{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import pandas\n", "import math" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[14.0, 7.6, 11.2, 12.8, 12.5, 9.9, 14.9, 9.4, 16.9, 10.2, 14.9, 18.1, 7.3, 9.8, 10.9, 12.2, 9.9, 2.9, 2.8, 15.4, 15.7, 9.7, 13.1, 13.2, 12.3, 11.7, 16.0, 12.4, 17.9, 12.2, 16.2, 18.7, 8.9, 11.9, 12.1, 14.6, 12.1, 4.7, 3.9, 16.9, 16.8, 11.3, 14.4, 15.7, 14.0, 13.6, 18.0, 13.6, 19.9, 13.7, 17.0, 20.5, 9.9, 12.5, 13.2, 16.1, 13.5, 6.3, 6.4, 17.6, 19.1, 12.8, 15.5, 16.3, 15.2, 14.6, 19.1, 14.4, 21.4, 15.1, 19.6, 21.7, 11.3, 15.0, 14.3, 16.8, 14.0, 6.8, 8.2, 19.9, 20.4, 14.6, 16.4, 18.7, 16.8, 15.8, 20.4, 15.8, 22.4, 16.2, 20.3, 23.4, 12.1, 15.5, 15.4, 18.4, 15.7, 10.2, 8.9, 21.0]\n" ] } ], "source": [ "DataSet = [14.0, 7.6, 11.2, 12.8, 12.5, 9.9, 14.9, 9.4, 16.9, 10.2, 14.9, 18.1, 7.3, 9.8, 10.9,12.2, 9.9, 2.9, 2.8, 15.4, 15.7, 9.7, 13.1, 13.2, 12.3, 11.7, 16.0, 12.4, 17.9, 12.2, 16.2, 18.7, 8.9, 11.9, 12.1, 14.6, 12.1, 4.7, 3.9, 16.9, 16.8, 11.3, 14.4, 15.7, 14.0, 13.6, 18.0, 13.6, 19.9, 13.7, 17.0, 20.5, 9.9, 12.5, 13.2, 16.1, 13.5, 6.3, 6.4, 17.6, 19.1, 12.8, 15.5, 16.3, 15.2, 14.6, 19.1, 14.4, 21.4, 15.1, 19.6, 21.7, 11.3, 15.0, 14.3, 16.8, 14.0, 6.8, 8.2, 19.9, 20.4, 14.6, 16.4, 18.7, 16.8, 15.8, 20.4, 15.8, 22.4, 16.2, 20.3, 23.4, 12.1, 15.5, 15.4, 18.4, 15.7, 10.2, 8.9, 21.0]\n", "print(DataSet)" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The average of DataSet is 14.11\n" ] } ], "source": [ "# average\n", "\n", "def averageOfList(num):\n", " sumOfNumbers = 0\n", " for t in num:\n", " sumOfNumbers = sumOfNumbers + t\n", "\n", " avg = sumOfNumbers / len(num)\n", " return avg\n", "\n", "\n", "print(\"The average of DataSet is \" '%.2f' %averageOfList(DataSet))" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "2.8" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# minimum\n", "\n", "min(DataSet)" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "23.4" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# maximum\n", "\n", "max(DataSet)" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "14.5" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# median\n", "\n", "import statistics\n", "statistics.median(DataSet)" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "standard deviation is 4.31\n" ] } ], "source": [ "# standard deviation\n", "\n", "print(\"standard deviation is \" '%.2f' %np.std(DataSet)) \n" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Standard Deviation: 4.31\n" ] } ], "source": [ "import numpy as np\n", "dataset=[14.0, 7.6, 11.2, 12.8, 12.5, 9.9, 14.9, 9.4, 16.9, 10.2, 14.9, 18.1, 7.3, 9.8, 10.9,12.2, 9.9, 2.9, 2.8, 15.4, 15.7, 9.7, 13.1, 13.2, 12.3, 11.7, 16.0, 12.4, 17.9, 12.2, 16.2, 18.7, 8.9, 11.9, 12.1, 14.6, 12.1, 4.7, 3.9, 16.9, 16.8, 11.3, 14.4, 15.7, 14.0, 13.6, 18.0, 13.6, 19.9, 13.7, 17.0, 20.5, 9.9, 12.5, 13.2, 16.1, 13.5, 6.3, 6.4, 17.6, 19.1, 12.8, 15.5, 16.3, 15.2, 14.6, 19.1, 14.4, 21.4, 15.1, 19.6, 21.7, 11.3, 15.0, 14.3, 16.8, 14.0, 6.8, 8.2, 19.9, 20.4, 14.6, 16.4, 18.7, 16.8, 15.8, 20.4, 15.8, 22.4, 16.2, 20.3, 23.4, 12.1, 15.5, 15.4, 18.4, 15.7, 10.2, 8.9, 21.0]\n", "print('Standard Deviation:', '%.2f' %np.std(dataset))" ] }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEICAYAAABPgw/pAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAADkdJREFUeJzt3X+M5HV9x/Hnq6CkBbRHbyGgnFuRNNAaD3MFGhoLVSw/0gAh2lKlV0NzaCHR1MZcrKnUaoJ/qKRpQ3sGeqcCDYkgNGALRSzYUMpBCRxFw48eAne9O4otP6xV4N0/5nvtuOzuzO7M7ex97vlILjPfHzPfz32Ze+6Xz87spqqQJO39fmLSA5AkjYdBl6RGGHRJaoRBl6RGGHRJaoRBl6RGGHTttZJsTPLpeba/kOTNSzkmaZIMupZEkq1Jfphk5Yz19yepJNPjPmZVHVRVjw8Y18lJnhr3saVJMOhaSv8GnLd7IclbgZ+c3HD2vCT7TXoM2ncYdC2lLwO/3be8FvjS7oUkv5hkR5L9+9adm+T+eZ5zRZKbkjyf5O4kR/U9tpK8pbt/RpJ/7fZ7OskfJDkQ+DpwRDc980KSI5IckOSyJNu6P5clOaDveT+WZHu37XdnHGdjksuT3JzkReCUJGcm+ZckzyV5Msklfc813T3+A9227yX5YHcuHkjyn0n+bLEnXPsWg66l9E/A65Ic0125/gbwld0bq+oe4D+AU/se8356Xwjmch7wx8AK4FHgM3PsdwVwYVUdDPwC8I2qehE4HdjWTc8cVFXbgD8ETgRWA28Djgc+AZDkNOD3gXcBbwF+ZZZj/VY3joOBbwEv0vtC9tPAmcCHkpw94zEnAEd35+SybgzvAn4eeG+S2Y4j/RiDrqW2+yr9VODbwNMztm+iF3GSHAL8GnD1PM93XVX9c1W9BFxFL8Kz+RFwbJLXVdX3quq+eZ7zfcCnqmpnVe2i9wXj/G7be4G/qqqHqur73baZbqiqf6yqV6rqB1X1zap6sFt+ALiGV38h+JNu31vofQG4pjv+08CdwHHzjFcCDLqW3pfpXcH+Dn3TLX2+Avx6koPoxfPOqto+z/P9e9/97wMHzbHfucAZwBNJ/iHJL83znEcAT/QtP9Gt273tyb5t/fdnXZfkhCS3J9mV5L+ADwIrZzxmR9/9/55lea6/l/R/DLqWVFU9Qe+bo2cA182y/WngLuAcelfF8023LOS491TVWcChwNeAa3dvmmX3bcCb+pZXdesAtgNv7Nt25GyHm7F8NXAjcGRVvR74CyAL+gtIQzDomoQLgF/t5rBn8yXgY8BbgetHPViS1yZ5X5LXV9WPgOeAl7vNO4CfSfL6vodcA3wiyVT3Nss/4v/n+q8FPtB9H+Cnum2DHAw8W1U/SHI8vf9DkcbOoGvJVdVjVbV5nl2up3eFfP080V+o84GtSZ6jN+Xx/m4s36YX8Me7d5QcAXwa2Aw8ADwI3Neto6q+DvwpcDu9b8Le1T3//8xz7N8DPpXkeXpfAK6dZ19p0eIvuNBylOQxeu9K+ftJj2U+SY4BtgAHdN+YlSbGK3QtO0nOpTcP/Y1Jj2U2Sc7ppnFWAJ8F/saYazkw6FpWknwTuBy4qKpemfBw5nIhsAt4jN5c/IcmOxypxykXSWqEV+iS1Ij9B+8yPitXrqzp6emlPKQk7fXuvffeZ6pqatB+Sxr06elpNm+e791qkqSZkjwxeC+nXCSpGQZdkhph0CWpEQZdkhph0CWpEQZdkhph0CWpEQZdkhph0CWpEUv6SVFJrza9/qaJHHfrpWdO5Ljac7xCl6RGGHRJaoRBl6RGGHRJaoRBl6RGGHRJaoRBl6RGGHRJaoRBl6RGGHRJaoRBl6RGGHRJaoRBl6RGGHRJasTAoCc5MsntSR5O8lCSD3frD0lya5JHutsVe364kqS5DHOF/hLw0ao6BjgRuCjJscB64LaqOhq4rVuWJE3IwKBX1faquq+7/zzwMPAG4CxgU7fbJuDsPTVISdJgC5pDTzINHAfcDRxWVduhF33g0HEPTpI0vKF/BV2Sg4CvAh+pqueSDPu4dcA6gFWrVi1mjNIeN6lfAyeN01BX6EleQy/mV1XVdd3qHUkO77YfDuyc7bFVtaGq1lTVmqmpqXGMWZI0i2He5RLgCuDhqvp836YbgbXd/bXADeMfniRpWMNMuZwEnA88mOT+bt3HgUuBa5NcAHwXeM+eGaIkaRgDg15V3wLmmjB/53iHI0laLD8pKkmNMOiS1AiDLkmNMOiS1AiDLkmNMOiS1AiDLkmNMOiS1AiDLkmNMOiS1AiDLkmNMOiS1AiDLkmNMOiS1AiDLkmNMOiS1AiDLkmNMOiS1AiDLkmNMOiS1AiDLkmNMOiS1AiDLkmNMOiS1AiDLkmNMOiS1AiDLkmNMOiS1AiDLkmNMOiS1AiDLkmNMOiS1Ij9Jz0Aqd/0+psmPQRpr+UVuiQ1wqBLUiMMuiQ1wqBLUiMMuiQ1YmDQk1yZZGeSLX3rLknydJL7uz9n7NlhSpIGGeYKfSNw2izrv1BVq7s/N493WJKkhRoY9Kq6A3h2CcYiSRrBKHPoFyd5oJuSWTG2EUmSFmWxQb8cOApYDWwHPjfXjknWJdmcZPOuXbsWeThJ0iCLCnpV7aiql6vqFeCLwPHz7LuhqtZU1ZqpqanFjlOSNMCigp7k8L7Fc4Atc+0rSVoaA384V5JrgJOBlUmeAj4JnJxkNVDAVuDCPThGSdIQBga9qs6bZfUVe2AskqQR+ElRSWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWrEwKAnuTLJziRb+tYdkuTWJI90tyv27DAlSYMMc4W+EThtxrr1wG1VdTRwW7csSZqggUGvqjuAZ2esPgvY1N3fBJw95nFJkhZosXPoh1XVdoDu9tC5dkyyLsnmJJt37dq1yMNJkgbZ498UraoNVbWmqtZMTU3t6cNJ0j5rsUHfkeRwgO525/iGJElajMUG/UZgbXd/LXDDeIYjSVqsYd62eA1wF/BzSZ5KcgFwKXBqkkeAU7tlSdIE7T9oh6o6b45N7xzzWCRJI/CTopLUCIMuSY0w6JLUiIFz6Nr3TK+/adJD0BKY5H/nrZeeObFjt8wrdElqhEGXpEYYdElqhEGXpEYYdElqhEGXpEYYdElqhEGXpEb4wSJJS25SH2pq/QNNXqFLUiMMuiQ1wqBLUiMMuiQ1wqBLUiMMuiQ1wqBLUiMMuiQ1wqBLUiMMuiQ1wqBLUiMMuiQ1wqBLUiMMuiQ1wqBLUiMMuiQ1wqBLUiMMuiQ1wqBLUiMMuiQ1wqBLUiMMuiQ1wqBLUiMMuiQ1wqBLUiP2H+XBSbYCzwMvAy9V1ZpxDEqStHAjBb1zSlU9M4bnkSSNwCkXSWrEqFfoBdySpIC/rKoNM3dIsg5YB7Bq1aoRD7dvmV5/06SHIGkvMuoV+klV9XbgdOCiJO+YuUNVbaiqNVW1ZmpqasTDSZLmMlLQq2pbd7sTuB44fhyDkiQt3KKDnuTAJAfvvg+8G9gyroFJkhZmlDn0w4Drk+x+nqur6m/HMipJ0oItOuhV9TjwtjGORZI0At+2KEmNMOiS1AiDLkmNGMdH/5fEJD9ks/XSMyd2bEnj03pHvEKXpEYYdElqhEGXpEYYdElqhEGXpEYYdElqhEGXpEYYdElqhEGXpEbsNZ8UnSR/FZykvYFX6JLUCIMuSY0w6JLUCIMuSY0w6JLUCIMuSY0w6JLUCIMuSY0w6JLUCIMuSY0w6JLUCIMuSY0w6JLUCIMuSY0w6JLUCIMuSY0w6JLUCIMuSY0w6JLUCIMuSY0w6JLUCIMuSY0w6JLUCIMuSY0YKehJTkvynSSPJlk/rkFJkhZu0UFPsh/w58DpwLHAeUmOHdfAJEkLM8oV+vHAo1X1eFX9EPhr4KzxDEuStFD7j/DYNwBP9i0/BZwwc6ck64B13eILSb4zwjEnbSXwzKQHsRfwPA3mORpOM+cpnx3p4W8aZqdRgp5Z1tWrVlRtADaMcJxlI8nmqloz6XEsd56nwTxHw/E8LcwoUy5PAUf2Lb8R2DbacCRJizVK0O8Bjk7ys0leC/wmcON4hiVJWqhFT7lU1UtJLgb+DtgPuLKqHhrbyJanJqaOloDnaTDP0XA8TwuQqldNe0uS9kJ+UlSSGmHQJakRBn0ISbYmeTDJ/Uk2T3o8y0WSK5PsTLKlb90hSW5N8kh3u2KSY1wO5jhPlyR5untN3Z/kjEmOcTlIcmSS25M8nOShJB/u1vuaGpJBH94pVbXa98T+mI3AaTPWrQduq6qjgdu65X3dRl59ngC+0L2mVlfVzUs8puXoJeCjVXUMcCJwUffjRHxNDcmga9Gq6g7g2RmrzwI2dfc3AWcv6aCWoTnOk2aoqu1VdV93/3ngYXqfSPc1NSSDPpwCbklyb/ejDDS3w6pqO/T+gQKHTng8y9nFSR7opmScRuiTZBo4DrgbX1NDM+jDOamq3k7vJ0telOQdkx6Q9nqXA0cBq4HtwOcmO5zlI8lBwFeBj1TVc5Mez97EoA+hqrZ1tzuB6+n9pEnNbkeSwwG6250THs+yVFU7qurlqnoF+CK+pgBI8hp6Mb+qqq7rVvuaGpJBHyDJgUkO3n0feDewZf5H7dNuBNZ299cCN0xwLMvW7kB1zsHXFEkCXAE8XFWf79vka2pIflJ0gCRvpndVDr0flXB1VX1mgkNaNpJcA5xM70ec7gA+CXwNuBZYBXwXeE9V7dPfEJzjPJ1Mb7qlgK3AhbvnifdVSX4ZuBN4EHilW/1xevPovqaGYNAlqRFOuUhSIwy6JDXCoEtSIwy6JDXCoEtSIwy6JDXCoEtSI/4XfaVuDbJvIrIAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# Histogram plot\n", "\n", "\n", "import matplotlib.pyplot as plt\n", " \n", "# frequencies\n", "DataSet = [14.0, 7.6, 11.2, 12.8, 12.5, 9.9, 14.9, 9.4, 16.9, 10.2, 14.9, 18.1, 7.3, 9.8, 10.9,12.2, 9.9, 2.9, 2.8, 15.4, 15.7, 9.7, 13.1, 13.2, 12.3, 11.7, 16.0, 12.4, 17.9, 12.2, 16.2, 18.7, 8.9, 11.9, 12.1, 14.6, 12.1, 4.7, 3.9, 16.9, 16.8, 11.3, 14.4, 15.7, 14.0, 13.6, 18.0, 13.6, 19.9, 13.7, 17.0, 20.5, 9.9, 12.5, 13.2, 16.1, 13.5, 6.3, 6.4, 17.6, 19.1, 12.8, 15.5, 16.3, 15.2, 14.6, 19.1, 14.4, 21.4, 15.1, 19.6, 21.7, 11.3, 15.0, 14.3, 16.8, 14.0, 6.8, 8.2, 19.9, 20.4, 14.6, 16.4, 18.7, 16.8, 15.8, 20.4, 15.8, 22.4, 16.2, 20.3, 23.4, 12.1, 15.5, 15.4, 18.4, 15.7, 10.2, 8.9, 21.0]\n", "\n", " \n", "# plot title\n", "plt.title('My histogram')\n", " \n", "# function to show the plot\n", "plt.hist(DataSet)\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }