{ "cells": [ { "cell_type": "code", "execution_count": 57, "metadata": {}, "outputs": [ { "data": { "text/html": [ "" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Unnamed: 0YearWheatWages
01156541.05.00
12157045.05.05
23157542.05.08
34158049.05.12
45158541.55.15
\n", "
" ], "text/plain": [ " Unnamed: 0 Year Wheat Wages\n", "0 1 1565 41.0 5.00\n", "1 2 1570 45.0 5.05\n", "2 3 1575 42.0 5.08\n", "3 4 1580 49.0 5.12\n", "4 5 1585 41.5 5.15" ] }, "execution_count": 57, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from IPython.core.display import display, HTML\n", "display(HTML(\"\"))\n", "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "plt.rcParams[\"figure.figsize\"] = (20,10)\n", "data = pd.read_csv('https://raw.githubusercontent.com/vincentarelbundock/Rdatasets/master/csv/HistData/Wheat.csv')\n", "data = data.dropna()\n", "data.head()" ] }, { "cell_type": "code", "execution_count": 78, "metadata": {}, "outputs": [ { "ename": "AttributeError", "evalue": "'NoneType' object has no attribute 'update'", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 8\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 9\u001b[0m \u001b[0max2\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0max1\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtwinx\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 10\u001b[0;31m \u001b[0max1\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbar\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mxax\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0myaxwages\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'g-'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 11\u001b[0m \u001b[0max1\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mset_ylim\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m120\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 12\u001b[0m \u001b[0max2\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mxax\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0myaxwheat\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'b-'\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m# ax1 plotted twice in order to have same scale for both wages and wheat\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/matplotlib/__init__.py\u001b[0m in \u001b[0;36minner\u001b[0;34m(ax, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1865\u001b[0m \u001b[0;34m\"the Matplotlib list!)\"\u001b[0m \u001b[0;34m%\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mlabel_namer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfunc\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__name__\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1866\u001b[0m RuntimeWarning, stacklevel=2)\n\u001b[0;32m-> 1867\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mfunc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0max\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1868\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1869\u001b[0m inner.__doc__ = _add_data_doc(inner.__doc__,\n", "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/matplotlib/axes/_axes.py\u001b[0m in \u001b[0;36mbar\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 2224\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mxaxis\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2225\u001b[0m \u001b[0mx\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconvert_xunits\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2226\u001b[0;31m \u001b[0mwidth\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconvert_xunits\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mwidth\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2227\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mxerr\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2228\u001b[0m \u001b[0mxerr\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconvert_xunits\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mxerr\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/matplotlib/artist.py\u001b[0m in \u001b[0;36mconvert_xunits\u001b[0;34m(self, x)\u001b[0m\n\u001b[1;32m 189\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0max\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0max\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mxaxis\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 190\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 191\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0max\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mxaxis\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconvert_units\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 192\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 193\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mconvert_yunits\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/matplotlib/axis.py\u001b[0m in \u001b[0;36mconvert_units\u001b[0;34m(self, x)\u001b[0m\n\u001b[1;32m 1524\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1525\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1526\u001b[0;31m \u001b[0mret\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconverter\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconvert\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0munits\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1527\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mret\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1528\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/matplotlib/category.py\u001b[0m in \u001b[0;36mconvert\u001b[0;34m(value, unit, axis)\u001b[0m\n\u001b[1;32m 63\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 64\u001b[0m \u001b[0;31m# force an update so it also does type checking\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 65\u001b[0;31m \u001b[0munit\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mupdate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvalues\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 66\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 67\u001b[0m str2idx = np.vectorize(unit._mapping.__getitem__,\n", "\u001b[0;31mAttributeError\u001b[0m: 'NoneType' object has no attribute 'update'" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAJDCAYAAABHfa5mAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAGz5JREFUeJzt3V+o5/dd5/HXe2ccMEe3EetqdyZiWOKfLDRLG2MvFOsWMcnFDoILScVAEIbgRrxM2Au96I1eCFL6JwwlhN6Yi7VoXKphb7QLMZgoNW1aEoYUktkUQq1UOCOEad97cX51fzl7Zs538j6/36FnHg84kO/3+8n38/ldfJjhOd/v71R3BwAAAADerX9z3AsAAAAA4HubwAQAAADAiMAEAAAAwIjABAAAAMCIwAQAAADAiMAEAAAAwMihgamqnqyqt6rqy9e4XlX18aq6VFUvVdUHjn6ZAAAAAExtqvMseYLpqST3Xuf6fUnuWP1cSPLpJRMDAAAAsHVPZQOd59DA1N1fSPLN6ww5n+Szvef5JLdW1fuWTA4AAADA9myq8xzFdzCdTfLG2vHl1TkAAAAAvre8q85z+ggmrgPO9YEDqy5k7/GqJPngLbfccgTTAwAAAJAkV65c6SR/v3bqYndfvIFbLO48644iMF1Octva8bkkbx40cPWBLibJzs5O7+7uHsH0AAAAACRJVf1Ld989uMXizrPuKF6ReybJQ6tvGf9Qkm9199eP4L4AAAAAbNe76jyHPsFUVX+c5MNJ3ltVl5P8XpLvS5LufiLJ55Pcn+RSkitJHn63nwAAAACAzdlU56nuQ1+j2wivyAEAAAAcraq60t072573KF6RAwAAAOAmJjABAAAAMCIwAQAAADAiMAEAAAAwIjABAAAAMCIwAQAAADAiMAEAAAAwIjABAAAAMCIwAQAAADAiMAEAAAAwIjABAAAAMCIwAQAAADAiMAEAAAAwIjABAAAAMCIwAQAAADAiMAEAAAAwIjABAAAAMCIwAQAAADAiMAEAAAAwIjABAAAAMCIwAQAAADAiMAEAAAAwIjABAAAAMCIwAQAAADAiMAEAAAAwIjABAAAAMCIwAQAAADAiMAEAAAAwIjABAAAAMCIwAQAAADAiMAEAAAAwIjABAAAAMCIwAQAAADAiMAEAAAAwIjABAAAAMCIwAQAAADAiMAEAAAAwIjABAAAAMCIwAQAAADAiMAEAAAAwIjABAAAAMCIwAQAAADAiMAEAAAAwIjABAAAAMCIwAQAAADAiMAEAAAAwIjABAAAAMCIwAQAAADAiMAEAAAAwIjABAAAAMCIwAQAAADAiMAEAAAAwIjABAAAAMCIwAQAAADAiMAEAAAAwIjABAAAAMCIwAQAAADAiMAEAAAAwIjABAAAAMCIwAQAAADAiMAEAAAAwIjABAAAAMCIwAQAAADAiMAEAAAAwIjABAAAAMCIwAQAAADAiMAEAAAAwIjABAAAAMCIwAQAAADAiMAEAAAAwIjABAAAAMCIwAQAAADAiMAEAAAAwIjABAAAAMCIwAQAAADAiMAEAAAAwIjABAAAAMCIwAQAAADAiMAEAAAAwIjABAAAAMCIwAQAAADAiMAEAAAAwIjABAAAAMCIwAQAAADAiMAEAAAAwIjABAAAAMCIwAQAAADAiMAEAAAAwIjABAAAAMCIwAQAAADAiMAEAAAAwIjABAAAAMCIwAQAAADAiMAEAAAAwIjABAAAAMCIwAQAAADAiMAEAAAAwIjABAAAAMCIwAQAAADAiMAEAAAAwsigwVdW9VfVKVV2qqscPuP6eqvrzqvqHqnq5qh4++qUCAAAAMLWJzlPdfdikp5K8muSXk1xO8kKSB7v7K2tj/nuS93T3Y1X1I0leSfJj3f32te67s7PTu7u7h60PAAAAgIWq6kp371zn+kY6z5InmO5Jcqm7X1vd6Okk5/eN6SQ/WFWV5AeSfDPJ1QX3BgAAAGB7NtJ5lgSms0neWDu+vDq37hNJfibJm0m+lOR3uvs7C+4NAAAAwPZspPMsCUx1wLn979X9SpIvJvn3Sf5Tkk9U1b/9/25UdaGqXqyqF69e9YATAAAAwBE7/d32svq5sO/6kXWed0y6YGGXk9y2dnwuewVr3cNJfr/3vtDpUlV9LclPJ/nbd6y2+2KSi8nedzAtmBsAAACA5a52993XuX5knWfdkieYXkhyR1XdXlVnkjyQ5Jl9Y15P8pEkqaofTfJTSV5bcG8AAAAAtmcjnefQJ5i6+2pVPZrk2SSnkjzZ3S9X1SOr608k+ViSp6rqS9l71Oqx7v7GjXw6AAAAADZrU52n9p522r6dnZ3e3d09lrkBAAAATqKqutLdO9ued8krcgAAAABwTQITAAAAACMCEwAAAAAjAhMAAAAAIwITAAAAACMCEwAAAAAjAhMAAAAAIwITAAAAACMCEwAAAAAjAhMAAAAAIwITAAAAACMCEwAAAAAjAhMAAAAAIwITAAAAACMCEwAAAAAjAhMAAAAAIwITAAAAACMCEwAAAAAjAhMAAAAAIwITAAAAACMCEwAAAAAjAhMAAAAAIwITAAAAACMCEwAAAAAjAhMAAAAAIwITAAAAACMCEwAAAAAjAhMAAAAAIwITAAAAACMCEwAAAAAjAhMAAAAAIwITAAAAACMCEwAAAAAjAhMAAAAAIwITAAAAACMCEwAAAAAjAhMAAAAAIwITAAAAACMCEwAAAAAjAhMAAAAAIwITAAAAACMCEwAAAAAjAhMAAAAAIwITAAAAACMCEwAAAAAjAhMAAAAAIwITAAAAACMCEwAAAAAjAhMAAAAAIwITAAAAACMCEwAAAAAjAhMAAAAAIwITAAAAACMCEwAAAAAjAhMAAAAAIwITAAAAACMCEwAAAAAjAhMAAAAAIwITAAAAACMCEwAAAAAjAhMAAAAAIwITAAAAACMCEwAAAAAjAhMAAAAAIwITAAAAACMCEwAAAAAjAhMAAAAAIwITAAAAACMCEwAAAAAjAhMAAAAAIwITAAAAACMCEwAAAAAjAhMAAAAAIwITAAAAACMCEwAAAAAjAhMAAAAAIwITAAAAACMCEwAAAAAjAhMAAAAAIwITAAAAACMCEwAAAAAjAhMAAAAAIwITAAAAACMCEwAAAAAjAhMAAAAAIwITAAAAACMCEwAAAAAjAhMAAAAAIwITAAAAACMCEwAAAAAjAhMAAAAAIwITAAAAACMCEwAAAAAjAhMAAAAAIwITAAAAACMCEwAAAAAjAhMAAAAAIwITAAAAACMCEwAAAAAjAhMAAAAAI4sCU1XdW1WvVNWlqnr8GmM+XFVfrKqXq+qvj3aZAAAAAByFTXSe6u7DJj2V5NUkv5zkcpIXkjzY3V9ZG3NrkueS3Nvdr1fVv+vut653352dnd7d3T1sfQAAAAAsVFVXunvnOtc30nmWPMF0T5JL3f1ad7+d5Okk5/eN+WiSz3X360ly2KQAAAAAHIuNdJ4lgelskjfWji+vzq37ySQ/VFV/VVV/V1UPLbgvAAAAANu1kc5zesHEdcC5/e/VnU7ywSQfSfL9Sf6mqp7v7lffcaOqC0kuJMmZM2cWTA0AAADADThdVS+uHV/s7otrx0fWefb/D4e5nOS2teNzSd48YMw3uns3yW5VfSHJXdl7p+//rXbvA11M9r6DacHcAAAAACx3tbvvvs71I+s865a8IvdCkjuq6vaqOpPkgSTP7BvzZ0l+oapOV9UtSX4uyVcX3BsAAACA7dlI5zn0CabuvlpVjyZ5NsmpJE9298tV9cjq+hPd/dWq+sskLyX5TpLPdPeXb/ADAgAAALBBm+o81X08b6rt7Oz07u7uscwNAAAAcBJV1ZXu3tn2vEtekQMAAACAaxKYAAAAABgRmAAAAAAYEZgAAAAAGBGYAAAAABgRmAAAAAAYEZgAAAAAGBGYAAAAABgRmAAAAAAYEZgAAAAAGBGYAAAAABgRmAAAAAAYEZgAAAAAGBGYAAAAABgRmAAAAAAYEZgAAAAAGBGYAAAAABgRmAAAAAAYEZgAAAAAGBGYAAAAABgRmAAAAAAYEZgAAAAAGBGYAAAAABgRmAAAAAAYEZgAAAAAGBGYAAAAABgRmAAAAAAYEZgAAAAAGBGYAAAAABgRmAAAAAAYEZgAAAAAGBGYAAAAABgRmAAAAAAYEZgAAAAAGBGYAAAAABgRmAAAAAAYEZgAAAAAGBGYAAAAABgRmAAAAAAYEZgAAAAAGBGYAAAAABgRmAAAAAAYEZgAAAAAGBGYAAAAABgRmAAAAAAYEZgAAAAAGBGYAAAAABgRmAAAAAAYEZgAAAAAGBGYAAAAABgRmAAAAAAYEZgAAAAAGBGYAAAAABgRmAAAAAAYEZgAAAAAGBGYAAAAABgRmAAAAAAYEZgAAAAAGBGYAAAAABgRmAAAAAAYEZgAAAAAGBGYAAAAABgRmAAAAAAYEZgAAAAAGBGYAAAAABgRmAAAAAAYEZgAAAAAGBGYAAAAABgRmAAAAAAYEZgAAAAAGBGYAAAAABgRmAAAAAAYEZgAAAAAGBGYAAAAABgRmAAAAAAYEZgAAAAAGBGYAAAAABgRmAAAAAAYEZgAAAAAGBGYAAAAABgRmAAAAAAYEZgAAAAAGBGYAAAAABgRmAAAAAAYEZgAAAAAGBGYAAAAABgRmAAAAAAYEZgAAAAAGBGYAAAAABgRmAAAAAAYEZgAAAAAGBGYAAAAABgRmAAAAAAYEZgAAAAAGBGYAAAAABgRmAAAAAAYEZgAAAAAGBGYAAAAABgRmAAAAAAYWRSYqureqnqlqi5V1ePXGfezVfXtqvq1o1siAAAAAEdlE53n0MBUVaeSfDLJfUnuTPJgVd15jXF/kOTZw+4JAAAAwPZtqvMseYLpniSXuvu17n47ydNJzh8w7reT/EmSt5ZMDAAAAMDWbaTzLAlMZ5O8sXZ8eXXuX1XV2SS/muSJJZMCAAAAcCw20nlOLxhTB5zrfcd/lOSx7v521UHD/3WBF5JcSJIzZ84sXSMAAAAAy5yuqhfXji9298W14yPrPO+YdMGYy0luWzs+l+TNfWPuTvL0atL3Jrm/qq5295++Y7V7H+hikuzs7OxfPAAAAAAzV7v77utcP7LOs25JYHohyR1VdXuS/5PkgSQfXR/Q3bd/97+r6qkk//N6kwIAAABwLDbSeQ4NTN19taoezd63hp9K8mR3v1xVj6yu+94lAAAAgO8Bm+o81X08b6rt7Oz07u7uscwNAAAAcBJV1ZXu3tn2vEt+ixwAAAAAXJPABAAAAMCIwAQAAADAiMAEAAAAwIjABAAAAMCIwAQAAADAiMAEAAAAwIjABAAAAMCIwAQAAADAiMAEAAAAwIjABAAAAMCIwAQAAADAiMAEAAAAwIjABAAAAMCIwAQAAADAiMAEAAAAwIjABAAAAMCIwAQAAADAiMAEAAAAwIjABAAAAMCIwAQAAADAiMAEAAAAwIjABAAAAMCIwAQAAADAiMAEAAAAwIjABAAAAMCIwAQAAADAiMAEAAAAwIjABAAAAMCIwAQAAADAiMAEAAAAwIjABAAAAMCIwAQAAADAiMAEAAAAwIjABAAAAMCIwAQAAADAiMAEAAAAwIjABAAAAMCIwAQAAADAiMAEAAAAwIjABAAAAMCIwAQAAADAiMAEAAAAwIjABAAAAMCIwAQAAADAiMAEAAAAwIjABAAAAMCIwAQAAADAiMAEAAAAwIjABAAAAMCIwAQAAADAiMAEAAAAwIjABAAAAMCIwAQAAADAiMAEAAAAwIjABAAAAMCIwAQAAADAiMAEAAAAwIjABAAAAMCIwAQAAADAiMAEAAAAwIjABAAAAMCIwAQAAADAiMAEAAAAwIjABAAAAMCIwAQAAADAiMAEAAAAwIjABAAAAMCIwAQAAADAiMAEAAAAwIjABAAAAMCIwAQAAADAiMAEAAAAwIjABAAAAMCIwAQAAADAiMAEAAAAwIjABAAAAMCIwAQAAADAiMAEAAAAwIjABAAAAMCIwAQAAADAiMAEAAAAwIjABAAAAMCIwAQAAADAiMAEAAAAwIjABAAAAMCIwAQAAADAiMAEAAAAwIjABAAAAMCIwAQAAADAiMAEAAAAwIjABAAAAMCIwAQAAADAiMAEAAAAwIjABAAAAMCIwAQAAADAiMAEAAAAwIjABAAAAMCIwAQAAADAiMAEAAAAwMiiwFRV91bVK1V1qaoeP+D6r1fVS6uf56rqrqNfKgAAAABTm+g8hwamqjqV5JNJ7ktyZ5IHq+rOfcO+luQXu/v9ST6W5OKSDwQAAADA9myq8yx5gumeJJe6+7XufjvJ00nOrw/o7ue6+59Wh88nObfgvgAAAABs10Y6z5LAdDbJG2vHl1fnruU3k/zFgvsCAAAAsF0b6TynF0xcB5zrAwdW/dJq4p+/xvULSS4kyZkzZxZMDQAAAMANOF1VL64dX+zu9VfcjqzzvGPSBQu7nOS2teNzSd48YNL3J/lMkvu6+x8PutHqA11Mkp2dnQMXDwAAAMC7drW7777O9SPrPOuWvCL3QpI7qur2qjqT5IEkz+yb9MeTfC7Jb3T3qwvuCQAAAMD2baTzHPoEU3dfrapHkzyb5FSSJ7v75ap6ZHX9iSS/m+SHk3yqqpLDaxkAAAAAW7apzlPdx/Om2s7OTu/u7h7L3AAAAAAnUVVd6e6dbc+75BU5AAAAALgmgQkAAACAEYEJAAAAgBGBCQAAAIARgQkAAACAEYEJAAAAgBGBCQAAAIARgQkAAACAEYEJAAAAgBGBCQAAAIARgQkAAACAEYEJAAAAgBGBCQAAAIARgQkAAACAEYEJAAAAgBGBCQAAAIARgQkAAACAEYEJAAAAgBGBCQAAAIARgQkAAACAEYEJAAAAgBGBCQAAAIARgQkAAACAEYEJAAAAgBGBCQAAAIARgQkAAACAEYEJAAAAgBGBCQAAAIARgQkAAACAEYEJAAAAgBGBCQAAAIARgQkAAACAEYEJAAAAgBGBCQAAAIARgQkAAACAEYEJAAAAgBGBCQAAAIARgQkAAACAEYEJAAAAgBGBCQAAAIARgQkAAACAEYEJAAAAgBGBCQAAAIARgQkAAACAEYEJAAAAgBGBCQAAAIARgQkAAACAEYEJAAAAgBGBCQAAAIARgQkAAACAEYEJAAAAgBGBCQAAAIARgQkAAACAEYEJAAAAgBGBCQAAAIARgQkAAACAEYEJAAAAgBGBCQAAAIARgQkAAACAEYEJAAAAgBGBCQAAAIARgQkAAACAEYEJAAAAgBGBCQAAAIARgQkAAACAEYEJAAAAgBGBCQAAAIARgQkAAACAEYEJAAAAgBGBCQAAAIARgQkAAACAEYEJAAAAgBGBCQAAAIARgQkAAACAEYEJAAAAgBGBCQAAAIARgQkAAACAEYEJAAAAgBGBCQAAAIARgQkAAACAEYEJAAAAgBGBCQAAAIARgQkAAACAEYEJAAAAgBGBCQAAAIARgQkAAACAEYEJAAAAgBGBCQAAAIARgQkAAACAEYEJAAAAgBGBCQAAAIARgQkAAACAEYEJAAAAgBGBCQAAAIARgQkAAACAEYEJAAAAgBGBCQAAAIARgQkAAACAEYEJAAAAgBGBCQAAAICRRYGpqu6tqleq6lJVPX7A9aqqj6+uv1RVHzj6pQIAAAAwtYnOc2hgqqpTST6Z5L4kdyZ5sKru3DfsviR3rH4uJPn0gs8DAAAAwBZtqvMseYLpniSXuvu17n47ydNJzu8bcz7JZ3vP80lurar3Lbg3AAAAANuzkc6zJDCdTfLG2vHl1bkbHQMAAADA8dpI5zm9YOI64Fy/izGpqgvZe7Tqu8dXFswPHK3TSa4e9yLgJmX/wfGw9+B42HtwPG6pqhfXji9298W14yPrPOuWBKbLSW5bOz6X5M13MSarD3QxSarqxe6+e8H8wBGy9+D42H9wPOw9OB72HhyPBXvvyDrPuiWvyL2Q5I6qur2qziR5IMkz+8Y8k+Sh1beMfyjJt7r76wvuDQAAAMD2bKTzHPoEU3dfrapHkzyb5FSSJ7v75ap6ZHX9iSSfT3J/kktJriR5+MY+GwAAAACbtqnOU93XfYVuY6rqwr53AIEtsPfg+Nh/cDzsPTge9h4cj+Pae8cWmAAAAAA4GZZ8BxMAAAAAXNPGA1NV3VtVr1TVpap6/IDrVVUfX11/qao+sOk1wc1gwd779dWee6mqnququ45jnXDSHLb31sb9bFV9u6p+bZvrg5Nqyd6rqg9X1Rer6uWq+uttrxFOqgV/73xPVf15Vf3Dav/5zl4Yqqonq+qtqvryNa5vvbVsNDBV1akkn0xyX5I7kzxYVXfuG3ZfkjtWPxeSfHqTa4KbwcK997Ukv9jd70/ysSTej4ehhXvvu+P+IHtfrAgMLdl7VXVrkk8l+S/d/R+T/NetLxROoIV/9v23JF/p7ruSfDjJH65+cxXw7j2V5N7rXN96a9n0E0z3JLnU3a9199tJnk5yft+Y80k+23ueT3JrVb1vw+uCk+7Qvdfdz3X3P60On09ybstrhJNoyZ97SfLbSf4kyVvbXBycYEv23keTfK67X0+S7rb/4Ggs2X+d5AerqpL8QJJvJrm63WXCydLdX8jeXrqWrbeWTQems0neWDu+vDp3o2OAG3Oj++o3k/zFRlcEN4dD915VnU3yq0me2OK64KRb8ufeTyb5oar6q6r6u6p6aGurg5Ntyf77RJKfSfJmki8l+Z3u/s52lgc3ra23ltObvHmSOuDc/l9bt2QMcGMW76uq+qXsBaaf3+iK4OawZO/9UZLHuvvbe/+QCxyBJXvvdJIPJvlIku9P8jdV9Xx3v7rpxcEJt2T//UqSLyb5z0n+Q5L/VVX/u7v/edOLg5vY1lvLpgPT5SS3rR2fy161vtExwI1ZtK+q6v1JPpPkvu7+xy2tDU6yJXvv7iRPr+LSe5PcX1VXu/tPt7NEOJGW/p3zG929m2S3qr6Q5K4kAhPMLNl/Dyf5/e7uJJeq6mtJfjrJ325niXBT2npr2fQrci8kuaOqbl99idsDSZ7ZN+aZJA+tvuH8Q0m+1d1f3/C64KQ7dO9V1Y8n+VyS3/Cvt3BkDt173X17d/9Ed/9Ekv+R5LfEJRhb8nfOP0vyC1V1uqpuSfJzSb665XXCSbRk/72evacHU1U/muSnkry21VXCzWfrrWWjTzB199WqejR7vyXnVJInu/vlqnpkdf2JJJ9Pcn+SS0muZK9uAwML997vJvnhJJ9aPUlxtbvvPq41w0mwcO8BR2zJ3uvur1bVXyZ5Kcl3knymuw/81c7Acgv/7PtYkqeq6kvZe23nse7+xrEtGk6Aqvrj7P1WxvdW1eUkv5fk+5Ljay2195QiAAAAALw7m35FDgAAAIATTmACAAAAYERgAgAAAGBEYAIAAABgRGACAAAAYERgAgAAAGBEYAIAAABgRGACAAAAYOT/AtjHoSjZTw/TAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "xax = data['Year']\n", "yaxwages = data['Wages']\n", "yaxwheat = data['Wheat']\n", "\n", "fig,ax1 = plt.subplots()\n", "# ax1.plot(xax, yaxwheat)\n", "\n", "\n", "ax2 = ax1.twinx()\n", "ax1.plot(xax, yaxwages, 'g-')\n", "ax1.set_ylim([0,120])\n", "ax2.plot(xax, yaxwheat, 'b-') # ax1 plotted twice in order to have same scale for both wages and wheat\n", "ax2.set_ylim([0,120])\n", "\n", "ax1.set(xlabel='Year', title='The Price of the Quarter of Wheat & \\nWages of Labor by the Week')\n", "\n", "ax1.set_ylabel('Y1 data', color='g')\n", "ax2.set_ylabel('Y2 data', color='b')\n", "\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }