{ "cells": [ { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEICAYAAABPgw/pAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAADkdJREFUeJzt3X+M5HV9x/Hnq6CkBbRHbyGgnFuRNNAaD3MFGhoLVSw/0gAh2lKlV0NzaCHR1MZcrKnUaoJ/qKRpQ3sGeqcCDYkgNGALRSzYUMpBCRxFw48eAne9O4otP6xV4N0/5nvtuOzuzO7M7ex97vlILjPfHzPfz32Ze+6Xz87spqqQJO39fmLSA5AkjYdBl6RGGHRJaoRBl6RGGHRJaoRBl6RGGHTttZJsTPLpeba/kOTNSzkmaZIMupZEkq1Jfphk5Yz19yepJNPjPmZVHVRVjw8Y18lJnhr3saVJMOhaSv8GnLd7IclbgZ+c3HD2vCT7TXoM2ncYdC2lLwO/3be8FvjS7oUkv5hkR5L9+9adm+T+eZ5zRZKbkjyf5O4kR/U9tpK8pbt/RpJ/7fZ7OskfJDkQ+DpwRDc980KSI5IckOSyJNu6P5clOaDveT+WZHu37XdnHGdjksuT3JzkReCUJGcm+ZckzyV5Msklfc813T3+A9227yX5YHcuHkjyn0n+bLEnXPsWg66l9E/A65Ic0125/gbwld0bq+oe4D+AU/se8356Xwjmch7wx8AK4FHgM3PsdwVwYVUdDPwC8I2qehE4HdjWTc8cVFXbgD8ETgRWA28Djgc+AZDkNOD3gXcBbwF+ZZZj/VY3joOBbwEv0vtC9tPAmcCHkpw94zEnAEd35+SybgzvAn4eeG+S2Y4j/RiDrqW2+yr9VODbwNMztm+iF3GSHAL8GnD1PM93XVX9c1W9BFxFL8Kz+RFwbJLXVdX3quq+eZ7zfcCnqmpnVe2i9wXj/G7be4G/qqqHqur73baZbqiqf6yqV6rqB1X1zap6sFt+ALiGV38h+JNu31vofQG4pjv+08CdwHHzjFcCDLqW3pfpXcH+Dn3TLX2+Avx6koPoxfPOqto+z/P9e9/97wMHzbHfucAZwBNJ/iHJL83znEcAT/QtP9Gt273tyb5t/fdnXZfkhCS3J9mV5L+ADwIrZzxmR9/9/55lea6/l/R/DLqWVFU9Qe+bo2cA182y/WngLuAcelfF8023LOS491TVWcChwNeAa3dvmmX3bcCb+pZXdesAtgNv7Nt25GyHm7F8NXAjcGRVvR74CyAL+gtIQzDomoQLgF/t5rBn8yXgY8BbgetHPViS1yZ5X5LXV9WPgOeAl7vNO4CfSfL6vodcA3wiyVT3Nss/4v/n+q8FPtB9H+Cnum2DHAw8W1U/SHI8vf9DkcbOoGvJVdVjVbV5nl2up3eFfP080V+o84GtSZ6jN+Xx/m4s36YX8Me7d5QcAXwa2Aw8ADwI3Neto6q+DvwpcDu9b8Le1T3//8xz7N8DPpXkeXpfAK6dZ19p0eIvuNBylOQxeu9K+ftJj2U+SY4BtgAHdN+YlSbGK3QtO0nOpTcP/Y1Jj2U2Sc7ppnFWAJ8F/saYazkw6FpWknwTuBy4qKpemfBw5nIhsAt4jN5c/IcmOxypxykXSWqEV+iS1Ij9B+8yPitXrqzp6emlPKQk7fXuvffeZ6pqatB+Sxr06elpNm+e791qkqSZkjwxeC+nXCSpGQZdkhph0CWpEQZdkhph0CWpEQZdkhph0CWpEQZdkhph0CWpEUv6SVFJrza9/qaJHHfrpWdO5Ljac7xCl6RGGHRJaoRBl6RGGHRJaoRBl6RGGHRJaoRBl6RGGHRJaoRBl6RGGHRJaoRBl6RGGHRJaoRBl6RGGHRJasTAoCc5MsntSR5O8lCSD3frD0lya5JHutsVe364kqS5DHOF/hLw0ao6BjgRuCjJscB64LaqOhq4rVuWJE3IwKBX1faquq+7/zzwMPAG4CxgU7fbJuDsPTVISdJgC5pDTzINHAfcDRxWVduhF33g0HEPTpI0vKF/BV2Sg4CvAh+pqueSDPu4dcA6gFWrVi1mjNIeN6lfAyeN01BX6EleQy/mV1XVdd3qHUkO77YfDuyc7bFVtaGq1lTVmqmpqXGMWZI0i2He5RLgCuDhqvp836YbgbXd/bXADeMfniRpWMNMuZwEnA88mOT+bt3HgUuBa5NcAHwXeM+eGaIkaRgDg15V3wLmmjB/53iHI0laLD8pKkmNMOiS1AiDLkmNMOiS1AiDLkmNMOiS1AiDLkmNMOiS1AiDLkmNMOiS1AiDLkmNMOiS1AiDLkmNMOiS1AiDLkmNMOiS1AiDLkmNMOiS1AiDLkmNMOiS1AiDLkmNMOiS1AiDLkmNMOiS1AiDLkmNMOiS1AiDLkmNMOiS1AiDLkmNMOiS1AiDLkmNMOiS1Ij9Jz0Aqd/0+psmPQRpr+UVuiQ1wqBLUiMMuiQ1wqBLUiMMuiQ1YmDQk1yZZGeSLX3rLknydJL7uz9n7NlhSpIGGeYKfSNw2izrv1BVq7s/N493WJKkhRoY9Kq6A3h2CcYiSRrBKHPoFyd5oJuSWTG2EUmSFmWxQb8cOApYDWwHPjfXjknWJdmcZPOuXbsWeThJ0iCLCnpV7aiql6vqFeCLwPHz7LuhqtZU1ZqpqanFjlOSNMCigp7k8L7Fc4Atc+0rSVoaA384V5JrgJOBlUmeAj4JnJxkNVDAVuDCPThGSdIQBga9qs6bZfUVe2AskqQR+ElRSWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWrEwKAnuTLJziRb+tYdkuTWJI90tyv27DAlSYMMc4W+EThtxrr1wG1VdTRwW7csSZqggUGvqjuAZ2esPgvY1N3fBJw95nFJkhZosXPoh1XVdoDu9tC5dkyyLsnmJJt37dq1yMNJkgbZ498UraoNVbWmqtZMTU3t6cNJ0j5rsUHfkeRwgO525/iGJElajMUG/UZgbXd/LXDDeIYjSVqsYd62eA1wF/BzSZ5KcgFwKXBqkkeAU7tlSdIE7T9oh6o6b45N7xzzWCRJI/CTopLUCIMuSY0w6JLUiIFz6Nr3TK+/adJD0BKY5H/nrZeeObFjt8wrdElqhEGXpEYYdElqhEGXpEYYdElqhEGXpEYYdElqhEGXpEb4wSJJS25SH2pq/QNNXqFLUiMMuiQ1wqBLUiMMuiQ1wqBLUiMMuiQ1wqBLUiMMuiQ1wqBLUiMMuiQ1wqBLUiMMuiQ1wqBLUiMMuiQ1wqBLUiMMuiQ1wqBLUiMMuiQ1wqBLUiMMuiQ1wqBLUiMMuiQ1wqBLUiMMuiQ1wqBLUiP2H+XBSbYCzwMvAy9V1ZpxDEqStHAjBb1zSlU9M4bnkSSNwCkXSWrEqFfoBdySpIC/rKoNM3dIsg5YB7Bq1aoRD7dvmV5/06SHIGkvMuoV+klV9XbgdOCiJO+YuUNVbaiqNVW1ZmpqasTDSZLmMlLQq2pbd7sTuB44fhyDkiQt3KKDnuTAJAfvvg+8G9gyroFJkhZmlDn0w4Drk+x+nqur6m/HMipJ0oItOuhV9TjwtjGORZI0At+2KEmNMOiS1AiDLkmNGMdH/5fEJD9ks/XSMyd2bEnj03pHvEKXpEYYdElqhEGXpEYYdElqhEGXpEYYdElqhEGXpEYYdElqhEGXpEbsNZ8UnSR/FZykvYFX6JLUCIMuSY0w6JLUCIMuSY0w6JLUCIMuSY0w6JLUCIMuSY0w6JLUCIMuSY0w6JLUCIMuSY0w6JLUCIMuSY0w6JLUCIMuSY0w6JLUCIMuSY0w6JLUCIMuSY0w6JLUCIMuSY0w6JLUCIMuSY0YKehJTkvynSSPJlk/rkFJkhZu0UFPsh/w58DpwLHAeUmOHdfAJEkLM8oV+vHAo1X1eFX9EPhr4KzxDEuStFD7j/DYNwBP9i0/BZwwc6ck64B13eILSb4zwjEnbSXwzKQHsRfwPA3mORpOM+cpnx3p4W8aZqdRgp5Z1tWrVlRtADaMcJxlI8nmqloz6XEsd56nwTxHw/E8LcwoUy5PAUf2Lb8R2DbacCRJizVK0O8Bjk7ys0leC/wmcON4hiVJWqhFT7lU1UtJLgb+DtgPuLKqHhrbyJanJqaOloDnaTDP0XA8TwuQqldNe0uS9kJ+UlSSGmHQJakRBn0ISbYmeTDJ/Uk2T3o8y0WSK5PsTLKlb90hSW5N8kh3u2KSY1wO5jhPlyR5untN3Z/kjEmOcTlIcmSS25M8nOShJB/u1vuaGpJBH94pVbXa98T+mI3AaTPWrQduq6qjgdu65X3dRl59ngC+0L2mVlfVzUs8puXoJeCjVXUMcCJwUffjRHxNDcmga9Gq6g7g2RmrzwI2dfc3AWcv6aCWoTnOk2aoqu1VdV93/3ngYXqfSPc1NSSDPpwCbklyb/ejDDS3w6pqO/T+gQKHTng8y9nFSR7opmScRuiTZBo4DrgbX1NDM+jDOamq3k7vJ0telOQdkx6Q9nqXA0cBq4HtwOcmO5zlI8lBwFeBj1TVc5Mez97EoA+hqrZ1tzuB6+n9pEnNbkeSwwG6250THs+yVFU7qurlqnoF+CK+pgBI8hp6Mb+qqq7rVvuaGpJBHyDJgUkO3n0feDewZf5H7dNuBNZ299cCN0xwLMvW7kB1zsHXFEkCXAE8XFWf79vka2pIflJ0gCRvpndVDr0flXB1VX1mgkNaNpJcA5xM70ec7gA+CXwNuBZYBXwXeE9V7dPfEJzjPJ1Mb7qlgK3AhbvnifdVSX4ZuBN4EHilW/1xevPovqaGYNAlqRFOuUhSIwy6JDXCoEtSIwy6JDXCoEtSIwy6JDXCoEtSI/4XfaVuDbJvIrIAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# Histogram plot\n", "\n", "import numpy as np\n", "import pandas\n", "import math\n", "import matplotlib.pyplot as plt\n", " \n", "# frequencies\n", "DataSet = [14.0, 7.6, 11.2, 12.8, 12.5, 9.9, 14.9, 9.4, 16.9, 10.2, 14.9, 18.1, 7.3, 9.8, 10.9,12.2, 9.9, 2.9, 2.8, 15.4, 15.7, 9.7, 13.1, 13.2, 12.3, 11.7, 16.0, 12.4, 17.9, 12.2, 16.2, 18.7, 8.9, 11.9, 12.1, 14.6, 12.1, 4.7, 3.9, 16.9, 16.8, 11.3, 14.4, 15.7, 14.0, 13.6, 18.0, 13.6, 19.9, 13.7, 17.0, 20.5, 9.9, 12.5, 13.2, 16.1, 13.5, 6.3, 6.4, 17.6, 19.1, 12.8, 15.5, 16.3, 15.2, 14.6, 19.1, 14.4, 21.4, 15.1, 19.6, 21.7, 11.3, 15.0, 14.3, 16.8, 14.0, 6.8, 8.2, 19.9, 20.4, 14.6, 16.4, 18.7, 16.8, 15.8, 20.4, 15.8, 22.4, 16.2, 20.3, 23.4, 12.1, 15.5, 15.4, 18.4, 15.7, 10.2, 8.9, 21.0]\n", "\n", " \n", "# plot title\n", "plt.title('My histogram')\n", " \n", "# function to show the plot\n", "plt.hist(DataSet)\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEICAYAAABPgw/pAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXmYJFd55vuejNyX2rqqq/dNUrcWgyQQktiXsRBwbYPNxQxgwAYbe4aZYQyeGcbXM49h7Hu94GVm7Du2MDIYG+7YxgZsbIwQwgK0IAkktLXU6lZ3V1fXXpWVe0Zk5Ll/RJxYTyy1RC6R5/c8/VRXZlZmnMyM73zxfhuhlEIgEAgEw0+i3wcgEAgEgt1BGHSBQCCICcKgCwQCQUwQBl0gEAhigjDoAoFAEBOEQRcIBIKYIAy6QCAQxARh0AU9hRBynhAiE0KmHbc/SgihhJBj/TkygWD4EQZd0A+eB/AO9gsh5AUAcv07HIEgHgiDLugHnwXwHsvv7wXwZ+wXQshLCCFLhJCk5ba3EkIe5T0ZIeRNhJCnCCFVQsg8IeSXLPf9iO79lwkh9xFCXmi570ZCyPf0v/vfhJD/jxDya/p9P00I+bbjdSgh5Er9/xlCyCcIIRf1Y/0jQkhOv+81hJBLhJCPEEKWCSELhJCfsTxPjhDyO4SQC4SQTULIty1/e6t+nGVCyGOEkNds5w0WjCbCoAv6wQMAxggh1xBCJABvB/Dn7E5K6UMA1gDcZvmbn4K2EfD4FICfp5SWAPwQgG8AACHkRQDuBPDzAPYA+GMAX9aNcRrAF/XnnALwVwDeuoU1/CaAkwBuAHAlgIMA/qvl/n0AxvXb3w/gDwkhk/p9nwDwYgAv01/7PwLoEkIOAvgKgF/Tb/8lAF8ghMxs4bgEI4ww6IJ+wbz02wCcBjDvuP8z0Iw4CCFTAG4H8DmP51IAXEsIGaOUblBKv6ff/nMA/phS+iClVKWUfgZAG8Ct+r8UgN+nlCqU0r8G8FCYAyeEEP25f5FSuk4prQL4vwH8S8cxfVx/7n8AUANwihCSAPA+AB+ilM7rx3UfpbStr/cfKKX/QCntUkrvAvAwgDeFOS6BIBn8EIEgEj4L4F4Ax2GRWyz8OYCnCSFFAD8J4FuU0gWP53orgF8B8BuEkB8A+Cil9H4ARwG8lxDyby2PTQM4AIACmKf27nQXQh77DIA8gEc02w4AIAAky2PWKKUdy+8NAEUA0wCyAM5ynvcogLcRQn7UclsKwD0hj0sw4ggPXdAXKKUXoAVH3wTgbzj3zwO4H8CPA3g3vOUWUEofopS+GcBeaDLKX+p3zQH4dUrphOVfnlL6eQALAA4Si0UGcMTy/zo0ow0AIITss9y3CqAJ4DrL845TSoshlr4KoAXgCs59cwA+6zjeAqX0N0I8r0AgDLqgr7wfwOsopXWP+/8Mmr78AgB/y3sAISRNCHkXIWScUqoAqABQ9bs/CeAXCCG3EI0CIeT/IISUoG0WHQD/jhCSJIT8BICbLU/9GIDrCCE3EEKyAH6V3UEp7erP/XuEkL36cRwkhNwetGD9b+8E8LuEkAOEEIkQ8lJCSAbaVcmPEkJu12/P6gHWQ0HPKxAAwqAL+gil9Cyl9GGfh/wtNBnib32MPqB58OcJIRUAvwBde9ef++cA/AGADQDPAfhp/T4ZwE/ov29AC8waVwqU0mcBfBzA1wGcAWDLeAHwn/Tne0B/3a8DOBW0Zp1fAvA4NM1+HVqANUEpnQPwZgC/DGAFmsf+HyDOU0FIiBhwIRhkCCFnoWWwfL0Hr/VpAJcopb8S9WsJBFEgdn7BwEIIeSu04OU3+n0sAsEwILJcBAMJIeSbAK4F8G5ddxYIBAEIyUUgEAhigpBcBAKBICb0VHKZnp6mx44d6+VLCgQCwdDzyCOPrFJKA1tA9NSgHzt2DA8/7JelJhAIBAInhJBQVcxCchEIBIKYIAy6QCAQxARh0AUCgSAmCIMuEAgEMUEYdIFAIIgJwqALBAJBTBAGXSAQCGKCMOgCgWCkeej8Op5eqPT7MHYFYdAFAsFI89Ev/AC/d9ez/T6MXUEYdIFAMNIsbrbQVNTgBw4BwqALBIKRpdbuoC6rkDvx6NAsDLpAIBhZFjdbAIC2MOgCgUAw3CxXNIMuPHSBQCAYchaZQVeFQRcIBIKhZqnSBiA8dIFAIBh6lipMQxdZLgKBQDDULAkNXSAQCAYftUvxnju/i+88t+r5mEVh0AUCgWDwqbYU3PvsCh46v+75mGWmoYugqEAgEAwutXYHAFDXfzrpdimWq5qHrqgU3S7t2bFFhTDoAoEgljRkLdBZ8zDo6w0ZikqxbywLIB5eujDoAoEgljBDXmvzM1hYQPTwVA5APKpFhUEXCASxpKEbci/JxTToeQDxCIwKgy4QCAzWau1+H8KuYXroXgZdW+sR3aDHIRddGHSBQAAAeODcGm769a/j4lqj34eyKzRk3aC3+AZ9cbMFQoCDE5rkIjx0gUAQGx6bK4NSYKXW6veh7Ap1PShal/kGfbnawp5CBoVMEoAIigoEgiGh3u7g3ErN9zHnVuoAgLYy/IYNMLVzLw19cbOF2bEMMknNDMZh3cKgCwQjwJ3ffh5v/sPvgFLvXOtzq5rBj0O2BwA0Qmjo+8aySOsGXXjoAoFgKFiptVFtdXyNteGhxyA4CJjpii2liw7HWC9VWtg7lkVa0g16DDYyYdAFghGAFdl4yQ/lhoy1ugwgRh66RTuvO3LR5U4Xa3XZ7qHHYN3CoAsEIwAzbk7Dxjire+dAPLRkwC611ByB0RU9PVPT0CUA0V2ZLG628AffOIMLa/XgB+8QYdAFghGAGXIvPdkaMG3HQEsGzKsSwH1lwmaJzo6bHnpUVyaXNhr4xNeexYUepIMKgy4QjADNgBS+c6tWDz0eGrrViFcduehsluhsKWtkuUQlubBga0qK3twKgy4QjADMkPt56Icm49PTBNDWPJbVcsxdHrpu0PeNWwx6RFcmbKNgVwJRIgy6QDACBAVFz63UcfW+EoD4GPRGW8Ws3knRue6lShtpKYHJfMqUXCKKHTCDnhEGXSDoD196dB53P73U78PYNfyKbNQuxYW1Bq6YKSKTTMQobbGDvWMZ4/9WtJTFDAghkeehs+cVHrpA0Cf+4BvP4dP3ne/3YewaTaM3uNtYX9poQFa7ODFT0Ax6j7Jc/vHxBdxx79kdP09LUfHLf/s4Vh2NxRqyitmSl4feMrz3qPPQ2fMKDV0g6BMrtXZspAdKqaGh8zx0VlB0YqaITErqybrn1hv4yF89hk99+/kdP9eTlyv43IMXbbND2ZpnPDz0xYpW9g8ASSkBKUEiM+jKIHnohJDDhJB7CCFPE0KeJIR8SL99ihByFyHkjP5zMvKjFQh6gNzpotxQYmPQ250u2HQ1nkE/q6csnpguIC1FL7lQSvF/ffEJNGTVsxPiVthsyvpPxbitqaigFJjMp5GWEq4rk7WajOlixvg9ynUbQdEB8dA7AD5CKb0GwK0APkgIuRbARwHcTSm9CsDd+u8CwdCzVtcHB8fEoFvzsXlZLudW6xjPpTBVSCOTSkS+kX3p0cu499kVHJzIoS6rUHc4y7Pc0Az5ZsM06GydhbSEQkaybWQdtYvNpoKpQtq4LZ1MRPZ5twcpy4VSukAp/Z7+/yqApwEcBPBmAJ/RH/YZAG+J6iAFgl6yWmUl8PEIDlqNGdegr9RwYqYAQggySSnSjWyt1sbH/u5J3HhkAu956VHt+Dxy48PCPPOyxUNn04oKmSSK2aTtPWCPcxn0iIOiA5flQgg5BuBGAA8CmKWULgCa0Qew1+NvPkAIeZgQ8vDKysrOjlYg2CGUUrznzu/intPLno9h/cDjUgLvVzEJaBr6FTNFANCzXKJb93+/+wxq7Q5+860vxHguBcB7AEVYmIdetnjobJPIp5MopJOoWta9ofesmcybBj3KdSsd7QpkoIKihJAigC8A+PeU0krYv6OU3kEpvYlSetPMzMx2jlEg2DXqsop7n13BQ+fXPR9jeujxMOhWD9jpoVdbCparbZyYKQDQDVuElaLnVur4oYPjODlbQlEv+nFWcW4V5qEzLR0wWx0UM0kUM3YPfV036E4PParPW1ZVSAkCKUEieX4roQw6ISQFzZj/BaX0b/Sblwgh+/X79wPwdnkEggGhHtAjGzAbN8kxkVxYymIhLbmacz2vl/yfmNY99IizXORO1wgOlrK6h95W/P4kkHJD1n9yPPSMhILDoG803B56WopOQ7euOWrCZLkQAJ8C8DSl9Hctd30ZwHv1/78XwJd2//AEgt0laHAwAKxUNYMeGw9dX+tMKeOSXAyDbvXQI1x3W+0awcFiZnc89DJHQ2frZB56zeahuzX0TIRBUbnT7UlAFAjnob8cwLsBvI4Q8qj+700AfgPAbYSQMwBu038XCAaaoLFkAIwClXan6zvhZ1hgGvreUta1ka3WZP0+LYUv6kpRudM1goMlXXLx21zDYGS5cIKi+bTkMujMQ5/Ip4zbogwGyyrtiX4OAMmgB1BKvw3AS/z5F7t7OAJBtNQMg+5ttJiHDgCKSpFORq99Rgkz6DNjGTx5edN232ZDBiHAmC5/ZJJSpMFguaO6PPSdBkUrTTNtkVIKQoglbTGpSy7m571el1FIS8imJOO2dDJhG4ixm1g3sagRlaKCkSKoLzgAWwl5HFIXmaHaW8qgLqvoWvK+y00F47kUEnrALsrgIKCl8DE9ubhbHrpu0GW1i6Ye0GVrLmSSKGYk1OWOcbW1UZcxaZFbgOjTFgdJchEIYkOooGi1jaRu4Hqlo1/aaOy4wAbQ1sXS8hhsE5vRZZWGJYul3FAwkbNKD4lIg8FWPbmQ3rmG3u1SlBtm1SeTX+qyipSkNd4qZJKg1LxSWW/INv0ciDooqg5OUFQgiBO1AA293VFRaXWwfyKr/x69Qb+00cBrfvub+NqTizt+ro99+Un87J89bLutIXeQSSYMWcVZZDNuzceOuFLUatClBEExk9yRQa/JHXQpcHRPHoDFoLc7KOiSjvNKYKMu2zJcAG3doxIUFQhiQ5CHzoKEBye0YQ+9KP9/5MIGOl1qDF3YCRfXG7i0YR911pBVIzgI2NdebsiYdAQHowwGayl8pnatBSy3n7bIyv0Ng67notfbqnEF4Fy3l4ceWWGRSpGSehOHEQZdMFJYs1x4RmtVD4genNAMRC809O9fLNuObSdsNhVbPjag5WTn9eCg83V4kgsQbW9wq7dazCZ3pKGztR7bo6VdsgCp5qFrGwcz7HXDQ1dcHnqUvVyEhy4YGLpdinueWY5F+h5g9gPvUhgBNCssIHqQjWPrQfn/Y5fKtmPbCaxLZMuytkZbRSEjGQbO6aFPOErggWikpm6X6llDFoMeILk0ZdXWFtcJS1V0SS76JgbA2Mhq7Q7aHRW1dgdThZTteSJtzqV2kU5KwQ/cBYRBF/jyz2dW8DN/+hAen98MfvAQENSoiqUsHprozXxNudPFk5crrmPbLkxyqFhzshUV+XTSkB5YkFTtUlRaHaOnCqBVigLRbGS8JlWlAA/9fz90Ee/6kwddMhKDrZd56GWLh87Wa02PZAbfmeWSSUpoRzhTVARFBQPB8/rwg51W8w0KNUuuMS8X3emhR62hP71QMV5jp+l7LUVFSzfE9s6DHeTTkktyYd6tvcCGeei7LzUZo9gku4ful4d+Vv/+PbNY5d7PDPS+8SzSUsL4ncUNADMoWpc7Zh8XD8kliitRRe32rJZBGHSBL3O6ZxSHfGzA7gXzPOKVahulbNKoYox63Uxumcindq1iErBXTdZlu4fOXqfM6WkSpeRiDHpwSC5+676wrn3/nl2qce9n6xzPpTCeTxkNumqWLBdTalLNTosuDz187ODSRgP/+PhC4OMYwkMXDAxz600A8WklW293wJre8a46VmsyZkoZZHTNM2rJ5dGLZcyUMrhiprhjyaVs6TZoNe4NuaNr6HYPnXnx4zwPPQrJhWPQS9mU79XfhTXNQ392yctDl5FNJZBNSZjIpQwD35BVw5AXLeteb7g7LQJbmyv6mfvO419/7nu2OIUfIigqGBiYdtmKiYdea6tGEYqXhz5dzEQqPVh5dK6M6w9NuDoCbgcvD53JD3ldHzckF/3x9iwX7TFRZLnwRrGxLJcup6hKUbuY39AcCm+DrmAipxnniXzKnoeuB0VzKQkJomnoG5zWuYCWh249Rj8ub7ZAKbC4GS7NVFSKDij/9OQivnF6qd+H0TMopbi0ET8Pfd+4Pgme07tjtdbGTCljnIBRauibDQXnVuu48cgEihlpVyUXJqcATENPIpEgKKQlI5uGefTcLJcIeqLLnGHJpYypbzu5XG6i06WYzKfw3HKNW0m72VSMGMB4Lo1yQ0FH7aLd6RpXJIQQFHRph3VatG5igLnJhLkiW9IN+Xy5GfhYwJ17HyXCoG+B3//6Gdxx77l+H0bPKDcUw8gMWytZRe3i43/3lK0vC6AZ9L0lzaBzs1xqbczYPPTo1s308xsOT6CQTnKDtFvBasRZlku3S9FQVBT0AKH1SmBDN262wqJUjzV0n34u59e0q8PXXT2LdqeLuXV3pgvrRQNoOvpmU0FdNjstGq+jr3ujIWM8l0LSoWlvZQNf2KpBV7tIiaDo4LFSbQ2dYfPj8Uub+O1/Ou15/5wlVSysXjgonF6o4s7vPI9vPmMfe1hrdzA7pkkuzuyKlqKi2upoGnqE6XuMR+fKIAR4waHx3ZFcdCOeTiaM/7c6KigF8pYUPpbpU24qIMQcNAEg0tgBb1iyX8fFi7p+ftu1swD4sstmw/TQNclFtvVCZxQySSPLxSm3WI8pSGrqdimWq5pBvxzCoFNKtW6LIig6WChqF6s1OTaT4AHgK48v4A/vOeupE7OAKDB8HvqGMcXG9FrZpThrUuU0oMybny6mzSBZRLnJAPDYXBlXzBQxlk1pHqTMr14NS7mhICUR7B/P2oKDgOmtWjeOzYaMsWzKNhot0rRF/TuUkdweetXDQ8+mEnj5lXsAAGeW3Zku5aZseOgTuRTqsmqsPe8w6NWW5qFbr0gYRuwg4Hu+3pChqNpnxPR9P9hjhYY+YMRtig2gzZPUfvI9w2H20I0pNtaxZI45k87KTPYZz5QySEkEhESjJQOa5/boXBk3HJ4AoBkcr+rVsGw2tarPiZwZHDQHPZgpfNYslwmHcTM89AgLi6zGbSzr7aFfWKvj6FQBpWwKBydy3Fz0ckMxYgBsLcxzLmaskou27iAPPWgjswZCL28GG3TemqNEGPSQLFfZnMk4GXS9UZWHQb+00cB4TvMeh20jY575hsVDZ1JDMZO0GTYGa8w1XcyAEBLpOLb5chNrdRnX6wZ9N3qDs74sY5b0PRZsZBq6dSPbsBhDRs819IxmhHlOxYW1hlHSf9Vs0SW5tBQV7U7X1ND1tTCDzjYx7XW0GAWv0yIQPijKDPqhyRwul4OzXBT9+Xo1sUgY9JAs6Z3w4lJgA5geupcRmVtv4vBULvKxZFHAAn5WD51tXIWM1qiq5sissHrogNl5MArY5sFaDDBvcieB0Y2GjIl8ChP5tBEUZZJLzkNy8c72iE5y4QdF7Q3Ful2KC+sNHJvWSvpPzZZwbqWOjkUCY5+tmeWi/bykG/RC2i651PQ8dF8NPcig63bgxUcnMV9uctMtbWsWHvpgsqx/kHHy0Jkhr7T47UvnNho4PJlHNiUZJeXDAkvJsxbbsPUWs0luyTnT0PcUNIMe5fQeJuU4hz3sJDBabigYz6UxnksakpN1cg/76Su5ROmhq/qaJXdQ1OmhL1ZakDtdHJliHnoJsto1KkcBS+sCloeeY5KLdq4WMvYsl9VaGy2l66oSBcJXyC5utiAlCK4/NAG508WaY5iIa82c3PsoEQY9JMux1NC9JZduV8tBPzyVj3wSfBQw74156oB7EjwvKDqRTxlGNsorE2ejKl6v8q2y2VQwmU8Z6XuUUsPjz9skF1b6r3h66FE4Ll6l/4B73Rf0lEXWdOvkbBEAcMYiu5Qdw56dGnrBERRl32FnHxfAUvofwkOfKWZwWN9ogjJdeJk9USIMekhMyWW4DJsfzKDz9MuVWhtyp4tDkznNUx22oCgny4UZcDY42GlEWJUoI8qNzGnceL3Kt0pZT+GbyKWhdilq7Y7pobOgaFozbNpkJreGnpQSSCZIzyQXKUGQT0sup4KV/DMN/cq9mkF/ZtHMdClb+rgApqfOM+jWFEaehx5WclmqtDA7njUGoATlohuZPcKgDxbMQ1e71KbjDTMVHw2dFXEYksuQbWQbuodu7TpYc3rosttDny5aqyalyPLQnZ5bYYceektR0VRUTOTThoHbbCqctEXt56Jevu6UXAB9I4tg3WzNGUfVJK9B14X1BlISwQHdcObTSRyeyuHZZdNDZ60L2HpL2SQIMZ0v1uqAvQbD2QsdCJ+HvrDZwv4x06AHeeiKKoKifaHdUX0DHEsVs+IwytzkXtHVPTiAb0RYyb8RFI3QQ1e71PAkdwvmmTdk1fA2DQ9dH/bg9AqdHnqkk+ANz83ZQGp777Oz6yCgeezsfbUWFgHm58s16KlogsFeAcJSNunKQ7+wVsfhybwtR/7k3pJdcmnaJZdEgmA8l0KXahtYwvK3Vm+dl+Vipmv6v/9Lmy3sG89iLJdEIS0Fe+giKNp7KKV4zW9/E3/x3Yuej1m2zHuMQ2BUK2LR/s8LijIP/dBkPrITnPFfv/QEXvirX8O7P/UgPnv/eSPbZCeUm4qhB1snwQNmlovTeC5X20ZbAACRbmRuycXeOGurGIMbLB56pakYa8ylzCwXwCyKYTKFla3EDiothdtjhQdPcgGAIqfj4vlVM2WRcdVsCc+v1g2vt9xQjEHTDLZ2a8oiYM9J326laK3dQbXdwexYFoQQHJzMBRYXiaBoH5DVLhY2Wzi/Wufer6haNHuvns4WBx3degLxgqJzGw3MlDLIpiRkk4lIC4sWNlsoZJK4tNHEf/nSk/iXd9y/o+dTuxSbTQVHHGPJau0Okgktv7yUSUJWu8YJV2930JBV7B2zaOgRbmTMYLITnWnc25VcrAFC5rGWmwqaiopsKmF4uoaHXvbx0EPGDhS1i1f/1j347P3nQx2j3OkimSA2rxvQGnTVLE4FpRQX1xs4qgdEGVfvK0FRqVFgtNnUgrqEmM/HgrzWDBftd23dCQKMZTmSS4hgMMtB3683dzswkQssLvLaxKJCGHRocwsBeF72M4+RpVDFofOg1aDzgqJz600c1qf2ZFJSpFclcqeLK/cW8Y2PvBo/desRm7y1HSpNBZSaGRKsuKiuDz1g3ffYbYAZI2GbNhBtUNTQk/U0wYQeHNy2h26VXCwaurWNLMDx0D3khzDf8cXNFjYaCk57TBNy4tUX3Kmhr9Vl1Nodl4f+iqumQQhw11Nax9NyU7H1cgfM4qKCy0PXfp/Mp21SDCMlEeMYvWDa/OyYZtAPTgQXF8lCQ+89LHDkpV+yk52lKrF82mGm2nIHC63MbTSM9UbtoctqVy+1J9hTyKDW7oS+jOfBjNvxaeahm1Ns2IntDEIySc0quWhjyaJNW7Reihc4gdqwbFqKbJhB1zR0FXmLt8o8V9bn3pm2CLD8++B1M1luK10HuQY9a68JYBkuxxwe+nQxg5ccm8I/PbkIQG/M5Th+Lw/dMOgcuQVAqMpg5qHvs3jo63XZN/4jslz6gGnQ+R8M25mZxzpsRTY8mFeeTSVckktHl6AOGR56tHnoito1PJjSLpTAM4/8+LSW6mYbeuCYYlNzeuhjPfLQFY/5mtsMim5YxsnlUhLSUoLrobN1MyM8xjHomZDBYNbrZyHsoAePUWzFjD0oynLQnR46ALzhun04vVjF+dW6rTEXg0lI1iCo9XdeDjojqJCMVYnus3joAHy9dCG59AEmuXh5R8x7O2R46MNv0Fkg9MB4zhUUXdhsQe1SHJ7U1htlCTygfemZB8P0zapH9WoYmLd6TPfQNwyDrtoqJrXb/CSX6NYtq5pxs2di+EsuT17eNFq3Oik3tU6L+bQEQojRz6WpqEbZv/Ya2roXN1sYyyZdejagb+AhnBbWjXOh3AzVJdJLchnTpxax5zi3UoeUIDg06Tbot//QPgDasJkypxcNM/BOyaVgeOjuDYwRtJEtbrYwnksZ7ycbJO6XuiiyXPoAu2RinrqT5WobCaIZPyBeGvqBiZzLG2aelyG5pKKVXHgeut+cySCYt7p/XCuK4kkubg+9hbSUsHl8UWe5OE/yQtp7YHK1peBtf3Q/Pvblp7j3s7J/FiCc0Acme3nonS71lB/CbmTse1KXVVSawZ9X20dyodQ8/04vVnF8usB97MGJHF54aBxffXIRmw3F5aGPB0guvAwXRlpK+AdFKy3DOwdg5Mj7SU4KR1qLEmHQATSUYMllppQxduZha1TFgxnM/eNZlxFZ0C8h2SVlJimhE2FBlaJSi0H37r4Xlg0jhS+FSY85k86875WqNnrOmjERVnoAgLVaG/c+uxL8QJ12R3Wn7/kMufjio5fRkFX887MrhpGworXONY0bK/9n80QZmaSZ8cLTz9ljwnzHL1lS9kK1kvWUXOyf+TNLFVy9r+T5PLdftw/fv1hGtd1xZekwj92ZtiglCK7cW8TV+8Y8nzcoq2lRz0FnzJYykBLE30Nn3RaFh947mgFB0aWKlp8ctt/DoPHcchUPnluz3VZtaTm8M6UMqi37YIV1veHQHr1qMhMiR3cnWL1V00PfieQig+jpaZP5tCvLBTA9ONbljxl0K0xDDyMnfPq+8/jpP/1u6AIpnnHzmlpEKcXnHryITDKBWruDh86vux5Tbii2wQ2sJ7rToBNCjFa64x56ctjYwdx6A1fpJfkLIQ06Lzho7bhYa3cwt97ENfu9De8bdNkFcG9K7PeiQ0MHgK9/+NV478uOeT6v5qF7b2RODz0pJbBvLOvroRsVwcJD7x2BGnq1jdmx3syZjILf+/oZ/NJfP2a7rdbuoJRNopRNQe1SW6B3rS4jJZkFG1m9KCWqYLC865KLdinOKgeteehFV1BU++yXK22bfg5oHhul5tRyjlqVAAAgAElEQVQZP+Y3mujScFNsAN24pdwGnRcUfezSJp5eqODDt51EWkq4xuoBbM2mgTY99I5tcg9grt3bQw9OW2wpKparbdx8fAoAMB+iN7iXhs4GRVdbHSPH/NSst4d+xUzR2EicGjrz2PMOySUMWlYTf93axLI2Zi0eOgAcmMj6fuaisKgPMMmlIatcb2y50sJMKRt6TNWgsVZrY7nStq2t2mIG3e0Rb+hTXZj8EOVYMkA7WdJ6HnBpF4Ki2pgx7USfzKdRbspa50HZLyjasmW4ANjSGDqW6XEpZApfm+OhFz2Cop978AJyKQnvvOUIbjkxhW+cXnY9ZrNhl1zGcilsNrRK0UKaX2TDG8UGsKwm/8+ayS0vOjKJZIJgIcS6/dIWAW3DPb1YAQBcvd/boAOml+7MQzeyXNJuDz0IP4ltudoGpWZREeNgQHERS8nl5b5HgTDoAJq6Z652qcv7ZlWis2MZy5iq6A16vd3B737tmdA5vn6UGwrana5NK6+2FJQyKdOgOwo7rP0umCcZlYeucCSXio+Hvlxp4X/efcYzV33TMgl+Ip/Chr5+tUsNY5aSEsgkE6i3O5A7XWw0FFsOOmDpDR4iMMokh0tb8NBdQdFMEk1Fta2r0lLwd48t4MeuP4BSNoXXnNqL55ZrRg44o9y052RP5FOotjt6lgs/48NLcklLwZILC4ge3ZPH7Fg2VOqil4Zesoyhe2axilImacRvvHjriw7h2v1juMahiR+cyOPFRydx45GJwONxkvZpSmbkoI85PfQcFvWsMB5Kp9uzoiJAGHQA9uwWp4fEqkRnx7KRe6qMzYaCn/rUg/gf33gOd+lFFDuBachrNbOVbMXhoVtz0TcasqGfA0A2GW0w2Cq5ZPUcaj/J5S8evIjfuetZPHW5wr3fOgh4Ip/GZkOxdVpksPznlZo7ZREIP/SAUmoYtNCSi+rWk41ArUX6+9L359FUVLzzliMAgNddvRcAcM8zppfe7qhoyKota8Wa/eH00AMllxB1B5fWzUyoAxPZwK6DgH+lKKA5FacXqji1r2QLTvM4Nl3AP3zolbYgJaBNZvrCv3oZXnhoewbdy0N3Voky9pYyUFRqNEdz4nVVEhXCoMPU0AF36uKSUUGYMTy2KCWX5WoLb7/jfjwxvwlgZwU2gGZsWNYHm8gDMMklxZ3puO7hoUeRrkkptWW5AHrlYNtbcnlAD/A+tbDJvV8LEDLJJQVZ7Robs3PoQb3dcY2eYxgd+AI+b3YFBJgVmEG0Fb6HDtidis9/dw7X7h/DCw+NAwCOTxdwbE8e91hkF2cbWcDeo8WpobOAMK+PC6CtO6hN9KWNJtLJBGaKGewfD+5pAjDj5ta2S5bv4NOLlUC5JSqcaYt3P72EX/ni4/jG6SWc16tXnZJLkETodVUSFcKgw+GhOwKjyxYPPewg2e3SUlS8/Y8fwIW1Bu786ZdonuoODXpTUY0vqd2gKyjpo9gA+0zH9bqMPQV7X3B2fLsNCzhajVspm/T00FuKiu/PlQEAT3p46OWG2eODGS0mhRQz9iKbervDLfu3HlPQBm6VG8JKZG2OcXMa9Jai4qmFCt7wQ/tsHutrr96L+86uGY4Ia3XgTFs0ntdTQ/fOcgH8YwdzGw0cmsghkSCG7BA4X9PDuLEN5sxSFdVWB6d8UgujxNmz6LMPXMCfP3AR7/v0w/itrz6DdDLh2gSDgvheVyVRIQw6nJKLo6WqxUNPSloOb1Qe+rmVOp5freNjP3YdXnnVDIpZ77zksDDvHABWLJKLMyjKNGtF7WqjzCwGPRvpnEl3FoCfQX9srgy5owWaeJKLrMcKmLFiWRDMc7Z66CW9KRSv7B8IHwxm+vnJ2eKWNHS35MJSKbXXYzLG4Sm7nvzaU3vR7nSNKxVjWLIty8X8f95DcnEGFBnGun2uyObWm0bl9IGJLBSVYrXu31St7WHcklICuZRkpGNe45ODHiXO2MFKtY1XXjWNz7zvZrzrliP4hVedcElBzEP3mss7cJILIeROQsgyIeQJy22/SgiZJ4Q8qv97U7SHGS1NxTQeTgO6VNGqRPfogw+0Dz3ahk3TJb1jHGcIw1bZsAyxXdUNF6XUkrZo19CZcZjieOhRGHSFFV5I5olSyqQ8L2EffH4dhABvesF+PL1QcXmFTMtkGjoz7EzbtksukmHQCYHtqgQIv27mod90bAor1XaoKxleYZFzUDTz9lmFMuOWE1PIpSR8jXUddMzWBOweurPIphCooQevWxsgrh3X/vHgniYAIHdUzyZVxWwSZ1c0WeNkvwx60m3QD07k8OqTM/j1H38BPvz6U66/CeWhD5jk8mkAb+Dc/nuU0hv0f/+wu4fVWxqyarzpzsKQ5apWJcqq66JsVOUcV1XMpHasoZctHvqa7kE1ZC2TQtPQ7SXwrKhoiuOhRyO5uCvp/Dz0B59fw6nZEl52xR7UZRUXndkeunEbNzx0p+Ti1NBVrFRb2FPQrsCspEN4qoA5Cf7Gw1ogLmyAMMMpLALMz4I9zwFHxkcmKeFHr9+PL3zvEubLzWDJxaMMntc6V3t+/yuTaktBuaEYrSGYrhyUuujnrbJc9IMTOW6/8l6QsXTXVLsUa3XZFVdxMhZQ2TxwHjql9F4A7tK0GNGQVWOWpFNyYVWijIxP8cFOcRYhMElgJ7AMl5REsFrV/s++fKVs0rjcZR6xYdDzvfHQeZV0Jc4EG0B7fx65sIFbT+zBtfu1IKFTR7eW/QMWg152Sy6sDzevqAiwaslBkksLe0sZo19+GNmFV1hUdGjo8xtNJAhcmRwA8KEfPglQ4PfvetbiofOzXHIpu4f+Y9cfwH9+49XeeeiOz7vaUvCWP/wOvn9xA4DZlIs1bzO6DgakLvp5q8zTvaZPAVHAnoe+XpehdmmgQQ+qbB5ED92Lf0MI+YEuyUx6PYgQ8gFCyMOEkIdXVsL3uoiCWruDH/mf3zIySBhNWcW0/sG5PXT7yR7UYnMnyA5vtZjdPYN+fLpgBEXZl4/pf9bXMQy6bVhy9B66MyjK0yQfny+jpXRx64kpXDVbRDJBXJkuZUsbWcDUlZnkUky7s1yWOWX/QPjsnoXNJvaPZw1NOUxglFdY5AyKzpdbmB3LcvOYD07k8O6XHsUXvncJD53fQDJBbMHPdDLhGgzNODyVx8+/+grP1ECnhn52pY5H58r43bueBWDGI1h75Yl8CtlUwvfKpKN20aXeXQdZcdGpPsktgHluU0rNzKeiv0EvxiQo+r8AXAHgBgALAH7H64GU0jsopTdRSm+amZnZ5svtDhfXGnhivoJH9SwJRkPuGMOBnaXXrGqSkUlGN73H6aEXMsld0NA1w3jFTNEw6BWLh85+stvWGxwPPYSmul1YlovVaLF2qk59/IFz2oXizcf3IJuScOXeoiswWnak8KWTCRTSkuG5W41bMZNEQ1axWGl5eOjh1r242cL+8ZzRrClM6iLvRHe2I7hcbvoW2HzwtVeikE7irqeWMJFPuww008idGnoQaYfkwmIv3zqziqcuVzBnDBDXNjBCCA6M53z7uQS1kWVr92ueFTVpKQFKtU6UrDYhyENPOa5wnVg7ifaCbb0SpXSJUqpSSrsAPgng5t09rGhgXp9zN23KKibzaRDi9tA3m4pNm9zKAN2t4vRWdzLwgLHRkFHKJDE7lsVqjUku2vswxgy6ZeNY1x8zWXB76FGsm9fropRNgVJ3CumDz6/j5GzR2GCv3T+GpxYcBr3pPn4mRWSSCZtOzozISrXtynAB3IaNBysq2jeeRVJKYP+4f28PhlZYZPecs6kEEsQeFHXq51amCml84FUn9DW65ZMxj1ayQTgLqljsRUoQfPJb5zC33kAhLdkkmwMB49iCepqwegi/LotRY01T9apN4OEX8/HK7ImKbb0SIWS/5dcfB/CE12MHCZYB4dxNG4qKQkZCIW2fBN/uqGgqqk2PjFRycWroAQU2YSg3ZEwUUpgpaaPdWopq0dDdkstGQ0Ypm7R5FabkErxuSile94lv4i8evBDq+Jwyk3Zc7stYRe3ikfPruOX4HuO2aw+MYanStuXXbzS0QQ9W+YENNXB24LPq6c4cdMCioft83pWmVl7PAoOHJnOBGnpH1doQOE90NuuUXZ0sbPobdAB43yuOY7qYcWXoAKaRz3KKefxgV2Rm/YK2Sb79JYfxd49dxsMX1nF4Km+7Itg/nvX30AMm90zqss3x6QL3/l6QicCgD1xQlBDyeQD3AzhFCLlECHk/gN8ihDxOCPkBgNcC+MWIj3NXqDT5HnpD1qa6FDKSzUNnG8B43u6tRp7lon8BCukkWkp3R33IN/SqSRb0Xa21DeNtSC6WNME1R1ERYJ23GOyhr9TaOLdaxyPnN0Idn5nZY0lb5GQOPDG/ibqs4pYTU8Zt1+otVq2yS7kh2wY9AKaO7h5LZho6v6Co3+fNKiRZ6t7BiXyghu4nP7Ce6Cu1NhSVGlNxvChkkvjs+2/Gx958neu+8VwK+bS05cZQziuytZqMQlrCv37NFaAAnpivGPo5Y/9EDsvVtufm1w4w6D/3qhP47PtvcWUa9ZK0RWJbqbZRzCRDyVXFbMo7D52TzRQlgUdLKX0H5+ZPRXAskcPz0NUuhdzpIp9Kah66pciIV1KdTkqefRt2itNDZwGXelvFeH57X4pyQ8ZEPm3ECFZrMj8oqhvPjbrMnWST8WlcZIVlQMyFLIFnBt2an1zkZA5876IW92DtWgHNQweApxYqeNVJLT7j7AsOeM+ZtHrsPMkljIbuHBx8aDKHxUrLNxjmNziYDYpmm8LBCfeVgxOv3uGzY1nfCT1e8CSX6VIGhybz+NEX7scXH73sGg93cCILSrVWGUxbtyJzPmfnsTr7pPQam+RS4wfKeYz5eOjKoHnocYIF/qyZI8wjz6cl5B3tSw0P3TGWLLKgKCuDt6QtAkB1B7LLhm7gDINebaPa6oAQsyTcesnI89ABNs0lzBSbhv4zfMUkYA+K8jpAXi43UUhLNmlkIp/GwYmczUO3ts5lsN+LHvnYAF9yYVcNfgadFRUxyeXgZA6Umoaeh5+3ynqie+Wgb4V//8Mn8emf2Xp4ywiCK2bLCPad+Dlds79C70fOYFcoXl0Xe90XfDsYBl1VtZbZARkujJJPNposui1GB5NcrK1Zm3oqXi4tIZ+2l9qbJdW9CYo6dUZnocl2YAaOdU9cq2sGvZhJGrJEKZNETdZ024262yACWsAujIfODPlipRXqfXIWUwFmsNbq9SxWWlwP7hpHYNTax4URNAke4GulYaSmxU0tV5xJNkyK8Mt08TNurCc6C6wGtZH1Y6qQxpUOwxsGnuTCKqWvOzCOf/zQK/G2Fx+y/c0B/UrCK3UxSEMfBKxXJlvx0P0qm4clbbGnnF6s2LrLbReehs4aHOXTkpHGxuB56H49k3eKU082JZftGfSO2kW1pc1dtEoulZZiq8ZjQ3rrcgfrddmWg84IPThYr9ykNLgUHDCvSlKOLBfALrksV9wDKABNdjm3UjMbVXElF76Gzjz0UjZpTGVyEiQ1Xd5sYW8pa2i/hyaCi4vY+5jhvGZBdyoul5vGRKle45RcVmuyEYMBtE3U+X4Z5f8egdGgtMVBwDrvgDeS0IuhCooOAn/xwEV8+C8f3fHzmGmLpqFoWAx6Pi3ZUuV4JdWZpBTpbM0EgWEcjD7R28xFLxt9TdLIpiSUMkms6JILkzUA04AuVVqQ1a4tB52RSSZCFRbNbTSQ1INwziEMPHh6Mi/LxTnPkXHj4Ql0KfDZB84D8JJc9FiBR08TXkCUsdXBwfvGs0gQ/8lFzPPle+ja5ft8ubUj73wnWA1bt0uxXm9jT8HfuBUyWl+g5Qq/QdcwSC4seFltdVBtdbZg0FNoyKoreaHb1VpDD0ulaM9gPTd2yibHQ2cGPZdOGt6R8/FWL0nz2KLLQ09x8qS3K7k4mzZNlzJYrbWN1rnO17mwphlgXiAtG2DYGJc2mrhB72kSJjDKk1xyKQlSghgbL6UUS5U2V3J5zakZvOG6ffiNfzyNrz+1hHanG1pyYe8BTz9nOHtkO9FSC82/TycTmB3LhpJcPIOibS0o2jeDztpEKyrKTQVdCtvAEy/8WlUMg+TCjo3JXVvR0AH3eap0e7/mwX13LRQzmle802BkpWkGRdl8TXapnktpQdGGZeOoNBWMZZNGYy7Af+7gTnEWIexUctlwdE6cLqZ1g96xbVLsC8kaXfEMehgPXe1SXC438eJjk0hJJFRglJe2SAixXcaWGwrkTpdr0Akh+MRPXo8rZor4t5//PgB3n+8Jj6BoJqm1Q+ZJOcZjfOZrGkVFY3bDe2gyF2pwsJdBr+mSy04CojvBiB3og5EBGJKdH7m0ZBsWYyUobXEQYFlN83rfn61ILoD7SrofVyWD++5aYLmgzirOrcIkF7VLDc/cmuVS1FPGmLEvN2SXt8fy0HnDpHeKNizZ7aFvV3JhrXOZgdtTyGCtJnMkl93x0BcrLSgqxdGpAg5O5LYkuThPdKtBX6ryx38xipkkPvmem4xNwamhT3po6IQQXL2vhBccHPc8Pr/YQaXVQUNWuYODw2jo/Dx0yRhpFpSDHiUsdsAMehgPPZ9Oep6jQWmLgwD7PNhntxXJBXD3RO/HVcngvrsWdio9MDabitGwiBkLZ5ZLl5on3GZTsQ0NALQPh1KzB8lu4oyIs7TC7a57wyW5pD0kF+3+IA89KGtlzpgzmcOhybzR88MPmSO5APbMATPX2/sEOzZdwP94x42YyKdcmR37xrI4PJXj5mt/5d+9Ej/7yhOez+tXGcyOa78jV/zQZB6LlZZnQZjfiW7ddPrloQNm7IDNoQ3joWsxKP53xPRWt1a12kuckotfbMUKLysL6E8geCgMutmFbvvataJ20ZBVI62MGQtrULSQsRvQsmV6PINdlkUhuzg1dNbadqeSC/NQp4sZbDQUfUC0W3K5oM9N9JZcAibBr7MufHkcnsoZg4T9UDr23HvrMbH0UhZo89O6AeA1p/bi+//lNly5194PJJeW8K3/+Dqj+GgrWHtkO1kwqkTtxzU7loHapUbnSiemt8rJcrEY9DBFRVHBNvA15qGHKFDK+0guw6ShX9poghD+ecDDq+Oi13c7Sgb33bXgNLTbgaUsskATMxaGQU+ZZb5MR99sunOazaEHETSq4qQ47aSF7kZDRloy26gyL0sbbmHx0PX/z200kZKIq+cJwCQX/zWzE+HARBaHJvNYq8uBm5GsqkgmiKs83Sq5LLIxgD5aNyNoWvxW8Wv1sGBcOdg9aWaUnQPHGUaWi0fpP+PghLvislewda/VZSSI9zAMK76Si8+aBwUmBy1VW9hTSIduQ+A1KJr10U8JD92Os/H/dmAGnJUssze/qX8Bc2nJCJqx1MXNBs9DZ9VkEczX7FCX9FDM8HNc1S7Fd59fx2999TTuO7vKfb5yXesUyYyc9bLZ6qGzdD6508VUwd2GFQjXw2Zuo4F9Y1lkkpJR/h3U10RR3Wtmx8c+o6VKC1OFNNejjZpMUvLMQ1/YbIEQ96U520C9DHoYySWZIKE13Chg616tyZgqZGyJAV7k05L3mocoD53ScBITwysoyhveEjVba5TcJ3YjKGp46IbkYnroyQTRBwKYr0OpFphyGfSQQw+2A9dDz7gHRf/O157B5x68iDX9kv6eZ1bwjx96pev5nDnZ1uKQMYuHnkgQI//ZcxJ8SgrMcrm03jSm2LB5k3PrDZyc9W6JygY+O7EFRT36lfcCr9gBpRRfe3IRp2ZLrg0p6Pvql+XCnIr9E9lQRjQqWHbPaq1t+9744WvQhyAP3XpsW9lMvaYW+X3OUTG4764FZ+P/7bDpkFyYjME6LQJWaUdFXVbR6VLXIF0W1IlqYHLaYdyKjtzebpfi//3mWRyeyuMP3nkj/sPtp/D0QgXPLlVdz1du2Hu5W70Op6zCfvfKZsiGyO6Z22jgkD6hnl0JBWW6eDUvYv0xWA46bwxbL/BKU/3WmVWcXqzifa847rovyEP3z3LRPi/nYOheow1D72Kt1g6V4QIA+Yyf5OJOTx00tmvQM0kJ6WTCraGz3kzCoNthhnZnkotm0J1B0aasGiegqaF3uGX/QLge2duF56EXHJLLekObdfjjNx7Ej7zwAH7ypsOQEgRf/P686/lcHnqJL7lov2tr9/PQKfWWmtodbfIP89Cni2nkUlJgpovXzMVSNgW1S9FUtOedDQiIRkXGo4fNHfeew95SBm++4YDrvlxYg85ZN/uu96uoiGFkudTlwCpRRj6lpVwqnO9IW/9u73aMYzdJJIjxmWxV7hrLJm3N5AB+47moGRKDHpy2eGGtjg9+7nu4uMb3CJmB3j+eQ4JYJBdFNQy5odXLqtE61zkJJswUm+3CG1dVyiZt7QicjfdnShm8/MppfOnRy66RbRsNxRjuAGhpkNmUOTzDCguMemUzBPUGXyi3QKm5YRJCcGgyOBddUbvcoBE7vo2GgtVaG7N989DdeehPzG/i28+t4n2vOM7PVNmR5KL9bT9z0AGzq6jWmCuch+63kfW6L/h2Yed3UEaVE95gcxYUFR66g0wygWSC+HroX370Mr7ygwX8n390H55ZdMsPrEp0PJeyBRqbcge5FPPQ2ReyY4wyG+ulh87xVouOuaK8SSpvueEA5stNPHLRHCpBKTV6oTMIIYa35TTozGPn9UIH3C1VnbAyf2sv7MNT+cBqUb+gKAA8v1IHpVoqYD9Ic9ol33HvORQzSbzzliPcvwkjuaQlvrc6nkvhX73mCvzY9W7Pv5dkkglUmgpq7U7oAKGZ3eM+T3vddXC7sGPcqoeuxXw8CouEh26HEOIbcAGAx+c3sbeUASHA2++43zUIutJSkJYSyKYSKFkmjDQskov1SoAFUZ2FRVEOTPaSXKxXJrxp5K+/bh+yqYRNdqm1O+h0qatqkskuLsklE85D9wqMssEWVoN+aDIX2M+l7Sm5aMdzZlnbnPsmuehBURY7uLTRwFceX8A7bj5s61hpJe9j2AB/40YIwX96w9W4yieQ3AsySclIF91KUBTw9tCHwqAzyWULWS4Av+NiP9odDP47rOMMDjp5fH4Tt57Yg7/6+ZdhLJvCuz75AJYqZvvWzaaCsVzS1SfEGhTNJLUhvY22ak6Pd0ouUnSSC89DL2WTUFRqvB5vGnkxk8Trr92Hrzy+YHgFRi93hyY+U0wbf2OF/e7loWcDNrK5jQZSErF1RDw8mUe11THkKx5ekgvLwnluuQYAfQ2KdvVJ8ADw2fsvgAD4mZe7g6EMdsXnncKnDnQJPKDFDlR9zWE1dGPdnOSFXreR3S4si23LHjqnJzoLioosFw4FTvoeY7XWxsJmCy88NI4je/L43Z+8HnVZxQ8ubRqP0RptacbZennUUkwPnQ3prctmUNSZ5WKkLUaR5eKRtgjAkF1Wqm0U0pKrL8lbbjyAckPBvc+uADDL/p1BzplSBiVHwzHA9Ii9quOcQw+cXNrQmklZn/ewnvHi56Vr/Wt4aYva+35GN+hhioqiIO2IHTx5uYLrDo77luVLCa25lWejKmXwjZvVCIXV0AMll2HQ0LcZFC1yPHQRFPXBKT1YeXxeM9w/pDdZOrpHmxw+bzEkmofODHrK5qFbB8EW0knNQ28qSCaIYewZpocejYbu/PCdAWGvxvuvvGoGU4U0/vLhOQDWsn/7hvSzrzyBT7ztetffF0MadK/y/7n1hpHhwgiTuuh1Kc42mLPLNUgJgumQXuJuY7R60D/v+XLTNSCZB3MMeAyDt2oN9obV0I2gKEeWGxrJJZlAOpmw1WmEgSe59KM6dvDfYR1egQ3jCd0Tv04fGjxdTCOTTNgCcpVWx2LQ+ZILAOQzEmq6h26tsmQwDz1MUPRLj87jVb91T+gAqqJSbw89wKCnpATefetRfO2pJfzgUtnotOiUXK6YKeL26/a5/t7a74WHKbl4eegNl6FjerpfYJSX2QOY616ry9hbymx5cv1uYb0y6XYp5jfCGfRcyr/IZtAll/R2PHRH6wwrw7CJAdq6Z4qZLadXlrIp1NodQ6YCRHMuX/JpybM51w/mN3FipmBcphNCcHAyZys7r+q9zQG75GLNcgGYh67pvs4MFyDcJHjG3/9gARfXG77DDqzwPHSjeT5rVFVteV4O/uwrj2OqkMZvfvW0RXIJN8LsLTcexJ+85yZPg24YNoeHrqhd/K9vnsVqTTaujBjjuRRK2aT/sAePLJdCOgl2TvVzGry1Mni11oasdnEoRI54IePfG3zQjRv7vPN6F9IwWLPEnHgFvweNYibparYWBmZbrCqCova+OddQlP4DMHqV83hifhM3H5+y3XZo0p4yZy3jZ5ILpVTPQ7cY9IzWAlRR3VWiQLCWzOh2KR46vw5A6zN+YsZ/WC+l1DPLBTD7y6xU23jFldPc5yhlU/g3r70SH//7p9BWuiDEXRjlxXguhR++dtbzfnMjM9f9yIUN/PLfPI5nlqq4/bpZvPNmdxrfGCc/14rcUblfeNaOoNrq9C1lEbBXBrNWC4cmg5tm5dJJ31ayg27c2Pc8rHcOmJJL00NycabKDiK/+mPXbWvWgbX8n51z7U7vq2MH+1tlwSsoygKiziEFhyweOqVUG4xskVw6Xa1XC6WwSS4FvWNcuSlzjSE7EYNklGeWqkamyXm9La0f5m7uLv0HtEKolqKiEjDr8F23HsHBiRwevrCBsWwqdMe4ILKOYPBqrY13fPIBVFoK7nj3i/HH777JlREEaBukX7opT2ZisCA2b5Zor7DWHbDvU5iin3xKMhq/OdEkl8HtCw6Y6blhM1wAU3LhXUkPg8wEaJKks/1yGMyOi+ZnzjbuXlbHDv47rOM1V9QZEGUcnMhhvS6jIXfQVDSP2+qhA8CS3mc7n7Jq6Nrr8BpzAZrnmJJIoI6m6YEAABvYSURBVOTy4Lk1AFrXvAse1atWvPQ267zCVU7KopNMUsKHbzsJILzcEgZ2grM89POrdcidLv6fn3gBXs/R5Bm5dJIbJGNoGjr/C2/M/BwEyaWjGtJRmLL8QsZbImx31KGRXMLmoAPapk8IuBvZsGjo24XXcbEfgeCheYe95oo+fmkThJgBUQYLXM1vNI0qUebxMb1rWR9tZs9y0QZKbDYUzx7QmaQU6KE/+Pw6Dk7kcHK2ZAyO8EPxSHEyh3t0uFWiPN5y40Fcva+0qxNvnKX/rOhkf0ATKT9PFfAOigLmSdJXDd0SM7m00cRkPuVKGeWRSye50gN7rkE3bobksgUPnRCCfIo/tWgYZKadwOuJLqu937gHX9TSyadNw5ZOmob28flNHJ8uuCofmUHX8qO128ZyZlAUMD10m+Si67ZNReUGRYHgcWyUar3KX31qBk1Z5bYicOLloedTEgjRgqLMoAf1mZASBJ//uVuh7uLc06yj9N8YCxdgbPNpCYsV78IiP+NWGgDJxdq7R8twCTd0opCWfOdrDrr8wDay6VJ4Dx3Qr8iGuFJ0u/A8dKVDe76JDc077DVX9In5Te6QX3biXSo3jTJ/t+TCPHSrhi4ZnhUvKArocyZ9+qE/t1zDWl3Grcf34OieAuY2GrZ0Jh5eRQiJBEExrXVy41WJejFZSG+pSX8QztL/xc0WcinJ2CS98JsED7gHY1sxPfR+DnowNfRLG43QXRBzaYmbvgcMSWFRauseOsDG0I2w5GKxT7LaRSrZ23TboXmHeWO9Vqr8gCig9WJISwlc2mgYfVmslaIAsKwbdHseummgvDJEvHpkMx54XstuueXEFI7tyUNRKS4HTO7xm4rOAsIr1faWZh3uJskEQYLYJZd949nAgE9QDx6v5lyAxaD3qewfsBdUhS0qAvR1Kyo3Y2I4PPStZ7kA3oOiNcllsAPBO6GU4UgufZCZBvtbZYE3V/QJPSDKM+iJBMGBiSzmN5qu3ubM2zeCog4NneFsncsI8tAfPLeGfWNZHJnK48ge7UohKDDKekhzi2z0YQ/L1Tam8umelhIzCCG2uaKLm61QnrPfnEm1S6F2vbNcrpwp4shU3mgc1g/YsV3ebKKldEO3tc2nk1C7lBs8H4Ysl0MTeaSlBE7t21rGh9eg6LhLLtmU1hHWKrlocmJvP+eh0dB5c0VZJ76r949x/4blohseulNyqXIkl1AeuuTpoVNK8cC5dbz8yj0ghOCYXmxzYb2OV4CfPw74t9pk+diKSvs8ZzJhlP4vVlp4ybGpgL/QJReP4KDfJgYA733ZMbznpcf6OhSBGd5zK1pgO6yGzr5TTVk14g+MYchyObInj9P/7Q1brtDNp931Il41FnHCbPpneuhe07iiZGjeYWtQlLFak5FNefddODiRw6WNJjb1LBd2Cc82h2UWFLWmLVq8dS8P3S8oem61jtVaG7cc3wNAC+ilk4nwHrrH0AMmufTToDMPvdulWK60Q2WfsCk2vKwgWfUvvCCE9K3kn8G05HMrWpOwsJKLUQbv1ddkCDI+tvPe8zx0PzkxTjiHXMickZJRMzTvMC8oulptY9qn78KhyRxWa20sV1sopCXDE5T0KsRlrodu/t8ry8VPcnnwnKmfA9pJcWQqj/Or/qmLfmPJWOvglWp7y32adxPmoa83ZMhqF/tCSC45i6fqpB9DdLcKO7azuoceVnIxGlU5gvgdtYsuHew17wRezGQYBkTvBs4GXf24Khmad5gZWltQtNbGHh8Dx06+04tVl3FmfcYBu1du/f92gqLfeW4Ve0sZnJg2+5oc25PHxcBRbGygrHtzKma1qUUrtf566No4NtVMWQwxyNiY06q4dfQgyWUQYEZoU+8F5DXUwonXsId+DD3oJbxB0XLM18xwSi4iKOoDb67oak02BjbwYHrn6YWKyzgz+YUQs6wdMK8EcinJM3Dl5aErahf3PruC157aa7tqODJVwPm1um+PCNOLcb+mdjXRhtzp9lly0SbBmwY9WHLhbcQMpaO9H4Ns0AkhhiE6GFI/BywS4YgZtzyny2Q/ug72A67kIjx0Pry5oqu1tm+uNfPQ67Lq8qxYYDSXkmzGl3lWfk2tvIKiD5/fQLXdwWuv3mu7/dh0Hi2li2W9MIiHqaFzPPRM0piY028PvaWoRpVomIIfFp/gSi76EF1e3GCQYPJIWP0csAdFrZh68mBnuWyXvB4Etw4sH1XJRQuK9vZzHpp32JgmpBv0bpdivS77GvTZUgZJPbDjLIBhHnrOkYHArgS8AqKAHhTlBLu++cwyUhLBK66yZ7OwtrJ+gVHfLBdL0LevBl330JcqLUgJEupYDMmFq6H3vr3odmDGN2xREeB9ZcKu7OLqreYzSVAKtCxJA3G/KmGMWWYVA5q81stOi8AQGXRAyxGv6dV35aYCtUt9Cx+SUgL7JzQv0q2h6x66YyIR86y8AqKALrlwsja+cXoZNx+fcs3rPKoPevDruij76MnWVMq9/dbQlS4WNluYKWZcY+x4GMFBTi66YlyK9zeTJYjteOg5YyNzSC5q76fY9BJe7CDucQNGSa8XYVcn/SggG6p32Oqhs86DQeXtzKtySy7aCeccMcekHa+yf+0x7uZcc+sNnFmu4bWn9roef3BSm7V5MYSHzvsCWAtrZor97TzY6qhY0qtEw+AlPQD+m9ggsS3JxWNQtF82UxzgDYoeFQ29qF+dsLjJQAZFCSF3EkKWCSFPWG6bIoTcRQg5o/+cjPYwNaxzGler4Qw6C4x6BUVzjmkshGhzRP00dJ6H/s1nlgHApZ8DmsE6NJnz9dB9K0V1g56WEoG9U6IkoweDFzdboRtmeWV7AGaHyUE3bmnDoG8hKOolubCNOzXYa94uRosOxR4cBIDMgH/OO4Vd9Vd0HX1QC4s+DeANjts+CuBuSulVAO7Wf48c61zRVX16zExANzjDQ3cYaOax51PuoMVH33gN3nXrUc/nZGmL1qyVe55ZwdE9eVu6opUjU/lwGrpHLxdA08/7WTXJCosWN8N76L6Dg32KqQYJ1gt+Kxp6WkpAShDPFL64GrccZwMfFQ39xIx27j99uQKAP1IyagJfjVJ6L4B1x81vBvAZ/f+fAfCWXT4uLtahAeE9dCa58IOiTskFAN55yxHccHjC8zkzjuk9LUXFfWdXXemKVo7t8U9d9PPQ2bFO91E/B7SNbLOpoNrubEFy0Y6d14GvHzMXt0NGSqCQlnwD5U5Yb3DPIpuYGjfeoOi4r5lxw+EJpJMJPPj8Grpdio5Pn6Ko2O6rzVJKFwBA/+nWGXQIIR8ghDxMCHl4ZWVlmy+nUUgnjTz01VobyQQJLPRgl8nOYRVGvjnHoAdhjKHTjfD9Z9fQUrpcuYVxdE8e1VbHGEvnxGyfy09bBPobEAU0D50Z4bCSS85DSwaG50TPpiUcmsxv+eoon3G30DUklxinLQL2YPCoaOjZlIQbDk/gwefX+7bmyF+NUnoHpfQmSulNMzMzO3oum4Zea2NPMR3Yb+Lm41P4b2++Dq86aU8lZHoXz0MPIuMY9vDPz64gm0rgluPezapYy1vW+dGJrFLP+YNWyaWfWAO2YacISQmCTDLB19CHJCj64dtO4uNvvm7Lf5fnjN8blk1su/hKLgP+Oe8Gtx6fwhPzm8ZA8YELinqwRAjZDwD6z+XdOyRv7Fku/jnoDClB8O6XHnN5RKbksvUgI9M/WYOusys1nJwtubrqWfGqHGT4VZWVskkkSH8n9wB2r3L/FnqU5z2m9wQ15xoUbjg8gVtO7Nny3/GGPcQ9bbHAqTuI+yZm5ZYTe9Cl2lU70PuePdt9tS8DeK/+//cC+NLuHI4/xYzZuW8toEo0CDPLZTseujnFBtDG3B0OyIDwy/YA/IclZ1MSPv0zN+PdPoHaXmBtkRBWQwdYT3QfySWmnls+7R4Uza7q4tqci1d30B4RyQUAXnRkEimJ4FtnNHl54IKihJDPA7gfwClCyCVCyPsB/AaA2wghZwDcpv8eOdaByas1ecvTVKz4ZbkEYR2Y3O1SfdakfwaEX08TILjvw6tOzmCyD5OKrDAPfTyX8r0aceI19ECJ+Yme40kuMV8zz3ExM3viGTewkktLuP7QBL59ZhVA7z/nQL2BUvoOj7v+xS4fSyDscq6mz9fcSSvZiXwKKYlgahubAvuQ5I7Wn0VWuzg0FeShs+g/X3LRPPTBPsnZRrYVuQXwHkM3LBr6dimkJSw4Rg/GXX5ISQmkpcTISi6A1jr74QsbAGIYFN1NmIe+VGlB7nR3KLmk8KUPvgJvfdGhLf8t81TbnS7mNrTc8sNBHrqhoXsMDh6CiS7MKw8bEGV4DYr2GowdF3KcjczMconnmgH2ebsLiwb9+71bsOE2QO/lxKEZQQeYssV5vUBnOqCoKIhrD/BH1wWRTppB0RU9H/5wgIfu19ME0KomB11LZkZoq8HZfNocJmJFVln73MEOim6XQjrpGr8X99J/QLsysTousqoimSChev/EgRcfnYSUIFC7tOdFc0P1rWL52Bf1EvqdeOg7IWORXObWtUvqoCrCQA19CDx0FgzeSkAU4HuqgF4a7ZGqGQe0oKi7UjTOawbcV2RxHxDtpJBJGoPre10RPFTvMpNcLujTf/YU+mXQTcnl0kYDe0uZwCBhNimBkOHW0Nkat2rQ8ylvySWu3jmgGbZ2pwvV0hu83VFjLbcA7kHRo2bQAXMEpdDQfWA69G5JLtvFGhSd22gEyi2ANls0l5I8NfRhGBy8fzyLZILgmv1bk6r8gqJxPtELnBa6o2DcnJ+3rA7+d3u3+eFrZpFMkC3Hm3bKUGroF9bqIASYyvfHoGcsGvrcehMvORau2aRXPjag6cm59GB/6Q9N5vHEx27fUsoioKXveaUtDvpVyU6wDshmlcmjYtBXa7Lxe3sE1uzkJcemtnWu7JShepeZ5FJuKJjKp5HskzFgX856W8XCZjOUhw5oG5JXUHQYPHQA2/qC5tPayD6WpsiQOzTWBp0XN2l3ej/0oNfkM0JyAbZ3ruyUoXqX2fAJADsqKtqN4wC0CURdisAqUUY+nXRVDjI0+SGeerJXlewwBIJ3Qi7lbvcwCsbNGTMZFmclDgzVu8zmigL9y3ABzKDo2ZUagPCTbLx6mgDx/tJbpQcrw5CquRN405rivokB7uyefoxiG1WG7l0u6CdJPw06y8w4u6ylT4aVXLyCg0C89WRecBDQ1xzTqxLAS3JRY9s6l5HP2PPvR+GqZFAYund5EDx0QrSWsIuVFqQECV0KX0gn/T30mH7peS1VAc1zi+smBpiSiyvLJcZrBjTJhTXRA+L93R40hu5dNgx6n1IWGda+JmGDs7zue4w4GzdDeuD0Bo+zceN56KNg3KwSG6UUcxuNHfVdEoRnqNIWAbNadLpPRUWMdFIC0AkdEAW0CTZOo8aQY5z94BUUVdSusUHHEWbY6iOW5WIdFF1tK1iqtPHioz2ZIz/yDN3ZxLyeQfHQwwZEAU1ycZaCM+KsoTPpwT3soYuJmK4Z4M9THQUP3bqBPzG/CQB4kTDoPWHovlkswNZPDR0wDXrYgCigneDOUnAA6KhddGl8u9F5eugdGmvJhTdPdRSKbPKWQdEPn99AIS3h6n3ba4Qn2BpD980ahKAoYBrfw1PhPXTeAF3AOopt6D6OUPhJLr3uRtdLpARBNpXgFBbFPMvF8j1/5MIGbjwyOTKdFvvN0J1NRX103FS/p/fo3tdWNXSA76kC8fXQvfLQ2zFvzgW4M5vkEWjOxT7v5WobpxcrQj/vIUOnob/txYdwZCrfl7JaK6wt5lYkF2PIhUNHb7PBwTE1bnnO4GBA89BHwbg12qNVWMS+5/edXUOXQhj0HjJ0Bv3ETBEnZor9PgxkUgmkk4ktpWN5Sw/x9tClBEE6meAXFsVUZmJYi8kopSOR5cK+5986s4IEAW48MtHnIxod4v3NipB8WsLhyRwSW9AGvTzVURjRxauSVdR4N+cC9A6beqpqp0tBabynFQGmQb+00cSpfWNGp0lB9Aydhz4ofOT1p1DzSEH0gmnodY6nCsQ3KAowLdm9kcV5zYC+kenfk1HYuAHTcQGAFx8V3nkvEQZ9m5ycLW35bwqWdC4rxokeY+OWS0toKuZGRikdCT05n06i3NDGFI7CgGgAyKYSIASgFLjp6FS/D2ekiPc3a8AITFuM8YnulFw6ei5+XAPBjHzarA42PfR4py0SQpDXkxZEQLS3CA+9h3j2BWeeW5w99JTk6mkCxFtmAuytZEdFcgG0KVWFTHJLldSCnSMMeg9hRVGeGnqMT3TnWDK25rgbt7xl/F67o/2Mu+QCADOlDE7OFkFIvK/ABg1h0HtIJplAgrgLbEZBQ9fmqTaM3+NeHcvIpyXU5Y6RsgjEfxMDgD/96ZcYBUaC3iEMeg8hhHDH0I1Clksu7R5LBsR7EwO0zKYu1QKi8ohclQDAvpAzAgS7S/y/WQMGbwzdKHhu+bRk5GMD8S+mYrDgYFNWsa5LTqMguQj6g/DQe0whk7T1xwYsxi3G3mrOkeUyClclgJmT/bY/vh/PLddACMSwB0FkCIPeY3Ipyd0XfBQ89FQScqeLjtpFUkpYslziHTQ7PlOAlCAYyybx0Tdejduv24fj04V+H5YgpgiD3mMKGfcYOtNbja9xM1I2FRVjUmIkcu8B4CXHpvDsr71RtI8V9IR4n00DSJ4zKHoUPHRnC11lBHLvGcKYC3pF/M+mAaOQcTepGoUUPufAZBY3iLuHLhD0EnE29Zhcit+kCoh5UDTFOk3qVZN6D/g4b2ICQa8RZ1OPKWQkbqVoMkG21Ip32Mg7JBe5E//MHoGg14izqcfk00lut8U46+eAu4+NWfof301MIOg18bYiA0ghLUFWu4ZBA0Zjck/OYdBHpTmXQNBLxNnUY5yGDRiNOZOswIb1RB+V5lwCQS8RZ1OPYR0X7ZPgaey1ZC/JRXjoAsHusaPCIkLIeQBVACqADqX0pt04qDjD64k+Ch66Mw+9LSQXgWDX2Y1K0ddSSld34XlGgjxnDJ3S6ca6ShQwm1Q589DjfmUiEPQScTb1mELaPSh6FDz0pJRAWkpwslzivW6BoJfs9GyiAL5GCHmEEPIB3gMIIR8ghDxMCHl4ZWVlhy83/OR1Db3p6Dw4CtJDztI6WO50kSCiLF4g2E12akVeTil9EYA3AvggIeRVzgdQSu+glN5EKb1pZmZmhy83/PA89HanOxLSQ8HSQndUNjGBoJfs6IyilF7Wfy4D+FsAN+/GQcUZI22xbffQR0F6KGSSWK9rQx5GQWYSCHrNts8oQkiBEFJi/wfwegBP7NaBxZVC2j0oWh4RD/3lV07jW2dWsFZra5vYCKxZIOglOzmjZgF8mxDyGIDvAvgKpfSru3NY8SWfcactjor88M5bjkBRKf76kUuQO6OxZoGgl2w7bZFSeg7A9bt4LCNBWkpAShBHYdFoyA8nZ0u46egkPv/di7jh8MRIrFkg6CXijOoxhBDk0/apRYpKR8ZbfectR3B+rYH7zq7FPvdeIOg1o2FFBoxCOmlLW2yPiIcOAG96wX6M51JYrrZHZhMTCHqFOKP6QN7RE10LEI6Gt5pNSfiJFx0EAGRGZBMTCHqFOKP6QD5tH0M3Kho64503HwEg+rgIBLvNbvRyEWyRfDqJetvuoY+ScbtqtoRXn5zBRD7V70MRCGKFMOh9oJCWsKYX2HS7FJ0uHSkPHQD+5L03QSKjITMJBL1itKzIgJDPmB66PKJ9wVNSItYzVAWCfjBaVmRAyKdMDZ0ZdBEgFAgEO0VYkT5QyCTFbE2BQLDrCCvSB/KWNrKiL7hAINgthBXpA/m0BEWlkDtd4aELBIJdQ1iRPsDG0DVlVXjoAoFg1xBWpA8UMuaQCzYseVQqRQUCQXSIPPQ+wDz0O7/9PE7OlgAID10gEOwcYdD7wE3HJnHz8Sl86jvPg1LtNqGhCwSCnSIMeh/YP57DX/78S7Faa+Pup5fw5OUKbjwy2e/DEggEQ44w6H1kupjB219ypN+HIRAIYoK4zhcIBIKYIAy6QCAQxARh0AUCgSAmCIMuEAgEMUEYdIFAIIgJwqALBAJBTBAGXSAQCGKCMOgCgUAQEwhltee9eDFCVgBc2OafTwNY3cXDGRZGcd2juGZgNNc9imsGtr7uo5TSmaAH9dSg7wRCyMOU0pv6fRy9ZhTXPYprBkZz3aO4ZiC6dQvJRSAQCGKCMOgCgUAQE4bJoN/R7wPoE6O47lFcMzCa6x7FNQMRrXtoNHSBQCAQ+DNMHrpAIBAIfBAGXSAQCGLCUBh0QsgbCCHPEEKeI4R8tN/HEwWEkMOEkHsIIU8TQp4khHxIv32KEHIXIeSM/jN2o40IIRIh5PuEkL/Xfx+FNU8QQv6aEHJa/8xfGvd1E0J+Uf9uP0EI+TwhJBvHNRNC7iSELBNCnrDc5rlOQsh/1m3bM4SQ23fy2gNv0AkhEoA/BPBGANcCeAch5Nr+HlUkdAB8hFJ6DYBbAXxQX+dHAdxNKb0KwN3673HjQwCetvw+Cmv+7wC+Sv//9s4mJKooDMPPR5akEVRQmAYaSEFBGRFREZEtyqJp6UJw0T5aBeGqfUSr2hglFbkoKWnVokU7+yMi+rUMtSyF6IcWKfS2OGdxESfCZrzO4XvgMvd+M8P9Hu69L3PPmWGk9cAmgn+y3mZWDxwDtkraCCwA2knT+RKwf1ptRs94jbcDG+J7zsXMmxXzPtCBbcCgpHeSJoFeoJBzTyVH0pikx3H9B+ECrye49sSX9QBH8umwPJhZA3AQ6M6UU3deCuwGLgBImpT0lcS9CX95udjMqoAa4CMJOku6B3yZVi7mWQB6Jf2SNAQMEjJvVlRCoNcDI5nt0VhLFjNrBFqAAWCVpDEIoQ+szK+zsnAWOAH8ztRSd14LTAAX41BTt5nVkrC3pA/AaWAYGAO+SbpDws7TKOZZ0nyrhEC3GWrJftfSzJYAN4Djkr7n3U85MbNDwLikR3n3MsdUAVuA85JagJ+kMdRQlDhmXACagNVArZl15NvVvKCk+VYJgT4KrMlsNxBu1ZLDzBYSwvyqpL5Y/mxmdfH5OmA8r/7KwE7gsJm9Jwyl7TWzK6TtDOGcHpU0ELevEwI+Ze99wJCkCUlTQB+wg7SdsxTzLGm+VUKgPwCazazJzBYRJhD6c+6p5JiZEcZUX0g6k3mqH+iM653ArbnurVxIOimpQVIj4bjeldRBws4Akj4BI2a2LpZageek7T0MbDezmniutxLmiVJ2zlLMsx9oN7NqM2sCmoH7s96LpHm/AG3Aa+At0JV3P2Vy3EW41XoKPIlLG7CCMCv+Jj4uz7vXMvnvAW7H9eSdgc3Aw3i8bwLLUvcGTgEvgWfAZaA6RWfgGmGeYIrwCfzo3zyBrphtr4AD/7Nv/+m/4zhOIlTCkIvjOI7zD3igO47jJIIHuuM4TiJ4oDuO4ySCB7rjOE4ieKA7juMkgge64zhOIvwB45jb74hF12cAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# Sequence plot\n", "\n", "import numpy as np\n", "import pandas\n", "import math\n", "import matplotlib.pyplot as plt\n", " \n", "# frequencies\n", "DataSet = [14.0, 7.6, 11.2, 12.8, 12.5, 9.9, 14.9, 9.4, 16.9, 10.2, 14.9, 18.1, 7.3, 9.8, 10.9,12.2, 9.9, 2.9, 2.8, 15.4, 15.7, 9.7, 13.1, 13.2, 12.3, 11.7, 16.0, 12.4, 17.9, 12.2, 16.2, 18.7, 8.9, 11.9, 12.1, 14.6, 12.1, 4.7, 3.9, 16.9, 16.8, 11.3, 14.4, 15.7, 14.0, 13.6, 18.0, 13.6, 19.9, 13.7, 17.0, 20.5, 9.9, 12.5, 13.2, 16.1, 13.5, 6.3, 6.4, 17.6, 19.1, 12.8, 15.5, 16.3, 15.2, 14.6, 19.1, 14.4, 21.4, 15.1, 19.6, 21.7, 11.3, 15.0, 14.3, 16.8, 14.0, 6.8, 8.2, 19.9, 20.4, 14.6, 16.4, 18.7, 16.8, 15.8, 20.4, 15.8, 22.4, 16.2, 20.3, 23.4, 12.1, 15.5, 15.4, 18.4, 15.7, 10.2, 8.9, 21.0]\n", "\n", " \n", "# plot title\n", "plt.title('My sequence')\n", " \n", "# function to show the plot\n", "\n", "plt.plot(DataSet)\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }