diff --git a/module2/exo2/exercice_fr.Rmd b/module2/exo2/exercice_fr.Rmd index 7eece5e296bb586e88166aa8a263ca75b44c2b9e..26f9edc8f5a748d12318a8e403ef59f77bc2fd9e 100644 --- a/module2/exo2/exercice_fr.Rmd +++ b/module2/exo2/exercice_fr.Rmd @@ -1,7 +1,7 @@ --- -title: "Votre titre" -author: "Votre nom" -date: "La date du jour" +title: "Exo calcul simple" +author: "Emmanuel Guiffart" +date: "Dimanche de Pentecôter" output: html_document --- @@ -10,24 +10,55 @@ output: html_document knitr::opts_chunk$set(echo = TRUE) ``` -## Quelques explications +## Calculs sur échantillon -Ceci est un document R markdown que vous pouvez aisément exporter au format HTML, PDF, et MS Word. Pour plus de détails sur R Markdown consultez . +Calculer la moyenne et l'écart-type, le min, la médiane et le max des données suivantes : -Lorsque vous cliquerez sur le bouton **Knit** ce document sera compilé afin de ré-exécuter le code R et d'inclure les résultats dans un document final. Comme nous vous l'avons montré dans la vidéo, on inclue du code R de la façon suivante: -```{r cars} -summary(cars) +```{r} +data<-c(14.0, 7.6, 11.2, 12.8, 12.5, 9.9, 14.9, 9.4, 16.9, 10.2, 14.9, 18.1, 7.3, 9.8, 10.9,12.2, 9.9, 2.9, 2.8, 15.4, 15.7, 9.7, 13.1, 13.2, 12.3, 11.7, 16.0, 12.4, 17.9, 12.2, 16.2, 18.7, 8.9, 11.9, 12.1, 14.6, 12.1, 4.7, 3.9, 16.9, 16.8, 11.3, 14.4, 15.7, 14.0, 13.6, 18.0, 13.6, 19.9, 13.7, 17.0, 20.5, 9.9, 12.5, 13.2, 16.1, 13.5, 6.3, 6.4, 17.6, 19.1, 12.8, 15.5, 16.3, 15.2, 14.6, 19.1, 14.4, 21.4, 15.1, 19.6, 21.7, 11.3, 15.0, 14.3, 16.8, 14.0, 6.8, 8.2, 19.9, 20.4, 14.6, 16.4, 18.7, 16.8, 15.8, 20.4, 15.8, 22.4, 16.2, 20.3, 23.4, 12.1, 15.5, 15.4, 18.4, 15.7, 10.2, 8.9, 21.0) ``` -Et on peut aussi aisément inclure des figures. Par exemple: +Voilà pour la *moyenne* -```{r pressure, echo=FALSE} -plot(pressure) +```{r} +mean(data) ``` -Vous remarquerez le paramètre `echo = FALSE` qui indique que le code ne doit pas apparaître dans la version finale du document. Nous vous recommandons dans le cadre de ce MOOC de ne pas utiliser ce paramètre car l'objectif est que vos analyses de données soient parfaitement transparentes pour être reproductibles. +Voilà pour la *max* + +```{r} +max(data) +``` + +Voilà pour la *min* + +```{r} +min(data) +``` + +Voilà pour la *médiane* + +```{r} +quantile(data,0.5) +``` + +Voilà pour la *écart type* + +```{r} +sd(data) +``` + +## Graph 'hics + +et voila le premier graph plot: +```{r} +plot(data,type="l") +``` + +Tiens voila maintenant un histogramme +```{r} +hist(data) +``` -Comme les résultats ne sont pas stockés dans les fichiers Rmd, pour faciliter la relecture de vos analyses par d'autres personnes, vous aurez donc intérêt à générer un HTML ou un PDF et à le commiter. -Maintenant, à vous de jouer! Vous pouvez effacer toutes ces informations et les remplacer par votre document computationnel.