diff --git a/module3/exo1/analyse-syndrome-grippal.ipynb b/module3/exo1/analyse-syndrome-grippal.ipynb
deleted file mode 100644
index b8a0e9a5773e87a1081bf1384fac6fe771ba9ec2..0000000000000000000000000000000000000000
--- a/module3/exo1/analyse-syndrome-grippal.ipynb
+++ /dev/null
@@ -1,2500 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# Incidence du syndrome grippal"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "%matplotlib inline\n",
- "import matplotlib.pyplot as plt\n",
- "import pandas as pd\n",
- "import isoweek"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "Les données de l'incidence du syndrome grippal sont disponibles du site Web du [Réseau Sentinelles](http://www.sentiweb.fr/). Nous les récupérons sous forme d'un fichier en format CSV dont chaque ligne correspond à une semaine de la période demandée. Nous téléchargeons toujours le jeu de données complet, qui commence en 1984 et se termine avec une semaine récente."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {},
- "outputs": [],
- "source": [
- "data_url = \"http://www.sentiweb.fr/datasets/incidence-PAY-7.csv\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "Voici l'explication des colonnes données [sur le site d'origine](https://ns.sentiweb.fr/incidence/csv-schema-v1.json):\n",
- "\n",
- "| Nom de colonne | Libellé de colonne |\n",
- "|----------------|-----------------------------------------------------------------------------------------------------------------------------------|\n",
- "| week | Semaine calendaire (ISO 8601) |\n",
- "| indicator | Code de l'indicateur de surveillance |\n",
- "| inc | Estimation de l'incidence de consultations en nombre de cas |\n",
- "| inc_low | Estimation de la borne inférieure de l'IC95% du nombre de cas de consultation |\n",
- "| inc_up | Estimation de la borne supérieure de l'IC95% du nombre de cas de consultation |\n",
- "| inc100 | Estimation du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants) |\n",
- "| inc100_low | Estimation de la borne inférieure de l'IC95% du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants) |\n",
- "| inc100_up | Estimation de la borne supérieure de l'IC95% du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants) |\n",
- "| geo_insee | Code de la zone géographique concernée (Code INSEE) http://www.insee.fr/fr/methodes/nomenclatures/cog/ |\n",
- "| geo_name | Libellé de la zone géographique (ce libellé peut être modifié sans préavis) |\n",
- "\n",
- "La première ligne du fichier CSV est un commentaire, que nous ignorons en précisant `skiprows=1`."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 18,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "
\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " week \n",
- " indicator \n",
- " inc \n",
- " inc_low \n",
- " inc_up \n",
- " inc100 \n",
- " inc100_low \n",
- " inc100_up \n",
- " geo_insee \n",
- " geo_name \n",
- " \n",
- " \n",
- " \n",
- " \n",
- " 0 \n",
- " 202419 \n",
- " 3 \n",
- " 17551 \n",
- " 11964.0 \n",
- " 23138.0 \n",
- " 26 \n",
- " 18.0 \n",
- " 34.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 1 \n",
- " 202418 \n",
- " 3 \n",
- " 22831 \n",
- " 17935.0 \n",
- " 27727.0 \n",
- " 34 \n",
- " 27.0 \n",
- " 41.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 2 \n",
- " 202417 \n",
- " 3 \n",
- " 27042 \n",
- " 21410.0 \n",
- " 32674.0 \n",
- " 41 \n",
- " 33.0 \n",
- " 49.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 3 \n",
- " 202416 \n",
- " 3 \n",
- " 28882 \n",
- " 23305.0 \n",
- " 34459.0 \n",
- " 43 \n",
- " 35.0 \n",
- " 51.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 4 \n",
- " 202415 \n",
- " 3 \n",
- " 30229 \n",
- " 24648.0 \n",
- " 35810.0 \n",
- " 45 \n",
- " 37.0 \n",
- " 53.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 5 \n",
- " 202414 \n",
- " 3 \n",
- " 31813 \n",
- " 26529.0 \n",
- " 37097.0 \n",
- " 48 \n",
- " 40.0 \n",
- " 56.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 6 \n",
- " 202413 \n",
- " 3 \n",
- " 35090 \n",
- " 29607.0 \n",
- " 40573.0 \n",
- " 53 \n",
- " 45.0 \n",
- " 61.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 7 \n",
- " 202412 \n",
- " 3 \n",
- " 40639 \n",
- " 34582.0 \n",
- " 46696.0 \n",
- " 61 \n",
- " 52.0 \n",
- " 70.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 8 \n",
- " 202411 \n",
- " 3 \n",
- " 50268 \n",
- " 43331.0 \n",
- " 57205.0 \n",
- " 75 \n",
- " 65.0 \n",
- " 85.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 9 \n",
- " 202410 \n",
- " 3 \n",
- " 60107 \n",
- " 52623.0 \n",
- " 67591.0 \n",
- " 90 \n",
- " 79.0 \n",
- " 101.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 10 \n",
- " 202409 \n",
- " 3 \n",
- " 71121 \n",
- " 62920.0 \n",
- " 79322.0 \n",
- " 107 \n",
- " 95.0 \n",
- " 119.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 11 \n",
- " 202408 \n",
- " 3 \n",
- " 104566 \n",
- " 94520.0 \n",
- " 114612.0 \n",
- " 157 \n",
- " 142.0 \n",
- " 172.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 12 \n",
- " 202407 \n",
- " 3 \n",
- " 138078 \n",
- " 127050.0 \n",
- " 149106.0 \n",
- " 207 \n",
- " 190.0 \n",
- " 224.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 13 \n",
- " 202406 \n",
- " 3 \n",
- " 190062 \n",
- " 177955.0 \n",
- " 202169.0 \n",
- " 285 \n",
- " 267.0 \n",
- " 303.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 14 \n",
- " 202405 \n",
- " 3 \n",
- " 216237 \n",
- " 203595.0 \n",
- " 228879.0 \n",
- " 324 \n",
- " 305.0 \n",
- " 343.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 15 \n",
- " 202404 \n",
- " 3 \n",
- " 213196 \n",
- " 200547.0 \n",
- " 225845.0 \n",
- " 320 \n",
- " 301.0 \n",
- " 339.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 16 \n",
- " 202403 \n",
- " 3 \n",
- " 163457 \n",
- " 152276.0 \n",
- " 174638.0 \n",
- " 245 \n",
- " 228.0 \n",
- " 262.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 17 \n",
- " 202402 \n",
- " 3 \n",
- " 129436 \n",
- " 119453.0 \n",
- " 139419.0 \n",
- " 194 \n",
- " 179.0 \n",
- " 209.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 18 \n",
- " 202401 \n",
- " 3 \n",
- " 120769 \n",
- " 109452.0 \n",
- " 132086.0 \n",
- " 181 \n",
- " 164.0 \n",
- " 198.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 19 \n",
- " 202352 \n",
- " 3 \n",
- " 115446 \n",
- " 103738.0 \n",
- " 127154.0 \n",
- " 174 \n",
- " 156.0 \n",
- " 192.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 20 \n",
- " 202351 \n",
- " 3 \n",
- " 148755 \n",
- " 136546.0 \n",
- " 160964.0 \n",
- " 224 \n",
- " 206.0 \n",
- " 242.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 21 \n",
- " 202350 \n",
- " 3 \n",
- " 147971 \n",
- " 136787.0 \n",
- " 159155.0 \n",
- " 223 \n",
- " 206.0 \n",
- " 240.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 22 \n",
- " 202349 \n",
- " 3 \n",
- " 147552 \n",
- " 136422.0 \n",
- " 158682.0 \n",
- " 222 \n",
- " 205.0 \n",
- " 239.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 23 \n",
- " 202348 \n",
- " 3 \n",
- " 124204 \n",
- " 113479.0 \n",
- " 134929.0 \n",
- " 187 \n",
- " 171.0 \n",
- " 203.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 24 \n",
- " 202347 \n",
- " 3 \n",
- " 110948 \n",
- " 100694.0 \n",
- " 121202.0 \n",
- " 167 \n",
- " 152.0 \n",
- " 182.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 25 \n",
- " 202346 \n",
- " 3 \n",
- " 83894 \n",
- " 75134.0 \n",
- " 92654.0 \n",
- " 126 \n",
- " 113.0 \n",
- " 139.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 26 \n",
- " 202345 \n",
- " 3 \n",
- " 72003 \n",
- " 63178.0 \n",
- " 80828.0 \n",
- " 108 \n",
- " 95.0 \n",
- " 121.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 27 \n",
- " 202344 \n",
- " 3 \n",
- " 49952 \n",
- " 42813.0 \n",
- " 57091.0 \n",
- " 75 \n",
- " 64.0 \n",
- " 86.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 28 \n",
- " 202343 \n",
- " 3 \n",
- " 44982 \n",
- " 38170.0 \n",
- " 51794.0 \n",
- " 68 \n",
- " 58.0 \n",
- " 78.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 29 \n",
- " 202342 \n",
- " 3 \n",
- " 56842 \n",
- " 49277.0 \n",
- " 64407.0 \n",
- " 86 \n",
- " 75.0 \n",
- " 97.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " \n",
- " \n",
- " 2033 \n",
- " 198521 \n",
- " 3 \n",
- " 26096 \n",
- " 19621.0 \n",
- " 32571.0 \n",
- " 47 \n",
- " 35.0 \n",
- " 59.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 2034 \n",
- " 198520 \n",
- " 3 \n",
- " 27896 \n",
- " 20885.0 \n",
- " 34907.0 \n",
- " 51 \n",
- " 38.0 \n",
- " 64.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 2035 \n",
- " 198519 \n",
- " 3 \n",
- " 43154 \n",
- " 32821.0 \n",
- " 53487.0 \n",
- " 78 \n",
- " 59.0 \n",
- " 97.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 2036 \n",
- " 198518 \n",
- " 3 \n",
- " 40555 \n",
- " 29935.0 \n",
- " 51175.0 \n",
- " 74 \n",
- " 55.0 \n",
- " 93.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 2037 \n",
- " 198517 \n",
- " 3 \n",
- " 34053 \n",
- " 24366.0 \n",
- " 43740.0 \n",
- " 62 \n",
- " 44.0 \n",
- " 80.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 2038 \n",
- " 198516 \n",
- " 3 \n",
- " 50362 \n",
- " 36451.0 \n",
- " 64273.0 \n",
- " 91 \n",
- " 66.0 \n",
- " 116.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 2039 \n",
- " 198515 \n",
- " 3 \n",
- " 63881 \n",
- " 45538.0 \n",
- " 82224.0 \n",
- " 116 \n",
- " 83.0 \n",
- " 149.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 2040 \n",
- " 198514 \n",
- " 3 \n",
- " 134545 \n",
- " 114400.0 \n",
- " 154690.0 \n",
- " 244 \n",
- " 207.0 \n",
- " 281.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 2041 \n",
- " 198513 \n",
- " 3 \n",
- " 197206 \n",
- " 176080.0 \n",
- " 218332.0 \n",
- " 357 \n",
- " 319.0 \n",
- " 395.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 2042 \n",
- " 198512 \n",
- " 3 \n",
- " 245240 \n",
- " 223304.0 \n",
- " 267176.0 \n",
- " 445 \n",
- " 405.0 \n",
- " 485.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 2043 \n",
- " 198511 \n",
- " 3 \n",
- " 276205 \n",
- " 252399.0 \n",
- " 300011.0 \n",
- " 501 \n",
- " 458.0 \n",
- " 544.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 2044 \n",
- " 198510 \n",
- " 3 \n",
- " 353231 \n",
- " 326279.0 \n",
- " 380183.0 \n",
- " 640 \n",
- " 591.0 \n",
- " 689.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 2045 \n",
- " 198509 \n",
- " 3 \n",
- " 369895 \n",
- " 341109.0 \n",
- " 398681.0 \n",
- " 670 \n",
- " 618.0 \n",
- " 722.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 2046 \n",
- " 198508 \n",
- " 3 \n",
- " 389886 \n",
- " 359529.0 \n",
- " 420243.0 \n",
- " 707 \n",
- " 652.0 \n",
- " 762.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 2047 \n",
- " 198507 \n",
- " 3 \n",
- " 471852 \n",
- " 432599.0 \n",
- " 511105.0 \n",
- " 855 \n",
- " 784.0 \n",
- " 926.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 2048 \n",
- " 198506 \n",
- " 3 \n",
- " 565825 \n",
- " 518011.0 \n",
- " 613639.0 \n",
- " 1026 \n",
- " 939.0 \n",
- " 1113.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 2049 \n",
- " 198505 \n",
- " 3 \n",
- " 637302 \n",
- " 592795.0 \n",
- " 681809.0 \n",
- " 1155 \n",
- " 1074.0 \n",
- " 1236.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 2050 \n",
- " 198504 \n",
- " 3 \n",
- " 424937 \n",
- " 390794.0 \n",
- " 459080.0 \n",
- " 770 \n",
- " 708.0 \n",
- " 832.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 2051 \n",
- " 198503 \n",
- " 3 \n",
- " 213901 \n",
- " 174689.0 \n",
- " 253113.0 \n",
- " 388 \n",
- " 317.0 \n",
- " 459.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 2052 \n",
- " 198502 \n",
- " 3 \n",
- " 97586 \n",
- " 80949.0 \n",
- " 114223.0 \n",
- " 177 \n",
- " 147.0 \n",
- " 207.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 2053 \n",
- " 198501 \n",
- " 3 \n",
- " 85489 \n",
- " 65918.0 \n",
- " 105060.0 \n",
- " 155 \n",
- " 120.0 \n",
- " 190.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 2054 \n",
- " 198452 \n",
- " 3 \n",
- " 84830 \n",
- " 60602.0 \n",
- " 109058.0 \n",
- " 154 \n",
- " 110.0 \n",
- " 198.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 2055 \n",
- " 198451 \n",
- " 3 \n",
- " 101726 \n",
- " 80242.0 \n",
- " 123210.0 \n",
- " 185 \n",
- " 146.0 \n",
- " 224.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 2056 \n",
- " 198450 \n",
- " 3 \n",
- " 123680 \n",
- " 101401.0 \n",
- " 145959.0 \n",
- " 225 \n",
- " 184.0 \n",
- " 266.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 2057 \n",
- " 198449 \n",
- " 3 \n",
- " 101073 \n",
- " 81684.0 \n",
- " 120462.0 \n",
- " 184 \n",
- " 149.0 \n",
- " 219.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 2058 \n",
- " 198448 \n",
- " 3 \n",
- " 78620 \n",
- " 60634.0 \n",
- " 96606.0 \n",
- " 143 \n",
- " 110.0 \n",
- " 176.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 2059 \n",
- " 198447 \n",
- " 3 \n",
- " 72029 \n",
- " 54274.0 \n",
- " 89784.0 \n",
- " 131 \n",
- " 99.0 \n",
- " 163.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 2060 \n",
- " 198446 \n",
- " 3 \n",
- " 87330 \n",
- " 67686.0 \n",
- " 106974.0 \n",
- " 159 \n",
- " 123.0 \n",
- " 195.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 2061 \n",
- " 198445 \n",
- " 3 \n",
- " 135223 \n",
- " 101414.0 \n",
- " 169032.0 \n",
- " 246 \n",
- " 184.0 \n",
- " 308.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 2062 \n",
- " 198444 \n",
- " 3 \n",
- " 68422 \n",
- " 20056.0 \n",
- " 116788.0 \n",
- " 125 \n",
- " 37.0 \n",
- " 213.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- "
\n",
- "
2063 rows × 10 columns
\n",
- "
"
- ],
- "text/plain": [
- " week indicator inc inc_low inc_up inc100 inc100_low \\\n",
- "0 202419 3 17551 11964.0 23138.0 26 18.0 \n",
- "1 202418 3 22831 17935.0 27727.0 34 27.0 \n",
- "2 202417 3 27042 21410.0 32674.0 41 33.0 \n",
- "3 202416 3 28882 23305.0 34459.0 43 35.0 \n",
- "4 202415 3 30229 24648.0 35810.0 45 37.0 \n",
- "5 202414 3 31813 26529.0 37097.0 48 40.0 \n",
- "6 202413 3 35090 29607.0 40573.0 53 45.0 \n",
- "7 202412 3 40639 34582.0 46696.0 61 52.0 \n",
- "8 202411 3 50268 43331.0 57205.0 75 65.0 \n",
- "9 202410 3 60107 52623.0 67591.0 90 79.0 \n",
- "10 202409 3 71121 62920.0 79322.0 107 95.0 \n",
- "11 202408 3 104566 94520.0 114612.0 157 142.0 \n",
- "12 202407 3 138078 127050.0 149106.0 207 190.0 \n",
- "13 202406 3 190062 177955.0 202169.0 285 267.0 \n",
- "14 202405 3 216237 203595.0 228879.0 324 305.0 \n",
- "15 202404 3 213196 200547.0 225845.0 320 301.0 \n",
- "16 202403 3 163457 152276.0 174638.0 245 228.0 \n",
- "17 202402 3 129436 119453.0 139419.0 194 179.0 \n",
- "18 202401 3 120769 109452.0 132086.0 181 164.0 \n",
- "19 202352 3 115446 103738.0 127154.0 174 156.0 \n",
- "20 202351 3 148755 136546.0 160964.0 224 206.0 \n",
- "21 202350 3 147971 136787.0 159155.0 223 206.0 \n",
- "22 202349 3 147552 136422.0 158682.0 222 205.0 \n",
- "23 202348 3 124204 113479.0 134929.0 187 171.0 \n",
- "24 202347 3 110948 100694.0 121202.0 167 152.0 \n",
- "25 202346 3 83894 75134.0 92654.0 126 113.0 \n",
- "26 202345 3 72003 63178.0 80828.0 108 95.0 \n",
- "27 202344 3 49952 42813.0 57091.0 75 64.0 \n",
- "28 202343 3 44982 38170.0 51794.0 68 58.0 \n",
- "29 202342 3 56842 49277.0 64407.0 86 75.0 \n",
- "... ... ... ... ... ... ... ... \n",
- "2033 198521 3 26096 19621.0 32571.0 47 35.0 \n",
- "2034 198520 3 27896 20885.0 34907.0 51 38.0 \n",
- "2035 198519 3 43154 32821.0 53487.0 78 59.0 \n",
- "2036 198518 3 40555 29935.0 51175.0 74 55.0 \n",
- "2037 198517 3 34053 24366.0 43740.0 62 44.0 \n",
- "2038 198516 3 50362 36451.0 64273.0 91 66.0 \n",
- "2039 198515 3 63881 45538.0 82224.0 116 83.0 \n",
- "2040 198514 3 134545 114400.0 154690.0 244 207.0 \n",
- "2041 198513 3 197206 176080.0 218332.0 357 319.0 \n",
- "2042 198512 3 245240 223304.0 267176.0 445 405.0 \n",
- "2043 198511 3 276205 252399.0 300011.0 501 458.0 \n",
- "2044 198510 3 353231 326279.0 380183.0 640 591.0 \n",
- "2045 198509 3 369895 341109.0 398681.0 670 618.0 \n",
- "2046 198508 3 389886 359529.0 420243.0 707 652.0 \n",
- "2047 198507 3 471852 432599.0 511105.0 855 784.0 \n",
- "2048 198506 3 565825 518011.0 613639.0 1026 939.0 \n",
- "2049 198505 3 637302 592795.0 681809.0 1155 1074.0 \n",
- "2050 198504 3 424937 390794.0 459080.0 770 708.0 \n",
- "2051 198503 3 213901 174689.0 253113.0 388 317.0 \n",
- "2052 198502 3 97586 80949.0 114223.0 177 147.0 \n",
- "2053 198501 3 85489 65918.0 105060.0 155 120.0 \n",
- "2054 198452 3 84830 60602.0 109058.0 154 110.0 \n",
- "2055 198451 3 101726 80242.0 123210.0 185 146.0 \n",
- "2056 198450 3 123680 101401.0 145959.0 225 184.0 \n",
- "2057 198449 3 101073 81684.0 120462.0 184 149.0 \n",
- "2058 198448 3 78620 60634.0 96606.0 143 110.0 \n",
- "2059 198447 3 72029 54274.0 89784.0 131 99.0 \n",
- "2060 198446 3 87330 67686.0 106974.0 159 123.0 \n",
- "2061 198445 3 135223 101414.0 169032.0 246 184.0 \n",
- "2062 198444 3 68422 20056.0 116788.0 125 37.0 \n",
- "\n",
- " inc100_up geo_insee geo_name \n",
- "0 34.0 FR France \n",
- "1 41.0 FR France \n",
- "2 49.0 FR France \n",
- "3 51.0 FR France \n",
- "4 53.0 FR France \n",
- "5 56.0 FR France \n",
- "6 61.0 FR France \n",
- "7 70.0 FR France \n",
- "8 85.0 FR France \n",
- "9 101.0 FR France \n",
- "10 119.0 FR France \n",
- "11 172.0 FR France \n",
- "12 224.0 FR France \n",
- "13 303.0 FR France \n",
- "14 343.0 FR France \n",
- "15 339.0 FR France \n",
- "16 262.0 FR France \n",
- "17 209.0 FR France \n",
- "18 198.0 FR France \n",
- "19 192.0 FR France \n",
- "20 242.0 FR France \n",
- "21 240.0 FR France \n",
- "22 239.0 FR France \n",
- "23 203.0 FR France \n",
- "24 182.0 FR France \n",
- "25 139.0 FR France \n",
- "26 121.0 FR France \n",
- "27 86.0 FR France \n",
- "28 78.0 FR France \n",
- "29 97.0 FR France \n",
- "... ... ... ... \n",
- "2033 59.0 FR France \n",
- "2034 64.0 FR France \n",
- "2035 97.0 FR France \n",
- "2036 93.0 FR France \n",
- "2037 80.0 FR France \n",
- "2038 116.0 FR France \n",
- "2039 149.0 FR France \n",
- "2040 281.0 FR France \n",
- "2041 395.0 FR France \n",
- "2042 485.0 FR France \n",
- "2043 544.0 FR France \n",
- "2044 689.0 FR France \n",
- "2045 722.0 FR France \n",
- "2046 762.0 FR France \n",
- "2047 926.0 FR France \n",
- "2048 1113.0 FR France \n",
- "2049 1236.0 FR France \n",
- "2050 832.0 FR France \n",
- "2051 459.0 FR France \n",
- "2052 207.0 FR France \n",
- "2053 190.0 FR France \n",
- "2054 198.0 FR France \n",
- "2055 224.0 FR France \n",
- "2056 266.0 FR France \n",
- "2057 219.0 FR France \n",
- "2058 176.0 FR France \n",
- "2059 163.0 FR France \n",
- "2060 195.0 FR France \n",
- "2061 308.0 FR France \n",
- "2062 213.0 FR France \n",
- "\n",
- "[2063 rows x 10 columns]"
- ]
- },
- "execution_count": 18,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "raw_data = pd.read_csv(data_url, skiprows=1)\n",
- "raw_data"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "Y a-t-il des points manquants dans ce jeux de données ? Oui, la semaine 19 de l'année 1989 n'a pas de valeurs associées."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 19,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " week \n",
- " indicator \n",
- " inc \n",
- " inc_low \n",
- " inc_up \n",
- " inc100 \n",
- " inc100_low \n",
- " inc100_up \n",
- " geo_insee \n",
- " geo_name \n",
- " \n",
- " \n",
- " \n",
- " \n",
- " 1826 \n",
- " 198919 \n",
- " 3 \n",
- " - \n",
- " NaN \n",
- " NaN \n",
- " - \n",
- " NaN \n",
- " NaN \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " week indicator inc inc_low inc_up inc100 inc100_low inc100_up \\\n",
- "1826 198919 3 - NaN NaN - NaN NaN \n",
- "\n",
- " geo_insee geo_name \n",
- "1826 FR France "
- ]
- },
- "execution_count": 19,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "raw_data[raw_data.isnull().any(axis=1)]"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "Nous éliminons ce point, ce qui n'a pas d'impact fort sur notre analyse qui est assez simple."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 20,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " week \n",
- " indicator \n",
- " inc \n",
- " inc_low \n",
- " inc_up \n",
- " inc100 \n",
- " inc100_low \n",
- " inc100_up \n",
- " geo_insee \n",
- " geo_name \n",
- " \n",
- " \n",
- " \n",
- " \n",
- " 0 \n",
- " 202419 \n",
- " 3 \n",
- " 17551 \n",
- " 11964.0 \n",
- " 23138.0 \n",
- " 26 \n",
- " 18.0 \n",
- " 34.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 1 \n",
- " 202418 \n",
- " 3 \n",
- " 22831 \n",
- " 17935.0 \n",
- " 27727.0 \n",
- " 34 \n",
- " 27.0 \n",
- " 41.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 2 \n",
- " 202417 \n",
- " 3 \n",
- " 27042 \n",
- " 21410.0 \n",
- " 32674.0 \n",
- " 41 \n",
- " 33.0 \n",
- " 49.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 3 \n",
- " 202416 \n",
- " 3 \n",
- " 28882 \n",
- " 23305.0 \n",
- " 34459.0 \n",
- " 43 \n",
- " 35.0 \n",
- " 51.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 4 \n",
- " 202415 \n",
- " 3 \n",
- " 30229 \n",
- " 24648.0 \n",
- " 35810.0 \n",
- " 45 \n",
- " 37.0 \n",
- " 53.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 5 \n",
- " 202414 \n",
- " 3 \n",
- " 31813 \n",
- " 26529.0 \n",
- " 37097.0 \n",
- " 48 \n",
- " 40.0 \n",
- " 56.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 6 \n",
- " 202413 \n",
- " 3 \n",
- " 35090 \n",
- " 29607.0 \n",
- " 40573.0 \n",
- " 53 \n",
- " 45.0 \n",
- " 61.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 7 \n",
- " 202412 \n",
- " 3 \n",
- " 40639 \n",
- " 34582.0 \n",
- " 46696.0 \n",
- " 61 \n",
- " 52.0 \n",
- " 70.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 8 \n",
- " 202411 \n",
- " 3 \n",
- " 50268 \n",
- " 43331.0 \n",
- " 57205.0 \n",
- " 75 \n",
- " 65.0 \n",
- " 85.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 9 \n",
- " 202410 \n",
- " 3 \n",
- " 60107 \n",
- " 52623.0 \n",
- " 67591.0 \n",
- " 90 \n",
- " 79.0 \n",
- " 101.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 10 \n",
- " 202409 \n",
- " 3 \n",
- " 71121 \n",
- " 62920.0 \n",
- " 79322.0 \n",
- " 107 \n",
- " 95.0 \n",
- " 119.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 11 \n",
- " 202408 \n",
- " 3 \n",
- " 104566 \n",
- " 94520.0 \n",
- " 114612.0 \n",
- " 157 \n",
- " 142.0 \n",
- " 172.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 12 \n",
- " 202407 \n",
- " 3 \n",
- " 138078 \n",
- " 127050.0 \n",
- " 149106.0 \n",
- " 207 \n",
- " 190.0 \n",
- " 224.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 13 \n",
- " 202406 \n",
- " 3 \n",
- " 190062 \n",
- " 177955.0 \n",
- " 202169.0 \n",
- " 285 \n",
- " 267.0 \n",
- " 303.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 14 \n",
- " 202405 \n",
- " 3 \n",
- " 216237 \n",
- " 203595.0 \n",
- " 228879.0 \n",
- " 324 \n",
- " 305.0 \n",
- " 343.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 15 \n",
- " 202404 \n",
- " 3 \n",
- " 213196 \n",
- " 200547.0 \n",
- " 225845.0 \n",
- " 320 \n",
- " 301.0 \n",
- " 339.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 16 \n",
- " 202403 \n",
- " 3 \n",
- " 163457 \n",
- " 152276.0 \n",
- " 174638.0 \n",
- " 245 \n",
- " 228.0 \n",
- " 262.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 17 \n",
- " 202402 \n",
- " 3 \n",
- " 129436 \n",
- " 119453.0 \n",
- " 139419.0 \n",
- " 194 \n",
- " 179.0 \n",
- " 209.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 18 \n",
- " 202401 \n",
- " 3 \n",
- " 120769 \n",
- " 109452.0 \n",
- " 132086.0 \n",
- " 181 \n",
- " 164.0 \n",
- " 198.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 19 \n",
- " 202352 \n",
- " 3 \n",
- " 115446 \n",
- " 103738.0 \n",
- " 127154.0 \n",
- " 174 \n",
- " 156.0 \n",
- " 192.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 20 \n",
- " 202351 \n",
- " 3 \n",
- " 148755 \n",
- " 136546.0 \n",
- " 160964.0 \n",
- " 224 \n",
- " 206.0 \n",
- " 242.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 21 \n",
- " 202350 \n",
- " 3 \n",
- " 147971 \n",
- " 136787.0 \n",
- " 159155.0 \n",
- " 223 \n",
- " 206.0 \n",
- " 240.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 22 \n",
- " 202349 \n",
- " 3 \n",
- " 147552 \n",
- " 136422.0 \n",
- " 158682.0 \n",
- " 222 \n",
- " 205.0 \n",
- " 239.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 23 \n",
- " 202348 \n",
- " 3 \n",
- " 124204 \n",
- " 113479.0 \n",
- " 134929.0 \n",
- " 187 \n",
- " 171.0 \n",
- " 203.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 24 \n",
- " 202347 \n",
- " 3 \n",
- " 110948 \n",
- " 100694.0 \n",
- " 121202.0 \n",
- " 167 \n",
- " 152.0 \n",
- " 182.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 25 \n",
- " 202346 \n",
- " 3 \n",
- " 83894 \n",
- " 75134.0 \n",
- " 92654.0 \n",
- " 126 \n",
- " 113.0 \n",
- " 139.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 26 \n",
- " 202345 \n",
- " 3 \n",
- " 72003 \n",
- " 63178.0 \n",
- " 80828.0 \n",
- " 108 \n",
- " 95.0 \n",
- " 121.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 27 \n",
- " 202344 \n",
- " 3 \n",
- " 49952 \n",
- " 42813.0 \n",
- " 57091.0 \n",
- " 75 \n",
- " 64.0 \n",
- " 86.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 28 \n",
- " 202343 \n",
- " 3 \n",
- " 44982 \n",
- " 38170.0 \n",
- " 51794.0 \n",
- " 68 \n",
- " 58.0 \n",
- " 78.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 29 \n",
- " 202342 \n",
- " 3 \n",
- " 56842 \n",
- " 49277.0 \n",
- " 64407.0 \n",
- " 86 \n",
- " 75.0 \n",
- " 97.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " \n",
- " \n",
- " 2033 \n",
- " 198521 \n",
- " 3 \n",
- " 26096 \n",
- " 19621.0 \n",
- " 32571.0 \n",
- " 47 \n",
- " 35.0 \n",
- " 59.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 2034 \n",
- " 198520 \n",
- " 3 \n",
- " 27896 \n",
- " 20885.0 \n",
- " 34907.0 \n",
- " 51 \n",
- " 38.0 \n",
- " 64.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 2035 \n",
- " 198519 \n",
- " 3 \n",
- " 43154 \n",
- " 32821.0 \n",
- " 53487.0 \n",
- " 78 \n",
- " 59.0 \n",
- " 97.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 2036 \n",
- " 198518 \n",
- " 3 \n",
- " 40555 \n",
- " 29935.0 \n",
- " 51175.0 \n",
- " 74 \n",
- " 55.0 \n",
- " 93.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 2037 \n",
- " 198517 \n",
- " 3 \n",
- " 34053 \n",
- " 24366.0 \n",
- " 43740.0 \n",
- " 62 \n",
- " 44.0 \n",
- " 80.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 2038 \n",
- " 198516 \n",
- " 3 \n",
- " 50362 \n",
- " 36451.0 \n",
- " 64273.0 \n",
- " 91 \n",
- " 66.0 \n",
- " 116.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 2039 \n",
- " 198515 \n",
- " 3 \n",
- " 63881 \n",
- " 45538.0 \n",
- " 82224.0 \n",
- " 116 \n",
- " 83.0 \n",
- " 149.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 2040 \n",
- " 198514 \n",
- " 3 \n",
- " 134545 \n",
- " 114400.0 \n",
- " 154690.0 \n",
- " 244 \n",
- " 207.0 \n",
- " 281.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 2041 \n",
- " 198513 \n",
- " 3 \n",
- " 197206 \n",
- " 176080.0 \n",
- " 218332.0 \n",
- " 357 \n",
- " 319.0 \n",
- " 395.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 2042 \n",
- " 198512 \n",
- " 3 \n",
- " 245240 \n",
- " 223304.0 \n",
- " 267176.0 \n",
- " 445 \n",
- " 405.0 \n",
- " 485.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 2043 \n",
- " 198511 \n",
- " 3 \n",
- " 276205 \n",
- " 252399.0 \n",
- " 300011.0 \n",
- " 501 \n",
- " 458.0 \n",
- " 544.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 2044 \n",
- " 198510 \n",
- " 3 \n",
- " 353231 \n",
- " 326279.0 \n",
- " 380183.0 \n",
- " 640 \n",
- " 591.0 \n",
- " 689.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 2045 \n",
- " 198509 \n",
- " 3 \n",
- " 369895 \n",
- " 341109.0 \n",
- " 398681.0 \n",
- " 670 \n",
- " 618.0 \n",
- " 722.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 2046 \n",
- " 198508 \n",
- " 3 \n",
- " 389886 \n",
- " 359529.0 \n",
- " 420243.0 \n",
- " 707 \n",
- " 652.0 \n",
- " 762.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 2047 \n",
- " 198507 \n",
- " 3 \n",
- " 471852 \n",
- " 432599.0 \n",
- " 511105.0 \n",
- " 855 \n",
- " 784.0 \n",
- " 926.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 2048 \n",
- " 198506 \n",
- " 3 \n",
- " 565825 \n",
- " 518011.0 \n",
- " 613639.0 \n",
- " 1026 \n",
- " 939.0 \n",
- " 1113.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 2049 \n",
- " 198505 \n",
- " 3 \n",
- " 637302 \n",
- " 592795.0 \n",
- " 681809.0 \n",
- " 1155 \n",
- " 1074.0 \n",
- " 1236.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 2050 \n",
- " 198504 \n",
- " 3 \n",
- " 424937 \n",
- " 390794.0 \n",
- " 459080.0 \n",
- " 770 \n",
- " 708.0 \n",
- " 832.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 2051 \n",
- " 198503 \n",
- " 3 \n",
- " 213901 \n",
- " 174689.0 \n",
- " 253113.0 \n",
- " 388 \n",
- " 317.0 \n",
- " 459.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 2052 \n",
- " 198502 \n",
- " 3 \n",
- " 97586 \n",
- " 80949.0 \n",
- " 114223.0 \n",
- " 177 \n",
- " 147.0 \n",
- " 207.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 2053 \n",
- " 198501 \n",
- " 3 \n",
- " 85489 \n",
- " 65918.0 \n",
- " 105060.0 \n",
- " 155 \n",
- " 120.0 \n",
- " 190.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 2054 \n",
- " 198452 \n",
- " 3 \n",
- " 84830 \n",
- " 60602.0 \n",
- " 109058.0 \n",
- " 154 \n",
- " 110.0 \n",
- " 198.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 2055 \n",
- " 198451 \n",
- " 3 \n",
- " 101726 \n",
- " 80242.0 \n",
- " 123210.0 \n",
- " 185 \n",
- " 146.0 \n",
- " 224.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 2056 \n",
- " 198450 \n",
- " 3 \n",
- " 123680 \n",
- " 101401.0 \n",
- " 145959.0 \n",
- " 225 \n",
- " 184.0 \n",
- " 266.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 2057 \n",
- " 198449 \n",
- " 3 \n",
- " 101073 \n",
- " 81684.0 \n",
- " 120462.0 \n",
- " 184 \n",
- " 149.0 \n",
- " 219.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 2058 \n",
- " 198448 \n",
- " 3 \n",
- " 78620 \n",
- " 60634.0 \n",
- " 96606.0 \n",
- " 143 \n",
- " 110.0 \n",
- " 176.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 2059 \n",
- " 198447 \n",
- " 3 \n",
- " 72029 \n",
- " 54274.0 \n",
- " 89784.0 \n",
- " 131 \n",
- " 99.0 \n",
- " 163.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 2060 \n",
- " 198446 \n",
- " 3 \n",
- " 87330 \n",
- " 67686.0 \n",
- " 106974.0 \n",
- " 159 \n",
- " 123.0 \n",
- " 195.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 2061 \n",
- " 198445 \n",
- " 3 \n",
- " 135223 \n",
- " 101414.0 \n",
- " 169032.0 \n",
- " 246 \n",
- " 184.0 \n",
- " 308.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 2062 \n",
- " 198444 \n",
- " 3 \n",
- " 68422 \n",
- " 20056.0 \n",
- " 116788.0 \n",
- " 125 \n",
- " 37.0 \n",
- " 213.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- "
\n",
- "
2062 rows × 10 columns
\n",
- "
"
- ],
- "text/plain": [
- " week indicator inc inc_low inc_up inc100 inc100_low \\\n",
- "0 202419 3 17551 11964.0 23138.0 26 18.0 \n",
- "1 202418 3 22831 17935.0 27727.0 34 27.0 \n",
- "2 202417 3 27042 21410.0 32674.0 41 33.0 \n",
- "3 202416 3 28882 23305.0 34459.0 43 35.0 \n",
- "4 202415 3 30229 24648.0 35810.0 45 37.0 \n",
- "5 202414 3 31813 26529.0 37097.0 48 40.0 \n",
- "6 202413 3 35090 29607.0 40573.0 53 45.0 \n",
- "7 202412 3 40639 34582.0 46696.0 61 52.0 \n",
- "8 202411 3 50268 43331.0 57205.0 75 65.0 \n",
- "9 202410 3 60107 52623.0 67591.0 90 79.0 \n",
- "10 202409 3 71121 62920.0 79322.0 107 95.0 \n",
- "11 202408 3 104566 94520.0 114612.0 157 142.0 \n",
- "12 202407 3 138078 127050.0 149106.0 207 190.0 \n",
- "13 202406 3 190062 177955.0 202169.0 285 267.0 \n",
- "14 202405 3 216237 203595.0 228879.0 324 305.0 \n",
- "15 202404 3 213196 200547.0 225845.0 320 301.0 \n",
- "16 202403 3 163457 152276.0 174638.0 245 228.0 \n",
- "17 202402 3 129436 119453.0 139419.0 194 179.0 \n",
- "18 202401 3 120769 109452.0 132086.0 181 164.0 \n",
- "19 202352 3 115446 103738.0 127154.0 174 156.0 \n",
- "20 202351 3 148755 136546.0 160964.0 224 206.0 \n",
- "21 202350 3 147971 136787.0 159155.0 223 206.0 \n",
- "22 202349 3 147552 136422.0 158682.0 222 205.0 \n",
- "23 202348 3 124204 113479.0 134929.0 187 171.0 \n",
- "24 202347 3 110948 100694.0 121202.0 167 152.0 \n",
- "25 202346 3 83894 75134.0 92654.0 126 113.0 \n",
- "26 202345 3 72003 63178.0 80828.0 108 95.0 \n",
- "27 202344 3 49952 42813.0 57091.0 75 64.0 \n",
- "28 202343 3 44982 38170.0 51794.0 68 58.0 \n",
- "29 202342 3 56842 49277.0 64407.0 86 75.0 \n",
- "... ... ... ... ... ... ... ... \n",
- "2033 198521 3 26096 19621.0 32571.0 47 35.0 \n",
- "2034 198520 3 27896 20885.0 34907.0 51 38.0 \n",
- "2035 198519 3 43154 32821.0 53487.0 78 59.0 \n",
- "2036 198518 3 40555 29935.0 51175.0 74 55.0 \n",
- "2037 198517 3 34053 24366.0 43740.0 62 44.0 \n",
- "2038 198516 3 50362 36451.0 64273.0 91 66.0 \n",
- "2039 198515 3 63881 45538.0 82224.0 116 83.0 \n",
- "2040 198514 3 134545 114400.0 154690.0 244 207.0 \n",
- "2041 198513 3 197206 176080.0 218332.0 357 319.0 \n",
- "2042 198512 3 245240 223304.0 267176.0 445 405.0 \n",
- "2043 198511 3 276205 252399.0 300011.0 501 458.0 \n",
- "2044 198510 3 353231 326279.0 380183.0 640 591.0 \n",
- "2045 198509 3 369895 341109.0 398681.0 670 618.0 \n",
- "2046 198508 3 389886 359529.0 420243.0 707 652.0 \n",
- "2047 198507 3 471852 432599.0 511105.0 855 784.0 \n",
- "2048 198506 3 565825 518011.0 613639.0 1026 939.0 \n",
- "2049 198505 3 637302 592795.0 681809.0 1155 1074.0 \n",
- "2050 198504 3 424937 390794.0 459080.0 770 708.0 \n",
- "2051 198503 3 213901 174689.0 253113.0 388 317.0 \n",
- "2052 198502 3 97586 80949.0 114223.0 177 147.0 \n",
- "2053 198501 3 85489 65918.0 105060.0 155 120.0 \n",
- "2054 198452 3 84830 60602.0 109058.0 154 110.0 \n",
- "2055 198451 3 101726 80242.0 123210.0 185 146.0 \n",
- "2056 198450 3 123680 101401.0 145959.0 225 184.0 \n",
- "2057 198449 3 101073 81684.0 120462.0 184 149.0 \n",
- "2058 198448 3 78620 60634.0 96606.0 143 110.0 \n",
- "2059 198447 3 72029 54274.0 89784.0 131 99.0 \n",
- "2060 198446 3 87330 67686.0 106974.0 159 123.0 \n",
- "2061 198445 3 135223 101414.0 169032.0 246 184.0 \n",
- "2062 198444 3 68422 20056.0 116788.0 125 37.0 \n",
- "\n",
- " inc100_up geo_insee geo_name \n",
- "0 34.0 FR France \n",
- "1 41.0 FR France \n",
- "2 49.0 FR France \n",
- "3 51.0 FR France \n",
- "4 53.0 FR France \n",
- "5 56.0 FR France \n",
- "6 61.0 FR France \n",
- "7 70.0 FR France \n",
- "8 85.0 FR France \n",
- "9 101.0 FR France \n",
- "10 119.0 FR France \n",
- "11 172.0 FR France \n",
- "12 224.0 FR France \n",
- "13 303.0 FR France \n",
- "14 343.0 FR France \n",
- "15 339.0 FR France \n",
- "16 262.0 FR France \n",
- "17 209.0 FR France \n",
- "18 198.0 FR France \n",
- "19 192.0 FR France \n",
- "20 242.0 FR France \n",
- "21 240.0 FR France \n",
- "22 239.0 FR France \n",
- "23 203.0 FR France \n",
- "24 182.0 FR France \n",
- "25 139.0 FR France \n",
- "26 121.0 FR France \n",
- "27 86.0 FR France \n",
- "28 78.0 FR France \n",
- "29 97.0 FR France \n",
- "... ... ... ... \n",
- "2033 59.0 FR France \n",
- "2034 64.0 FR France \n",
- "2035 97.0 FR France \n",
- "2036 93.0 FR France \n",
- "2037 80.0 FR France \n",
- "2038 116.0 FR France \n",
- "2039 149.0 FR France \n",
- "2040 281.0 FR France \n",
- "2041 395.0 FR France \n",
- "2042 485.0 FR France \n",
- "2043 544.0 FR France \n",
- "2044 689.0 FR France \n",
- "2045 722.0 FR France \n",
- "2046 762.0 FR France \n",
- "2047 926.0 FR France \n",
- "2048 1113.0 FR France \n",
- "2049 1236.0 FR France \n",
- "2050 832.0 FR France \n",
- "2051 459.0 FR France \n",
- "2052 207.0 FR France \n",
- "2053 190.0 FR France \n",
- "2054 198.0 FR France \n",
- "2055 224.0 FR France \n",
- "2056 266.0 FR France \n",
- "2057 219.0 FR France \n",
- "2058 176.0 FR France \n",
- "2059 163.0 FR France \n",
- "2060 195.0 FR France \n",
- "2061 308.0 FR France \n",
- "2062 213.0 FR France \n",
- "\n",
- "[2062 rows x 10 columns]"
- ]
- },
- "execution_count": 20,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "data = raw_data.dropna().copy()\n",
- "data"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "Nos données utilisent une convention inhabituelle: le numéro de\n",
- "semaine est collé à l'année, donnant l'impression qu'il s'agit\n",
- "de nombre entier. C'est comme ça que Pandas les interprète.\n",
- " \n",
- "Un deuxième problème est que Pandas ne comprend pas les numéros de\n",
- "semaine. Il faut lui fournir les dates de début et de fin de\n",
- "semaine. Nous utilisons pour cela la bibliothèque `isoweek`.\n",
- "\n",
- "Comme la conversion des semaines est devenu assez complexe, nous\n",
- "écrivons une petite fonction Python pour cela. Ensuite, nous\n",
- "l'appliquons à tous les points de nos donnés. Les résultats vont\n",
- "dans une nouvelle colonne 'period'."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 32,
- "metadata": {},
- "outputs": [],
- "source": [
- "def convert_week(year_and_week_int):\n",
- " year_and_week_str = str(year_and_week_int)\n",
- " year = int(year_and_week_str[:4])\n",
- " week = int(year_and_week_str[4:])\n",
- " w = isoweek.Week(year, week)\n",
- " return pd.Period(w.day(0), 'W')\n",
- "\n",
- "data['period'] = [convert_week(yw) for yw in data['week']]"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "Il restent deux petites modifications à faire.\n",
- "\n",
- "Premièrement, nous définissons les périodes d'observation\n",
- "comme nouvel index de notre jeux de données. Ceci en fait\n",
- "une suite chronologique, ce qui sera pratique par la suite.\n",
- "\n",
- "Deuxièmement, nous trions les points par période, dans\n",
- "le sens chronologique."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 33,
- "metadata": {},
- "outputs": [],
- "source": [
- "sorted_data = data.set_index('period').sort_index()"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "Nous vérifions la cohérence des données. Entre la fin d'une période et\n",
- "le début de la période qui suit, la différence temporelle doit être\n",
- "zéro, ou au moins très faible. Nous laissons une \"marge d'erreur\"\n",
- "d'une seconde.\n",
- "\n",
- "Ceci s'avère tout à fait juste sauf pour deux périodes consécutives\n",
- "entre lesquelles il manque une semaine.\n",
- "\n",
- "Nous reconnaissons ces dates: c'est la semaine sans observations\n",
- "que nous avions supprimées !"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 30,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "1989-05-01/1989-05-07 1989-05-15/1989-05-21\n"
- ]
- }
- ],
- "source": [
- "periods = sorted_data.index\n",
- "for p1, p2 in zip(periods[:-1], periods[1:]):\n",
- " delta = p2.to_timestamp() - p1.end_time\n",
- " if delta > pd.Timedelta('1s'):\n",
- " print(p1, p2)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "Un premier regard sur les données !"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 35,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "'68422'"
- ]
- },
- "execution_count": 35,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "sorted_data['inc'][0]"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "Toute la colonne 'inc' est représentée par des chaines de caractères à cause du trait dans la ligne de la semaine 19 de l'année 1989. "
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 42,
- "metadata": {},
- "outputs": [],
- "source": [
- "sorted_data['inc'] = sorted_data['inc'].astype(int)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 43,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- ""
- ]
- },
- "execution_count": 43,
- "metadata": {},
- "output_type": "execute_result"
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEKCAYAAAA1qaOTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztnXm4HUWZ/7/vWe+Sm+Rmg6wm7EvYYwAVQVHADRgVB0clKooyOOM4oyM4oyiKiKMyozMu/CQKqCziAspm2HdCwhaSELLvy03uTXJz17PU74+u6lPdp3o5fc65p0/yfp4nzz2p7qqurq6ut96lqkkIAYZhGIaplkSjK8AwDMPsH7BAYRiGYWoCCxSGYRimJrBAYRiGYWoCCxSGYRimJrBAYRiGYWoCCxSGYRimJrBAYRiGYWoCCxSGYRimJqQaXYGRZMKECWLmzJmNrgbDMExTsXjx4p1CiIlB5x1QAmXmzJlYtGhRo6vBMAzTVBDR+jDnscmLYRiGqQksUBiGYZiawAKFYRiGqQksUBiGYZiawAKFYRiGqQmBAoWI5hPRDiJ6TUsbR0QLiGil/NupHbuKiFYR0QoiOldLP4WIlshjPyYikulZIrpDpj9PRDO1PPPkNVYS0TwtfZY8d6XMm6m+KRiGYZhqCKOh/BrAea60KwE8LIQ4HMDD8v8gomMAXAzgWJnnp0SUlHl+BuAyAIfLf6rMSwH0CCEOA3ADgOtlWeMAXA3gVABzAVytCa7rAdwgr98jy2AYhmEaSKBAEUI8AaDblXwBgJvl75sBXKil3y6EGBJCrAWwCsBcIpoMYLQQ4llhfXP4FlceVdZdAM6W2su5ABYIIbqFED0AFgA4Tx57pzzXff39koeXb8eW3QONrgbDMIwvUX0oBwkhtgKA/DtJpk8FsFE7b5NMmyp/u9MdeYQQeQB7AIz3KWs8gN3yXHdZ+yWX3rwIF/7f042uBsMwjC+1dsqTIU34pEfJ41dWeYWILiOiRUS0qKury+u02GIpdMCO3qEG14RhGMafqAJluzRjQf7dIdM3AZiunTcNwBaZPs2Q7shDRCkAY2CZ2LzK2glgrDzXXVYZQogbhRBzhBBzJk4M3IomduQKnrKSYRgmVkQVKPcAUFFX8wDcraVfLCO3ZsFyvi+UZrFeIjpN+kAuceVRZX0YwCPSz/IggHOIqFM6488B8KA89qg81339/Y58sdjoKjAMw4QicHNIIroNwFkAJhDRJliRV98DcCcRXQpgA4CLAEAIsZSI7gSwDEAewBVCiIIs6nJYEWOtAO6X/wDgJgC3EtEqWJrJxbKsbiL6NoAX5HnXCCFUcMBXAdxORN8B8JIsY78kl7c0lITJ0McwDBMjAgWKEOKjHofO9jj/WgDXGtIXAZhtSB+EFEiGY/MBzDekr4EVSrzfk5MaSirBa1AZhok3PErFnLz0oSRZRWEYJuawQIk5yofC8oRhmLjDAoVhGIapCSxQYo5chuK90IZhGCYmsEBpEgRLFIZhYg4LlCZBsI7CMEzMYYESc2yTF8sThmFiDguUJoHlCcMwcYcFSsyxTV0sURiGiTksUJoE9qEwDBN3WKDEHPahMAzTLLBAaRJYnjAME3dYoMQcFiQMwzQLLFCaBME2L4ZhYg4LlJijBEkcxclVf1yCI/7j/uATGYY5IAj8HgoTD+KooNy2cEOjq8AwTIxgDSXmxFCOMAzDGGGBwjAMw9QEFigxJ46mLoZhGBMsUGIPSxSGYZoDFigMwzBMTWCBEnPY5MUwTLPAAoVhGIapCSxQYg4rKAzDNAssUBiGYZiawAIl5rAPhWGYZoEFCsMwDFMTWKDEHP5SI8MwzQILFIZhGKYmsECJOUE+lJ6+YRzxH/dj4drukakQwzCMB1UJFCL6EhEtJaLXiOg2ImohonFEtICIVsq/ndr5VxHRKiJaQUTnaumnENESeezHREQyPUtEd8j054loppZnnrzGSiKaV819NDOL1/dguFDEzx9f3eiqMAxzgBNZoBDRVAD/DGCOEGI2gCSAiwFcCeBhIcThAB6W/wcRHSOPHwvgPAA/JaKkLO5nAC4DcLj8d55MvxRAjxDiMAA3ALheljUOwNUATgUwF8DVuuDanwjSUCzRyzAM03iqNXmlALQSUQpAG4AtAC4AcLM8fjOAC+XvCwDcLoQYEkKsBbAKwFwimgxgtBDiWWF9nvAWVx5V1l0Azpbay7kAFgghuoUQPQAWoCSE9ivYKc8wTLMQWaAIITYD+AGADQC2AtgjhPgbgIOEEFvlOVsBTJJZpgLYqBWxSaZNlb/d6Y48Qog8gD0AxvuUxTAMwzSIakxenbA0iFkApgBoJ6KP+2UxpAmf9Kh53PW8jIgWEdGirq4un+rFE17YyDBMs1CNyetdANYKIbqEEDkAfwTwFgDbpRkL8u8Oef4mANO1/NNgmcg2yd/udEceaVYbA6Dbp6wyhBA3CiHmCCHmTJw4MeKtxh/BkodhmAZTjUDZAOA0ImqTfo2zASwHcA8AFXU1D8Dd8vc9AC6WkVuzYDnfF0qzWC8RnSbLucSVR5X1YQCPSD/LgwDOIaJOqSmdI9MOOJRTnsUJwzCNJhU1oxDieSK6C8CLAPIAXgJwI4BRAO4kokthCZ2L5PlLiehOAMvk+VcIIQqyuMsB/BpAK4D75T8AuAnArUS0CpZmcrEsq5uIvg3gBXneNUKIA3IhBhmtfwzDMCNPZIECAEKIq2GF7+oMwdJWTOdfC+BaQ/oiALMN6YOQAslwbD6A+RVWuelgSxbDMM0Cr5RnGIZhagILlJjD61AYhmkWWKDsJ7BpjGGYRsMCJeYECgqO8mIYJiawQGly4hDjFXUNzFd+/wr+tnRbjWvDMEyjYIESc5pB84hqbvv94k247NbFta0MwzANgwUKwzAMUxNYoMScZthSJf41ZBhmJGCBEnPCDtaNFDzNIPQYhqk/LFCaHIrBF7ZYnDAMA7BAiT3NMPlvhjoyDFN/WKA0OY3XT3g1P8MwFixQYk/8B2vWUBiGAVig7DfwoM4wTKNhgRJzggRFDHzyDMMwAFigMDWAtSOGYQAWKLGnGcZqdsozDAOwQGFqQBQNhRdDMsz+BwuUmBPoQ5GBw43UEqJcmeUJw+x/sEBpcpRTvpEDdBRtg+UJw+x/sECJOc1gGoqmocT/vhiGqQwWKExDYHHCMPsfLFBiTjMMvNGc8rWvB8MwjYUFSsxpioE3Qh2LTXFjDMNUAguU/YSGOuWbQo9iGKbesECJOWEH64aGDdfJ5LVl90DlBTMM0zBYoFTAkyu7sGhdd6Or4SAOlqNIUV4Buf766ha85XuP4KmVO6NVimGYEYcFSgV84qaF+PDPnx3ZiwaM1nEwN0VahxKQ5aUNuwEAy7fujVIlhmEaAAuUJicOGkoUmrTaDMP4wAIl5oQdeBvrlI+QJ2SFeXt+hmkeWKA0OXGY6UdyytehTIZhGktVAoWIxhLRXUT0OhEtJ6LTiWgcES0gopXyb6d2/lVEtIqIVhDRuVr6KUS0RB77MZE1LyWiLBHdIdOfJ6KZWp558horiWheNfcRZ4IG1jhsYRLFjxODajMMU2Oq1VD+B8ADQoijAJwAYDmAKwE8LIQ4HMDD8v8gomMAXAzgWADnAfgpESVlOT8DcBmAw+W/82T6pQB6hBCHAbgBwPWyrHEArgZwKoC5AK7WBdeBhHD9bWgl6p2HYZhYE1mgENFoAG8HcBMACCGGhRC7AVwA4GZ52s0ALpS/LwBwuxBiSAixFsAqAHOJaDKA0UKIZ4U13b7FlUeVdReAs6X2ci6ABUKIbiFED4AFKAmh/YrA2X8MBuZ6hA0zDNN8VKOhHAKgC8CviOglIvolEbUDOEgIsRUA5N9J8vypADZq+TfJtKnytzvdkUcIkQewB8B4n7IOOOIwMPNeXgzDANUJlBSAkwH8TAhxEoA+SPOWB6Z4HeGTHjWP86JElxHRIiJa1NXV5VO9eBJ64G2yAbrJqsswTAiqESibAGwSQjwv/38XLAGzXZqxIP/u0M6fruWfBmCLTJ9mSHfkIaIUgDEAun3KKkMIcaMQYo4QYs7EiRMj3Ga8icNMP5pT3j9PHDQvhmEqI7JAEUJsA7CRiI6USWcDWAbgHgAq6moegLvl73sAXCwjt2bBcr4vlGaxXiI6TfpHLnHlUWV9GMAj0s/yIIBziKhTOuPPkWn7Hc0QXluPsGEF8UIUhmkaUlXm/ycAvyWiDIA1AD4FS0jdSUSXAtgA4CIAEEIsJaI7YQmdPIArhBAFWc7lAH4NoBXA/fIfYDn8byWiVbA0k4tlWd1E9G0AL8jzrhFCxGuTrRoRPJNvPPxNeYZhgCoFihDiZQBzDIfO9jj/WgDXGtIXAZhtSB+EFEiGY/MBzK+kvvsjSuA0drfhKN+UDxCULHAYpunglfIxpym2XqnjOpQD0eB1/QOvY+aV9za6GgxTMSxQmpxmncgXm7XiI8DPHlvd6CowTCRYoMSdwK1XRqYateZAjeJau7MPy7bwlvzM/km1Tnmm4TR+YK7nwsb9LcjrHT94DACw7nvva2xFGKYOsIYSc5rBeR1pHUod6sFUz6MrdmAwVwg+kWEMsEDZT2jkAB1NQwkSlPW9o1ueXYc/v7S5rtdoNl7ZuBuf+tULuO6+5Y2uCtOksMkr5gRuX2+f18Cw4Sh5Ghzl9Y27lwIALjwpvlvACSFGdGFnV+8QAGBTz8CIXZPZv2ANpcmJhckrDpXYDxnpZh0uFAEA6WTzDQufv3UxDvvafY2uxgFP8/WcA4xgDaXxg3lcV8r3D+ftWXczUhxhiZJTAiXVfMPCA0u3Ic+x6A2n+XoO46BZlYOREIR/93/P4M3XPlT369SLkX60Q3mloexnoXXMiMECJeYEbg45IrXwJ67fQ1mxvbf+F6kjI62hFOUMP5VoXoFSZC2lobBAiTlh/RONfY1qHzbMw8LIa5/7w5qfkRbCjBMWKE1OHBzi9QgbVsR1+/qFa7uxu3+4rtfgwbFyWEFpLCxQIjCSg3hTbA5ZhzxxHksLRYGP/OJZXDJ/YV2vE2VwFELgjy9uwrD0h0Qhzm0fBAvhxsICJQKFGE2D4vD+xNWHUi/UoLVk857IZYSZlEQZHBcs245/vfMV3PDQGxXnpQNyb2emlrBAiUDB40X/yytb8NTKnTW9VnOEDddv//o4WrzUM6lGKIaZk0Qpf89ADgCwY2+EcGnZ1o3oUXsGcjjxmr9h4drqvpPHGkpjYYESgaKHNeGfbnsJH7/p+ZGtjKT5tl4JOB4DQelFLeoWZuCrxrQapY5KdjdiTF66eQ929+fwowUrqionRsaDAxIWKBHw0lDqQ8jNIZtsZhb6m/J1rUU0atHUYcymUQZHO4ihuboDsmlrKBqqwvcDsIbSaFigRIB9KNXXIQ71jkot6h6mjCiDYy0EsEm7GcwVsLprXw1KN5NNJQEAQ7nqBIqoLjtTJSxQIjCSi6fCbg7ZSKJtXx+PbfmjmJVqMQsOo+VWc50oOf1CtD9z8yKc/cPH69b3M3K7l96hXFXlsIbSWFigRCBOnbZZ16F4+aHKqLNXPlJobk2uG8YrX3m5tsWrGu3GkPWpVVawSb36vrr2xu7qdjpu/NtwYMMCJQIj6UMJu6K82V6kuDjdowyQtRhUw8z0o/lQrL/RNJTgvPXq+7VSfOI02TsQYYESgdCz6xGkoQsbm9iHEmUAqkXdwwyg0XwollSopo5+2k29nlutJhgsUBoLC5QIjKiG0gSbXsVF24hCPbeN8SNclFcEgVIDDcWPeg3YtZqksTxpLCxQIhCnHU3VYN5sg3pcXvxGaVdhhFJc2kinXhGOrKHsH7BAicBIhg3HJRqq1nUIvK+IdamUhvlQ6rRSvpS3PhFi9er6terHMZrrHZCwQIlAnExecXh/Im28EjJTvRc2RvKh1KEeJqKZvKQPJcL1wvhf6hVVWKti4xD1eCDDAiUCcey0jXXKx3dQDiLKjLYWGkoYE89IL2wMFeUVc5NXDF/NAwoWKBEojGCUV6BPXjj/NoJoGko8THmRJgcjtlK+mgtUkdeHepmUOGx4/4AFSgRitfVKDOb6DRqTa0KkRZkxFnYlLaMKH4pv2HC9TF61csrXpBgmIlULFCJKEtFLRPRX+f9xRLSAiFbKv53auVcR0SoiWkFE52rppxDREnnsxyQNwUSUJaI7ZPrzRDRTyzNPXmMlEc2r9j4qYSRnQWFn8o19j+q3lqMW9+XXhtF8KLUwedXmHDf1/qYJL2xk/KiFhvJFAMu1/18J4GEhxOEAHpb/BxEdA+BiAMcCOA/AT4koKfP8DMBlAA6X/86T6ZcC6BFCHAbgBgDXy7LGAbgawKkA5gK4Whdc9cakoTTKr9K8r0/IBTZ1jqiK5kOJXpfKrlONllGfPPW791r5UJr3jdgfqEqgENE0AO8D8Est+QIAN8vfNwO4UEu/XQgxJIRYC2AVgLlENBnAaCHEs8LqDbe48qiy7gJwttRezgWwQAjRLYToAbAAJSFUd0yztIaZwWRdGvki1XMtR701lEgBBbVwyofZHDKCr660l1fleRW+YcP1csrXLMqrNuUw0ahWQ/lvAP8OQO/6BwkhtgKA/DtJpk8FsFE7b5NMmyp/u9MdeYQQeQB7AIz3KWtEML1UI/uNlHJe39aLDbv6G3LtSE75sOfVwgHucyzad9sjV6UiRjrKyzbl+Wp0cTd51aYcJhqRBQoRvR/ADiHE4rBZDGnCJz1qHudFiS4jokVEtKirqytURYMwddp67e9VyTqUL935cn0qEUBdvthoW7xqoQ34HKuj/6faMqJcpxqnfMkf5+dzqrxO4a5dK6f8yEuUBcu24+lVtf30d7NSjYbyVgDnE9E6ALcDeCcR/QbAdmnGgvy7Q56/CcB0Lf80AFtk+jRDuiMPEaUAjAHQ7VNWGUKIG4UQc4QQcyZOnBjtTl2YzFuN0lDioOLX02wU9fb08v0GmUatQwlDNOe/JVHqpXnFX0MZ+Rfis7cswsd+2ZhPf8eNyAJFCHGVEGKaEGImLGf7I0KIjwO4B4CKupoH4G75+x4AF8vIrVmwnO8LpVmsl4hOk/6RS1x5VFkfltcQAB4EcA4RdUpn/DkybUQwddpGLfiKgxMyjiavsI8jik9gpFq8mu3roxDmcnXzofDCxv2CVB3K/B6AO4noUgAbAFwEAEKIpUR0J4BlAPIArhBCFGSeywH8GkArgPvlPwC4CcCtRLQKlmZysSyrm4i+DeAFed41QojuOtyLEZPwaNSGkfpVo4wlL27oQWs6iaMnj45ehxg65XWh77+VSHVl15N6RHkN5QvYM5DDpI6WivNadYpcJV9qt5cXS5RGUhOBIoR4DMBj8vcuAGd7nHctgGsN6YsAzDakD0IKJMOx+QDmR61zNRijvGK+x5EXH/zpMwCAdd97X30v5CLsjDSqBuYQKL4+gTj7UKqpmznvF373EhYs22583up6fpetmybOUV77BbxSPgImbaRhGkoMXqB6Oraj3p+ez98pH6XskdJQouTyz7Rg2fbAnLUWwGHg7ev3D1igRGAoXx7S1SgNJRavTz2jvCLeoV6+v1O+MT6UUJtDRpAoKktw+xpOqFPkWRg4bHj/gAVKBPqHC2Vp9XPKBxzX3vBqHLLVEM0pH9bkFaFwuE1efuVHGbRHKsorQh5bEPtj6q72x9r8TF4x38srDkEqBzIsUCLQP5wvS4vjd+ZHirqsQ7G/RBmNsE75Ri1srFeIblhBbd4+KDhf3UxerKHsF7BAicBgzqChxGDmVu+NAb2I5EMJe14twoZdZYRdo+Jd9ghpKJEi0FRe/8x+91BrjS4MtQsbZonSSFigRMD0PZRG7eXlcD43yKMSTUMJafKK7EPxjvLSH1U9Q559ywhxTrQItHCanZ8LxT/Kq+IqhaJWGj5rKI2FBUoECobeX7/ol6DjzfkGhR3wahHl5R5kqtVQRm4vr3qWHTOTV63KYQ2lobBAiYBplpYv6Db7kevU+qUaZ/IaqUzhcfpQaqyh1OJ7KCEuXE3AQFBWo0DRAocryVcL+ANb+wcsUEKid/ggDaWm71yg87rxRPumfNgor2h36BAaZceaQ0OpxhwXGOVlmBSF0lDqZfKqmVM+Dm/EgQsLlJDo/TRv2hyyWN0gFRXHpZopbFhm8gp1DmPP9y/fW8D7mcPCUIvnWz8fivpbuVO+XnUKR600FBYojYQFSkj0bhq09UrU2VbfUB69gznXdZvgBamjYzvotJXbe/H5Wxdj2LXY1GnWcpu8qjNPjtQTqaew843y8iki7rsNN8Hbsl/DAiUkDpNXobzbFmugoZzwrb/huG/+rbJ6xeAVamTY8L//4VU8sHQblmze7Uj3W9hYrFL41/sbLYpqVvEH+1BMmYMjxOK+DoWd8o2FBUpIAjUU7Q2N2qdNprSwW5Q0kkaGDat2TyacXdnPp+WnvYSqUw3McHW7ToApUeFn8vKrp5cPZShfwNu//yh+89z6EJUMV59I5RzAC4zjAAuUkOj9PegDWweaHTdapJSF17inygzSIFR0XSrhLMlvfY6oUkOJap5xtlNwIfXcFqbWYcO9g3ls6O7Hf/75tVDXL7t2pFzleNVvMFfAnO8swEM+m2My1cMCJST6oGT+Hor229Cpi0WBZ1ZX/pnQoBfNGX3WPIIsUPNSdx5worrnVNJHoPg65aNoKNHaudJckcxx6m8Ek1eYRZFe7VXtbtv1DhvevHsAO/cN49r7lldU3uvb9uJ9P36yzLfJmGGBEoFgDaU8z+8WbsA//L/ncf+SrXWrl9sxPVLUZXgVoc5CXkpyt4biFxpcbYh3dA2lsuvWM6TZTwD4O+UrSw9LXH0oP3hwBZZu2Yvn1ozY9/uaGhYoIQkKGy46fCjlx7t6hwAAy7fujXzdoOP1EigL13Zj+95BnzpEH/jIw9gfdoFeSbh7C5Sa+1AiitBKB9167jNmOi1MTi8tOMx19w3lcdfiTeb61GovL4901Tsqf94UMd+BCQuUCJhmd851KOV52rNJAOat7/0I/Ka89jtfJ4/kR37xLM777ydC1SEsgaY8+6//mUq4+62GLyu76iivyvMAznup1/AUtlxTYEmYtvASHGHMrV//82v48u9fwYsbesrLrdleXl4Cz/pbsTgh/3wsaJywQAlJ4MLGBjnlnc7n+tHT721DjmY2ChCU4Vwo9kDmt1+Xn4biVY+Hlm3Hl+542bdulRI2nxrEIvWjKpzyaqKU8IkQ8yre6bMyn6S03P6h8klVrfqul1yLOtkK0mxYnjhhgRISh1Pe52UEzC9r1H22Qjuvrf80iCpMXh7HVRv6fRZACIGtewYd55tq5OdD8Rq0P3PLIvzppc2+dasGvyJUm0QZA8NqXKYBUrW1lxkSCGfyMk24rHLltQ39pd4f2Mob1o6FIUHK5GU+Xq/PVjQrLFBC4ggbNnROvWONZB8bKQ0lbB1C55F/g7Ze8XMe3/7CRvu3r+PdlS/s1xy9iNrOlbZTPSPQTM1aCKGheJuUtAmXl0CB9+Bcq3fGq345n33339jei3tfNQfLlLTFyq53oJJqdAWaBb3bBC1sjPrxomrPr2aWJ4QwzkyrDQf1u57/CdYfv+9vrN/Vr5XnPKbP7t3XCmOe0Y+72yXqIOL0oQSXUY2gDsIYqWgLFG+J4lWnqjfcrNVeXh79RWlNSYO0POcGyz/4vuPfV3bMT6vyu96BCmsoIQla7xG0nUe9vvfuNO1EL8fb9hxi4It+WU9Ue/oNTnqocCUaimMdSsCAYN6ixD+PF5WOs16D2PNrdmF11z7jsbB9wNSuql/79VUvE49+3TB9xi9/NXgVk5MRkEmfm8sbZi8UYPJiDcUJC5SQ6N3GvNtw6XdNZ/UVxA1XM8urJnqnHr5jddzv+kmHQPEuv9wpH342bXLmRtdQvOukowYxr1v/+xufw9k/fNx8DRVuHRQdaDgcJlQ7jMnLq//7RUzV3eQVQvvqMwQL2P4sr/eDBYoDFigRML0weprfIFjr/ufQUKpQv71emDDRMUGD1xNvdOH06x7GYK70wqo8XsEK6rjfC5sMq6H4OuV9q258ltGjvMJlVLcVZaYfFj8NxXTVIF+C3k5B9Ta1Q61m+t5OeasfJ3wcRKa+7hegAACigSavK373IhbEbCsZFighcYYNl/cifeCr5awlqKRaXcoziqUGGsq19y7H1j2DWLuzL3QedVlTAIRCFyi+W9R7lG0+6iTIvFkJYTUUdV8mE0wQ4ffyKk+zBYpPGV7ah9OM6KWhSPORKb+jrGo0bXO6csq7d1TQMb23pbDh8HlGintf3YrP3rKoYdc3wQIlLAF2d4dTvsqZpXPVffh81byIXoIjlEAJOG6a5IU2eYXWULzr5C6ikoWNRg3FPwsA4O6XN+PVTc4t9cM+npTcOTlKqGvYa/g55U1lBJl+woQN+1KjKEnvKC9p8vITKIZ6J4Kc8g0SKHFdUMlRXiHRO1SQXb3aWUtBCCSg7OgB5gOEHxz9qM6HEu7CxhBnz/fbOsNPODuc8q7zHAsbXYNBmIWNCrPJK/h+v3i7tShy3fe0yCHH/QcLyuEIGkrYLuC3DsW4jooIECLUXl5RNil1P5NExHVbQQsbk34BB4bMtj/L41E0SqDU0xxaDayhhETvN6aJo94ZfX0oIV75SjYvFCEHqeBrmtNr2XEdYbMBN2abvCJqKM79utzHqtRQIjZJ2OejBKXf2gkvqjF5KaFsKoFc57gJEzbvV0a12+FoBRmTc/ZnDpxDnuO6hua2TV4el2tU2HBcdxZngRIS/fEF7eVl6tOVdADHGooK6lWVqaAKk1c1Xxb0ukH1ooeN8irzofgMcJWsQzFuBBpVoPgIOR1lIqynycv0zEr7onnXqRqTF/kEG1SiNfoR5ENxyRNb0Fj18pYoXv2k2s9JRyXKZGMkYIESEhHwwgRpKJWYwQoVdFKjGansHIE7X9iIvqG8ZzneUV4hBEpA3zbG8gcUqy7rN7joIaBRNZTg4ADDbLo+G/Zr17T+VjNoBN6XT7CB38e3wkR5eTrlDeea8lc6Lju1G49+rHwoLodekGYVtPVKtZ+TjkqYid6egRz++uqmzXOrAAAgAElEQVSWEahNicgChYimE9GjRLSciJYS0Rdl+jgiWkBEK+XfTi3PVUS0iohWENG5WvopRLREHvsxyRGIiLJEdIdMf56IZmp55slrrCSieVHvIyyBGkqAD6USR33Ul8vr3OfXduPf//AqvvWXpZ55vQeK4EEtaEZpMlurQdlrcFap4dehuLUQ73yOiKQKBHYpj28Wn7LCZVTn5SJoKGH7mV+Ul3++YE02aBJiOp7T+lmlGopTuzGfo4Sze6W8rpWY6mULQS8NJeDDevUiTN/41ztexhd+95IjurLeVKOh5AH8mxDiaACnAbiCiI4BcCWAh4UQhwN4WP4f8tjFAI4FcB6AnxJRUpb1MwCXAThc/jtPpl8KoEcIcRiAGwBcL8saB+BqAKcCmAvgal1w1YOgsOFiwAxNTTbD9Dk/h3LZuSH8EvsGLc1k575hz3Kq0VDCvkcmk49X8SWTl3d5SfIWKH4mlOp9KPXVUNR5UTSU8FqQdx/1GxjDmEaDBJOpDN28Z7r+lt0DmHnlvXj8ja6yY86dpc3X/qvcq8stUILqrTQUr/cgaJGsEAK/eHw1du4bMuaPShjhv6lnAAAwUOEnM6ohskARQmwVQrwof/cCWA5gKoALANwsT7sZwIXy9wUAbhdCDAkh1gJYBWAuEU0GMFoI8aywesMtrjyqrLsAnC21l3MBLBBCdAshegAsQEkI1YUgp6H+7ldt8qpEQwlj8pJ//eJmgkwFfgRqKPLCQV+11FGn+mpI2g25q+AX/VbJSnnTcwsOlPDQugwC1YQacKtxygdt9WMWKMXAunn1Y4eGHrAOxTQ462tuTNlVCPZvn1tfdiyM/+XljVZ+99YrecdE0FRn62/B41kEmU+XbN6D6+5/Hf925yvG/FEJ0zfqtd2THzXxoUhT1EkAngdwkBBiK2AJHQCT5GlTAWzUsm2SaVPlb3e6I48QIg9gD4DxPmWZ6nYZES0iokVdXeWzm7DofSXKwkY1SISZWTh8KBXUy3sgCx5kwtjGK82rsF9Kg1nDq0qllfLe5frZzv3CWJ3+lSCTl0GgBDwVT60rpP5Q0lAimLwiaIsKdTmz38i/fH0BqpfQKflQyt+fvGMSVZ4/nbSGKtNA6tTSzfWz6+DjQzGvlC+vn07Q5EQ9wz0Dtf0mfSXRl7XaeDMMVQsUIhoF4A8A/kUI4fd9W7Mp3Ts9ah5nohA3CiHmCCHmTJw40ad6/jj3KjIcD5jpqJcsjKZSmY0/WPiU0r0liqcpI0R9w9qOCxXYm22TmM+L42c799tOvZJvu5smgkFuJc/tahzapPeFVZ0iaSjyXoP6qHEHAJ8or9I+X9VoKNZfo4bicI6X501JgWLKK3z6QTnOE5zX9RZkXmuCgtbflBZG1hYllP0+NaCEZ5SJSVSqEihElIYlTH4rhPijTN4uzViQf3fI9E0ApmvZpwHYItOnGdIdeYgoBWAMgG6fsupGUMcJq6GEcZp6mbyMs2X9ZfIoW53jr6F4DBShfCj+56j9uvSBNtDObvtQ/ASK92DgjMpzDgb6mUG35zdb98KrzmFfa1X3KF8ZtAd+w9WCvirqtZeXEEIzQXrM1Kv0oeQK5dqrTtpnbU6YCdj0ca3Gujk0K0Nzq3Urgx5+iOBdxqv/Jv3flm7DNX9Z5khTQiJorzEAGMo1gQ9F+jJuArBcCPEj7dA9AObJ3/MA3K2lXywjt2bBcr4vlGaxXiI6TZZ5iSuPKuvDAB6RfpYHAZxDRJ3SGX+OTKsbqkOkk2SOow90yqtBojKB4rhGQFafOS+Acv0kKBQaCOtDCTzFOs+hoVh/PT+wpQYwPwexj7At+vi0gr6uqRNlLy+vtgzrQ1GHhvP+wR/mTRa9y3eGyJYfL61DcbVXCA0gH9D/vc610wKc8qX1IOWHwqwFGRguynPddSkaf7vLHvAYlAsBzyPhU++wXHbrYsx/eq3xuv6faw6elNWaarZeeSuATwBYQkTq49tfA/A9AHcS0aUANgC4CACEEEuJ6E4Ay2BFiF0hhFBP6XIAvwbQCuB++Q+wBNatRLQKlmZysSyrm4i+DeAFed41QojuKu4lENUh0smE7+zO/dtOE+E1FK8XpCgEki6xIDz/oyV7DN5htJtQPp+Ac0qmDm0WGpBHhDjPL1DCb6FdJet8jINbQJN4bWgZ1pbtp53p9ckVBDIpV3+wTVOGegUKI3PeoHzuenlPmqisPIVjJ2qT0PBR1vTTvS6t1mC5n6dz/YzhuvL8fR5ruILMbSqt1iHFSlPz+7S4bTptBoEihHgK3kb5sz3yXAvgWkP6IgCzDemDkALJcGw+gPlh61stqkOkEmTcBTa0Uz6UT8L8u1AUSCed5zpmvR7lqXR359PP99RQtLfM86uOgSYvC4fQtZ3yHtvXh/A5+WkajnZzDfAmTcnzGkZ54hxg3W0SSkPxuWZJOys/FuSrKJmtvCc17t/uvH5h1mE2EfV0yvv4UAbz/iYv1Q9NJYeJ2st7RLAFvrcybU2XeS1HUNsoX0etx/QwH0NTdYuya3VUeKV8SJwaSvnxIFOE7ZSvwocStGo7KFzV3fn08tZ5LH7S6+Ll3As7+Qr7mWS9zKhOeX3ocQ8UlWgoZi3B77revo+wY4qqUpDPLGc00XjXq+AwK5UfL/lfnNz98mbffIBTSPh9cgAI1lCMbepTZhhTYt5DWOYdPhTDRFEmRTV5qXemFtuy6IKh5EPxPl/da9M45Q8kbA0lScFhw8bt7dXfMBqK1kn1gTEgwsVrZmh/zMrH5HX5b1805s07BEpwLL4RKjd1hDV5+ftQvF9mvyAKp2bjW43gQAjTbNpT8IYTZHbItI8G4nUdv2isIEGatwc/Z/rWPYNl5ZddN4yGoo4HCRSTjyWk6dNoyiuWggr8TF6m7q3K81ocGDS58PskQKXokWZqDApj8hpJHwoLlJCoZ5JKJDy+h6L99jN5VexD0cvwzzfv9JnGdFtDKTN5VaYteQ2UYfurUeh6vA8ldT3czLRs5qnX2+1DqaFTPsif5lVfP/wGAr0NTaaM0n5c5eUG3XfBRxj55XPXKyjKzSQchvK6adVQvh1tYCg3aFD38bU5NCujhiIFioeGErSPmJqE1cKHksuX9+lQJq8R3BKZBUporIeT9tBQAqO87Be9skE8zMZ3HVnLFdaWMbvE7Fw+GooXDg3Fo2NG8aGENnn5nOcYKFxVy2kDlHugcM7UfathXilvqKdO0CI9dxluvJzjAByfnDU5W73MVkDwbNxv+3p3+f5l+2sxpoE7KGzYb1CsRMC7383ANpGHvTSUwGAcD1NbFPT3z2uzS4UQAl291nYvbPKKIbaGIn0o7oEiaIYWpKF4fZdBP9u8DYjw31NFu3Z52LB/Pj0vEM6UY8K0HXvQQjmVGnYdivssh3mg4D2IRNkcMmhhpJffKUx7C1H6iJXRcR6ooXhfLKyG4j7m3DPNXO8wAkWVb9JQhoOc8j6DYtCWPn6LFx1ro7zeL3hrKPr1TM/X9qEYc1eGyd/j9ep//8EV6JNCkJ3yMUSP8rL+7zpeFMY9q9z5vbdwKP32mkEbP0wEbYttj25bUo8rN3mF86EEFgPALHS98grhf9w6R6+D80S9rmWL2XQNwlDuo6/vMJ4b5rqA9wLOoH2frHPM9TSVYZp5Fn3aNciBbD8T12OeOaG9rHy/soMiwYIXNvqX73fMGN3m4zNz1tvbN9o/XHD4eezrhdSOauFD0ftVkFP+D4tLu1mNZNgwC5QQbOzuxyNykEnbW0CUm1HUMbPJy/rr6dT06JgOp7yHgzhosazXbCZMP9NfsjD7GZkwm7z884ZxKPpF1ukzXne7BZlI9B1tTcf9NCN3nR1mihC27CAtInD7FNvkZRJ0/jN5k3mmu28Y/3TbS751ctfFc6v3AA1F7QRsjJbyabt8gBboJ0idPhRTnUu/X1hXvtQtaPeBUrhy9YO6U0MxTxLdx618I6eh8DflQ/CuHz1uOw1TSfM3pgtFgUwygeF8MZJT3svOGzRjFRCBHwHycuDpnfzMI8z7nOVDdMywEyCT6UEI81oOv0gn03Xdpw2H1VAMxQcJnGANRW8zYUz3MoIEXVsvwqQx2oLaZ5GeV9mqXXRhvKmn3/P6jrwhnPIFn3dgOF9ESyqBvuGCf7RUkAZiyOxYUOvWUAr+efW0wZyPiRH+prpaKAlODcV/Ly+noGQNJVboESjK5GWa9aZtYePd6b0mWl4mA/0yXgIjaDcfezbjSg+noZRO0gfpsCGwQGkW5TW7NtVDtZOf9uM3QOqDoq8PxedZWb/9rysMxx2zQ4Mj1Q/nQjlD2boPxVdDKScfNHjKvPpzbtVW0mZTCU+TV5i9vPy2HxouCGTltSr1oQRpXn4fwfKLBlTnq/fa9MXToL28/ARhpZiERBgNhZ3yMUZtFmea9SqTl1+4p5fZw+ulqGQdile3yRc8Op+WwbNe+gzbw7QQNoLFyznqtwGj3+zKGcjgPM/PhxJ2EPCqm7Oe5cdzHgEBQZpR2bUDZszbtPUh7vx+W6tYv8uvrZ6PLoz1LpNJmbcd0vPqdfCqm2nh43C+gJZUoqyepfK9zTZBz8tXQwkw1RWKwo6eNDnmg/aFy9kmL6/ah0fvS8ov4jWZdAalsFM+tiiTl/uFfeKNnfZ+P36bR3pNFjxfCu2nVwir/dIH2LfLory0wr1mgF6zbf3sIE3HdrB7mvVMglKUXd+NnzlwOF/03OpDf7+imFCCt9swt2uYjUGDPimrp3UZvgJY2uCxvOygAAvTh7302W02lfTsv6E0FKH+moRwSUPxjZYy3pdZczbVx/08HQEUHibE9oxVL5NT3mHy8tFWTRt9Vorjucjy3F+gVOjXY6d8jFEP0N1JB3IF9MswPZOKGbQ5ZJjIIGOUl7B8KH6OeXsgKdt6xXCOV164Q2ArmcWXl+W3hsQqv/w8N34bEuYKwjbX+K1DCdZQTNc1n2uqi9PkVfrtNcAE7y1V+q0+7ezIb9vs/QdW0/c91PUcAQ1anqyPhhLGh+LnRxwuFJH10VBUnUzrLrzC7BW+YcOOD4MZ6iwE2rI+GkrAe6DemR29Q/ZXJ6Oit9tQgECZ2JG1f7OGEmNsk5fwfjmNm0f62I/14+6y9T7qpZKXwobNlKK8zDvT+tfLbL5xaCgBMyB1uOAQmvpxk+ZVmYbirv9QvqgJFFc+h+nJW/i7f5fqrglZk4bioZXo+b5+92tl+dznBPl3TDZ9v00U9bwmB7Oqt3OLD6dA8fKXeU0WTNc37VxQKAq02D6U8ryqTqaynSYtgxD2EShhtNE2paEYFjcGadp6n//ojc+VHa8EfULnJ2ABa+3QR+ZMQzaVqOjrjtXCAqVC0oYoryHXy+m3gtlTQ/GY/TsH7vJ8RWHNUvwc855RXo7rB/t2vFfK+1wcuvmqPM3Kb9K85LEAH4pJYwQs80A2lQBRuYYS9JW+viH/faWCQjK9TEt6+uowu9cGmLyG8uUDnNc3TaxjpbqYPrqkrpcrCO2ZlfKkkwlf7cPrWbiv734eqo38NBRl4jENjvpA6+cbyiQTZSYzZ1i394StJZ1w7Ihsup7p2nrdLjjJ+JXy0Dien3z2XhrjYL6AlnQS6WQiVDBIrWCBUiFJe2Gj+cVOJ83b26sZRdDszfpdSg9yfusLKoMcve78Qb4AVb4i57HfUtj9sAqeZj3DdWWZfcMF48CpzlEC3v3SDOeLyKQS1ucGXBcI2hyyPZvUjgdoKCbzpocmECZ80zljLj+um6NMZjO/hXR6tOKQMa92HfkfvV0TCfIOGy5aA7b7HnTydj8o1yYB2BqKSRiW6lNeb923YXL4q+ulkuSvoXhMbBJkRbuZtl+pZNuXKWNayo5Xgt6P1bPfumcQP3tsddm5A8MFtKaTnpvZ1gsWKBXS0ZIGYLZnApZJzOTwHFa27RC+Cq9O7rWQLZkg30+B2lt3u/Nr//VaBe8VVuncNt/z0lY+ee9epiSvHQAUW3aXRzMBljBIJcxaSK5QRDqZQDJB5RF5HiZFxdjWdOlcH20TMEcf6Wm7+4cddQoi2CavCRRDeeq46ZHoJhuzg7lcUKpnfttnT0OCvEPEC0VLgFu//bVwUwAFoGso5XnVOabZtu7bME0+1PXSyUTZhE6fEPi9Xy3pZKAPxbyDs/68qtMU9HvXx5zrH3jdWaeiwFC+iJZ0Uo5HrKHEls42a7BRHWlN1z6c8f1H7eOpJBkf4LCPyg44BwrhIUTMezsFb73iZbsOE+qpd1xnHUvnBGkoOcNsNyi/ELBt172DOWO5BamdmbSQkoZSbkMuxfD7z4bd9XTnd9+T6XhPf86Y7oU6J+NhXtLvxaxlmLVRwD3wGgShIWjANhelCAkqF872deXAmyA/gWJ+B1T/sH0oJqe9XR9vDSWVIPN9yfJa0uXmn6CdIKw+RmhNJwOFsGm+kC8KpBJkL3quhjBBHYBl7gKA1kzS02JSL1igVMjM8da+RuqleXXTHvvY5WcdatksDZ1+WD5kr5dttz7weMyAvZyGCfJf3KheIvcMOczip35tVuu9fX2AQJH34DUbNDWJEAJjpKawd8D8+VW19sekhWzqGZD27/I2V+2YTpijloZyRduUFuSUN2kJ+sDU0zdsTPdCtVE2bf6QWy7A5LVWfijN9EiUQBnTmvYMgVWBDKqvqAE3lUgEmrySCUIqUa4F2HWXmd31Vv9X1zZub+8hjICSQBnblvYVsi3pZFk/d/hfTJqysBzcLV4CJSC4JF8USCUJ6SSF0lC96q7KUniZgYHSzsit6SSShslWPWGBUgHzTn8TsmmnWq6H7Z06a5z8RLDzAW7ZPWA7Yb0G343dpS0uvAZ6o6+hGLz1SsEwoAP67NPb2TownC/5KRzx/lodQpq8HIsNA0wFAsBoaV700lDyxaI9iLnvbcX2Xry+rRcpg4BX17Zs6uXlDuWL9mI2r1mr+94c9dLSejSTVxgNpeSgTprDZ31mqT19w9i5z7qeUUORA01nm1mgFIoCrVIrdJuYlPbhvZdXEUkiJBLBGor72uqeR7dabW4aLHN+Jq9hf0Gpnn9rOuk5qUqQx7MWAomEpd0YI+NCmChTiQQyqWgaijOow9vcuX1vySysJg6tyinPAiWeHH5QR5lTPqUJlGzKeoDuwe2GBW/Yv71etn//w6v2b4eN3mfFtzrX8qF4hw2rmaHXy9SSMmtVgOUUVwO7U7j5CwTH9Q0CxWHW84hmUhpKr2G9BWANLukESQ3FXH/rmKtsed9JKnfSApZAUdc2hYoGbSGv12Wb9qKH01CU+ccs5HPaAO8eVPqGS+1keiSlmXzGPJMXwl6tro7rDu2ER3tZ52kaSoAPpd/Vpupaqp8NDJt8kN4mrwE50Hvel0NDMUf8ee0CYFkACK0Zsw8laGPKwVzRjraKoqHofV9//9yRpTc9tVZer4C3Xf8oAEvLTSXIodXWGxYoIXi73DjxH+bOsL8NYbZvF41RFZ3tGQDAQaOzxhmUG73j6CHI5igSa0sVv8BhdU33DEndQzad9BzsBoYLpcE1ZzZ/BQWRqBfJa8Gc6dKFgkBnuzR5eWooAklpTjB91OrvTpqKlEHYFHQhbLj2Q8u3Y8+AdU19kLbrWzQ/H71eAHDIxHas2rGvlK4NKO840rwZpx5C67fNe3smWfY8nV89NMzkcwWkEoSOlpSnhtKScZq81P2lEoSkjw9FTWz8fCjK9Om+9rCtoZT3M/ucEE55Lw3FbrNssix/vlBEykcQKguAV5TXsKZNmfIP5QpoSUfTUAZzBbz52oeM5bsnE3tlf1Uf1QIsDWVUSwq9Q+b3px6wQAnBdR88Do9/5SwkEoSUDI1UnVR/iefOGmeM+x7OF9GRTaGjJY29g3m8stG5YlbZvdUgo5epD0KmhWzWWgz121x/VV7ZAsxiaTbs5R/pH85jwihr1a1ulgtaTOa4TqH8+o6FjR6DcqCGUhRIJ8p9KOo6h00aZbQhF4qQ5hny3PZ+z0AOrelk2WxaXdd9b87yrePTOtscz0zlmzGuzeh7sa4vhbyHyas0OKbKBig14I1tSxu11YFha7FnNpXwnMkrP4Yd5i6fczKRsCZLHv0kX7QEismfBVjPWJmM3G2qZtDK5DVoMHkpQeHlQ2lJJ9CaThrvS91LeyaF4UKxLOjF0r7MAkFNPrLppLFe+nM0PS+1HiSTTHg+cy/UpEah97WhXBGnHTIOJ0wf67hHPU9rJonx7Vns2jeMkYIFSgimjm3Fm6QzXu3ro14KfUaUTSUtFbNQ/qK3ZpL2bNW9BcM7fvAYAGDK2FYA5Tvljm6xXrTdA+UzjYJUyf3MPmoRm5fJK5tKepq8+ocLGNuWxtSxreg1DI5AsA/FZHLz8sfo5WdSCYzKpnxMXiUfiin6KZtKGE2QpXxUpmHog0p7Nmnvz+bMb/Zx6XUHrE8zm9ahtBm0i1JezeRl8qHkNYHiep6qL7alk55O+ZZM0hocXTN5JdTdTnl1r6kEeQoilT9BluAxDvraYOw2Hdkaim3yKh+41WJTr3UoJUFpGvSt+rRny/1iuYJAyjApsfPmrQWyremk0fypm568TV6WhlKpyUv3i6i62tctFJFJJXHzp94MoNSme3WBkk5ifHsG3X0sUGKL6pRq5vnkqp0AgEe/fBYAGJ1gewZyGNOaxruPOQiANYCbOOfYgwE4nZJD+SJmjG9DazqJ5Vv3luUpCsvklfYIVxZC2J0tl3cNrLZA8dZQdu4bxvhRGbRmko6XJ8x30+1zlfnEMRCXyvry71/B0V9/wJFHOTM7WlI+TnnzrFgNltl0UpoqnEJhuFBENp1ANpUss0Xrgm7nvmH87vkNZdfdN5w3nq9Yv8vSODtaUujXzlXmM69oJKA0UWnPpoymRNXuJg1FCa/WjFm7eWXjbhSLAi2pZJmDWQmvVnsjxHIfip/ZZihfQCaV9IxmUkKiI5sqExglp3xallWeXwl2k4lRLeKzBGV5XqUBqXtzf0rX6kNmAT4kw89bPdahBGooUtilI4QN37loo+P/6lns6c/hlY27kU0lMLYtg5NmjLXbR9dQWtJJjBtlCZRafOArDCxQKkQJlBXbewEA9766FYDlH7GOJ8sGwO7+YXS2Z3DD358IANg9UJoxfOhnz9i/R8my1SC3YNl2PLVqJ7bvHcKsCe1Yv8v5saN1O/uwcO0uJAmeTr//fWQVnl61C4CfhmIJwbKv2RWK2NU3hImjsjLKxbwi2W8308Fc6YNJXrvYLlzXXfayWiHBJAWKt4aSTibKtELVfi2pBNqzScdWKkBp1plNl89oTbPUZVucgvyhZdvRIZ+Vu017B3O4baE1EEwf14ae/pw9+djZO4z2TBJjWtOeg8sVv30RgDVb9zN5jcqWazm6L8GtvQghsGzrXuzqG8aO3kFs3j3gMMepvGpTQfcAniSyBLBHuOq+oTw6sinP9RpLNlvh9Z3tGeSLwtFu6vl0tKRAZPahqPqYnk9/zjIrZVMJ45Yyqi2UdUFvm5zsZ8mEeZX9cL6ITDLhGeWlh/ubBOFATm2BYp7w+TG9s83xf+WD+unjqwDAnmDqWrwuUDrbMxgv29sr9L7WsECpEDXof/+BFXh+zS47XYWZTh3bhje27yt927sosHBtN0ZlU2jPWCYxtditq3cIi9f32GW0Slur6pifvWWRfd6Y1nSZoHrXjx7HYK6IBJGnffuHWoSZu8Or2bBp9T8ArOraByGAiaNb0JJyztD0PZBMvh2FrrY7ttQuFO1FoibyBYFUMoGOlrSnU3FICga3hqIGvWw6ifZsqsyxbuVLImuYqeufu/3ACVMAOCcAz67ehaF80Tb/dfc566bbq8fK+1OD4c59Qxg/Kot2PzOevI/RrWnki6LMv/Td+5YDsPwB7uepns+kjhb0DuYdEwTdb/HkSkurfmZ1qf8qreGg0db2IGqFvzLztGaSyKTMg6q6x1EtKU8t4cu/t6IYVR/W+9IG6Zub3tmGUZnythFC2H2sYJj4rN/VhyljW5H12G9rY3c/0knCpA7r3hzh6wWp5RJ5mhiz6ZKG4r72jt5BW1CZzKODOauvubW7zbsHcM8rW8rO1+nud5qq1Pv9+tZeuwzAEsRuDeUDJ0zB5NEtGD/KCgja1Vf+qYN6wAKlQvR9nv5e7h566qxxdtqJ08dgz0DO/lbFVX9cAgB45PUdICKMbcvYsxo9IgOwQhezWsebKn0ql75tlhWt4XrR7A8iyZm6SUPR9w9yX08NGpPkrNQ9q318hfVt9bOOmIjWjHPmqQ/gew2+HcWZ//UYAJRpEblC0Xb2K5zRU0WkZUSSaXb18PLteGb1LrRnU2WO90FdQ8mkygSeZZ6xZp3uGbcabK/74HG4/MxD5f2V8utCfcKoDFZKTVWhzxDTrgCOnfuGMGFUBhNGZbFz35CvGWLqWOu59WttLkTJsW0ym6nnM2l0FoWicAgRvQ1U1KLel9XxQya0ozWdtDVwNVC1Z1KY3tmG7b2DRhNk31AB7dkUWl2arGLOmzoBAP941mEAnH6Srt4ha8KVTeGgMS1lHw4byheRLwp74HbP9LftGcT0ca1oSVlam7tddw/kMKY1gw7pi3RuYVJANpVEMmn2oajJh4p+c7f5jt4hzJpo+VfdnxPoH85j+da9SCXIMnlp/f9Lt7+Mf77tJeNH0gDr/frF42scabc+tx5n//Axu8+quE5LQ7GeSXffMDLJBH588YlIJAjj2q13bNcI+VFYoFRIu9REgNIaFN00MW2cpaZu6ulHsShwh7SDHj5pFABrUZkayN178LjNMIdNGoVjJo/Gf77vaHRkU8YZEGC99Olkwmh60vcPGi4UsUNqDIWiwBdvfxkAMHOC9ULozrtlW/biuvtfR1smienj2pBNJe14f6CkbRCVR6MoFq7ttn8fNmmU04eSF2UCRb2s+UIRQqCkoRgGsA9pivcAABmZSURBVEtvtrS3VzftLhOm/dqsuj3rjNRatK4bb2zfZ7V1KuHwoegDSjJB9tYvuh9EfWANsKK1NnQ7zZBOgWKdmytYmsYzq3dhY88AJoyy1kv0uXwJ+vNVoeZqoBdCYIs2+LRlUo6QVaAkUJSWoYdbq7J/9JET8MWzDwfg1BhVvcePymD8qAz29OcwmCvgfx5eCcDaGPLoyR0QAli6pdyX1zuYx6hsyriifGN3Px5Yug0AMKHDui9doOzcN2Sb2jrb0mVh4iqYRQWtuHd73tU3jImjsvaiY/eg/7vnN2DnvqGyCE3A6ittmaQxJLpQFJbmlU2hTQYruCcnO/YO4ZAJ1rvtfj9/89x6AMADS7c5JoqAZeYFyh3vinW7ynej7uodwuquPvs9/e1nTgMAdLZl0NOfgxACm3oGMLWz1d7b74iDrLrp72I9YYFSIYkE4XNvPwSZVMJ2IuqbF07vtDr9pp4Bxxf1br30VADWzHJNVx+eXNmFx9/ocpSdTSccJq99Q3l0tqdBRBjV4i1QBocLSCcJu/udzjchRNnLqUKU//zSZjvtUDnD0s017/3xkwBKg/OqHb1YvnWvXb5Knzy6xXOdyEd+8az9+03j21zBBgVbHVcoFX+vnOmNbkn5+lAAa6+sMa1pe0DcsXcQ191vmYU62zJoyzjb7cM/fxardlgCpcUVCqprWvsG82iTM/ifPGLZrB99fQc+/WtLkM3/5BzMGNdW5tdSbfGf7zva1lDyhaJ9b9M6W+0B/6UNJXPnKxt3Y/bVDwKwVm0r06q69589vhpv/d4jAIBrLjjWMu/kig6tbtDlB9GFm3pelibgjFQEStrrpI4WTOrIYnXXvrJBSO219alfvQA3+4ZyGJVNGp3X+nugosj6XQJlguwLowwTJ2UamistAbq59fm13bZZVkWJ6c9RnyQpAa8LHOXjMAUcKI1jdGvaFvD63mxCCHT1DmHy2Ba0pBNlwkbtYPHRuTMckx5dmK7v7setz67DWf/1qOO+n5bBPh+dOwNu3ti+Dx+dOwOnHzoeADB5TAuG80Ws7urDxp5+TJNjkHWsFW+e2Yk/ae97PWGBEoEzj5yI4XzR7qzvOKq0SG3qWKWhDGBTjzXYXPfB43CwND11tmWwYnsvPnHTQlx44hRHudlUEq2ZpP1y9w3lbY2oPZvCbjkLAZyd8kOnTMOG7n48uXIn/u9Ra/AbzBVw9DcewHC+iO/+3XH48xVvBVAarPUV3GqA0+2sJ8r4djXDWScHTuU7+Juccc4Y34buvuGycE5dsP3oIydgXHvGFlivbd6Ddbv6bROEQkVHKQ1ubFsG7ZkkdvUNO2aVd7xQirz61vnHYlx7Bi9t2I2V23vxL3e8jJc2WGHZ40dlbA3FbQbpGyqgxRXlpQ/Az6zehc42axBZu7MPi9Z141O/Lg2kc2eNx2GTRmHLngHHjsLf+ssyAMBFp0y3BcpwoWg/08+ecQhmTx0DAPjETQvtfF/Vdkq443On222jBpn/XrDSPv6hk6fZa1m2yud498ub8d37LI33MKkN68LuG/KDXtZs2yrbIVDkoD+xI4vjp43Fqh377KgoNdgrjdItMK75yzIM5ooY154t25W3UBT44E+twJPjpo6xhZI65+t/fg3PrenGJNkH27OpMtPRjU9Ypp+TZlhms/U7rfva2N2Pj/3yeaveo7IY1678Bdbz6BvK46o/ltpVTQD1CdDu/hw6WlJoy6Qc5kX9vNEtKbsv6AJqQ3c/hgtFTOpoQUdL2uGgB4DVXfvQlkni2gtnW/4nOXn5zr3L7HP++baX8PW7l2Ldrn7bnzowXMA37l4KAPjHsw7F698+DydMG+Moe7Jmyp4z0xK0tzy7Dpt6BjB9nNOZf/qhE7Cma1+oRdXV0tQChYjOI6IVRLSKiK4cqeueNL3T8f+rP3Cs/Vu9hP/14Aps6rGcZsp+DJQ6NWDZ+kdrg2o2lcCZR0zC4290YTBXsM0I6hgAzLrqPqzu2mcPUF9771H40ruOsG3rdy3eBMAyE6i00w8db2/JPl9u0aBmcV8+5wh7oNisaVqFomWS+uM/WoLoyvccBcDq7PlCEb+U5Zxx+ETkCsIxm/3rq1sw66r7AACfO/MQfPDkaRjdksauvmFs2zOI9//kKQDA4vU9+PhpM+wBSy2cVO02pi2NyWOs2ZaaFff0DeOrf7D8UuefMAXz3jLT1nTefcMTDnNMZ1sG7dkUCkVRZgZZsb0X2XQCK7b34icPr8TewZxjnY/SML5y7pEALM1GZ1Q2hZNmdEII4MRrFmDVjl7MvPJe+7mMaUvb3wfJFYQ9WEzsyGLKmNIM8jUZ/aQL+OmdbfZEQg2uypwDWIPuLGmmXCc1TjUAqfxAyZyydMsevCiF7ISOrK156eHUqt3GtWcwrbMVfcMF/PdDVkDHzz5+CgDgmCmj0dGScvgM9w3lMf9pqy+0ZZKW1qcJqu9rZt1r/262HbyiBrdbpVlIRUt2tKSwZmcfZl55L/KFor2lCAC87bAJAIAXpWanmxsnj2mxBYrakPNXT6/Fg0u3AwC+feFsTFD+BDmx+eurW7Bk8x7MnjoGbZmkQ8PYsXcQ7/mfJ2Wd0nbZukBR9TjyoA5MHduKTbud2uprm/fi5BmdSCQI0zvbsGX3IIbyBeNiWcB6TgAclouDRregJZ3EVpevRflXAdh94ZZn16O7bxiTRzu/u3LoxHYUBcq06XrQtAKFiJIA/g/AewAcA+CjRHTMSFy7NZPE7z9/uv1/NRN1o3wUUzUVdIrWER5Yug0zJ7TbTtJMMoG5syzhc9TXH8Dm3QN2Rz568mg739k/fBw/f8L6qM4RB3UgkSAs/I+zAVj+kCdXdtmmLcDqcGrW8uyaXXhhXTe69g1h8pgWfOGdh2PCqCyIgG//ZZl0/BawbOteXHDiFFugHSw76df//Bpe0XZY/sTpbwJgBR0M5qyPYT28fId9XDlhx8oZntKgAODcYw/Gdy48Ds9ceTZSCcKyLXsxMFzAJfOtmXtLKol/ONVS+Z+SJoBl2loctbJ6XFvJdKa0jFkT2tGSTtr1392fK/sQ0f2vWVrWDxe8gTnffsjO+y/vOtz2K508wzl50Jmkfbd73vyS9qJCipUQ+H9PrLGd90cd3GFPOgDg/T95Ct/6y1IcO8V6vtPHtWLCqIzdT/7w4iYIUYr2uv5Dx1nt2Wrd84Jl2x33fdaREzGuPYMEAc+t2YXtewfx3JqSsD980iiMylrhuet39WMwV8CTK7vs9TbpZMJexKvCzce3l9r3/cdPwfNru9E/nMeCZdvxuvY89g3lccjEdmzZM4gNcvD6xRMlx/Lx08ZqnyTI2/48APjsGbMAlEx9ALBmZx++/VdrNv8f7z0akzqyyKQSWLJ5D4bzRfxIRjCOyqZwzJTR9sRk295BCCHwU/m8T5w+Fp847U32xKNbauJf+J0V0XfKjE6Mbklj8foe219314ubbO1w8pgWLa8lUPqH8/jSHa8AAE49ZBxmjm/Dup2lAfv3izZiyeY9mD7Oeo5HTe5AoSiwYluvbcp1c+uz63Hd/cvx+d8sBmBNatQ3Zt4l17ApdLNWezaFD55c+hrkma5tfd5++ET85Qtvw8wJTs2lHpTfVfMwF8AqIcQaACCi2wFcAGCZb64a8WapZuovm+InHz3JEX7apjnyP3/mIXh61U57xnrUwR345vnHYtueQSQShHcd7ew4avA555iD8LFTZ+C38sVXA4AKhZzU0YIzj5iIx1Z04bEVXZghBcir3zwHgOVk/vhpM/Cb5zbgIjnbnivvoTWTxKffOgs3PbXW1iwA4PRDxtu/lQ35b8u2429yEHv0y2fZdutfPrXW1loUd37udHv7lM+cMQvXP/C6PSP93NsPwb+dY83+M6kETj90PG5+dr2tYQGWzVzfzXnmlfc6yv/YqZYwU2YUxfknTMEPP3ICANiD42nXPew455NvmYlpna34zr2Wv2W4UMQ8KchUuDCAspdw6thW/OYzlj9MDypQIZwAsPjr7wYAHH2wJSTuXWLNvq19tKz2+PnHT8bnf2OtOfnV0+sAAB8+ZRp+cJFVbzVg/Omlzbb9+yvnHom/f7MlYNWA9Otn1tmDDgBcfuahSMpt5u9bsg33LdlmH3vlG+eA5Fbsbelk2TNTg9KbZ5aEaCpB9gwYAM48YiJuW7gBx3zjQUe7tKaT+NDJ01AQAv/14Aq8/b8edRz/obwvNbFRgyZgadmXvd2KqDt8Uoedfs4NT9i/P3baDCQShOF8EXct3uToJ4u//i6kkwnMGGfV81/vfAXrd/Wjf7iAow7uwG9dz+urf1hia7kA8JbDxqOnfxgPLN2G9//kKRw8ugXPaxr38dPG2Bru1/60BEu37LHNqidMG2ML4T+/vAU3PrEanW0ZfOUuy9R21pGTAJQmJuf/79MArAnPnZ87HQ+8tg1fPPtw/OudL+PPL2+xI7vOPGIiPnPGIXYdrv7AMbj4zdNx28INuG3hRhxxUKmdAODaC4/Dlt0DOOrg0Th+2ljHsc72jP3+1pum1VAATAWgLyXdJNNGjGXXnIunr3xnWfoHTphir0H4vAw9VbRlUnYHB4CvnncU2jIpHDLRsnunkgnM/+Qc+/jlZ1n5iQjX/t1xuP+LZ9jHsqkEDp1UetmV3wOwzAEHa45KAPjW+bPxybfMtP9/mPSPAMAV7zgMCdf+kmccMcH+rZs5FDPHW4PDl885ouzYWw4dbztRAWvm+7m3l16Qdx41yXH+B463BnEV+fT0le+0hckD/3IG3Kz57nttre39J0zGRadMs4998OSpttY4e8rosrwrvnMevnn+sfjMGYfg6g+UK7X67O+gDqf54N/PO9IeYDvbM3jfcZMdx//0j2+xB/jO9oz9eWb1f8V5syfjEqndKd4z+2D7t+kLnLq2dLBmQ1c+hp9//GScKicBx0wuv299VvzJt84sO/6jj1gLb8e2ZfDnK96Kk2aMxeL/fLejLufNPrjM99eaTmLZNefi4DEtmDq21WGOAYDvXDgbH5LPZ0xr+dqjT791lv1bOZp1nv/a2fakTBd2gPX+qJ0ndMGqotO++p6j7MXImVTC1oQUD/3r29GWSeGDJ1v1W7+r3xYmJ80Yixe//m5bCCt++/wGLNu6F2ceMdE2B77veKsffPe+121h8pOPnoRz5e4XU8a24uQZpffznGMPwtGTR+NL7z4CiQThm9IXOGVMC/7n4hNx07zSGABY/tXjp43Ft86fjYVfO7tMQLRmkrj9stPxzfOPRSOhkVqSX2uI6CIA5wohPiP//wkAc4UQ/+Q67zIAlwHAjBkzTlm/fv2I1K93MIe7Fm/Ch0+ZZs9KdfqH82hNJ30/3etFV+8QVm7vxVsOm+BILxQFbnpqDQpF4I8vbsIPLjrB3jxOZ+Habqzb2YfzT5zieFHcH6RKGUx5O3oHkS8ITB7T4qj73sEcvnn3UvQO5fGFdxyG2VPHOLQLxQOvbQUR2S+azrIte3HzM+swZ2YnLpoz3XFs7c4+rN25DwvX9uCKdxxqbFPlWzrtEOegNJQvIJNM4MmVO3H6oeONJsrv3rccDy7dht9cemqZU7NYFLjvta14fEUXrvvgcWXtsmcghweXbsOobArvdQmYoXwBa7r68MzqXTjtkHE4dorTuarOWbplb5l5LVcoom8ojzte2Ijjpo3BWw6dUJb3xQ09+OBPn8FFp0zD9z98vP1MhBBYv6sf37l3OV7e2IOffuwUh4AHgEde347Xt/XixGljcdhBo2xtN4hiUeC5tbvQnknh94s34qvnHeV4HkP5AnbsHcKdizbiY6e+ySH8AKv/dvUOYbhQxDGTRzsEAWCtMUolE9jU049TZ43DYZrWIoTAnoGctbh0MIc3jW8ve57dfcN4dvUurNqxD5efdWhZ+f3Defzxxc2YO2ucY6b/11e34OlVu3DUwR14x5GTMGl01vF+rOnah/lPr8U7j5qE4bzAu46e5OgLT7zRhadX70ShIDBnZifOm+3sC5t6LMf7rAntOHZK+fuhxuIoY0K9IaLFQog5gec1sUA5HcA3hRDnyv9fBQBCiOu88syZM0csWrRohGrIMAyzfxBWoDSzyesFAIcT0SwiygC4GMA9Da4TwzDMAUvTOuWFEHki+gKABwEkAcwXQiwNyMYwDMPUiaYVKAAghLgPwH2BJzIMwzB1p5lNXgzDMEyMYIHCMAzD1AQWKAzDMExNYIHCMAzD1AQWKAzDMExNaNqFjVEgol4A2wDs8TltjM/xGQA2eBwLyht0vJq81dat2mtzm9X2OLdZ5cfr2WZBxw+ENjtSCNHhc66FEOKA+QdgEYAbA87xPA6gK2reEGVHzltt3WpwbW4zbrP9ts1qcF9N32YAFvmdq/4diCavv1RxfHcdy64mL1Bd3aq9NrdZbY9zm1V+vJ5tFnT8QG2zMg40k9ciEWI/mnrlrydxrVtc6wXEt25xrRcQ37rFtV5AfOtWSb3CnnugaSg3Njh/PYlr3eJaLyC+dYtrvYD41i2u9QLiW7dK6hXq3ANKQ2EYhmHqx4GmoTAMwzB14oAXKEQ0n4h2ENFrWtoJRPQsES0hor8Q0WiZniaim2X6cvUNFnnsMSJaQUQvy3+TTNerU70yRPQrmf4KEZ2l5TlFpq8ioh9TDb7eU8O61brNphPRo/LZLCWiL8r0cUS0gIhWyr+dWp6rZNusIKJztfSatVuN69XQNiOi8fL8fUT0v66yGtZmAfVqdJu9m4gWy7ZZTETv1MpqZJv51Stam4UJBduf/wF4O4CTAbympb0A4Ez5+9MAvi1//wOA2+XvNgDrAMyU/38MwJwG1esKAL+SvycBWAwgIf+/EMDpAAjA/QDeE6O61brNJgM4Wf7uAPAGgGMAfB/AlTL9SgDXy9/HAHgFQBbALACrASRr3W41rlej26wdwNsAfB7A/7rKamSb+dWr0W12EoAp8vdsAJtj0mZ+9YrUZjVp4Gb/B2AmnIPjXpT8S9MBLJO/PworlC4FYLx8YOPq0WkrrNf/Afi4dt7DAObKDva6lv5RAL+IQ93q1WauOt4N4N0AVgCYLNMmA1ghf18F4Crt/Afly123dqumXnFoM+28T0IbuBvdZl71ilObyXQCsAvWZCEWbeauVzVtdsCbvDx4DcD58vdFsAZIALgLQB+ArbBWmP5ACNGt5fuVVA+/Xo3qGqFerwC4gIhSRDQLwCny2FQAm7T8m2RaPai0boq6tBkRzYQ1A3sewEFCiK0AIP8q9X0qgI1aNtU+dWu3KuulaGSbedHoNgsiLm32IQAvCSGGEK820+ulqLjNWKCY+TSAK4hoMSzVcVimzwVQADAFlini34joEHnsY0KI4wCcIf99YgTrNR9WZ1wE4L8BPAMgD2vW4aZeYX2V1g2oU5sR0SgAfwDwL0KIvX6nGtKET3qj6wU0vs08izCkjWSb+RGLNiOiYwFcD+BzKslw2oi3maFeQMQ2Y4FiQAjxuhDiHCHEKQBug2XDBiwfygNCiJwQYgeApwHMkXk2y7+9AH4HS/iMSL2EEHkhxJeEECcKIS4AMBbASlgD+TStiGkAttS6XhHrVpc2I6I0rJfpt0KIP8rk7UQ0WR6fDGCHTN8Ep7ak2qfm7VajesWhzbxodJt5Eoc2I6JpAP4E4BIhhBpPGt5mHvWK3GYsUAyoiAYiSgD4TwA/l4c2AHgnWbQDOA3A69KcM0HmSQN4PywT0IjUi4jaZH1ARO8GkBdCLJPqbS8RnSZV1ktg2VVrTqV1q0ebyXu8CcByIcSPtEP3AJgnf89DqQ3uAXAxEWWlOe5wAAtr3W61qldM2sxIDNrMq5yGtxkRjQVwLyy/2NPq5Ea3mVe9qmqzWjmAmvUfrNn0VgA5WDOGSwF8EZbD/Q0A30PJ2TwKwO8BLAWwDMBXZHo7rOilV+Wx/4GMyhmhes2E5XhbDuAhAG/SypkjO8NqAP+r8jS6bnVqs7fBMhm8CuBl+e+9sAIoHoalGT0MGUgh8/yHbJsV0CJsatlutapXjNpsHYBuAPvk8z8mJm1WVq84tBmsCVafdu7LACY1us286lVNm/FKeYZhGKYmsMmLYRiGqQksUBiGYZiawAKFYRiGqQksUBiGYZiawAKFYRiGqQksUBgmJhDR54nokgrOn0najs8M02hSja4AwzDWYjIhxM+Dz2SY+MIChWFqhNyQ7wFYG/KdBGuR5yUAjgbwI1gLY3cC+KQQYisRPQZrb7O3AriHiDoA7BNC/ICIToS120AbrEVvnxZC9BDRKbD2R+sH8NTI3R3DBMMmL4apLUcCuFEIcTysLf2vAPATAB8W1j5n8wFcq50/VghxphDih65ybgHwVVnOEgBXy/RfAfhnIcTp9bwJhokCaygMU1s2itK+SL8B8DVYHy9aIHcAT8LatkZxh7sAIhoDS9A8LpNuBvB7Q/qtAN5T+1tgmGiwQGGY2uLey6gXwFIfjaKvgrLJUD7DxAY2eTFMbZlBREp4fBTAcwAmqjQiSsvvT3gihNgDoIeIzpBJnwDwuBBiN4A9RPQ2mf6x2lefYaLDGgrD1JblAOYR0S9g7e76E1if8P2xNFmlYH1obGlAOfMA/JyI2gCsAfApmf4pAPOJqF+WyzCxgXcbZpgaIaO8/iqEmN3gqjBMQ2CTF8MwDFMTWENhGIZhagJrKAzDMExNYIHCMAzD1AQWKAzDMExNYIHCMAzD1AQWKAzDMExNYIHCMAzD1IT/D5x70rrifUioAAAAAElFTkSuQmCC\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {
- "needs_background": "light"
- },
- "output_type": "display_data"
- }
- ],
- "source": [
- "sorted_data['inc'].plot()"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "Un zoom sur les dernières années montre mieux la situation des pics en hiver. Le creux des incidences se trouve en été."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 40,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- ""
- ]
- },
- "execution_count": 40,
- "metadata": {},
- "output_type": "execute_result"
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEKCAYAAADuEgmxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztnXmcZGV197+ntq7e95np6dkXmA0YYBhAcAUBt4C+EjFGiEtQo4m+Jq9bNEQNiSYqqFEJARRwAYIooCJhR9ZhgBlmZ/aZnqX3vbv25/2j7q2u7q6qru6p6q5bc76fT3+65ql7bz33TvX93bM854gxBkVRFEXJBtdMT0BRFEVxDioaiqIoStaoaCiKoihZo6KhKIqiZI2KhqIoipI1KhqKoihK1qhoKIqiKFmjoqEoiqJkjYqGoiiKkjWemZ5ArmloaDCLFi2a6WkoiqI4ipdffrnDGNM40XZFJxqLFi1i48aNMz0NRVEURyEiB7PZTt1TiqIoStaoaCiKoihZo6KhKIqiZM2EoiEi80XkCRHZISLbROSz1vg/i8gREdlk/bwzaZ8vi8geEdklIpcmjZ8tIlus934gImKNl4jI3db4iyKyKGmfa0Rkt/VzTS5PXlEURZkc2QTCI8DfG2NeEZFK4GURecR67wZjzHeSNxaRVcBVwGpgLvCoiJxijIkCPwGuBV4A/gBcBjwEfAzoNsYsE5GrgG8DHxCROuA6YB1grM9+wBjTfWKnrSiKokyFCS0NY8wxY8wr1ut+YAfQnGGXy4G7jDFBY8x+YA+wXkSagCpjzPMm3vnpDuCKpH1ut17fC1xkWSGXAo8YY7osoXiEuNAoiqIoM8CkYhqW2+hM4EVr6DMi8pqI3CYitdZYM3A4abcWa6zZej12fNQ+xpgI0AvUZziWoiiKMgNkLRoiUgH8GvicMaaPuKtpKbAWOAZ81940xe4mw/hU90me27UislFENra3t2c8D0VRMvPCvk5eb+2f6WkoBUpWoiEiXuKC8QtjzH0AxphWY0zUGBMD/htYb23eAsxP2n0ecNQan5difNQ+IuIBqoGuDMcahTHmZmPMOmPMusbGCRc0KoqSgb+/ZzM/fHzPTE9DKVCyyZ4S4FZghzHme0njTUmbvRfYar1+ALjKyohaDCwHNhhjjgH9InKedcyrgfuT9rEzo94PPG7FPR4GLhGRWsv9dYk1pihKHghGohztHSYQjs70VJQCJZvsqQuADwNbRGSTNfYV4IMispa4u+gA8AkAY8w2EbkH2E488+rTVuYUwKeAnwGlxLOmHrLGbwXuFJE9xC2Mq6xjdYnIN4GXrO2+YYzpmtqpKooyES3dwxgDkWhspqeiFCgTioYx5hlSxxb+kGGf64HrU4xvBNakGA8AV6Y51m3AbRPNU1GUE+dQ1xAAkdi40KGiALoiXFGUJA51xkUjrJaGkgYVDUVREtiWRjiqloaSGhUNRVESHLQsDY1pKOlQ0VAUJcFhtTSUCVDRUBQFAGNMUiBcLQ0lNSoaiqIA0D4QZNhan6GWhpIOFQ1FUYCRzKm6cp9mTylpUdFQFAWAIz3DACxuKCeiloaSBhUNRVEAGArFXVO1ZV6NaShpUdFQFAWAUCQuFGU+j8Y0lLSoaCiKAoyIRnmJW2MaSlpUNBRFASAUHbE0NKahpENFQ1EUAIKWpVHqdRPWmIaSBhUNRVGAuHvK53bh87gwBqJa6VZJgYqGoiiAJRoeFx53vBOCxjWUVKhoKIoCQCgaxedx4XXFbwsqGkoqVDQURQEgHDH43C68lqWhwXAlFSoaiqIA8eypuHvKsjQ0GK6kQEVDURRgJKbhTcQ01NJQxqOioSgKEE+59bldeKyYhjZiUlKhoqEoChB3T3k9LrweOxCuloYyHhUNRVEACEWilLhdeF1WIFxjGnmhdzjM3/3qVfa2D8z0VKaEioaiKEDyOg3L0oiopZEPvvXQTh7YfJTn9nbO9FSmhIqGoihAcvaUFQhXSyPnbDzQxa82HAKgdyg0w7OZGioaiqIASWVE3HYgXC2NXHPnCwepK/fh97roHgrP9HSmhGemJ6AoSmGQcE/ZMQ3Nnso5/YEIzTWldA2G6FZLQ1EUJzM2phFS0cg5w6EopV43NWVeetXSUBTFyYSiZtTiPnVP5Z7hcJRKvwevx6uWhqIoziYUiVq1p6yYhgbCc04gbFsaPnrU0lAUxcnY2VNaRiR/DIejlPrcVPo99Aw7UzTU0lAUBRjJnvJoafS8kbA0Sn30DIWIObDR1YSiISLzReQJEdkhIttE5LPWeJ2IPCIiu63ftUn7fFlE9ojILhG5NGn8bBHZYr33AxERa7xERO62xl8UkUVJ+1xjfcZuEbkmlyevKEqcSDRGzDBqnYbGNHLPcCiK3wqExwz0ByMzPaVJk42lEQH+3hizEjgP+LSIrAK+BDxmjFkOPGb9G+u9q4DVwGXAj0XEbR3rJ8C1wHLr5zJr/GNAtzFmGXAD8G3rWHXAdcC5wHrgumRxUhQlN9iZUj7PyDoNXdyXewLhGKW+eEwDoMeBwfAJRcMYc8wY84r1uh/YATQDlwO3W5vdDlxhvb4cuMsYEzTG7Af2AOtFpAmoMsY8b4wxwB1j9rGPdS9wkWWFXAo8YozpMsZ0A48wIjSKouSIUMQSDfdIyq1aGrklEo0Risbwe9zUlnkBHLnAb1IxDcttdCbwIjDbGHMM4sICzLI2awYOJ+3WYo01W6/Hjo/axxgTAXqB+gzHUhQlhyREQ3uE542AdY1Lfa7itjRsRKQC+DXwOWNMX6ZNU4yZDONT3Sd5bteKyEYR2dje3p5haoqipCKYJBojPcLV0sglgXAUILG4D3Bk2m1WoiEiXuKC8QtjzH3WcKvlcsL63WaNtwDzk3afBxy1xuelGB+1j4h4gGqgK8OxRmGMudkYs84Ys66xsTGbU1IUJQk7plEyanGfWhq5ZDgUFw2/102tZWk4cYFfNtlTAtwK7DDGfC/prQcAO5vpGuD+pPGrrIyoxcQD3hssF1a/iJxnHfPqMfvYx3o/8LgV93gYuEREaq0A+CXWmKIoOSQ5puF22VVu1dLIJQlLw+emutS5lkY2i/suAD4MbBGRTdbYV4BvAfeIyMeAQ8CVAMaYbSJyD7CdeObVp40xUWu/TwE/A0qBh6wfiIvSnSKyh7iFcZV1rC4R+SbwkrXdN4wxXVM8V0VR0hBOyp4SEbxu0ZhGjhm2RMPvceN2CVV+jyNjGhOKhjHmGVLHFgAuSrPP9cD1KcY3AmtSjAewRCfFe7cBt000T0VRpo5tadglRDwul7qncoztnir1xVcg1Jb7ij97SlGU4iQ5ewqwLA11T+USO3vK742LRk2p15GlRFQ0FEUhGB0rGi4tWJhjEpaGLRplPke6p1Q0FEUZFQgH8LhFe4TnmORAOEBtmTPLo6toKIqSEI0Sz0hMQ8uI5Jbh8GhLo8LvYTAYzbRLQaKioShZcs/Gw+xu7Z/paeSFsTENn8elZURyzMg6jfg19nvcCevDSahoKEoWGGP4yn1b+OWGQzM9lbwQGhPT8LhEYxo5JpFya1kapT43w+Eo8SVpzkFFQ1GyoD8YIRIzju3rPBHjYxouQhrTyCnBcBSREReg3+vGGOf1YlfRUJQssMXCiSmS2ZAq5VYtjdwybDVgstoIJcQjEHLWdVbRUJQs6LXEwokpktlgP+3ai/u8bo1p5BpbNGzsLKpAxFlxDRUNRckCu0ZQb7FbGu6RmIaWEcktw6FYIp4B8UA44LhguIqGomSBLRZFKxrRGF634LKKFXrdLhWNHBMIRxOZUzBiaQyraChK8dEzHHdL9QyFHZftkg2hSCxhZYAd0yi+85xJAuFoQihgJPU2EHaWOKtoKEoW2O6pSMwwFHLWk2E2hCKxRBAc4tlTWnsqt4yNaah7SlGKmGS3VDFmUI0VDa9btMptjhkOR0fHNNQ9pSjFS/L6jGJcqxGKjrE0XBrTyDXDodSWRlBFQ1GKDzumMfZ1sTA+pqHuqVwTGGNpaCBcUYqYnqEwlSXxnmXFaGkEIzF8npEbmi7uyz2BcGy0paGBcEUpXnqHwyxsKEu8LjZC0Rg+90iDTo9bdHFfjhkemz2lgXBFKV56h8MsrCsHijUQHtWYRp4ZGwhX95SiFDE9Q2Gaqv143VKUlkY4akaJhs+jMY1cEo0ZQpHR7qlE7Sl1TylKcRGMRBkOR6kp81Jd6kus2SgmxgbCtTR6bhnp2jdyjUUEv9el2VOKUmzYlkV1mY/qUg+9xZo9lWJxXzGufp8JAmN6adj4vW51TylKsWFnS9WUeqkp8xWleyq+TiMpe8qqQRXVUiI5YWwDJhsndu9T0VCUCbAD39WlXqpLvSeFe8prWR0a18gNgTH9wW3i3fuc5QZU0VCUCbBFoqbMS02RikZwXPZU3NIIa1wjJ9j1ysaKRonHpZaGohQbtjuqptRHdZmXviJ0Tw2FopT7khf3xW8NulYjNwwEIgBU+j2jxkt96p5SlKLD7tZnu6f6g5GiKuYXsyr3lpWM3NA81kK/YjrPmaTPEo2KMaKhMQ1FKUL6kp4Sq/xeAPqtsWLAbjeaytIIqWjkhIGg9R0q8Y4a93tduk5DUYoNu+OayyWOXcWbicFg/FzKfKNrT4G6p3LFQCDu0lT3lKKcBAyFIpT54n/sI0XmnPWHnomhUPwp2D5HiJcRAXSBX46wLdPykvHuKac9gKhoKMoEDIdGyj/Yv53mUsiEbWmUl6RwT0XU0sgFA8EIJR7XqAw1iDdictp3aULREJHbRKRNRLYmjf2ziBwRkU3WzzuT3vuyiOwRkV0icmnS+NkissV67wciItZ4iYjcbY2/KCKLkva5RkR2Wz/X5OqkFWUyDIcjCbdUiS0aEWc9HWZiOBx/Ci5NsjTKEm644ondzCT9wQiVfu+48WINhP8MuCzF+A3GmLXWzx8ARGQVcBWw2trnxyJiP778BLgWWG792Mf8GNBtjFkG3AB82zpWHXAdcC6wHrhORGonfYaKcoIkd1xLlLMuoj7hCUsjKaZhZ/n0FVHAfybpD0TGxTPADoQ767s0oWgYY54GurI83uXAXcaYoDFmP7AHWC8iTUCVMeZ5Ey9mcwdwRdI+t1uv7wUusqyQS4FHjDFdxphu4BFSi5ei5JWh0EgfBPt3MVkaqWIaVdYNbkBFIycMBMJUlIwXjVKvm0jMOKoM/YnEND4jIq9Z7ivbAmgGDidt02KNNVuvx46P2scYEwF6gfoMx1KUaSUQTrI0HNptLRP2auXkmEZFSfGlFs8kA8F0lobzGjFNVTR+AiwF1gLHgO9a45JiW5NhfKr7jEJErhWRjSKysb29PdO8FWXSDIWiCR+/7Z4aLib3lF3iIsk9Zd/gBoLFt/o9X0SiMf649Tjf/uPOcZZDfyCS0tLw+5yXWDH+LLLAGNNqvxaR/wZ+Z/2zBZiftOk84Kg1Pi/FePI+LSLiAaqJu8NagLeM2efJNPO5GbgZYN26dZruoeSU4VGWRhG6p6yFZ+VjAuEuUUsjGw53DfG1+7fyysHuRAzoklWzOXPBSAi2PxAZtxocwO9xXgr3lCwNK0Zh817Azqx6ALjKyohaTDzgvcEYcwzoF5HzrHjF1cD9SfvYmVHvBx634h4PA5eISK3l/rrEGlOUaWU4OaZRhCm3qYrpiQgVJR4VjSx46vV2ntzVziWr5/DZi5YD48W2PxBOVBNIxonuqQktDRH5FfEn/gYRaSGe0fQWEVlL3F10APgEgDFmm4jcA2wHIsCnjTH21fgU8UysUuAh6wfgVuBOEdlD3MK4yjpWl4h8E3jJ2u4bxphsA/KKkjOSLY2SIl3cV+p143KN9ghX+r0qGlnQNRivTfav7z2NfR0DfP+x3YmyIQDGGAaCqd1TTnwImVA0jDEfTDF8a4btrweuTzG+EViTYjwAXJnmWLcBt000R0XJF8YYhsMjMY0SjwuR4hKNwVB0VBDcptLvoT+gMY2J6BoMUen34PO4Emsxkq/bcDhKzIwvVggjloaTVoXrinBFyUAwEsOYkYCliDiyB0ImhoKRUem2NhUlnlFPzEpqOgdD1Jf7ABLWRLKF1p+mLDqM9Ax30vdJRUNRMmBnSZUl+ftLvc4r/ZCJ5OywZOKWhorGRHQNBqkbIxp9KUQjlXuqxOO8mIaKhqJkYCg8Ph3V73Ve6YdMpBONCr9XLY0s6BwIJUTD7YonECQvikyURVf3lKIUP8OJNQwjf/B+r/Mqk2ZiMBQZV30VNKaRLd1DI6IBWFlnI9etP1EWfXz2lP0wEnSQ5aqioSgZGE6RjuovMvfUcDr3lKbcTogxhq7BEHXlJYmxsW69gQzuqVK1NBSluLD/mMtGuadcBItocd9gKHUgvNLvIRiJEYoUj0Dmmv5ghHDUJALhEL9uyW69/mB60bCz1pzkBlTRUJQM2MX8/MmWhsddVGVEhoJpYhqJTCB1UaWjayC+RmOUe8rvHeOein+HUi3uK/G48bldjrLoVDQUJQOBNJZGUZURCUXTxDTiNzknPQVPN53Wwr66itGWRir3VKq1MCPbO0eYVTQUJQOpSmyUOrDbWjqisdGLF5OxF6M56Sl4urFXgye7p6r8noRLCuJFH0u9bjzu1LfbCr+z1sOoaChKBlLGNBzYbS0dqc7PplJFY0K6BoMAE2RPpS6LbuO09TAqGoqSATt24U+6qZYU0ToNu8JtykB4yfiSGMpoOhOWRnL2lJdAOJYoj94fTF3hNrF9iddRza5UNBQlA6lTbl1F455K1YDJZqSnhnNuaNNN10AIv9eVuheJJQTdg6GUQXCbCr+HPgcJs4qGomRgKBzF6xa8Sf7o0iKyNAat7LBSb4raU+qempCuwdAoKwNG15+KxQxbj/Sysqky7THGpugWOioaipKB4VB0lJUB8fRbp/V1TodaGidG15jV4DCSddYXCLOvY5C+QGRUQ6axOG0R5ZQ69ynKyUJyAyYbf1JPDW+ajBinYItGqpiGvYbASa6T6Sa+GnysaIyI7Y5jfQCctaAm7TEqrRpfxhjiPeoKG2d/4xUlz8TTUUffUJ3YOCcdiVavGdYQOClIO910DoRGpdvC6KyzVw71UOn3sKShIu0xKvyeROqzE1DRUJQMDIWio1aDQzx7CpxVzjodg4nS76mdDhUOSwedTkKRGMd6h2muLR01ntyI6dVD3aydXzOuK+Lo7Z0VO1LRUJQMBFIsfHNiX+d02GVSxrrgbJy2Wnk6aekeImZgYX35qHE7EH68L8Drrf2clSGeAckio6KhKI4nuT+4jd9jxzSc757qHYoLQnVp6pTQMp8nYY0ooznQOQjA4oayUeO25fDkznZiBs7MEM+AeCAcnLMeRkVDUTIwlCIQbv+7GOpPdQ+FqSiJ97dORZmvuIoz5pL9HUMALBpjafi98QSCDQe6qPJ7OG9JfcbjqHtKUYqIQCpLo4jcUz1DIWrK0i88K/d5Ei4sZTQHOgap9HvGZU/ByBqXd57WNC4mlm5bp6Q2q2goSgaGQpHxMQ2rr3MxPIF3DYWoLRt/07MpVUsjLQc6B1ncUJ4yTda2Hq44s3nC4yQHzp2AioaiZGA4RfZUYp1GETQn6h4KU5viSdmmzOfWmEYa9ncMjnNN2VT5vcyt9rN+Ud2Ex3Gae0oX9ylKBlKVDS8m91T3YIhF9WVp31dLIzXBSJSjPcO876x5Kd//h0tPxeOSjKm2NuU+FQ1FKQrC0RjhqCnqmEb3BO6pMq+HUDRGJBpL2w/iZORw1zAxMz5zyubNpzRmfSy3S6xy6s4QDf0WKEoa7JXQY8taJ5cRcTLhaIz+QCSjaNgrxYccfq655kBHPN127BqNqVJR4mEgqDENRXE09pNf5Ziy1v4iKSPSY63RqC1Pnz1lpxeri2o0h7vj6bYL69K79iaDkxoxqWgoShrsQn1ju6553S48LnG8pdEzFG8gVJPJPWWJxqBD0kGni+6hMCKZr91kcFLLVxUNRUmD/UecqlWn3+t2TIG5dHRblkZdppRbqybVkFoao+gdijdWcmcR6M6GSr+XPrU0FMXZJNxTJePdN8XQva9r0LY0Mizus2IaThfIXNMzHM543SaLk2p8qWgoShr607inIG5pBB1+I7XdUxOt0wC1NMbSMxSmJk29rqlQWeKcEvQqGoqShpFAeGrRcHrtqUm5pxzib58ueobDVOcongFFFggXkdtEpE1EtiaN1YnIIyKy2/pdm/Tel0Vkj4jsEpFLk8bPFpEt1ns/EGvtvYiUiMjd1viLIrIoaZ9rrM/YLSLX5OqkFSUb7JjG2JRbiLunnJ5R1D0UosTjSlsWHdTSSEfvUCinlkZFiZfhcJSIA1oIZ2Np/Ay4bMzYl4DHjDHLgcesfyMiq4CrgNXWPj8WEfsb+RPgWmC59WMf82NAtzFmGXAD8G3rWHXAdcC5wHrgumRxUpR80xcI4/O4KPGMv6n6PW7HxzS6BzMv7AMo03UaKclHTAOcUbRwQtEwxjwNdI0Zvhy43Xp9O3BF0vhdxpigMWY/sAdYLyJNQJUx5nljjAHuGLOPfax7gYssK+RS4BFjTJcxpht4hPHipSh5oz8QoSqFlQHx9QvF4J7KFM+Akd7hw1rpNkEsZugdzm1Mo8JB9aemGtOYbYw5BmD9nmWNNwOHk7Zrscaarddjx0ftY4yJAL1AfYZjjUNErhWRjSKysb29fYqnpCij6Q9Exi3ssynxOL8mU7yESOYbn11CRd1TI/QHIhhDTmMaVSeBaKQjVdKyyTA+1X1GDxpzszFmnTFmXWNj9jVfFCUT/YFwyiA4xGMaQYdXuZ2o7hTE6yKVeFwpRSMWMzyxq42Qw6/DZOkZtrLOcuqeck559KmKRqvlcsL63WaNtwDzk7abBxy1xuelGB+1j4h4gGri7rB0x1KUaWEgEEn0ex5LqdddBCvCwxlLiNiU+dzjGjHFYoYv3fcaH/npS/zyxYP5mmJBYpdfyWVMw/6eFUVMIw0PAHY20zXA/UnjV1kZUYuJB7w3WC6sfhE5z4pXXD1mH/tY7wcet+IeDwOXiEitFQC/xBpTlGkh7p5KZ2k4WzRiMRPv2lc6sYulzOcZZ2n88PE93LOxBa9beHZvZ76mWZD0DNt91XObcgvOcE9NWBpdRH4FvAVoEJEW4hlN3wLuEZGPAYeAKwGMMdtE5B5gOxABPm2Msb9tnyKeiVUKPGT9ANwK3Ckie4hbGFdZx+oSkW8CL1nbfcMYMzYgryh5I+6eSv006fe6HL1KeiAUIWagOotgbqo+4S8d6OK05mpWNVXxx23HicVMVr0jioGRml15CIQ7wNKYUDSMMR9M89ZFaba/Hrg+xfhGYE2K8QCW6KR47zbgtonmqCj5YGJLI4YxJmW7z0Knd8h+Ws5ONMZ27+sYCDK/rozzl9Zz98bDbD/Wx5rm6rzMtdDotSyNXGZPVZ0EMQ1FKWpiMcNAKEJlmpiGXR7dqcFw+8ZXlcWNL969b/QTcHt/kMbKEs5fWg/AC/tOHhdVzyQEN1tKPPHKyU5wT6loKEoKBkPxtMr07ilnd+/rG87+xlc+JqYRicboGgrRWFHC7Co/SxrKef4kimv0DIWpLPHktJOhiFDpd0b9KRUNRUlBprpTkNy9z9mWRjaiMbZPeNdgCGOgobIEgHMW1fHKoe78TLQA6RkOUZ3DeIZNpd+r7ilFcSrpuvbZ+D3OtjQSopHFzS+ecjtynm39QQAaK+KisaSxnO6hcOKYxU7vUG5LiNjEW76qpaEojsTu15yqWCGMtEF1aimRyVgaZT4Pg0kxjfYBSzQsS2Nhfbzl6aHOoVxPsyDpGQ5nlao8WSr9Hkc0YlLRUJQU9GXpnnJqKZHe4TBul1CeocKtzdiU23bL0phlicaCunIADnYN5mGmhUfPUL7cU84oj66ioSgpsP940xUsHHFPOTemUV3qzSpduMznJhIziXIhHZal0WC5pxZYlsbBk8XSyHEDJptKvzdh4RYyKhqKkoKRrn1pYhpF4J7KNmW0NFHpNn6u7f1BKko8CRddRYmHhgrfSeGeCoSj8cwxy8rKJRUlamkoimOZMHvKsjSc2vK1dzic1RoNGGnEZMc17DUaySyoKzsp3FP72gcxBpbNqsj5se2U23gVpcJFRUNRUjAQiOB2SaI0+FgSMQ2HikbfJCyNsd37OgaCicwpm4X15SeFpbGnfQDIl2h4icRMwbs8VTQUJQUDwQjlPndan//I4r7C/gNPx2TcU2Up3FMNlaOzhxbWl3GsL0DQoe66bNnT2o9LYHFDec6PPdKIqbDjGioaipKCTA2YYKQ5kZPXaVSXTlh6DiCRYdVn3cza+1NZGmUYA4e7hnM70QJjT/sAC+rKUrYAPlGqHFK0UEVDUVIwGIxQXpL+xmBbGk50Txlj6AtEsrY0ls+uBGD70T4C4Sh9gUiKmIaVdtsZj2vc+fwBdh7vy92kC4Q9bQN5cU3BSE+NQg+Gq2goSgoGgukbMEG8wBw40z01EIwQjZmsRaOxsoT5daW8eribzsF4WfCGFJYGxNNue4fCfO3+bVx50/O8fLB4uhlEojH2dwyyNE+iYVu2hV5/SkVDUVIwEIxQnkE0XC7B53E5MntqMqvBbc6cX8srB3vYeSxuPTTXlo56v77cR7nPzaGuIQ51xQPi4WiMD9+6gWf3dORo5jPLoa4hwlHDssZ8iYbGNBTFsQwG0/fSsHFqy9cpicaCGo73Bfivp/ZRU+bl3MX1o94XERbUl3OwczAhGjd/eB0L6sr4yM9eKvgquMYYorHMqa572vKXOQVJ7imNaSiK84hnT2UWDad275tMLw2bMxfUArDhQBfvPr0Jn2f8rWNhXRkHkyyNsxbWcte151Fd6uXnLxR2H/GvP7idP/vPZxKr3lOxryMer8mXe2qkEZOKhqI4joncUzDSvc9pTKaXhs2qpqqEUFyxtjnlNgvry2jpGuZAxyD15T4qSjzUlPm4cFkDL+7vKuhFa0/samPb0T5ueWZf2m1a+wJUlHgSN/dcU+H34HEJnVaZlkJFRUNRxmCMUffUGHweF2vn1TC/rpSzF9am3GZBfRmhaIyXDnQxv64sMb5+cR0dA0H2dxTmivFdlcGmAAAgAElEQVTOgSAHO4co9br5wWO7aelOvUixcyBEfUXuq9vauF3C4oZyXm8dyNtn5AIVDeWkwRjD06+3T1iZdjgcJWaY0NIo8bod7Z6abLvS71x5Bj/7yPq0Cx4XWmm3+zoGWZAkGucsqgNgw/7CzKTa3NIDwDevWEMgHOPhba0pt+scDFJfnj/RADhlTiWvt/bn9TNOFBUN5aThub2dXH3bBi7+3lM8tzd9Ro/dCGdC95THRdCB7qnuoTAel2RMKU7FgvoylmbIHLLTboFRorG0sZz6ch8bDhSmaLx6qAe3S3jnaXNoqChJZIiNJW5p5L5QYTKnzq7kUNcQQ6HCjWuoaCgnDbZ7JBozfP7uzcTSZMvYefKV2cQ0HFg2o8tys2RTFn0yzK0pxeuOHzNZNESE9YvrCtbS2HS4h1NnV1Lm87CyqZIdaRYldgyEaMijewrg1DnxhZS7C9hFpaKhnDS0dA/jdQtffMepHO8LsPFg6r7Wg8G4EExkaTg1ptE5GKSuPPdPzG6XMK82LhbJMQ2AsxfW0tI9XHBB3ljMsOlQD2cuqAFgZVMVr7cOEInGxm3XNRikPg/XLZlTrdX3u44XrotKRUM5aWjpHmJuTSmXrJqD3+vigc1HUm434p7KXF/IqSm3+Xxiti2MZFcVjIjI0Z5AXj53quzvHKQ/GGHt/LhorJhTSSgS40Dn6KB9z3CYmCGvgXCIXye/18WuAo5rqGgoJw0t3cPMqy2lvMTDRStn84ctx8c9UcKIaFSWZA4UOzXlNp8B3SWN5ZR63cyu8o8an1sdX0F+tLewChrua4+Lg11fa8WcKgC2Hxt907YtpHzHNNwuYfmswg6Gq2goJw1HeoaZVxN/4n3P6XPpGgylDM4OZm1pONM91ZXHgO5n3rqMX/71ubhdo+MlTTVxETnWU1iiYS9EXGhZQstmVeBxybhgeMeAXXMrv5YGwCmzK9mp7ilFmVkC4Sjt/UHmWTWT1jTHnyhTNQ6yyzhUTLBOw+91Oy57ajgUZTAUpS5PlkZ9RUli9fio8XIfPo+LY72F5Z461DlIZYmHmrK4VenzuFg2q4IdY0Sjc3B0X/R8srKpkvb+YKIXe6GhoqGcFByxnnDn1cVFY1Zl/Mn3eN/4m5htaUyUkur3ughFYxPWLCokRm5++X9iTkZEaKr2c7TARONg1xAL6stGZZKtmlvFi/u7ePr19sRYR7/lnsrzOg2A1XOrAdh2tDBLy6toKCcFLd2WaFjZPT6Pi4YKH61pRMMlpG31auN3YCOmTsvNku8soFQ0VfsL0j01Nmj/fy8+hfm1ZfzVTzfwzO74ep7OwRAugZqy/IvGqrlxK3jrkd68f9ZUUNFQTgrs0hDzkkp6z67yczzFk29/IF53aqJ1DE7s3tdl9cPIdxZQKuZWlxaUeyoaM7R0DY9LD55fV8Z9f/MGPG4XT++OWxsdAyHqyn3jYjX5oLrUy8L6soIVjcktCVUUh9HaF+DGR3cTCEfxuiXhloK4aKS6iQ1O0IDJxu+NP3MNhaLUT7BtoWD7yafDNz+Wpho/x/sCRGNmWm6+E9HaFyAUjSXKnyRTXuJhSUN5ohx650D+12gks2ZuNa8d6Zm2z5sMJ2RpiMgBEdkiIptEZKM1Vicij4jIbut3bdL2XxaRPSKyS0QuTRo/2zrOHhH5gViPeCJSIiJ3W+MvisiiE5mvcvJx90uH+dWGQ/zm1SPMrSkddbOaXeVP6Z7KpsItQK3lqrCf3p2A3XkvX4HwTDRVlxKNGdr6C8PaOGglQSwYY2nYLJ1VMSIag/ktVjiW1c1VHO4apneo8Boy5cI99VZjzFpjzDrr318CHjPGLAces/6NiKwCrgJWA5cBPxYR22n8E+BaYLn1c5k1/jGg2xizDLgB+HYO5qucRDy2s415taWUet0srB/9RDmnyk/XYIjgmFIgE7V6TexfHbdaUglPodI5EMTvdVHmyxyvyQdzrbTbQlngd9hOt61PLRrLZ1VwuHuIQDhK50BwWq2z05rtYHjhuajyEdO4HLjden07cEXS+F3GmKAxZj+wB1gvIk1AlTHmeRMvuH/HmH3sY90LXCQTOZoVxaK9P8jmwz1cdc58HvzbC7j+ijWj3p9THb8JtPWNTm3M1j1lL2Br7S/M1MhUdA6EqC8vyXndqWxoshb4HSuQBX4HuwbxuOJZXalYNqsCY+ILAPNdFn0sdgbV1iIUDQP8r4i8LCLXWmOzjTHHAKzfs6zxZuBw0r4t1liz9Xrs+Kh9jDERoBfGu49F5FoR2SgiG9vb28e+rZykPLGrDYC3rZjNslmV4wKeiZv+GEshW0ujoaIEl0BrAQV3bfa09Y+zoCDuZpnudFubuTWWaBSIpXGoa5jm2lI87tS3Qbut6xO72ugPRmiuKU25XT6oK/fRXFPK1iOFl3Z7oqJxgTHmLOAdwKdF5E0Ztk31aGMyjGfaZ/SAMTcbY9YZY9Y1NjZONGflJOHxHW00VftZ2VSZ8n1bNMau1RgMRrOKabhdQmNlScG5p3a39vP2G57m0hue5k+7Rz9ExYsVzoxoVPk9lPvciTUzM82etgEW1Y8PgtssbijHJXDTU3sRgXec1jSNs4PVc6sKMoPqhETDGHPU+t0G/AZYD7RaLies323W5i3A/KTd5wFHrfF5KcZH7SMiHqAaKMz6ykrB8fKhbt6wtCGtK2aOLRpjLIX+QJiKCUqIJB8j1QLBmeTRHW0YE19Q99GfvTTKLz4dPSHSISIsbixnb/vMl/0OR2PsbRtgxZzUDxQAJR43C+rK6A9EuHBZw7RaGgBrmqvZ1zFIf6CwguFTFg0RKReRSvs1cAmwFXgAuMba7Brgfuv1A8BVVkbUYuIB7w2WC6tfRM6z4hVXj9nHPtb7gcdNITcaVgqGvkCY9v4gy2enbxpUU+bF53HRlhSTMMYwGIpOWELEZlaVf1xMZKZ5clcbK5uq+PWn3kBtmY/P3rWJQDiKMWbaffNjWTGnqiDqKh3oGCQUjSX6V6TDdlF94Jz5GbfLB3apmx3HZv56JXMilsZs4BkR2QxsAH5vjPkj8C3g7SKyG3i79W+MMduAe4DtwB+BTxtjbKfrp4BbiAfH9wIPWeO3AvUisgf4PFYmlqJMhF29dElDeveDiMQthSRLIxiJlwXJxj0FcUujtUBSSCEuli8f7OYtpzZSV+7jO1eewZ62Af5n42Fa+4KEorFExdmZYMWcwqirZAvXRKKxblEdc6v9XLxy9nRMaxRrrAyqQnNRTXlxnzFmH3BGivFO4KI0+1wPXJ9ifCOwJsV4ALhyqnNUTl72Wvn1S2eltzRgvHupx8qLr/Jn1z97dlUJPUNhAuFooqzITPLs7g4iMcNbTonH9t50SiMNFSVsbullnpUIkMklk29WNsWfnncd76dh2cy4yezPd7skYUmk4xNvWsJHL1iMzzP9xTNmVfqZVVlScBlUWkZEKUr2tg/gcUnahVs2c2v8tHSNVLo90hN/na3/2g6mF4KLKhoz3L3xMJUlHs5aOFJpdtXcKrYf7WOn5eawe0bMBLZgja0iO93sPN7P4oZySjyZhV5EZkQwbNY0V7OtwDKoVDSUomRf+yAL6svwpkmntFk+u5KjvQH6rGCjXdiwuXZyojHTwXBjDF/97Vae3NXOZy9ePuq8V8+tYndbP1uO9DC32k91WXZWVD6oryihsbJkxuMau1r7JnRNFQJrrP87u/JyIaCiMQ0EwlFufnpvwSxqOhnY2z7AkobMrgcYefJ93bqJ2emg2VoahbIqfMuRXn614RDXvmkJH3/jklHvrZ5bRThqeHxnGyuaZs7KsFkxp5Kdx2fu6XkgGOFw1zArZhe+aFywrIGYiVc2KBRUNPJMLGb4/D2b+Nc/7ORDt7xIt4PqFDmVSDTGwc4hls5KHwS3sZ827Z7MR7qHqSnzZh0In11ZGKKx3eq98JfnLhz33ipLKALhWNo1K9PJyqYqXm8dSNlqdzrYZQmWEyyNcxbVMbuqhAc3H51442lCRSPP/OiJPfxhy3GuOmc+Ld3D/N1dr870lIqelu5hQtEYS7OwNJprSqko8bArydKYTD5+VakHv9c1ZdEIRWI5eZDY1dpPqdc9qvS7zaL68kStqZmMZ9ismFNJKBJjX8fgjHz+0693IBK/IRc6Lpfw7tPn8tSu9oQLdaZR0cgjxhh+teEQbz6lkX9732lcfd5CXtzXRcxBnd6cQGtfgIEkn+/Gg90AWVkaIsIpsysSPvYj3cMpb7yZ9p9T5Z/yKucbHn2dS258mhNdfvR6az+nzK7AlaLkuMsliaylQrA0ZjqV9MldbZw5v4baGVoZP1nefXoToWiMh7cen+mpACoaeWXb0T6O9gZ41+lNidWwoWisoPL6nU5fIMzF332Kc69/lM/d9Sqfu+tVvnDvZhY3lLOqqTqrY5w6p4rXW/sxxliWRuaMq7Gsbq5m8+Gp3QAf2nKM9v4grSeYfbXr+ACnZPDRnzGvhnKfO2PZjOliaWMFpV43W2ZANNr7g2xu6eVtK2ZNvHGBsHZ+DUsayrnlT/tnzKWXjIpGHnl0RysiJL6gdvrnoc6hTLspk+C3rx6hPxjhDcsaeG5vJ3/a3cH7z57HA5+5gNIsy3+fOruCnqEwr7cOMBSKZp05ZXP2glqO9AxPOtFhf8cgB6zvwr6OqZfW6BoM0TEQzCgan714Off9zQVpi/NNJ26XsGqG6io9aRWxfMupzhENEeGL71jBrtZ+fvHioZmejnbuyyePbG/l7AW1iTr8CdHoGuLcJU7p9Va4GGP45YuHWNNcxX9fvW7iHdJwquXnf3RHK5B95pTNukXxNREvH+zm3adnv+8TSRkx+9oHecPShkl9rs3rVhD/lAyB3epSL9WlM5dqO5bTmqu5Z+Phae/i98SuNmZVlrB67szHdibDJatmc+GyBr77v7tYv7gu4W6cCWb+saNIOdozzLajfVy8aqT8wNyaUlwy0vxFOTFeOdTDzuP9/MX68RlDk+G0edVU+j3c8qd9AJOKaUA8G8jvdfGyFUvJlid2tbGkoZxSrztR9mQq2KJxqgNSSG3WNFczFIqy/wQsrMnSFwjz2I423r5q9oz0EzkRRIRvXrGGMp+H9//kOR7acmzG5qKikSfsp9bkmjVet4u5NaUcVNHICb999QilXjd/tnbuCR2nosTDJ9+8lG6rhMhkLQ2v28UZ82p4ZRKiMRSK8OK+Lt62YhaLGspP6Oa563g/VX4Ps6tmrizHZLE7001nXON3m48RjMS4ct30Fx/MBYsbyrn/MxewbHYln/rFK3zp168RCI/vmZJvVDTyxCPbW1nSUD6uts2CujIOqWicMMYYHt3RyhuXN2TVMGkiPnLBIhoqSijzuamZworpsxfWsu1oH8Oh7P6In9vTSSga460rZrGksfyE0k+3HullRVOVo56elzaW4/e6+P1rx+kZmp61S/e+fJjlsyo4Y152CRKFyOwqP//zifP5m7cs5a6XDvPXd2zM+juXK1Q08kBfIMwL+zp5+6rxlTEX1JXNiHsqHI2dcFpnIbHtaB/HegOj3H8nQpnPw3+8/3Q+d/HyKd18z1pQSyRmsu7p/PiuNsp9bs5ZVMfShnIOdw0Rikw+M6Z3OMyWI72c57AYmcft4i/WL+TRHa286d+fyHu1hL3tA7xyqIc/XzffUeKaCp/HxRcuW8G/v/90ntnTwf+7d/O0fr6KRh54clc74ahJKRrz68roGAhNay2ZwWCEc//1MW5+et+0fWa+GZuZlgveumIW175p6ZT2XTXX7n0wcXkMYwxP7mzjwuUN+DwuFjeWEzNwqGvy1saL+zqJGbhgqbNEA+Cf3rOKez5xPn2BCI/uyG+ZjMet47/njBNzZRYSf75uPp9681J+v+UY+6axsZWKRh54dHsr9eU+zlxQO+49O4PqcPf0WRuP7WyjazDEfz6xh97hwlhVeqI8uqOVs5Iy02aapmo/1aVetmfRMOf11gGO9gZ4q5X2adfI2juFYPhzezvxe12sXVAz6X0LgXMW1dJcU8ozY9rS5prn93WypKE8USusWPjIBYvxulzc+sz+aftMFY0TZNvRXt76nScTLqdwNMYTu9p424pZKVMJc7FWo3cozI+e2JN1G8iHthyjssRDfyDCrX9yjrURjRke3Hx0XPmEzoEgW4/0FdQCLRFhZVNlVpbG4ztHrxVY0hhfcPfcno5Jf+5zezs4Z1HdhCW+CxUR4Y3L42ts8rVwLRKNsWF/F+c50BqbiMbKEt53VjP3vtxC5zQ1tlLROEEe29HG/o5Bfv7CQQBe3NdFfyCS0jUFJFbk2mmSU+Hrv9vGfzy8i5ue2jvhtkOhCE/sauOKM5t552lzuO3ZA6NKbhQyD2w+wt/+6lW++eD2UeN2mZD1iwurdtDKpip2He8nmqFMTCAc5Y7nD3D2wtrEU2+l38tfnLuA258/yFOvZ//E3dYf4PXWgSmv7ygULlzeQH8gwmt5yqTaerSPgWCE8x0W98mWj1ywmGAkxv2bpqeooYrGCbLpcA8A92w8TCAc5ZHtx/F7XbxxeWPK7avLvJw6u5IX9nVN6fOe2d3Bfa8cobrUy0+fPUDnQDBjAPXxnW0EwjHeeVoTH3/jEgaCkYKqmJmOcDTGjY/uxu0S7n2lZdTq4ZcPduNzuxJpm4XCyqYqhsNRDnamdzPd8fwBjvUG+IdLTh01/k/vXsWpsyv5+3s2E4xklw3z/N5OAC5Y5uyb4QVLGxCJf7fzgX2dnJYskC2nzqlkTXMVv3n1yLR8norGCWCMYfPhHhbVl9E9FOa+V47w6I42LlzWmLGExflL69l4sCvrm8O3/7iTn79wkHA0xj/dv5XFDeX88q/PJRCOcumNf+KUrz7En9/0/Lin1FjMcPPT+2iq9rN+cR1nzq/hlNkV3LVh5ksRZCIWM9zyp/0c7BziO1eeTl2Zj3/5/Yi18fLBbtY0VxVEe9Vk7BLkO9LENVr7Avzoib28+ZRGzh/jKvF73XzpHSvoGAjybJZuquf2dFLl97B6bmGJ52SpLfdx+rwafv1KS17WHTy/r5NlsyporCyM+Fc+uGJtM1uO9LKnLf/NrVQ0ToCW7mE6B0N87MLFLJtVwVd+s4UjPcO8fVVmX/v5S+sJhGNZFbk72DnIT57cy9cf3Mb1v9/Bvo5BvvqulayeW80n37yUxQ1lfPzCxRzvC/Dx21/i1UMjC8zu2XiY11p6+eJlK3C7BBHhqnMWsLmlN9F/odDoGAhy+Y+e5dt/3MkbltZzxdpmPvO2Zbywr4uXD3YRCEfZ0tLLugIsa71sVgVul/D8vo5xTYb6AmGuuW0DkWiMr75rZcr9L1jWQKXfwx+2ZFfN9Nm9HZy3pH5ay3Dkiy9ceioHO4f4z8f3JMYC4Sif/uUrfOSnG6acLt7aF+C5PR0FFf/KB3+2di4ugd++mn8vgorGCWC7ps5cUMuv/vo8/u19p/E3b1k6YVrfeYvrERkxmzPxyw2HcLuEMp+Hnz13gPWL6xJ/AF+4bAX/88k38NV3r+LBz1zI7Co/n/7FK3QPhugPhPmPh3exbmEtlyetmH7fWc2UeFx89bdbCjKT6roHtrHreD/fufIM7vjoekSED5wzn5oyLzc9tY+tR3oJRWOcvXB8ZtpM4/e6WT6rgp+/cIjLbvwTf7IygowxfP7uzexpG+CmD5/N8jTlPnweF29fNZv/3XZ8wjUbh7uGaOke5oJlzo5n2FywrIH3ndnMTU/t5d/+sIP7XmnhIz99id+/downdrXzzBSSBAB+8eIhosbwoXMX5HjGhcWsSj8XLm/kke2tef8sFY0TYNPhHko8Lk6dU0ljZQkfXL+AL1y2gjJf5hXK1WVeVjVV8dzezH8IwUiU/9nYwsUrZ/GNy1dT6ffwj+9cmXJxUnWZlx9/6Cza+oN866Gd3PbMAToHQ3zt3atGbV9T5uPGD6xly5FePnTLCzNShiAdD287zu9fO8ZnL17O+8+el6jIWubzcPX5i3hkeyv/8vsdAAUpGgA3fGAt373yDCr9nsRT3wObj/Lojla+eNmKtLEum3ed1kRfIMKzE3w3bBfWG4ooI+hr717FxStnc8sz+/n8PZt55VA31793DXOq/PzoiT0TH8DC7mPzyxfjP289dRYLC6AkfL751/eu4TeffkPeP0er3J4Amw73sKa5Gu8Uyk2/bcUsfvj4Hr5472tc92erUgrNg5uP0TUY4kPnLuRNpzTyztOaMn7W6fNq+NiFi/mvp/dR6nVz6erZnDF/fP7+O05r4kcu4do7X+ZHT+zh78cEZWeCYCTKNx7czoo5lVz7piXj3r/m/IXcteEQnYPBRMmPQmRlUxUrm6p4YV8nf9x6nJbu5Xz9we2snV/DRy9cPOH+Fy5voLbMyz/dv5U7P3ouixpS3+ye3dtJY2XJuDI1Tqa23MdNHz6bjoEgPUNhFtSV4fO4CIRjfPN329mwvyurjLmbntrHt/+4M/Hvq88/sYKWTmFe7eT6wEwVtTSmSDgaY+uRXtamuClnw9++bTl/85al3PPyYT5x58tEojF2t/bzems/oUiMUCTGjY++zuq5VVxouSCyEae/vWg5s6tKCESiGcXgktVzEu6A6QieTcRdGw5zpGeYr7xzZcrzrK8oYcM/XsyfvvA2rnvP6hmY4eR4zxlz6Q9GeN+Pn2MoFOE/3n96VrGHEo+bn31kPQOBCO/98bPcaSVAJDMYjPD4jlbeckqj40tipKKhIi6GPk/8e/DB9fNpqvbztd9undBtd9eGQ3z7jzt5zxlz+d3fXsgPP3gmbz4ls3WnTA61NKbIruP9BCOxlE/y2WDXj1lYX8YXf72Ft9/wNPutonUVJR7OW1JHS/cw17/3tJQtPNNRUeLhlqvPYV9H5k5uAP/4rpU8trONbz20i1uumXo/ihNlIBjhh4/v4dzFdbxxeXH46N+wtJ66ch9t/UG+f9XatHGMVJwxv4Z7P/UGvvzrLXztt1vZ09rP1y9fk3j/d68dZTAU5QPnOLNa62Qp83n45uVr+PgdG/nRE3v4v28/JeV2D2w+ypd/s4U3n9LId688A5/HlWgtq+QOtTSmSCIIPkXRsPnAOQv4zFuX0TMU4v9deirfv2ot5y2p49EdbZy/pJ43TeEmetq8ai5f2zzhdvUVJVxz/kIe29ma89o1vcNhPvqzl/jps5nLG/QOx7OKugaDfOGyFUXz5Oxxu7juPav4xuWrs/q/GMvSxgru/sR5vO+sZu7Z2DJqVfyvNhxm2ayKgo3r5IOLV83mPWfM5fuP7eZjP3tpXEWFR7e38vm7N3HOojpu+suzE1aKknvU0pgimw73UFfum3TDnlT8w6Wn8veXnJK4YV6+tpktLb0015bm/Sb64fMXcdPT+7j1mf1c/97TTvh4/YEwrX1BvnLfFjYc6OLxnW0YAx+9cDHGGI71BphT5cflEjoGglx96wZ2t/Xzo784q+huglMRi2REhI9esJj7XjnCfS+38FcXLGbD/i42He7hq+9KnRBRzHz3yjM4rbmKGx/dzcU3PMX/OWseVX4PPUNhfrPpCKvnVnHrNeuybvOrTA0VjSmy6XAPa+fX5OwPd+xxTpummv+NlSW8d228ds2Hzl2YqNa6p22AihLPpAq87Wkb4L0/fpb+QAQRuOEDZ/Dw1la+8bvtuF3CK4e6uX/TUerLfZw+r5p9HYO09gW45Zpz1O+chjXN1Zwxv4bbnz+I2yV866GdzK8r5cqzTw7XVDI+j4tr3xRPaf/XP+zk/k1HiMQM1aVezl9Sz40fWEulv3Ba2hYrUkw9FgDWrVtnNm7cOKV9A+FoVquM+wJhzvj6//K5i07hsxcvn9JnFRIt3UP8+U3PMxCMcOW6+Ww50suG/V3Ul/v41bXnTRgbgfi1u+JHz9LeH+Rr717F0sYKTptXTSgS41M/f5nHrCJ915y/kL5AhF3H+wlFY/zb+07jnAJcqFdI3L/pCJ+9axMAp8yu4M6PncvsquKq1qrMPCLysjFmwuCmioZFXyDM277zJJesnsMn37SUBfXp09ce3nacT9z5Mrd/dH3RPCG3dA/xkZ++xMHOIRY1lPGu0+byixcPEokZPnvRct53VnPKp7iW7iH++YHtbNjfSV8gkvKaBMJRvv7gNlbPreYvzzs50h9zTVtfgL5AJJGGqii5RkVjknQMBPneI69z78YWXC740V+cxUUrR1eqDYSj/PyFg/z7w7uoL/fxyOffnJNWo4WCMQZjSGRr7Wsf4PP3bGbT4R7KfW7ed9Y8rj5/IYsaytl2tI8X93Xy4yf3EosZ3n3GXN6+ahZvW5GbTnqKokwvRSUaInIZ8H3ADdxijPlWum1PxD0FcLw3wLV3bmTrkV4+/dZlfPLNS/F73fzixYPc+OhuugZDvPXURr5z5RnUF+gCs1yz+XAPdzx/kAdfO0ooEsPvjS+4Alg7v4YbP7A27SI0RVGcQdGIhoi4gdeBtwMtwEvAB40x21Ntf6KiAfEeFP/4m6385tUjlHhcVPo9dAyEuGBZPX/3tuWsX1x30mWuQLz50T0bW2jrD7BuYR3nLKpllvrWFaUoKCbROB/4Z2PMpda/vwxgjPm3VNvnQjRsXj3Uze9fi5fyePOpjfzZGXNPSrFQFKX4yVY0nOCQbwYOJ/27BTg3eQMRuRa4FmDBgtxVszxzQW3KPt+KoignK05Iw0j1aD/KPDLG3GyMWWeMWdfYWBzZTIqiKIWIE0SjBUheyTQPKPx+pYqiKEWIE0TjJWC5iCwWER9wFfDADM9JURTlpKTgYxrGmIiIfAZ4mHjK7W3GmG0zPC1FUZSTkoIXDQBjzB+AP8z0PBRFUU52nOCeUhRFUQoEFQ1FURQla1Q0FEVRlKwp+BXhk0VE+oFdk9ytGujN0RRyeSyABqAjh8fL9fwK/Xh6/aaOXrvckMvrmK9zbpVORmYAAAUxSURBVADKjTETL3SLVzYtnh9g4xT2uTmHn5+zY031fKZ5foV+PL1+eu1m5Hj5uI75OufJzFHdU3EeLNBj5YNcz6/Qj5drCv18C/n6Ffq5FvK1s5nxcy5G99RGk0XRLadQbOcz3ej1mzp67XKDE67jZOZYjJbGzTM9gRxTbOcz3ej1mzp67XKDE65j1nMsOktDURRFyR/FaGkoiqIoeUJFY5oRkfki8oSI7BCRbSLyWWu8TkQeEZHd1u9aa/ztIvKyiGyxfr8t6VjXi8hhERmYqfOZbnJ1/USkTER+LyI7reOkbSFcLOT4u/dHEdlsHecmq8PmSUEur2PSMR8Qka3TfS5TIh8pZvqTMcWtCTjLel1JvJXtKuDfgS9Z418Cvm29PhOYa71eAxxJOtZ51vEGZvq8nHb9gDLgrdZrH/An4B0zfX5OuHbWv6us3wL8Grhqps/PidfRGnsf8Etg60yfW1bnP9MTONl/gPuJ9z/fBTRZY03ArhTbCtAJlIwZP2lEIx/Xz3rv+8Bfz/T5OO3aAV7iaZsfmOnzceJ1BCqAZyzRcYRoqHtqBhGRRcSfQl4EZhtjjgFYv2el2OX/AK8aY4LTNcdCJlfXT0RqgPcAj+VzvoVELq6diDwMtAH9wL15nnJBkoPr+E3gu8BQ3iebI1Q0ZggRqSBu1n/OGNOXxfargW8Dn8j33JxArq6fiHiAXwE/MMbsy8dcC41cXTtjzKXEn6hLgHF++mLnRK+jiKwFlhljfpPXieYYFY0ZQES8xL9svzDG3GcNt4pIk/V+E/EnOHv7ecBvgKuNMXune76FRo6v383AbmPMjfmf+cyT6++eMSZAvJPm5fmeeyGRo+t4PnC2iBwg7qI6RUSenJ4zmDoqGtOMiAhwK7DDGPO9pLceAK6xXl9D3E9qu05+D3zZGPPsdM61EMnl9RORfyFesO1z+Z53IZCrayciFUk3Rw/wTmBn/s+gMMjVdTTG/MQYM9cYswi4EHjdGPOW/J/BCTLTQZWT7Yf4l8MArwGbrJ93AvXEfeq7rd911vZfBQaTtt0EzLLe+3egBYhZv/95ps/PKdcPmGcdZ0fS+Mdn+vwccu1mAy9Zx9kG/BDwzPT5Oe06jjnmIhwSCNcV4YqiKErWqHtKURRFyRoVDUVRFCVrVDQURVGUrFHRUBRFUbJGRUNRFEXJGhUNRZlmROSTInL1JLZf5JgKqErR45npCSjKyYSIeIwxN830PBRlqqhoKMoksYrU/ZF4kboziZfGvhpYCXyPeOXSDuCvjDHHrNIQzwEXAA+ISCXxysTfseoP3US8VPte4KPGmG4RORu4jXghu2em7+wUJTPqnlKUqXEqcLMx5nSgD/g08ZXR7zfG2Df865O2rzHGvNkY890xx7kD+KJ1nC3Addb4T4G/M8acn8+TUJTJopaGokyNw2akjtDPga8Qb7DzSLw0EW7gWNL2d489gIhUExeTp6yh24H/STF+J/CO3J+CokweFQ1FmRpj6+/0A9syWAaDkzi2pDi+ohQE6p5SlKmxQERsgfgg8ALQaI+JiNfqn5AWY0wv0C0ib7SGPgw8ZYzpAXpF5EJr/EO5n76iTA21NBRlauwArhGR/yJe1fSHwMPADyz3kge4kXgV2ExcA9wkImXAPuAj1vhHgNtEZMg6rqIUBFrlVlEmiZU99TtjzJoZnoqiTDvqnlIURVGyRi0NRVEUJWvU0lAURVGyRkVDURRFyRoVDUVRFCVrVDQURVGUrFHRUBRFUbJGRUNRFEXJmv8PU5V/OxVhkdEAAAAASUVORK5CYII=\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {
- "needs_background": "light"
- },
- "output_type": "display_data"
- }
- ],
- "source": [
- "sorted_data['inc'][-200:].plot()"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Etude de l'incidence annuelle"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "Etant donné que le pic de l'épidémie se situe en hiver, à cheval\n",
- "entre deux années civiles, nous définissons la période de référence\n",
- "entre deux minima de l'incidence, du 1er août de l'année $N$ au\n",
- "1er août de l'année $N+1$.\n",
- "\n",
- "Notre tâche est un peu compliquée par le fait que l'année ne comporte\n",
- "pas un nombre entier de semaines. Nous modifions donc un peu nos périodes\n",
- "de référence: à la place du 1er août de chaque année, nous utilisons le\n",
- "premier jour de la semaine qui contient le 1er août.\n",
- "\n",
- "Comme l'incidence de syndrome grippal est très faible en été, cette\n",
- "modification ne risque pas de fausser nos conclusions.\n",
- "\n",
- "Encore un petit détail: les données commencent an octobre 1984, ce qui\n",
- "rend la première année incomplète. Nous commençons donc l'analyse en 1985."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 44,
- "metadata": {},
- "outputs": [],
- "source": [
- "first_august_week = [pd.Period(pd.Timestamp(y, 8, 1), 'W')\n",
- " for y in range(1985,\n",
- " sorted_data.index[-1].year)]"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "En partant de cette liste des semaines qui contiennent un 1er août, nous obtenons nos intervalles d'environ un an comme les périodes entre deux semaines adjacentes dans cette liste. Nous calculons les sommes des incidences hebdomadaires pour toutes ces périodes.\n",
- "\n",
- "Nous vérifions également que ces périodes contiennent entre 51 et 52 semaines, pour nous protéger contre des éventuelles erreurs dans notre code."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 45,
- "metadata": {},
- "outputs": [],
- "source": [
- "year = []\n",
- "yearly_incidence = []\n",
- "for week1, week2 in zip(first_august_week[:-1],\n",
- " first_august_week[1:]):\n",
- " one_year = sorted_data['inc'][week1:week2-1]\n",
- " assert abs(len(one_year)-52) < 2\n",
- " yearly_incidence.append(one_year.sum())\n",
- " year.append(week2.year)\n",
- "yearly_incidence = pd.Series(data=yearly_incidence, index=year)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "Voici les incidences annuelles."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 46,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- ""
- ]
- },
- "execution_count": 46,
- "metadata": {},
- "output_type": "execute_result"
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAD8CAYAAABQFVIjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAG45JREFUeJzt3X+Q1PWd5/HnCweHrEEFBMMPdbgKy0aTO12n0JR7d2JOILspMbcmx+pFqtYqXGOq3HPrFCpcmYvsrVxdxT3OiqsVzZr4A91sLLk1SBCh4u5xwHBqFA07eGGRlTjDgYKpgs3I+/7oz2hPZ6anZ+bTv6Zfj6qu7v705/PpT3+mu9/z+fH9tiICMzOzsZpQ7waYmdn44IBiZmZZOKCYmVkWDihmZpaFA4qZmWXhgGJmZlk4oJiZWRYOKGZmloUDipmZZdFW7wbU0jnnnBMdHR31boaZWVPZvXv34YiYPly+lgooHR0ddHV11bsZZmZNRdI/VJLPU15mZpaFA4qZmWXhgGJmZlk4oJiZWRYOKGZmloUDSoPoOXaCLz+wnZ7jJ+rdFDOzUXFAaRDrtnSza/8R1j3fXe+mmJmNSksdh9KI5q/eyMm+Ux/ef3THAR7dcYD2tgnsXfP5OrbMzGxkPEKpsxfvWMg1F89i0sTCn2LSxAksvXgWL965sM4tMzMbGQeUOptx5iQmt7dxsu8U7W0TONl3isntbcyYPKneTTMzGxFPeTWAw++f5IbLLuD6Befz+M4D9Hph3syakCKi3m2omc7OzvC5vMzMRkbS7ojoHC6fp7zMzCwLBxQzM8vCAcXMzLJwQGkSPpLezBqdA0qT8JH0ZtbovG24wflIejNrFh6hNDgfSW9mzcIBpcH5SHozaxYOKBWo94J4/5H0T3/1Cm647AJ63z9Zl3aYmZXjI+UrsPrpV3ls5wFuWHA+a774mSq0zMyscVV6pLwX5cvwgriZWeU85VWGF8TNzCpXUUCRtF/Sq5JeltSV0qZK2iypO11PKcq/StI+SXslLS5KvzTVs0/SOklK6e2SnkzpOyR1FJVZnp6jW9LyovS5KW93Knv62LtjIC+Im5lVbiQjlIURcXHRPNpKYEtEzAO2pPtIuhBYBlwELAG+Lem0VOZ+YAUwL12WpPSbgKMR8UngXmBtqmsqcBdwGbAAuKsocK0F7k3PfzTVkZ0XxM3MKlPRoryk/UBnRBwuStsLXBkRhyTNBLZFxHxJqwAi4s9Svk3AN4D9wNaI+K2U/gep/M39eSJiu6Q24BfAdAqB6cqIuDmVeQDYBqwHeoFPRESfpM+m8h+Ohgbj09ebmY1c7tPXB/BjSbslrUhp50bEIYB0PSOlzwbeKip7MKXNTrdL0weUiYg+4D1gWpm6pgHvpryldZmZWR1Uusvrioh4W9IMYLOkn5XJq0HSokz6aMqUq2tgYwoBcAXA+eefP1gWMzPLoKIRSkS8na57gKcprGe8k6a6SNc9KftB4Lyi4nOAt1P6nEHSB5RJU15nAUfK1HUYODvlLa2rtO0PRkRnRHROnz69kpdrZmajMGxAkXSGpMn9t4FFwGvABqB/19Vy4Jl0ewOwLO3cmkth8X1nmhY7LunytLvrxpIy/XVdB7wQhcWdTcAiSVPSYvwiYFN6bGvKW/r8ZmZWB5VMeZ0LPJ12+LYBj0fEc5J2AU9Jugk4AHwJICL2SHoKeB3oA26NiA9SXbcAfwl8DNiYLgAPAd+XtI/CyGRZquuIpLuBXSnfNyPiSLp9J7Be0hrgpVSHmZnViU+9YmZmZeXe5WVmZlaWA4qZmWXhgGJmZlk4oJiZWRYOKGZmloUDipmZZeGAYmZmWTigmJlZFg4oZmaWhQOKmZll4YBiZmZZOKCYmVkWDihmZpaFA4qZmWXhgGJmZlk4oJiZWRYOKGZmloUDipmZZeGAYmZmWTigmJlZFg4oZmaWhQOKmZll4YBiZmZZOKCYmVkWDihmZpaFA4qZmWXhgGJmDann2Am+/MB2eo6fqHdTrEIOKGbWkNZt6WbX/iOse7673k2xCrXVuwFmZsXmr97Iyb5TH95/dMcBHt1xgPa2Cexd8/k6tsyG4xGKmY1YNaejXrxjIddcPItJEwtfT5MmTmDpxbN48c6F2Z/L8nJAMbMRq+Z01IwzJzG5vY2Tfadob5vAyb5TTG5vY8bkSdmfy/LylJeZVaxW01GH3z/JDZddwPULzufxnQfo9cJ8U1BE1LsNNdPZ2RldXV31boZZ0+o5doI1P3qDH+/5BSd+dYpJEyew+KJP8PXf+5RHEOOYpN0R0TlcvoqnvCSdJuklSX+T7k+VtFlSd7qeUpR3laR9kvZKWlyUfqmkV9Nj6yQppbdLejKl75DUUVRmeXqObknLi9Lnprzdqezplb4WMxsdT0dZOSNZQ7kNeKPo/kpgS0TMA7ak+0i6EFgGXAQsAb4t6bRU5n5gBTAvXZak9JuAoxHxSeBeYG2qaypwF3AZsAC4qyhwrQXuTc9/NNVhZlXWPx319Fev4IbLLqD3/ZP1bpI1iIqmvCTNAR4B/hS4PSK+IGkvcGVEHJI0E9gWEfMlrQKIiD9LZTcB3wD2A1sj4rdS+h+k8jf354mI7ZLagF8A0ykEpisj4uZU5gFgG7Ae6AU+ERF9kj6byn84GhqMp7zMzEYu95TXnwN3AKeK0s6NiEMA6XpGSp8NvFWU72BKm51ul6YPKBMRfcB7wLQydU0D3k15S+syM7M6GDagSPoC0BMRuyusU4OkRZn00ZQpV9fAxkgrJHVJ6urt7R0si40jPl2HWf1UMkK5ArhG0n4KU01XSXoUeCdNdZGue1L+g8B5ReXnAG+n9DmDpA8ok6a8zgKOlKnrMHB2ylta1wAR8WBEdEZE5/Tp0yt4udbMfLoOs/oZNqBExKqImBMRHRTWNF6IiH8PbAD6d10tB55JtzcAy9LOrbkUFt93pmmx45IuT7u7biwp01/Xdek5AtgELJI0JS3GLwI2pce2prylz28taP7qjXSsfJZHdxwgonB8RMfKZ5m/emO9m2bWMsZypPw9wNWSuoGr030iYg/wFPA68Bxwa0R8kMrcAnwH2Ae8CfR/2h8CpknaB9xO2jEWEUeAu4Fd6fLNlAZwJ3B7KjMt1WEtyqfrMKu/ER0pHxHbKOyyIiL+H/C5IfL9KYUdYaXpXcCnB0k/AXxpiLoeBh4eJP3/UthKbFbx8RE9x07wtSde4r7rL2nYYyeaoY1mg/G5vGzcqOT4iGZYY2mGNpoNxqdesZZQeg6qfo10SvRmaKO1puynXjFrZs2wxtIMbTQrxwHFWkIznIOqGdpoVo5PX28toxlOid4MbTQbitdQzMysLK+hmFnL86l4assBxczGLW/Bri2voVhD8UF9lkOtfqrYBvIIxRqK/6O0HLwFuz48QrGG0Er/UXoUVn3egl0fHqFYzZRbIG2l/yg9CqsN/1Rx7XmEYhUb63/WxV+ka774mQGPtcJ/lK00CmsED3zlo12ua679tXPSWhU4oFjFygWEcir9Ih3vB/W9eMdC1vzoDX685xec+NUpJk2cwOKLPsHXf+9T9W6aWRYOKDassf5nXekX6Xj/j7IVRmHW2ryGYsMa6/qGv0g/0izz+j4g0EbDIxQbVo6AMN6nsyrVLKOw0U5vWmvzubysIjd/v4vpkycNCAjFX442Pvg3WWwwlZ7LywHFzD7Uc+zEkOtdrThFaQU+OaSZjZjXu2wsvIZiZgN4vctGy1NeZmZWlqe8zMysphxQzMwsCwcUMzPLwgHFzMyycEAxM7MsHFDMzCwLBxSzEfKJE80G54BiNkL+xUWzwflIebMK+RcXzcrzCMWsQq30u/dmo+GAYk2lnusXPnGiWXnDBhRJkyTtlPSKpD2S/nNKnypps6TudD2lqMwqSfsk7ZW0uCj9UkmvpsfWSVJKb5f0ZErfIamjqMzy9BzdkpYXpc9NebtT2dPzdIk1snqvXzTLLy6a1cOwJ4dMX/pnRMT7kiYCfwvcBvxb4EhE3CNpJTAlIu6UdCHwBLAAmAU8D/xmRHwgaWcq+7+BHwHrImKjpK8C/zwi/kjSMuCLEfHvJE0FuoBOIIDdwKURcVTSU8API2K9pL8AXomI+8u9Fp8csnn5h5/M6ifbySGj4P10d2K6BLAUeCSlPwJcm24vBdZHxMmI+DmwD1ggaSZwZkRsj0IU+15Jmf66fgB8LgWyxcDmiDgSEUeBzcCS9NhVKW/p89s45PWLvLz12aqhojUUSadJehnoofAFvwM4NyIOAaTrGSn7bOCtouIHU9rsdLs0fUCZiOgD3gOmlalrGvBuyltaV2nbV0jqktTV29tbycu1BuT1i7zqPXVo41NF24Yj4gPgYklnA09L+nSZ7BqsijLpoylTrq6BiREPAg9CYcprsDzWHPzDT2Pnrc9WTSM6DiUi3pW0DVgCvCNpZkQcStNZPSnbQeC8omJzgLdT+pxB0ovLHJTUBpwFHEnpV5aU2QYcBs6W1JZGKcV12Tj1wFc+msJdc225/2lsKC/esXDI34w3G6tKdnlNTyMTJH0M+DfAz4ANQP+uq+XAM+n2BmBZ2rk1F5gH7EzTYsclXZ7WQG4sKdNf13XAC2mdZROwSNKUtItsEbApPbY15S19fjMbQi2nDpthnaYZ2jhWtXyNlayhzAS2SvopsIvCGsrfAPcAV0vqBq5O94mIPcBTwOvAc8CtacoM4BbgOxQW6t8ENqb0h4BpkvYBtwMrU11HgLvT8+4CvpnSAO4Ebk9lpqU66qIV3pQ2ftRq63MzrNM0QxvHqpav0b8pn8Hqp1/lsZ0HuGHB+az54mey12/WTJphi3cztHGscr7GSrcNO6CMQSu8Kc1GqufYiSHXaRplV14ztHGscr7GbMeh2NAqPTbCU2JWaz5FTXnN0MaxqsdrdEAZg0r/YK0wT2uNpd7vuWY4RU0ztHGsav0aPeU1Rjd/v4vpkycNODaif3urp8Ss1vyes2rwGsogan0ur2abp+05doKvPfES911/SUO2z4bXbO+5ZtcqnxmvoTSAZpunrfc0iY1ds73nmp0/MwP5FxurrBlOF+LTcYwvzfCea3b+zAzOU17maRKzEWq1z4ynvKxiniYxGxl/ZgbngNIihjsuoRW2UJrl5M/Mr/OUV4vw6WHMbLQqnfLyovw458XDkWmVbaBm1eApr3HOP507Mt4GajZ6HqGMc148rIxHcmZj5xFKC/Di4fA8kjMbO49QWoB/Ond4HsmZjZ0DilniI8zNxsbbhs3MrCwfKW9mZjXlgGJmZlk4oJg1If+sdG24n0fGAcWsCfkAzNpwP4+MF+XNmoh/4rc23M8DeVHebBzyAZi1kbOfW2nazAHFLLNqfoH4AMzayNnPrTRt5gMbzTIr/gKpxk8F+ADM2hhrP7fi+eG8hmKWiefdR2a8/1TAePqZYK+hmNWY1zdGZrxPBbXi9KSnvMwyacUvkNFopamgVpuedEAxy6jVvkBG48U7Fg45FTTetNqZvh1QzDJqtS+Q0fBIbvzyGoqZ1Zx/9C2fRjrOxbu8zMya2OqnX+WxnQe4YcH5VdmmDhl3eUk6T9JWSW9I2iPptpQ+VdJmSd3pekpRmVWS9knaK2lxUfqlkl5Nj62TpJTeLunJlL5DUkdRmeXpObolLS9Kn5vydqeyp1faOWZmjWK0I4z5qzfSsfJZHt1xgIjC5oaOlc8yf/XGKrV0eJVMefUBfxIRnwIuB26VdCGwEtgSEfOALek+6bFlwEXAEuDbkk5Ldd0PrADmpcuSlH4TcDQiPgncC6xNdU0F7gIuAxYAdxUFrrXAven5j6Y6zMyaymi3TzfiNvVhF+Uj4hBwKN0+LukNYDawFLgyZXsE2AbcmdLXR8RJ4OeS9gELJO0HzoyI7QCSvgdcC2xMZb6R6voBcF8avSwGNkfEkVRmM7BE0nrgKuD6ouf/BoWAZWbW8Ma6fboRNzeMaFE+TUVdAuwAzk3Bpj/ozEjZZgNvFRU7mNJmp9ul6QPKREQf8B4wrUxd04B3U97SukrbvEJSl6Su3t7ekbxcM7OqyTHCaLTNDRVvG5b0ceCvgT+OiGNp+WPQrIOkRZn00ZQpV9fAxIgHgQehsCg/WB4zs1rLMcJotG3qFY1QJE2kEEwei4gfpuR3JM1Mj88EelL6QeC8ouJzgLdT+pxB0geUkdQGnAUcKVPXYeDslLe0LjOzptBoI4yxGnaEktYyHgLeiIhvFT20AVgO3JOunylKf1zSt4BZFBbfd0bEB5KOS7qcwpTZjcD/KKlrO3Ad8EJEhKRNwH8pWohfBKxKj21NedeXPL+ZWVNotBHGWFUyQrkC+ApwlaSX0+V3KQSSqyV1A1en+0TEHuAp4HXgOeDWiPgg1XUL8B1gH/AmhQV5KASsaWkB/3bSjrG0GH83sCtdvtm/QE9hA8Dtqcy0VIfVUSMdYGVmtecDGy2bWhxgZWa1V+mBjT6Xl41ZK5091syG5nN52Zg14gFWZlZ7Dig2Zo14gJWZ1Z6nvCwL/w6ImXlR3szMyvJvypuZWU05oIwTPgbEzOrNAWWcGO0psM3McvGifJPzMSDWqnqOneBrT7zEfddf4h2FDcIjlCbnY0CsVXlU3ng8QmlyPgbEWo1H5Y3LI5RxYLydAtusHI/KG5dHKOPAeDsFtlk5HpU3LgcUM2s6PjNDY/KR8mZmVpaPlDczs5pyQDEzsywcUMzMLAsHFDMzy8IBxczMsnBAMTOzLBxQzMwsCwcUMzPLwgHFzMyycEAxM7MsHFDMzCwLBxQzM8vCAcXMzLJwQDEzsywcUMzMLAsHFDMzy8IBxczMsnBAMTOzLIYNKJIeltQj6bWitKmSNkvqTtdTih5bJWmfpL2SFhelXyrp1fTYOklK6e2SnkzpOyR1FJVZnp6jW9LyovS5KW93Knv62LvCzMzGopIRyl8CS0rSVgJbImIesCXdR9KFwDLgolTm25JOS2XuB1YA89Klv86bgKMR8UngXmBtqmsqcBdwGbAAuKsocK0F7k3PfzTVYWZmdTRsQImInwBHSpKXAo+k248A1xalr4+IkxHxc2AfsEDSTODMiNgeEQF8r6RMf10/AD6XRi+Lgc0RcSQijgKbgSXpsatS3tLnNzOzOhntGsq5EXEIIF3PSOmzgbeK8h1MabPT7dL0AWUiog94D5hWpq5pwLspb2ldv0bSCkldkrp6e3tH+DLNzKxSuRflNUhalEkfTZlydf36AxEPRkRnRHROnz59qGxmZjZGow0o76RpLNJ1T0o/CJxXlG8O8HZKnzNI+oAyktqAsyhMsQ1V12Hg7JS3tC4zM6uT0QaUDUD/rqvlwDNF6cvSzq25FBbfd6ZpseOSLk9rIDeWlOmv6zrghbTOsglYJGlKWoxfBGxKj21NeUuf38zM6qRtuAySngCuBM6RdJDCzqt7gKck3QQcAL4EEBF7JD0FvA70AbdGxAepqlso7Bj7GLAxXQAeAr4vaR+FkcmyVNcRSXcDu1K+b0ZE/+aAO4H1ktYAL6U6zMysjlT4h781dHZ2RldXV72bYWbWVCTtjojO4fL5SHkzM8vCAcXMzLJwQDEza2A9x07w5Qe203P8RL2bMiwHFDOzBrZuSze79h9h3fPd9W7KsIbd5WVmZrU3f/VGTvad+vD+ozsO8OiOA7S3TWDvms/XsWVD8wjFzKwBvXjHQq65eBaTJha+pidNnMDSi2fx4p0L69yyoTmgmJk1oBlnTmJyexsn+07R3jaBk32nmNzexozJk+rdtCF5ysvMrEEdfv8kN1x2AdcvOJ/Hdx6gt8EX5n1go5mZleUDG83MrKYcUMzMLAsHFDMzy8IBxczMsnBAMTOzLBxQzMwsi5baNiypF/iHIR4+h8LPCzcytzEPtzGPZmgjNEc7G72NF0TE9OEytVRAKUdSVyX7rOvJbczDbcyjGdoIzdHOZmhjJTzlZWZmWTigmJlZFg4oH3mw3g2ogNuYh9uYRzO0EZqjnc3QxmF5DcXMzLLwCMXMzLIYtwFF0sOSeiS9VpT2LyRtl/SqpP8p6cyUPlHSIyn9DUmrispsk7RX0svpMqNObTxd0ndT+iuSriwqc2lK3ydpnSQ1YBur2Y/nSdqa/nZ7JN2W0qdK2iypO11PKSqzKvXXXkmLi9Kr0peZ21iVvhxpGyVNS/nfl3RfSV3VfE/mbGej9OXVknanPtst6aqiuqrWl9lFxLi8AP8K+G3gtaK0XcC/Trf/ELg73b4eWJ9u/wawH+hI97cBnQ3QxluB76bbM4DdwIR0fyfwWUDARuDzDdjGavbjTOC30+3JwN8DFwL/FViZ0lcCa9PtC4FXgHZgLvAmcFo1+zJzG6vSl6No4xnA7wB/BNxXUlc135M529kofXkJMCvd/jTwj7Xoy9yXcTtCiYifAEdKkucDP0m3NwO/358dOENSG/Ax4J+AYw3WxguBLalcD/Au0ClpJnBmRGyPwrvve8C1jdTGXG0p08ZDEfF/0u3jwBvAbGAp8EjK9ggf9ctSCv9AnIyInwP7gAXV7MtcbczRllxtjIhfRsTfAgN+9akG78ks7aymUbTxpYh4O6XvASZJaq92X+Y2bgPKEF4Drkm3vwScl27/APglcAg4APy3iCj+Ev1uGg7/pxoMN4dq4yvAUkltkuYCl6bHZgMHi8ofTGmN1MZ+Ve9HSR0U/tvbAZwbEYeg8AGnMGqCQv+8VVSsv89q0pdjbGO/qvZlhW0cSs3ek2NsZ79G68vfB16KiJPU5/M9aq0WUP4QuFXSbgrD0H9K6QuAD4BZFKYX/kTSP0uP3RARnwH+Zbp8pU5tfJjCm6kL+HPgfwF9FIbBpaq9dW+kbYQa9KOkjwN/DfxxRJQbYQ7VZ1XvywxthCr35QjaOGQVg6Rlf09maCc0WF9KughYC9zcnzRItobdmttSASUifhYRiyLiUuAJCvPSUFhDeS4ifpWmav6ONFUTEf+Yro8Dj1P9aYdB2xgRfRHxHyLi4ohYCpwNdFP4Ap9TVMUc4O3Seuvcxqr3o6SJFD64j0XED1PyO2nKoH8apielH2TgyKm/z6ral5naWNW+HGEbh1L192SmdjZUX0qaAzwN3BgR/d9NNf98j0VLBZT+HRySJgCrgb9IDx0ArlLBGcDlwM/S1M05qcxE4AsUpntq3kZJv5HahqSrgb6IeD0Nm49LujwN128EnmmkNla7H9Prfgh4IyK+VfTQBmB5ur2cj/plA7AszVHPBeYBO6vZl7naWM2+HEUbB1Xt92SudjZSX0o6G3gWWBURf9efuR6f7zHJvcrfKBcK/zkfAn5FIcrfBNxGYbfF3wP38NGBnR8H/orCYtjrwH+Mj3aH7AZ+mh7776SdNnVoYwewl8Li3vMUzv7ZX08nhQ/Cm8B9/WUapY016MffoTAN8FPg5XT5XWAahU0C3el6alGZr6f+2kvRrplq9WWuNlazL0fZxv0UNm28n94fF9bgPZmlnY3UlxT+MftlUd6XgRnV7svcFx8pb2ZmWbTUlJeZmVWPA4qZmWXhgGJmZlk4oJiZWRYOKGZmloUDipmZZeGAYmZmWTigmJlZFv8fpJr4KXuy0UkAAAAASUVORK5CYII=\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {
- "needs_background": "light"
- },
- "output_type": "display_data"
- }
- ],
- "source": [
- "yearly_incidence.plot(style='*')"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "Une liste triée permet de plus facilement répérer les valeurs les plus élevées (à la fin)."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "yearly_incidence.sort_values()"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "Enfin, un histogramme montre bien que les épidémies fortes, qui touchent environ 10% de la population\n",
- " française, sont assez rares: il y en eu trois au cours des 35 dernières années."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 47,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- ""
- ]
- },
- "execution_count": 47,
- "metadata": {},
- "output_type": "execute_result"
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEKCAYAAAACS67iAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAFJpJREFUeJzt3XuUJGV5x/Hv4y7CwnAzK4Mu6HohRmQFZFDRqLPgBQHvHEFBWY+6mnghuJ4EPSpRY8QL5qjxkvXKUWSOgokKRiWQwWuQXbysiIIHVmEREBB0gYgrT/54a0O7sMxMd8/U9Nvfzzl7tru6uut9qnt+XfXWW12RmUiSBt+92m6AJKk/DHRJqoSBLkmVMNAlqRIGuiRVwkCXpEoY6JJUCQNdkiphoEtSJRbO5cIWL16cS5cunctF/plbbrmFHXbYobXlt23Y6wfXgfUPZv1r1669PjPvO9V8cxroS5cuZc2aNXO5yD8zOTnJ+Ph4a8tv27DXD64D6x/M+iPil9OZzy4XSaqEgS5JlTDQJakSBrokVcJAl6RKTBnoEfHJiLguIn7SMe0+EXFORFzW/L/r7DZTkjSV6Wyhfxo4dItpJwLnZuZewLnNfUlSi6YM9Mz8JnDjFpOfBZza3D4VeHaf2yVJmqGYzjVFI2IpcFZm7tPcvykzd+l4/LeZebfdLhGxElgJMDo6esDExEQfmt2djRs3MjIy0try2zYI9a/bcPOsvv7oIrj2trtOX7Zk51ld7nwxCJ+B2TSo9S9fvnxtZo5NNd+snymamauB1QBjY2PZ5llag3qWWL8MQv0rTjx7Vl9/1bJNnLLurh/79ceMz+py54tB+AzMptrr73aUy7URcT+A5v/r+tckSVI3ug30LwPHNbePA77Un+ZIkro1nWGLpwPfAx4WEVdFxEuBk4GnRMRlwFOa+5KkFk3Zh56ZL9jKQ4f0uS2SpB54pqgkVcJAl6RKGOiSVAkDXZIqYaBLUiUMdEmqhIEuSZUw0CWpEga6JFXCQJekShjoklQJA12SKmGgS1IlDHRJqoSBLkmVMNAlqRIGuiRVwkCXpEoY6JJUCQNdkiphoEtSJQx0SaqEgS5JlTDQJakSBrokVcJAl6RKGOiSVAkDXZIqYaBLUiUMdEmqhIEuSZUw0CWpEj0FekScEBEXR8RPIuL0iNiuXw2TJM1M14EeEUuA1wJjmbkPsAA4ul8NkyTNTK9dLguBRRGxENgeuLr3JkmSuhGZ2f2TI44H3gHcBnwjM4+5m3lWAisBRkdHD5iYmOh6eb3auHEjIyMjrS2/bYNQ/7oNN8/q648ugmtvu+v0ZUt2ntXlzheD8BmYTYNa//Lly9dm5thU83Ud6BGxK3AmcBRwE/AF4IzM/OzWnjM2NpZr1qzpann9MDk5yfj4eGvLb9sg1L/0xLNn9fVXLdvEKesW3mX6+pMPn9XlzheD8BmYTYNaf0RMK9B76XJ5MnBFZv4mM/8IfBF4XA+vJ0nqQS+B/ivgsRGxfUQEcAhwSX+aJUmaqa4DPTMvAM4ALgLWNa+1uk/tkiTN0F07E2cgM08CTupTWyRJPfBMUUmqhIEuSZUw0CWpEga6JFXCQJekShjoklQJA12SKmGgS1IlDHRJqoSBLkmVMNAlqRIGuiRVwkCXpEoY6JJUCQNdkirR0++hq06zfV1PSbPDLXRJqoSBLkmVMNAlqRIGuiRVwkCXpEoY6JJUCQNdkiphoEtSJQx0SaqEgS5JlTDQJakSBrokVcJAl6RKGOiSVAkDXZIqYaBLUiUMdEmqRE+BHhG7RMQZEfGziLgkIg7qV8MkSTPT6yXo3g98LTOPjIh7A9v3oU2SpC50HegRsRPwRGAFQGbeDtzen2ZJkmYqMrO7J0bsB6wGfgrsC6wFjs/MW7aYbyWwEmB0dPSAiYmJnhrci40bNzIyMtLa8ts23frXbbh5DlrTjtFFcO1td52+bMnOc9+YFvg3MJj1L1++fG1mjk01Xy+BPgb8D/D4zLwgIt4P/C4z37y154yNjeWaNWu6Wl4/TE5OMj4+3try2zbd+peeePbsN6Ylq5Zt4pR1d90xXX/y4S20Zu75NzCY9UfEtAK9l4OiVwFXZeYFzf0zgEf18HqSpB50HeiZeQ1wZUQ8rJl0CKX7RZLUgl5HubwGOK0Z4XI58JLemyRJ6kZPgZ6ZPwSm7NeRJM0+zxSVpEoY6JJUCQNdkiphoEtSJQx0SaqEgS5JlTDQJakSBrokVcJAl6RKGOiSVAkDXZIqYaBLUiUMdEmqhIEuSZUw0CWpEr1e4EKqQs3XUe20atkmVjS1Dst1VIeJW+iSVAkDXZIqYaBLUiUMdEmqhIEuSZUw0CWpEga6JFXCQJekShjoklQJA12SKmGgS1IlDHRJqoSBLkmVMNAlqRIGuiRVwkCXpEr0HOgRsSAifhARZ/WjQZKk7vRjC/144JI+vI4kqQc9BXpE7AEcDny8P82RJHUrMrP7J0ecAbwT2BF4fWYecTfzrARWAoyOjh4wMTHR9fJ6tXHjRkZGRlpbftumW/+6DTfPQWvaMboIrr2t7Va0p7P+ZUt2brcxLRjUDFi+fPnazBybar6uLxIdEUcA12Xm2ogY39p8mbkaWA0wNjaW4+NbnXXWTU5O0uby2zbd+ldUfMHkVcs2ccq64b02emf9648Zb7cxLag9A3rpcnk88MyIWA9MAAdHxGf70ipJ0ox1HeiZ+YbM3CMzlwJHA+dl5rF9a5kkaUYchy5JlehLZ2JmTgKT/XgtSVJ33EKXpEoY6JJUCQNdkiphoEtSJQx0SaqEgS5JlTDQJakSBrokVcJAl6RKGOiSVAkDXZIqYaBLUiUMdEmqhIEuSZUw0CWpEsN7ccUBsLTP1/ZctWxT1dcLlaaybsPNrf0NrD/58FlfhlvoklQJA12SKmGgS1IlDHRJqoSBLkmVMNAlqRIGuiRVwkCXpEoY6JJUCQNdkiphoEtSJQx0SaqEgS5JlTDQJakSBrokVcJAl6RKGOiSVImuAz0i9oyI/46ISyLi4og4vp8NkyTNTC+XoNsErMrMiyJiR2BtRJyTmT/tU9skSTPQ9RZ6Zv46My9qbv8euARY0q+GSZJmJjKz9xeJWAp8E9gnM3+3xWMrgZUAo6OjB0xMTPS8vG5t3LiRkZGRGT9v3YabZ6E1c290EVx7W9utaNewr4P5Uv+yJTu3stzrbry5tfp7qXn58uVrM3Nsqvl6DvSIGAHOB96RmV+8p3nHxsZyzZo1PS2vF5OTk4yPj8/4eUtbukp4v61atolT1vXSyzb4hn0dzJf61598eCvL/eBpX2qt/l5qjohpBXpPo1wiYhvgTOC0qcJckjS7ehnlEsAngEsy8339a5IkqRu9bKE/HngRcHBE/LD5d1if2iVJmqGuO5My89tA9LEtkqQeeKaoJFXCQJekShjoklQJA12SKmGgS1IlDHRJqoSBLkmVMNAlqRIGuiRVwkCXpEoY6JJUCQNdkiphoEtSJQx0SapE+9eimqZ+XAZu1bJNrKjkcnKStCW30CWpEga6JFXCQJekShjoklQJA12SKmGgS1IlDHRJqoSBLkmVMNAlqRIGuiRVwkCXpEoY6JJUCQNdkiphoEtSJQx0SaqEgS5JlTDQJakSPQV6RBwaET+PiF9ExIn9apQkaea6DvSIWAB8CHg6sDfwgojYu18NkyTNTC9b6I8GfpGZl2fm7cAE8Kz+NEuSNFORmd09MeJI4NDMfFlz/0XAYzLz1VvMtxJY2dx9GPDz7pvbs8XA9S0uv23DXj+4Dqx/MOt/YGbed6qZFvawgLibaXf5dsjM1cDqHpbTNxGxJjPH2m5HW4a9fnAdWH/d9ffS5XIVsGfH/T2Aq3trjiSpW70E+oXAXhHxoIi4N3A08OX+NEuSNFNdd7lk5qaIeDXwdWAB8MnMvLhvLZsd86Lrp0XDXj+4Dqy/Yl0fFJUkzS+eKSpJlTDQJakSBrokVcJAn6aIWBIRS9puR1si4sERcUJEHNx2W9ow7PWD62AQ6jfQpxARSyPifOBrwHsi4gltt2muRcRfA+dQfrPnlRHxNy03aU4Ne/3gOhiU+g30uxER23XcfRRwYWYuowzRfG1ELGvmu7uzZQdeRBwcEQ9qbgdwMHBSZr4cOAU4LCLGOx6vyrDXD66DQa3fQG9ExE4R8dGIuBR4b0Q8sHnoOcCvmtsTwC+Al21+2hw3c1ZFxN4R8WPgH4FPRcTBWca17g3sDpCZFwDfBV6y+WlttHU2DHv94DoY9PoN9DsdCmxHeeNuB94SEYsou1nPAMjMPwBnAE9o7t/RTlP7IyL2iIidOiYdBZyZmU+kfHm9MCL2Aj5Hsw4a/w7sExHbDvI6GPb6wXVQW/1DFehRLIyIl0bEtyLi+Ih4SPPwQ4HbM3MT8C/Ab4FjgW8A94uI+zTzXQpcGREHzXkBfRIRD4+IrwLfBt4WEZt/9vh/ge2b258HrgEOp2yN/EXHXsuNlF/N3HfuWt0/w14/uA5qrX+oAr3ZdXoS8GLg3cC2wMeah68Brmu+ca+kvFkPobzBP+XOnwDeBrihmT4wImKHjrv7AVdl5lLgPOC9zfQbgT9ExI6ZeSNwGXB/Sq3fBV7XzHdv4E/A+tlveX8Me/3gOhiG+qsO9Ig4KCLeFRErmvsBPBz4WmZ+JTPfDTwwIh4HbKB8Mz+8efolwEgz7V8pB0GeQfkyGAV+NKfFdCEido2IT0fEhcDJEXHfZh0sA74TEZGZXwZuiojDKXsfOzaP09zfDbiDsteyW0R8DDgd2JSZ1811TTMx7PWD62DY6q820CPiEcBHgN8Dz4+I11HqXQL8vuPI9KeBF1ICehPwuGb6RZQj27dm5jeBE4EVwOOBt2fmHfPp6PZWPJFS02GUAzdvBHai/Jja7nnnD/mcSlkH36esr6cDZOb3mtdYmJmXAK8ALgb+OTNfwvw37PWD62C46s/Mgf9H2ZJ+GWU3amEz7X3A8c3tMeADwJHAk4Gvdzx3T8quF5QA/wHlykr7A18C7tcxb7Rd61bqX0D5oJ1P6Rpa3Ez/PPDa5vaDgJObxw+k9B0u6Fh/v2leZwll7+TVwKeADwM7tF2j9bsOrH/qfwO/hR4R+1IOXD4LOAl4U/PQBsp1T6F8o34HeB5wLrB7RDwyIrbJ0l++ISKekJnnUX5e813AF4HTM/PXm5eVzTs/Dx0BPBN4K3AQ5fgAlBE6m/c4rgS+BTw9My+kbK0sB8jMjcAFwIGZuQF4EaVb6RrgTZl5yxzV0a1hrx9cB8NeP9DbJehaERH7A7dk5qXNpEcDl2bmioh4FPCOiBgDJoGnRcT2mXlrRPwIeD5lLOnngJcDH4iI24B1wBXN630U+Fxm3jx3VU2t6evLiDiQsmv4LeDsLEMp/xK4PDPPi4grKGe0PhVYCzwnIhZn5vURcRlwS0Q8APggcGxE7Ea52tQNlN1NMnMNsGbOi7wHw14/uA6Gvf7pGJgt9Ih4aER8m9Ln/ZaIeHHz0B3A+mZr+yLKrtJBwK3cOeQI4I+UXardKVvhP2le63zg+sy8CspW+DwO8ycCn6QccX8y8M5mljuASyNiUWZeQVkHj6T0BV5NGVsL5aj8Asr7fiZlPRwDHACsznk0nrZTRCxo6n8SZRd4qOoHaGrLKGcnDuNnYKdhrn/a2u7z2do/YAfgoI77RwDvb24/hvLt+UDgOMpu1pLmsSMp/eWbHzu/mb4dpbtlccdr7g/cu+1at1L/9sAruXNvYhvg74BXNY/vCvy4qeEoSt/g0o51tZpyhfMjKHsgO1OOEXy1s2bgXm3Xeg/v/8sof3SrKAeyhqb+jvbtCJxNuSIYwAnDsg6av4Hjmr/bM4et/m7+zcst9Ih4I3A58NWIGG0mP40yNpwsp95+H3gNZQzpnpQx41D6yvejjE45FfhtRHyGcrDz58D/94Vl5g8y8/bZr2hmImJ34CxgHPgM5SDOcyl7HpsAMvO3lIO2r6X0E+7GnUMuv0kZb397Zp4FfIJyhuuHKEfz/7h5WTkPt0ia8cLnUv74PgY8lXL840DKlljV9W9hEeV8iYdExGLK53wB1L0OImIbyrGvI4H3ZObzmof23zxPzfV3re1vlK18M49Tdpc+Dqxqpr2O0l+2eZ69gSub2+8A3tbx2IXA/s3tbSlDlg5su64Z1L8IeEzH/RWUgzzHAd/vmH5/4Orm9qsopyrv2jz/K8ADOuZdPBdt7+M62KXj9t9T/miPGZb6O9p9HPAe4M3ASymnn184DOuAMjDhmC2mHQVcMAz1d7XO2m7AVt7IzUOJjuLOLpNdgJuA7Trmu5Dyjb0L8AXKLtZ/Ur6Bt227jh7qj83/mvuP6lgPN1DGz26e95zN4Q/8E2XEzw3AP7RdRx/Ww06U4xzXAm9r7t8AjNZef8d7/xJK19tzgdOaadcPyTo4gnJizymUQQ5voXSl3gjsVnv93fybl10umfmn5uZ/ATtGxL6ZeROl3/wVHbNeBOzYPPYaSrfKfwArsxz5HkjZ6Jh0PGVrBUr/3wkAUX5f5pfA5qGVb6XsySzJzHfNUXNnTWb+jtK19ljKweznU7rNXhFFtfV3vP+HUbqdzgX2iIg3UQ72r4S6PwNZukquoITzi4BHAM+mfAZeWftnoBvx57kx/0TEhyn94a9vRnn8LSXYd6WcMHRYxxdAdSJiD0r/32sy89IoPya2kvLhXgL8MOfjGWt9FhH7Ub7Mv0fpJ92HMtSs2vojYoTS3bItpea/opwM80bKlvte1L8Ots/MW5vb+1I++9+hnJpf/WdgpgYh0PejjFo5hPKhvpVyGv5twEcz8+IWmzfrovx+zJOAN1D6U6+i7GIeBfwsy1DN6kXEnpQvthdk5g0RcSxwcWb+oOWmzZooF1r5N8oBvNMpQ+7emJlPbR6vfh10ivJLhx8HjsrMG4et/ukYhEA/mjJ071bg7ZQj3vUclZ5CRHwHeDDlV92uBt6amT9utVFzJCJ2pnyRv5ByEHw18KHM/OM9PrFSzckwzwUmMvOattszFyJiW8q1CjZ3uXwE+HCWn7nWFuZ1oEfEIymn4Z9BOSA0UD9Z26tm6NZJlH7Ezw7ycYFuRMRCSjfLHyj1D9X7v1lELADuyPn8xzqLIuIVlOGqnxnWz8B0zetAlyRN37wc5SJJmjkDXZIqYaBLUiUMdEmqhIEuSZUw0CWpEga6JFXi/wBtahKTuq4SNAAAAABJRU5ErkJggg==\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {
- "needs_background": "light"
- },
- "output_type": "display_data"
- }
- ],
- "source": [
- "yearly_incidence.hist(xrot=20)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "collapsed": true
- },
- "outputs": [],
- "source": []
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.6.4"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 1
-}
diff --git a/module3/exo1/analyse-syndrome-varicelle.ipynb b/module3/exo1/analyse-syndrome-varicelle.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..32b3ebfc3b7648f6f3b17ddded3ec4da2aeca429
--- /dev/null
+++ b/module3/exo1/analyse-syndrome-varicelle.ipynb
@@ -0,0 +1,2518 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Incidence du syndrome varicelle"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%matplotlib inline\n",
+ "import matplotlib.pyplot as plt\n",
+ "import pandas as pd\n",
+ "import isoweek"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Les données de l'incidence du syndrome grippal sont disponibles du site Web du [Réseau Sentinelles](http://www.sentiweb.fr/). Nous les récupérons sous forme d'un fichier en format CSV dont chaque ligne correspond à une semaine de la période demandée. Nous téléchargeons toujours le jeu de données complet, qui commence en 1984 et se termine avec une semaine récente."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "data_url = \"http://www.sentiweb.fr/datasets/incidence-PAY-7.csv\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Voici l'explication des colonnes données [sur le site d'origine](https://ns.sentiweb.fr/incidence/csv-schema-v1.json):\n",
+ "\n",
+ "| Nom de colonne | Libellé de colonne |\n",
+ "|----------------|-----------------------------------------------------------------------------------------------------------------------------------|\n",
+ "| week | Semaine calendaire (ISO 8601) |\n",
+ "| indicator | Code de l'indicateur de surveillance |\n",
+ "| inc | Estimation de l'incidence de consultations en nombre de cas |\n",
+ "| inc_low | Estimation de la borne inférieure de l'IC95% du nombre de cas de consultation |\n",
+ "| inc_up | Estimation de la borne supérieure de l'IC95% du nombre de cas de consultation |\n",
+ "| inc100 | Estimation du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants) |\n",
+ "| inc100_low | Estimation de la borne inférieure de l'IC95% du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants) |\n",
+ "| inc100_up | Estimation de la borne supérieure de l'IC95% du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants) |\n",
+ "| geo_insee | Code de la zone géographique concernée (Code INSEE) http://www.insee.fr/fr/methodes/nomenclatures/cog/ |\n",
+ "| geo_name | Libellé de la zone géographique (ce libellé peut être modifié sans préavis) |\n",
+ "\n",
+ "La première ligne du fichier CSV est un commentaire, que nous ignorons en précisant `skiprows=1`."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " week \n",
+ " indicator \n",
+ " inc \n",
+ " inc_low \n",
+ " inc_up \n",
+ " inc100 \n",
+ " inc100_low \n",
+ " inc100_up \n",
+ " geo_insee \n",
+ " geo_name \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 202419 \n",
+ " 7 \n",
+ " 9828 \n",
+ " 5927 \n",
+ " 13729 \n",
+ " 15 \n",
+ " 9 \n",
+ " 21 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 202418 \n",
+ " 7 \n",
+ " 13252 \n",
+ " 9706 \n",
+ " 16798 \n",
+ " 20 \n",
+ " 15 \n",
+ " 25 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 202417 \n",
+ " 7 \n",
+ " 15303 \n",
+ " 11219 \n",
+ " 19387 \n",
+ " 23 \n",
+ " 17 \n",
+ " 29 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 202416 \n",
+ " 7 \n",
+ " 18138 \n",
+ " 13540 \n",
+ " 22736 \n",
+ " 27 \n",
+ " 20 \n",
+ " 34 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 202415 \n",
+ " 7 \n",
+ " 24929 \n",
+ " 17315 \n",
+ " 32543 \n",
+ " 37 \n",
+ " 26 \n",
+ " 48 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 202414 \n",
+ " 7 \n",
+ " 16181 \n",
+ " 12544 \n",
+ " 19818 \n",
+ " 24 \n",
+ " 19 \n",
+ " 29 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " 202413 \n",
+ " 7 \n",
+ " 18322 \n",
+ " 14206 \n",
+ " 22438 \n",
+ " 27 \n",
+ " 21 \n",
+ " 33 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " 202412 \n",
+ " 7 \n",
+ " 12818 \n",
+ " 9128 \n",
+ " 16508 \n",
+ " 19 \n",
+ " 13 \n",
+ " 25 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 8 \n",
+ " 202411 \n",
+ " 7 \n",
+ " 15973 \n",
+ " 12400 \n",
+ " 19546 \n",
+ " 24 \n",
+ " 19 \n",
+ " 29 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 9 \n",
+ " 202410 \n",
+ " 7 \n",
+ " 14301 \n",
+ " 10761 \n",
+ " 17841 \n",
+ " 21 \n",
+ " 16 \n",
+ " 26 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 202409 \n",
+ " 7 \n",
+ " 14337 \n",
+ " 10871 \n",
+ " 17803 \n",
+ " 21 \n",
+ " 16 \n",
+ " 26 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 11 \n",
+ " 202408 \n",
+ " 7 \n",
+ " 15899 \n",
+ " 11991 \n",
+ " 19807 \n",
+ " 24 \n",
+ " 18 \n",
+ " 30 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 12 \n",
+ " 202407 \n",
+ " 7 \n",
+ " 11294 \n",
+ " 8226 \n",
+ " 14362 \n",
+ " 17 \n",
+ " 12 \n",
+ " 22 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 13 \n",
+ " 202406 \n",
+ " 7 \n",
+ " 12174 \n",
+ " 9020 \n",
+ " 15328 \n",
+ " 18 \n",
+ " 13 \n",
+ " 23 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 14 \n",
+ " 202405 \n",
+ " 7 \n",
+ " 8814 \n",
+ " 6110 \n",
+ " 11518 \n",
+ " 13 \n",
+ " 9 \n",
+ " 17 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 15 \n",
+ " 202404 \n",
+ " 7 \n",
+ " 9504 \n",
+ " 6566 \n",
+ " 12442 \n",
+ " 14 \n",
+ " 10 \n",
+ " 18 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 16 \n",
+ " 202403 \n",
+ " 7 \n",
+ " 6948 \n",
+ " 4633 \n",
+ " 9263 \n",
+ " 10 \n",
+ " 7 \n",
+ " 13 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 17 \n",
+ " 202402 \n",
+ " 7 \n",
+ " 7125 \n",
+ " 4852 \n",
+ " 9398 \n",
+ " 11 \n",
+ " 8 \n",
+ " 14 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 18 \n",
+ " 202401 \n",
+ " 7 \n",
+ " 13305 \n",
+ " 9214 \n",
+ " 17396 \n",
+ " 20 \n",
+ " 14 \n",
+ " 26 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 19 \n",
+ " 202352 \n",
+ " 7 \n",
+ " 11636 \n",
+ " 7354 \n",
+ " 15918 \n",
+ " 18 \n",
+ " 12 \n",
+ " 24 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 20 \n",
+ " 202351 \n",
+ " 7 \n",
+ " 6912 \n",
+ " 4227 \n",
+ " 9597 \n",
+ " 10 \n",
+ " 6 \n",
+ " 14 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 21 \n",
+ " 202350 \n",
+ " 7 \n",
+ " 8799 \n",
+ " 6215 \n",
+ " 11383 \n",
+ " 13 \n",
+ " 9 \n",
+ " 17 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 22 \n",
+ " 202349 \n",
+ " 7 \n",
+ " 7817 \n",
+ " 5362 \n",
+ " 10272 \n",
+ " 12 \n",
+ " 8 \n",
+ " 16 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 23 \n",
+ " 202348 \n",
+ " 7 \n",
+ " 7351 \n",
+ " 4749 \n",
+ " 9953 \n",
+ " 11 \n",
+ " 7 \n",
+ " 15 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 24 \n",
+ " 202347 \n",
+ " 7 \n",
+ " 6537 \n",
+ " 4277 \n",
+ " 8797 \n",
+ " 10 \n",
+ " 7 \n",
+ " 13 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 25 \n",
+ " 202346 \n",
+ " 7 \n",
+ " 5229 \n",
+ " 2973 \n",
+ " 7485 \n",
+ " 8 \n",
+ " 5 \n",
+ " 11 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 26 \n",
+ " 202345 \n",
+ " 7 \n",
+ " 5007 \n",
+ " 2675 \n",
+ " 7339 \n",
+ " 8 \n",
+ " 4 \n",
+ " 12 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 27 \n",
+ " 202344 \n",
+ " 7 \n",
+ " 3688 \n",
+ " 1664 \n",
+ " 5712 \n",
+ " 6 \n",
+ " 3 \n",
+ " 9 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 28 \n",
+ " 202343 \n",
+ " 7 \n",
+ " 3891 \n",
+ " 1675 \n",
+ " 6107 \n",
+ " 6 \n",
+ " 3 \n",
+ " 9 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 29 \n",
+ " 202342 \n",
+ " 7 \n",
+ " 3968 \n",
+ " 1212 \n",
+ " 6724 \n",
+ " 6 \n",
+ " 2 \n",
+ " 10 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " \n",
+ " \n",
+ " 1715 \n",
+ " 199126 \n",
+ " 7 \n",
+ " 17608 \n",
+ " 11304 \n",
+ " 23912 \n",
+ " 31 \n",
+ " 20 \n",
+ " 42 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1716 \n",
+ " 199125 \n",
+ " 7 \n",
+ " 16169 \n",
+ " 10700 \n",
+ " 21638 \n",
+ " 28 \n",
+ " 18 \n",
+ " 38 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1717 \n",
+ " 199124 \n",
+ " 7 \n",
+ " 16171 \n",
+ " 10071 \n",
+ " 22271 \n",
+ " 28 \n",
+ " 17 \n",
+ " 39 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1718 \n",
+ " 199123 \n",
+ " 7 \n",
+ " 11947 \n",
+ " 7671 \n",
+ " 16223 \n",
+ " 21 \n",
+ " 13 \n",
+ " 29 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1719 \n",
+ " 199122 \n",
+ " 7 \n",
+ " 15452 \n",
+ " 9953 \n",
+ " 20951 \n",
+ " 27 \n",
+ " 17 \n",
+ " 37 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1720 \n",
+ " 199121 \n",
+ " 7 \n",
+ " 14903 \n",
+ " 8975 \n",
+ " 20831 \n",
+ " 26 \n",
+ " 16 \n",
+ " 36 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1721 \n",
+ " 199120 \n",
+ " 7 \n",
+ " 19053 \n",
+ " 12742 \n",
+ " 25364 \n",
+ " 34 \n",
+ " 23 \n",
+ " 45 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1722 \n",
+ " 199119 \n",
+ " 7 \n",
+ " 16739 \n",
+ " 11246 \n",
+ " 22232 \n",
+ " 29 \n",
+ " 19 \n",
+ " 39 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1723 \n",
+ " 199118 \n",
+ " 7 \n",
+ " 21385 \n",
+ " 13882 \n",
+ " 28888 \n",
+ " 38 \n",
+ " 25 \n",
+ " 51 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1724 \n",
+ " 199117 \n",
+ " 7 \n",
+ " 13462 \n",
+ " 8877 \n",
+ " 18047 \n",
+ " 24 \n",
+ " 16 \n",
+ " 32 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1725 \n",
+ " 199116 \n",
+ " 7 \n",
+ " 14857 \n",
+ " 10068 \n",
+ " 19646 \n",
+ " 26 \n",
+ " 18 \n",
+ " 34 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1726 \n",
+ " 199115 \n",
+ " 7 \n",
+ " 13975 \n",
+ " 9781 \n",
+ " 18169 \n",
+ " 25 \n",
+ " 18 \n",
+ " 32 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1727 \n",
+ " 199114 \n",
+ " 7 \n",
+ " 12265 \n",
+ " 7684 \n",
+ " 16846 \n",
+ " 22 \n",
+ " 14 \n",
+ " 30 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1728 \n",
+ " 199113 \n",
+ " 7 \n",
+ " 9567 \n",
+ " 6041 \n",
+ " 13093 \n",
+ " 17 \n",
+ " 11 \n",
+ " 23 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1729 \n",
+ " 199112 \n",
+ " 7 \n",
+ " 10864 \n",
+ " 7331 \n",
+ " 14397 \n",
+ " 19 \n",
+ " 13 \n",
+ " 25 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1730 \n",
+ " 199111 \n",
+ " 7 \n",
+ " 15574 \n",
+ " 11184 \n",
+ " 19964 \n",
+ " 27 \n",
+ " 19 \n",
+ " 35 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1731 \n",
+ " 199110 \n",
+ " 7 \n",
+ " 16643 \n",
+ " 11372 \n",
+ " 21914 \n",
+ " 29 \n",
+ " 20 \n",
+ " 38 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1732 \n",
+ " 199109 \n",
+ " 7 \n",
+ " 13741 \n",
+ " 8780 \n",
+ " 18702 \n",
+ " 24 \n",
+ " 15 \n",
+ " 33 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1733 \n",
+ " 199108 \n",
+ " 7 \n",
+ " 13289 \n",
+ " 8813 \n",
+ " 17765 \n",
+ " 23 \n",
+ " 15 \n",
+ " 31 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1734 \n",
+ " 199107 \n",
+ " 7 \n",
+ " 12337 \n",
+ " 8077 \n",
+ " 16597 \n",
+ " 22 \n",
+ " 15 \n",
+ " 29 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1735 \n",
+ " 199106 \n",
+ " 7 \n",
+ " 10877 \n",
+ " 7013 \n",
+ " 14741 \n",
+ " 19 \n",
+ " 12 \n",
+ " 26 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1736 \n",
+ " 199105 \n",
+ " 7 \n",
+ " 10442 \n",
+ " 6544 \n",
+ " 14340 \n",
+ " 18 \n",
+ " 11 \n",
+ " 25 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1737 \n",
+ " 199104 \n",
+ " 7 \n",
+ " 7913 \n",
+ " 4563 \n",
+ " 11263 \n",
+ " 14 \n",
+ " 8 \n",
+ " 20 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1738 \n",
+ " 199103 \n",
+ " 7 \n",
+ " 15387 \n",
+ " 10484 \n",
+ " 20290 \n",
+ " 27 \n",
+ " 18 \n",
+ " 36 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1739 \n",
+ " 199102 \n",
+ " 7 \n",
+ " 16277 \n",
+ " 11046 \n",
+ " 21508 \n",
+ " 29 \n",
+ " 20 \n",
+ " 38 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1740 \n",
+ " 199101 \n",
+ " 7 \n",
+ " 15565 \n",
+ " 10271 \n",
+ " 20859 \n",
+ " 27 \n",
+ " 18 \n",
+ " 36 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1741 \n",
+ " 199052 \n",
+ " 7 \n",
+ " 19375 \n",
+ " 13295 \n",
+ " 25455 \n",
+ " 34 \n",
+ " 23 \n",
+ " 45 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1742 \n",
+ " 199051 \n",
+ " 7 \n",
+ " 19080 \n",
+ " 13807 \n",
+ " 24353 \n",
+ " 34 \n",
+ " 25 \n",
+ " 43 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1743 \n",
+ " 199050 \n",
+ " 7 \n",
+ " 11079 \n",
+ " 6660 \n",
+ " 15498 \n",
+ " 20 \n",
+ " 12 \n",
+ " 28 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1744 \n",
+ " 199049 \n",
+ " 7 \n",
+ " 1143 \n",
+ " 0 \n",
+ " 2610 \n",
+ " 2 \n",
+ " 0 \n",
+ " 5 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
1745 rows × 10 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " week indicator inc inc_low inc_up inc100 inc100_low \\\n",
+ "0 202419 7 9828 5927 13729 15 9 \n",
+ "1 202418 7 13252 9706 16798 20 15 \n",
+ "2 202417 7 15303 11219 19387 23 17 \n",
+ "3 202416 7 18138 13540 22736 27 20 \n",
+ "4 202415 7 24929 17315 32543 37 26 \n",
+ "5 202414 7 16181 12544 19818 24 19 \n",
+ "6 202413 7 18322 14206 22438 27 21 \n",
+ "7 202412 7 12818 9128 16508 19 13 \n",
+ "8 202411 7 15973 12400 19546 24 19 \n",
+ "9 202410 7 14301 10761 17841 21 16 \n",
+ "10 202409 7 14337 10871 17803 21 16 \n",
+ "11 202408 7 15899 11991 19807 24 18 \n",
+ "12 202407 7 11294 8226 14362 17 12 \n",
+ "13 202406 7 12174 9020 15328 18 13 \n",
+ "14 202405 7 8814 6110 11518 13 9 \n",
+ "15 202404 7 9504 6566 12442 14 10 \n",
+ "16 202403 7 6948 4633 9263 10 7 \n",
+ "17 202402 7 7125 4852 9398 11 8 \n",
+ "18 202401 7 13305 9214 17396 20 14 \n",
+ "19 202352 7 11636 7354 15918 18 12 \n",
+ "20 202351 7 6912 4227 9597 10 6 \n",
+ "21 202350 7 8799 6215 11383 13 9 \n",
+ "22 202349 7 7817 5362 10272 12 8 \n",
+ "23 202348 7 7351 4749 9953 11 7 \n",
+ "24 202347 7 6537 4277 8797 10 7 \n",
+ "25 202346 7 5229 2973 7485 8 5 \n",
+ "26 202345 7 5007 2675 7339 8 4 \n",
+ "27 202344 7 3688 1664 5712 6 3 \n",
+ "28 202343 7 3891 1675 6107 6 3 \n",
+ "29 202342 7 3968 1212 6724 6 2 \n",
+ "... ... ... ... ... ... ... ... \n",
+ "1715 199126 7 17608 11304 23912 31 20 \n",
+ "1716 199125 7 16169 10700 21638 28 18 \n",
+ "1717 199124 7 16171 10071 22271 28 17 \n",
+ "1718 199123 7 11947 7671 16223 21 13 \n",
+ "1719 199122 7 15452 9953 20951 27 17 \n",
+ "1720 199121 7 14903 8975 20831 26 16 \n",
+ "1721 199120 7 19053 12742 25364 34 23 \n",
+ "1722 199119 7 16739 11246 22232 29 19 \n",
+ "1723 199118 7 21385 13882 28888 38 25 \n",
+ "1724 199117 7 13462 8877 18047 24 16 \n",
+ "1725 199116 7 14857 10068 19646 26 18 \n",
+ "1726 199115 7 13975 9781 18169 25 18 \n",
+ "1727 199114 7 12265 7684 16846 22 14 \n",
+ "1728 199113 7 9567 6041 13093 17 11 \n",
+ "1729 199112 7 10864 7331 14397 19 13 \n",
+ "1730 199111 7 15574 11184 19964 27 19 \n",
+ "1731 199110 7 16643 11372 21914 29 20 \n",
+ "1732 199109 7 13741 8780 18702 24 15 \n",
+ "1733 199108 7 13289 8813 17765 23 15 \n",
+ "1734 199107 7 12337 8077 16597 22 15 \n",
+ "1735 199106 7 10877 7013 14741 19 12 \n",
+ "1736 199105 7 10442 6544 14340 18 11 \n",
+ "1737 199104 7 7913 4563 11263 14 8 \n",
+ "1738 199103 7 15387 10484 20290 27 18 \n",
+ "1739 199102 7 16277 11046 21508 29 20 \n",
+ "1740 199101 7 15565 10271 20859 27 18 \n",
+ "1741 199052 7 19375 13295 25455 34 23 \n",
+ "1742 199051 7 19080 13807 24353 34 25 \n",
+ "1743 199050 7 11079 6660 15498 20 12 \n",
+ "1744 199049 7 1143 0 2610 2 0 \n",
+ "\n",
+ " inc100_up geo_insee geo_name \n",
+ "0 21 FR France \n",
+ "1 25 FR France \n",
+ "2 29 FR France \n",
+ "3 34 FR France \n",
+ "4 48 FR France \n",
+ "5 29 FR France \n",
+ "6 33 FR France \n",
+ "7 25 FR France \n",
+ "8 29 FR France \n",
+ "9 26 FR France \n",
+ "10 26 FR France \n",
+ "11 30 FR France \n",
+ "12 22 FR France \n",
+ "13 23 FR France \n",
+ "14 17 FR France \n",
+ "15 18 FR France \n",
+ "16 13 FR France \n",
+ "17 14 FR France \n",
+ "18 26 FR France \n",
+ "19 24 FR France \n",
+ "20 14 FR France \n",
+ "21 17 FR France \n",
+ "22 16 FR France \n",
+ "23 15 FR France \n",
+ "24 13 FR France \n",
+ "25 11 FR France \n",
+ "26 12 FR France \n",
+ "27 9 FR France \n",
+ "28 9 FR France \n",
+ "29 10 FR France \n",
+ "... ... ... ... \n",
+ "1715 42 FR France \n",
+ "1716 38 FR France \n",
+ "1717 39 FR France \n",
+ "1718 29 FR France \n",
+ "1719 37 FR France \n",
+ "1720 36 FR France \n",
+ "1721 45 FR France \n",
+ "1722 39 FR France \n",
+ "1723 51 FR France \n",
+ "1724 32 FR France \n",
+ "1725 34 FR France \n",
+ "1726 32 FR France \n",
+ "1727 30 FR France \n",
+ "1728 23 FR France \n",
+ "1729 25 FR France \n",
+ "1730 35 FR France \n",
+ "1731 38 FR France \n",
+ "1732 33 FR France \n",
+ "1733 31 FR France \n",
+ "1734 29 FR France \n",
+ "1735 26 FR France \n",
+ "1736 25 FR France \n",
+ "1737 20 FR France \n",
+ "1738 36 FR France \n",
+ "1739 38 FR France \n",
+ "1740 36 FR France \n",
+ "1741 45 FR France \n",
+ "1742 43 FR France \n",
+ "1743 28 FR France \n",
+ "1744 5 FR France \n",
+ "\n",
+ "[1745 rows x 10 columns]"
+ ]
+ },
+ "execution_count": 9,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "raw_data = pd.read_csv(data_url, skiprows=1)\n",
+ "raw_data"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Y a-t-il des points manquants dans ce jeux de données ? Oui, la semaine 19 de l'année 1989 n'a pas de valeurs associées."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " week \n",
+ " indicator \n",
+ " inc \n",
+ " inc_low \n",
+ " inc_up \n",
+ " inc100 \n",
+ " inc100_low \n",
+ " inc100_up \n",
+ " geo_insee \n",
+ " geo_name \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ "Empty DataFrame\n",
+ "Columns: [week, indicator, inc, inc_low, inc_up, inc100, inc100_low, inc100_up, geo_insee, geo_name]\n",
+ "Index: []"
+ ]
+ },
+ "execution_count": 10,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "raw_data[raw_data.isnull().any(axis=1)]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Nous éliminons ce point, ce qui n'a pas d'impact fort sur notre analyse qui est assez simple."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " week \n",
+ " indicator \n",
+ " inc \n",
+ " inc_low \n",
+ " inc_up \n",
+ " inc100 \n",
+ " inc100_low \n",
+ " inc100_up \n",
+ " geo_insee \n",
+ " geo_name \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 202419 \n",
+ " 7 \n",
+ " 9828 \n",
+ " 5927 \n",
+ " 13729 \n",
+ " 15 \n",
+ " 9 \n",
+ " 21 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 202418 \n",
+ " 7 \n",
+ " 13252 \n",
+ " 9706 \n",
+ " 16798 \n",
+ " 20 \n",
+ " 15 \n",
+ " 25 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 202417 \n",
+ " 7 \n",
+ " 15303 \n",
+ " 11219 \n",
+ " 19387 \n",
+ " 23 \n",
+ " 17 \n",
+ " 29 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 202416 \n",
+ " 7 \n",
+ " 18138 \n",
+ " 13540 \n",
+ " 22736 \n",
+ " 27 \n",
+ " 20 \n",
+ " 34 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 202415 \n",
+ " 7 \n",
+ " 24929 \n",
+ " 17315 \n",
+ " 32543 \n",
+ " 37 \n",
+ " 26 \n",
+ " 48 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 202414 \n",
+ " 7 \n",
+ " 16181 \n",
+ " 12544 \n",
+ " 19818 \n",
+ " 24 \n",
+ " 19 \n",
+ " 29 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " 202413 \n",
+ " 7 \n",
+ " 18322 \n",
+ " 14206 \n",
+ " 22438 \n",
+ " 27 \n",
+ " 21 \n",
+ " 33 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " 202412 \n",
+ " 7 \n",
+ " 12818 \n",
+ " 9128 \n",
+ " 16508 \n",
+ " 19 \n",
+ " 13 \n",
+ " 25 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 8 \n",
+ " 202411 \n",
+ " 7 \n",
+ " 15973 \n",
+ " 12400 \n",
+ " 19546 \n",
+ " 24 \n",
+ " 19 \n",
+ " 29 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 9 \n",
+ " 202410 \n",
+ " 7 \n",
+ " 14301 \n",
+ " 10761 \n",
+ " 17841 \n",
+ " 21 \n",
+ " 16 \n",
+ " 26 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 202409 \n",
+ " 7 \n",
+ " 14337 \n",
+ " 10871 \n",
+ " 17803 \n",
+ " 21 \n",
+ " 16 \n",
+ " 26 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 11 \n",
+ " 202408 \n",
+ " 7 \n",
+ " 15899 \n",
+ " 11991 \n",
+ " 19807 \n",
+ " 24 \n",
+ " 18 \n",
+ " 30 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 12 \n",
+ " 202407 \n",
+ " 7 \n",
+ " 11294 \n",
+ " 8226 \n",
+ " 14362 \n",
+ " 17 \n",
+ " 12 \n",
+ " 22 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 13 \n",
+ " 202406 \n",
+ " 7 \n",
+ " 12174 \n",
+ " 9020 \n",
+ " 15328 \n",
+ " 18 \n",
+ " 13 \n",
+ " 23 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 14 \n",
+ " 202405 \n",
+ " 7 \n",
+ " 8814 \n",
+ " 6110 \n",
+ " 11518 \n",
+ " 13 \n",
+ " 9 \n",
+ " 17 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 15 \n",
+ " 202404 \n",
+ " 7 \n",
+ " 9504 \n",
+ " 6566 \n",
+ " 12442 \n",
+ " 14 \n",
+ " 10 \n",
+ " 18 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 16 \n",
+ " 202403 \n",
+ " 7 \n",
+ " 6948 \n",
+ " 4633 \n",
+ " 9263 \n",
+ " 10 \n",
+ " 7 \n",
+ " 13 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 17 \n",
+ " 202402 \n",
+ " 7 \n",
+ " 7125 \n",
+ " 4852 \n",
+ " 9398 \n",
+ " 11 \n",
+ " 8 \n",
+ " 14 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 18 \n",
+ " 202401 \n",
+ " 7 \n",
+ " 13305 \n",
+ " 9214 \n",
+ " 17396 \n",
+ " 20 \n",
+ " 14 \n",
+ " 26 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 19 \n",
+ " 202352 \n",
+ " 7 \n",
+ " 11636 \n",
+ " 7354 \n",
+ " 15918 \n",
+ " 18 \n",
+ " 12 \n",
+ " 24 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 20 \n",
+ " 202351 \n",
+ " 7 \n",
+ " 6912 \n",
+ " 4227 \n",
+ " 9597 \n",
+ " 10 \n",
+ " 6 \n",
+ " 14 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 21 \n",
+ " 202350 \n",
+ " 7 \n",
+ " 8799 \n",
+ " 6215 \n",
+ " 11383 \n",
+ " 13 \n",
+ " 9 \n",
+ " 17 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 22 \n",
+ " 202349 \n",
+ " 7 \n",
+ " 7817 \n",
+ " 5362 \n",
+ " 10272 \n",
+ " 12 \n",
+ " 8 \n",
+ " 16 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 23 \n",
+ " 202348 \n",
+ " 7 \n",
+ " 7351 \n",
+ " 4749 \n",
+ " 9953 \n",
+ " 11 \n",
+ " 7 \n",
+ " 15 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 24 \n",
+ " 202347 \n",
+ " 7 \n",
+ " 6537 \n",
+ " 4277 \n",
+ " 8797 \n",
+ " 10 \n",
+ " 7 \n",
+ " 13 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 25 \n",
+ " 202346 \n",
+ " 7 \n",
+ " 5229 \n",
+ " 2973 \n",
+ " 7485 \n",
+ " 8 \n",
+ " 5 \n",
+ " 11 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 26 \n",
+ " 202345 \n",
+ " 7 \n",
+ " 5007 \n",
+ " 2675 \n",
+ " 7339 \n",
+ " 8 \n",
+ " 4 \n",
+ " 12 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 27 \n",
+ " 202344 \n",
+ " 7 \n",
+ " 3688 \n",
+ " 1664 \n",
+ " 5712 \n",
+ " 6 \n",
+ " 3 \n",
+ " 9 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 28 \n",
+ " 202343 \n",
+ " 7 \n",
+ " 3891 \n",
+ " 1675 \n",
+ " 6107 \n",
+ " 6 \n",
+ " 3 \n",
+ " 9 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 29 \n",
+ " 202342 \n",
+ " 7 \n",
+ " 3968 \n",
+ " 1212 \n",
+ " 6724 \n",
+ " 6 \n",
+ " 2 \n",
+ " 10 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " \n",
+ " \n",
+ " 1715 \n",
+ " 199126 \n",
+ " 7 \n",
+ " 17608 \n",
+ " 11304 \n",
+ " 23912 \n",
+ " 31 \n",
+ " 20 \n",
+ " 42 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1716 \n",
+ " 199125 \n",
+ " 7 \n",
+ " 16169 \n",
+ " 10700 \n",
+ " 21638 \n",
+ " 28 \n",
+ " 18 \n",
+ " 38 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1717 \n",
+ " 199124 \n",
+ " 7 \n",
+ " 16171 \n",
+ " 10071 \n",
+ " 22271 \n",
+ " 28 \n",
+ " 17 \n",
+ " 39 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1718 \n",
+ " 199123 \n",
+ " 7 \n",
+ " 11947 \n",
+ " 7671 \n",
+ " 16223 \n",
+ " 21 \n",
+ " 13 \n",
+ " 29 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1719 \n",
+ " 199122 \n",
+ " 7 \n",
+ " 15452 \n",
+ " 9953 \n",
+ " 20951 \n",
+ " 27 \n",
+ " 17 \n",
+ " 37 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1720 \n",
+ " 199121 \n",
+ " 7 \n",
+ " 14903 \n",
+ " 8975 \n",
+ " 20831 \n",
+ " 26 \n",
+ " 16 \n",
+ " 36 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1721 \n",
+ " 199120 \n",
+ " 7 \n",
+ " 19053 \n",
+ " 12742 \n",
+ " 25364 \n",
+ " 34 \n",
+ " 23 \n",
+ " 45 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1722 \n",
+ " 199119 \n",
+ " 7 \n",
+ " 16739 \n",
+ " 11246 \n",
+ " 22232 \n",
+ " 29 \n",
+ " 19 \n",
+ " 39 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1723 \n",
+ " 199118 \n",
+ " 7 \n",
+ " 21385 \n",
+ " 13882 \n",
+ " 28888 \n",
+ " 38 \n",
+ " 25 \n",
+ " 51 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1724 \n",
+ " 199117 \n",
+ " 7 \n",
+ " 13462 \n",
+ " 8877 \n",
+ " 18047 \n",
+ " 24 \n",
+ " 16 \n",
+ " 32 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1725 \n",
+ " 199116 \n",
+ " 7 \n",
+ " 14857 \n",
+ " 10068 \n",
+ " 19646 \n",
+ " 26 \n",
+ " 18 \n",
+ " 34 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1726 \n",
+ " 199115 \n",
+ " 7 \n",
+ " 13975 \n",
+ " 9781 \n",
+ " 18169 \n",
+ " 25 \n",
+ " 18 \n",
+ " 32 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1727 \n",
+ " 199114 \n",
+ " 7 \n",
+ " 12265 \n",
+ " 7684 \n",
+ " 16846 \n",
+ " 22 \n",
+ " 14 \n",
+ " 30 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1728 \n",
+ " 199113 \n",
+ " 7 \n",
+ " 9567 \n",
+ " 6041 \n",
+ " 13093 \n",
+ " 17 \n",
+ " 11 \n",
+ " 23 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1729 \n",
+ " 199112 \n",
+ " 7 \n",
+ " 10864 \n",
+ " 7331 \n",
+ " 14397 \n",
+ " 19 \n",
+ " 13 \n",
+ " 25 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1730 \n",
+ " 199111 \n",
+ " 7 \n",
+ " 15574 \n",
+ " 11184 \n",
+ " 19964 \n",
+ " 27 \n",
+ " 19 \n",
+ " 35 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1731 \n",
+ " 199110 \n",
+ " 7 \n",
+ " 16643 \n",
+ " 11372 \n",
+ " 21914 \n",
+ " 29 \n",
+ " 20 \n",
+ " 38 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1732 \n",
+ " 199109 \n",
+ " 7 \n",
+ " 13741 \n",
+ " 8780 \n",
+ " 18702 \n",
+ " 24 \n",
+ " 15 \n",
+ " 33 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1733 \n",
+ " 199108 \n",
+ " 7 \n",
+ " 13289 \n",
+ " 8813 \n",
+ " 17765 \n",
+ " 23 \n",
+ " 15 \n",
+ " 31 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1734 \n",
+ " 199107 \n",
+ " 7 \n",
+ " 12337 \n",
+ " 8077 \n",
+ " 16597 \n",
+ " 22 \n",
+ " 15 \n",
+ " 29 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1735 \n",
+ " 199106 \n",
+ " 7 \n",
+ " 10877 \n",
+ " 7013 \n",
+ " 14741 \n",
+ " 19 \n",
+ " 12 \n",
+ " 26 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1736 \n",
+ " 199105 \n",
+ " 7 \n",
+ " 10442 \n",
+ " 6544 \n",
+ " 14340 \n",
+ " 18 \n",
+ " 11 \n",
+ " 25 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1737 \n",
+ " 199104 \n",
+ " 7 \n",
+ " 7913 \n",
+ " 4563 \n",
+ " 11263 \n",
+ " 14 \n",
+ " 8 \n",
+ " 20 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1738 \n",
+ " 199103 \n",
+ " 7 \n",
+ " 15387 \n",
+ " 10484 \n",
+ " 20290 \n",
+ " 27 \n",
+ " 18 \n",
+ " 36 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1739 \n",
+ " 199102 \n",
+ " 7 \n",
+ " 16277 \n",
+ " 11046 \n",
+ " 21508 \n",
+ " 29 \n",
+ " 20 \n",
+ " 38 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1740 \n",
+ " 199101 \n",
+ " 7 \n",
+ " 15565 \n",
+ " 10271 \n",
+ " 20859 \n",
+ " 27 \n",
+ " 18 \n",
+ " 36 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1741 \n",
+ " 199052 \n",
+ " 7 \n",
+ " 19375 \n",
+ " 13295 \n",
+ " 25455 \n",
+ " 34 \n",
+ " 23 \n",
+ " 45 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1742 \n",
+ " 199051 \n",
+ " 7 \n",
+ " 19080 \n",
+ " 13807 \n",
+ " 24353 \n",
+ " 34 \n",
+ " 25 \n",
+ " 43 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1743 \n",
+ " 199050 \n",
+ " 7 \n",
+ " 11079 \n",
+ " 6660 \n",
+ " 15498 \n",
+ " 20 \n",
+ " 12 \n",
+ " 28 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1744 \n",
+ " 199049 \n",
+ " 7 \n",
+ " 1143 \n",
+ " 0 \n",
+ " 2610 \n",
+ " 2 \n",
+ " 0 \n",
+ " 5 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
1745 rows × 10 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " week indicator inc inc_low inc_up inc100 inc100_low \\\n",
+ "0 202419 7 9828 5927 13729 15 9 \n",
+ "1 202418 7 13252 9706 16798 20 15 \n",
+ "2 202417 7 15303 11219 19387 23 17 \n",
+ "3 202416 7 18138 13540 22736 27 20 \n",
+ "4 202415 7 24929 17315 32543 37 26 \n",
+ "5 202414 7 16181 12544 19818 24 19 \n",
+ "6 202413 7 18322 14206 22438 27 21 \n",
+ "7 202412 7 12818 9128 16508 19 13 \n",
+ "8 202411 7 15973 12400 19546 24 19 \n",
+ "9 202410 7 14301 10761 17841 21 16 \n",
+ "10 202409 7 14337 10871 17803 21 16 \n",
+ "11 202408 7 15899 11991 19807 24 18 \n",
+ "12 202407 7 11294 8226 14362 17 12 \n",
+ "13 202406 7 12174 9020 15328 18 13 \n",
+ "14 202405 7 8814 6110 11518 13 9 \n",
+ "15 202404 7 9504 6566 12442 14 10 \n",
+ "16 202403 7 6948 4633 9263 10 7 \n",
+ "17 202402 7 7125 4852 9398 11 8 \n",
+ "18 202401 7 13305 9214 17396 20 14 \n",
+ "19 202352 7 11636 7354 15918 18 12 \n",
+ "20 202351 7 6912 4227 9597 10 6 \n",
+ "21 202350 7 8799 6215 11383 13 9 \n",
+ "22 202349 7 7817 5362 10272 12 8 \n",
+ "23 202348 7 7351 4749 9953 11 7 \n",
+ "24 202347 7 6537 4277 8797 10 7 \n",
+ "25 202346 7 5229 2973 7485 8 5 \n",
+ "26 202345 7 5007 2675 7339 8 4 \n",
+ "27 202344 7 3688 1664 5712 6 3 \n",
+ "28 202343 7 3891 1675 6107 6 3 \n",
+ "29 202342 7 3968 1212 6724 6 2 \n",
+ "... ... ... ... ... ... ... ... \n",
+ "1715 199126 7 17608 11304 23912 31 20 \n",
+ "1716 199125 7 16169 10700 21638 28 18 \n",
+ "1717 199124 7 16171 10071 22271 28 17 \n",
+ "1718 199123 7 11947 7671 16223 21 13 \n",
+ "1719 199122 7 15452 9953 20951 27 17 \n",
+ "1720 199121 7 14903 8975 20831 26 16 \n",
+ "1721 199120 7 19053 12742 25364 34 23 \n",
+ "1722 199119 7 16739 11246 22232 29 19 \n",
+ "1723 199118 7 21385 13882 28888 38 25 \n",
+ "1724 199117 7 13462 8877 18047 24 16 \n",
+ "1725 199116 7 14857 10068 19646 26 18 \n",
+ "1726 199115 7 13975 9781 18169 25 18 \n",
+ "1727 199114 7 12265 7684 16846 22 14 \n",
+ "1728 199113 7 9567 6041 13093 17 11 \n",
+ "1729 199112 7 10864 7331 14397 19 13 \n",
+ "1730 199111 7 15574 11184 19964 27 19 \n",
+ "1731 199110 7 16643 11372 21914 29 20 \n",
+ "1732 199109 7 13741 8780 18702 24 15 \n",
+ "1733 199108 7 13289 8813 17765 23 15 \n",
+ "1734 199107 7 12337 8077 16597 22 15 \n",
+ "1735 199106 7 10877 7013 14741 19 12 \n",
+ "1736 199105 7 10442 6544 14340 18 11 \n",
+ "1737 199104 7 7913 4563 11263 14 8 \n",
+ "1738 199103 7 15387 10484 20290 27 18 \n",
+ "1739 199102 7 16277 11046 21508 29 20 \n",
+ "1740 199101 7 15565 10271 20859 27 18 \n",
+ "1741 199052 7 19375 13295 25455 34 23 \n",
+ "1742 199051 7 19080 13807 24353 34 25 \n",
+ "1743 199050 7 11079 6660 15498 20 12 \n",
+ "1744 199049 7 1143 0 2610 2 0 \n",
+ "\n",
+ " inc100_up geo_insee geo_name \n",
+ "0 21 FR France \n",
+ "1 25 FR France \n",
+ "2 29 FR France \n",
+ "3 34 FR France \n",
+ "4 48 FR France \n",
+ "5 29 FR France \n",
+ "6 33 FR France \n",
+ "7 25 FR France \n",
+ "8 29 FR France \n",
+ "9 26 FR France \n",
+ "10 26 FR France \n",
+ "11 30 FR France \n",
+ "12 22 FR France \n",
+ "13 23 FR France \n",
+ "14 17 FR France \n",
+ "15 18 FR France \n",
+ "16 13 FR France \n",
+ "17 14 FR France \n",
+ "18 26 FR France \n",
+ "19 24 FR France \n",
+ "20 14 FR France \n",
+ "21 17 FR France \n",
+ "22 16 FR France \n",
+ "23 15 FR France \n",
+ "24 13 FR France \n",
+ "25 11 FR France \n",
+ "26 12 FR France \n",
+ "27 9 FR France \n",
+ "28 9 FR France \n",
+ "29 10 FR France \n",
+ "... ... ... ... \n",
+ "1715 42 FR France \n",
+ "1716 38 FR France \n",
+ "1717 39 FR France \n",
+ "1718 29 FR France \n",
+ "1719 37 FR France \n",
+ "1720 36 FR France \n",
+ "1721 45 FR France \n",
+ "1722 39 FR France \n",
+ "1723 51 FR France \n",
+ "1724 32 FR France \n",
+ "1725 34 FR France \n",
+ "1726 32 FR France \n",
+ "1727 30 FR France \n",
+ "1728 23 FR France \n",
+ "1729 25 FR France \n",
+ "1730 35 FR France \n",
+ "1731 38 FR France \n",
+ "1732 33 FR France \n",
+ "1733 31 FR France \n",
+ "1734 29 FR France \n",
+ "1735 26 FR France \n",
+ "1736 25 FR France \n",
+ "1737 20 FR France \n",
+ "1738 36 FR France \n",
+ "1739 38 FR France \n",
+ "1740 36 FR France \n",
+ "1741 45 FR France \n",
+ "1742 43 FR France \n",
+ "1743 28 FR France \n",
+ "1744 5 FR France \n",
+ "\n",
+ "[1745 rows x 10 columns]"
+ ]
+ },
+ "execution_count": 11,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data = raw_data.dropna().copy()\n",
+ "data"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Nos données utilisent une convention inhabituelle: le numéro de\n",
+ "semaine est collé à l'année, donnant l'impression qu'il s'agit\n",
+ "de nombre entier. C'est comme ça que Pandas les interprète.\n",
+ " \n",
+ "Un deuxième problème est que Pandas ne comprend pas les numéros de\n",
+ "semaine. Il faut lui fournir les dates de début et de fin de\n",
+ "semaine. Nous utilisons pour cela la bibliothèque `isoweek`.\n",
+ "\n",
+ "Comme la conversion des semaines est devenu assez complexe, nous\n",
+ "écrivons une petite fonction Python pour cela. Ensuite, nous\n",
+ "l'appliquons à tous les points de nos donnés. Les résultats vont\n",
+ "dans une nouvelle colonne 'period'."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def convert_week(year_and_week_int):\n",
+ " year_and_week_str = str(year_and_week_int)\n",
+ " year = int(year_and_week_str[:4])\n",
+ " week = int(year_and_week_str[4:])\n",
+ " w = isoweek.Week(year, week)\n",
+ " return pd.Period(w.day(0), 'W')\n",
+ "\n",
+ "data['period'] = [convert_week(yw) for yw in data['week']]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Il restent deux petites modifications à faire.\n",
+ "\n",
+ "Premièrement, nous définissons les périodes d'observation\n",
+ "comme nouvel index de notre jeux de données. Ceci en fait\n",
+ "une suite chronologique, ce qui sera pratique par la suite.\n",
+ "\n",
+ "Deuxièmement, nous trions les points par période, dans\n",
+ "le sens chronologique."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "sorted_data = data.set_index('period').sort_index()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Nous vérifions la cohérence des données. Entre la fin d'une période et\n",
+ "le début de la période qui suit, la différence temporelle doit être\n",
+ "zéro, ou au moins très faible. Nous laissons une \"marge d'erreur\"\n",
+ "d'une seconde.\n",
+ "\n",
+ "Ceci s'avère tout à fait juste sauf pour deux périodes consécutives\n",
+ "entre lesquelles il manque une semaine.\n",
+ "\n",
+ "Nous reconnaissons ces dates: c'est la semaine sans observations\n",
+ "que nous avions supprimées !"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "periods = sorted_data.index\n",
+ "for p1, p2 in zip(periods[:-1], periods[1:]):\n",
+ " delta = p2.to_timestamp() - p1.end_time\n",
+ " if delta > pd.Timedelta('1s'):\n",
+ " print(p1, p2)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Un premier regard sur les données !"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "1143"
+ ]
+ },
+ "execution_count": 15,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "sorted_data['inc'][0]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Toute la colonne 'inc' est représentée par des chaines de caractères à cause du trait dans la ligne de la semaine 19 de l'année 1989. "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "sorted_data['inc'] = sorted_data['inc'].astype(int)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 17,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEKCAYAAAD5MJl4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsfXe8HUXZ//c559yS3gkhCQRIpIQSIIYgotIkggooJVhARUFefNXXCq/dn8EOggoKggRUur6gdEKHkBAghRBCKiSk93pv7j1nfn/szu7s7LQ95db5fj73nnNmp+3uzDzz1CHGGDw8PDw8PETk2rsDHh4eHh4dD544eHh4eHik4ImDh4eHh0cKnjh4eHh4eKTgiYOHh4eHRwqeOHh4eHh4pOCJg4eHh4dHCp44eHh4eHik4ImDh4eHh0cKhfbuQLkYPHgwGzVqVHt3w8PDw6NT4ZVXXtnAGBtiy9dpicOoUaMwa9as9u6Gh4eHR6cCEb3tks+LlTw8PDw8UvDEwcPDw8MjBU8cPDw8PDxS8MTBw8PDwyMFTxw8PDw8PFLwxMHDw8PDIwVPHDw8PDw8UvDEwaPToKVYwt2zVqBU8kfbenjUGp3WCc6j++H6p5bgmifeQkMhhzPHDW/v7nh4dGl4zsGj02DDjmYAwNbdLe3cEw+Prg9PHDw8PDw8UvDEwcPDw8MjBStxIKJGIppJRHOIaD4R/SRM/zERvUtEs8O/04UyVxLRYiJaSESnCenHENG88Np1RERhegMR3RWmzyCiUdW/VQ8PDw8PV7hwDs0ATmKMHQlgHIBJRDQxvHYNY2xc+PcQABDRoQAmAxgLYBKA64koH+a/AcAlAMaEf5PC9IsBbGaMjQZwDYBfVn5rHh4eHh7lwkocWIAd4c+68M9kS3gmgDsZY82MsWUAFgOYQETDAPRljE1njDEAtwE4SygzNfx+L4CTOVfh4SGDeUtWD4+aw0nnQER5IpoNYB2AxxljM8JLXyGiuUR0CxENCNOGA1ghFF8Zpg0Pv8vpiTKMsVYAWwEMUvTjEiKaRUSz1q9f73SDHl0Hfrvg4dF2cCIOjLEiY2wcgBEIuIDDEIiIDkQgaloN4LdhdtUUZoZ0Uxm5HzcyxsYzxsYPGWI9yMjDA2u3NWH6ko3t3Q0Pj06HTNZKjLEtAJ4GMIkxtjYkGiUANwGYEGZbCWCkUGwEgFVh+ghFeqIMERUA9AOwKdOdeHgocPq1z+GCm15q7254eHQ6uFgrDSGi/uH3HgBOAfBmqEPgOBvA6+H3BwBMDi2Q9kegeJ7JGFsNYDsRTQz1CRcCuF8oc1H4/RwAT4Z6CQ+PirBx55727oKHR6eES/iMYQCmhhZHOQB3M8b+Q0S3E9E4BOKf5QAuBQDG2HwiuhvAGwBaAVzOGCuGdV0G4FYAPQA8HP4BwM0AbieixQg4hslVuDcPDw8PjzJhJQ6MsbkAjlKkf9ZQZgqAKYr0WQAOU6Q3ATjX1hcPDw8Pj7aB95D26HRgjOHR+Wtw/p+nw0sfPTxqAx+V1aPTQDRpu/T2V9qtHx4e3QGec/DodPC8godH7eGJg4eHh4dHCp44eHQaqCKqtLfKYcOOZlz+91exo7m1fTvi4VFleOLg4VEBrn1iER6ctxr/fHWlPbOHRyeCJw4eHh4eHil44uDRqdHeymnW7j3w8KgNPHHw6HRobz2Dh0d3gCcOHt0CtXKWI2VAYQ+Pzg9PHDw6NVwX/VpxG16s5NFV4YlDB8XbG3fi7Y0727sbXQZ+CffwyAYfPqOD4oO/fhoAsPwXZ7RvR7oIAg6j+iIgL1by6KrwnINHp4YrR1ArzsGLlTy6Kjxx8OgW8BZOHh7Z4ImDR7dArXb4XqxUPcxduQVPL1zX3t3wCOGJg0eng7jMu3IE3lqp4+Nzf30Zn/vry+3dDY8Qnjh4dBoo4u55dCFs8ud9dyhYiQMRNRLRTCKaQ0TziegnYfpAInqciBaFnwOEMlcS0WIiWkhEpwnpxxDRvPDadRSG2SSiBiK6K0yfQUSjqn+rHh7VR1uKlf4+422MuuJBbN3d0mZtenRfuHAOzQBOYowdCWAcgElENBHAFQCmMcbGAJgW/gYRHQpgMoCxACYBuJ6I8mFdNwC4BMCY8G9SmH4xgM2MsdEArgHwyyrcW9Xw2jubMWPpxvbuhocCrmKdriBWuvWF5QCAtdua2qxNj+4LK3FgAXaEP+vCPwbgTABTw/SpAM4Kv58J4E7GWDNjbBmAxQAmENEwAH0ZY9NZYHR+m1SG13UvgJNJFby/nXD29S/i/Btfau9ueFSArqAb6Px34NGZ4KRzIKI8Ec0GsA7A44yxGQCGMsZWA0D4uVeYfTiAFULxlWHa8PC7nJ4owxhrBbAVwKBybsjDQ4WuYMrKQ4V0mF2TR5eGE3FgjBUZY+MAjEDABRxmyK4auzr3VD5lTdfiiokuIaJZRDRr/fr1tm57dAM4WyvVthttsmBHk8VTB482QCZrJcbYFgBPI9AVrA1FRQg/uYHySgAjhWIjAKwK00co0hNliKgAoB+ATYr2b2SMjWeMjR8yZEiWrnu0E3Y0t1bdCqWcCKu1isoa1V+let5YtQ3zV2215PLUwaP2cLFWGkJE/cPvPQCcAuBNAA8AuCjMdhGA+8PvDwCYHFog7Y9A8TwzFD1tJ6KJoT7hQqkMr+scAE+yWs/mMvDjB+ZjnVcGZsIHfvUUjv5/jzvlfeat9fjCrS9rF/JKLIM63GDS4PTrnsMZ1z2vvthZbsKjS8Al8N4wAFNDi6McgLsZY/8houkA7iaiiwG8A+BcAGCMzSeiuwG8AaAVwOWMsWJY12UAbgXQA8DD4R8A3AzgdiJajIBjmFyNm6s2bn1xOVZu3o2/XDS+7DpaiyW8vmobxo3sX8WedVxk4RouvvVltJYYWksMdfnq7o5rvdWotLezV2zBAUN6ubXlGQePNoCVODDG5gI4SpG+EcDJmjJTAExRpM8CkNJXMMaaEBKXjo6WYqmi8tc9uRjXTVuE/7v8+G5DIKqNl8oxK64xcaik+tZiCWf98QW8d9QAYz7POHi0JbyHdEZUOkHfXL0NALBmqxdPlYsnFmSPv9ORTVl5z157Z4tT/q7OOHRAiXK3hCcObYxYJOAngA66taGkuNDesZU4qrFg+xERwNOGjgFPHDKi0l0NV6r6CZAdza3li/Rq/bgrqZ+PBdvYivwcwh3GtU8swguLN1TQcseEnxodA/4kuDYG5xxKfgZkRnNL0Z5Jg84gqjCNifXbm7EljKnEuZRrnngLQNc7LbDEGPJdXnjW8eGJQ0ZUusbkQurQkWXg7QVOOHXPpk9j+cO1IzvBuYyF9055ooIWOhc6AR3vFvBipYyo2IzQgXOo1CKqq2LkwJ4AgI8eMSxKa+/Ae3E/2g5d3ZRVpVvyaHt44pAR9fnKHhmf1yYxx8I12ytqo7ND92h4eiGXfXXsyJyaXws9OiI8cciIQoXOWbmuvu2rISpa4DuBtZIrujox8ZxDx4AnDhlRyFXIOURiJT8BskL1yDpK4L22fJtdfeT4qdEx4IlDRlSLc/ATQA+tWCn8bC3D1Mv0vE+75llc/vdXo99bdu3BUx34oPvOYHlVCfzGqWPAE4eMyJch7xbBS3tT1uzga8Z/5q7OXtaw3164djsenBfX+cWps/D5v76c6ThO26golhiufmwhtu5K13nwDx5xboej1IUHUBe+tU4FTxwyoq5isRLnHPwM0EG3kCs9pF3rzPC4l27YCSCIeVQtPP7GGlz35GL89D9vVFwXA1DsyuOnC99aZ4InDhlRqVgpsuXvphOAMYbrpi3C+u3Nmcu2Ft0e2oylG7GtqQVFYQtazuOu5ivi3t3NreU78nEw1rVFL1353joTPHHIiHLMKEXkLI5eXR2vvrMZVz/+Fr51zxxtHt3aUCzZd/I7mltx/o0v4dLbXsHUF5cLddb+sJ+rHlqA1981H9RTjaPRd+1phcOj6LTonjOj48ETh4zIVaxz6JoKacYYrnn8LazYtMuYj+/+d+/JvoNWKaLlRZ/vOues3ILlG3cK+TI3l8k8ddeeIm58dinO+/N05XXefjVMXj/+hxfw7zmr7Bk7KTzn0DHgiUMbIw4R0bXwzqZduHbaIlw89WWn/CbOSXelmEFT2VIsYVsGhXKWfijzWjLz+3VlHGycznfum+tWUSfErOWb8Z+5XZf4dRb42EoZUemmpqv6OfB1e48lcqpJrBJwVUy7MLY46BxYKc67R1AoZ3nclezudWWzcg7FEqtYv9VZ8eW/vQIA+OgR+7RzT7o3POfQxqAu6ufQFtZXKp2D3KpIdMXstdbxPL94vfE675arh7w35/Rob1iJAxGNJKKniGgBEc0noq+F6T8moneJaHb4d7pQ5koiWkxEC4noNCH9GCKaF167jsKVkogaiOiuMH0GEY2q/q1WB5Wf51CdejoqbApXF2st3SUX5zfRxFMkFLV+3C8sDo4u1d1/FEzRkRloK86SMYa5K91OoPPoXnDhHFoBfJMxdgiAiQAuJ6JDw2vXMMbGhX8PAUB4bTKAsQAmAbieiPJh/hsAXAJgTPg3KUy/GMBmxthoANcA+GXlt1YbVDpl45Ddhja6Jt0AIBDHMsq66BxKGuLQVtCt/Vf8c1543Y06tFXXb5v+Nj7+hxfw7Ftmzsej+8FKHBhjqxljr4bftwNYAGC4ociZAO5kjDUzxpYBWAxgAhENA9CXMTadBdvm2wCcJZSZGn6/F8DJZNuCthOqpnMwLHTd1cyVQ/eM1dZK+t8V+zmUU8gyal1HdVsRtoVrgwjAb2uszP76wjJ85R+vKq95dG1k0jmE4p6jAMwIk75CRHOJ6BYiGhCmDQewQii2MkwbHn6X0xNlGGOtALYCGJSlb22FShduF86hM8qbs3bZKFbT+jmYW9mwoxn3vhIPMTF7RxHjuXajrTyg4yPN1e395N9vlBWuxKM2WLO1qSwH0nLgTByIqDeA+wB8nTG2DYGI6EAA4wCsBvBbnlVRnBnSTWXkPlxCRLOIaNb69e3DBleLczAtdB3BkumeWSuwbMNOe0YJto1xJfyg7blcevsr+PWjC5X5y2ICyuirrYgrkfrjk4uzN14GuqppdVfFxJ9Pa7NTAZ2IAxHVISAMf2eM/RMAGGNrGWNFxlgJwE0AJoTZVwIYKRQfAWBVmD5CkZ4oQ0QFAP0AbJL7wRi7kTE2njE2fsiQIW53WGVUOonqwsOCTMrV9t7lMsbw7Xvn4qw/vpC9bDXa19SifCxC2tptTYlL25tazWVt/ajBa3Al/H9+dqlTvkqFr65OmX95bmlVQn94dB64WCsRgJsBLGCMXS2kDxOynQ3g9fD7AwAmhxZI+yNQPM9kjK0GsJ2IJoZ1XgjgfqHMReH3cwA8ydp7hawR6kLbdVNQt7YWK13z+Fu49olF0W/uT5AlKqk77GI1HbKWmb1CtMJxL13JgmtTlWV5ty6RVys9PCq2HjO39bMHF+Avzy2rqC0dtjW14H0/n1aTuj3Kh4sT3PEAPgtgHhHNDtP+F8AFRDQOwaxbDuBSAGCMzSeiuwG8gcDS6XLGGN9yXAbgVgA9ADwc/gEB8bmdiBYj4BgmV3Zb2fHMW+sxbmR/9OtRZ8xXKcninMMeg0NXW4djvnZaQBi+dsoYAIicx8o5EtVVrGRUOdTg9rPUWUle21qdRWTYWmKot4RrqTCaSybrsVqdbT77nS1YtbXJntGjTWElDoyx56Ge8w8ZykwBMEWRPgvAYYr0JgDn2vpSK2xvasFFt8zEe0cNwD1ffp8ld2UrFycOponW3gpp7uVcl8FD1xo+grHErro86yGFtZJQk2lhbqtHatc5uNfVWiqh3sLcV2rUl8Ups2d9Xntt155WrN7ahAOH9C6jD+p0ecx4tC28hzTixXjOCnNETaAanEMw2FsMYSbaW6LGiUN9IR4eyzfsxMxlKTVQGtqJbryczJsx3QWZwmdkiJybde3KEh/KxemvUs6Bw6VXPer1e8lLb38FJ//2mbK4Xp3vR3tvkro7fGwlxIvxHge2uVpipY7MOfC+1QlipQ/95mkAwPJfnFFWnSXGkLM6AQQfWuJYwXMpywTZoUharGTTOWQgDg6xpNpK5xC0pb/2wuINAAITXOt7dqy3tVRCPqfnVjxqC885QL2bO+uPL+AQxfGNlfo58PMgjDqH9uYcFMShUkQ2yxWcdqR69q7VlGWtlL2IdVnMQvhdTqKrmDhUJYh4fHxuFs5I6IQSXckkpamliFFXPIgHOlGodU8coJ6ws1dswe6WtOlexQOWXKyV2ndWcNGA67rT1FLEn59ZYq4zvCcXBahWrFQJ51CjRyo/I9szyyIydBErVWzKmoFWm/Jwou/S51RZrVip61CHNaHC/TeCH05HhycOyDYIKxmuM5dtwqotuwGYxUptOScuumVmuv2MdVw3bRHueWWlMU817qki4lDGm6t0wVShrcVKa7c14bH5a7TXY2Jdqed/8Fl0PMo10QfNLZTFhXRQ8PfUmQie1znA/MJWbk7GnKnk3YqnhJnOJmjLAfSMJeBaU0vR6u+wo7nVeB0wx0Cy5a0GstXJfTHshdI5zIt1lm60OJwFalNIn/OnF7Fi026trigT52DsB+ccspu76m6hKx2F2hnPjvecA8xy4Pf/8qnE72oFxTMpv9t7AIntf/6vL+PYqyp3UMp6EpqpjmRajGrJz6O6q8g5HDC4FwDgQ+9x9+x32TnbOIcVmwJOVSfOikxZXTqkqWP3niJ2hce+6vr8l+eW4mt3vmbsg4zOtMu2gR8v3JnuyRMHtI3T2ef/mhTfdGSdg7gIT1+6MVPZpevV8ZjkR2w+JjR9bd32Jjz71oZMfUnUWaNHKo8d3Vo9uHcDACCfQcnv4nRWC51DscRSoUhMEI+G1ekcfvbgAtw/W62M1YqVOtFCagPn8Np7bmeBJw7I+MLKeLelEsNTC5PiG7NYKXsb1UTkk1DFjTjfuZpi+cQRQtPXJkyZpjQQcG6/HJ2DQx557KgeWanEMHN56COSYaxVg3Pg0DXL34d4H79+dCGOvWoa1m1PEgixisffWItRVzyIFZt24cUl8QaiHD2Brm+daSF1xdptzdi9p3PEqPLEAdkGdDnDdeeetEzeLFZqZ86hBs2XakBwAPdnVV7gvew6B9X9bd61R5vfBJczs/MapcO6bU0JrkZXk6q/T725DgCwccee9MUQ94UGCK+/uzXRB5u10rifPoYmicjr5l9X0jmIt/jYG3oDgY4ETxyQbadezsKtVNgaqml3ziHsnOutOq33tWXOalKny/2nOYfqUb9y/RxWbNqFCVdNw/VP28N+v70xEAOK41ofzkL4LjxRMayG6pxvEVt2teCdTbKRh4Y4dCHOQbzHLbtqEdCy+vDEAbU3ZW1uSU8Yk5ijK00KDvl+a3GLxthKNXqmWa18snTDSaykmMGrQ5v6pwVRpu7+H5q3JnO/RBAluRcXbkce3zrdQlcyZRVvsbOEi/LEAdkWY51SLWv9pibbmzjUQueQVkjb23eBa9ZaPVF50VU9M/F97tzT6ixzbqmmzqGM62nzY/s4dnl38qKvu01VXf96bSVeXFK+YUJ7IUEc2q8bmeCJA+LBWq0gZjKUE8+Uv+tsmCLIC4tpJ1+LM7RrddiPvFFWDaGtghjhV48sxJE/fcypfRexUl5BHHjSrLc3O7UDZH8+ovhM7IGTb4iURbcZUnEU/3PXHHzqphmK3NlQKjEsWb+j4nqc2+uErEO3Jw6X3j4LV/5zHoDKwx/roBr7psWxo3AO1UT7SwjcO5AlKmtK56AYQ6de82zi9x5DRF4RTlFZFTsa5Zm7YVWL123Hy8vT0XXLc/gL2xNDsZfDOegU0jWcBzc+txQn//YZvP6uPRJzNSDeS+cgDZ444NH5azF3ZTBAasU5qKaVadi390IaOawphrFKDuxCVLMouTOJlRzz1qLOIG/tXpZL+AwV56ACf/6nXP0szv3T9PR11QbG0RclwTmUocTXjXeT/9FvHl1Y0bN/NeSqVm7eXXYdWSD29EbHI2DbG92eOIiotocth2qMdwSdw7QFa5XpvHnV4vCrR9+01usim64FTG+vVtZKXKGrw2vvuIt2Uu079Fo8c6MSJK2V1E9S6ZtCSSlJOdyWTvFscoL7w1OLsXZbs7UtO9pmronPV7bW6qjwxEFErXQOyl2ZKb99wLYWS7jyn/Mw6ooH8eDc1dp8i9Zu18quL546S9muqXUet98EtRgt/KxAfFEJshCnWKyUHfK6evb1L5ZRS9i+QwcG9a639sGlrg079T4NWeDC9crDUWvKapG+VXbWd/lly0Fn1CN64iCgdgrpbKyDy0D6z9zVuGPmOwCAf76qjoi6dP0OnHrNs/jNY2859XP5xmBHYwq058JdqTgfnhYRiSpNFlfldTkiCFOZ3XuKSkJZXQuv7MrdcvGPGe9Y69Y3Jeoc7B3aJBEirVipM66oGrS3qLgcWIkDEY0koqeIaAERzSeir4XpA4nocSJaFH4OEMpcSUSLiWghEZ0mpB9DRPPCa9dRyL8SUQMR3RWmzyCiUdW/VTtqJVbKOsZdBpKo1NQtSOu2B2z3q46ijRPD0954GG/V83BZ/JRitNRvE3GsgbWSJn311vJkzre8sAyf/kvlVjMdDTuaW9GcMUxJUqxkx5f/9krit058ZCMO1RgmbUV/OiOhc+EcWgF8kzF2CICJAC4nokMBXAFgGmNsDIBp4W+E1yYDGAtgEoDriYi7UN4A4BIAY8K/SWH6xQA2M8ZGA7gGwC+rcG+ZUTPOIaNYyWUgJa1UOpb9g2rh58pF053VMqyxrs7PGBZ4Uzfe3aImKtXcYDhxDo51uT7Tw370KJZuUAdP1BHt9dubrXnMfdPoHCy7pHLCg3PUaiOogy4ibUeGlTgwxlYzxl4Nv28HsADAcABnApgaZpsK4Kzw+5kA7mSMNTPGlgFYDGACEQ0D0JcxNp0Fo+E2qQyv614AJ5OLCUyVUasmszrBuUywKp7gqe9H5tMKwnIV3lsmCNWV8/42KOIH8S6u3aqPTOrS0ramysIkuFl2qTKle1dt3xFd38p5vdrYSpa6quFB3Vb7+bfWtp1PRbWQaYkJxT1HAZgBYChjbDUQEBAAe4XZhgNYIRRbGaYND7/L6YkyjLFWAFsBDFK0fwkRzSKiWevXmw+pKQdtSY7M4TOEfJrZJnrG1qrf6nXHwWzVQcXS1ly27nn3bkifd7VhR7AT/tpds7X16R6DmH7VgwvcO6hAZ5BT/+GpZPymcrpcrs6hnCNJPdzhTByIqDeA+wB8nTG2zZRVkcYM6aYyyQTGbmSMjWeMjR8yxP3QFFfUija4LJYixEmhyyfGs9H1u9IFuNzyRoU0r7vMPpWNMho0OavpxBJiqhiNtRw4RYV1vK9qeIir6nj93W3WPDboiIDtnJWuFHupI8KJOBBRHQLC8HfG2D/D5LWhqAjh57owfSWAkULxEQBWhekjFOmJMkRUANAPQNqNs8ZQeZtmwZwVWzDqigdTtu3KE8yMxEEsq0YWzqGqRE/Rcbl9VZ8jouAkKsnQnQrzlct16TmH+EKzoye0DrbncMx+A5TpSlPWinriDrUI1dy6jgjYDvtxcRLUoZNEsGhXuFgrEYCbASxgjF0tXHoAwEXh94sA3C+kTw4tkPZHoHieGYqethPRxLDOC6UyvK5zADzJauh6eto1z+LWF5al0isdL9PCOPhPSwf7uFjvJK4lOAe7WMmGlKWQ46NVTvQyy8lpHSW2kukxmq65PH/53IKscPMJybbxqKT9cuImAXbxmHj9ggnxvtJ2H9XgHJZt2FmxbqirwoVzOB7AZwGcRESzw7/TAfwCwKlEtAjAqeFvMMbmA7gbwBsAHgFwOWOMz5LLAPwFgZJ6CYCHw/SbAQwiosUAvoHQ8qkW2NNawsK12/Hjf7+RupZlwVUiHM2pnXTG3ZQ46F12vCoRx/INO3Hz80tTbe1obsX+Vz6EPz2zRNt+pWCKDXPcBf19N4Whzf89J3vkW2ufyiA4BOCg7z+MT930UqYyHE2KUO1ZYFv7CLoFNPvuXYWXDEfE6mpTEyuLeEi4XidYWtTUWil8Ub9+dCHOU4QT8QDS2jgJjLHnod9Un6wpMwXAFEX6LACHKdKbAJxr60s1wOXABVXAMgNtGDWoZ+QkpsLuPcXIIkFerLNOS1HRprcKiS+o+v2h0GcBAHY0xzvYNaFd/92zVshFFG1Ys6jLOSwQpqrve/VdfOWkMcprhRw5PZ90+275RGwOo6mKx2ByaMeKkF5rsRKRuz6rnFcpO0OWKxK0ETlxbNQLxKGtFNJvrtlelXq6GrqdhzQfUCouwWQK+b7Rg1NpjLHoEPj/vuM1PDJ/TVi3nC9dn2ncizsmrbJOSLYxPGJ/doaEole9dV+ANYpD5lX9kYmhSYwWFTfc/7INOzHqigexU3GCXr8edfjf0w9WlisntlK59u4uCumszmQyFq4x2X0EfVD6lFRJrCQf3JMYc5oyasLkrnOoK+iJg7zB0OkqzvvzdPx9xtvGNuX3t92LllLodsQhjh+kWuT0yBHw1ZNGJxbiPzy5GGO+9zB2NLdiunAASXqxVsnu3cRKOmTxuBT7w8+zFo92zIKC6ugxCSoxgmyt5ILH30gHBtxd5oIr9mnr7hYc8eNH8fLyTVVXSIuoVOcwdbp5gdMN2Kx+NTrI1lq10oGINCgpVkrmk6eFbprMXLYJ3/vX68Y25X5ua1Ic5dvNYd8+djHwgaoaWFYFJFFioN/+UjB55R2uzIFkjcpadBCbJHdx7iscn/DlRvOsd/C+U93v/bNX4a1hOzCsXyMANyKhIpK79hQT9+scW0n4PnvFFmxrasV10xaVbYSglSoJ776pQrGSC9RinOrIlfZIq7MLgck61oProlgpfn7yffCNjapcpVCJmbs7uh3nwKEaWCaFdI4oEs/wsnxnWJfPWayPFGmG/AmZuibn754QgulZxrWq/XK9wV2Iisr644anl+Crd7yGhRnkuy6OZs5wWEdMHNt9r6zEZUJMIG3fhO8tDie5VQKC5rYc10ybH0GKc3Dyu3DjksV84nONz3NYAAAgAElEQVQXOQe5fys3JUOW2ExdH52vD6cub6g6g0Pd2xvVYU1qhW5HHPh4Ug0Fs1iJIuLBxxFXODLGKg4Z8dyi9Tj+F0+iqaWIomCFoSra3FrE0vXxQLGtlWIdlU4BF3HU1YYosFlELdW0RdcRWZFImhbzb94zBw+/Hi82OuLalvbzpKEOap1PMvGUq5/Brx9baKxfJg4u/jeqdNUYTurV4vQEcUiJkfQ6EBXeMRiQpPpTgc9EW8FkEFMLdDuxEkfW3XSOYsVuiTHkQRFxKLHk5JN3POoJk0z92X8W4N0tu7F8486ErFVV9of/N9+537o6ysVefRtSabdIPiNu9vD2PJlNiw3ZeXPrtjXhZ/9JmzFnhd5YKb5y8N598PJyc0TcSkQjgUI6TdBcdA6L1+3A4nXmeD8PSCbF5cZ6UvWnyFi0+IjXRYW0zBnI1dj0bn17GJY36QXauJCOgLaWfHU/zsEUld7w8PM5ihbhlBUFkpxD2s8hXd+S9TuVO1XGIHEO6cKz3k46j9s5h2zKdxNcuO86B72Ey1TU787jdJXSGgAmjBqY+M37fdwvnsSicFEkSgoXMq0PDg9wUK+YkOq8mcU2f3f+uAwdMJiyZqrFHeWeL2HjJsTNlKhzSJs/S5yDZTBm2VwUK/CZsKFauhHXI2Grhe5HHAzvyewtS9qQ0vJveVHTDY6kmCJOT+oc1H1pL7iMc5PSOkvfXXKqDqkhAr77kaS5KxdjyHoFMTx1Fgsw3cKjOzLTZWITASeMSZtMv7xcHUlGV2W5nu02uNTharYtvgfRAk3UacnvKs05pOstWeYOh/zoaqlz4CbBl33owIrqaet53/2Ig+GayUwzECsFL0dFHIwKaU16g0a562KtJGPB6m2Y+uJyACpFolsdbrBXNqBX+uhKDm6779IncS64BBrUlQXczIOrwThs2dUSm0sLFeqGltzmnz97TCrPLIVoiueTy+9sbo3GQaKdKgwCJ4W0YzlRjLNDsPYz6RzkWlzCtOiwSjqPo5ZB/LiEwIWjNsGLlWoM0wA3mbPlc7G1kiyfLFmog67Jfj3qlOlFF82fACLgI9c+hx89MB9bdu3Bf/09edJWNWMVuXDfR4zop71296wgartLPBtxdy6+m8TuXHNrcrpLqIUsC6huE7dmWxP+FnIzYm0u/iGAmiNRvb/Txu4d6Bxk3dWDb6Rie1ULKi5NhquPhbjD3y74GIjvOaW7c3CCS8xNzev8w5OL8Oo7W5Ll2oA4iCKzclBpYNDM7bVpax0ARs7BIg7JhxNctmz4+p2zUzbhyTbVrao4hw07mqXYSvZBKy48t09/G08sWJe4Xs1xX27wtXLyiFPBZddlmjqqCJ7rJA/wLM/J5FvyTLg4JzkHdf5kGBRKcEhRWYMIS+6yfD5z1I62t+7YKNTtSpQBjUJaeNjNraIFm97PIc05mNtXjdWtu1uUZ6rXUqy0p2qcgycONYVpUVqwWh+uIEfxYp4czMBMjUyYw2XccXniZ2+eiX++9m6U7rKI1gk7kn4909wIc9hNcawxnH7m2h8X1r6SM3XFKeI6X1Q7w1RMnSzEQWj3wCG9Etfi9V3UOajrkZtU6SZM+grTY3y/EPKlXEsjV5w3nkfjd9N3JA+0UvehHGslMW3J+qRfwMrNu3DkTx5T9Mau3K4EfGPSo8yoBBy5BMdcu/5G7dW8hQ6H+KGOuuLB1FUde5kjEoiDWURhY4fTPdFDqZCWfos7kp6KmEnyJDFh4s+nGa+7zKG3Heyxs3rbyjtsO5INtJaYdQHIIn4Te3DGEfskrvHdf9KCzUEhDTWx03EdtjqnnJ2KcanEyIE9AFSmm+LWWK4e0roDrQoGJzj5ndo4khufXYpFa+MNgHjWtQw5jlQ1wcVKvRsKGNq3AaP36l1WPSJX2RaWt92OONgeqi52Tz5HaKgLKL+VOFgUaa59CfI4iJUcZJn3SFFYyw137LKAXv243gkuqsdJuRnkWbxuB3buyRanSK6+WCqhxXLP/L3JZrAqkEHxERkuCGk7NLF7bJZuQX36fpieYmIxMeTkYslK1hsuclVbK5kXcQaGMXv1xs0Xjccph+wVpafmkfT72/fMTdUrlzn1mmej730a9X4PtdyJiwrpQ4f1RY+6yjgIoHbmyiK6H3GwXN8VWk7IogKi2ERTFivJSO1otI3aX/HsFVtSafL64SLLvP7p5PkNZe+UMhbTLWxOXFOY6UUhqCHgdvKdXH9LkVlPDuMLxNAw/pMJpjAisckzw8DQcuuQYX2sderuS6tzCBrR1pcYF4Zb50rgcoM5inUoQ2UoynPisHnnHjw6fy2WrN+Bkw8ZCiLCtZPHJfLo6lHp+UzcoYnTquViu6c1qL0uH/hKlWsgkvAN8WKl6sP2THeFO1Q5W44IDXVuYiWb844KumErx4fZurslOjeCo5BgN91EJ61lxv3JOih1E7JapqWu3SmWmFXpWK7YWTVWePqIAT3w0FdPwP+ecYimrL1RvVjJnXMwQSUGs0HOm4sIjD2vmHbW9S+kyn3ooL3CNLPOQQXT+DTNjVoutiLnkCM3iz8VxMCDnji0A6IFRHr2eaJ4h5VxkdENBpf321BIsqCX3DYrlScpPtC1xRJtlmu6l7WUbnlyGdw/eWC+Mj2LzcaAUEHfGsQ4MYIv1FltQlILpeAsSQAO3acvGgp5fOrYfVNlX1wcHySks4DSrfGkaFv8XSdYsZluPSZm5S84Eefg6HvA01T6qbyGk3ER/ZiGtal4LddaLsINODkq6ymXSgyfumlG9NvrHGoA+wRgwv8YJDjB2dbVlJWFsaUAb2gspWTxhSqfztpD1Ra/PGflVk2vzHClKSs2BZNex8m7EKeNGrNMXaUil8LlusfuPyhsr2R/92XqgOR6c7mYcxD7etDQtGjp87e+bG1z0Vp1DCSbiKKQCEWhr5/TkEoWHJ2DKKCzVtI3ltfMM5fuPfuW3sfDNORquROPxUoB51COfkPmejsEcSCiW4hoHRG9LqT9mIjelc6U5teuJKLFRLSQiE4T0o8honnhtesonMlE1EBEd4XpM4hoVHVvMQnbQ+XX5RcYxFYKvtsGkuuOx+UFp5RXijJie9+9b56xvkrHlOvAfvWdwKtXtxsuV4Tjcp4EABw2vB+unTwOv/zkEQCCZ23rukufVOMjzTnEu+gs5ocqmvfcovW4VeHx7AIXQwXAvLC7gptTy2N/4ZrtEaf9k4+PxTXnHxnm09fFn4MtfIYK37xnjvaaiZDWcq2NnOAKpI2HZUMqrlQHESvdCmCSIv0axti48O8hACCiQwFMBjA2LHM9EfHV7QYAlwAYE/7xOi8GsJkxNhrANQB+Wea9OMHlmV710IJUeNxRg3tFC53txTz9ZnL3skgT/dJloT1seN9kGVU91lqEk9g0be47sKeTe77rkIyUqBlkNCceNMSa5+XvneJc5ZnjhkcWKg5SJTcHP/7J0mkceWGxFftqq111X0sMkVNVYiURIiE1Bpx0yGMD53BFpf8Dc1bhtN89G+nNetbnIyW5aeznNSIqVf9E3yQ5bExULqzHJOuvpbUS11HW5XMo5HPa0PCvv7sVu/a4WbV1COLAGHsWgNnLK8aZAO5kjDUzxpYBWAxgAhENA9CXMTadBW/hNgBnCWWmht/vBXAymcwKKoRtAjAE9tEyGgq5hCz5TcP5vgvXJp2rKjnAPC1TdpPpyuBe3bqcridhuU6iMmiDPgqr8L1fz7pMZyaI3J5VWR9eXm44VCU+ZjZGscTwr/96X/Q7EtOAVRwszWRgpdqFssR1N7ESVYFz4Lox0Vz4zXDh5mIx1ZkoKvA8qTVUUeaS22Md3Nbd6pAsnAMxK6v1/akUu4Sjefs0FBKxpDh2NLfio79/Hl+9Y7ZT/2oYRDZCJTqHrxDR3FDsxOMRDwcgGtSvDNOGh9/l9EQZxlgrgK0ABlXQLyNcxUoA8N8njcbBewdy4rp8LpYls2Q8GBtaiyXsN6gnPnn0iES6247fIZNDHi6z1N1/LuemKHOdRHyCZ3H5r9aOQFwUo4UP9sdUYgytxRLmGvQxkb2CUFlTSxFH7RuH5M7pOAdLB1SPykzQylNuyog2PYprl5+oiySazM05h6T/Av8MvgV6uyDNtFDr8qhK9KyLfRe27lbrqFxCY9TyILjdoQVkj/oCejUUUscKA0BLyF3oIvDKz6Itzp8olzjcAOBAAOMArAbw2zBdNb+ZId1UJgUiuoSIZhHRrPXraxNcTOQsBvaqjwZ9QQi8V2LM2UyQ5+9Rl48ITdSWw/t1mSBOnEMpnqoq5KXzsVXIaeSlvRvSzkX86dSCB9TpMSLxiNRJrgR02Ris2WYJHxIZLMSVNbckt3FiaPdkCG8zVETJ9G4pg3LTlCvezadzuZ4hwHUOov8Mr4+/L6KYWJsMEnh4fJX+QkbvRpE4qDkHLsYp18y1UnDz+J51efSqzysdOnnruj7K6eU6sWZBWcSBMbaWMVZkjJUA3ARgQnhpJYCRQtYRAFaF6SMU6YkyRFQA0A8aMRZj7EbG2HjG2PghQ+zyaXUd7tcb6/LRYK/L5xKH/WQ57pLPg9QhQA77Prc4RfY+8Amiq85lDSjkc8r+NNalh1F5YqXq5ovzk7OMdrfFEztWSMdpslNk7HHMEoTMtgCpCJNRHGSsTa7HtFPXi5VcI4Hye25VHGN4V+idL4qVbK8jr3hnP1Wc4CfqVbbsUhMHrgcxtVlLzqEpHB+NdfnIk1w2h+eLva6Pcv9qGUWWoyziEOoQOM4GwC2ZHgAwObRA2h+B4nkmY2w1gO1ENDHUJ1wI4H6hzEXh93MAPMlqSMZtC7L40As5wsgBQdyZPo2FxMCWd4vGNlkwMcqRP5vs2E1pMiKxkua6CydU0Iie1OOU7xarwDoYPVvTjcttco7H9u5LzMHQmRMHIW14OEY4+C6a6XhmDbji8rnvnBilZREfvLlmm/ZkPCNijXQKrpwDz/bzh9+M0lQ952u5jVjniNI6B2V9cf92aQg714OY26zdYssJQV6SPojQHUal657N278asJ4hTUR3APgQgMFEtBLAjwB8iIjGIejycgCXAgBjbD4R3Q3gDQCtAC5njPE3dhkCy6ceAB4O/wDgZgC3E9FiBBzD5GrcmA62ufYLYXDXF3L4zXlHYvqSjdhvUC9s3R2Esigxu7dtsk2GXE6xTpQlVkoXctkVt1qUci66gXwufX6Ark6iwHpEpXzTw3EhylBj0BcKCJgD12jlLHklYcZbP/9eHD86eXobDx4n0wbbmOHWNiMH9kz0SQdZIT3pd8/p++3AgajGlivnoJQNS40S6Y/aTberz/OnzxyD/77jVbQUWWLfoMvfajHGCMoau1MWNu5oRs/6QkTk8jnSepLzPuo2AzpiUktYiQNj7AJF8s2G/FMATFGkzwKQChPJGGsCcK6tH9WC7ZE+vziO41PI5dC3sQ6njd0bQNIJLgtvU2IsZKmz9YW3JaLcQdFqESu5LAKFnFovofIYJwAPzluVzlwFZGVGIp2DJR+DfdESLxPFoR5E1AkaXhJ4cxu3ec4xI1Jp81fpleOE8uP0iDCJenRWbHJeVThqOQ8BTtZKQbt6k8+9+jagPp9DS7HotKmJxUomnYO1msw45mdPAIjFrjlKWs8l+sg3b5oHo8tfS3Q/D+kMo6BOciJyNYscIJ2pUGLJXVPcF3sf5MGiCpiXRS+hFSs5LLj5XC5Vvrm1iG0Kyy1yUHCny2TL71qeQOE7M5d3zQOYCXvMOSR1DqJuQjV+Ju6fNtJ7aN6aVBpHuQ5VMnIGUY8c1FHV79u+MAEjBsTcDj9wSM5ZnzAHN3e8T2NBG8lWfM1JJ0N1XS0WeT5Qfb8B8f6awk0BESV8YEQUHSMGx/k9cWhXyBND9Hw1vRv5RLmAcwCeW5SMLsp3fS8uTqbLZW3IMq51k9JlB1aXTysJ731lpTJvjoDnF+nvS0Zza9H5PkynsOn64qJzcMoj5NX1oiDoHMTHKgZsVN1rPuMxklmIqenZqkKMc9RJ4VtmLgtsRcRx8IH3JI1D+BkKcpuBr5Ab59CnsaA9SlbcZInjVvfuOOdgjLsk/W5qKeLul1dYuA29YYouxLzOMoxzAtwCLR2RVs7fQa2VOjOy0FuZOMScg3nRVrn954i0J809Ml+/O3TZIOj6ojujWgUXsVJOwQ1871+va/OKJ9qZsKO5FQd9/xE8scBRmUriV7d+u4kC3cxdw5xaZXscvjq5gI8UFNeqZlwdERP9cc6nz8kPn1Hdu3zu8a5wMTSFfI8IqNRmQyHvHIKmV0NBq2AWeyS+A916qTNlHRSGUwfSm6ZrHn8L37lvLh6drx+Tf3hyMQ7+wSPYriBiOk9nrVgpfJ4Ewp+eWYoD//ehhGmu/Lg6uhNcp0SWXbYsVhKpvmlwy+GwOeegC0FcKbury3P64cNSabrq+hoOQuEo5DM4XWVY5zbrAuw5wCkcOrlZIrkQEDG6rXyLd10yEUCSwxSJ14XHjcIJYwaHbaUbcnUYfM/QYDEnqA0EsuCCCfviwCEhcVA8ITnwIydgpjPTuSh0447ke22sy2l3zjIIbmbXCbGSop+A3QFUdY2fGmcyqLh22iIAaisp04mSgEIhHdm7xwdzbdgR9GFncyu+fe9cKb/nHGoA98l09H4DEr/F8BmmozBlZVEpXCRcHNpkuEz+LGZtuiVyWL8eynQRBY21kgpVMGB1qlvVHXliBvoPvZ5IfK8uoicgzRUAQWhuMU9JEivlcoSJBwwKr6XbceEcrjr7cNx/+fuDH5SBc9Bk7NNYSDjtyZC5Z246ajoPhFvcPDAnaZDQUMg7+zmYIs6KBDchVhIqbRQCVsbGGOn5948vHQtA72xqeiV8nqsIgZ44pPtqyg8At764PBVt1iuka4BsnIMsVop3PaajMHe3FBOKZC57/vSx+0l9CXc0hinuMgaymdWq01WObDIKuVxNrDoqgbj4ms5DMHU7CvTmIlbinyzdXhyqg0V5ZdGTaSF2Ee3171kXWQaR2CELdNkI8X0o9SBS/7mzm4lz0C10DXWxQtqmULVxDtHirTjs7p4vHxed9w7EIjBVdSP6B4p0uS0+N12YuUzEQWPKGnOk6dVAtfmznSlTDXQ/4lBBWdddD2PAis27Er9zRPjSCQcAAI4fPSiVX8bw/sFO3kWsZJqoqr6pkM/Zh0I+5246WUsiktWxLkdma6Uo2m7JPRw7Q1quFPkLCBRE7mml4bHFjUCwu64QgnmlyxGfnJCazHJ1z7ChkBMWRwtxsFhi8Wuk4Bz26d8jQWhN4TN0OoAsz1VFCHQbNp2fhypmF78DlSVTG9CGbkgcKnioLkHDOL4gHOJSYoETXI/6PBb+bBK+cepBQV/C63xw9Wko4LnvnIhHvn4C7gzl106cg4Y4KAO5aeqQ9SsqFPKUUISZ5LG2Z9RHEY9JC6ku25EOcgyrQOfg0IwD6eNdWbp+ZypEdLzIxp/yO+A/XaLEqiAuFJRIt4nD9DJwUawmQ36PXPTF5eHqPqrTM4mVDD4cAecQXEuKlXjZJMfD5fN/eHJxop6JBwxMvTNVP2xQOa7ZxEq6M19aSwzLNiSjAouEZkifhkT+WqIbEofyH6qrGR6QdOvnTnAAnyC8M8EHZ3v79qjDyIE9cfDefdE/9JVwYR91OgfVsNbdf6EMzkFlpRG3Y64ry1tI717NfZWVqNznQtcnXt367c34fahk1PYlrEQVpkIUz2zd1YK5K7emFgnRbDR5brJbrDD5XfP+/O2lt8391qSv2LTLeE6JnJQjwoylG43vQLcwNgpiJd5WT4XzHIBAn2Lg9Pg1lUKaKEmU+fyasSwZsu3q88YljAdEZFkmlJyDZk7qiKNpmovE58OHDk2l1QrdjzhUUFbFgh4jKa3PPiqIRP7RI/aJ0rgTXFxPUjbNd4MiQdGdoyvixIOGYMSAHmhxICDjw36+oPGpcDk1rJCjxCAuR7Tgel3EzuakNYgt3k9alMNluWbCeMV98/DUQnO0X1OvRfHMv14L/D9k3xadI+Uhw5KHOulQTIiV4v6stUSTNdZn4BxkQnvfqytx/o0vWTgHnVgpn9pgHT68nzIvwbCbF3UOCs5BDPAH6Bfqxrq8VgckEhobVPWXyzmoUBTqL2h0FrVA9yMOFYmV0ruMGz59dCJPSu4c5hd3OHIezjaK1iouXEqRBYPXZDnCwfUS/zdbHdLCxVImL2l2m1r1EUxtgzcLcfjlI28mfuvESrqJbNM5RBY4DuaBLt1mDFizTb14RhuDkt700gRxx2hS2qr6pEKPurxRcCJ7bS/doD8IiUO3q63Lp4/a1Y0DMlAH7igW5UOyTkJyo2V6r7p5ZpMwiM6fJcbw+rtb8a175kScvq5N0rRnmi+iWOmV8Phdr5CuASqJRaMcSNLM4rt43s6e1hLmrNyKbYJDi7yI8Z2HuHt3cRbatrsFOaLEzmVw79ixR4z7oztCkcMlKmtOMi80cQ62yWUb2wcN7YMjR/bX1K3+rgOF7cW7zeR1vjC7nE9tO1+BQ1dVHHYpSaxcVexJzkEvl//zZ4+RUvT9NsZWkjhK8b0O798D//jisakyfOFKh5+h1AarnDWOQJiw/0AAQN/G2NGTxRkS79j4zqKy0k5e6LMK3xLOqm4tMVw89WXc+8pKrN0ecHBWPweFuXuqbwrl9a6Qi+4Qx4R2B8z54Yfx18+915pPtWDLjkvNoQcpz/LQvNUAgFff2ZKqL805xK9DxaXIC+6gXvXIESWslTYIjkenhvJJIBm6gUM8s1k22z1XEQROVuyqLDL+9JlgUbJNevFeXlySFnXt1bdBa2OuqntHc2t8HGvKfJTrHIKCF79//8R1btnSUJeWf//m3COT/VZ3KahHeGc6mXx8BGZSzOUy1Xs3FDApDAIJSP4eUt7ThHw2mDYi8qZBzHLoPn3xPikiLRAvjCpiK2+wdIuoSSFdLDFcN/koAEl/BkScAyWslUwMoW4nH/fDjmKJQTYH1lkr6cRKRqdaoa5iBUQ1K7ofcVA81H4961KyVRVU8kmZODSFizDPohok0UDiXQorFE9UU3EpclW/Pe9IENzEIc2KGDB/EnaXLrJV0SN33fYmZTiQA4f0Cvsad/YzE/dN5eOXF6/bge/eNy/dFpF2Aqgm0myB+KZ0Drmk/fhhkpyb6zAaFGNg776NUr/tu9AS0+tF+GJblMRcLhvBF757EvZK9cdezpSPIX73qpPUUoH3hAmk47RMylJ5cdQ9T5Mpa4kxDOrdgPpCLtGfv730TtSG+Px5WyrRXWwcIsuV4n7Y8MkbXkwdtbpbE3NJL8bS1y8+I34vPvBeDaB7pC47BNVuXh5vg3vVW49vjIlMkId71l53wVGpernics6KLZglnS/bv2d9qHPQt/Xcd07EWeP2UfpC8EPhgfT9qyYFVwQyxjBhyjR8///ScZX4TuydTUk/Dxl8kOuOdty9pxVzVmzBik1pT3Rl6AlhJMt95zoHHUwiteMOtPukxO3Gu0edWIkvULbAauoG0r85R3TD00uMRU21883KPa+sSF2TH424D9GZP5vk4fJOXUdIRKVzqn5Bt8Az7WhuxcIw4J8ovhLzyxyjqj8c0bnXjgI/zpnzOb1co5vRcWnmI0yFfCWe5olD1aF9pg5jQEX1RZnkr845Aj8967CEotBlaJUYQyFH2LtfvCsUB+39s1fhzD++gPNvfCndbUmsJGPkwJ4Y0KvefnKdwxaJ7+ZnLlMfgg7Ei8m/hdAJ67anlbO2jc/LywPF228eW5i6pnqH4k5Rvh7pHDRtmiy1dGKVfQf2jGzOxXaAYGHReTvH4Seycw4y+MJleh9O9YRd3a4JvS5CJGI60Rlf8FW3FG16otATmj4Z4kZxwioSkPP/PF0oKyuq1W0A8buXz47I+j428jDlXKxkNWWViYNbO9/9yMEA2saUNYMnUteAS7wWHVTyQnEN+OTRI5DPkVFRmOxLgNYiU+5euQnm0vU7jH3a02puq5Aj62ByMZbJhVTPFJFTFTxOt8N02f2oStpk4yrOQVyu5AXPRRnPwd9r/551OKBXr2RfBbGjTqzExTStJYYlwnuVCY0KKYe6cHy4eMi7cDxuEYDj764HAYmQTbSNYiVLH0QCMn9VLOIkSvsZiZ8ietUHS6BsLi3WlQW8CduJi2lrJZX4OY1h4QbS6xxqgEoILp9EssUIt1HnA5KfHwDEA/zkg/cSyiT70lpiGnkooVjSKzeBYILYTFnJIlbh9ci/x0s+HNEO3MHyRcQ5x4zA7y84Cpd84IBEussA3yQcGs+VsapyprhEgSKdabm5LKGyxTAH8r3G/it6ghPpHEolfPT3zwMADhveFxceN8ratkKqFIr57P3WvbMgcmwAeYzwEC5SRRHkZ/7t0w6K6tRBXBxbiiWloUTcN3V6JFbS6CWICFd+5JA4f4kTh3TefI7Qoy6PHc1J8Wa560SkE9ASh2S+uD03sVLk59ARdA5EdAsRrSOi14W0gUT0OBEtCj8HCNeuJKLFRLSQiE4T0o8honnhtesonElE1EBEd4XpM4hoVHVvMQmtVImSnyrwFyuGjcgRcPelE/HQV0+I60KsTOXs6pSzD09cF3tTLLHUAUFAMPlKGvk1jyZJBKsTnGoS/fXzgXXWLZ8bjy8cv7/yvm+7eAJmfu9k/OqTR+ArJ46OOCLzLjT4lC26PnbkPhjQsz6R1zQhOLchRqO87EMHpurmMIqViBIKafleRw1KcgAmMGEXqqUpLOYEvyjJufnkFg0VDh3W14l70ZlVOoV1N1rshF+cOIc4k0xUJ793pLUacXwc/dPHU6Ei4nz6uFGRWEnTFhFw5MjY6IA/at1z6tVQwA6Jc4h1DtlgCw8ecWnS+1BNYVUVnPPsKKastwKYJKVdAWAaY2wMgGnhbxDRoQAmAxgblrmeiLjW877SRnoAACAASURBVAYAlwAYE/7xOi8GsJkxNhrANQB+We7NuEDLxjqU5bseUTabI0KfxrpIqcwr44OLnxQlWsLInENLsaS1pGBMLb9+34GDw7rsnAM/pEdU7h4Xho4+6eCh+OHHDlXef8/6Avbq04jz3jsS3zrtIOFENUNbir6y6NNdzioqyzn4bmyffulDc0yLa9RvQRwh4nPvG6XviATenuz1zhEr7YPfXzlpdOK6qHPg0CnlU3Wr2rK8Dw6zrT/neJJ59hsURCx9/H8+EJkoiznkZx4vfHbOgTGG7YbYXBRkUl6LOQf1UbSE5LuJRVjqturzpNU5ZBUr6ayJzjgiOFsliymraq3iOpIOIVZijD0LQNZ4nQlgavh9KoCzhPQ7GWPNjLFlABYDmEBEwwD0ZYxNZ8Ed3yaV4XXdC+Bk0m2RqgA95xA0aWqYD+xtlslMQkP8wBPRHlu+u0B0pBYrcWW1DgtWb8PmXfb+lBhLKIZlM8S0iERdU6DYNS00AVRZ5GB7ugXrvaMGKEOI8wOJ3j9mMPaSZPTJ4yKRuhYc9hOLI7gTFaAXSX3ksECMdekHDsChw/hZDbGsXFWME+KYS0lm4ju/ay0xnCaMGmi8Dgi+AA4LRbGkDvTHkDzPguPmi8bjhk8HBGHM0D4YGJ6aZvLxcWFAXOOTmXQOnJgFnINCVk9J8h+LAtU11hVyKeLA7/O1FWn/JBOKkQgr2dY1540DkC22kmpT1aHEShoMZYytBoDwkwvUhwMQ7eFWhmnDw+9yeqIMY6wVwFYA6ZPWqwUtu8c/zbJrID4q0ZSPIQhM94engkiQKj8K3pXWEkvZkwPx8ZYu4bRN4ArZxMSWVzYHcswVoC6TX8TR+wZSx08cnXSsY0xNaKd+YYIyEODoveJoq+NHDXDtdmRlJeoc7r70uPi6osyNnz0Gf/xUEBrlytMPiURaosJRda/FEsPGnXuihUh+zHzxEAP3qeb5+8ekncvUCmlHsRJjuOqhBQCA/Qf3wncmBfoBEuoV6zn5kKHo1zP2PlYRENnKyyXiqmtkY5LqEWM5HcsJu0bnkCPJWkmhc/j6KWOi74UcpayL+Hv68zNLjf2UEREH6aVyMakuZpqScLPkZ9DXjiVWygLVPGOGdFOZdOVElxDRLCKatX69OUCaDnprJTv4gBPFOI0Kr9pcKOPeIuzoE9Y0kjeljnPgilRTTLzTD7d7wvIjSo3254q2VfUAUL6dxrocfnf+uJQzEBCfZd1LwTl86bZZqbp61hecrKfEdhKTRZo4wULDMC08ozplzaRorJBPetmK0VSD9vQihztmvhP1RyYgq7fuTt+D40RPHy6EkOjry3x30sFhfxluem4ZAODC4/aLnPuCzZB9USfFe317o6QvEBb+Pa0lrbIYij6fIBFD0eLv4XmrMf5nTwAIlN78veiGiPycVNZKZ40bHn2vyyc5hwfmrLIGYNSBi5zl+4skExnESqqJxglyR47KujYUFSH8XBemrwQwUsg3AsCqMH2EIj1RhogKAPohLcYCADDGbmSMjWeMjR8yxC3EsSsizsGQh09027GcBGDuyq248p9pz1+xLT749TqHQERhOulNjC2j71BQj2lAuUjyVEedclz/6aNx1lHDBUcw++BlsB+KUg0EHtLAbx7jp/epxSHiWcBppXbwKZpg6vp44JBe0eIgE4ePHRlE6xUtgVSPQFVzujn1s+4v7Ph51FNRarL/4Lh/Sc5B0WjUdpp1kMWZInfxnu8/rPQSVh2Tef74kbj94mSMJvFWnxciCYviUG5okO5r8neskFbnkYnDV+94LVWnKy64KfBF0lsrpYnj9qYWPPdWOoSMqooedXkcObI/BkrGHbVAuX4ODwC4CMAvws/7hfR/ENHVAPZBoHieyRgrEtF2IpoIYAaACwH8XqprOoBzADzJauj+p6/ZvhjxF2uzKyeiVOx4U0uBtZKKOCRNMDm4Mpm3JeOHHz0Uh4+IrTVixyNDn/WXhLa4AjT9EHndKs5BBxNrnFWSJtal0znowB+hyatbFqswphahjRvZH30aCwlzSxH9e9bjpIP3wvrtzXh3S8BFqEIhuNJGlUL65ovGx/0On2PKI1tQ6sb3YecsxWpkXw5ymB+qwHO6d82ftbgZq5cMO3Q9VnlI63LX5amqZzLvbG7VeqyrnOD++47X8LSCU1H1emCvetx/+fHV6qoRLqasdyBYuA8iopVEdDEConAqES0CcGr4G4yx+QDuBvAGgEcAXM4Y49uHywD8BYGSegmAh8P0mwEMIqLFAL6B0PKpVhAn/SeOHo65P/4wALfJyBcIF87BtS93znwHz761XqlX4H4O+4ZWIxyDhMirKvHLF96/P94rKDQjjscUujjVvIaTgZrAMiFPIsEApujO/5zynmQ9GsiiA4NUKfLPiH6nZPfpthTLNYCkiEL17PO55MFCOvGcSKxMETmTaarfaXHh2H3ijUFesRiJ75BIzTml+5yWlcuiUNP8ePTrH0jUI2ZRvWu+EXlp6cYoeCWA6PxsIK2XEOtrrMvj92E4ml8/GnjZi8NfHD+FfFohbYJt7yqfL//xI+OzXWKdS3x90Vq1k6tJLNcWsHIOjLELNJdO1uSfAmCKIn0WgMMU6U0AzrX1o1oQn3ev+kIkluGP3PTs+YuxDiTL+xPXzytC0ZNKrCQrUjl+/PGx0XfbIip2xxSsyymGjIaTAZDaKZfLOZxyaGDbYDvQh4ObCps5gyTnkNKvOPRNlqqUNJxDjpKWQer3kwwqqIwV5fheGQN+8u83orTBvesTejAun5fFHKId/8adgbL3xSUb9W2F3ZEPG0r2Rz8/DgqPbuWbEGYgMrw2BmCyFDJGVEzrIhHwfp1x+DD8tyAi0o2RujyhyRZeRoCNyWiSxGkDBDGfypFWh0qOF6gGul/4jIQpXpzuSpFzZCcO9omd3s2pxEp5Hk1UyNe/Zx0G947NOJ3CXigcr1I9Uu5KpXpCPl5VywffMyQs565zMIXBcN0grdwciGZMraUMs8LK//SZo1EsaTiHlFgpmafEmPYZlRjT6hx4fxKRNhXDSeX4qFNIrxFOgZPbyykWo30H9sTarU3RddkBTIWY+9Qv6rzpFqfDdVgqTa5LNYbERVzHOeg2errhX5fPYYcirpQOtoVdZXnIodK56KCyVmpLdL/wGcL3xNGd0ad5VQrOT7CIlRw5BxE6hXRJMh2Vc5nCRsjtVRrmNxDPJInVv/7rfVjw00nRbjWLzkGltOMLhcvOWURSbJKsV9Y5bAp3ypMOG4YzjhimIbAS5xB+ig5VqrHCjQhia6V0zVxcyKEikm+u3p5K0+3URcgLk2g6efZRw9FQyOHAIb1jhTTBaA0nQ7TUS+sceB6DLkmhkFUSB035M8fFIhqdziG2DIprWb5hJ+57daUid2AeqosXprIGFN/XZR86ED0ki0WTX1Iul75/EXd8aWL0nTej63et0f2Ig0H2HCSaywcnr1kU0pY+qK7rneBsduMu4gc7K+tUTzgZxVr69ahLyIFVO1UdVHn4Y8hOHNTfgaDf4mZ2nXSEp2qRTZsiJuvWOsHlAqIXL77qXbHIfaqIw7amtP+H6onIO1B5HOWj9xE8731CKynRIdCFa+bvQ1xE5XImsVJcJvjUBa8U86nG/YFDeidaVOsc0mkfC+NYcTTWx0tffSHtIc2hYoLEcVuXo1R7qlA4ct90Iq7Re8X3195ipW5HHMSlTVyA+Ffrwu4gVnIVUYnjQ+X0RaGM/x8z39bW7RxNFW6TNvqtrCepbFX3x504qHaYsj24K2xmmMZ4+YpJmFa2huIyoT21yIgi7kr3bnJEiUVWacqqJCrSwp+j1HNOOableBsMxRITFqeo1nSoh8OHKdoOPosJsVIyj8s448/s4XlrEveRag9pfYJajKUfQyLEUB13fGki9uoTh8cv5HJakavKiEPMW8jnrHPyw+LpfQqxmlhcLNte4iSObqhziL8ndA5wW5QC4mARK1n6EEfvjOsRbbnj/gWL8QuLY0VhSqykYe1VaaZzpF0U0lysJE5IuRRva/XWJthgCqBXiVhJRo7Mog656PtHD8YphwxNJko7vhJjShNMfqb3HTNXaAkWUfLYVhMHZUJ9IZcyGz1RODec9wcITEeLJZbahBAl2x81qCd+N3mcoj9BPeJiqYtKK4eQP2/8CKFM8Dnv3a1xmsYBVH4vKTEW7Avo+w4chJZiKTofBEgf4FRQxFbiUBGNUoJApmeOaPW1/BdnJK7JXuRNLcVIbyZe7wjodpyD+KrFQen6ToJdX2WcA79qG9iyyWNQt7kt3Y4fyMY5qDNBwTmo23KBalGMwp5bRuYPPnpo4rdYlUqZbFLGy1du/tz49C5VqjuoLn2v+Rxh3rtbE1Y1MkgaQ1/+4IHpPIq65ZSGQg57WkvYd2Bs6nxleBiM2B8gEHW1ip74gk5EfDb9e9YrFar8tYptyYt6ZMoqEJDPTNwXvzrnSCGPittKJSn1CfKY0ImeknVTSBT147LeYMqqGqOirqyQo9SL2X9wEOX3yJH9Ff0JPvm8ls1exedT6SFOlaL7EQfhXR8unSUM2E0obQsNUJ5C+rSxQ1NpXOdg7o9ct14cYYqdn65HlSdI3BCeegWoLWhEiN66MlQTjzs52d7D4N5S+G9hKZFrlXfHMmSuQ6doFmsvlvSRdG0QLd6mnH0YJh2WVnqqiKP8SOrzOZQYcITg8CjLu0UxX7FUSkX1lL3edY9dZZ+vc4KbtzLmCmzjQ1UPL5fSpyh0HPy980CNoiUfEBCwIosV9eKz4ijk07GVOFREoyiJlWSCx8PF/O58PQfGjzTdKnmZk/D6fvqfN9Ce6HbEgeOmC8fjo0ckLR8Au/UPEdBiWGQBu1iJQxz7ql1GoEhNDlpZpOV0DkD4afJc3Sgs+IDegqTEGDbtiPP27ZGUTMrlbvzs+MTvJ7/5QXzrw4Gjm4rI8vAImZ19LEp7sS25WRUxkUHS4tiq9Wp3ex980dHtaF10Dg3hgrjb4LwmWiuJnEPsIZ0Uuen7HxOZOK8651LhjAbV5sXG/fLm5Pey76D0yXsiJ3fpBw/ArO+fksiTp+BeOfHgC7cIMXyG7KOg5ByEtNMP31thMsv4LWjxq0cCx7w095X83RZnRevQ7YgD32nsJ3kd8x2ObbENTFltYiVzH+L4+TFUi0Q+l1akyoNXnlhDeqePm4wUhYbjRMXd3oFDeuEbp74n3e9wMoq7qf5SjBf5Ngb2Sk7GA4b0jixmTJyDjebJ921TSBcFUUfKIUy2TFLVIQWnay3qT++zQVRIqwwRXOvhhNTk2cx326XQWinymBbaESPA6lrlt5okDmrOaWjfeAyqFn65nFohncbU8IAqMU9kICDcm9xWscSig6ZUUYALuXjzMPZHjyauqTYw/Bn86pwjMKxfj9TZ23yM6KL2Jvsn9zf5O4tzXrXR/YhDxE4nwd+jTZxRl88ZxTOAfWLzywknOE34DJk4yG2Lg+mqsw/HPV8+DjL47mRPMVhERHM5DnGBmXL24alFHwgWyDXbmtDcql+MUjoQ5Q44+DSKlWwcnPD95eWbkmIl6ZnNfmcz3hJCFBRTFiiyXkcvLuJ1t5ZKmtP7jN1O1a/iPgA37rMufFZNxvcRfBZDayX+XD88dm80FHK4YMK+OGa/ARgVbpZ0Y1fl2atWJKetn2TIc0ybX0g+Zr8B2KtvY+JyIZ+LjCx0IdRzoUUXP49ii4I4cMMPuS8NhZxS3MTnJN8cyP3XxdUC0ty7zmmRQ2XS3FbofsQh/JRfXPSiLWxcg+JcBhm2iZ0TWH0O8SCeqB4nnUPc2vnvHYmRA3um8vAcfLd61yUTU3nOGx8H09UtzP+eGwTS/dtL75g7pWhbRBxfJ31z/D3ww3VccO6fpqPZsMPaJu3s9pWekQvnwCf132cE924699sGMYuOc3CRqvFF1mSJFYmVuLVSSIyG9++BhT/7SBTWInrnFp2D+M7UO/Wk6FPn/SzilheWKfIkjwlVzbth/RqxastusNCvREWs8uHCHxEHxcFYOlPnxrq8knPgabp5sia01FMSB8PmTgVZUtCW6H7EIRoEybfCd4E2fYITcbDMbD6pfv7wm1Haq29vTuWTwyyoIA4u3UCLTQyDe5PPVQCAo/eLdR66BY5zF6pQzDqYZOf3vZL2/OTXvvHhgyz1Jn9/UXEuhA4iIQTcdA78KM8H5qwKYyfpuT0bxPek4xyc6gkrMlmhpa2V1OOX34t2DKl0DpoQH2J/TIYNHLJYJqgnOfZV865PYwG79hTxSjh3lMQqdErkugZ+aFOyP2qrp4ZCTsFlxnpA3Tvi80N1PUUcLDoHUVJQl8WVvQrodsSBQ8c5tFi26mLI4B9K5pSu4BNW3MWonG2crJUS5rjmhYabV6pMFcU0FyW3K9ThI4JPvgvnePbbJ0bfTaaHQBkKa0NZWelvi7XE35U6HpabzoFDq5C21hIvhi4hsldu3o3ZK7boHfO4CbFWrBR82nQOaQV3ui6XU8yIkkR7H+H8C7H9EmM450/TAajjUeWIUCoFcbCG9WtUmg3niJRcbEOdWqy0Mgy1rlus+WNRPcqJYbh9fp6HTNDk5yUSkwe/eoKyvVqh2xEHnc6BT3SbD0ODEEflU8fuq8xjW7dUC4hKMqDyc0jncRdj/Gfuam374iJl07vYFu5E20az0CTE0OSVOAOZHtmlHzggnd+hTnGStkbKZLvIRIWEWEkTamHvfo3KdBF85272SA4++fkCb6zapszH70XXfxVxuETxLFtLLEGsVIRW1pupdvMB5xD/lk1UgbSHuE75zQMh6saUbp41FtRipc//9eWobhX4+FBd71Gfx1H79scBQwLLq788nxSp5YiiIJYAIv3ebV+YgPcM7YO2RPcjDlFMmeSLi038gt86mXeDMJn1g81NrCTiY0eoQhZk93MoN08iCKElP++SSvmdrleRZu9O5vAZIvj50irsJ5lDAm5hCkQlfEQcFAu7S6hx8VnXaV7OV08eo0wXEXktO+gcOHQy7LyFc1CFRVE9y7Q1jv15fFQz9kUjA1NgSg7VpiefozDWlTqKbtQWS/sc1Bdy5jD3mgq5zkV35zLhS9YJfPGE/aPfXJfmIs6uNrofcdBwDnWCAHWffo249zL1wifKWfU26uY+5BXsqHggSNQWqSxr5DzZFiMX6EQj14WHpxRLDIcM65s4UEjfdnn9qYQ4/OhjYxO/RW5BtVF3CXDWRziONRIrlW3KGn/XPWuXxYCXNXIOUv2yct7WDw5+W1lPTDPEoAMAfOmE/ZUbMXkBVc2ZXC65eVLdQSBWgvbkPp4HAE787dOJ9BIzP1udPpCPD5OYlykOaeJlRG67OWy/3hOH2iMiDtJ7Ewff6KF90LNeHXZKPG9A5zAnp94nERrV7lIXldUWZ54PQNPczrrO6haKQ4fFbG29o3LMZBZqLJe51zHkiSRacKn6M34/O5HjxPvMcftEYhPVhHUyZRXuTSdWyhIp1WRa7Xpokivn4KIvyNL+t087WOsEJy6eSj8gSnIqKsLFRUa6k/t4HgDYJDmCthRLZs96TXrEORhEdKUScNNzS439AUTOIa/MW0t0P+IQfsqLj8g5GOOxh2/cNOjlCXaMtPioFhCl5UuOMEdwTgPSPgqRBWKG/thgs3UHzAeaJOsqrz+VcA4ybPqU+kIOv/jE4cY6cjnCyIE9kCMysvqZrZUqUP7ztlTWPhyuxgVWnUP4aQtXL8MWcUCr1AUljENMPgwcql0+10sYdQ6aPh45or85JpfmEn9Gpnm0u6WYsFZMZoi/cnEm94ZvS3S7qKwcKc5BGCCmCc4XSNOgsU1IJeegDMWQ/P3o1z+A4QOSVhsRJ2Noz2U3a2o3akvotyubq1RIOxStZnTKxLvVtO16LgZjzMw5CPWcIHgeJ+oRrZUqME90Cp0iZREjpKrqsm0Msp4XZeMcdJsaIqBJcMxUcw5JnYNK95LLUcQ52JTtIp761ofwt5fetjj06cRKZp1DjuKjWdXX45LcEKLecTNWTVTUIhEtJ6J5RDSbiGaFaQOJ6HEiWhR+DhDyX0lEi4loIRGdJqQfE9azmIiuoxqeoq2TE4o7GNN7cNmIiaKCWz43PnXdZi0Ut5VMG9y7Hr0lH4VYrGQgaBlFNLpFR2zDlXNQSwzSiTySZZynehAX4Ky7x0QeCpYDE6svPjsXU2fX56gWOzqUk+73qrPVHFJMHNT1xDqH6nEONlHoLkF5nld5o0vEQWc2HRyYpfag5vXI2H9wL2Mob0DPObTYOAfL6BbfNRcZtgfnUI0WT2SMjWOM8VXwCgDTGGNjAEwLf4OIDgUwGcBYAJMAXE9EfHbdAOASAGPCv0lV6JcSun2ASI9MOzIXGS5f6E89dChOOjgdbdUl3owqzSS/N3UrK6nVL6Dxd2fi4NifJ7/5QW2eTxw1HE984wNO7akg3o/JnNEGbj32q0cDcYCKcxCr1+1xnl20PvruKvZRO3jZy6ZOhtOUies3L6C2WD//JZmlmjYtphPTiKTopyrimCOIa7fqeecpFCuVsr/7Qs4cCkR3JeJgNPXaOGexnxFx6CI6hzMBTA2/TwVwlpB+J2OsmTG2DMBiABOIaBiAvoyx6SzY1t8mlKk+NAppIB4kOi/SoJwDcQh3qq7KQEA9+N9ck7RJV9XGB5Kpqcw6B90CIqT3aXSTSNpELwAwaezeyphMnJs4cK/eGL1X+Tbeoj6nXPPjoE/BDvS5RcHBTCqdQz5BiNT1iCet1TnK/NTj1aXPJHzXj18r52DvYqKe+Lc+r86MN2hPqkdpxKE/UY3DRayke4758IQ4nbRBq3Mocc5BfZ2gDxEul9uyaw9yBPSs73zEgQF4jIheIaJLwrShjLHVABB+8qOphgNYIZRdGaYND7/L6SkQ0SVENIuIZq1fv16VxaHDaj8HMc0kBnYSK/GJluHpqhbkDTuS1hOqcMO8mFlP4t4PQE/UxDZGDkh7rKrQWJce1HJfB/VOB/lL9KdCj21xEd+ye48yj8sunJBcENTWSnYuRTxHxFXnoLThz/hiTcpv3g/XBVR1VkFQPpnPNC4H9DK/dxG6+29uMesluIe0SSGtI5iceOm4B9XZEIBoraRrL3lS4qSxyfM8xH6+u2U3hvXr4cypVxOVKqSPZ4ytIqK9ADxORBr1OwD15oMZ0tOJjN0I4EYAGD9+fEbVGK9D35kcAUXY5KQuYiUep8Zt8i77+enWPHN+9GFtFEzAopDOzDnY62lQLPoqqC16gs++jQVsa2rF989Qy+b5jk23CPasz6fCVV993pGpfCKB0sl7XcVKok+E6t7Eruqeu9gfV2sltbVO8vfR+6bPBLHVIV/T5pGSzzpKuX9LvSsTYR9oIA5yN5RHsuYIO4X3/7nj90/3J3SCY5pjXQGDAUZIMIOzO+L040cPQlNLSRnkEoiVyHrT2eSFX3zycOzdrxFvrA4kBeLl5tZSdBZFW6OiVhljq8LPdQD+BWACgLWhqAjh57ow+0oAYsSzEQBWhekjFOk1gS4qKxAvHFl3ZDL4Lsw0Gb9/xiEAgnMldDsM8cyJXhq2cld4cPpOQ0x/cZBe/+mjtfk4dPcvTnTX3bzOhh0IJt3hw/uhh+be+LvSEeuvn5L2Iv7E0WlrnB71YtwodT9dTVBFfaxNrKSrMkEcHHeEXzlptKI/cQPvHz0Yf/viscY6TO/MZsrqyrzJ+UxtGs2vpXIqPbj8zmRjDZ6nxALxk35jkEznz0IXkrulyJQmuHd8KYh2vGZbGJVV016a8BF+/PGxuPvS41L9aWkttQvXAFRAHIioFxH14d8BfBjA6wAeAHBRmO0iAPeH3x8AMJmIGohofwSK55mh6Gk7EU0MrZQuFMpUHTHnkH5x3ERxliJCKoctpDcgiJUME4pX8/bGXdo854QLXc/6vHYRWW4oHyPuiGm3xqG3Voq/V8M+v6VYMi4e/Bnpg9O59UFU5ulen6sp63rhbGiVbiqh/Nb0W9wJuhDZf3zpWGXAOLHsfoN6ah03o/yGe+T3oheFOHI40v2Ua5Ism26qdv1uQQ4DZzrdyX08jwhuisolAKJ+YM6KLZi5bBNWbNqdqmdYGA9rWXgSnquIzvSMWoqldvGOBioTKw0F8K9w0BQA/IMx9ggRvQzgbiK6GMA7AM4FAMbYfCK6G8AbAFoBXM4Y49vdywDcCqAHgIfDv5og1jno8ywTjjmUsbPZ7LEMxBPNJJ56d0t6cMng5fs26s9hrla4BhE6ywjxfiohDnHYB/PB71zZ6KIPMEHkTHTGJ25iJWDhmu3xb1U9CZ2Duh7xHbiEYdYRQZFzcdldmp4jL16JNZeq/MrN9nGugvxcXKz5VOBipZZiSav81xG+QiRWitmWv894G4B6/so6FFcuLB2ZVeAciqzdOIeyiQNjbCmAlICXMbYRwMmaMlMATFGkzwJwWLl9yQKTzsEFLy7ZaM1T5yBWcllc+SKiUkTHeazVSKac9vy6nYo4iFV25zL20UQWTXAghsWRvyvdjtd1UyqKcXRxlFwtf0TLld4Kiy3x3nR1FhLe+A6LuqZr4rhwIfqmMWcPFufIOUjZnnlrPa74yMGaOvWQF0TVAu4SwiVHQVC91iLTjmu9tVJarCSH2BDRsz4fWrSFfTaG3hPal7olduf5xRtwwOB0gMO2QLcNn1FVLysJXARkYuNdZM28fN8eehqeNRSFi3jAxQnOhbjddak6eGHCQ9hhcax049RDIA6qYGdBG24cmFhaGUbaQeeQz8iB6ZT/IwbEOqksmw0V/vXauwD0XLN4L6qTBDnk8bhrj57Tnr1ii/aavJCr5tISA4fPsWVXsJjPenuzdmOneyyc0xDDeKg4oc9M3DfqY29BtKcnRvJvM5e01OE+a4FuRxw4KgnsZoOLKauLOIFPZpU5KIebZy8pv2eFUZMuZwAAEe9JREFUeD8ui6lOHJYgMkbOIbRWyigOkCHK+HViJZeqXPKI76Mhr35v4kLu8v50oRPyOYrCYVTKOdj6I967aWMjl//e6YdY21RB5ByOGNEPpx6adiZd5SCafWLBOmseK+cg6Bw4oT5KsAz76ccPw5v/bxJyOXIyTZabkwlfhfYwVUP3i63koFCu9Di+2PJDX0+WHbw5qJ69P0nzSnt+bX+Eipxk5Q6mg2adQ9iuph7XW2lMKKQrECuBrMNHPBC+rmBedFxhCp3ANzkunKjpxDiORgfRiymcuHxrY4erfQFsEAniVWcfrtyFq6yTZJg4Fw7VsbmAWudQyBEG9KyLLJOAgCA25oIxtllxRrWMFKeQUuIn8//xU3YLw1qg23EOJlNWDt1gEaE6UYyDWztUqEcVjm6srJ5EnYYbv/q8I3HBhJHa61k5EF0OsaxpoYwU0o5bqYe/pj5GUZx8Os7BRXEaiJXM1OElQXSh2/FnDbZnWox51M4eDn4nslOlCJV/iAixx7qDsID0uzJ5QZvQKBgR6N6/S0gJW7gPABjSJy0eBARrJSks+JEj+xu5eRts47l3Q5LjliMxtxW6H3FwUEiPHKB2bnEFl98++9YGe0cM4Dt1k+7CJUqmGGLAFPv/E0ePwM8/cYT2urjIuoT1N3mIcph2vLwJHQGRqz/EsGh9/vhRiTplOAWUI3OsHQD4+invib7r7i2rH43JlHFjqCAdbPEyt4Fb2riYXxqdRKVrrn4cMvbuGxsz6N7/gUPsitqfnWW3c+nVoF7oebuiKWtrsVSRpR4AK8u7d7/GxP23R+gMoFsSB7NrOwD85lzzLgrIfu5wOeDzytRXnYI1mSf+vlUTPiIrXNY33SRyVWzb/RzcccGEfVGfz+G0sWnZNQB8UuE8JyNHsVWPDscYjijlyCxWMuyQuYd4H4O5s+6scxG2GE/8lX1McWKhCNlZU8Ul6azYRPQVLMF0z+ubHz7IWs+pmvctQseZcdGpuCEolljF4VzE8T9M8yyOPSA+A6YSLqUSdDudQ3zYjx79e+on2sBe9di0cw8+doR5kgB6mXPQAXdFsmksupzMJTruHTHCHGLBFW7WPS7EQb8obQgdznT1ZDmy8j1D++CtKR/RXndxNBJ78b+nq80zXXaVLhZaIkxiJb5wmXRAPR0WF1u3iQiv/uBUa8BFcccLqJ/HQ187AeN++rixnjrhnnVjzeWdiVzazzUHOtVrDAcif5xSCa3FEp5YsBYtxVLZ3BAHv50jRvTDA195vyZP3G9dBIFao/sRB0NUVg6TTPDFK07C7j1Fp6BhLs4rctAtEbZgaAAwYf9BuOm5ZfjVJ/XiIM5dnDZ2qNL8shxkCV0uI6untU6R6qJgdYWTJY9wz8ePVh/k42SaW0WdQ2zRVdluduvuQJFqUvK6eNfLC5lK7+LSV5GTqSScjdjW8P7qYJEykfnoEUHUXP4uiyWGG55egt8+/hYA4LAylewcvEeuwTJ1RgK1RvcjDuGnyZTVNHYb6/LObJ7L6U0HD9OHoh7QM5iMJjn3qYcOxas/ONU4cWOrn+pptp3OONbqCgSFdAWWYZWK7US43I+YRUf4nfwNwopcreKMYsVI9GYfa2P30etk3jd6MI47YJA2CKIrxOey5KrTNQdb2fsqiqNcds66KLHiAryvJlCeSBye+86JGBFGHI6slYos4RFdLbGSy7kx9flcxZxKuei2OgeTXKnSl+9yApgLjho5ACMH9sA5x5jl4bYdXTGj1Y8LKnlGYtH/3965x8hV1XH889tHX3R3S7el73ZrLQXKo48FqZYWCAUqxhJAgQAtUFMbUF4iUNGYqCTFaCOvCI22UURUIsbyUEBjCShKaWiBUtpS0pQCEeVRCkWg5ecf91z27szcO3d27ty5d/f3SSZ798yZO9/5zZ3zu+d3zvmdOLNZwnxjks4hDsEbitCFgnHWLTQ1MLylP8sjBv/j8nGMnoNvvtOnlc6kCt5q67uXHEtHlatx4yRnjNVzCDSIYbOJgpxUYh0EdL/W/JutQoLOoV9TwyfO2Hf0hZMVHt3Ss+0CPtHUUH6iif9brVdICfpgz8EnMqxUpXM4apwX148KB/jPRYWe2gY189g1J1alBbrCSkn2HA6N6PGUo/tU1vL3J2FrEyYNT3eKX7eeQ6UbcwdobBDWXX9SAooCPYcq1+YkRZzeUJzeVaVrjcKyFgev+bD1IsEefqlp1t6GP13134hIoeFz+rTwMUk/dBf1e/TboDhTlGtFH+w5eH+jLr1qU3b7yflK5d7xWTx7IkvnTmLx7IlVvVccKl0vEIexVUz3rTTxXFhY7YwZ4XfCtaD7FNxsNMZJjTkkRaxcUXEG7SsIpRwysiVWNtlys5Kgu+Pyb9z271c+qnDv7KiZVP7U2WERPSJfhvUcUiRqJzifahvRo8YNYVTbAK6OuEAGNDeGJiRLmv0fJ+8cqiEoI06jFp7yIvnP0xrh0OOm/UgT3/HHuRtP4+uvxC7B7VILibt4btsN82NPaY7jQIJjYI2BsFJwfVCczXfCNgKCrunHEyLq+Nda2BqMNOhzziEO1f6I2gY288Sykolp60JXXLrOQhyVJvCLM103CR6+ck7s3cmi7pCP6RjKaUeGN3xxeeyaE8o2tr6OqAkWKZkPiD9Nd+N3T45c3NU6sJmmBuHaU6NvoJJOZx28HpsCYaUNO7uSBMZJ2xGFH+aNutZ8xzQ8odmFPaHPOYc4YaV6LTqpFVqD2UrV0K0HE8MTRy30O7rjQNbtCN+cqRIOHhE9jhJsgKMa7d8tLZ2NtlKi7j59/LDD//aF7wSYJnF7DlFp6MH7DW67YX5NeodRdMuY29g1lTU4Wykqvc5Pz5vRLb9WKfzPFOWz/Y8dZzC+VmTkXjI94uRW6m2cPn0MZ3eO45unpBPGKkfQ9k/vDG/YJ7ucMsdPOSi0zp2Lo7fGTJLHX+xKh1LNgHSS+AOW70dsE+tnNJ01qb3menzHX26xXBzSdgxQuNdG11TWIFE3WfOPGMXZR0evSPfHPqL8qD9I3m49h/SYf/hIDh4xOFbSrt7CgOZGbjyr+mmTAHd95TOMaC2f/iCKYJgoajbGI1fNLXsuv5cXtaq9FlSbuTcplp95BCse3tot3UIhsya1s2P5aanoaR3QxNTRrVw17+DylTNIsN33ncA37tnYrc7N50yv6j0uOeHTvP/R/kgn4vdO4qTHqRV9zjlMaD+ACe3hc7kn1ykDYl4IWxlcCcH1Cct6mO8/yNqrj6e1TJgiSQ4Z2VK3hUmFjD1wECtCFoDVg6bGBh64rHR23Cxz5+JjaBDpvhFViRuAWZ9qr3qFdNvAZr63IDohoJ+GJGyjpzTIjHMQkVOBm4BG4GequjxtDVt/MD/R9Nh9lYeumMOru8NTYAd7Hh3t1WXABapeuFUpX+4MT2tu5JPjJg8vKmspSJ29+sKjOeGQ8BBnkpwxYwxvv/8h5x87IZX3K0UmnIOINAK3AfOAXcA6EVmjqs+nqSNOIi+jPFNGtjBlZPjg7oDmRsYPHcTON/fWJa5cLRfMqt8P1qic+79eOrldOQqnrAZ3f6s1TY0NLJkzKbX3K6mhru/exTHAi6r6EoCI/AZYAKTqHIz0uPeSz/JKjA12skjV+fyNVOlpGKjwxiVs29veSlacwxjg5cD/u4D0pqEYqTNscP/EMsSmxQOXzeaJ7W/ksrdj9Iwdy09j74f7eP2dD6pOq5M3suIcSlm9aJheRJYASwDGjy+/gYlhJMnU0W1MHV3dYKSRPwb1a6JjWFaayvTISpB9FxAc5RsLvFpYSVVXqmqnqnYOH148gGQYhmEkQ1acwzpgsohMFJF+wDnAmjprMgzD6LNkoq+kqvtE5GvAQ3hTWVep6qY6yzIMw+izZMI5AKjqg8CD9dZhGIZhZCesZBiGYWQIcw6GYRhGEeYcDMMwjCLMORiGYRhFSNjm7VlHRPYAW0KeHg/sLHOKNmB3hurE0Zy2pqR091bNSWrqy7ZOW1MebR23XhzdU1V1YNl3U9VcPoCnIp77T4zXr8xYnbKa86q7t2rOq+6sac6r7jT1JKw71nfSW8NKb5evwn0ZqxNHc5Lvl6bu3qo5br2s6c6a5iTfr7faOm69OLpjfSd5Dis9paqdlT6XVfKoGfKpO4+aIZ+686gZerfuuJ8tzz2HlT18LqvkUTPkU3ceNUM+dedRM/Ru3bE+W257DoZhGEbtyHPPwTAMw6gRuXAOIrJKRF4XkecCZUeJyBMi8qyI3Ccira68n4isduUbReT4wGtmuvIXReRmqfGuLQnqXisiW0Rkg3vUbCNbERknIn8Tkc0isklELnflQ0XkERHZ5v4eGHjNMmfTLSJySqA8FXsnrDmzthaRdlf/XRG5teBcmbR1Gc1ZtvU8EVnvbLpeRE4MnCu1diRh3ZXZO86Upno/gDnADOC5QNk6YK47vhj4vju+FFjtjg8C1gMN7v8ngVl4mwv9CZifE91rgc6UbD0KmOGOW4CtwGHAD4HrXPl1wI3u+DBgI9AfmAhsBxrTtHfCmrNs6wOA2cBS4NaCc2XV1lGas2zr6cBod3w48Eratq6B7orsXfMvJUEjddC9kX2HrjGTccDz7vg24PxAvb/i7VE9CnghUH4ucEfWdffkS01Y/x+BeXgLDkcFLtgt7ngZsCxQ/yH3w6mLvavRnHVbB+pdSKChzbKtwzTnxdauXIA38G4m6mbranT3xN65CCuF8BzwRXf8Jbp2ktsILBCRJhGZCMx0z43B23HOZ5crS5tKdfusdl3B79SyGxtERDrw7kT+BYxQ1dcA3F+/S1pq/+8x1MneVWr2yaqtw8iyrcuRB1ufCTytqh9Qx3akSt0+se2dZ+dwMXCpiKzH62596MpX4X1hTwE/Af4B7CPmPtUpUKlugPNU9QjgOPe4oNYiRWQw8HvgClV9J6pqiTKNKK8ZCWiGbNs69BQlyrJi6ygyb2sRmQrcCHzVLypRrebtSAK6oUJ759Y5qOoLqnqyqs4E7saLG6Oq+1T1SlWdpqoLgCHANryGd2zgFCX3qc6gblT1Ffd3D/BrvDBZzRCRZrwL8S5VvdcV/1tERrnnRwGvu/Kw/b9TtXdCmrNu6zCybOtQsm5rERkL/AFYqKrbXXHq7UhCuiu2d26dgz/SLiINwLeB293/g0TkAHc8D9inqs+7rtceETnWdacW4sXvMq3bhZmGufJm4At4oala6RPg58BmVV0ReGoNsMgdL6LLdmuAc0SkvwuHTQaeTNPeSWnOga1LknFbh50n07YWkSHAA3hjU3/3K6fdjiSlu0f2TmsgpcpBmLuB14CP8Dz3YuByvJH7rcByugZ5O/AGazYDfwEmBM7T6QyyHbjVf02WdePN9lgPPANsAm7CzaypkebZeN3kZ4AN7vF5oB1vkHyb+zs08JrrnU23EJi5kZa9k9KcE1vvAN4E3nXX1GE5sHWR5qzbGu/G7b1A3Q3AQWnaOkndPbG3rZA2DMMwishtWMkwDMOoHeYcDMMwjCLMORiGYRhFmHMwDMMwijDnYBiGYRRhzsEwaoCILBWRhRXU75BA9l7DqDdN9RZgGL0NEWlS1dvrrcMwqsGcg2GUwCU5+zNekrPpeIsWFwKHAiuAwcB/gQtV9TURWYuXD+tzwBoRaQHeVdUficg0vJXwg/AWTl2sqm+JyEy8nFp7gcfT+3SGUR4LKxlGOFOAlap6JF6q9UuBW4Cz1MuNtQq4IVB/iKrOVdUfF5znl8C17jzPAt915auBy1R1Vi0/hGH0BOs5GEY4L2tXfppfAd/C20DlEZftuBEvPYrPbwtPICJteE7jUVf0C+CeEuV3AvOT/wiG0TPMORhGOIW5ZfYAmyLu9N+r4NxS4vyGkRksrGQY4YwXEd8RnAv8Exjul4lIs8ubH4qq7gbeEpHjXNEFwKOq+jawW0Rmu/LzkpdvGD3Heg6GEc5mYJGI3IGX/fIWvC1Fb3ZhoSa8jZk2lTnPIuB2ERkEvARc5MovAlaJyF53XsPIDJaV1TBK4GYr3a+qh9dZimHUBQsrGYZhGEVYz8EwDMMownoOhmEYRhHmHAzDMIwizDkYhmEYRZhzMAzDMIow52AYhmEUYc7BMAzDKOL/Guk++x1m43QAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "sorted_data['inc'].plot()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Un zoom sur les dernières années montre mieux la situation des pics en hiver. Le creux des incidences se trouve en été."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 18,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEKCAYAAAD5MJl4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXl4JGd97/t9q/dV6lZLGo2k2TXj8XiZscc7xgYDNkuwWXxi8xzg5jgx4UBIcrghds59bhaOAyQnkJgTw3VCrs1q+xi4rAaMjfd1vIzHM559RiONdqnVe1XX8t4/qt7q6u5qqSW1etP7eR49alVXtUqtrvq9399KKKXgcDgcDseK0OgT4HA4HE7zwY0Dh8PhcMrgxoHD4XA4ZXDjwOFwOJwyuHHgcDgcThncOHA4HA6nDG4cOBwOh1MGNw4cDofDKYMbBw6Hw+GU4Wz0CSyXWCxGN23a1OjT4HA4nJbilVdemaGUdi+2X8sah02bNmHfvn2NPg0Oh8NpKQghw9Xsx91KHA6HwymDGwcOh8PhlMGNA4fD4XDK4MaBw+FwOGUsahwIIYOEkN8RQt4ihBwkhPypsf1vCCFnCSGvG1/vsxxzJyHkOCHkCCHkesv2iwkhB4zn7iaEEGO7hxDyoLH9RULIptr/qRwOh8OplmqUgwLg85TSnQAuB/AZQsi5xnNfo5TuNr5+CQDGc7cA2AXgBgD3EEIcxv7fAHA7gCHj6wZj+20A4pTSbQC+BuArK//TOBwOh7NcFjUOlNJxSumrxuMUgLcA9C9wyI0AHqCUSpTSUwCOA7iUENIHIEwpfZ7q4+e+DeAmyzH3G48fBnAdUxUcDofDqT9LijkY7p49AF40Nn2WEPIGIeQ/CCERY1s/gBHLYaPGtn7jcen2omMopQqABICupZwbh8PhtAuaRvHQvhHIqtawc6jaOBBCggB+CODPKKVJ6C6irQB2AxgH8E9sV5vD6QLbFzqm9BxuJ4TsI4Tsm56ervbUORwOp6U4cDaBLzz8Bp45PtOwc6jKOBBCXNANw/copT8CAErpJKVUpZRqAP4NwKXG7qMABi2HDwAYM7YP2GwvOoYQ4gTQAWCu9DwopfdSSvdSSvd2dy9a/c3hcDgtiSir+ve82rBzqCZbiQD4FoC3KKVftWzvs+z2IQBvGo9/CuAWIwNpM/TA80uU0nEAKULI5cZrfgLATyzHfNJ4/FEAjxtxCQ6Hw1lzKJp++8s30K1UTW+lqwB8HMABQsjrxra/AnArIWQ3dPfPaQCfAgBK6UFCyEMADkHPdPoMpZSZv08DuA+AD8AjxhegG5/vEEKOQ1cMt6zsz+JwOJzWhRkFSWli40ApfQb2MYFfLnDMXQDustm+D8B5NttFADcvdi4cDoezFlBUQzk00DjwCmkOh8NpMliWEjcOHA6HwzExjUMrpLJyOBwOpz7I3K3E4XA4nFIU7lbicDgcTincrcThtDBHJ1N46iiv1OfUHu5W4nBamG8+cQJ3/PCNRp8Gpw2Rm6DOgRsHDmeZZPIKkqLS6NPgtCGsQlpSmrh9BofDsScna0hLClSNd3rh1BbmTuJuJQ6nBWHN0TJ5rh44tUXRuHHgcFoWZhxS3LXEqTFm+wyercThtB65PDMOcoPPhNNu5HmdA4fTuohGsDDNlQOnxvDGexxOC5PL6xcudytxag0vguNwWhjJiDkkS9xKKVHGwbFEI06J0ybwIjgOp4XJGcYhLRUrh/uePY0PfP0ZPPzKaCNOi9MG8JbdHE6LIquaWahU6laazeRBKfCFh/fz9hqcZcFSWXmFNIfTYrA0VqA8WyktKYgF3XAKAp49PlPvU+O0AXml8ams1cyQ5nA4JeQsxqE0WykjKej0uyGrtMiIcDjVwovgOJwWRZILF22pWyktKQh4nPA4hYa6BTitC485cDgtilU5pKRy5RD0OOB1Obhy4CwLmVdIczityUIxh4ykIuB2wusSIMpcOXCWDlMOqkYb1tiRGwcOZxmw1hlel2DrVgp6nLpyaGDLZU7rwiqkgca5lrhx4HCWAXMrdYc8ZXUOmbwec/A6uVuJszxkizuJGwcOp4Vg7qLuoKdMOWRYQJq7lTjLxGocJLUxCwxuHDicZSBalENKlEFpYXKXrNKygPQf3v8yHnjpTMPOl9NayNytxOG0Juym3xPyQlapmbKakfTtLJWVXdjPHp/F/tH5xpwsp+VQVA1uh357blQ6NDcOHM4ysMYcgEKtQ8aIPwRYQFpWoWkUOVktqo3gcBYir1IEPA79MTcOHE7rUG4c9HRWFpzWs5UEiIpmZizxzCVOtSiahoBHb2DBjQOH00KwQHMsqBsHZhSKlIORrZQ10l65cuBUi6xoCDLj0KBCOG4cOJxlIMoqvC4BYa9+ATO3UkE5FALSrCaCKwdOtcgahd/N3UocTsshyip8LgdCXhcAa8yhEJD2ugRoFEjkdJcTVw6capHVFnArEUIGCSG/I4S8RQg5SAj5U2N7lBDyKCHkmPE9YjnmTkLIcULIEULI9ZbtFxNCDhjP3U0IIcZ2DyHkQWP7i4SQTbX/Uzmc5TOblnDbfS9jMikC0CukvS4HQqZy0A2A6VZy6wFpAIhn8wAa25uf0zqoGgWl+mcIaO5sJQXA5ymlOwFcDuAzhJBzAdwB4DFK6RCAx4yfYTx3C4BdAG4AcA8hxGG81jcA3A5gyPi6wdh+G4A4pXQbgK8B+EoN/jYOp2b88s0JPHZ4Cq8MxwEAoqLB53KYMQdmNKwBaY9hHOYyunHg1dKcamAFcIFmjzlQSscppa8aj1MA3gLQD+BGAPcbu90P4Cbj8Y0AHqCUSpTSUwCOA7iUENIHIEwpfZ7qFUPfLjmGvdbDAK5jqoLDaQaeODwFoKACcnkVHpcDPrcDvWEPTs9mARQHpD1O/fJixoErB041FIxDC8UcDHfPHgAvAuillI4DugEB0GPs1g9gxHLYqLGt33hcur3oGEqpAiABoGsp58bhrBairOK5E7MAgLhFBfhc+uWzsSuA4dkMACCdV+B2CHA7BYtbyYg58IA0pwpY072mjzkwCCFBAD8E8GeU0uRCu9psowtsX+iY0nO4nRCyjxCyb3qaz+bl1IeXTs2ZdQ3sRq9nK+k3/41RP4YtyoGt+LyGcigYFK4cOItjKgczW6mJeysRQlzQDcP3KKU/MjZPGq4iGN+njO2jAAYthw8AGDO2D9hsLzqGEOIE0AFgrvQ8KKX3Ukr3Ukr3dnd3V3PqHM6KeeLINNxOAbGg27zR54xsJQDYFAtgKiUhm1f0WQ7Gio8ZjzkzIM2VA2dxZK1EOTRrzMHw/X8LwFuU0q9anvopgE8ajz8J4CeW7bcYGUiboQeeXzJcTylCyOXGa36i5Bj2Wh8F8Dhlncw4nAbz+kgcewY7sa7Da8YcRFmF11jZbYj6AQDDs1lzlgNQMA5W5cA/1pzFkBWmHBrrVnJWsc9VAD4O4AAh5HVj218B+DKAhwghtwE4A+BmAKCUHiSEPATgEPRMp89QStmS6dMA7gPgA/CI8QXoxuc7hJDj0BXDLSv8uzicmjGZlHDZ5iim0xLmTLeSBq/TUA5dAQC6cWDtugF9EBBQCEgD+irQ43SAw6mEounGwNfgIrhFjQOl9BnYxwQA4LoKx9wF4C6b7fsAnGezXYRhXDicZoJSiqmUiJ6wF4pGcWZOjy3kZBU+t37z39DFlEMGGUlBh98NAGV1DoCescSNA2ch8oquLl0OAo9TgNSsbiUOZy0Tz8qQVYresAfRgLsoW4kphw6fCxG/C6dNt5K+3WMGpAszpnmtA2cxmHJwGVlvTascOJy1zFRKL27rCXmRyMlIigpkVTOUQ0EBbOwK4MxcRg9Iu4tjDtaAIm+hwVkMlq3kdAhFM0HqDVcOHM4CTCYlADCVAwBMpyRQWrj5A8DGLj+OTqaRFOVCzMHGfcQzljiLwabAuRwEbgc3DhxOU8LaYvSGveg0YgnjiRyAYuNw4+71mElLyOZVM1vJ4yq/vHitA2cxmHIw3Uo85sDhNB/TKV05dIc8iBrGYWxeNxg+i3F45zm9+IePXAAAiAX1/TxOAawJDPvOW2hwFkMxlYNuHBrliuQxBw5nASaTIjp8LnhdDnT69fbcY/NMORSvrW7eO4g9GyIYiPgAAITo2SairKHD58J8VobEA9KcRWBKwSkQrhw4nGZlMimiN6x3XmUxhxdP6cX7AxF/2f7beoJF7ib2OGKoDq4cOIvBlIPbKTQ05sCVA4ezAJNJCb1hL4DCDf7pY9PwugRcONix6PEsnZWpDp7KyqlEXtHwg5fOmDErUznwgDSH03xMpyR0h3Tl4HM74HUJkFWKvRujVRWzMeUQ5cqBswgvnJzFX//0IJ49MQOAxRwcvAiOw2k2NE2vjmbKASioh8u3RKt6DZbO2mkaB64cOPZkjVnj40bCg8uoc2hUnIobBw6nAvFsXq+ONpQDUDAOV2ytbtwIC1pHA8ytxJUDxx62cJhIMuNAEPI4zemC9YYbBw6nAqwArseqHAIu+FwOXDDQWdVrsFGhXDlwFoPFo1gdjdMhIOxzIZGTFzps1eABaQ6nAiNxvcleX0fBONy0ux9Xbo3B5ahuXVWWrcSVA6cCTFWy726HgA6fCylRgapROIT6Tk7mxoHDqcCrw3G4HQJ29oXNbTfvHVzgiHLYNLiQ1wmHQCBy5cCpQKmqdDoIOny6OzIlyqb6rBfcrcThVOCl03O4YKCjqG5hqTC3kt/tgLeB1a6c5qc0HuUUCsahEa4lbhw4HBtyeRVvnk1g76bqspIqwZSD3+2Ex+XgyoFTEWsNjMtBQAhB2DAOyVz9g9LcOHA4NuwfnYesUly6ObKi1/FalIOHKwfOAlhrYFhMiysHDqfJeNlokXHxhhUqBxdTDg54XQ5eBMepiFU5OI3gMzcOHE6T8fJwHDt6Q+gw2l4sF6YcfIZy4O0zOJWwxhzcTq4cOJym5MRUGueuDy++4yIU3Ep6zIErB04lrPEop8CNA4fTdCiqhomkiP5O34pf68KBTly6KYqw18mVA2dBJFkz5364nPoDr0vvzNoI48DrHDicEiaSIlSNoj+ycuPwtqEY3jYUA6B3aE2JjWmFwGl+JEVFb8iLiaQIl6EcWMYSVw4cThNwNq63L6iFcrDCA9KchRBl1VyQWCvwO3xOJLlx4HAaz5jR26YWysFKIztscpofSdEQ9joR8jrhdBRaZXRw5cDhNAdMOazv4MqBUz9EWYXH6UAs6ClRDtw4cDhNwdn5HLoCbvjcy2+bYYfHKfCurJyKiLIGr0tAb9gDv+Wz1+FzISnygDSH03BG47mau5QAwON08HkOnCJUjeLVM3FcsikKUVbhdTnwxRvPA7XswwPSHE6TcHY+V/NgNKCnJXLlsLb5l98ew1NHp82fHz00gZu/+TxOzWQgKRo8TgFDvSFs7w2Z+3T4XEjmZGgatXvJVYMbBw7HAqUUY6tkHDxOB2SVQq3zRc5pHv796ZN4+JVR8+fTs/rMkJm0ZCqHUjp8LmgUSOfrmwbNjQOHY2Euk4coa1i/GsbB6LPE1cPahFKKrKzi7HzO3DZuPE5kZV052BgH1pk1ka2va4kbBw7HArtwVyPmwNp3886saxOmGlk2HACMJ/R50bMZfSQta9RopVEtNLhx4HAsnJnTZf5quJWCXv0in0lLNX9tTvOTM2pcJlMiZFVfIDDjMJ3SPxMep71bCUDdC+EWNQ6EkP8ghEwRQt60bPsbQshZQsjrxtf7LM/dSQg5Tgg5Qgi53rL9YkLIAeO5uwnRu4gQQjyEkAeN7S8SQjbV9k/kcKpn3+k4vC6hKCBYKy7brLf/ftISkGxHVI3i1wcnQCmPrVjJ5XXjQCkwYRiFcaPgkhmHVlMO9wG4wWb71yilu42vXwIAIeRcALcA2GUccw8hhJnCbwC4HcCQ8cVe8zYAcUrpNgBfA/CVZf4tHM6KeeHkLPZujJotk2vJYNSPc9aF8OihyZq/djPx9LFpfOo7r+D5k7ONPpWmImepjh+N5yApKmbSeQDAtKEmvTbKoSugz46ezeTrcJYFFr0CKKVPAZir8vVuBPAApVSilJ4CcBzApYSQPgBhSunzVF9OfBvATZZj7jcePwzgOqYqOJx6MpfJ4/BECpdvWdmAn4W4bmcP9g3H6x5crCfMVXJ8Kt3gM2kuspZso7H5HCYTBfei6VayUQ7RgBuE1N8duZLl0WcJIW8Ybic2S7EfwIhln1FjW7/xuHR70TGUUgVAAkCX3S8khNxOCNlHCNk3Pd3e0pxTf146pa90r9hq+/GrCdft7IWqUTxxdGrVfkejmUrqN7ET3DgUYW3XfnY+Z7qUAJgKwk45OB0CIn63aUDqxXKNwzcAbAWwG8A4gH8yttut+OkC2xc6pnwjpfdSSvdSSvd2d3cv7Yw5nEV44eQcfC4Hzu/vXLXfsXugExG/C88db1+Xy1RKVw4npjMNPpPmIpcvZKmdjedMhRX0OC0xB/uWLd1BT2soB0rpJKVUpZRqAP4NwKXGU6MABi27DgAYM7YP2GwvOoYQ4gTQgerdWBxOzXjp1Bwu3hhZlXgDQxAIuoIepKT2dStNGTe6k9NcOVhhbiW3U8BYImd2/x3qDSIt6c/ZBaQBIBZqEeVgxBAYHwLAMpl+CuAWIwNpM/TA80uU0nEAKULI5UY84RMAfmI55pPG448CeJzyNAdOA5hMitjY5V/136O37m7fWgdmHMYSIjISH27EYAHpLbEAzsZzmEiI6PC50BvymvvYpbICQCzoMV1P9WLRxnuEkB8AuBZAjBAyCuCvAVxLCNkN3f1zGsCnAIBSepAQ8hCAQwAUAJ+hlDJH26ehZz75ADxifAHAtwB8hxByHLpiuKUWfxiHsxQopUiKslmNupq0e+vu6aSIkMeJlKTg1EwG5/V3NPqUmgKWyrq1J4jfHprE2HwOfR1ehH2F23Al5dAIt9KixoFSeqvN5m8tsP9dAO6y2b4PwHk220UANy92HhzOaiLKGmSVmjnlq0k7t+6mlGI6LeHtQ9147PAUTkynuXEwYMphqCeIX7wxjqeOzuCqbV0IeQufuUoxh1jIg2xeRUZSEPDUp5k2r5DmtByUUhwcS9T0NVm//LC3PsahXVt3x7MyZJXiks1RCIQHpa0w4/D7lwziU9dswWVborhpTz9C3sLN3lMh3hULegDUN52VGwdOy/HT/WN4/93PYN/ppeUtiCVNz6yw6lOrxF8tPE5H2yoHlqnU3+nDYNSPEzwobZLLqyAEWBf24s737sR3brsMN+7uL1IOdo33AKA7pBuHegaluXHgtBzffn4YAPD8Cft00G88cQJ/9O19Zdvve+40bvjnp2xbZrO+NfVQDvpch/ZUDuzm1RPyYEPUj9G4vTFei+TyKnwuB0prfK3KoWK2UlCvkubKgcOpwMGxBF4ZjgMAXja+A8Arw3Nmz6I3xxJ47cx82bGTSREpUcGcTRsC061Ul5iDo22zlVgBXE/Yi06/u+7N4pqZrKwWjf9ksAUJIYDbUSEgzZRDHTOW+JhQTkvx3RfOwOsS8K6dvXjiyDRUjUIgwF/+8ACcAsE127shyWpRNSqDZYtMpUTzYmMkc3rKZdhbB7eSS4DYtm6lgnLo9Lkwn61v+mUzI+bth/mwz5zHKZSpCkbUr7fQ4G4lji0pUcbf//ItHJtMNfpUGsaLp2Zx9VA33rWzF2lJwZGJFI5MpnB8Km0G/CRFQzavlHUFzTDjkCy/wOqrHNq3zmEqJSLgdiDgcaLTr88+ruV4y0RWxtcePdqS0/RyFZQDizlUylQC9BYaUb+bu5U45UwkRNz8zedx71Mn8csDE40+nYYxm86jr8OLvZv0dl77hufwizfGARR614iyCo2izK+fMypUWdDUCnN/hOqgHPQ6B7UtW1pPpST0hPWiLjbeMlXDQrgnj03jXx47hmNTrbdAyhoxh1LYZ86ur5KV7pCnrsqBu5VahH/93XGcmsnA7RQwl1mbw2LyioZETkYs6EF/pw99HV78+LWzmDX8sCw9lH3Plcj4rI1y+MFLZ7BrfRhJUYHXJVSsUK0lHqcAjQKKRuFytFcD4umkZLrsOv16EDWRlWtWPyIZCwBZaR7DenAsgbPxHN6za92C++UqzIhmatWuI6uVWJ0L4bhyaBGOTKRwwUAH+jt9de/r3iywQHJX0A1CCP74mq04eDaJM3NZRAPuIuUA6AFAK6ZbybL6+uLPD+G+504jmavdDWwxmAFqx4yluWzenD/Qabyf87nafV7zxgS1vNo8MZt7njiBv/3ZoUX3y+UruZWqUw6xYH3dSlw5tAgnptN497m90GjaNttmLcAuDFYQ9MkrN+G9563DE0encWomg288cQKUUvOmm8sXuzNK3UqyqiGbVzE2n0M04K5LGitQWCGKsopgnapd64XVyHb6DeNQw9kVeeN/m28i5TA2n7NNgCglJ6vw2RgHl0OA1yVUTGNlhH0upMT69ariyqEFiGfymM3ksa0niGjAzY2DkfMN6CmT/2nvoLn6khTNvFCtLZIBICMVKwdW+DY2LyKRq09fJaCwQmxH5WB9H03jUMN0VmYc2AzmZmB8Xqzqf6nXOdgvBkJe16IuzaDHibRYnmixWnDj0AKwKtOt3UF0Bdxr1q3EulIy5WCF3XBFSxprtlQ5yMUxB2YcxhM5zGfluqSxAgXlIFWx2mwlRFmFpGimcujw6Ua8lumszWYcFFXDVEqsquJdVw72t9yQ17lozCHodULRaN0WFe2ladsUq3GIBtyIZ/KglFbMiW5XZkvcSlZYoE+UNYjGxVMac2DGYjolgVJqGgdZpTg1k8G2nuCqnbsV1j+n3ZQDc3kwI8uMRE3dSmpzGYfJlASNAppKoWkUglD5mtRjDva33Pecu86M1VQiZLggU6KyYNprreDGoQU4MZ2BxymgP+JDNOCGolEkcwo6/PVxgzQLM2kJXpdgG9Rj/tqcrJqrS1b0BgCqRiHKGkJeJ1KigkRONo0DoGcy1S3mYFE57URprYjbKSDocVZtHEbjWbw+Mo8PXLC+4j7sf9sshnXCMuozr2rwCvY3bU2jFbOVAOCO956z6O8KGkY3LSllRZyrAXcrtQDHp9LYHAvAIRB0Gf722TWYzjqbziMW9NgqJnbRJUtu+AzmUtrUFQCgxx1KWzvUo+keYHErNckNrlYkbPpTdfhcVWcr3fmjA/iTH7y2oNGUTLdScwSkx+YLNTMLFTay87arc6iWoEd/X9N1Ckpz49ACnJhOY6vh8ogG9BXDWgxKT6cldNm4lICCcrAGP63ZSsyltClmGIekVKQcgPo03QPaN5XVbF5oCex3+l1IVKEcXhmO4+ljM6BUVxCVaDa30rhFOSwUd2CLEzvVWy0ss61eI2a5cWhyUqKMkbkstnXrxoH5JddiUHomnUd30N4vywLS1uBnzrICzUpMOehjQKdSonnTYqu5emUrmTGHtnMr6Qa4w6LAOv2uqrKV7n7sGJi7fmSucifXZgtIFymHCsb+6GTKzLRbiXJgGXlcOXCQlhT8l/teBgBcPRQDAEQN47DaymE+m2+6/jWzaQldAXvlwPrgl8YRSh9b3UqJnAyfy2HOja6XcmAqR2xX5WB5Hzt97kWzlaaSIp48Oo1bL90AABhZSDmYdQ7N8d5NJBY2DpRSfPie5/CVRw4DgG2dQ7Uw5ZCu01xubhwayJGJFM7/61/jXV99Et99Ybjs+a/+5ihePTOPr996EfZuigKoj3EQZRVX/8Pv8MNXRlftdywVTaOYzeQRC1VQDsYN1+rCyBUZB/2CioU8CHqcmEjotQ0dPhfWd/oAoP4V0m2mHBI2bqUOo/neQrx6Rm+9/uGLBuBxChiZq8I4NIlyWMytlJNVpCUFz5/UZ4+sKObg5cZhzfD6SBwpScF8VrY1DiPxLLb3hvD+C/rMbV6XAwG3w+wntBrMZ2WkRAWnZ5tnxGMiJ0PVqG0aK1AISM8vohwCbgfWd3oxNp8zjUO/YRx4QHplJEUZbqdQlJGjt+2WFyzcevXMPNwOAef1hzEY9ePMQsaBxRyapEJ6LCFindFo0O7/yVxA7PNXk5gDdyu1PyNzOTgEgveetw4jc9myCyglyrZdQqNB96pmK7GUxFpWtq4U5rOtHJBmMYeFjYPP7cD6Th/GErky5cAD0isjmVPK3sNOvwuKRs2+Vna8MhzH+QMd8DgdGIz4WibmkFc0zKQl0y1p5+oq7UjrXYFx8DgFuByEK4e1wEg8i74OLzbFAsjkVcRLsjr0i83GOAQ8q+pWYm6AarJM6kWhOrpSQNpwK+WsAenybKWA26kbB0vLjHft7MHvXbge/RHfap1+ESwg3XZ1Djm5TH11LlIlnVc0HDibwEUbOgEAg1F/VTGHZjAOk0kRlBbiWAspB8ZKlAMhxGyhUQ+4cWggI3NZDEb8GDRuSqW+1pQk265muwJuW7fSCydn8c5/egKZFa4sWGCxlt00V8JoPIuvPXoUADDQ6bfdhwX6mGFzCKQk5lCQ9f2dPsxl8phKSQj7nBjqDeHrt+6Bq8KIxlrTrhXSSbH889qxSPO9g2MJ5BUNF2/U53MMRvxIiQoePTSJz37/1bKkCEltnpgDc+/0hnU1axdDKnUBrSTmAOhxB64c1gBn5nLYEPVjMKrf8EpXTMmcYu9WqtB879UzcZyczmB4tvLKqxrYDbaWbQ9Wwme+9yoOjSfxP2++EBu67I0DS2Vl6qvT5ypxK+kXlN/jxPpO3Uc8l8nXLQhthRCiT4Nrs1Ghdm3POxdpocHmgV+0wTAOUX2h9BcP78fP3xgva1HdTNlKLFWaBeBtlYNRk9DXoX/mVmwcPPXrzMqNQ4PI5VXMpCUMRn0YMJVDwddKKUVaUmxz72NBD2YzUpmBYGpiMikir2j4yetn8c0nT+DNs4klnVuyyYzDmbksPrSnHx+9eKDiPoJA4HYI5jlHAu7iOgcWc3A5sL6j4D5qhHEA2nNUaFIs/7ya2XUV3EonpjPoCrjN6XEDEd34s/9jqULOGwa1GdxKzC3IhhrZxhyMG/m1O7rhFIiZcbRcQh6naXBWG24cGgSrAh2M+hHyutDpdxUph2xfTCNIAAAgAElEQVRehapRW+XwoT39oBT4H78oHjDCVlkTSRG/OjiBP33gdXz5kcP4l8eOLencEjn9A13aXqIRUEqREu0VVCkel2DGHCL+YuWQy6vwOAU4BGIGoIEGGgdjVGg7kciVd7ZlCQSzFYbUxDN5syUMAFNFO42KuHiJUSlUSDc+W4l9vjoXVA76tfS564bww09fWbHxXrVwt9IagBkCtlIajPiLYg4sYyhkE3PYsS6EP75mK3706lk8e3zG3G5VDsMzehrqOetCSw58st+dkpSGr9BEWYOiUdv3oRSvy2HeNCJ+d1HMIZNXEDBSAdd1eMHaMzXKOHhd7aUcKKVGQLrcrSSQcgXAmMvkTXUB6P+Pj148gM+/ZweA8k4AzVTnkDOVAzMOlWMOsaAHFw52rvh38oD0GoC5kJiPdTDqw2i84FYqtD+2v3l99p3b4HUJeOytKXMbUw6TSREj8Sy6Qx50+l1LvglZi5YarR5SppFcfMVlnaQVDbiRzSs4OZ3Gbw5OFA13dzkE9IZ0N0bj3EqOtgpI52QVikbL3k9BIIgGPBXbvcxli40DAPzPmy/EzXt1F+JchZiD3ATvnZgvNQ72ysHrEmqW7MCVwxpgZC4Lr0tAtyG7ByN+nI3noBnZGeymXOmm6HU50Bv2Ytpy8cyYykHCaDyHgYgPbqfDzPCoFqtBaHStA+vXU5VxMILSAtGDhDlZxTeeOIHPfv81JHMKAp5CMJAFpRsac2gjt1IyV3kxEwu6K7qVSpUDI+J3g5DyTgDNqByYWqoUc2DdVGtByOPkAel2ZySexUDEb7afHoj6kVc1TBrzjVNV3BR7Qh5MJfX9VY1iziiMm0iIGI3nMBjxG4HP5bmVgMYHpZemHBzmd5/LAVHWcGI6jbyq4eBYAj6Lv7feLTNK8TgFiG3kViq0zrDPrpvN5DGTlnDh3/4G+07PAdA/s/PZPKL+cuPgEAg6fa6yQHYzdWVlxiHkccEpEFtjn5aqi5dVS9DjhKRodcnW4sahQYzNi2aWEgBLrYPuWiodnGJHT8iLaWMe8nw2D43qq+bxRA5j80w5CEteZSVyitmmItHgWoeCkawm5qB/nD3OwkCgIxMpAMB4QkTAUoDU32Dj4G2zgLT5ebWrywl6MJuWcHg8hUROxj4jfTWRk6FRPbPMjkhJyramUTOm1AztM1hMy+MUKmafVepysFxYttNKa5mqgRuHBpEUZTPLAdBv9EAhq6Mad0p3yIMpwzgwl9KW7iDiWRmKRjFgKIelrjKSOdlsCbBY07TVphoFxbAqB2YcrG0brNWpV2ztwu7Bzoo3ptVGdys1fvVbK5gr0s7YsrnnLEPvtJEswW78dm4l8zhLIFvWCu9XM7iVRFmF1yXoadQV/p9pUTF7ItWCenZmXdQ4EEL+gxAyRQh507ItSgh5lBByzPgesTx3JyHkOCHkCCHkesv2iwkhB4zn7iaGP4UQ4iGEPGhsf5EQsqm2f2JzkhaVopxnVknKbsapBVZijJ6wB2lJQTavmEZl1/qw+fxg1Lesm1AyJ2NDtDjfvFGkFsjaKoX1LPK6HLbjGK1upWt39OD/+8xVdauKLsXjdLRVthK7WQVsboSxoBspUcFJwyiwho6LGYfSYk/rIqcZ3ErWJAeP02G7CEtLtTUObJFUj7hDNVfGfQBuKNl2B4DHKKVDAB4zfgYh5FwAtwDYZRxzDyGEXaXfAHA7gCHji73mbQDilNJtAL4G4CvL/WNaiZRUHKgyK0kN45DMKXA7hAUHiTO1MZ2SzMD0ees7zOd15WD/oa2EqlGkJMV0eTXeOCxFOVjdSoX9d/SGAKDIrdRoPC4BYhu5lZihs2aMMdj0wv0j8wBgVvCzG3/EJubAjrPWOVg/x81SIW0aB5d9gkGqZBG4UsxRoc2gHCilTwGYK9l8I4D7jcf3A7jJsv0BSqlEKT0F4DiASwkhfQDClNLnqd569Nslx7DXehjAdcRuSHAbkTcCSkFL9ozf7YDLQYqUw2I3RDZkfColmfLbqhzWd3oNuVv9TYit1CN+N8JeZxO4lWQQAgSrKB7ymheqo8iFdP2uXgArG7RSa7xtphyYobNbzLAitwNGpf54QoQoq6Zx6KrQTLEr4EY8K5sZfFZXUjMoh5ysmp+pSgo9ZdNvaiUUZjqs/nW5XE3dSykdBwDje4+xvR/AiGW/UWNbv/G4dHvRMZRSBUACQJfdLyWE3E4I2UcI2Tc9Pb3MU288LJhklZuEEH0Ye5YZB/vWGVZ6mHFISphJS3AIBNvX6avk3rAHHqfDjDks1E/fipmS6HOh07/4FK/VJikqCLqdEITF1wts1ep1CuZFuy7sxR6jb09ghdWptaTSSrNVYYWWdsaBddLN5lXzM39mLmuqgkrKIRJwQ9WouUBhakEgzVEhLeYLxsEu5sBa4KxGzKFZ3EpLwe4KpgtsX+iY8o2U3ksp3Usp3dvd3b3MU2w8TBIGSztY+lxmYC9ZhXIwjUNKxGw6j66AG10BN1wOgkGj8trtEKBRQKly5GfCEljs8JXP/90/Mo+plGh36KpQbesMoFDnYA1Ib+zy45w+3WD6Pc2jHNotIM3SclnHWSvW0a6Xb9EnGp6eyWAuk0fAbR8f0o8rnpfOjEPA42yKgHSRW8nGfZuTVWgUNXUrheo4DW65xmHScBXB+M7KdEcBDFr2GwAwZmwfsNledAwhxAmgA+VurLaCWf1gyc1KvxnnzX0Wk6MRvxtOgehupYyErqAHhBBsiQUxZPjZ3cbFWq2PtpCS6NSHw1tiDqKs4pZ7X8A9vztR1WvVAt29Vp0sL2QrFVJZN8cC6Ovw4UsfPh8f2tO/0OF1pZUqpEVZxdn5ygN4AL11hEMgtgF+q9voqm36LPTTs7pxWChbrHQkLnu/Qh5n07iVTFemjfs2vYR4WbVE/G78r4/twdXbVn9xvFzj8FMAnzQefxLATyzbbzEykDZDDzy/ZLieUoSQy414widKjmGv9VEAj9NqfSAtSibPjEPp1Cy3eTNO5hZXDoJA9HTWpITpdN6U79/9w8vw39+/E8DSZweYKYl+V5GSAYBXh+PIWXzF9WApyqHg/3WYAemNxiCWWy/dgL6O+gzzqQavS4Cq0aa4yS3Gfc+dxg3//JTp+7dDlDVz4FIpQY8TbsNo7FrfgYjfhdOz2YrV0YxS48DUQsDjbI6AdFG2UrES/PFrozgxrWdl1dKt5HYK+MAF6yu2rq8l1aSy/gDA8wB2EEJGCSG3AfgygHcTQo4BeLfxMyilBwE8BOAQgF8B+AyllJnTTwP4d+hB6hMAHjG2fwtAFyHkOID/BiPzqZ1hK4pSudnpc1kC0tXdFLtDHkynJcykJLNwrTvkMT+QbsPVUu3FZFa6Gp1irW6lZ4wmf7UOUv/o1dGKN5+UVH0RETOEXpeAvg4v/uL6HfjIRc2jFqy00qjQiYSIlKiYixo7RMsquhRCiKkeBiI+bOwKYNhQDksyDha3UjMY1eKAdCHBICXK+PMH9+Mffn0YQG2VQz1Z9KwppbdWeOq6CvvfBeAum+37AJxns10EcPNi59FOpCR7t1LY5zJHc1ab5dAT8uDFU3NIiQq2G64kKwXlUF3w01qZ3enTA9KaRiEIBM+emC3ap1Ycnkjh8EQKkymxbHWfEhVsiQWreh1rERwhBJ95x7aanmct8RjBc0lWa7qyXA2YGzQpKhVdfKKsLZh23RV0YyYtoTfsxdbuIH771iRcDoKhnsr/24Jx0NO0mXEIepyQVQpKKRqZ2GhVDtZOBPGMfn28dkZP3a1lb6V6wiukG0AhW6l8GHtKUiApKjJ5tSpfe3fIi5SooCfkwSeu2Fj2/FJjDomcDIdAEHA7EAu6oVG9p34iK+PAqP5hr3WnVpbpcsookrKypIC0xTg0O600KpSlTS70fxcV1TYYzegKeNDX4YNDIPj4FRuRyMmYSS+sHLwuBwJuh01AWv//NjpjqSyV1fgcl86gaFvlwKk9ldxKrPXAWaN1t10Ts1JYxtJfXL/Dtjp1qTchdjMmhCBmvPZMOo9TMxloFBjqCZqjOGsFMw6nZ7K4cqu+jQ3nWVpAulAE1+wwA7bUWRuNwFQOCxgHSdbgWcAof+66baY7cvdgJ95/QR9+8cb4ou1LYiGP2RqGrczZoiqvaubipxGIZUVw+vmVZvg1uzKsRGuedYvD3Er+kouJ9YUfMYxDNTfFm/b0wykQfOQi+xGa7iUah4ykmvUALIYxnZLw1ngShABvG4rhey+eqeq1qoWlQbK2CiNzWXzonufwwQvXQ1btp+HZYU1lbXbqma++UljaZHKBc5UU1bY6mnHxxmjRz1+4fgeeOjJt6wq1Yu08XHArGcpB0QBPxUNXFVnVIKu0KJXVNA6GcnAKxBhU1Zq32eZfYrUhGaMwprSwq9Onr6LeGk8CKKiChdgcC+BPrhuqWCTmWWJAOicrplRmxmEmLWEiISIW9CAW9CCvaDVd8bJ4yKmZDDKSgj/69j7MpCX87A0927l09GQlrGmFzU6X5b1tdtJVKAdRVk3jXA0buwJ49f9+N959bu+C+1k7D1sD0kBjqqQTORmf+8Fr5mAuaxEcO7+44QZ725CettuqyqH5r6I2pFKnRlYR/fIpvcxjsVVVNbiXGJDO5lWzRqDbahySIvo6vKbrq5ZxB1M5zGTwH8+cwpHJFK4eipk3haW6lVpBObC040rjM5uJlKkcFjIO2oLKwY5qmh5aOw9LarFxaEQh3LPHZ/DT/WN4/LBe2mVdkORVDZpGTbfrX71vJ75403lwNqi540ppzbNucdJS8VQyBnMr7RuOI+R1oje8cs3sWWJA2tppMuzT89OnDeXQG/aaBqyWGUtMhQzPZfGLA+O4eEMEf3rdkPn8UgPSLaEcjKrhmUzzKwfWb4u1VrFDlFVTpdaS7lCh87A1WwloTED64JjeH2rYcIFa3UqAbrASORlhrxPbe0P4+OXlSSKtQvNfRW1ISlLKWmcAhYB0IidjqCdYkzS9pQakc3nVXJkRQhALujGdKigH5uJJLHCjWCoiG/2oaDg8kcL1u9bhgoFOcyVarXKIBT1wCKSpit0q4XPrmTgzqeZWDrKqmcpuoQWBpCxdOVQDc61Op6Qyt1IjCuEOjuku39NGZ1lrthKgB+bj2YUrv1sFbhwaQEZSELJxK1kHpdTCpQQsPZU1k1eKupfGQh6MzuWQyMnoDa+OW0mS1SJ1cP2udXA7Bew1gpjVKod1HV48f8c7cdU2276NTUcs5MFskysH68SxRWMOq+DO6wnrbemnLMbBDEg3wK3EjMMZphwsMQcAkFQV8ayMzgrNBFsJbhwaQFq0dyu5HIIpmYdqZByWWomby6tFWVSxoAeHjAB5X8fquZV2rtNbje/sC5utAViTNuZuq4aesLehhVFLoSvgboqANKUUP35t1DbJwJpNlRRlnJhO46uPHi3r8rtqxsGqHFS9fxP7PfWOOUylRDMOZgakXeXKYT6bR2QJn9lmhRuHBpAuGfRjha3Mt/dWVxW8GAXlsPSANKAHTlkq47qw16zarmULDUnRsLHLj4GIDzdfXEjJ/eSVm/Avt+xuCTfRcogFPU0RkD4xncafP7gfP39jvOy5IuOQU/CT187i7seOmTdHhqhoZtV3LTFnliRF5BUNbodg9mmSjQVPRlLqMlP5kKEaugJus8txoc6hsAibzxaPAG5VuHFoAGmpctVvwTjUSjkYxqHKVVYurxaN0+y2pNOu6/CahXm1zVbSK02f/sI78AdXbTK3h7wu3Li7OXsj1YKuYKHAq5Gw7Bo249kKWxh4nAKSooyz83rNwfGptLkPpRR5RVuVgHTU0nk4r+hFby7jM80C0n/x8H78+YOv1/x3l8JcStdsL3RELYs5KCri2Tx3K3GWDhsAYudWAnTjEPY6q6pxqAa3Re4uhqJqyKtaiXIoNg4epwNel7BgQdRSEWUNHqcAQkjLuIRqQSzoxlxGQiIn46u/OVKX1a8dzNCfjZe35WatM/o7fUiKMsaM1t1W48BclqsRkBYEglhQT2dlFdEsBTav6mr47LyI8cTqzxg5OJbAYNSHrZZ+UNbeSoC+uEqJSsUBRq0ENw51RpQ1qBqt6Fa6ensMN+3pr9lN0ikQCKQ65ZA1fM52xiHsdZptsMPeQoPAlUIphaisjr+62YkFPdAo8ODLZ3D348fx4Msjix+0CjAX4Vii3Dgwt9L6Th+SOcWc62A1DuYUuFVQDgDQE/ZgOiVBMtxKLod+beQVXTmIeRW5VW5DkhJlPHFkGlds6SpauJWmT08m9ZjEUuJkzUprlu61MCljJVZpOtR/vba2nUQJIbYjDO3ISvoF5rMxDla/f9jnqllAOq9qoLQ1CtdqDWtjzQqqvvfiMP7gqk11V09MOYzNl6++mXHo7/Th2RMzyBptu09MW40DUw6r8z/sDnowlhAR8jrhcQrmjZhlK+VkFWqVkw6Xy09eH0M2r+LWSzcUxWGsLbsBYNJo9dEOxoErhzqTMW7Adqmsq4XdCENA/yDv/R+P4pXhOACYF36gKOag38B6O7zmto4aGoeFxku2O6wQbt/pOFwOghPTGbx4qv5DEJmL8Ox8rmymBos5rO/0gVLdz+92Cjg+nTYzlgrzo1fnf6grB7EQc3AUG4dsXl3VBoaUUnz/xTPY2RfG7sFO9FiKU0uzlZhx4G4lzpJhfWrsOqiuFm6bEYYA8NyJGcyk83jVNA7lyqE7qBuFvnDBOIS9zpplK0kLDKZvd5jhVTSKWy7ZgLDX2RDXElMOeUUz22Mz0qICh0CKqvUv3RTFfFY292WqdDUC0oDeln42k0dOVm2Ngyir5md3NTg4lsSh8SQ+dtkGEELQG9KvBbdTgMPoacaNA2fFmG6luioHe7fSq8P6fIbhOb2gJ2cTcwj7nOjv9OG8/rBlmwvJnIKHXh7By6dXttItBDPXnnFgygEALt0cxYWDnWZn2npiVYGls6LTRpNIa4Emy9ZhcYfVVg7rwl5QCpyczhgxh0JhJ6UUOVmPOazWdOHnTugTEG/YtQ6A7jJyOwRTNQAFwzjB3Uqc5WK6lerYxrdSzIG5k87M6TcEtvqyGgdCCJ76wjvwny09Yjp8LkwkRNzxozfw/z57akXnxm4sa9Gt1OFzwWmsPHcPdsLrcphutnqSzCnmCnisxDgkRRlBj9MsfgSAt1c0Dqtj4FnF+9n5HNzOQp1DXqWQVWrGG1ZrcNK+03Fs7PKbad2E6LPbrcaBZR++NZ4CwI0DZxmwXu/VjACtFXYxh7Sk4PBEcSuAnBFz8LmKDZdDKE4xDXtdegdKWhiJuFxWO5jZzAgCQTTgRsTvwkDEZxiH+g//SYoytnYHAJQbh7Qx/Il9XkNeJ7b3BuF3O3ByWv/ciKuYygro7b3P7+8AoC903JaAdM7iTsqtgmuJUopXhuO4eGOkaHtP2FPkfu0KevDH12xFIifDKZCWbdNtpfX/ghZj2miXEAvVzydp7TXP2D8yD40Cu9aHcWQiBVWjpqqxKgc7rBPqSkciLhVRWV2XRLOzIepHNOAGIQQ+l9AQ45DIyRiI+HE2niurfGZuJfY/7+/06X73sBdTKd2FUlB/q2fgP3BBHw6cTRSlssqKVpTCmpNVRCq9wDI5PZvFbCZv9vlinLMuXFY0+Jc37EA04MLhiVRb1Otw41AHUqKMJ49O4wMXrMdMKo+A22HWDNQDj6M8IM2C0DfuXo+//+VhjM3nbOsc7NjeG0I04DYNy0pYbZdEs/ON/3yxebPzuhyrnq9vR1KUsb03hP6Ir1w5SAq6Am5TOfR36inNsaDbbP2xmkVwjPdf0IcvPXLYDAITYigHy/u1GkHpfUZMbe+mYrPzdzfuQmmIgxCC29++tebn0CjW5nKtzvzo1bP47Pdfw8hcFtNpqaglRT3wuMqVw5tjCWzpDuC89bpcH5nLmm4l/yKS+NodPdj339+F8/o7EM/mVxQINN1Kq7jqbGa6Qx6z1YKvTm6l/71vBN99Ydj8OZlTEPY6sb7TVxaQTol6e3kWI1tvGIeuQKGjbD2Uw0DEj49dtgFXD8VACIHLIUAqcSutxnv3ynAcYa8T27qLe525HEJD51fXA64c6gBbjZ2dz2EmJRW1pKgHboeAuRLjMJfJozfkxWBU74A6PJctpLJWsYoXBIKo3w1ZpUavqOXFUKQ17lay4jEC0pTSVXVL/Mezp3F8KoVrd3RjfYcPKVFG2OfCOevCeObYScxl8oga8whSxtRCp0PAn7xzG95xTg8AvYDvpdOGcqiT+vv7D51vPnY7BMgKRU4uFKSthuraP5rA7g2RimN42xl+RdaBMaPvy3gi1zTKYT4ro8PnwvpOH5wCwZm5LHJ5FR5L7vZisIEmKwlKF4rg1qZysMIM5Gpl3TBG41nIKsXXHzuOTF6BRvUkgxt3r4eiUfz8jTHMpCU8e3xGNxyGavj8e3bgog26eyUW9CCezUOxDAOqp4F3OYgRkC68V7UOSFNKcXomU6Ya1gpcOdSBCaNnzdi8iJm0hCu21HcYjdtRnsqayMno9LvgEAgGIj6cmc0iGnAvGm+wEg3oamEumzdnMCyV1c6RbyWYYlut2QiA/n9PiQo6fC48/Ooobtqjd70N+5zY2RfGOetCePDlEXz/xTM4bMST7DJvYkE3KNU7uhbUX/0MvNsprHrMYTIpISer2Bxb3me71eFXZB1gPWvOzGYxn5XrrxxsUlnnc7JZ2DQY9WN4LoNMXllSoJxVgcYzy89YMv3VazQgbYXdXGvpHklkZdz92DEoRjUxy7C5/e1boGoUvz44AaCQWv2RiwZwcCyJI5Mp/NX7zsEfXLUJ77ugr+x1uwzX6ExagihrEAjMmo164HIIyJcYh1rHHFhB4qZYoKav2ypw47DKqBo1S+oPnNWHk9c95lDSPkOUVeQVDR1Goc6mrgCGZ7PGLIelKAfdOMytwDjUI9OlVSgoh9q5lR4/MomvPnrULHhkqapv2xaDz+UwK9xZkduNe9ajJ+TBne89B7e/fSv++vd2YauNW4V9hmfTeVPp1DN90+3QXaUsiQKofczh9IxhHLq4ceCsArNpyZwadXRSl+n1Vw7FMYd5o902Uw6bYgGkRAWj8dyS3EpmzGEFtQ6irIIQmFWvaxlmIJfjOz8wmsAXHt5f1jgvmdNvnkeNamZmHDZE/di+LoS3jBGwTDn0hLx4/s7rFk3JZB1lZzNSQ1quuxzCqhfBnZrNwOUgZobWWoNfkasMC0b3dXhNIxEL1rcpl9spFM1zYE3zOn36eWwxZPORydSSjEPI44RTICtSDqKswuus76qzWWE3WLHKka5WHj00gYf2jZq9fRisqd4xY2EyGs8i4Hag0+/CznUhMFtiLWysJiEhFijMdhZlDd46p3V6XQJysoacRWXVWjkMz2QxGPVXnaDRbnDjsMqwYDTL8gAaoRwckFVqripZCw+mHDYbxiGvaEuKORBCEAm4V6QcJEXjLiUD0zgsYwU8bRSkldUpGC23WbHiaDyHgYgfhBDsWFcYRduxxJnHYZ8TLgfBbCZv/A/rqxw6/G4ksnnTIAik9srh9GwGm9eoSwngxmHVYcHoPRs6zW2NiDkAhWlwpnIwYg4DEZ8ZTFxKzAHQZ/yuVDnwNFYd3wqUw4zRlqWscZ7xvz46mQKlFCNzWQxEdDfJOesKnXaX2guIEKIXwqUliEYr7XoS8bswl80jl1fgc+kdB2qpHDSN4vRsZs0Go4EVGgdCyGlCyAFCyOuEkH3Gtigh5FFCyDHje8Sy/52EkOOEkCOEkOst2y82Xuc4IeRu0kY+homkCI9TwLnr9Qsx5HXWfZVVOkd6Plccc3A6BGwwiuH8Szy3SMC14joHrhx0zGyl/NID0rOGcShVDqwddzwrYyadx9l4zix8PMdQDqzIbal0Bd2YsQSk60nE78Z8RkZO1pMoat16ZMpwl21aZop2O1CLq/IdlNLdlNK9xs93AHiMUjoE4DHjZxBCzgVwC4BdAG4AcA8hhH2ivgHgdgBDxtcNNTivpmBsPoe+Dq/Zk6beLiWg0A5bMgays9Vkh6WtMHMtLSXmAOgZS3MrDEiv1b5KpTAjuZyUzBnDrVSqHFKiAuYy33d6DilJMZVDJOBGb9hjFrktla6grhykBhj4iN+NlKQgJerKwecWluWOqwQbg8qVQ225EcD9xuP7Adxk2f4ApVSilJ4CcBzApYSQPgBhSunzVG/S823LMS3PRELEug4v1hljNuvtUgJslENWhkCAoCW+wC4C3xIbAkb87pXVOSgar3EwqI1bqTwgzdxHvzgwDgCmcQCA89Z3ILbMBUuMKYcGZCtFjALM8YQIr0sfvFMr5ZCWFHzx54cQ8jrN3mNrkZVWSFMAvyGEUAD/D6X0XgC9lNJxAKCUjhNCeox9+wG8YDl21NgmG49Lt7cF4wkRl22OwuN0IBb0NFQ5WGMOHT5XUb+YlSiHeDYPTaPL6j+jZytxtxJQKARcamA1m1fM6uDyYT0Kzl0fxlgih5+/MQ6fy4HzBwrxr7s+dP6yb6qxoAczaQkBj6PujRNZs8LxRA6dPjcEUrsK6Tt/dADHptK47w8uMdO11yIrNQ5XUUrHDAPwKCHk8AL72t056ALby1+AkNuhu5+wYcOGpZ5r3ZEUFeOJnLlS+8ePXmAqiHrisYk5lGanLNc4RPxuaFT3bXcuY26upGjoXGKmTLvClMNivZU0jeKOH72BWy/dgD0bIphJ6cot5HHibLzUraT/r2+5ZAPG5nP4i+t3mC5OACv6PHYF3JAUDSenMzivv74r7IjhEp1IiOgL+yAItUllpZTid4en8PuXDOLqoe4Vv14rsyLjQCkdM75PEUJ+DOBSAJOEkD5DNfQBmDJ2HwUwaDl8AMCYsX3AZrvd77sXwL0AsHfv3tUZGFtDRuay0CiwxagwZR0t6w2T/Elr7VsAABT7SURBVA+8fAaff/cOXTmU3MiHeoNwOfQhLkuBFUNNJqXlGQdZhacBaqoZcTlIVSmZ8WweD+0bhaJR7NkQMQdIndffgedPziIpygh7XaCUGu24XbjjvefU/Hwv3hjBhqgfV22L4Y+u3lzz118I1rpFVim8bgccBJhdgXuTMZPOIy0p2N6zNpvtWVm2cSCEBAAIlNKU8fg9AP4OwE8BfBLAl43vPzEO+SmA7xNCvgpgPfTA80uUUpUQkiKEXA7gRQCfAPD15Z5XM3HCGKO4ucFBrSu3xvB7F67Hd14Yxpm5LBLZfJlx6Al58fjnr11yNSgb3/jS6bmivPlq4QHpAvo0uMVnOrBU5GePz4BSasYbLhzsxPMnZzE2n0N4nQuSoiGvaqs2r3zvpiie+sI7VuW1F8Pq7vG7HLpyiK9cOQwb/ZQ2ruFANGMln5peAD82sk6dAL5PKf0VIeRlAA8RQm4DcAbAzQBAKT1ICHkIwCEACoDPUErZf/PTAO4D4APwiPHV8pwyerNs7m7sB83tFPD1W/egJ+TBd14YRizgxkab4h6W4rgUNscC6O/04Zlj0/j45RurPo511OSprMVUk5LJjMNkUsKJ6XTBOAzohnpsPodz1oXNrLRwG7rtIpZMO5/bAVKjmIN5za7h4jfGso0DpfQkgAttts8CuK7CMXcBuMtm+z4A5y33XBqNplH882+PYv9oAn0dXnzpw+eDEIJT0xnEgh6zb02juXxLF771zCmMJcQlV8RWghCCt2+P4ef7x6Go2oL58tm8AknWEAm48fXHj+MHL51BVlK4crDgNQb+LERSLDSbe/b4rNkr63zDOJw1MpbYfstNVW1mfC6HORvd63LAIdSmK+vwbBYOgaA/sjb7KVnhS7Ya8MibE7j78eM4MpHCAy+P4KSx+jg5kzb7FjUDl1jm4Hb6a2ewrh7qRkpSsH90fsH9vvLIYXzs318EAJycTmM6JSGT524lK16XULVbye0Q8MzxGcxmJH1wU4cPLgfB6JzelpsVwDXL4qSWEEJM9eBzOWqWynp6NoOBiA8u3giSG4eVomkUdz92DFu7A/jB7ZcDAJ45NgNAl6hbGuxSstLpd2NHrx4XqJVyAIArt3ZBIMCTR2cW3O/0bBanZtKglJrD6QHwVFYL3iXEHN6+PYbnT8xiZC6LWNANQSDYMxjBI29OQNOoxa3UfsoBKASl/e6CcVjJPHNANw52Lte1CL8qV8CB0QS+9MhbODKZwueuG8LmWACDUR+ePjaDRE5vV9DoYHQpl26OAqitcej0u3HJpii+/+Lwgn2W4tk8RFlDWlIwm5EQMvr58CK4AtWsgNlN//+4cjPSkoInjk6bxZUfv2Ijzsxl8eTRaaRMt1L7KQegoH59bge8bgcoXfqIVVFW8eqZOFSNglKK4ZksNq/hlhlWuHFYJjNpCR/812fwb0+fwlXbuvCBC9YDAN62rRsvnJzF8Sm9C+aWJps/uxrGAQD+5oO7kMjJ+OufHqy4DzMc0ykJM+k83n9BHz522QZcs31t55NbqVY5uJ0CrtrWhYs2dIJSmFXO1+9ah56QB/c/f7rgVmrDgDRQGDblNdxKwNILCO996iQ+fM9zuOYff4cHXh5BSlK4cjDgxmGZnI3nQCnwvz62B9/7w8vNnu9XD8WQlhTc+9RJAI1PYy3lXTt78elrt+LKbbGavu7OvjD+5J1D+Nn+MXOATCnMOEwkRcSzefSEvfj7D51f9wKqZqaagHQiqxe2EULwqWv0oTzdhnJwOwXceukGPHFkGscm9f5Aq5XK2mhYXY3elXV5I1Z/9eYEtnYHEPa6cOePDgAANq3RmdGlcOOwTNjoz43R4pv/lVu74BAIfn1wEhu7/Ga302bB53bgL284Z8ktmquBKYDxRK7sOVFWzVTDY5NpUAp013noUStQbUCaKb937+zFzRcP4F07e83n2ePHDk/CKRBzVd1usIC03+jKCizNOJydz+HQeBK/f8kgfnD75djZp/egWqtjQUtpzyVFHZhK6bnlPeHi6t5Ovxvfve0yuJ0Cdg92rqkpUoWZ0uUtvK0DgQ5P6MqiqwFNCJudaorgkmLBOAgCwT/eXJxRvrMvhIDbgZG5HKIBd9tO2WMBaa/LYXaeXYpb6beHJgHoxrTD58J3b7sUTx+baTq13yi4cVgmU0kRAtH7y5RyxdauBpxR4zFnSluC0l/65VuYSIq4/e1bzG1vjevxGLv3bq1TbRHcQm1OnA4BF22M4OljM23rUgIsbiW3xTgsQTn89q1JbOkOmHHBrqAHN+1pm56fK4a7lZbJVEpCV9CzrCEp7UrA7YDbIRTNd/jFgXE8e3ymKIvpqDHPmCuHcnzuKmIONo0TS9m7UU88aNdMJaDQ1yvocZoxh2qrpOOZPF44OYt3n9u7+M5rFH5nWyaTSRG9YX5zs6LPlHaZymEmLWE0njMnkAG6T51dwN3cOJThdQqL5utXYxxYwWO71jgAwNXbYvjHj16APYOd5vsxX+XgqZ+9MQZZpbhpN1cKleDGYZlMpST0hOrffrvZiVhmSu8fKVRMHzibAAAM9ehFeE6BtPWNa7l4FmnbrWoUKVFZND1194ZO/T1uY+XgdAi4ee8gBIGYdR7W4sqF+OGrZ3HOupAZhOaUw43DMplMSlw52MCG/wDA6xbj8MZoAoQA23qYf7d9A6UrwZwGV8F3nhKL539Xwu924rarN+P6Xetqe4JNStjrglMgZhPChTgxncb+kXl85KKBRfddy/Cl2zJQVA2zGQndXDmUEfG7zWyk10fm0RPyYCol4fBEEp0+l5nd1Yhxqa2A1zQO9sqBtc6oppnene/dWbsTa3IEgaAr6K5KOfzyjXEQAty4e30dzqx14coBwOOHJ3FozL5wy46ZdB6UgisHGyIBF+JZGZpGsX9kHu88pwcepwBZpYgE3GacgQej7fG59UuyUtYNMw61rnBvB7oCnqqUw6HxJDZG/ehZ4mCrtQY3DgD+z//9Bu5+7FjV+0+l9AI4HnMoJ+p3Yz6bx8mZDJKigj0bOs0xqV0BtzlDO8bTWG1hs5gruZWSOb1fEjcO5XQF3ZipYhrc0ckUtvcufTDVWmPNG4ekKGMuk8dpYwJUNUwl9dUJVw7lRAL6TOkXT80CAM7t6zCHCEX8VuXAjYMdXvfCxsFUDjVsud4udAc9mF1EOUiKitOzWW4cqmDNG4czs3rv+zNzWVCqu0JY0zwrc5m82TJjkiuHirAq6ZdOzZkBaKYcolblwN1KtjDlwN1KS6cr6MZMWlowDfjkdAaqRrF9GSNt1xpr3jgwxZDNq5hJ5/G5B17DF3/+Vtl+f/7g6/ijb+8DoCsHQoAYX/2WwVoavHhyDoMRP3xuBwYihnIIuDEY9eNt22Jrtop8MSIB/aY/kRBtn+fGoTKxoAeirC1YCMcKMLf3Nle35GZkzRuHYUM5AMCbZxMYns3izFy2aJ+MpOD5E7M4PJGCqlFMpUR0Bdy8OtoGphwmkiKGjLTVQcM4dAXc8Loc+O4fXoYLBjobdo7NzPaeECJ+F545bj84KZGT4XK0bzO9lcCSHBYKSh+dTMEhEN4/qQrW/N1teDZj9mX51ZsTAPR23KpWkKYvnJxFXtWQVzScjedwfCrNOzdWIGIJNG8zVmeD0YJbibMwgkDwtqFuPHNspsw9Mp/N48evjWLHuhCvEbGBxbFmFkhnPTqZxuZYAB4nN66LseaNw+nZLM7v7wAhwG8O6cYhr2pmfAEAnjw6bT4+Pp3C4fEUr6ysQNRfMADbjWro89Z34G8/uAvvWSMFWSvl6qEYplISjhrzGAC9DfodPzyA2XQeX/7wBQ08u+alu0rlwF1K1bHmjcOZ2SyGekNY3+FDPFtoNT1icS09eXQaF23Q3SBPHZ1BSlK4caiAz+2A16V/rIaMi1AQCD555aZVmSHRjlw9pA9ievqYvii554njuOJLj+NXByfw396znQ9HqgBTDnaFcGdms/jj77yC4dksdq7j1241rGnjkMurmEiK2BgtDOXZaMyPHTEaxZ2eyWB4Noub9vQjGnDjFwfGAQDn9PFsh0ow9bC1yUaktgp9HT5s6wniyaPToJTi+y+ewd6NEfzic2/Df712W6NPr2npCrD+SuXK4e9+fghPH5vGp96+Bf/lbZvrfWotyZo1DjNpCW8ZbR42xgKmUXj3zl4QUlAOzKV0zfZubO0OYDqlZyrt4HnSFYkE3BiI+BDgSmHZvGtnL547MYsXT81hNJ7DTXv6sWs9VwwL4XYKCHudZW6lRFbGk0encOulG3Dn+3byz2WVrMl3SVJUXP+1pzBvpAVu6vJjNK4bh90bOtF3wIuReME4bOryY2NXAFu7g3j5dBwbo37+AVuAd57TA22BXHPO4nz4on5888kT+CtjrvG1O7obfEatQSzoKauS/tXBccgqxQd5L6UlsSbvcE8dncFsJo/LNkeRyMnY1hNERlLhcQq4aEMEA1E/RuayEGUVz5+YxX/aq3dvZG4SHm9YmM+/Z0ejT6Hl2d4bwvn9HThwNmEUEjbXLPJmJRb0YCZVrBx+tn8cm7r8OJ/HapbEmnQr/Wz/GCJ+F777h5fhV3/2dvjdTlyxtQtv/u31WN/pw2DEj5G5HPadjiMnq7jGWLVt7dHTV7lx4NSDD1+kD6K5djtXDdWyrTeIV4bjpjt4bD6H507M4PcuXM/Tf5fImjMO2byCRw9N4r3n98FVUsTGfh6M+jCZEvHzN8bgdgi4fItezXt+fydiQQ+u2har+3lz1h437e7HZZuj+OhePnegWu547zkY6g3h0999BW+eTeDep05CIAS/f8lgo0+t5VhzbqXH3ppCTlbxwQsr+x83RP2gFHjg5RFcv6sXfrf+NnWHPNj3f72rXqfKWeNEAm48+KkrGn0aLUXY68L9f3AJbvrXZ/Gp77yC2YyEG3f3c7fcMlhzyoEQ4PItUVyyKVpxnyu3xnDVti588cZd+Jdb9tTx7DgczkrpCXvxzY9fjOm09P+3d+8hls5xHMffn3aW2tbd0rguuYRNLpMIWUqskkIh2UWuEf6zpCgUQi7JmrJyJ7csyiYhl8jIddtde0ktNpbWWvfk64/nN5zmzOzuzDzPeX7PnM+rTufs7zzz2+/322m+5/nNeX6HP//+h0tn7ll3SI2kDe1gmLO+vr4YGBioOwwzy9SbS79n1drfOefw3esOJSuSPoqIvo0d13XLSmbWHWbuu0PdITRaNstKkk6UtFTScklz647HzKybZdEcJE0C7gNmAfsDZ0nav96ozMy6VxbNATgMWB4RKyPiL+Ap4JSaYzIz61q5NIedgVUt//46jZmZWQ1yaQ7DXbrY9jEqSRdJGpA0sGbNmmF+xMzMypBLc/gaaL2EcRfg26EHRUR/RPRFRN+0ad5SwMysKrk0hw+BvSXtIWkz4ExgQc0xmZl1rSyuc4iIvyVdDiwEJgHzI2JRzWGZmXWtxl4hLWk9sHQUP7IVsK7EEMqeb3vghxLnyz3fnOuXe6451w7yz7fs+aAZNZxMEePuEbHxdfmIaOQNGBjl8f0l//9lzzeqfCZAvtnWrwG5Zlu7huRb6nxNqeFoY8zlbw6d8FLm85Ut93xzrl/uueZcO8g/39zrBxnk3ORlpYHYhM2jmmKi5dNprt/YuXbj14QajjbGJp859NcdQMkmWj6d5vqNnWs3fk2o4ahibOyZg5mZVafJZw5mZlYRN4eKSNpV0huSFktaJOnKNL6tpNckLUv326Tx4yV9JOnzdH9cy1w3S1ol6Ze68um0suonaYqkVyQtSfPcUmdenVDya+9VSZ+meealHZQnvDJr2DLnAklfdDqXMSv7I12+/ffRsV7gkPR4C+BLiu3IbwPmpvG5wK3p8cHATunxDOCblrkOT/P9UndeTasfMAU4Nj3eDHgbmFV3fk2oXfr3lulewHPAmXXn17QaprFTgSeAL+rObZNrUHcA3XIDXgSOp7hwrzeN9QJLhzlWwI/A5kPGu6Y5VFG/9NzdwIV159O02lFcQPUScEbd+TSthsBU4J3UXBrTHLys1AGSplO8s/gA2DEiVgOk++G+y/A04OOI+LNTMeasrPpJ2ho4GXi9ynhzUkbtJC0EvgfWA89WHHJ2SqjhjcAdwG+VB1siN4eKSZpKcTp+VUT8vAnHHwDcClxcdWxNUFb9JPUATwL3RMTKKmLNTVm1i4gTKN4lbw60raVPZOOtoaSDgL0i4oVKA62Am0OFJE2meGE9HhHPp+HvJPWm53sp3pENHr8L8AIwOyJWdDre3JRcv35gWUTcVX3k9Sv7tRcRf1DslNw139BYUg2PAA6V9BXF0tI+kt7sTAbj4+ZQEUkCHgQWR8SdLU8tAOakx3Mo1jIHlzxeAa6JiHc7GWuOyqyfpJsoNh67quq4c1BW7SRNbflF2AOcBCypPoP6lVXDiLg/InaKiOnAUcCXETGz+gxKUPcfPSbqjeKFEMBnwCfpdhKwHcWa97J0v206/jrg15ZjPwF2SM/dRvGFSP+k+xvqzq8p9aP44qgAFreMX1B3fg2p3Y4U37XyGbAIuBfoqTu/JtVwyJzTadAfpH2FtJmZtfGykpmZtXFzMDOzNm4OZmbWxs3BzMzauDmYmVkbNwezCki6RNLsURw/vVE7dtqE11N3AGYTjaSeiJhXdxxm4+HmYDaMtNnaqxSbrR1MsWXzbGA/4E6KnTZ/AM6NiNVpS4T3gCOBBZK2oNhF9/a0v848iu3DVwDnR8RaSYcC8yk2ZHunc9mZbZyXlcxGti/QHxEHAj8Dl1FcJXx6RAz+Yr+55fitI+KYiLhjyDyPAFeneT4Hrk/jDwFXRMQRVSZhNhY+czAb2ar4f5+cx4BrKb7I5bVi6x0mAatbjn966ASStqJoGm+loYeBZ4YZfxSYVX4KZmPj5mA2sqF7y6wHFm3gnf6vo5hbw8xvlg0vK5mNbDdJg43gLOB9YNrgmKTJaf/+EUXEOmCtpKPT0DnAWxHxE7BO0lFp/OzywzcbO585mI1sMTBH0gMUu3DeCywE7knLQj3AXRQ7lm7IHGCepCnASuC8NH4eMF/Sb2les2x4V1azYaRPK70cETNqDsWsFl5WMjOzNj5zMDOzNj5zMDOzNm4OZmbWxs3BzMzauDmYmVkbNwczM2vj5mBmZm3+BVZ9h/+d4vUsAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "sorted_data['inc'][-200:].plot()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Etude de l'incidence annuelle"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Etant donné que le pic de l'épidémie se situe en hiver, à cheval\n",
+ "entre deux années civiles, nous définissons la période de référence\n",
+ "entre deux minima de l'incidence, du 1er août de l'année $N$ au\n",
+ "1er août de l'année $N+1$.\n",
+ "\n",
+ "Notre tâche est un peu compliquée par le fait que l'année ne comporte\n",
+ "pas un nombre entier de semaines. Nous modifions donc un peu nos périodes\n",
+ "de référence: à la place du 1er septembre de chaque année, nous utilisons le\n",
+ "premier jour de la semaine qui contient le 1er septembre.\n",
+ "\n",
+ "Comme l'incidence de syndrome varicelle est très faible en été, cette\n",
+ "modification ne risque pas de fausser nos conclusions.\n",
+ "\n",
+ "Encore un petit détail: les données commencent en octobre 1984, ce qui\n",
+ "rend la première année incomplète. Nous commençons donc l'analyse en 1985."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 28,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "first_september_week = [pd.Period(pd.Timestamp(y, 9, 1), 'W')\n",
+ " for y in range(1991,\n",
+ " sorted_data.index[-1].year)]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "En partant de cette liste des semaines qui contiennent un 1er août, nous obtenons nos intervalles d'environ un an comme les périodes entre deux semaines adjacentes dans cette liste. Nous calculons les sommes des incidences hebdomadaires pour toutes ces périodes.\n",
+ "\n",
+ "Nous vérifions également que ces périodes contiennent entre 51 et 52 semaines, pour nous protéger contre des éventuelles erreurs dans notre code."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 29,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "year = []\n",
+ "yearly_incidence = []\n",
+ "for week1, week2 in zip(first_september_week[:-1],\n",
+ " first_september_week[1:]):\n",
+ " one_year = sorted_data['inc'][week1:week2-1]\n",
+ " assert abs(len(one_year)-52) < 2\n",
+ " yearly_incidence.append(one_year.sum())\n",
+ " year.append(week2.year)\n",
+ "yearly_incidence = pd.Series(data=yearly_incidence, index=year)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Voici les incidences annuelles."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 30,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 30,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAD8CAYAAACLrvgBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAHARJREFUeJzt3X9wndV95/H3x8iRDLWJDDLxD8DuxGFiSGriO7a7yXZL3Npm08FmCok2NGgWz7gBNiWdnQE7sMMsuDPQ2dm0nkxYPKFgIPxw3TJ4u3hBmM3U2zq25UAKhrhSAjEODhIrB5vMWEX2d/+4R/WVkKXnSlf3lz6vmTv3uV895+g8fnT9vc855zlXEYGZmVkWUyrdADMzqx1OGmZmlpmThpmZZeakYWZmmTlpmJlZZk4aZmaWmZOGmZll5qRhZmaZOWmYmVlmDZVuQKldeOGFMX/+/Eo3w8ysphw4cOC9iGgZbb+6Sxrz58+no6Oj0s0wM6spkn6eZT93T5mZWWZOGmZmlpmThpmZZeakYWZmmTlpmJlZZk4aZjWg+/hJvvzgHrpPnKx0U2ySc9IwqwGbd3Wy/61eNr/YWemm2CRXd/dpmNWTy+7aSV//6X99/fjewzy+9zCNDVM4tOnqCrbMJitfaRRwF4BVm923X8U1i+fQNDX/Vm2aOoU1i+ew+46rKtwym6ycNAq4C8CqzawZTUxvbKCv/zSNDVPo6z/N9MYGZk1v+si+/tBj5eDuKdwFYNXtvQ/6uGHZpXx16SU8se8wPWdJCoUfejZd+5kyt9ImC0VEpdtQUrlcLopde6r7+Ek2PfcGLxz8JSc/PE3T1CmsuvwT3PmlTw/7ic6smgz90DPAH3qsGJIORERutP3cPUVxXQBm1cbjHlZO7p5KsnYBmFUbf+ixcnLSSB782pmrsk1rr6hgS8yK5w89Vi4e0zAzM49pmJlZ6TlpmJlZZpmShqQ/lXRQ0muSnpTUJGmmpHZJnem5uWD/jZK6JB2StKogvkTSq+lnmyUpxRslPZ3ieyXNLyjTln5Hp6S20h26mZkVa9SkIWku8CdALiKuAM4BWoENwK6IWAjsSq+RtCj9/HJgNfBdSeek6h4A1gML02N1iq8DjkXEJ4FvA/enumYCdwPLgKXA3YXJyczMyitr91QDME1SA3Au8A6wBtiafr4VWJu21wBPRURfRLwJdAFLJc0GZkTEnsiPvj86pMxAXduBFekqZBXQHhG9EXEMaOdMojEzszIbNWlExC+A/wYcBo4C70fEC8BFEXE07XMUmJWKzAXeLqjiSIrNTdtD44PKREQ/8D5wwQh1mZlZBWTpnmomfyWwAJgDnCfpj0YqMkwsRoiPtUxhG9dL6pDU0dPTM0LTzMxsPLJ0T/0e8GZE9ETEh8DfAv8GeDd1OZGeu9P+R4CLC8rPI9+ddSRtD40PKpO6wM4Hekeoa5CI2BIRuYjItbS0ZDgkMzMbiyxJ4zCwXNK5aZxhBfAGsAMYmM3UBjybtncArWlG1ALyA977UhfWCUnLUz03DikzUNd1wEtp3ON5YKWk5nTFszLFzGwS8zLwlTPqMiIRsVfSduBHQD/wMrAF+A1gm6R15BPL9Wn/g5K2Aa+n/W+NiFOpupuBR4BpwM70AHgIeExSF/krjNZUV6+ke4H9ab97IqJ3XEdsZjXPy8BXjpcRsbrWffwk/+nJl/nOV6/0An51wMvATxwvI2KGv42x3ngZ+MrzKrdWl/xtjPXJy8BXnq80rC75E2n9GlgG/plbPs8Nyy6l54O+SjdpUvGVhtUlfyKtX/7um8py0rC65S8mMis9z56ymuWZUWal49lTNm7VfgOVZ0aZlZ+7p+ysqvUGKs+MMqscd0/ZR1T7DVTdx0+y6bk3eOHgLzn54Wmapk5h1eWf4M4vfbrmuqncxWbVwt1TNmbVPl21nmZGuYvNao27p+wjauE/5VqfGeUuNqtVTho2rGr/T7nW5+rvvv2qs3axmVUzJw0bVq3/p1ztauFqzmw4ThpmFVLtV3Nmw/HsKTMz8+wpMzMrPScNMzPLzEnDzMwyc9IwmwDVvm6X2Vg5aZhNAN/pbfXKU27NSsh3elu985WGWQlV+7pdZuPlpGFWQr7T2+rdqElD0mWSXil4HJf0TUkzJbVL6kzPzQVlNkrqknRI0qqC+BJJr6afbZakFG+U9HSK75U0v6BMW/odnZLaSnv4ZqU3cKf3M7d8nhuWXUrPB32VbpJZyRR1R7ikc4BfAMuAW4HeiLhP0gagOSLukLQIeBJYCswBXgQ+FRGnJO0DbgN+CDwHbI6InZJuAT4bEV+X1ApcGxFfkTQT6AByQAAHgCURcexsbfQd4Wbl5e8EqQ8TdUf4CuCnEfFzYA2wNcW3AmvT9hrgqYjoi4g3gS5gqaTZwIyI2BP5TPXokDIDdW0HVqSrkFVAe0T0pkTRDqwuss1mNoE8U2xyKXb2VCv5qwiAiyLiKEBEHJU0K8Xnkr+SGHAkxT5M20PjA2XeTnX1S3ofuKAwPkwZM6sgzxSbnDJfaUj6GHAN8Nej7TpMLEaIj7VMYdvWS+qQ1NHT0zNK88ysFDxTbHIqpnvqauBHEfFuev1u6nIiPXen+BHg4oJy84B3UnzeMPFBZSQ1AOcDvSPUNUhEbImIXETkWlpaijgkMxurYmeK+S75+lBM0vgPnOmaAtgBDMxmagOeLYi3phlRC4CFwL7UlXVC0vI0XnHjkDIDdV0HvJTGPZ4HVkpqTrOzVqaYnYXfmFZOxcwU89hHfcg0e0rSueTHFn4zIt5PsQuAbcAlwGHg+ojoTT+7E7gJ6Ae+GRE7UzwHPAJMA3YC34iIkNQEPAZcSf4KozUifpbK3AR8KzXlzyLi4ZHaOtlnT931zKt8f99hblh6CZuu/Uylm2P2kbGPAR77qC5ZZ0/5S5jqRLFvTE+TtHLpPn7yrN+H7r+96uEvYZpkih2UdFeBlYvvkq8vXrCwTmR9Y3qapFWCvw+9fjhp1JEsb8zdt1911q4Cs4ny4NfO9HpsWntFBVti4+WkUUeyvDHdVWBm4+ExjQlSzVNfvaCemY2VZ09NEE99NbNaknX2lLunSswDzWZWz9w9VWLFTn2t5m4sM7OhnDRKrNiBZt8vYWa1xN1TEyDL1Fd3Y5lZLfKVRpGydCc9+LUcm9ZewaI5M9i09opBU2EHeFlpqxR3idaWajtfThpFKlV3ku+XsEpxl2htqbbz5Sm3GU3ESp1//FgHLdObBnVjDXdVYlYKXm22tpT7fHmV2xLzSp0Gtb06sP+Ga0u5z5dXuS0xdyfVt6z9xtXWVVAM/w3Xlmo9X549VQSv1Fm/CpPBcHfw18tsN/8N15ZqPF/unrJJLWu/8WTs2qnlrjgrnrunrOpU29RByD71uVq7CiZSLXfF2cRx95SNW9ZPpKN1AVVCMcmgGrsKJkK9dMXZxHD3lI3baCv6VvtUT099HmwydsWZV7m1Msj6ibTavy3Q3yo32GTsirPsPKZhY+bxgPrlL+qys/GVho2ZxwPqV6Wuvjxjq/plutKQ9HFJ2yX9RNIbkn5b0kxJ7ZI603Nzwf4bJXVJOiRpVUF8iaRX0882S1KKN0p6OsX3SppfUKYt/Y5OSW2lO3QrhayfSLMs4mjmGVvVL9NAuKStwO6I+J6kjwHnAt8CeiPiPkkbgOaIuEPSIuBJYCkwB3gR+FREnJK0D7gN+CHwHLA5InZKugX4bER8XVIrcG1EfEXSTKADyAEBHACWRMSxs7XVA+FmtafaJ0tMBiW7T0PSDOB3gIcAIuJfIuJXwBpga9ptK7A2ba8BnoqIvoh4E+gClkqaDcyIiD2Rz1SPDikzUNd2YEW6ClkFtEdEb0oU7cDq0dpsZrXFXxVQO7J0T/0m0AM8LOllSd+TdB5wUUQcBUjPs9L+c4G3C8ofSbG5aXtofFCZiOgH3gcuGKGuQSStl9QhqaOnpyfDIZlZNfFkidqRJWk0AJ8DHoiIK4FfAxtG2F/DxGKE+FjLnAlEbImIXETkWlpaRmiamVUrz9iqDVlmTx0BjkTE3vR6O/mk8a6k2RFxNHU9dRfsf3FB+XnAOyk+b5h4YZkjkhqA84HeFP/dIWV+kOnIzKym1ML9Mp7dleFKIyJ+Cbwt6bIUWgG8DuwABmYztQHPpu0dQGuaEbUAWAjsS11YJyQtT+MVNw4pM1DXdcBLadzjeWClpOY0O2tlipmZlZ1nd2W/T+MbwPfTzKmfAf+RfMLZJmkdcBi4HiAiDkraRj6x9AO3RsSpVM/NwCPANGBnekB+kP0xSV3krzBaU129ku4F9qf97omI3jEeq5nZmHg9rjO89pSZ2Sgmw3pcXhrdzKxEPLvrDC8jYmaWgZfCyXP3lJmZuXuq3lTjt96Z2eTjpFEjPNXPzKqBxzSqnKf6mVk18ZVGlfNCbmZWTZw0qpyn+pmNnccCS89JowZ4ITezsfFYYOl5yq2Z1R1/qVPxPOXWzCatYscC3Y2VnZOGmdWdYscC3Y2VnafcmlldyrLsh6e0F89jGmY2aU2G1Wuz8piGmdkoPKW9eO6eMrNJzavXFsfdU2Zm5u4pMzMrPScNqzqeM29WvZw0rOp4zrxZ9fJAuFUNz5k3q36+0rCq4WXgzaqfk4ZVDc+ZN6t+mZKGpLckvSrpFUkdKTZTUrukzvTcXLD/Rkldkg5JWlUQX5Lq6ZK0WZJSvFHS0ym+V9L8gjJt6Xd0Smor1YFbdfIy8GbVLdN9GpLeAnIR8V5B7M+B3oi4T9IGoDki7pC0CHgSWArMAV4EPhURpyTtA24Dfgg8B2yOiJ2SbgE+GxFfl9QKXBsRX5E0E+gAckAAB4AlEXHsbG31fRpmZsUrx30aa4CtaXsrsLYg/lRE9EXEm0AXsFTSbGBGROyJfKZ6dEiZgbq2AyvSVcgqoD0ielOiaAdWj6PNZmY2DlmTRgAvSDogaX2KXRQRRwHS86wUnwu8XVD2SIrNTdtD44PKREQ/8D5wwQh1DSJpvaQOSR09PT0ZD8nMzIqVdcrt5yPiHUmzgHZJPxlhXw0TixHiYy1zJhCxBdgC+e6pEdpmZmbjkOlKIyLeSc/dwDPkxyveTV1OpOfutPsR4OKC4vOAd1J83jDxQWUkNQDnA70j1GVmZhUwatKQdJ6k6QPbwErgNWAHMDCbqQ14Nm3vAFrTjKgFwEJgX+rCOiFpeRqvuHFImYG6rgNeSuMezwMrJTWn2VkrU8zMzCogS/fURcAzaXZsA/BERPxvSfuBbZLWAYeB6wEi4qCkbcDrQD9wa0ScSnXdDDwCTAN2pgfAQ8BjkrrIX2G0prp6Jd0L7E/73RMRveM4XjMzGwcvjW5mZl4a3czMSs9Jw8zMMnPSMDOzzJw0zMwsMycNMzPLzEnDzMwyc9IwM7PMnDTMzCwzJw0zM8vMScPMzDJz0jAzs8ycNMzMLDMnDTMzy8xJw8zMMnPSMDOzzJw0zMwsMycNMzPLzEnDzMwyc9IwM7PMnDTMzCwzJw0zM8vMScPMzDLLnDQknSPpZUl/l17PlNQuqTM9Nxfsu1FSl6RDklYVxJdIejX9bLMkpXijpKdTfK+k+QVl2tLv6JTUVoqDNjOzsSnmSuM24I2C1xuAXRGxENiVXiNpEdAKXA6sBr4r6ZxU5gFgPbAwPVan+DrgWER8Evg2cH+qayZwN7AMWArcXZiczMysvDIlDUnzgC8B3ysIrwG2pu2twNqC+FMR0RcRbwJdwFJJs4EZEbEnIgJ4dEiZgbq2AyvSVcgqoD0ieiPiGNDOmURjZmZllvVK4y+A24HTBbGLIuIoQHqeleJzgbcL9juSYnPT9tD4oDIR0Q+8D1wwQl1mZlYBoyYNSX8AdEfEgYx1aphYjBAfa5nCNq6X1CGpo6enJ2MzzcysWFmuND4PXCPpLeAp4IuSHgfeTV1OpOfutP8R4OKC8vOAd1J83jDxQWUkNQDnA70j1DVIRGyJiFxE5FpaWjIckpmZjcWoSSMiNkbEvIiYT36A+6WI+CNgBzAwm6kNeDZt7wBa04yoBeQHvPelLqwTkpan8Yobh5QZqOu69DsCeB5YKak5DYCvTDEzM6uAhnGUvQ/YJmkdcBi4HiAiDkraBrwO9AO3RsSpVOZm4BFgGrAzPQAeAh6T1EX+CqM11dUr6V5gf9rvnojoHUebzcxsHJT/QF8/crlcdHR0VLoZZmY1RdKBiMiNtp/vCDczq4Du4yf58oN76D5xstJNKYqThplZBWze1cn+t3rZ/GJnpZtSlPGMaZiZWZEuu2snff1nbnl7fO9hHt97mMaGKRzadHUFW5aNrzTMzMpo9+1Xcc3iOTRNzf/32zR1CmsWz2H3HVeNq95ydXc5aZiZldGsGU1Mb2ygr/80jQ1T6Os/zfTGBmZNbxpXveXq7nL3lJlZmb33QR83LLuUry69hCf2HaZnHFcH5e7u8pRbM7Ma1n38JJuee4MXDv6Skx+epmnqFFZd/gnu/NKni7p68ZRbM7NJYKK6u87G3VNmZjWulN1do3H3lJmZuXvKzMxKz0nDzMwyc9IwM7PMnDTMzCwzJw0zM8vMScPMzDJz0jAzs8ycNMzMLDMnDTMzy8xJw8zMMnPSMDOzzJw0zMwsMycNMzPLbNSkIalJ0j5JP5Z0UNJ/TfGZktoldabn5oIyGyV1STokaVVBfImkV9PPNktSijdKejrF90qaX1CmLf2OTkltpTx4MzMrTpYrjT7gixHxW8BiYLWk5cAGYFdELAR2pddIWgS0ApcDq4HvSjon1fUAsB5YmB6rU3wdcCwiPgl8G7g/1TUTuBtYBiwF7i5MTmZmVl6jJo3I+yC9nJoeAawBtqb4VmBt2l4DPBURfRHxJtAFLJU0G5gREXsi/yUejw4pM1DXdmBFugpZBbRHRG9EHAPaOZNozMyszDKNaUg6R9IrQDf5/8T3AhdFxFGA9Dwr7T4XeLug+JEUm5u2h8YHlYmIfuB94IIR6jIzswrIlDQi4lRELAbmkb9quGKE3TVcFSPEx1rmzC+U1kvqkNTR09MzQtPMzGw8ipo9FRG/An5Avovo3dTlRHruTrsdAS4uKDYPeCfF5w0TH1RGUgNwPtA7Ql1D27UlInIRkWtpaSnmkMzMrAhZZk+1SPp42p4G/B7wE2AHMDCbqQ14Nm3vAFrTjKgF5Ae896UurBOSlqfxihuHlBmo6zrgpTTu8TywUlJzGgBfmWJmZlYBDRn2mQ1sTTOgpgDbIuLvJO0BtklaBxwGrgeIiIOStgGvA/3ArRFxKtV1M/AIMA3YmR4ADwGPSeoif4XRmurqlXQvsD/td09E9I7ngM3MbOyU/0BfP3K5XHR0dFS6GWZmNUXSgYjIjbaf7wg3M7PMnDTMzCwzJw0zM8vMScPMzDJz0jAzs8ycNMzMLDMnDTMzy8xJw8zMMnPSMDOzzJw0zMwsMycNMzPLzEnDzMwyc9IwM7PMnDTMzCwzJw0zM8vMScPMzDJz0jAzs8ycNMzMSqz7+Em+/OAeuk+crHRTSs5Jw8ysxDbv6mT/W71sfrGz0k0puYZKN8DMrF5cdtdO+vpP/+vrx/ce5vG9h2lsmMKhTVdXsGWl4ysNM7MS2X37VVyzeA5NU/P/tTZNncKaxXPYfcdVFW5Z6ThpmJmVyKwZTUxvbKCv/zSNDVPo6z/N9MYGZk1vqnTTSsbdU2ZmJfTeB33csOxSvrr0Ep7Yd5ieOhsMV0SMvIN0MfAo8AngNLAlIv5S0kzgaWA+8Bbw5Yg4lspsBNYBp4A/iYjnU3wJ8AgwDXgOuC0iQlJj+h1LgP8HfCUi3kpl2oC7UnM2RcTWkdqby+Wio6Mj+7+AmZkh6UBE5EbbL0v3VD/wnyPi08By4FZJi4ANwK6IWAjsSq9JP2sFLgdWA9+VdE6q6wFgPbAwPVan+DrgWER8Evg2cH+qayZwN7AMWArcLak5Q5vNzGwCjJo0IuJoRPwobZ8A3gDmAmuAgU/9W4G1aXsN8FRE9EXEm0AXsFTSbGBGROyJ/OXNo0PKDNS1HVghScAqoD0ietNVTDtnEo2ZmZVZUQPhkuYDVwJ7gYsi4ijkEwswK+02F3i7oNiRFJubtofGB5WJiH7gfeCCEeoyM7MKyJw0JP0G8DfANyPi+Ei7DhOLEeJjLVPYtvWSOiR19PT0jNA0MzMbj0xJQ9JU8gnj+xHxtyn8bupyIj13p/gR4OKC4vOAd1J83jDxQWUkNQDnA70j1DVIRGyJiFxE5FpaWrIckpmZjcGoSSONLTwEvBER/73gRzuAtrTdBjxbEG+V1ChpAfkB732pC+uEpOWpzhuHlBmo6zrgpTTu8TywUlJzGgBfmWJmZlYBWabcfgHYDbxKfsotwLfIj2tsAy4BDgPXR0RvKnMncBP5mVffjIidKZ7jzJTbncA30pTbJuAx8uMlvUBrRPwslbkp/T6AP4uIh0dpbw/w84zHXy0uBN6rdCPGycdQHXwM1aPWjuPSiBi1q2bUpGETT1JHlvnR1czHUB18DNWjXo5jKC8jYmZmmTlpmJlZZk4a1WFLpRtQAj6G6uBjqB71chyDeEzDzMwy85WGmZll5qQxAST9laRuSa8VxH5L0h5Jr0r6n5JmpPjHJD2c4j+W9LsFZX4g6ZCkV9Jj1jC/bqKO4WJJ/0fSG5IOSrotxWdKapfUmZ6bC8pslNSV2ryqIL4kHV+XpM3pPp1aO4aKnItij0HSBWn/DyR9Z0hdNXEeRjmGmnlPSPp9SQfSv/kBSV8sqKsi56IkIsKPEj+A3wE+B7xWENsP/Lu0fRNwb9q+FXg4bc8CDgBT0usfALkKHcNs4HNpezrwz8Ai4M+BDSm+Abg/bS8Cfgw0AguAnwLnpJ/tA36b/LIwO4Gra/AYKnIuxnAM5wFfAL4OfGdIXbVyHkY6hlp6T1wJzEnbVwC/qPS5KMXDVxoTICL+nvxNioUuA/4+bbcDf5i2F5FfWp6I6AZ+BVR8bneUZ3XjmjiGcrT1bIo9hoj4dUT8X2DQN//U0nk42zFU2hiO4+WIGFj26CDQpPxKGRU7F6XgpFE+rwHXpO3rObOm1o+BNZIalF92ZQmD19t6OF2G/5dKXcJq4lY3LptxHsOAip6LjMdwNrV0HkZTK++JQn8IvBwRfVTJuRgrJ43yuYn8F1gdIH9p+y8p/lfk/2g6gL8A/pH88isAN0TEZ4B/mx5fK2uLmfDVjcuiBMcAFT4XRRzDWasYJlat52EktfSeGNj/cvJfLPfHA6FhdquZaaxOGmUSET+JiJURsQR4knx/ORHRHxF/GhGLI2IN8HGgM/3sF+n5BPAEZe4q0cSvbjzhSnQMFT0XRR7D2dTSeTirGntPIGke8AxwY0T8NIUrei7Gy0mjTAZmeUiaQv47z/9Hen2upPPS9u8D/RHxeuquujDFpwJ/QL6Lq1ztLcfqxjVxDJU8F2M4hmHV2Hk4Wz019Z6Q9HHgfwEbI+IfBnau5LkoiUqPxNfjg/yVxFHgQ/KfKtYBt5GfbfHPwH2cubFyPnCI/KDai+RXmoT8DJIDwD+RH0T7S9JMnjIdwxfIXzL/E/BKevx78t+ouIv81dAuYGZBmTvJX0EdomA2CPmB/dfSz74zcOy1cgyVPBdjPIa3yE/E+CD9/S2qwfPwkWOotfcE+Q+Hvy7Y9xVgViXPRSkeviPczMwyc/eUmZll5qRhZmaZOWmYmVlmThpmZpaZk4aZmWXmpGFmZpk5aZiZWWZOGmZmltn/B3v28ZbrUIyxAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "yearly_incidence.plot(style='*')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Une liste triée permet de plus facilement répérer les valeurs les plus élevées (à la fin)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 31,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "2020 221186\n",
+ "2023 366227\n",
+ "2021 376290\n",
+ "2002 516689\n",
+ "2018 542312\n",
+ "2017 551041\n",
+ "1996 564901\n",
+ "2019 584066\n",
+ "2015 604382\n",
+ "2000 617597\n",
+ "2001 619041\n",
+ "2012 624573\n",
+ "2005 628464\n",
+ "2006 632833\n",
+ "2022 641397\n",
+ "2011 642368\n",
+ "1993 643387\n",
+ "1995 652478\n",
+ "1994 661409\n",
+ "1998 677775\n",
+ "1997 683434\n",
+ "2014 685769\n",
+ "2013 698332\n",
+ "2007 717352\n",
+ "2008 749478\n",
+ "1999 756456\n",
+ "2003 758363\n",
+ "2004 777388\n",
+ "2016 782114\n",
+ "2010 829911\n",
+ "1992 832939\n",
+ "2009 842373\n",
+ "dtype: int64"
+ ]
+ },
+ "execution_count": 31,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "yearly_incidence.sort_values()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Enfin, un histogramme montre bien que les épidémies fortes, qui touchent environ 10% de la population\n",
+ " française, sont assez rares: il y en eu trois au cours des 35 dernières années."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 32,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 32,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEICAYAAABPgw/pAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAEuVJREFUeJzt3X2wXHV9x/H3l0Q0cCGigUsbtKFIqZSolGvxYUrvBXVQqFa0VUQLHW3s+ERtOg51QLT1Ia3iaB1oJyqCol4V7MiD9WHUq+IDkoBjwIhQQSQoikr0UgQC3/7xO5feXBOSu2dzd89v3q+ZTM6e3T37/d6z+9mzv3PObmQmkqTu223QBUiS+sNAl6RKGOiSVAkDXZIqYaBLUiUMdEmqhIEuSZUw0CWpEga6JFVi8UI+2LJly3LFihVbzbvzzjvZc889F7KMvrOH4WAPw8Ee+m/9+vW3Z+a+O7rdggb6ihUrWLdu3VbzpqamGB8fX8gy+s4ehoM9DAd76L+I+OHO3M4hF0mqhIEuSZUw0CWpEga6JFXCQJekSuww0CPi3Ij4aURcM2veIyLi8xFxffP/Pru2TEnSjuzMFvp5wLFz5p0GfCEzDwa+0FyWJA3QDgM9M78C/GLO7OcA5zfT5wN/0ee6JEnzFDvzm6IRsQK4NDMPay7fkZkPn3X9LzNzm8MuEbEKWAUwOjp6xOTk5FbXT09PMzIy0mv9Q8EehkNXe9iwafMD06NL4La7FuZxVy5fukuW29X1MNuw9TAxMbE+M8d2dLtdfqZoZq4F1gKMjY3l3LOvhu2MrF7Yw3Doag+nnHbZA9OrV27hrA0LcwL3TSeN75LldnU9zNbVHno9yuW2iPgdgOb/n/avJElSL3oN9IuBk5vpk4FP9accSVKvduawxY8C3wAOiYhbIuKlwBrg6RFxPfD05rIkaYB2OFiXmSdu56pj+lyLJKkFzxSVpEoY6JJUCQNdkiphoEtSJQx0SaqEgS5JlTDQJakSBrokVcJAl6RKGOiSVAkDXZIqYaBLUiUMdEmqhIEuSZUw0CWpEga6JFXCQJekShjoklQJA12SKmGgS1IlDHRJqoSBLkmVMNAlqRIGuiRVwkCXpEoY6JJUCQNdkiphoEtSJQx0SaqEgS5JlTDQJakSBrokVaJVoEfEayPi2oi4JiI+GhEP61dhkqT56TnQI2I58BpgLDMPAxYBL+xXYZKk+Wk75LIYWBIRi4E9gFvblyRJ6kXPgZ6Zm4B3ADcDPwY2Z+bn+lWYJGl+IjN7u2PEPsBFwAuAO4BPABdm5gVzbrcKWAUwOjp6xOTk5FbLmZ6eZmRkpKcahoU9DIeu9rBh0+YHpkeXwG13Lczjrly+dJcst6vrYbZh62FiYmJ9Zo7t6HaLWzzG04AbM/NnABHxSeApwFaBnplrgbUAY2NjOT4+vtVCpqammDuva+xhOHS1h1NOu+yB6dUrt3DWhjYvy51300nju2S5XV0Ps3W1hzZj6DcDT4qIPSIigGOAjf0pS5I0X23G0K8ALgSuAjY0y1rbp7okSfPU6rNdZp4JnNmnWiRJLXimqCRVwkCXpEoY6JJUCQNdkiphoEtSJQx0SaqEgS5JlTDQJakSBrokVcJAl6RKGOiSVAkDXZIqYaBLUiUMdEmqhIEuSZUw0CWpEga6JFXCQJekShjoklQJA12SKmGgS1IlDHRJqoSBLkmVMNAlqRIGuiRVwkCXpEoY6JJUCQNdkiphoEtSJQx0SaqEgS5JlTDQJakSBrokVaJVoEfEwyPiwoj4XkRsjIgn96swSdL8LG55/3cDn8nM50fE7sAefahJktSDngM9IvYGjgJOAcjMe4B7+lOWJGm+IjN7u2PEE4C1wHeBxwPrgVMz8845t1sFrAIYHR09YnJycqvlTE9PMzIy0lMNw8IehkNXe9iwafMD06NL4La7BlhMH+xMDyuXL12YYno0bM+liYmJ9Zk5tqPbtQn0MeCbwFMz84qIeDfwq8w8Y3v3GRsby3Xr1m01b2pqivHx8Z5qGBb2MBy62sOK0y57YHr1yi2ctaHtSOhg7UwPN605boGq6c2wPZciYqcCvc1O0VuAWzLziubyhcAft1ieJKmFngM9M38C/CgiDmlmHUMZfpEkDUDbz3avBj7cHOHyA+Bv2pckSepFq0DPzG8DOxzXkSTtep4pKkmVMNAlqRIGuiRVwkCXpEoY6JJUCQNdkiphoEtSJQx0SaqEgS5JlTDQJakSBrokVcJAl6RKGOiSVAkDXZIqYaBLUiUMdEmqhIEuSZUw0CWpEga6JFXCQJekShjoklQJA12SKmGgS1IlDHRJqoSBLkmVMNAlqRIGuiRVwkCXpEoY6JJUCQNdkiphoEtSJQx0SapE60CPiEURcXVEXNqPgiRJvenHFvqpwMY+LEeS1EKrQI+IA4DjgPf1pxxJUq8iM3u/c8SFwNuAvYB/zMzjt3GbVcAqgNHR0SMmJye3un56epqRkZGeaxgG9jAc2vSwYdPmPlfTm9ElcNtdg66iHXvYtpXLl/Z834mJifWZObaj2y3u9QEi4njgp5m5PiLGt3e7zFwLrAUYGxvL8fGtbzo1NcXceV1jD8OhTQ+nnHZZf4vp0eqVWzhrQ88vy6FgD9t200njfV3etrQZcnkq8OyIuAmYBI6OiAv6UpUkad56DvTM/KfMPCAzVwAvBL6YmS/uW2WSpHnxOHRJqkRfBokycwqY6seyJEm9cQtdkiphoEtSJQx0SaqEgS5JlTDQJakSBrokVcJAl6RKGOiSVAkDXZIqYaBLUiUMdEmqhIEuSZUw0CWpEga6JFXCQJekShjoklQJA12SKmGgS1IlDHRJqoSBLkmVMNAlqRIGuiRVwkCXpEoY6JJUCQNdkiphoEtSJQx0SaqEgS5JlTDQJakSBrokVcJAl6RKGOiSVAkDXZIq0XOgR8SjIuJLEbExIq6NiFP7WZgkaX4Wt7jvFmB1Zl4VEXsB6yPi85n53T7VJkmah5630DPzx5l5VTP9a2AjsLxfhUmS5icys/1CIlYAXwEOy8xfzbluFbAKYHR09IjJycmt7js9Pc3IyEjrGgZpV/WwYdPmvi9ze0aXwG13lemVy5cu2OP2U5v1sJB/6wczez10lT1sW5vX1cTExPrMHNvR7VoHekSMAF8G3pKZn3yw246NjeW6deu2mjc1NcX4+HirGgZtV/Ww4rTL+r7M7Vm9cgtnbSgjcDetOW7BHref2qyHhfxbP5jZ66Gr7GHb2ryuImKnAr3VUS4R8RDgIuDDOwpzSdKu1eYolwDeD2zMzHf2ryRJUi/abKE/FXgJcHREfLv596w+1SVJmqeeB4ky83Ig+liLJKkFzxSVpEoY6JJUCQNdkiphoEtSJQx0SaqEgS5JlTDQJakSBrokVcJAl6RKGOiSVAkDXZIqYaBLUiUMdEmqhIEuSZUw0CWpEp354b9B/uZjV39js4varOfVK7dwypD8Nqg0CG6hS1IlDHRJqoSBLkmVMNAlqRIGuiRVwkCXpEoY6JJUCQNdkiphoEtSJQx0SaqEgS5JlTDQJakSBrokVcJAl6RKGOiSVAkDXZIq0SrQI+LYiLguIm6IiNP6VZQkaf56DvSIWAScDTwTOBQ4MSIO7VdhkqT5abOF/ifADZn5g8y8B5gEntOfsiRJ8xWZ2dsdI54PHJuZL2suvwQ4MjNfNed2q4BVzcVDgOvmLGoZcHtPRQwPexgO9jAc7KH/fi8z993Rjdr8SHRsY95vvTtk5lpg7XYXErEuM8da1DFw9jAc7GE42MPgtBlyuQV41KzLBwC3titHktSrNoF+JXBwRBwYEbsDLwQu7k9ZkqT56nnIJTO3RMSrgM8Ci4BzM/PaHha13eGYDrGH4WAPw8EeBqTnnaKSpOHimaKSVAkDXZIqYaBLUiU6GegRcXREHDjoOtroeg9dr39GDX3Yw+ANS/2d2inafFfMJHAHcD9wZmZ+ebBVzU/Xe+h6/TNq6MMeBm/Y6h/qLfSIOCAi9p416wXARZl5FOWPeGJEPHkw1e2crvcwn/ojYltnDw+Frq8HsIdhMOz1D2WgR8RjI+LTwOXAP0fEzJd+/QbYo5n+OOW7Fp40jEHS9R56qT+H8ONe19cD2MMw6Er9QxPoEbHnrItPAG7JzBXAF4F3NPN/AdwdEXtl5i+A7wOjwIoFLHW7ut7Dg9T/JX67/pGm/usZkvpndH09gD0wBD10sf6BBnpE7BMR50XElcCaiNi3eWd7HPC1ZqvvYuCOiDiO8sfaC1jZLOJ6yrei3TOI+qH7PTxI/Stn1f+pbdT/uGYR3x9k/TO6vh7AHppFDOvroRP1D3oL/ShgC/Asyrc3vh7Ym1LX/rM+wp8PvAj4FvBryo9qkJnfAI4GfrWwZW+l6z1sr/5FdKP+GV1fD2APw9BDt+vPzF3+jxIOLwe+TPlu9GXN/I8Dr2mmDwTWNNc/kTJWtai5bgT4WbOc5cBG4FXAB4BzgD3soe76a+rDHgbfQ9fr396/hdpCPx54NvAm4MnAvzXzPw88pZn+EfBV4JmZeSXl3XECIDOngSuAJ2bmJuAllHGqnwCnZ+b/2kP19dfUhz0Mvoeu179NbX7gYiszRzlExBMpH0W+ClyWmXcDfwD8IDO/GBE3Am+PiGcA64HnRsSyzLw9Iq4H7oyIRwPvAV4cEftRvmv955SPN2TmOmBdv2qvpYeu119bH00v9uDrYcH0ZQt91h/uKOBcyqE8TwPe1tzkfuD7EbEkM2+kfDx5HGXs6VbKsZwA91E+wuwGXET5CsuTgCOAtZl5fz/q3U4Pi5oe/ozysalTPTR1ZUSM09F10PSxd9f7iIhHNv8/BTivoz3sFxGPjIgxynhxp3qIiN27/HruWa9jNZRjL/8O+Ajwt8BDgL8HXtlcvw/wHeBwyh9nDbCiue54yh9mWTO9AVhK2ZnwaWD3WY+zW7/HmWYte0/gZZQVtZqy86NrPewFXEb5PnqA13ap/lnPpZOBL1BO0uhUH/z/Gdd/SRlnnaL8fm7Xnkt7AqdQhh02A8d1qQdKBr0CuAT4D+AxwKldqb8f/3raQo+I/YFLgXHgQ5SdBidQxqK2AGTmL4FPAa9pniD7AY9tFvEV4M+AezLzUuD9wIXA2ZStgXtnHit33Tv4npQAORp4L/AM4HmUnR/3d6GHxhLgocBBEbEMOIiyRdGJ+iPiIcC1wPOBt2fm85qrDp/1+EPdR2ZmRCwF/gp4V2aOZ+Z1lK24TvQQEY+hDEkcA5wObAJupuwY7Mrz6ZWU1/O7KL9vfEJz+b6O1N9ej++ES4AjZ10+hbJT4WTgW7Pm/y5wazP9Ssqpsfs0978EePSs2y5b6Hcz4OGzpl9HWdEndayHk4G3A2cALwX+HLiyK/U3j/tJ4KQ5814AXNGVPihbhv/STM9ssZ/QlR4oof3QWZfPpbzJPqdDPVwC/HUz/VLg1c3zqDOv57b/eh1D/w3wreaAeygfY47MzPMpW4r7A2TmrcC1EXFkZp4N3AB8jPID05dn5s0zC8zM23uspWeZeUdE7B0R51GGXJZRVupBETE6zD3M+tvvBvwPZSv36My8BDhw2Ouf41zgzIg4KyKmIuINwDcpv1m7X1PbsPdxO/CnEXESsD4izqdsGf5h88lpqHvIzPuy7Cyc2QcQlC+cuoSyHrrwmv5v4OSI+ATwRuDxwDVN/ft2oP72Wr4jzmyJnA+c2kx/CPjXZvoRwPto3vUoY1yHAQ8b9DvZnD5eQflouZYypv514A2UJ/VQ9wB8grJ1tZRyTO3plCfxGR1bB5+lnMTxKMoL7FTgGx1aDwc39f47ZYvvRcA7Kccqv47yxjvUPczp52rghGb6gq68ppvX77mUjbM3AmcC1zXPrU6tg17+tTrKJTMzIg4A9qe8O9L8EYmISylj1IuyedfLzHsz85rM/E2bx+23zDwny57ucyjjnv9J+Qh2MUPcQ0SMULYM3wt8hrKX/kjgRGCfiLiEIa5/judm5lsz80fAWymHlb2HDqyHxs2U070XZxmrvbSZdyllp28XeiAiZjLhcspORYC3lKs68Xw6FJjKsnX9AcrGzkfpzvOolX4ch344ZY/wjRHxMspHl9dTxq6+l5lX9eExFsrPKTsVT8/MD0bEi4FrM/PqAde1PVsoYXEvZcv8PuD1mbkB+IcO1P+A3PpEjDsogX5GZn6kC31k5t0RsQZ4czNrN8pBAmsy8+ou9ABlh19EzHx74A3NvI3A65rhpO8Oaw8RsYiSP0cBHwTupBzk8IrMvLEr66CN1j9wERFfA34fuIly/OabMvM77UtbGM3RCcdQPiIfShl2OTsz733QOw6h5uSHE4DJzPzJoOuZj4h4KHAs5Yy7P6IcdnZOZm4ZaGHzFBFvobweDgc+R/nBg18Otqr5i4jrgDdk5sdmzjMZdE07IyIOoryG76Gsh/8C3pzlzM7qtQr05pCzM4EbgQuy2anSJRGxmPKdDndTeujcR69my+T+rrzoticiXk45ZPRDXVwPMyLiEOCHXexh1kmCT6DsaN/StedVs2FzMPD1zLxr0PUspE79BJ0kafsG/fW5kqQ+MdAlqRIGuiRVwkCXpEoY6JJUCQNdkiphoEtSJf4Pm1ZPCOJC1cIAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "yearly_incidence.hist(xrot=20)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.6.4"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 1
+}