 33039, 1990.4548, 356.04, 353.68, 356.24, 353.90, 356.04, 353.68 +1990, 07, 33069, 1990.5370, 354.62, 353.88, 354.73, 354.02, 354.62, 353.88 +1990, 08, 33100, 1990.6219, 352.71, 354.12, 352.71, 354.15, 352.71, 354.12 +1990, 09, 33131, 1990.7068, 350.77, 353.98, 351.07, 354.29, 350.77, 353.98 +1990, 10, 33161, 1990.7890, 350.99, 354.31, 351.13, 354.43, 350.99, 354.31 +1990, 11, 33192, 1990.8740, 352.64, 354.72, 352.53, 354.59, 352.64, 354.72 +1990, 12, 33222, 1990.9562, 354.02, 354.87, 353.90, 354.73, 354.02, 354.87 +1991, 01, 33253, 1991.0411, 354.53, 354.48, 354.94, 354.88, 354.53, 354.48 +1991, 02, 33284, 1991.1260, 355.55, 354.85, 355.73, 355.02, 355.55, 354.85 +1991, 03, 33312, 1991.2027, 356.96, 355.54, 356.57, 355.14, 356.96, 355.54 +1991, 04, 33343, 1991.2877, 358.40, 355.84, 357.83, 355.25, 358.40, 355.84 +1991, 05, 33373, 1991.3699, 359.14, 356.01, 358.47, 355.35, 359.14, 356.01 +1991, 06, 33404, 1991.4548, 358.04, 355.68, 357.77, 355.42, 358.04, 355.68 +1991, 07, 33434, 1991.5370, 355.98, 355.23, 356.20, 355.49, 355.98, 355.23 +1991, 08, 33465, 1991.6219, 353.81, 355.23, 354.10, 355.55, 353.81, 355.23 +1991, 09, 33496, 1991.7068, 351.95, 355.17, 352.37, 355.60, 351.95, 355.17 +1991, 10, 33526, 1991.7890, 352.02, 355.35, 352.34, 355.66, 352.02, 355.35 +1991, 11, 33557, 1991.8740, 353.55, 355.63, 353.66, 355.73, 353.55, 355.63 +1991, 12, 33587, 1991.9562, 354.79, 355.64, 354.96, 355.79, 354.79, 355.64 +1992, 01, 33618, 1992.0410, 355.79, 355.74, 355.92, 355.86, 355.79, 355.74 +1992, 02, 33649, 1992.1257, 356.52, 355.82, 356.65, 355.93, 356.52, 355.82 +1992, 03, 33678, 1992.2049, 357.61, 356.16, 357.46, 356.00, 357.61, 356.16 +1992, 04, 33709, 1992.2896, 358.95, 356.36, 358.67, 356.06, 358.95, 356.36 +1992, 05, 33739, 1992.3716, 359.46, 356.33, 359.24, 356.11, 359.46, 356.33 +1992, 06, 33770, 1992.4563, 359.05, 356.70, 358.49, 356.16, 359.05, 356.70 +1992, 07, 33800, 1992.5383, 356.82, 356.10, 356.88, 356.20, 356.82, 356.10 +1992, 08, 33831, 1992.6230, 354.80, 356.24, 354.75, 356.23, 354.80, 356.24 +1992, 09, 33862, 1992.7077, 352.81, 356.04, 353.01, 356.26, 352.81, 356.04 +1992, 10, 33892, 1992.7896, 353.11, 356.44, 352.97, 356.29, 353.11, 356.44 +1992, 11, 33923, 1992.8743, 353.96, 356.05, 354.26, 356.33, 353.96, 356.05 +1992, 12, 33953, 1992.9563, 355.20, 356.06, 355.53, 356.37, 355.20, 356.06 +1993, 01, 33984, 1993.0411, 356.50, 356.45, 356.48, 356.42, 356.50, 356.45 +1993, 02, 34015, 1993.1260, 356.97, 356.26, 357.20, 356.48, 356.97, 356.26 +1993, 03, 34043, 1993.2027, 358.18, 356.75, 357.99, 356.55, 358.18, 356.75 +1993, 04, 34074, 1993.2877, 359.26, 356.68, 359.22, 356.62, 359.26, 356.68 +1993, 05, 34104, 1993.3699, 360.08, 356.94, 359.85, 356.70, 360.08, 356.94 +1993, 06, 34135, 1993.4548, 359.40, 357.02, 359.16, 356.80, 359.40, 357.02 +1993, 07, 34165, 1993.5370, 357.38, 356.62, 357.62, 356.90, 357.38, 356.62 +1993, 08, 34196, 1993.6219, 355.33, 356.75, 355.55, 357.01, 355.33, 356.75 +1993, 09, 34227, 1993.7068, 353.50, 356.74, 353.89, 357.14, 353.50, 356.74 +1993, 10, 34257, 1993.7890, 353.80, 357.15, 353.94, 357.28, 353.80, 357.15 +1993, 11, 34288, 1993.8740, 355.15, 357.25, 355.35, 357.43, 355.15, 357.25 +1993, 12, 34318, 1993.9562, 356.62, 357.48, 356.75, 357.59, 356.62, 357.48 +1994, 01, 34349, 1994.0411, 358.19, 358.14, 357.82, 357.76, 358.19, 358.14 +1994, 02, 34380, 1994.1260, 358.73, 358.02, 358.65, 357.93, 358.73, 358.02 +1994, 03, 34408, 1994.2027, 359.79, 358.36, 359.53, 358.08, 359.79, 358.36 +1994, 04, 34439, 1994.2877, 361.09, 358.50, 360.86, 358.25, 361.09, 358.50 +1994, 05, 34469, 1994.3699, 361.52, 358.36, 361.57, 358.42, 361.52, 358.36 +1994, 06, 34500, 1994.4548, 360.77, 358.39, 360.95, 358.59, 360.77, 358.39 +1994, 07, 34530, 1994.5370, 359.38, 358.62, 359.47, 358.75, 359.38, 358.62 +1994, 08, 34561, 1994.6219, 357.31, 358.73, 357.46, 358.93, 357.31, 358.73 +1994, 09, 34592, 1994.7068, 355.68, 358.92, 355.84, 359.11, 355.68, 358.92 +1994, 10, 34622, 1994.7890, 355.83, 359.19, 355.93, 359.28, 355.83, 359.19 +1994, 11, 34653, 1994.8740, 357.42, 359.53, 357.38, 359.47, 357.42, 359.53 +1994, 12, 34683, 1994.9562, 358.88, 359.74, 358.80, 359.65, 358.88, 359.74 +1995, 01, 34714, 1995.0411, 359.81, 359.76, 359.89, 359.83, 359.81, 359.76 +1995, 02, 34745, 1995.1260, 360.84, 360.13, 360.74, 360.02, 360.84, 360.13 +1995, 03, 34773, 1995.2027, 361.48, 360.05, 361.63, 360.18, 361.48, 360.05 +1995, 04, 34804, 1995.2877, 363.30, 360.71, 362.96, 360.35, 363.30, 360.71 +1995, 05, 34834, 1995.3699, 363.65, 360.48, 363.68, 360.52, 363.65, 360.48 +1995, 06, 34865, 1995.4548, 363.11, 360.72, 363.06, 360.68, 363.11, 360.72 +1995, 07, 34895, 1995.5370, 361.75, 360.99, 361.57, 360.84, 361.75, 360.99 +1995, 08, 34926, 1995.6219, 359.31, 360.74, 359.54, 361.01, 359.31, 360.74 +1995, 09, 34957, 1995.7068, 357.91, 361.17, 357.90, 361.17, 357.91, 361.17 +1995, 10, 34987, 1995.7890, 357.62, 360.99, 357.97, 361.33, 357.62, 360.99 +1995, 11, 35018, 1995.8740, 359.42, 361.54, 359.40, 361.49, 359.42, 361.54 +1995, 12, 35048, 1995.9562, 360.56, 361.42, 360.80, 361.64, 360.56, 361.42 +1996, 01, 35079, 1996.0410, 361.91, 361.86, 361.86, 361.80, 361.91, 361.86 +1996, 02, 35110, 1996.1257, 363.11, 362.39, 362.67, 361.95, 363.11, 362.39 +1996, 03, 35139, 1996.2049, 363.88, 362.42, 363.56, 362.08, 363.88, 362.42 +1996, 04, 35170, 1996.2896, 364.58, 361.96, 364.85, 362.20, 364.58, 361.96 +1996, 05, 35200, 1996.3716, 365.29, 362.11, 365.49, 362.32, 365.29, 362.11 +1996, 06, 35231, 1996.4563, 364.84, 362.46, 364.78, 362.43, 364.84, 362.46 +1996, 07, 35261, 1996.5383, 363.52, 362.79, 363.22, 362.53, 363.52, 362.79 +1996, 08, 35292, 1996.6230, 361.35, 362.81, 361.12, 362.62, 361.35, 362.81 +1996, 09, 35323, 1996.7077, 359.32, 362.59, 359.42, 362.71, 359.32, 362.59 +1996, 10, 35353, 1996.7896, 359.48, 362.85, 359.42, 362.79, 359.48, 362.85 +1996, 11, 35384, 1996.8743, 360.64, 362.75, 360.78, 362.87, 360.64, 362.75 +1996, 12, 35414, 1996.9563, 362.21, 363.07, 362.10, 362.94, 362.21, 363.07 +1997, 01, 35445, 1997.0411, 363.06, 363.02, 363.09, 363.03, 363.06, 363.02 +1997, 02, 35476, 1997.1260, 363.87, 363.16, 363.84, 363.12, 363.87, 363.16 +1997, 03, 35504, 1997.2027, 364.44, 363.00, 364.66, 363.20, 364.44, 363.00 +1997, 04, 35535, 1997.2877, 366.23, 363.62, 365.94, 363.31, 366.23, 363.62 +1997, 05, 35565, 1997.3699, 366.68, 363.50, 366.61, 363.42, 366.68, 363.50 +1997, 06, 35596, 1997.4548, 365.52, 363.11, 365.95, 363.56, 365.52, 363.11 +1997, 07, 35626, 1997.5370, 364.36, 363.60, 364.44, 363.71, 364.36, 363.60 +1997, 08, 35657, 1997.6219, 362.39, 363.83, 362.41, 363.89, 362.39, 363.83 +1997, 09, 35688, 1997.7068, 360.08, 363.35, 360.80, 364.09, 360.08, 363.35 +1997, 10, 35718, 1997.7890, 360.67, 364.06, 360.93, 364.31, 360.67, 364.06 +1997, 11, 35749, 1997.8740, 362.32, 364.45, 362.45, 364.55, 362.32, 364.45 +1997, 12, 35779, 1997.9562, 364.17, 365.04, 363.95, 364.80, 364.17, 365.04 +1998, 01, 35810, 1998.0411, 365.22, 365.17, 365.13, 365.07, 365.22, 365.17 +1998, 02, 35841, 1998.1260, 366.04, 365.32, 366.08, 365.35, 366.04, 365.32 +1998, 03, 35869, 1998.2027, 367.20, 365.75, 367.07, 365.60, 367.20, 365.75 +1998, 04, 35900, 1998.2877, 368.50, 365.89, 368.51, 365.87, 368.50, 365.89 +1998, 05, 35930, 1998.3699, 369.19, 366.00, 369.33, 366.14, 369.19, 366.00 +1998, 06, 35961, 1998.4548, 368.77, 366.35, 368.80, 366.40, 368.77, 366.35 +1998, 07, 35991, 1998.5370, 367.53, 366.76, 367.38, 366.64, 367.53, 366.76 +1998, 08, 36022, 1998.6219, 365.68, 367.12, 365.40, 366.88, 365.68, 367.12 +1998, 09, 36053, 1998.7068, 363.80, 367.09, 363.80, 367.10, 363.80, 367.09 +1998, 10, 36083, 1998.7890, 364.13, 367.54, 363.90, 367.29, 364.13, 367.54 +1998, 11, 36114, 1998.8740, 365.36, 367.49, 365.36, 367.47, 365.36, 367.49 +1998, 12, 36144, 1998.9562, 366.87, 367.74, 366.76, 367.62, 366.87, 367.74 +1999, 01, 36175, 1999.0411, 368.05, 368.00, 367.81, 367.75, 368.05, 368.00 +1999, 02, 36206, 1999.1260, 368.77, 368.05, 368.60, 367.86, 368.77, 368.05 +1999, 03, 36234, 1999.2027, 369.49, 368.03, 369.42, 367.95, 369.49, 368.03 +1999, 04, 36265, 1999.2877, 371.04, 368.41, 370.68, 368.03, 371.04, 368.41 +1999, 05, 36295, 1999.3699, 370.90, 367.70, 371.30, 368.10, 370.90, 367.70 +1999, 06, 36326, 1999.4548, 370.25, 367.83, 370.57, 368.17, 370.25, 367.83 +1999, 07, 36356, 1999.5370, 369.17, 368.40, 368.97, 368.24, 369.17, 368.40 +1999, 08, 36387, 1999.6219, 366.83, 368.28, 366.83, 368.31, 366.83, 368.28 +1999, 09, 36418, 1999.7068, 364.54, 367.83, 365.07, 368.39, 364.54, 367.83 +1999, 10, 36448, 1999.7890, 365.04, 368.45, 365.07, 368.47, 365.04, 368.45 +1999, 11, 36479, 1999.8740, 366.58, 368.72, 366.44, 368.55, 366.58, 368.72 +1999, 12, 36509, 1999.9562, 367.92, 368.79, 367.78, 368.64, 367.92, 368.79 +2000, 01, 36540, 2000.0410, 369.05, 369.00, 368.79, 368.73, 369.05, 369.00 +2000, 02, 36571, 2000.1257, 369.37, 368.65, 369.56, 368.82, 369.37, 368.65 +2000, 03, 36600, 2000.2049, 370.42, 368.94, 370.42, 368.92, 370.42, 368.94 +2000, 04, 36631, 2000.2896, 371.57, 368.91, 371.71, 369.03, 371.57, 368.91 +2000, 05, 36661, 2000.3716, 371.74, 368.53, 372.35, 369.15, 371.74, 368.53 +2000, 06, 36692, 2000.4563, 371.60, 369.19, 371.66, 369.28, 371.60, 369.19 +2000, 07, 36722, 2000.5383, 370.02, 369.29, 370.12, 369.41, 370.02, 369.29 +2000, 08, 36753, 2000.6230, 368.03, 369.51, 368.04, 369.56, 368.03, 369.51 +2000, 09, 36784, 2000.7077, 366.53, 369.85, 366.37, 369.70, 366.53, 369.85 +2000, 10, 36814, 2000.7896, 366.64, 370.06, 366.44, 369.85, 366.64, 370.06 +2000, 11, 36845, 2000.8743, 368.20, 370.34, 367.87, 369.99, 368.20, 370.34 +2000, 12, 36875, 2000.9563, 369.44, 370.31, 369.26, 370.12, 369.44, 370.31 +2001, 01, 36906, 2001.0411, 370.20, 370.15, 370.31, 370.24, 370.20, 370.15 +2001, 02, 36937, 2001.1260, 371.41, 370.69, 371.10, 370.37, 371.41, 370.69 +2001, 03, 36965, 2001.2027, 372.04, 370.57, 371.95, 370.47, 372.04, 370.57 +2001, 04, 36996, 2001.2877, 372.78, 370.14, 373.25, 370.59, 372.78, 370.14 +2001, 05, 37026, 2001.3699, 373.94, 370.72, 373.93, 370.71, 373.94, 370.72 +2001, 06, 37057, 2001.4548, 373.23, 370.79, 373.26, 370.84, 373.23, 370.79 +2001, 07, 37087, 2001.5370, 371.54, 370.76, 371.71, 370.98, 371.54, 370.76 +2001, 08, 37118, 2001.6219, 369.47, 370.93, 369.63, 371.12, 369.47, 370.93 +2001, 09, 37149, 2001.7068, 367.88, 371.19, 367.94, 371.28, 367.88, 371.19 +2001, 10, 37179, 2001.7890, 368.01, 371.45, 368.01, 371.43, 368.01, 371.45 +2001, 11, 37210, 2001.8740, 369.60, 371.75, 369.47, 371.59, 369.60, 371.75 +2001, 12, 37240, 2001.9562, 371.16, 372.04, 370.90, 371.76, 371.16, 372.04 +2002, 01, 37271, 2002.0411, 372.36, 372.31, 371.99, 371.93, 372.36, 372.31 +2002, 02, 37302, 2002.1260, 373.00, 372.28, 372.84, 372.10, 373.00, 372.28 +2002, 03, 37330, 2002.2027, 373.44, 371.97, 373.75, 372.26, 373.44, 371.97 +2002, 04, 37361, 2002.2877, 374.77, 372.13, 375.12, 372.45, 374.77, 372.13 +2002, 05, 37391, 2002.3699, 375.48, 372.25, 375.87, 372.64, 375.48, 372.25 +2002, 06, 37422, 2002.4548, 375.33, 372.89, 375.28, 372.85, 375.33, 372.89 +2002, 07, 37452, 2002.5370, 373.95, 373.17, 373.81, 373.07, 373.95, 373.17 +2002, 08, 37483, 2002.6219, 371.41, 372.87, 371.80, 373.29, 371.41, 372.87 +2002, 09, 37514, 2002.7068, 370.63, 373.95, 370.19, 373.53, 370.63, 373.95 +2002, 10, 37544, 2002.7890, 370.18, 373.62, 370.33, 373.76, 370.18, 373.62 +2002, 11, 37575, 2002.8740, 372.01, 374.17, 371.86, 373.99, 372.01, 374.17 +2002, 12, 37605, 2002.9562, 373.71, 374.59, 373.35, 374.21, 373.71, 374.59 +2003, 01, 37636, 2003.0411, 374.61, 374.56, 374.50, 374.44, 374.61, 374.56 +2003, 02, 37667, 2003.1260, 375.55, 374.82, 375.40, 374.66, 375.55, 374.82 +2003, 03, 37695, 2003.2027, 376.04, 374.57, 376.34, 374.85, 376.04, 374.57 +2003, 04, 37726, 2003.2877, 377.58, 374.92, 377.74, 375.06, 377.58, 374.92 +2003, 05, 37756, 2003.3699, 378.28, 375.04, 378.51, 375.27, 378.28, 375.04 +2003, 06, 37787, 2003.4548, 378.07, 375.62, 377.90, 375.47, 378.07, 375.62 +2003, 07, 37817, 2003.5370, 376.54, 375.77, 376.41, 375.66, 376.54, 375.77 +2003, 08, 37848, 2003.6219, 374.42, 375.88, 374.36, 375.86, 374.42, 375.88 +2003, 09, 37879, 2003.7068, 372.92, 376.25, 372.69, 376.04, 372.92, 376.25 +2003, 10, 37909, 2003.7890, 372.94, 376.39, 372.76, 376.20, 372.94, 376.39 +2003, 11, 37940, 2003.8740, 374.29, 376.45, 374.22, 376.36, 374.29, 376.45 +2003, 12, 37970, 2003.9562, 375.63, 376.51, 375.64, 376.51, 375.63, 376.51 +2004, 01, 38001, 2004.0410, 376.73, 376.68, 376.71, 376.65, 376.73, 376.68 +2004, 02, 38032, 2004.1257, 377.31, 376.58, 377.52, 376.78, 377.31, 376.58 +2004, 03, 38061, 2004.2049, 378.33, 376.83, 378.42, 376.90, 378.33, 376.83 +2004, 04, 38092, 2004.2896, 380.44, 377.75, 379.73, 377.02, 380.44, 377.75 +2004, 05, 38122, 2004.3716, 380.56, 377.31, 380.38, 377.14, 380.56, 377.31 +2004, 06, 38153, 2004.4563, 379.49, 377.06, 379.67, 377.25, 379.49, 377.06 +2004, 07, 38183, 2004.5383, 377.71, 376.96, 378.09, 377.38, 377.71, 376.96 +2004, 08, 38214, 2004.6230, 375.78, 377.27, 375.98, 377.51, 375.78, 377.27 +2004, 09, 38245, 2004.7077, 373.99, 377.35, 374.29, 377.66, 373.99, 377.35 +2004, 10, 38275, 2004.7896, 374.17, 377.63, 374.38, 377.83, 374.17, 377.63 +2004, 11, 38306, 2004.8743, 375.79, 377.96, 375.87, 378.01, 375.79, 377.96 +2004, 12, 38336, 2004.9563, 377.39, 378.28, 377.33, 378.20, 377.39, 378.28 +2005, 01, 38367, 2005.0411, 378.29, 378.24, 378.47, 378.40, 378.29, 378.24 +2005, 02, 38398, 2005.1260, 379.56, 378.82, 379.36, 378.62, 379.56, 378.82 +2005, 03, 38426, 2005.2027, 380.06, 378.58, 380.31, 378.82, 380.06, 378.58 +2005, 04, 38457, 2005.2877, 382.02, 379.34, 381.73, 379.04, 382.02, 379.34 +2005, 05, 38487, 2005.3699, 382.21, 378.95, 382.51, 379.25, 382.21, 378.95 +2005, 06, 38518, 2005.4548, 382.05, 379.58, 381.92, 379.48, 382.05, 379.58 +2005, 07, 38548, 2005.5370, 380.63, 379.85, 380.44, 379.69, 380.63, 379.85 +2005, 08, 38579, 2005.6219, 378.64, 380.11, 378.39, 379.90, 378.64, 380.11 +2005, 09, 38610, 2005.7068, 376.38, 379.74, 376.74, 380.11, 376.38, 379.74 +2005, 10, 38640, 2005.7890, 376.77, 380.24, 376.85, 380.31, 376.77, 380.24 +2005, 11, 38671, 2005.8740, 378.27, 380.45, 378.36, 380.51, 378.27, 380.45 +2005, 12, 38701, 2005.9562, 379.93, 380.82, 379.83, 380.70, 379.93, 380.82 +2006, 01, 38732, 2006.0411, 381.33, 381.28, 380.94, 380.88, 381.33, 381.28 +2006, 02, 38763, 2006.1260, 381.98, 381.25, 381.80, 381.05, 381.98, 381.25 +2006, 03, 38791, 2006.2027, 382.53, 381.04, 382.70, 381.20, 382.53, 381.04 +2006, 04, 38822, 2006.2877, 384.33, 381.65, 384.06, 381.36, 384.33, 381.65 +2006, 05, 38852, 2006.3699, 384.89, 381.62, 384.77, 381.50, 384.89, 381.62 +2006, 06, 38883, 2006.4548, 383.99, 381.52, 384.10, 381.65, 383.99, 381.52 +2006, 07, 38913, 2006.5370, 382.25, 381.46, 382.54, 381.79, 382.25, 381.46 +2006, 08, 38944, 2006.6219, 380.44, 381.92, 380.43, 381.94, 380.44, 381.92 +2006, 09, 38975, 2006.7068, 378.77, 382.13, 378.71, 382.09, 378.77, 382.13 +2006, 10, 39005, 2006.7890, 379.03, 382.51, 378.76, 382.24, 379.03, 382.51 +2006, 11, 39036, 2006.8740, 380.11, 382.30, 380.23, 382.39, 380.11, 382.30 +2006, 12, 39066, 2006.9562, 381.63, 382.52, 381.66, 382.53, 381.63, 382.52 +2007, 01, 39097, 2007.0411, 382.55, 382.50, 382.75, 382.68, 382.55, 382.50 +2007, 02, 39128, 2007.1260, 383.68, 382.94, 383.59, 382.84, 383.68, 382.94 +2007, 03, 39156, 2007.2027, 384.31, 382.82, 384.49, 382.98, 384.31, 382.82 +2007, 04, 39187, 2007.2877, 386.20, 383.51, 385.85, 383.14, 386.20, 383.51 +2007, 05, 39217, 2007.3699, 386.38, 383.10, 386.58, 383.30, 386.38, 383.10 +2007, 06, 39248, 2007.4548, 385.84, 383.36, 385.92, 383.46, 385.84, 383.36 +2007, 07, 39278, 2007.5370, 384.42, 383.63, 384.37, 383.62, 384.42, 383.63 +2007, 08, 39309, 2007.6219, 381.81, 383.30, 382.26, 383.78, 381.81, 383.30 +2007, 09, 39340, 2007.7068, 380.83, 384.20, 380.56, 383.95, 380.83, 384.20 +2007, 10, 39370, 2007.7890, 380.83, 384.33, 380.62, 384.10, 380.83, 384.33 +2007, 11, 39401, 2007.8740, 382.32, 384.51, 382.09, 384.26, 382.32, 384.51 +2007, 12, 39431, 2007.9562, 383.58, 384.48, 383.53, 384.41, 383.58, 384.48 +2008, 01, 39462, 2008.0410, 385.04, 384.99, 384.62, 384.55, 385.04, 384.99 +2008, 02, 39493, 2008.1257, 385.81, 385.07, 385.45, 384.70, 385.81, 385.07 +2008, 03, 39522, 2008.2049, 385.80, 384.28, 386.38, 384.84, 385.80, 384.28 +2008, 04, 39553, 2008.2896, 386.74, 384.01, 387.73, 384.99, 386.74, 384.01 +2008, 05, 39583, 2008.3716, 388.49, 385.20, 388.43, 385.15, 388.49, 385.20 +2008, 06, 39614, 2008.4563, 388.02, 385.56, 387.76, 385.32, 388.02, 385.56 +2008, 07, 39644, 2008.5383, 386.22, 385.47, 386.20, 385.48, 386.22, 385.47 +2008, 08, 39675, 2008.6230, 384.05, 385.57, 384.10, 385.65, 384.05, 385.57 +2008, 09, 39706, 2008.7077, 383.05, 386.45, 382.41, 385.82, 383.05, 386.45 +2008, 10, 39736, 2008.7896, 382.75, 386.25, 382.49, 385.98, 382.75, 386.25 +2008, 11, 39767, 2008.8743, 383.98, 386.17, 383.97, 386.14, 383.98, 386.17 +2008, 12, 39797, 2008.9563, 385.08, 385.98, 385.41, 386.29, 385.08, 385.98 +2009, 01, 39828, 2009.0411, 386.63, 386.57, 386.51, 386.44, 386.63, 386.57 +2009, 02, 39859, 2009.1260, 387.10, 386.36, 387.35, 386.60, 387.10, 386.36 +2009, 03, 39887, 2009.2027, 388.50, 387.00, 388.26, 386.75, 388.50, 387.00 +2009, 04, 39918, 2009.2877, 389.54, 386.84, 389.64, 386.91, 389.54, 386.84 +2009, 05, 39948, 2009.3699, 390.15, 386.85, 390.38, 387.08, 390.15, 386.85 +2009, 06, 39979, 2009.4548, 389.60, 387.10, 389.74, 387.27, 389.60, 387.10 +2009, 07, 40009, 2009.5370, 388.05, 387.26, 388.21, 387.45, 388.05, 387.26 +2009, 08, 40040, 2009.6219, 386.07, 387.56, 386.13, 387.66, 386.07, 387.56 +2009, 09, 40071, 2009.7068, 384.64, 388.03, 384.46, 387.87, 384.64, 388.03 +2009, 10, 40101, 2009.7890, 384.32, 387.84, 384.58, 388.08, 384.32, 387.84 +2009, 11, 40132, 2009.8740, 386.05, 388.25, 386.13, 388.31, 386.05, 388.25 +2009, 12, 40162, 2009.9562, 387.49, 388.39, 387.65, 388.53, 387.49, 388.39 +2010, 01, 40193, 2010.0411, 388.55, 388.50, 388.83, 388.76, 388.55, 388.50 +2010, 02, 40224, 2010.1260, 390.08, 389.33, 389.75, 388.99, 390.08, 389.33 +2010, 03, 40252, 2010.2027, 391.02, 389.52, 390.71, 389.19, 391.02, 389.52 +2010, 04, 40283, 2010.2877, 392.39, 389.68, 392.13, 389.40, 392.39, 389.68 +2010, 05, 40313, 2010.3699, 393.24, 389.93, 392.90, 389.59, 393.24, 389.93 +2010, 06, 40344, 2010.4548, 392.26, 389.75, 392.26, 389.78, 392.26, 389.75 +2010, 07, 40374, 2010.5370, 390.35, 389.55, 390.71, 389.95, 390.35, 389.55 +2010, 08, 40405, 2010.6219, 388.53, 390.03, 388.60, 390.13, 388.53, 390.03 +2010, 09, 40436, 2010.7068, 386.85, 390.25, 386.87, 390.30, 386.85, 390.25 +2010, 10, 40466, 2010.7890, 387.18, 390.71, 386.94, 390.45, 387.18, 390.71 +2010, 11, 40497, 2010.8740, 388.69, 390.90, 388.42, 390.60, 388.69, 390.90 +2010, 12, 40527, 2010.9562, 389.83, 390.74, 389.86, 390.74, 389.83, 390.74 +2011, 01, 40558, 2011.0411, 391.33, 391.28, 390.94, 390.88, 391.33, 391.28 +2011, 02, 40589, 2011.1260, 391.96, 391.21, 391.77, 391.01, 391.96, 391.21 +2011, 03, 40617, 2011.2027, 392.49, 390.98, 392.65, 391.13, 392.49, 390.98 +2011, 04, 40648, 2011.2877, 393.41, 390.69, 394.01, 391.27, 393.41, 390.69 +2011, 05, 40678, 2011.3699, 394.33, 391.01, 394.73, 391.41, 394.33, 391.01 +2011, 06, 40709, 2011.4548, 393.74, 391.23, 394.06, 391.57, 393.74, 391.23 +2011, 07, 40739, 2011.5370, 392.64, 391.85, 392.50, 391.74, 392.64, 391.85 +2011, 08, 40770, 2011.6219, 390.25, 391.75, 390.38, 391.92, 390.25, 391.75 +2011, 09, 40801, 2011.7068, 389.05, 392.46, 388.67, 392.10, 389.05, 392.46 +2011, 10, 40831, 2011.7890, 388.98, 392.52, 388.76, 392.28, 388.98, 392.52 +2011, 11, 40862, 2011.8740, 390.30, 392.51, 390.27, 392.47, 390.30, 392.51 +2011, 12, 40892, 2011.9562, 391.86, 392.77, 391.76, 392.65, 391.86, 392.77 +2012, 01, 40923, 2012.0410, 393.13, 393.08, 392.90, 392.83, 393.13, 393.08 +2012, 02, 40954, 2012.1257, 393.42, 392.67, 393.78, 393.03, 393.42, 392.67 +2012, 03, 40983, 2012.2049, 394.43, 392.89, 394.77, 393.21, 394.43, 392.89 +2012, 04, 41014, 2012.2896, 396.51, 393.75, 396.19, 393.41, 396.51, 393.75 +2012, 05, 41044, 2012.3716, 396.96, 393.63, 396.94, 393.62, 396.96, 393.63 +2012, 06, 41075, 2012.4563, 395.97, 393.48, 396.31, 393.84, 395.97, 393.48 +2012, 07, 41105, 2012.5383, 394.60, 393.84, 394.79, 394.06, 394.60, 393.84 +2012, 08, 41136, 2012.6230, 392.61, 394.14, 392.72, 394.30, 392.61, 394.14 +2012, 09, 41167, 2012.7077, 391.20, 394.63, 391.09, 394.54, 391.20, 394.63 +2012, 10, 41197, 2012.7896, 391.09, 394.63, 391.25, 394.77, 391.09, 394.63 +2012, 11, 41228, 2012.8743, 393.03, 395.24, 392.83, 395.02, 393.03, 395.24 +2012, 12, 41258, 2012.9563, 394.42, 395.32, 394.36, 395.25, 394.42, 395.32 +2013, 01, 41289, 2013.0411, 395.69, 395.64, 395.55, 395.48, 395.69, 395.64 +2013, 02, 41320, 2013.1260, 396.94, 396.19, 396.47, 395.71, 396.94, 396.19 +2013, 03, 41348, 2013.2027, 397.35, 395.84, 397.44, 395.91, 397.35, 395.84 +2013, 04, 41379, 2013.2877, 398.44, 395.71, 398.88, 396.12, 398.44, 395.71 +2013, 05, 41409, 2013.3699, 400.06, 396.72, 399.66, 396.33, 400.06, 396.72 +2013, 06, 41440, 2013.4548, 398.95, 396.43, 399.03, 396.53, 398.95, 396.43 +2013, 07, 41470, 2013.5370, 397.45, 396.66, 397.48, 396.72, 397.45, 396.66 +2013, 08, 41501, 2013.6219, 395.49, 397.00, 395.37, 396.91, 395.49, 397.00 +2013, 09, 41532, 2013.7068, 393.48, 396.91, 393.65, 397.10, 393.48, 396.91 +2013, 10, 41562, 2013.7890, 393.77, 397.33, 393.74, 397.28, 393.77, 397.33 +2013, 11, 41593, 2013.8740, 395.27, 397.50, 395.26, 397.46, 395.27, 397.50 +2013, 12, 41623, 2013.9562, 396.90, 397.81, 396.74, 397.64, 396.90, 397.81 +2014, 01, 41654, 2014.0411, 398.01, 397.96, 397.87, 397.81, 398.01, 397.96 +2014, 02, 41685, 2014.1260, 398.18, 397.43, 398.74, 397.98, 398.18, 397.43 +2014, 03, 41713, 2014.2027, 399.56, 398.04, 399.67, 398.13, 399.56, 398.04 +2014, 04, 41744, 2014.2877, 401.44, 398.69, 401.06, 398.30, 401.44, 398.69 +2014, 05, 41774, 2014.3699, 401.99, 398.64, 401.80, 398.46, 401.99, 398.64 +2014, 06, 41805, 2014.4548, 401.41, 398.88, 401.13, 398.62, 401.41, 398.88 +2014, 07, 41835, 2014.5370, 399.17, 398.37, 399.54, 398.77, 399.17, 398.37 +2014, 08, 41866, 2014.6219, 397.30, 398.81, 397.38, 398.93, 397.30, 398.81 +2014, 09, 41897, 2014.7068, 395.49, 398.93, 395.64, 399.10, 395.49, 398.93 +2014, 10, 41927, 2014.7890, 395.74, 399.30, 395.70, 399.26, 395.74, 399.30 +2014, 11, 41958, 2014.8740, 397.32, 399.55, 397.21, 399.43, 397.32, 399.55 +2014, 12, 41988, 2014.9562, 398.89, 399.80, 398.69, 399.59, 398.89, 399.80 +2015, 01, 42019, 2015.0411, 399.94, 399.89, 399.83, 399.76, 399.94, 399.89 +2015, 02, 42050, 2015.1260, 400.39, 399.64, 400.71, 399.94, 400.39, 399.64 +2015, 03, 42078, 2015.2027, 401.60, 400.07, 401.65, 400.11, 401.60, 400.07 +2015, 04, 42109, 2015.2877, 403.53, 400.77, 403.07, 400.30, 403.53, 400.77 +2015, 05, 42139, 2015.3699, 404.04, 400.68, 403.85, 400.50, 404.04, 400.68 +2015, 06, 42170, 2015.4548, 402.81, 400.27, 403.23, 400.72, 402.81, 400.27 +2015, 07, 42200, 2015.5370, 401.54, 400.73, 401.72, 400.95, 401.54, 400.73 +2015, 08, 42231, 2015.6219, 398.93, 400.44, 399.66, 401.21, 398.93, 400.44 +2015, 09, 42262, 2015.7068, 397.43, 400.88, 398.03, 401.50, 397.43, 400.88 +2015, 10, 42292, 2015.7890, 398.21, 401.79, 398.23, 401.79, 398.21, 401.79 +2015, 11, 42323, 2015.8740, 400.17, 402.41, 399.89, 402.11, 400.17, 402.41 +2015, 12, 42353, 2015.9562, 401.82, 402.74, 401.52, 402.42, 401.82, 402.74 +2016, 01, 42384, 2016.0410, 402.58, 402.53, 402.80, 402.73, 402.58, 402.53 +2016, 02, 42415, 2016.1257, 404.09, 403.33, 403.81, 403.04, 404.09, 403.33 +2016, 03, 42444, 2016.2049, 404.79, 403.23, 404.89, 403.32, 404.79, 403.23 +2016, 04, 42475, 2016.2896, 407.50, 404.71, 406.40, 403.60, 407.50, 404.71 +2016, 05, 42505, 2016.3716, 407.59, 404.22, 407.21, 403.85, 407.59, 404.22 +2016, 06, 42536, 2016.4563, 406.94, 404.42, 406.59, 404.09, 406.94, 404.42 +2016, 07, 42566, 2016.5383, 404.43, 403.66, 405.05, 404.31, 404.43, 403.66 +2016, 08, 42597, 2016.6230, 402.17, 403.72, 402.95, 404.54, 402.17, 403.72 +2016, 09, 42628, 2016.7077, 400.94, 404.42, 401.26, 404.76, 400.94, 404.42 +2016, 10, 42658, 2016.7896, 401.43, 405.01, 401.40, 404.97, 401.43, 405.01 +2016, 11, 42689, 2016.8743, 403.57, 405.81, 402.96, 405.18, 403.57, 405.81 +2016, 12, 42719, 2016.9563, 404.48, 405.40, 404.47, 405.37, 404.48, 405.40 +2017, 01, 42750, 2017.0411, 406.00, 405.95, 405.63, 405.56, 406.00, 405.95 +2017, 02, 42781, 2017.1260, 406.57, 405.81, 406.52, 405.74, 406.57, 405.81 +2017, 03, 42809, 2017.2027, 406.99, 405.45, 407.45, 405.90, 406.99, 405.45 +2017, 04, 42840, 2017.2877, 408.88, 406.11, 408.86, 406.07, 408.88, 406.11 +2017, 05, 42870, 2017.3699, 409.84, 406.46, 409.60, 406.23, 409.84, 406.46 +2017, 06, 42901, 2017.4548, 409.05, 406.50, 408.92, 406.39, 409.05, 406.50 +2017, 07, 42931, 2017.5370, 407.13, 406.32, 407.31, 406.54, 407.13, 406.32 +2017, 08, 42962, 2017.6219, 405.17, 406.70, 405.13, 406.70, 405.17, 406.70 +2017, 09, 42993, 2017.7068, 403.20, 406.67, 403.36, 406.85, 403.20, 406.67 +2017, 10, 43023, 2017.7890, 403.57, 407.17, 403.42, 407.00, 403.57, 407.17 +2017, 11, 43054, 2017.8740, 405.10, 407.36, 404.92, 407.15, 405.10, 407.36 +2017, 12, 43084, 2017.9562, 406.68, 407.61, 406.40, 407.30, 406.68, 407.61 +2018, 01, 43115, 2018.0411, 407.98, 407.93, 407.52, 407.45, 407.98, 407.93 +2018, 02, 43146, 2018.1260, 408.28, 407.51, 408.38, 407.61, 408.28, 407.51 +2018, 03, 43174, 2018.2027, 409.19, 407.65, 409.32, 407.76, 409.19, 407.65 +2018, 04, 43205, 2018.2877, 410.24, 407.46, 410.74, 407.94, 410.24, 407.46 +2018, 05, 43235, 2018.3699, 411.23, 407.85, 411.52, 408.13, 411.23, 407.85 +2018, 06, 43266, 2018.4548, 410.81, 408.25, 410.90, 408.36, 410.81, 408.25 +2018, 07, 43296, 2018.5370, 408.83, 408.02, 409.36, 408.59, 408.83, 408.02 +2018, 08, 43327, 2018.6219, 407.02, 408.56, 407.28, 408.85, 407.02, 408.56 +2018, 09, 43358, 2018.7068, 405.52, 409.01, 405.62, 409.12, 405.52, 409.01 +2018, 10, 43388, 2018.7890, 405.93, 409.54, 405.79, 409.39, 405.93, 409.54 +2018, 11, 43419, 2018.8740, 408.05, 410.31, 407.43, 409.66, 408.05, 410.31 +2018, 12, 43449, 2018.9562, 409.16, 410.09, 409.02, 409.92, 409.16, 410.09 +2019, 01, 43480, 2019.0411, 410.85, 410.80, 410.25, 410.18, 410.85, 410.80 +2019, 02, 43511, 2019.1260, 411.59, 410.83, 411.20, 410.43, 411.59, 410.83 +2019, 03, 43539, 2019.2027, 411.93, 410.39, 412.20, 410.64, 411.93, 410.39 +2019, 04, 43570, 2019.2877, 413.46, 410.68, 413.67, 410.86, 413.46, 410.68 +2019, 05, 43600, 2019.3699, 414.76, 411.36, 414.48, 411.08, 414.76, 411.36 +2019, 06, 43631, 2019.4548, 413.89, 411.32, 413.85, 411.30, 413.89, 411.32 +2019, 07, 43661, 2019.5370, 411.78, 410.97, 412.29, 411.51, 411.78, 410.97 +2019, 08, 43692, 2019.6219, 410.01, 411.55, 410.16, 411.74, 410.01, 411.55 +2019, 09, 43723, 2019.7068, 408.48, 411.98, 408.45, 411.96, 408.48, 411.98 +2019, 10, 43753, 2019.7890, 408.37, 411.99, 408.57, 412.18, 408.37, 411.99 +2019, 11, 43784, 2019.8740, 410.22, 412.49, 410.16, 412.40, 410.22, 412.49 +2019, 12, 43814, 2019.9562, 411.78, 412.71, 411.70, 412.61, 411.78, 412.71 +2020, 01, 43845, 2020.0410, 413.38, 413.32, 412.89, 412.83, 413.38, 413.32 +2020, 02, 43876, 2020.1257, 414.03, 413.26, 413.81, 413.03, 414.03, 413.26 +2020, 03, 43905, 2020.2049, 414.44, 412.87, 414.82, 413.23, 414.44, 412.87 +2020, 04, 43936, 2020.2896, 416.11, 413.29, 416.27, 413.43, 416.11, 413.29 +2020, 05, 43966, 2020.3716, 417.10, 413.69, 417.03, 413.63, 417.10, 413.69 +2020, 06, 43997, 2020.4563, 416.23, 413.68, 416.36, 413.83, 416.23, 413.68 +2020, 07, 44027, 2020.5383, 414.47, 413.68, 414.78, 414.03, 414.47, 413.68 +2020, 08, 44058, 2020.6230, 412.53, 414.10, 412.63, 414.23, 412.53, 414.10 +2020, 09, 44089, 2020.7077, 411.19, 414.70, 410.90, 414.44, 411.19, 414.70 +2020, 10, 44119, 2020.7896, 411.15, 414.78, 411.02, 414.63, 411.15, 414.78 +2020, 11, 44150, 2020.8743, 412.88, 415.15, 412.58, 414.82, 412.88, 415.15 +2020, 12, 44180, 2020.9563, 413.89, 414.82, 414.09, 415.00, 413.89, 414.82 +2021, 01, 44211, 2021.0411, 415.17, 415.11, 415.24, 415.17, 415.17, 415.11 +2021, 02, 44242, 2021.1260, 416.47, 415.70, 416.13, 415.35, 416.47, 415.70 +2021, 03, 44270, 2021.2027, 417.14, 415.59, 417.06, 415.50, 417.14, 415.59 +2021, 04, 44301, 2021.2877, 418.24, 415.44, 418.48, 415.66, 418.24, 415.44 +2021, 05, 44331, 2021.3699, 418.92, 415.50, 419.23, 415.81, 418.92, 415.50 +2021, 06, 44362, 2021.4548, 418.73, 416.14, -99.99, -99.99, 418.73, 416.14 +2021, 07, 44392, 2021.5370, -99.99, -99.99, -99.99, -99.99, -99.99, -99.99 +2021, 08, 44423, 2021.6219, -99.99, -99.99, -99.99, -99.99, -99.99, -99.99 +2021, 09, 44454, 2021.7068, -99.99, -99.99, -99.99, -99.99, -99.99, -99.99 +2021, 10, 44484, 2021.7890, -99.99, -99.99, -99.99, -99.99, -99.99, -99.99 +2021, 11, 44515, 2021.8740, -99.99, -99.99, -99.99, -99.99, -99.99, -99.99 +2021, 12, 44545, 2021.9562, -99.99, -99.99, -99.99, -99.99, -99.99, -99.99