diff --git a/module3/exo2/exercice.ipynb b/module3/exo2/exercice.ipynb
index 0bbbe371b01e359e381e43239412d77bf53fb1fb..954b447bea16c2937500ababd30b7a4d0431de69 100644
--- a/module3/exo2/exercice.ipynb
+++ b/module3/exo2/exercice.ipynb
@@ -1,5 +1,2400 @@
{
- "cells": [],
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%matplotlib inline\n",
+ "import matplotlib.pyplot as plt\n",
+ "import pandas as pd\n",
+ "import isoweek"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "hideCode": true
+ },
+ "source": [
+ "Les données de l'incidence de la varicelle sont disponibles du site Web du [Réseau Sentinelles](https://www.sentiweb.fr/). Nous les récupérons sous forme d'un fichier en format CSV dont chaque ligne correspond à une semaine de la période demandée. Nous téléchargeons toujours le jeu de données complet, qui commence en 1991 et se termine avec une semaine récente."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "data_url=\"https://www.sentiweb.fr/datasets/incidence-PAY-7.csv\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Voici l'explication des colonnes données [sur le site d'origine](https://ns.sentiweb.fr/incidence/csv-schema-v1.json).\n",
+ "\n",
+ "La première ligne du fichier CSV est un commentaire, que nous ignorons en précisant skiprows=1."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " week \n",
+ " indicator \n",
+ " inc \n",
+ " inc_low \n",
+ " inc_up \n",
+ " inc100 \n",
+ " inc100_low \n",
+ " inc100_up \n",
+ " geo_insee \n",
+ " geo_name \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 202316 \n",
+ " 7 \n",
+ " 12094 \n",
+ " 7961 \n",
+ " 16227 \n",
+ " 18 \n",
+ " 12 \n",
+ " 24 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 202315 \n",
+ " 7 \n",
+ " 14207 \n",
+ " 7751 \n",
+ " 20663 \n",
+ " 21 \n",
+ " 11 \n",
+ " 31 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 202314 \n",
+ " 7 \n",
+ " 15247 \n",
+ " 11032 \n",
+ " 19462 \n",
+ " 23 \n",
+ " 17 \n",
+ " 29 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 202313 \n",
+ " 7 \n",
+ " 13322 \n",
+ " 9700 \n",
+ " 16944 \n",
+ " 20 \n",
+ " 15 \n",
+ " 25 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 202312 \n",
+ " 7 \n",
+ " 10374 \n",
+ " 7218 \n",
+ " 13530 \n",
+ " 16 \n",
+ " 11 \n",
+ " 21 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 202311 \n",
+ " 7 \n",
+ " 4919 \n",
+ " 2880 \n",
+ " 6958 \n",
+ " 7 \n",
+ " 4 \n",
+ " 10 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " 202310 \n",
+ " 7 \n",
+ " 4854 \n",
+ " 2731 \n",
+ " 6977 \n",
+ " 7 \n",
+ " 4 \n",
+ " 10 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " 202309 \n",
+ " 7 \n",
+ " 7004 \n",
+ " 4548 \n",
+ " 9460 \n",
+ " 11 \n",
+ " 7 \n",
+ " 15 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 8 \n",
+ " 202308 \n",
+ " 7 \n",
+ " 8175 \n",
+ " 5316 \n",
+ " 11034 \n",
+ " 12 \n",
+ " 8 \n",
+ " 16 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 9 \n",
+ " 202307 \n",
+ " 7 \n",
+ " 6595 \n",
+ " 3782 \n",
+ " 9408 \n",
+ " 10 \n",
+ " 6 \n",
+ " 14 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 202306 \n",
+ " 7 \n",
+ " 9595 \n",
+ " 6017 \n",
+ " 13173 \n",
+ " 14 \n",
+ " 9 \n",
+ " 19 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 11 \n",
+ " 202305 \n",
+ " 7 \n",
+ " 6237 \n",
+ " 3907 \n",
+ " 8567 \n",
+ " 9 \n",
+ " 5 \n",
+ " 13 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 12 \n",
+ " 202304 \n",
+ " 7 \n",
+ " 6299 \n",
+ " 3973 \n",
+ " 8625 \n",
+ " 9 \n",
+ " 6 \n",
+ " 12 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 13 \n",
+ " 202303 \n",
+ " 7 \n",
+ " 6063 \n",
+ " 3798 \n",
+ " 8328 \n",
+ " 9 \n",
+ " 6 \n",
+ " 12 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 14 \n",
+ " 202302 \n",
+ " 7 \n",
+ " 6576 \n",
+ " 3060 \n",
+ " 10092 \n",
+ " 10 \n",
+ " 5 \n",
+ " 15 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 15 \n",
+ " 202301 \n",
+ " 7 \n",
+ " 8153 \n",
+ " 5470 \n",
+ " 10836 \n",
+ " 12 \n",
+ " 8 \n",
+ " 16 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 16 \n",
+ " 202252 \n",
+ " 7 \n",
+ " 5171 \n",
+ " 2717 \n",
+ " 7625 \n",
+ " 8 \n",
+ " 4 \n",
+ " 12 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 17 \n",
+ " 202251 \n",
+ " 7 \n",
+ " 6226 \n",
+ " 3822 \n",
+ " 8630 \n",
+ " 9 \n",
+ " 5 \n",
+ " 13 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 18 \n",
+ " 202250 \n",
+ " 7 \n",
+ " 6590 \n",
+ " 3100 \n",
+ " 10080 \n",
+ " 10 \n",
+ " 5 \n",
+ " 15 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 19 \n",
+ " 202249 \n",
+ " 7 \n",
+ " 5095 \n",
+ " 3212 \n",
+ " 6978 \n",
+ " 8 \n",
+ " 5 \n",
+ " 11 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 20 \n",
+ " 202248 \n",
+ " 7 \n",
+ " 4985 \n",
+ " 3043 \n",
+ " 6927 \n",
+ " 8 \n",
+ " 5 \n",
+ " 11 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 21 \n",
+ " 202247 \n",
+ " 7 \n",
+ " 6087 \n",
+ " 3733 \n",
+ " 8441 \n",
+ " 9 \n",
+ " 5 \n",
+ " 13 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 22 \n",
+ " 202246 \n",
+ " 7 \n",
+ " 3033 \n",
+ " 1392 \n",
+ " 4674 \n",
+ " 5 \n",
+ " 3 \n",
+ " 7 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 23 \n",
+ " 202245 \n",
+ " 7 \n",
+ " 3827 \n",
+ " 1720 \n",
+ " 5934 \n",
+ " 6 \n",
+ " 3 \n",
+ " 9 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 24 \n",
+ " 202244 \n",
+ " 7 \n",
+ " 4271 \n",
+ " 2231 \n",
+ " 6311 \n",
+ " 6 \n",
+ " 3 \n",
+ " 9 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 25 \n",
+ " 202243 \n",
+ " 7 \n",
+ " 5863 \n",
+ " 3302 \n",
+ " 8424 \n",
+ " 9 \n",
+ " 5 \n",
+ " 13 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 26 \n",
+ " 202242 \n",
+ " 7 \n",
+ " 3770 \n",
+ " 1950 \n",
+ " 5590 \n",
+ " 6 \n",
+ " 3 \n",
+ " 9 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 27 \n",
+ " 202241 \n",
+ " 7 \n",
+ " 4177 \n",
+ " 2219 \n",
+ " 6135 \n",
+ " 6 \n",
+ " 3 \n",
+ " 9 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 28 \n",
+ " 202240 \n",
+ " 7 \n",
+ " 4883 \n",
+ " 1472 \n",
+ " 8294 \n",
+ " 7 \n",
+ " 2 \n",
+ " 12 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 29 \n",
+ " 202239 \n",
+ " 7 \n",
+ " 2041 \n",
+ " 331 \n",
+ " 3751 \n",
+ " 3 \n",
+ " 0 \n",
+ " 6 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " \n",
+ " \n",
+ " 1660 \n",
+ " 199126 \n",
+ " 7 \n",
+ " 17608 \n",
+ " 11304 \n",
+ " 23912 \n",
+ " 31 \n",
+ " 20 \n",
+ " 42 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1661 \n",
+ " 199125 \n",
+ " 7 \n",
+ " 16169 \n",
+ " 10700 \n",
+ " 21638 \n",
+ " 28 \n",
+ " 18 \n",
+ " 38 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1662 \n",
+ " 199124 \n",
+ " 7 \n",
+ " 16171 \n",
+ " 10071 \n",
+ " 22271 \n",
+ " 28 \n",
+ " 17 \n",
+ " 39 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1663 \n",
+ " 199123 \n",
+ " 7 \n",
+ " 11947 \n",
+ " 7671 \n",
+ " 16223 \n",
+ " 21 \n",
+ " 13 \n",
+ " 29 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1664 \n",
+ " 199122 \n",
+ " 7 \n",
+ " 15452 \n",
+ " 9953 \n",
+ " 20951 \n",
+ " 27 \n",
+ " 17 \n",
+ " 37 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1665 \n",
+ " 199121 \n",
+ " 7 \n",
+ " 14903 \n",
+ " 8975 \n",
+ " 20831 \n",
+ " 26 \n",
+ " 16 \n",
+ " 36 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1666 \n",
+ " 199120 \n",
+ " 7 \n",
+ " 19053 \n",
+ " 12742 \n",
+ " 25364 \n",
+ " 34 \n",
+ " 23 \n",
+ " 45 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1667 \n",
+ " 199119 \n",
+ " 7 \n",
+ " 16739 \n",
+ " 11246 \n",
+ " 22232 \n",
+ " 29 \n",
+ " 19 \n",
+ " 39 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1668 \n",
+ " 199118 \n",
+ " 7 \n",
+ " 21385 \n",
+ " 13882 \n",
+ " 28888 \n",
+ " 38 \n",
+ " 25 \n",
+ " 51 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1669 \n",
+ " 199117 \n",
+ " 7 \n",
+ " 13462 \n",
+ " 8877 \n",
+ " 18047 \n",
+ " 24 \n",
+ " 16 \n",
+ " 32 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1670 \n",
+ " 199116 \n",
+ " 7 \n",
+ " 14857 \n",
+ " 10068 \n",
+ " 19646 \n",
+ " 26 \n",
+ " 18 \n",
+ " 34 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1671 \n",
+ " 199115 \n",
+ " 7 \n",
+ " 13975 \n",
+ " 9781 \n",
+ " 18169 \n",
+ " 25 \n",
+ " 18 \n",
+ " 32 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1672 \n",
+ " 199114 \n",
+ " 7 \n",
+ " 12265 \n",
+ " 7684 \n",
+ " 16846 \n",
+ " 22 \n",
+ " 14 \n",
+ " 30 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1673 \n",
+ " 199113 \n",
+ " 7 \n",
+ " 9567 \n",
+ " 6041 \n",
+ " 13093 \n",
+ " 17 \n",
+ " 11 \n",
+ " 23 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1674 \n",
+ " 199112 \n",
+ " 7 \n",
+ " 10864 \n",
+ " 7331 \n",
+ " 14397 \n",
+ " 19 \n",
+ " 13 \n",
+ " 25 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1675 \n",
+ " 199111 \n",
+ " 7 \n",
+ " 15574 \n",
+ " 11184 \n",
+ " 19964 \n",
+ " 27 \n",
+ " 19 \n",
+ " 35 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1676 \n",
+ " 199110 \n",
+ " 7 \n",
+ " 16643 \n",
+ " 11372 \n",
+ " 21914 \n",
+ " 29 \n",
+ " 20 \n",
+ " 38 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1677 \n",
+ " 199109 \n",
+ " 7 \n",
+ " 13741 \n",
+ " 8780 \n",
+ " 18702 \n",
+ " 24 \n",
+ " 15 \n",
+ " 33 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1678 \n",
+ " 199108 \n",
+ " 7 \n",
+ " 13289 \n",
+ " 8813 \n",
+ " 17765 \n",
+ " 23 \n",
+ " 15 \n",
+ " 31 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1679 \n",
+ " 199107 \n",
+ " 7 \n",
+ " 12337 \n",
+ " 8077 \n",
+ " 16597 \n",
+ " 22 \n",
+ " 15 \n",
+ " 29 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1680 \n",
+ " 199106 \n",
+ " 7 \n",
+ " 10877 \n",
+ " 7013 \n",
+ " 14741 \n",
+ " 19 \n",
+ " 12 \n",
+ " 26 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1681 \n",
+ " 199105 \n",
+ " 7 \n",
+ " 10442 \n",
+ " 6544 \n",
+ " 14340 \n",
+ " 18 \n",
+ " 11 \n",
+ " 25 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1682 \n",
+ " 199104 \n",
+ " 7 \n",
+ " 7913 \n",
+ " 4563 \n",
+ " 11263 \n",
+ " 14 \n",
+ " 8 \n",
+ " 20 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1683 \n",
+ " 199103 \n",
+ " 7 \n",
+ " 15387 \n",
+ " 10484 \n",
+ " 20290 \n",
+ " 27 \n",
+ " 18 \n",
+ " 36 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1684 \n",
+ " 199102 \n",
+ " 7 \n",
+ " 16277 \n",
+ " 11046 \n",
+ " 21508 \n",
+ " 29 \n",
+ " 20 \n",
+ " 38 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1685 \n",
+ " 199101 \n",
+ " 7 \n",
+ " 15565 \n",
+ " 10271 \n",
+ " 20859 \n",
+ " 27 \n",
+ " 18 \n",
+ " 36 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1686 \n",
+ " 199052 \n",
+ " 7 \n",
+ " 19375 \n",
+ " 13295 \n",
+ " 25455 \n",
+ " 34 \n",
+ " 23 \n",
+ " 45 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1687 \n",
+ " 199051 \n",
+ " 7 \n",
+ " 19080 \n",
+ " 13807 \n",
+ " 24353 \n",
+ " 34 \n",
+ " 25 \n",
+ " 43 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1688 \n",
+ " 199050 \n",
+ " 7 \n",
+ " 11079 \n",
+ " 6660 \n",
+ " 15498 \n",
+ " 20 \n",
+ " 12 \n",
+ " 28 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1689 \n",
+ " 199049 \n",
+ " 7 \n",
+ " 1143 \n",
+ " 0 \n",
+ " 2610 \n",
+ " 2 \n",
+ " 0 \n",
+ " 5 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
1690 rows × 10 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " week indicator inc inc_low inc_up inc100 inc100_low \\\n",
+ "0 202316 7 12094 7961 16227 18 12 \n",
+ "1 202315 7 14207 7751 20663 21 11 \n",
+ "2 202314 7 15247 11032 19462 23 17 \n",
+ "3 202313 7 13322 9700 16944 20 15 \n",
+ "4 202312 7 10374 7218 13530 16 11 \n",
+ "5 202311 7 4919 2880 6958 7 4 \n",
+ "6 202310 7 4854 2731 6977 7 4 \n",
+ "7 202309 7 7004 4548 9460 11 7 \n",
+ "8 202308 7 8175 5316 11034 12 8 \n",
+ "9 202307 7 6595 3782 9408 10 6 \n",
+ "10 202306 7 9595 6017 13173 14 9 \n",
+ "11 202305 7 6237 3907 8567 9 5 \n",
+ "12 202304 7 6299 3973 8625 9 6 \n",
+ "13 202303 7 6063 3798 8328 9 6 \n",
+ "14 202302 7 6576 3060 10092 10 5 \n",
+ "15 202301 7 8153 5470 10836 12 8 \n",
+ "16 202252 7 5171 2717 7625 8 4 \n",
+ "17 202251 7 6226 3822 8630 9 5 \n",
+ "18 202250 7 6590 3100 10080 10 5 \n",
+ "19 202249 7 5095 3212 6978 8 5 \n",
+ "20 202248 7 4985 3043 6927 8 5 \n",
+ "21 202247 7 6087 3733 8441 9 5 \n",
+ "22 202246 7 3033 1392 4674 5 3 \n",
+ "23 202245 7 3827 1720 5934 6 3 \n",
+ "24 202244 7 4271 2231 6311 6 3 \n",
+ "25 202243 7 5863 3302 8424 9 5 \n",
+ "26 202242 7 3770 1950 5590 6 3 \n",
+ "27 202241 7 4177 2219 6135 6 3 \n",
+ "28 202240 7 4883 1472 8294 7 2 \n",
+ "29 202239 7 2041 331 3751 3 0 \n",
+ "... ... ... ... ... ... ... ... \n",
+ "1660 199126 7 17608 11304 23912 31 20 \n",
+ "1661 199125 7 16169 10700 21638 28 18 \n",
+ "1662 199124 7 16171 10071 22271 28 17 \n",
+ "1663 199123 7 11947 7671 16223 21 13 \n",
+ "1664 199122 7 15452 9953 20951 27 17 \n",
+ "1665 199121 7 14903 8975 20831 26 16 \n",
+ "1666 199120 7 19053 12742 25364 34 23 \n",
+ "1667 199119 7 16739 11246 22232 29 19 \n",
+ "1668 199118 7 21385 13882 28888 38 25 \n",
+ "1669 199117 7 13462 8877 18047 24 16 \n",
+ "1670 199116 7 14857 10068 19646 26 18 \n",
+ "1671 199115 7 13975 9781 18169 25 18 \n",
+ "1672 199114 7 12265 7684 16846 22 14 \n",
+ "1673 199113 7 9567 6041 13093 17 11 \n",
+ "1674 199112 7 10864 7331 14397 19 13 \n",
+ "1675 199111 7 15574 11184 19964 27 19 \n",
+ "1676 199110 7 16643 11372 21914 29 20 \n",
+ "1677 199109 7 13741 8780 18702 24 15 \n",
+ "1678 199108 7 13289 8813 17765 23 15 \n",
+ "1679 199107 7 12337 8077 16597 22 15 \n",
+ "1680 199106 7 10877 7013 14741 19 12 \n",
+ "1681 199105 7 10442 6544 14340 18 11 \n",
+ "1682 199104 7 7913 4563 11263 14 8 \n",
+ "1683 199103 7 15387 10484 20290 27 18 \n",
+ "1684 199102 7 16277 11046 21508 29 20 \n",
+ "1685 199101 7 15565 10271 20859 27 18 \n",
+ "1686 199052 7 19375 13295 25455 34 23 \n",
+ "1687 199051 7 19080 13807 24353 34 25 \n",
+ "1688 199050 7 11079 6660 15498 20 12 \n",
+ "1689 199049 7 1143 0 2610 2 0 \n",
+ "\n",
+ " inc100_up geo_insee geo_name \n",
+ "0 24 FR France \n",
+ "1 31 FR France \n",
+ "2 29 FR France \n",
+ "3 25 FR France \n",
+ "4 21 FR France \n",
+ "5 10 FR France \n",
+ "6 10 FR France \n",
+ "7 15 FR France \n",
+ "8 16 FR France \n",
+ "9 14 FR France \n",
+ "10 19 FR France \n",
+ "11 13 FR France \n",
+ "12 12 FR France \n",
+ "13 12 FR France \n",
+ "14 15 FR France \n",
+ "15 16 FR France \n",
+ "16 12 FR France \n",
+ "17 13 FR France \n",
+ "18 15 FR France \n",
+ "19 11 FR France \n",
+ "20 11 FR France \n",
+ "21 13 FR France \n",
+ "22 7 FR France \n",
+ "23 9 FR France \n",
+ "24 9 FR France \n",
+ "25 13 FR France \n",
+ "26 9 FR France \n",
+ "27 9 FR France \n",
+ "28 12 FR France \n",
+ "29 6 FR France \n",
+ "... ... ... ... \n",
+ "1660 42 FR France \n",
+ "1661 38 FR France \n",
+ "1662 39 FR France \n",
+ "1663 29 FR France \n",
+ "1664 37 FR France \n",
+ "1665 36 FR France \n",
+ "1666 45 FR France \n",
+ "1667 39 FR France \n",
+ "1668 51 FR France \n",
+ "1669 32 FR France \n",
+ "1670 34 FR France \n",
+ "1671 32 FR France \n",
+ "1672 30 FR France \n",
+ "1673 23 FR France \n",
+ "1674 25 FR France \n",
+ "1675 35 FR France \n",
+ "1676 38 FR France \n",
+ "1677 33 FR France \n",
+ "1678 31 FR France \n",
+ "1679 29 FR France \n",
+ "1680 26 FR France \n",
+ "1681 25 FR France \n",
+ "1682 20 FR France \n",
+ "1683 36 FR France \n",
+ "1684 38 FR France \n",
+ "1685 36 FR France \n",
+ "1686 45 FR France \n",
+ "1687 43 FR France \n",
+ "1688 28 FR France \n",
+ "1689 5 FR France \n",
+ "\n",
+ "[1690 rows x 10 columns]"
+ ]
+ },
+ "execution_count": 3,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "raw_data = pd.read_csv(data_url, encoding = 'iso-8859-1', skiprows=1)\n",
+ "raw_data"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ " Y a-t-il des points manquants dans ce jeux de données ? "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " week \n",
+ " indicator \n",
+ " inc \n",
+ " inc_low \n",
+ " inc_up \n",
+ " inc100 \n",
+ " inc100_low \n",
+ " inc100_up \n",
+ " geo_insee \n",
+ " geo_name \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ "Empty DataFrame\n",
+ "Columns: [week, indicator, inc, inc_low, inc_up, inc100, inc100_low, inc100_up, geo_insee, geo_name]\n",
+ "Index: []"
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ " raw_data[raw_data.isnull().any(axis=1)]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Il n'y a pas de données manquantes"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " week \n",
+ " indicator \n",
+ " inc \n",
+ " inc_low \n",
+ " inc_up \n",
+ " inc100 \n",
+ " inc100_low \n",
+ " inc100_up \n",
+ " geo_insee \n",
+ " geo_name \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 202316 \n",
+ " 7 \n",
+ " 12094 \n",
+ " 7961 \n",
+ " 16227 \n",
+ " 18 \n",
+ " 12 \n",
+ " 24 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 202315 \n",
+ " 7 \n",
+ " 14207 \n",
+ " 7751 \n",
+ " 20663 \n",
+ " 21 \n",
+ " 11 \n",
+ " 31 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 202314 \n",
+ " 7 \n",
+ " 15247 \n",
+ " 11032 \n",
+ " 19462 \n",
+ " 23 \n",
+ " 17 \n",
+ " 29 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 202313 \n",
+ " 7 \n",
+ " 13322 \n",
+ " 9700 \n",
+ " 16944 \n",
+ " 20 \n",
+ " 15 \n",
+ " 25 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 202312 \n",
+ " 7 \n",
+ " 10374 \n",
+ " 7218 \n",
+ " 13530 \n",
+ " 16 \n",
+ " 11 \n",
+ " 21 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 202311 \n",
+ " 7 \n",
+ " 4919 \n",
+ " 2880 \n",
+ " 6958 \n",
+ " 7 \n",
+ " 4 \n",
+ " 10 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " 202310 \n",
+ " 7 \n",
+ " 4854 \n",
+ " 2731 \n",
+ " 6977 \n",
+ " 7 \n",
+ " 4 \n",
+ " 10 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " 202309 \n",
+ " 7 \n",
+ " 7004 \n",
+ " 4548 \n",
+ " 9460 \n",
+ " 11 \n",
+ " 7 \n",
+ " 15 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 8 \n",
+ " 202308 \n",
+ " 7 \n",
+ " 8175 \n",
+ " 5316 \n",
+ " 11034 \n",
+ " 12 \n",
+ " 8 \n",
+ " 16 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 9 \n",
+ " 202307 \n",
+ " 7 \n",
+ " 6595 \n",
+ " 3782 \n",
+ " 9408 \n",
+ " 10 \n",
+ " 6 \n",
+ " 14 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 202306 \n",
+ " 7 \n",
+ " 9595 \n",
+ " 6017 \n",
+ " 13173 \n",
+ " 14 \n",
+ " 9 \n",
+ " 19 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 11 \n",
+ " 202305 \n",
+ " 7 \n",
+ " 6237 \n",
+ " 3907 \n",
+ " 8567 \n",
+ " 9 \n",
+ " 5 \n",
+ " 13 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 12 \n",
+ " 202304 \n",
+ " 7 \n",
+ " 6299 \n",
+ " 3973 \n",
+ " 8625 \n",
+ " 9 \n",
+ " 6 \n",
+ " 12 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 13 \n",
+ " 202303 \n",
+ " 7 \n",
+ " 6063 \n",
+ " 3798 \n",
+ " 8328 \n",
+ " 9 \n",
+ " 6 \n",
+ " 12 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 14 \n",
+ " 202302 \n",
+ " 7 \n",
+ " 6576 \n",
+ " 3060 \n",
+ " 10092 \n",
+ " 10 \n",
+ " 5 \n",
+ " 15 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 15 \n",
+ " 202301 \n",
+ " 7 \n",
+ " 8153 \n",
+ " 5470 \n",
+ " 10836 \n",
+ " 12 \n",
+ " 8 \n",
+ " 16 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 16 \n",
+ " 202252 \n",
+ " 7 \n",
+ " 5171 \n",
+ " 2717 \n",
+ " 7625 \n",
+ " 8 \n",
+ " 4 \n",
+ " 12 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 17 \n",
+ " 202251 \n",
+ " 7 \n",
+ " 6226 \n",
+ " 3822 \n",
+ " 8630 \n",
+ " 9 \n",
+ " 5 \n",
+ " 13 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 18 \n",
+ " 202250 \n",
+ " 7 \n",
+ " 6590 \n",
+ " 3100 \n",
+ " 10080 \n",
+ " 10 \n",
+ " 5 \n",
+ " 15 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 19 \n",
+ " 202249 \n",
+ " 7 \n",
+ " 5095 \n",
+ " 3212 \n",
+ " 6978 \n",
+ " 8 \n",
+ " 5 \n",
+ " 11 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 20 \n",
+ " 202248 \n",
+ " 7 \n",
+ " 4985 \n",
+ " 3043 \n",
+ " 6927 \n",
+ " 8 \n",
+ " 5 \n",
+ " 11 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 21 \n",
+ " 202247 \n",
+ " 7 \n",
+ " 6087 \n",
+ " 3733 \n",
+ " 8441 \n",
+ " 9 \n",
+ " 5 \n",
+ " 13 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 22 \n",
+ " 202246 \n",
+ " 7 \n",
+ " 3033 \n",
+ " 1392 \n",
+ " 4674 \n",
+ " 5 \n",
+ " 3 \n",
+ " 7 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 23 \n",
+ " 202245 \n",
+ " 7 \n",
+ " 3827 \n",
+ " 1720 \n",
+ " 5934 \n",
+ " 6 \n",
+ " 3 \n",
+ " 9 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 24 \n",
+ " 202244 \n",
+ " 7 \n",
+ " 4271 \n",
+ " 2231 \n",
+ " 6311 \n",
+ " 6 \n",
+ " 3 \n",
+ " 9 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 25 \n",
+ " 202243 \n",
+ " 7 \n",
+ " 5863 \n",
+ " 3302 \n",
+ " 8424 \n",
+ " 9 \n",
+ " 5 \n",
+ " 13 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 26 \n",
+ " 202242 \n",
+ " 7 \n",
+ " 3770 \n",
+ " 1950 \n",
+ " 5590 \n",
+ " 6 \n",
+ " 3 \n",
+ " 9 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 27 \n",
+ " 202241 \n",
+ " 7 \n",
+ " 4177 \n",
+ " 2219 \n",
+ " 6135 \n",
+ " 6 \n",
+ " 3 \n",
+ " 9 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 28 \n",
+ " 202240 \n",
+ " 7 \n",
+ " 4883 \n",
+ " 1472 \n",
+ " 8294 \n",
+ " 7 \n",
+ " 2 \n",
+ " 12 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 29 \n",
+ " 202239 \n",
+ " 7 \n",
+ " 2041 \n",
+ " 331 \n",
+ " 3751 \n",
+ " 3 \n",
+ " 0 \n",
+ " 6 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " \n",
+ " \n",
+ " 1660 \n",
+ " 199126 \n",
+ " 7 \n",
+ " 17608 \n",
+ " 11304 \n",
+ " 23912 \n",
+ " 31 \n",
+ " 20 \n",
+ " 42 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1661 \n",
+ " 199125 \n",
+ " 7 \n",
+ " 16169 \n",
+ " 10700 \n",
+ " 21638 \n",
+ " 28 \n",
+ " 18 \n",
+ " 38 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1662 \n",
+ " 199124 \n",
+ " 7 \n",
+ " 16171 \n",
+ " 10071 \n",
+ " 22271 \n",
+ " 28 \n",
+ " 17 \n",
+ " 39 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1663 \n",
+ " 199123 \n",
+ " 7 \n",
+ " 11947 \n",
+ " 7671 \n",
+ " 16223 \n",
+ " 21 \n",
+ " 13 \n",
+ " 29 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1664 \n",
+ " 199122 \n",
+ " 7 \n",
+ " 15452 \n",
+ " 9953 \n",
+ " 20951 \n",
+ " 27 \n",
+ " 17 \n",
+ " 37 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1665 \n",
+ " 199121 \n",
+ " 7 \n",
+ " 14903 \n",
+ " 8975 \n",
+ " 20831 \n",
+ " 26 \n",
+ " 16 \n",
+ " 36 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1666 \n",
+ " 199120 \n",
+ " 7 \n",
+ " 19053 \n",
+ " 12742 \n",
+ " 25364 \n",
+ " 34 \n",
+ " 23 \n",
+ " 45 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1667 \n",
+ " 199119 \n",
+ " 7 \n",
+ " 16739 \n",
+ " 11246 \n",
+ " 22232 \n",
+ " 29 \n",
+ " 19 \n",
+ " 39 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1668 \n",
+ " 199118 \n",
+ " 7 \n",
+ " 21385 \n",
+ " 13882 \n",
+ " 28888 \n",
+ " 38 \n",
+ " 25 \n",
+ " 51 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1669 \n",
+ " 199117 \n",
+ " 7 \n",
+ " 13462 \n",
+ " 8877 \n",
+ " 18047 \n",
+ " 24 \n",
+ " 16 \n",
+ " 32 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1670 \n",
+ " 199116 \n",
+ " 7 \n",
+ " 14857 \n",
+ " 10068 \n",
+ " 19646 \n",
+ " 26 \n",
+ " 18 \n",
+ " 34 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1671 \n",
+ " 199115 \n",
+ " 7 \n",
+ " 13975 \n",
+ " 9781 \n",
+ " 18169 \n",
+ " 25 \n",
+ " 18 \n",
+ " 32 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1672 \n",
+ " 199114 \n",
+ " 7 \n",
+ " 12265 \n",
+ " 7684 \n",
+ " 16846 \n",
+ " 22 \n",
+ " 14 \n",
+ " 30 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1673 \n",
+ " 199113 \n",
+ " 7 \n",
+ " 9567 \n",
+ " 6041 \n",
+ " 13093 \n",
+ " 17 \n",
+ " 11 \n",
+ " 23 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1674 \n",
+ " 199112 \n",
+ " 7 \n",
+ " 10864 \n",
+ " 7331 \n",
+ " 14397 \n",
+ " 19 \n",
+ " 13 \n",
+ " 25 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1675 \n",
+ " 199111 \n",
+ " 7 \n",
+ " 15574 \n",
+ " 11184 \n",
+ " 19964 \n",
+ " 27 \n",
+ " 19 \n",
+ " 35 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1676 \n",
+ " 199110 \n",
+ " 7 \n",
+ " 16643 \n",
+ " 11372 \n",
+ " 21914 \n",
+ " 29 \n",
+ " 20 \n",
+ " 38 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1677 \n",
+ " 199109 \n",
+ " 7 \n",
+ " 13741 \n",
+ " 8780 \n",
+ " 18702 \n",
+ " 24 \n",
+ " 15 \n",
+ " 33 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1678 \n",
+ " 199108 \n",
+ " 7 \n",
+ " 13289 \n",
+ " 8813 \n",
+ " 17765 \n",
+ " 23 \n",
+ " 15 \n",
+ " 31 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1679 \n",
+ " 199107 \n",
+ " 7 \n",
+ " 12337 \n",
+ " 8077 \n",
+ " 16597 \n",
+ " 22 \n",
+ " 15 \n",
+ " 29 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1680 \n",
+ " 199106 \n",
+ " 7 \n",
+ " 10877 \n",
+ " 7013 \n",
+ " 14741 \n",
+ " 19 \n",
+ " 12 \n",
+ " 26 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1681 \n",
+ " 199105 \n",
+ " 7 \n",
+ " 10442 \n",
+ " 6544 \n",
+ " 14340 \n",
+ " 18 \n",
+ " 11 \n",
+ " 25 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1682 \n",
+ " 199104 \n",
+ " 7 \n",
+ " 7913 \n",
+ " 4563 \n",
+ " 11263 \n",
+ " 14 \n",
+ " 8 \n",
+ " 20 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1683 \n",
+ " 199103 \n",
+ " 7 \n",
+ " 15387 \n",
+ " 10484 \n",
+ " 20290 \n",
+ " 27 \n",
+ " 18 \n",
+ " 36 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1684 \n",
+ " 199102 \n",
+ " 7 \n",
+ " 16277 \n",
+ " 11046 \n",
+ " 21508 \n",
+ " 29 \n",
+ " 20 \n",
+ " 38 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1685 \n",
+ " 199101 \n",
+ " 7 \n",
+ " 15565 \n",
+ " 10271 \n",
+ " 20859 \n",
+ " 27 \n",
+ " 18 \n",
+ " 36 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1686 \n",
+ " 199052 \n",
+ " 7 \n",
+ " 19375 \n",
+ " 13295 \n",
+ " 25455 \n",
+ " 34 \n",
+ " 23 \n",
+ " 45 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1687 \n",
+ " 199051 \n",
+ " 7 \n",
+ " 19080 \n",
+ " 13807 \n",
+ " 24353 \n",
+ " 34 \n",
+ " 25 \n",
+ " 43 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1688 \n",
+ " 199050 \n",
+ " 7 \n",
+ " 11079 \n",
+ " 6660 \n",
+ " 15498 \n",
+ " 20 \n",
+ " 12 \n",
+ " 28 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1689 \n",
+ " 199049 \n",
+ " 7 \n",
+ " 1143 \n",
+ " 0 \n",
+ " 2610 \n",
+ " 2 \n",
+ " 0 \n",
+ " 5 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
1690 rows × 10 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " week indicator inc inc_low inc_up inc100 inc100_low \\\n",
+ "0 202316 7 12094 7961 16227 18 12 \n",
+ "1 202315 7 14207 7751 20663 21 11 \n",
+ "2 202314 7 15247 11032 19462 23 17 \n",
+ "3 202313 7 13322 9700 16944 20 15 \n",
+ "4 202312 7 10374 7218 13530 16 11 \n",
+ "5 202311 7 4919 2880 6958 7 4 \n",
+ "6 202310 7 4854 2731 6977 7 4 \n",
+ "7 202309 7 7004 4548 9460 11 7 \n",
+ "8 202308 7 8175 5316 11034 12 8 \n",
+ "9 202307 7 6595 3782 9408 10 6 \n",
+ "10 202306 7 9595 6017 13173 14 9 \n",
+ "11 202305 7 6237 3907 8567 9 5 \n",
+ "12 202304 7 6299 3973 8625 9 6 \n",
+ "13 202303 7 6063 3798 8328 9 6 \n",
+ "14 202302 7 6576 3060 10092 10 5 \n",
+ "15 202301 7 8153 5470 10836 12 8 \n",
+ "16 202252 7 5171 2717 7625 8 4 \n",
+ "17 202251 7 6226 3822 8630 9 5 \n",
+ "18 202250 7 6590 3100 10080 10 5 \n",
+ "19 202249 7 5095 3212 6978 8 5 \n",
+ "20 202248 7 4985 3043 6927 8 5 \n",
+ "21 202247 7 6087 3733 8441 9 5 \n",
+ "22 202246 7 3033 1392 4674 5 3 \n",
+ "23 202245 7 3827 1720 5934 6 3 \n",
+ "24 202244 7 4271 2231 6311 6 3 \n",
+ "25 202243 7 5863 3302 8424 9 5 \n",
+ "26 202242 7 3770 1950 5590 6 3 \n",
+ "27 202241 7 4177 2219 6135 6 3 \n",
+ "28 202240 7 4883 1472 8294 7 2 \n",
+ "29 202239 7 2041 331 3751 3 0 \n",
+ "... ... ... ... ... ... ... ... \n",
+ "1660 199126 7 17608 11304 23912 31 20 \n",
+ "1661 199125 7 16169 10700 21638 28 18 \n",
+ "1662 199124 7 16171 10071 22271 28 17 \n",
+ "1663 199123 7 11947 7671 16223 21 13 \n",
+ "1664 199122 7 15452 9953 20951 27 17 \n",
+ "1665 199121 7 14903 8975 20831 26 16 \n",
+ "1666 199120 7 19053 12742 25364 34 23 \n",
+ "1667 199119 7 16739 11246 22232 29 19 \n",
+ "1668 199118 7 21385 13882 28888 38 25 \n",
+ "1669 199117 7 13462 8877 18047 24 16 \n",
+ "1670 199116 7 14857 10068 19646 26 18 \n",
+ "1671 199115 7 13975 9781 18169 25 18 \n",
+ "1672 199114 7 12265 7684 16846 22 14 \n",
+ "1673 199113 7 9567 6041 13093 17 11 \n",
+ "1674 199112 7 10864 7331 14397 19 13 \n",
+ "1675 199111 7 15574 11184 19964 27 19 \n",
+ "1676 199110 7 16643 11372 21914 29 20 \n",
+ "1677 199109 7 13741 8780 18702 24 15 \n",
+ "1678 199108 7 13289 8813 17765 23 15 \n",
+ "1679 199107 7 12337 8077 16597 22 15 \n",
+ "1680 199106 7 10877 7013 14741 19 12 \n",
+ "1681 199105 7 10442 6544 14340 18 11 \n",
+ "1682 199104 7 7913 4563 11263 14 8 \n",
+ "1683 199103 7 15387 10484 20290 27 18 \n",
+ "1684 199102 7 16277 11046 21508 29 20 \n",
+ "1685 199101 7 15565 10271 20859 27 18 \n",
+ "1686 199052 7 19375 13295 25455 34 23 \n",
+ "1687 199051 7 19080 13807 24353 34 25 \n",
+ "1688 199050 7 11079 6660 15498 20 12 \n",
+ "1689 199049 7 1143 0 2610 2 0 \n",
+ "\n",
+ " inc100_up geo_insee geo_name \n",
+ "0 24 FR France \n",
+ "1 31 FR France \n",
+ "2 29 FR France \n",
+ "3 25 FR France \n",
+ "4 21 FR France \n",
+ "5 10 FR France \n",
+ "6 10 FR France \n",
+ "7 15 FR France \n",
+ "8 16 FR France \n",
+ "9 14 FR France \n",
+ "10 19 FR France \n",
+ "11 13 FR France \n",
+ "12 12 FR France \n",
+ "13 12 FR France \n",
+ "14 15 FR France \n",
+ "15 16 FR France \n",
+ "16 12 FR France \n",
+ "17 13 FR France \n",
+ "18 15 FR France \n",
+ "19 11 FR France \n",
+ "20 11 FR France \n",
+ "21 13 FR France \n",
+ "22 7 FR France \n",
+ "23 9 FR France \n",
+ "24 9 FR France \n",
+ "25 13 FR France \n",
+ "26 9 FR France \n",
+ "27 9 FR France \n",
+ "28 12 FR France \n",
+ "29 6 FR France \n",
+ "... ... ... ... \n",
+ "1660 42 FR France \n",
+ "1661 38 FR France \n",
+ "1662 39 FR France \n",
+ "1663 29 FR France \n",
+ "1664 37 FR France \n",
+ "1665 36 FR France \n",
+ "1666 45 FR France \n",
+ "1667 39 FR France \n",
+ "1668 51 FR France \n",
+ "1669 32 FR France \n",
+ "1670 34 FR France \n",
+ "1671 32 FR France \n",
+ "1672 30 FR France \n",
+ "1673 23 FR France \n",
+ "1674 25 FR France \n",
+ "1675 35 FR France \n",
+ "1676 38 FR France \n",
+ "1677 33 FR France \n",
+ "1678 31 FR France \n",
+ "1679 29 FR France \n",
+ "1680 26 FR France \n",
+ "1681 25 FR France \n",
+ "1682 20 FR France \n",
+ "1683 36 FR France \n",
+ "1684 38 FR France \n",
+ "1685 36 FR France \n",
+ "1686 45 FR France \n",
+ "1687 43 FR France \n",
+ "1688 28 FR France \n",
+ "1689 5 FR France \n",
+ "\n",
+ "[1690 rows x 10 columns]"
+ ]
+ },
+ "execution_count": 5,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data = raw_data.dropna().copy()\n",
+ "data"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Nos données utilisent une convention inhabituelle: le numéro de semaine est collé à l'année, donnant l'impression qu'il s'agit de nombre entier. C'est comme ça que Pandas les interprète.Un deuxième problème est que Pandas ne comprend pas les numéros de\n",
+ "semaine.\n",
+ "\n",
+ "Il faut lui fournir les dates de début et de fin de semaine. Nous utilisons pour cela la bibliothèque isoweek.Comme la conversion des semaines est devenu assez complexe, nous écrivons une petite fonction Python pour cela.\n",
+ "\n",
+ "Ensuite, nous l'appliquons à tous les points de nos donnés. Les résultats vont dans une nouvelle colonne 'period'."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def convert_week(year_and_week_int):\n",
+ " year_and_week_str = str(year_and_week_int)\n",
+ " year = int(year_and_week_str[:4])\n",
+ " week = int(year_and_week_str[4:])\n",
+ " w = isoweek.Week(year, week)\n",
+ " return pd.Period(w.day(0), 'W')\n",
+ "\n",
+ "data['period'] = [convert_week(yw) for yw in data['week']]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Il restent deux petites modifications à faire.\n",
+ "\n",
+ "Premièrement, nous définissons les périodes d'observation comme nouvel index de notre jeux de données. \n",
+ "\n",
+ "Ceci en fait une suite chronologique, ce qui sera pratique par la suite.Deuxièmement, nous trions les points par période, dans le sens chronologique."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "sorted_data = data.set_index('period').sort_index()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Nous vérifions la cohérence des données. Entre la fin d'une période et le début de la période qui suit, la différence temporelle doit être zéro, ou au moins très faible. \n",
+ "\n",
+ "Nous laissons une \"marge d'erreur\" d'une seconde.\n",
+ "\n",
+ "Ceci s'avère tout à fait juste."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "periods = sorted_data.index\n",
+ "for p1, p2 in zip(periods[:-1], periods[1:]):\n",
+ " delta = p2.to_timestamp() - p1.end_time\n",
+ " if delta > pd.Timedelta('1s'):\n",
+ " print(p1, p2)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Un premier regard sur les données !"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 9,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEKCAYAAAD5MJl4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsfXmYHkWd/+f7vu9kcofc5CIJJBwJQiAhBBDkJhwK/gSJB6CiLAi7XrsusK6KmhXdVRRWEAQ0IAqIsNxoOOQMCQECIReZXOS+j8kx1/vW74/u6q6urqquft+edyYz9Xmeed6e6rq6urq+9T2LGGNwcHBwcHAQkWvrDjg4ODg4tD844uDg4ODgEIMjDg4ODg4OMTji4ODg4OAQgyMODg4ODg4xOOLg4ODg4BCDIw4ODg4ODjE44uDg4ODgEIMjDg4ODg4OMRTaugPlYsCAAWzUqFFt3Q0HBweH/Qpvv/32FsbYwKR8+y1xGDVqFObOndvW3XBwcHDYr0BEq2zyObGSg4ODg0MMjjg4ODg4OMTgiIODg4ODQwyOODg4ODg4xOCIg4ODg4NDDI44ODg4ODjE4IiDg4ODg0MMjjg47Lf4cGM93lq5ra274eDQIbHfOsE5OJx9yysAgJU3n9/GPXFw6HhwnIODg4ODQwyOODg4ODg4xOCIg4ODg4NDDInEgYi6EtEcInqPiBYQ0U1++g+JaC0RzfP/zhPK3EBEdUS0hIjOEdInEtF8/96tRER+ei0RPeSnzyaiUdk/qoODg4ODLWw4h0YApzPGjgYwAcBUIpri37uFMTbB/3sGAIhoHIBpAMYDmArgdiLK+/nvAHAVgLH+31Q//UoA2xljYwDcAuBnlT+ag4ODg0O5SCQOzMNu/98a/48ZilwI4EHGWCNjbAWAOgCTiWgIgN6MsVmMMQbgPgAXCWVm+NePADiDcxUODg4ODtWHlc6BiPJENA/AJgAzGWOz/VvXEdH7RHQvEfX104YBWC0UX+OnDfOv5fRIGcZYC4CdAPor+nEVEc0lormbN2+2ekAHBwcHh/SwIg6MsSJjbAKA4fC4gCPhiYgOgSdqWg/gF3521Y6fGdJNZeR+3MUYm8QYmzRwYOJBRg4OMWyub8TrdVvauhsODu0eqayVGGM7APwDwFTG2EafaJQA/A7AZD/bGgAjhGLDAazz04cr0iNliKgAoA8A5/rqkDku+e0b+MLds5MzOjh0cthYKw0kogP8624AzgSw2NchcHwawAf+9RMApvkWSKPhKZ7nMMbWA6gnoim+PuFyAI8LZa7wry8G8KKvl3BwyBQrt+5t6y44OOwXsAmfMQTADN/iKAfgYcbYU0R0PxFNgCf+WQngnwCAMbaAiB4GsBBAC4BrGWNFv65rAPwBQDcAz/p/AHAPgPuJqA4exzAtg2dzcHBwcCgTicSBMfY+gGMU6ZcZykwHMF2RPhfAkYr0BgCXJPXFwcHBwaE6cB7SDh0CNz25ALfM/NA6v5NaOjiY4YiDQ4fA719fiV+/sNQ6v6MNDg5mOOLg0CnhaIODgxmOODh0SjixkoODGY44OHRKtCZpeH/NDtz42HxHgBz2azji4NAp0Zrr9hfvno0/zf4Iu/a1tF4jDg6tDEccHDolmNM6ODgY4YiDQ6dEa3IOjuw4dAQ44uDg4ODgEIMjDg6dEq3JObiDSBw6AhxxcOiUaE2dgxMrOXQEOOLQjtHQXMTs5VvbuhsdEs7K1MHBDEcc2jFuenIBLr3rTdRt2p2c2SEVWpM2OLGSQ0eAIw7tGIs31AMAdu5rbuOedDy0poOaY0ocOgIccXDolHALuIODGY44OHRKOGul/QvFEsOfZn+EbXua2rornQaOODh0KhBfuZ0T3H6FuSu34cbH5uO/nlnU1l3pNHDEoR3DWdS0Hlz4jP0LjS0lAMDGXQ1t3JPOg0TiQERdiWgOEb1HRAuI6CY/vR8RzSSipf5vX6HMDURUR0RLiOgcIX0iEc33791K5O3jiKiWiB7y02cT0ajsH3X/BTk5ReaohlipWgToot+8jpNufrEqbbU13IaperDhHBoBnM4YOxrABABTiWgKgOsBvMAYGwvgBf9/ENE4ANMAjAcwFcDtRJT367oDwFUAxvp/U/30KwFsZ4yNAXALgJ9l8GyZoaG5iPtmrUSp5Gbm/o4qSJWqzpPMW70Da3fsq3Kr1QXfIDmOr3pIJA7MAze0r/H/GIALAczw02cAuMi/vhDAg4yxRsbYCgB1ACYT0RAAvRljs5hnR3ifVIbX9QiAMzhX0R7wq+eX4vuPL8CT769r6644ZIRqnLXgdrnZgXyy7sa0erDSORBRnojmAdgEYCZjbDaAwYyx9QDg/w7ysw8DsFoovsZPG+Zfy+mRMoyxFgA7AfQv54FaAzv2ehYSe5uKbdK++yCyA99zVMMJzr227BBwDm5QqwYr4sAYKzLGJgAYDo8LONKQXbXjZ4Z0U5loxURXEdFcIpq7efPmpG7v92g/vFPHgwvZvX/BfQrVRyprJcbYDgD/gKcr2OiLiuD/bvKzrQEwQig2HMA6P324Ij1ShogKAPoA2KZo/y7G2CTG2KSBAwem6bpDO8DuxhZsb2M79Woqi7MSXbUUS/i/d9e6Y0fhdA7VhI210kAiOsC/7gbgTACLATwB4Ao/2xUAHvevnwAwzbdAGg1P8TzHFz3VE9EUX59wuVSG13UxgBdZO/wSXli0CQ+/tTo5o4MSJ938Io758UyrvHubWvCZO97A4g27WqczVZhdWTVx92sr8M2H5uGxd9dmVON+CCdWqjpsOIchAF4iovcBvAVP5/AUgJsBnEVESwGc5f8PxtgCAA8DWAjgOQDXMsa4sP4aAHfDU1IvA/Csn34PgP5EVAfg2/Atn9obnl+0Ed/96/sV11MqMbzz0fYMerR/IU2MqLdWbsfbq7Zj+tPZOj2FVi/tH5t2NWDJhnps3d0IANji/3ZKsMiPQxVQSMrAGHsfwDGK9K0AztCUmQ5guiJ9LoCYvoIx1gDgEov+dgj84Y2V+NFTC3HfVybjlEOdeKxS7CvDUKAaO9BK25jy0xdQYsDVnzgEANDSiU2pWezCobXhPKTbAEv9ENyrt+9t4550DDwzf33qMlXROVTYBqcFhZzH7hSLnXdldOKk6sMRhzYAF2104o1gpujWJZ+cycf+aC+f94lDZ+YcOJxCunpwxKENkAtMZtxEzwJda9JP46qMfEaNBJyDBXFoKZZw/V/fx6qte7JpvJ2AEwX3yVQPjji0Afju1W0Es0FtwZ5zCK1eqiFWygb5vJ5zWL45ekrge2t24MG3VuObD83LqPX2AeYU0lWHIw5tALJcoNwuyQ61hTI4h/1obEPOoRRJX7BuJ07/xcuRNE4/8h3Mg5K/rnZo4d5h4YhDGah0guYsQzjMW70DQOf0lE7zyPmcfe5qDmVW61g+532mMuewels82B4PDpnrYJPGEYXqwxGHNoQTK2WDcsaxKqasGQlBOOfQYmGtxMeig9GGAO6TqR4ccSgDlS4sAefgdkOJsBsi+3HcH0M/57hYyWIw+JzqcJwD/91/Xtt+D0ccykCl89NFmMwW5Yzj/uAEx5HGuI1zDrmO9mU7hXTV0dGmUFVQuc7Br8dN9UxgY+Ipw1Tity8vw6jrn46kvbp0MzbXpwtfkdXbDZmA5BqLHZZz4NTBfTPVgiMOZaByzsGZsmaJS+960zpv6ASnH/ybn10cS7vsnjmYdtes9J1LwD2vrYiZo+r6IBkrQTUTS/5ztaOzsjKBownVhyMOZaDSierESm2PNEPPCcmyzekcy5I4zMaWIn781EJc/Ns40fnty8uC61/8/UMA4cJv02YKA679Cu6TqR4ccSgDlYqDQic4u3o6MhG5b9ZKLN1YH0vPcuP72tItaGguolRi2NfsBemzGdNKxYdJxfn93Y0txnzb/DMw4tXFB4nX2eHESk6qVHU44lAGKrdWSt1iZQ22Y3z/8QU4/9bXWq3+pRvr8cV7ZuMHjy/AA7NXCXdsduHR37QolhhufGw+Vm9TB1gspdzlx/sRTdjXVAwV0h2LNoTWSh34W2hvcMShDRAE3rNUOuxvu6W9TS34yVML0dBsF0q7qRgTpmfYF68PC9fvwoot4SJtxTlIv2nx1spt+NPsj/Cdv7ynrp/7JFi65iVxMkd8/zns8bmQjqdzcLGVqg1HHMpAZn4Otu1V1lzVcefLy3H3ayvw+9dXVlxXpTvFLn5ojaaWUuSwIZtasxIr6ZZpXrvtOh4XQ8YL8phKHY1z4GAM+N0ry7FuR9w73CFbOOJQBirWOVDH1jm0+GY1ciygtkBN3pvizcVShENJxTmU+QKS5klgWWRdX3IKR5qQIvsD+JOu3bEP059ZhCtnzG3T/nQGOOJQBiq2VkpZz/7mSd0eu9vYUooQYxsCX2kk0HmrdwLQcwbMp1W2IqA0ps8dT6zk/fJ3uCvFkbMO5SGROBDRCCJ6iYgWEdECIvqGn/5DIlpLRPP8v/OEMjcQUR0RLSGic4T0iUQ03793K/kzmIhqieghP302EY3K/lHbDzq6WImjPSxQnLA2tpQiRNaOc6hs5P885yMAep0Cd1grX6ykRxYjv3LLHuzc214W4ahzX5qxcCgPNpxDC4DvMMaOADAFwLVENM6/dwtjbIL/9wwA+PemARgPYCqA24mIB9y/A8BVAMb6f1P99CsBbGeMjQFwC4CfVf5orYfswmd0TLGSNdGr4MFsy/LddlNLMeJJbWfKap/XBN3i/7tXlwMA6hvMpqxhh+zbzMKU9dT/+Qem/vqViuvJAqGJrvdbjle8QzokEgfG2HrG2Dv+dT2ARQCGGYpcCOBBxlgjY2wFgDoAk4loCIDejLFZzPuy7wNwkVBmhn/9CIAzqD1sOzXILHyGrVhpv+UdzDA9f5IFj+3awBeR5iKDaBSVZkxba/xnLtyYKn+afmSlcli/s0F779I7Z+Gp99dl05AlXHSB6iGVzsEX9xwDYLafdB0RvU9E9xJRXz9tGIDVQrE1ftow/1pOj5RhjLUA2Amgf5q+VRPZhc/omJxDNah6i4Wye+WWPXhuwQYAnrlsWrFSVtDqHFJ2Io1+v7Wd4BhjmL1iG67707ut2k7QntCu+OvQerAmDkTUE8BfAXyTMbYLnojoEAATAKwH8AueVVGcGdJNZeQ+XEVEc4lo7ubNm227njmyMmW1CcGcRXuVYNH6XXjyvXS7w2roUmzG5NT/+QdufWEpAI+DsB1vuY3KDRDUC7WpXtXO/7kFG7BkQ9ybXNlmKxOHZouzJbJEqJD2ftO+S4f0sCIORFQDjzA8wBh7FAAYYxsZY0XGWAnA7wBM9rOvATBCKD4cwDo/fbgiPVKGiAoA+gDYJveDMXYXY2wSY2zSwIED7Z6wNVDhvKzhZwJbfmBtKVY699ev4p//3Dq7w8p0DunL7GsKnfJaVSEtFdNyDoYqdIv7xb99w6oL+Va2QxTNgtNuHsoBfxec27Z1IHUoHzbWSgTgHgCLGGO/FNKHCNk+DeAD//oJANN8C6TR8BTPcxhj6wHUE9EUv87LATwulLnCv74YwIusHfONlS7Wou29VXtVGolH31mDrz/wdsUfXns9ZW32inC/kcaUNS3qE2IlhfXrG9Dt+5ta7OZMa4uVmoV+tNbmgeOXMz8MxVcSB+HQeihY5DkJwGUA5hPRPD/tRgCfI6IJ8F7XSgD/BACMsQVE9DCAhfAsna5ljPEt2zUA/gCgG4Bn/T/AIz73E1EdPI5hWmWPlR7vfrQdA3rWYkS/7ol5K138UhOHypqzxrcf9sI87Lu4iB61NlOjMth5KbdS26mc4FqnD6YFzlvcFW5vln1pbbFSa4Y8kcFFg0AoTnKmrK2PxBWAMfYa1BuZZwxlpgOYrkifC+BIRXoDgEuS+tKa+PTtHru+8ubzE/NWOi25WKmpxVbnUN0PodIPz3ZdqqSZSofEjjBlM+66hdrIvWhFUXZ9am1bP1sOBgD2NLZgU30jRg/oUXG7JUccqgbnIV0GKl00eGiD9sY5cCSx7M99sB67GvTOUcmhqit/okprsOlDwDlUHKJd1wd9GZ0pqu3QtXb0jDScw+X3zsFp//OPTNrlc7MdRGbp8HDEoQxktVjbEodqUweTzmHV1j24+o/v4NsPzdPm4dDtXnn1lSy6FQfFM9yTD2NqC9GW1sLJsu7W1jmkcUJ7e9X2zNrl791ZK7U+HHHQ4NF31mDU9U9jg8EJqFzweW3PObQfsRI/LGf1Nn1UzKT+ZhF+uXLOocIKUqAcPwc9YbXreHs87CcLC6NgY9FBicPV97+Nr854q627AcBOId0p8cjbnr/eMsX5vlnJu5tsTVmrzTlU0N7KLXvw6DtrK64/aW2rfEzsNdIVOz2W0YNyRFEiWt8JLn2ZImPIVegiyTmWjkkaEDhttgc4zqEMVLKTn718K9b7seibLZV61SAOtwkWIZXsyj75v69hc32jMU8mnFClBDqFn0Olu1StQtokVqpwcU/SOdQ3NOOxd9eYMxkgv0ObMcoyHlIHZRzaFRznkICd+5ojh8QAqGhhuvSuN4Pr9qSQ/sXMD4NrnTx37Y59iY57NkHkspDlV0pg2tKM1gaV7vtzCdThhkfn46n312PMwF742PA+qeuXx6bEgHxCp5uLJXStyZszObQbOM5BA75x+/oD7+DZD6KsXrUV0tU3ZY2nbd/ThJNufhE/emqhdT3lhI2wRcWiPQsrUib9lgvdmvnJoz0/0osmDI2XqZA6JJXfuMvTpe2zPMpVhjx+ujm6W3AI1HEOby7fivN+/ar1sbIO1YEjDmWgnIWJMYbP/+7NSJq1ziF9cxVBpTjkHMGcFbGoJlq8sWyLun6ukK7gyWYt31p2WcDSlDWjc4t1C3U+531+B3TvoihTqVipdXQOO/Y2YW9TS+zd6SRGF/3m9eC6RZPpB48v8M/43pNZPx0qhyMOZaCcRW1fcxFvLIsuaO0tfIapvXLWmleXqolDGs9jVZ4de5vw9Qfese5Hr65x6amVWMm6hfLw25eXtVrd+VYiDhN+NBPn/OoVhVgpTLhl5ocYdf3TKJUY6jaFBh06zqG2xluGGlM41nV0pNmEtRYccSgD5SzWuxWyeGs/hyrzDq1tQ16pd+uvnl+anEmA6jxlG2VwkKfi4TAv1CouxmZtNz2D7gzpzfWNFSuGTWbMAHDbi977kVvRcQ61BW8Zuug3r2fqE7E/47N3zmrrLjjiUA7K+bR2KYiD9WE/VTdlbd0GKz2bOe2mWLWLtgq8x62VKvWQTjLLrah2+zq37G7EcdOfx8//tjixfBIBMXEOupJFjRi1thAqqe/4R+txUw7p4IiDBqaTyMpREDe2xJVtpkWHWXxsrYVyd7Jp6y9X0Z5WZKKU31fTCS7hfrm02DgMikq37WkCALywaFNi3fe+tsJ4P27KqupCNLFZE/NC5HJczKT2A0cckH6R+r93zU5e6jbs0lT32oMTnLzAVhb6ouyiAPQiEx0KKrGSTcEMTG5t0NRSiptLVwhVl5UnamkeblO9OTKAiXPQ9UE3jmJypSKv37xUh5VOsZ0JHHFA+gn5WBWIQ5RNr7Ypq+JDz3CFDK2V9DAu/2nFSil1DkEe6bdcqHb4e5tCMeNDc1fj6Jv+XmEr9qjbtDvRHyUxeKL0v+oTitehrlScW5VwDtv3NOG//7YEX7h7dnJmC6zbsS/ynjobOj1x+NGTC3HZPXNSlSnHzDDtAi9+bNXmHFTEMss+pLFWMlZgCbVUSV9J4OeQ0TOrRJTn/vrViuu15TxVWOwfN8rn8s59zXj6/fXB/aT9UmyzoCIOluau0TwVcKT+756MFvQTb34Rl975ZnLGDopOTxzufX2F0mY+a0tAG5msCBsFX2tB1S35o92UECLDhErlymlLl885VKYb4VDNpVVb95rLVNSimvgpiaT/bN948F1c+6d38JHfr8TgidL/am7T/L8qvZJQ3Pzxduxtxh9eN+tMbDF/7c5M6ikHbX0UaqcnDtWCjUw2ci/CObTuJHlv9Y7I/6q+yvN0x94KZOQp5DXKRS5lc2prJYu2y7CqsjkERxXMsRyYNjBpp8ya7Z55aoNvOJF8Jof0v0XbOoIjpldiRi2W/OGT9p787RXVPG1PBUccykA5uzrVlLfVOZiwZEM9Tvn5Sxh1/dNoMUymxRt2aYnMhYIXKwBs9a1ayumPDbI4zyENVHGGbMJll9O7Zz9YH0uTF/EzfvFyGTXHYRQrVVw3U17rWrCZHzquIMo5lN/zLAP7OTjiUDUoxUqGTzgiVjLM+XN+9Qo+2uaJAnQ7jdnLt2Lqr17FH95YadXXN5fFxWzZ6hyqK1ZSGTfZcQ5crGTXzvqd+wJZvgiTWXRroWzzWP9X3ME/9NbqxPptDC60nIOQvHq7WdxmQkc946GtkEgciGgEEb1ERIuIaAERfcNP70dEM4loqf/bVyhzAxHVEdESIjpHSJ9IRPP9e7eSrw0joloieshPn01Eo7J/1LZGOiWvuAmy3bXrFqFVPvFYsG6XVT13vrIcm+sb8YEgb83WWonXmVmVRhRyimmuabtUYmiWnLVsidmX7n1L7cTVSrTBKFZKSULl9yvOP+61LIZil2tXzQ8bXwg538ZdjdjXVF4Avo52OlxbP44N59AC4DuMsSMATAFwLRGNA3A9gBcYY2MBvOD/D//eNADjAUwFcDsRcRfIOwBcBWCs/zfVT78SwHbG2BgAtwD4WQbP1q6gNPUz5GeWnENrYdnm3YHTFKAzVSyvY5USmiOG9EqVv6YQn+a6xfMZQSyUtptLNsa5hnJhYxGXfhiT65SPSOVpj76zBsdNf17bdknKr8pj299yrY32d7HSG3XRWGRt7RCYSBwYY+sZY+/41/UAFgEYBuBCADP8bDMAXORfXwjgQcZYI2NsBYA6AJOJaAiA3oyxWcxbHe6TyvC6HgFwBtl8HfsR0vs5CPks28hyMpHUro2S2hZWil7D2xfDLdhAKVbSNK7kviocVrHGqoWlVvZZ/yBJnMCbkkWffF9FbGN1atqXF3X7mGNS/fs3bcCT76+L/N/Wj5NK5+CLe44BMBvAYMbYesAjIAAG+dmGARCFlGv8tGH+tZweKcMYawGwE0B/RftXEdFcIpq7efPmNF1vc9go9UREdQ520yTryZTknFTuTi0gDmVzHmUVs6qjR20+lqfS5sR9zl2vLK+wNjuo+mz3uqSgg1CH/5arUvnl/M/flkTLaNqXzXqbW8obcXk+trUpaFrI4rR2zzlwEFFPAH8F8E3GmEl4rfTSN6SbykQTGLuLMTaJMTZp4MCBSV1uNZTD01RirdQWnIPcro3vgy2qPemtJhfPK7zcrKypxPbrG+xMgCv2c1ByevbPI+YlinNUcZFRvG7ZAELXvswpNBWz0TnoosC2V8gHL7U1J2RFHIioBh5heIAx9qifvNEXFcH/5dG81gAYIRQfDmCdnz5ckR4pQ0QFAH0AtGlA83KlWmIsexGV+DnYrlFZTib5+TPlHKTf9OVTKltVaZrBokie6G8WkJXduj6V22SfbjXo3iWfWowZyxv73yxGShOOJAlNZXIO8jutRAfRFpZPMR+Z9k4cfNn/PQAWMcZ+Kdx6AsAV/vUVAB4X0qf5Fkij4Sme5/iip3oimuLXeblUhtd1MYAXWSu+nQtuexX3JESdLBc8ln0sAmVKhW45sZW09emSk2z9hduqRa1c65AgtlKFOotKoOcc4nmyDNltOtAmG3EZi+mLOIycg3Qrmje+UVq7PXqmgxVx0Ol5pI2ISedw9IgDtPfkYi0VuFuLfa3blJ2hgQnyJ7Y/iJVOAnAZgNOJaJ7/dx6AmwGcRURLAZzl/w/G2AIADwNYCOA5ANcyxji/dA2Au+EpqZcBeNZPvwdAfyKqA/Bt+JZPrYGWYgkfrN2FH6c4C1mGMZx30I6809LnVUHc9djOEdVGadH6Xbj9H3UA4p/46Buewff+b762PnFR/Plz8TMAypXpppnzby6PM5BpW1VHI00upyKer9dtwajrn8biDXZmwXL7poUvIsqxrl3RnobrtXlmlaVRTiFW+rdH3o/8b7OQ2XBrgNkzOG8YGJlTqIRzEJ/nzF++UhVOIq7kb1vEz0+UwBh7Dfq5eoamzHQA0xXpcwEcqUhvAHBJUl+ywPYKwj58fMwAvFanPvoS8A5t5+83RhxSvukIcbAso5rAugBv3Jv6j29+ZKgvvJ6tOLawfIW0zzlkMP3PHjcYf1+4sZxeKFPFRTDgHISsnNC+uWwrDj+wd+pWTeE1slgMVH3mMC3g8h1Z55AEK+KgSZfrl78dmzpUfTCJ8JIQE6ux7OOtyYgp1PcDzqFDwXZBU82DL580CgAwcVTg74eWYinYQR//Xy8E6fLuxyYwmYiWjDgHHfb4lhG6oxFsvoNyxUosdmHGqOufxkyBAIhE8LyPDcGxB+lFDdo+lCl/f73OM+lMo+wUd/ImU1bbxUB1cFSkPagJr02XeU/T0n2b7PrHS9Zvhff09cvldLv9rz/wNm59wXzUrFzXD59cYMyfBeS1ab9QSHckWMvvFWknj/UspIYd0C1IG/Mfz+KC216L5ZXlnUqxkuHtRzkH2z7bz6Y9jZ6jUY8uicyjFuWKdMuZ9F+7b64ynajcEOpRXPi/r+HuV5dHxtDUzzS7UrF3skVKpE9ClaZHuskQVK7gyYA0Cmn73b1oVUWg5KNOLeq2JX7GDZzlN+O1p873zPwN+OXMD419kJu5b9YqY/4sYGMBVk10PuJguwuXZlY+R8EuW763cH1c/hwXKyk4B0P7YnnbPqeZS1wx2kXhPWxbX7mcw5PvrcOj76zJTKZaViBEqfH31uzET55eJC0ovvhL8ZymIIextoTrLDiHpQZP7Hwupx0PG26Ad2HDzvAkOBvaW5lCOvq/aV6ZnmFvSj8BExFqi3VZfu621jl0PuJgmU/e+ecodAay+chkxaOyiCWLbK9zsMyIcMHTffhWcmaLgVB9gP/7Uh2+/fB7eHmJwZHRcvNYrsmxPghcmP7Wyu3a8s0lhq/OmIvH5yWfCii+S7Mpa2JViSjkCESk3oyYdA7BPe9XnL82I2xFeCx+2TScAAAgAElEQVRncikiUpUXTH0dPAAlR5II+faX6vR9aAPq4HQObQxbVk1+UUQha23z0mSZtA3nsG1PEyb9ZCY+WLszWl7T3todUXPCpH6Jd8PqdZ8+JX7KNuMwW3GQEkd9Y3kxdMQFglCmU6Km62LynS8v0+ZtKZbw/KKN+MaD81K1ZRqxLBaDfE4vArJZwG989APc+Nh8LNscnsNsQ4DtrJXU6bLeKxp00q4OIL3M3hSIsi2WZZmrdDqHKsN2wOXF3VuEeGiB5EpinIOFDPjVpZuxZXcT7nxlOYoC56Jr7aSbX4zWl9irdLmTntNmLFWnsHGYlhxT1bJsPikktmpx41U0thTxwycWxG8A6Fqjj+GURiEtLpwH9q415LOuUouCb+upqsrIOfi/c1Zuw59m6y3YtOUrECt1l/Re4iIvEx2jOkL6P0ns2bubXt/WFrt2+Vxvxzm0U+hY0hyJ5oL2IgJV1j1NReUB5oyxsnQOspgnTf+UeZLas6ik1rDAZmEaKHdht4YbOXRwT6mcV/AnTy2KhHkQn8lEHGxOfAvaEq7FhbB7l7w+o0/w8jlCn241ynobFFZL+ZxHKtWmrHb9lZGdKas6j1y9WFecG7CUN1r0ybRxaYt1eUS/bpH/HedQZVhzDhrZcI4omHSmjy02qTX57n51RXAdcCaQneDsOi1n27VPL7ZJqtFKCZmcBbUGhbcqoFtQt+UaUCyxyOqycVdDvACAmz4Vda/h43v/m1ErFDHsdt/uNdq+pPHx0J2qJi9O0cXMuyYAt37uGGW933rovVhaoHNQRUktc7OQ1WFFuiGL7fiFjGmi2Mr1VML5toWlUCGXw8SRoZm8Iw5Vhq1STM85UDDJzfbYdruYguDyKX6CET+HhL6G+Rie+2ADXlrihbnasqdRnzehUt3uM1pHcs9MBGBTvXohT4LYanOxFBk3rQbF0tHq58+FkUTPGX+g3148b5rQDNv3hGahYk1m4hDiE4cOjJhPmxbr335xovLd7WlssT4JUEZLqZS4WajEQ9r0raQRtci3kgzKTF1ui6B9TcUSaoT1oFrH6OrQ6YiDLWR5JTf9JArFN2mcdXRZdSKDcsNnXP3Ht/Hl37+FJRvq8a9/ie8sgzrt3JbMd61EU/pMv3lJcWqaRTlxkYmf2qYrE/2/0o8/jZ/DrOVb8bcFG2L9KMSIg/hfVHegOsxOxsUTh+PggT1BFB+Hm55cUKYneTyUtArvrd6RmMf23Yhzf5cUxTbNbj/ZQEN9f832vZj0k+eV91oTzcUSavLhi27roLKdjjjYLrQ6zqEmnwsWFnHz+Iu/y7HrY0yusj4Vcdi1rzniLGXNOQhtfuPBd/HuR/oPNpErsMyThApin1nBZlcLxBeCokXHeAmdtZIMUz/e8sOPiFXJXJWJIJo4sDgo1mfxVL+0MDnucfzn48kexLacg/jtyYEK04QAKSe8y76mYsQbv5poLpbQRSAOzgmuykga7p1+7CWd2KC2kAvCF4gT9bYXozbTtpxDN4XS89WlW/D1B94RytpNErHN3gqiEz1AyFxXU0sJH6zbacxTiRIysZxphyhcNxdZRMxiu4Ta7Px5H1Q5VcHhxLb/3zHDIve4CMmkc5CtsMT8aYhDUtYvTjnIui4AOPagvsmZDLjutDEA9O9UTjfN04hWRvaBsPzmOD5YGzdlPeL7zxk90FsTzS3McQ5tCXFCjbr+6dj9l5d6jllFzeJRW8ihsdlbGEymcrau/CIqt94JG+lZGzfTe/SdtUJOc4d+9ORCo9gHsOPCtu4uf8eqbzi8tPZUNogudEhrSiiazH75pNHKe2KNJiudeN2Ggj6ixeW6wkJXnDAqlss0H0xWPTY4clhvRf/0iL5SPXWIbcCkepLe38L1u/D2qjY9NiaC5mIJNYUcvn/BOD/FcQ5VRdJwc33CWeMGK+/X1uQDVpcZ1iVbz87IblHz1afROSThKf+c2qQ6VSFB4u0lN3j5vXOSO6WAqebv/jUMF91cTBYrqc43sNE5hGKleF6VHF5cQ+U+BRtCBvTu6hFu2QnQNJw2nAOfY2pjgjChkE/32Vcq3sj7ChPdfImJlRScww8+OQ4vfucTGNGve5gvwcz1zlfMmxsA+MwdsxLzVAtcIT3I94Vx1kpVRtKA84naXbHzBqJipTQxYLQstbk7AIDpzyyyyGV37vTv/DOM+e1KuJW2nrwA0FRkkWcwObyJsOE4wtDicTQ0x8uL8mK5G7mAc2AY0NP7+EWzRcBMbCOb94RxJ03gPQ5ZEZ6ESsUbfFhsFdKiv86d/nwdM6gnDh7YE7dOOwYT/AN/kjYnz8zfUFZ/2wpc58A3iU6sVHWYR5zvRnTzrraQCxaGNKas+g+jvBmgsg4Rq0qqNQszubiMN7vZbFuXrVipHGslUxdUOgfRaU7mAjnRKpU88+Xnv30KfvP5Y63bEzmHpHdHUPs5cBRMJ+YoEPIj5YFzDrrn05my1m3aHSiH+Xj26V6DqUceaCy3v6K56OkcOO12pqxVRtL8CcMPqDPmc6ITnEHnEFOWacRKwnWaXfyFv3k9lmajcGYJ99NAHqPW3umoHKJaSizRSUu8O6p/d+RzZKVzCDgHRVZVedHhTzY9zQucA4EwZlAv9Kgt4M7LJgZ5+Pv7aOtebK5v9PP7zyBMjqSuJ3MO8c++NR3CCgplfKR+6X/+fDv3hfoqkdnhY1nO+QdtbQFkQnOLZ8oaxHBrZUu/JHQ+4lBhxoiHdBqdg0XDlRxdatuGbIHDF6Es2tMtuHxRTyPNUNWk6qusc9A10aPW29VPHNkPeSIrziHMEs+retYIoZd6EohWWHQTMLxv6NzGx/OU/34pVrc4doyxmP2/2IGkYU4rVqoUSdGM49+KIqPQ5VxOXZ/Nt22jS2srNBVLqCmQYLzQzjkHIrqXiDYR0QdC2g+JaK10pjS/dwMR1RHREiI6R0ifSETz/Xu3kj8CRFRLRA/56bOJaFS2jxhFou2+tHjKyBEFRMEoVpIIh41Cev3O8jyGVXW9/KEhHDay2UHZsvU83lG54bVNGDfE7qjOYw7qi19dOgE/vmi87yRmwTlo0scO6qk8Q3pw767BtfyoKmslICouMp0WKNbHAJz7q/jxr0xzLdYDADWKkCam6VCpuKZLgS/m0XrqNtWjpVgCY8BnJw3H2987U9ueSGx156rIxVQWezc8qj8zva0R6hw8tDWTY8M5/AHAVEX6LYyxCf7fMwBAROMATAMw3i9zOxFxQewdAK4CMNb/43VeCWA7Y2wMgFsA/KzMZ7FC0qLAGDBv9Q7c5SvCZBCFk9fkWLREOpBl8XrdAS3JM2DMoJ6Jebya7GeTLufQPl01d5Lr0HEOfLKn2rBaPMqfvnY8Lp443LrKi44Zhu5dCshR3ElM2QWDWEnlJyEuRvKjhn4OUSIpLvomZiYniZXkcO0iKOH5VL41JsjcTlp0yXvtib5Dyzfvxpm/fAW/nPkhGIDaQj4ISsjVOSq/DyAcy/jhONH/dze2YP3O6Di9vybuu5N07Go10FwsocQ8J1vu66DSa+1tasEHa83+R1khkTgwxl4BYGsMfCGABxljjYyxFQDqAEwmoiEAejPGZjHvi7sPwEVCmRn+9SMAzqDW2GL6SOQcgCDUgQriwjLtrje1+f77b1GP6cUb1MQhqT8HD+iBkYL5nglpDlzRtZtPoayUuQ+d9RZ/nZUGcJNnxZiBPf1zNtLVK4ZAMYE/jhzpVfeckXMmiPD7Lx0X/B8SRhYZhaiJqmLHTGF9sY4ZIC+UqsXVFsyuSS34aYMiQd24yxMRvr1qO0rMszjjqhA15xAiFFMli26nPx1a+umC+D3bDqya+Cl23bvk0dM3dd6jiDD87YfewwW3vYad+xRixYxRic7hOiJ63xc7cZu8YQBWC3nW+GnD/Gs5PVKGMdYCYCeA/hX0y4hksRKL7HBfv/70yP1cLpyUuvDQKrSUSjhyWG9cOmlEtL2EcjX5nP3B8ykiWOpaTuOJazJBVCJrkl9mfWLwRBP4AvvZO6O28DWaQEcRazHGcNrhgyJt8jziEOcSOAdeZ1I+EaRw7KhkcdfNv08dPdSqPFfUR8LQcxsoX3meIxLGKN5eThiAgDhYKGzFM9J37FUvqOWE2cga+wLiUAg40N0N8fXlnY+80wlVof6zRrnE4Q4AhwCYAGA9gF/46arPlRnSTWViIKKriGguEc3dvNksU9fBRvQiLpDcYUm8V44MtlQCutcUMHawnYiIo6ZAsI3x9nrdFqt+APrFIg1xkL8p3UcWHElqXXM6EVlaGmGrc+CPI4uQdDtvcUxlP4jQz0HmgMw6B7m8V0fCOFMKwwsL6MRKtgwI5xxEsVKgS0H4PcmKa/EZxKa4cl/m4N5YFp//PYXvd4dg/dRDOEuj3LPQswRf7Lt3yQcEbY/C0ZIbE+iiCmeJsogDY2wjY6zIGCsB+B2Ayf6tNQDErfFwAOv89OGK9EgZIioA6AONGIsxdhdjbBJjbNLAgQPL6bqVWElk4flCwEPpkuWuU0bAOsvB1hLqqsnnrJXHDRYH0PAPVFdjGgmNrViJj1elwkJZfKQSU6naUDmk8a6qlJYcWgKq+WrERVuWY/P5wxhTKldN7QHAsQcdEFwn7ZizOn8hCbbiPJVYiT/rrOVbUd/Q4n8bXppSrCRapAWcQzTf63XxI2lF82KRcxgzuFdwbSNibG3wzUTXmlwg2lX1i9+rRkjxsoiDr0Pg+DQAbsn0BIBpvgXSaHiK5zmMsfUA6oloiq9PuBzA40KZK/zriwG8yNrSGJkB24RzEPhifqg/mXJUnqUP333J31PSDjafglOxORgljCibgVhJ+l+3aJUTPM7mkUN5fLq6coJRgeld6sZd9xxi9m7SKW88ZAWDHGbDjnP496mHB2avulxiuvhcH6zdiRcWb9LWLee3vWf7OvkCLZpqy/M+J+iO1FNT2LBpdA4qiFyeKIrpIujW2uLsBhmc687nQmsl1fNxH5VqKNH12yYfRPRnAKcCGEBEawD8AMCpRDQB3nxcCeCfAIAxtoCIHgawEEALgGsZY/wproFn+dQNwLP+HwDcA+B+IqqDxzFMy+LBysXC9bvwxzfDM3S71uTx+y8dh6OG9wEQlVcP6FmLLbvt/ARKjKFAudScg2g6G5ZRF2pUhHSQwdlRXbNpdJWmmDgiGDzCtdfiXABjewnWUN518gOQQHDLWRZ0O2YG4JiDDsC3zjwU44f2idwriLb5QnlbzqGQz2HckN5Ys31f4uZEFitdcNtr2rw2RFi3dtoS+y4WprOiRRt/z4nWSpqOvfrd03Dyz1/yywnEV/g8otFP24441Dc0o1QKv518TojIq8jPn93mW68UicSBMfY5RfI9hvzTAUxXpM8FcKQivQHAJUn9yApJ82DZ5t2xNFGxSAgn0+EH9sJrdXbEwdsxkoJzMEM0neXQfaw2uwkebiILnYPced3iXWIMf5m7WnlPW7VBOcsR2IMn1BUXK4V1meaDbhHWElDm7ZJPOTQu8ixExEpC3yx1Dl67oVJb3V9eZ3oFtCk7Y2q9Tt5yrqgU+HJ7vCqdTk9sqZAgWhFPzYsQ30gdYZ/aUiE96SfPo7GlhE/4c0ZUzKvGgT+Pysw1a3RCD+nKJoKoczDVdd7HDoz8z3UO8q4zaReossnXTWYbHRX/oHR95xPz8AN7Ke+LkLvx4Ua1uW6JZRNaQ/5Y+Fg2Weha5HI271DX5xVb9ijTeWiM5PbD62aFklbE8aP7xcrJPjTx+sl6lvPn72rwfdDOFQs286GrpkTybfU5bXnec+4ilxPejZBH3LRwPZF8hChH1BpMUOQL9dUIfWpL4sAjPHOn1XwunEGmDVI1+tz5iEPCmCYp2USdg0kxqDrPIUeEOSvULiP1qnAI8JSfsrhGt8O00YUUw1VR256pjUh7UiVXzpirzFcqsUSZtzheLcWS8rCl2G7T/01zCD1grzfSZdGZRJqcxUQrMTGLKB5QjbkoM7dl6jzOwXLx8LP169FFm0W3DtlE/j7+4KhV+ocbd4vNBuha8IhT5PvSiJX4QVbKECJQG5TIbeYzIA4fbqzHrGVxJbgIxliq+ZknMXyGHo44tAISRRAJ98WdvDHwniLWfI6ApZpdH3cKUrVnG6ZCly6a7YWcgxp8pyX2X7SUibanqUQCY8ArCeE8tu8NzQwn/Ggmrv7jO7E8uucTzUZtTZVDhbQ+X1ouU1InxO7xOsXFq7vwblTjKe58rZ39yjBl7dU1LmG+hHufp1TMmxCMqVRlbU0uqDMpsCXnHFROYjKivoMC5yCKlQyT4P8dO0x77+xbXsHnfqd3hAWAnz67GIf/53PW3C0JomcVgecp7dZaaX9GGksjFdcsOsGZqpJfXokx5ccU1qH/AG39CXScjBh+I0nnwD88sYnLhZPDRNgfX5qcT5RL65wL5fb4cKa13PD0Rn6dhnxpvz/ZTBUAbrn06OCe9ytFiR3QA984YyyvIVanKJJJWoqPG9XXKl+kz/6vHIyvb/ca3PyZo4w+E+UQBz5H5YOOuFhLnO+6eaMSu+j1Q6JYSUgXntdkymojXjWBh+GxnaP5HCXqlgC7M9ArRaJCuqMhkXMQ5vtvvzhRcT/c2cxZqY8qIjuplErRsmF/knQO8YmvNRnV1SU8VHCKnSbvkD6eMk886UwX/9927czqrGn5G+YLsUiIVU29tXJ7tJyoxzENWRlWLPJ6OWlkv0gzKtHTcaO8PKo1Sly0TYvxa/9+WkQRa/ty+CPKdXfvUggWKt0wlOO3wnfp//LndyPp3NyVKNz8aGN1Kax59BZV4bWYpVuNqJDW9/erHz8YM95Yha41le2jbcVA+RyMpqz8Xrt1gtufkahzEK4PU+wa+MciB/SSIbu3l3yx0ucmRw93T7KaSSdWUtchPlMgVtLk7dbFmxIbdoURYnUhnu05h2zyxJrzu9XcIoqVkpHLCTt5TQmRu7CFKnuwgAacSpy70EUZ9e7Z6RyG9+0exrAi82E/Kujq5tZ5ag/pcjgHdb9qCyHnEOocdEQ/tPwK6rXgHHiee66YhEG9wgCTJrFSLkc45qADKvY4tyUO0TAi6vtp6qsEnY44pJHGqixPuAOV6gxhEe98tCNyShlj3ov94pSRAICzpTOqdb0iotjORuuJnLDTsmlPdRCMKg2ITl4Ta25DRGy4C12e5pQfio3OoZwFVlWXHJufMcTlPpw4KBcD8dpuMU7D9PB+xY+19RLMYiW7NkToFjW+M88L1kq6Hb1qGPRcRlysdFC/7tFouAnzJynKrQ1sF3MiEuaDgnPw71VD59D5xEopxlS3W+KWR0n4y9trAk6hxBhyOU8RtuQnU7F+RwP+vnCj0jRt5rdOQZ/uNdjTWMRPn1mkECupH0IbFVWRlsb7VxepVezGXa+qQ5zL+fR50hMHleJORYi+OCXKrdnoHERfCFvMW70jcJYU6/H6FbYnL6o5iYCIEJ3pbNdiEvqepAjVca48rg9BvzDamLLK0C1qtYK1kkohLU5Ltc5B00eFWEk2KeffzUdb92rrqNRRznYx13FpYV+qxzl0PuKQcF+cNKrJz53SbDZxshcmr7u2kI8EYgOiL3ssj/vSK3osaViXuj2dHFJp5aKpo0ZBCPRRSMNK3l61XZkHsNQ5lCFWCmWzQh5FOZnzyQl+ANrQEPA2AffNWpncMQHyeQHiYfG7GpoxZ8U2TBzZN5LHJEa47vQxYmVWEM+Q/sXMJca8unHgIaE9zkE/RiL2NLZofUA4dHOBWyuJPijiJkgspjopzWazE3JD0Z7zdt5dHZ3Dd18+KaijWpxDqRQariid4Pyp7KyVWgFpdA5KayV/ooiTblCv2kien3/mKABA/56h7bhspSLvenUvW2mtJD3En782BYB3YIgKYrsn+Hbnc1eplemqiKO6KKRiv0y23DYfViUEJOnDk2mj6HXOAJx4SDxCPF8Uv//4AmPdUw72Fc46IhMoTxmeem89gDgh5XkS/RwsqYP4vGu3m3VjHHqxpj0HdfUf38YFt72GXoZghrp3Vavwc0jihCNizYTxF/OTlM6/vS6S48YwP5YV17tUAtVzqyQAJaZ+Po6Qc3Ae0pkjnSmrXucg4oXvfCLyf00hbk7BNPXxLC26hV3Rnjyp+AKiIjCj+kflq9zt/jcvLVO2pyIEsrVSmCdsz6SDsRMZJWZBibHIR0aKHZbN6xWVnjKhD+u2q4tzJVrdhdCvrZo4XLLoKQtY6xwUIhwRnlgpeeEFgHd8otdgMNvUcg4FlZ+Dug5SjJc+6KNwjZBzEN85n1M1EnHg/ShX5/D711cE1y0lhrpNu/GNB98NNnEq4lcUOAdVk3zOO86hFZAsVlJfc/DJK96TF5c8XzD81nb77LZo6yzXbeIc5Dkkx3/ic1okMGceESq8LzgqPJQlyd5aSRykNL7DEvu1r1LOwTDZDxnYw8vDWFQOHTQQaS1WPm4dFA1mqBQfGhZFEUkOWxD2CToZvYrIqfMldicAk3457rxsojqfQWavuifrVg7oXhNcNxcZJo3siyev+3isHF+IxfkJhArpnGCAERErCXn5+xTT5LELCW5840BQS+jks7WD/IRUm0qOm54Mo9AWSwzffngeHp+3DgvW7QrSZDBhbVHNB86ViWFVWgudjzgo3vFL/3oq5tx4hv+foHNQ7ig9MY/uHGCxBt4Wd4T524KNig55Pzp9QY7ik+hLv38r1icgGi9/U31oivqF40OFrCqa43WnhXJtefcExGX2XC8hdkvV/19ccrSfz/7DWrxhVyyNny1cYur3p9qBrdoayr51YiX+wR+mOIDJViEtKppVCAgTY1rxnEnGbINzxkcXWtNO95zxByrT9WIZf75D3gBF/5eLTx7dDx+TCAig3wTxc6ZFM+NEPwehUbn/T/iESUzlWVQBML0+qJfDHKWxcVSjWAp1jiZRcp/uNUrOKOhjIYePDeuDMYMqc86zQecjDorX3KtrAV27xAOP6cRKTFhYVPm4hQh/9ypdgKxUU8USAnggMvPU5F7NYh26sAuNCuuV75x9KEYP8HbnqgVMHgYeJI33/YO1O7F1T1Rkcs74wejn61zE/v/bOYcpn4HnmfqrV7XtM4lz4FcqsdJ9s1Yp2/Hq8xTSPG8PhYxcd6jTgJ5R/VIS5yA6bOmimHLOLCnQpo5xuPOySYp8tnKl5DYZWOxcdflZ5OdXhekG9BwiF8Xqwmeonj3KOUTvBWdfCOkPvuWF4petlYI+5NUETzytrlycd+ursSjCexWRAMYP7RNyRoo2ub9UNdDpiIPqY8gL1gtRcVE8L1cQR60npPpy+pcblOHdkTiHH3xyXKw9nmfdjn3YJDinAR47zusSdyLix5nPEf7xr6fioglDlWIlIsJYP8SGyuFNJhicuygxb4d+wW2vYcvuplg5TqAWrQ/jSekc6kwiVF7ithfrEsvyy6giV+6XT+CD+2qCqFoQph45OHJ2crJYhoL7Os4h0BllFIaZ60uaWkp4+v31xryhn4NeLMYYsKk+SvzF6KF+RRHoiINOycx37brwGUlLc8zMWSKRexpbYp7yQd2aPgXHl+bSO0SqEEQn8OvSWXaZdFCy1KI10fmIgwL5vBAJUVz0DU5wYj5xl37r544JYhmZ5pO4owTChf340VHLGVEBfuLNL2Lyf70Quc/DcgBR0Y7MIo8a0AO9u9UoOQcgbEO1gMmcUU2gc2D47J2zlPXxvgNRc9Cte+JERGxfBf58L3+4WbJtZ5FfU5/le0kfu85C5brTxkbl7dJCdsUJI2P18Pu6MCQ10vkEqvMg0oA/+p9m67knGUnETYZ8mFGMc9CIaMKDfKL5a4TwGbyuRCc4oYrYu5JET5+/e3ZwK5eLipVCDjRaBf+3kMtlQrgXrd8V6ZNOxGY6EY8H8KwGOh1xUL2OQiSGusDKKkaHiFAqsYh4SvyAPnX0UKvAWSHr6P3PRULyAqI7/ISjKEwWcQKrlJ/5HOnPgvDTVTt7/XnIwHZN+Gred56PQzevTVxWF82pXfxKfCZ+W1yb5PUtJPBMed9LU497ThJJyJY1w/t2l+oJ+6VbaLkBQ7HEsHNfM95fs0OZL61Cep/FaWH8EU1iMdW9706NigflHDrOgUm/QX6Bc0juU1QkC8T1E/JYvbc6HFNC9F3wsrG4Z/7/PbsWsLuxpSyltAqqeSsi4BwUq5UugGdroPMRB5VYSdhJiBNErXPwJu9f314TKQ+Esn9ZYdbdjzj5tZNHB2XkqsMzZKM3dLJvjpH9w5g6YhgJ1fQxebsWg0U1PiX4cx05rDcAgXMAM7JHpJjk5xx5IG773DH43vlHRPKanvETh4U76QeE3TA/AyAqVvLHURjg2DNz0SD/V9GmZwgQT5cdqMJdp5rQiOIN3TfNCXJzsYRL75wVnBfx6ndPUxdIALe0SuM7YjK2UipG87loCIoEzoHrmkqahTgkDt63wBiLxCeLbNqkvgNxgwhVnuAeAZ8+JgzFrYsCy//rWVtAc5Fpue60sCV+qm+iVCovplU5SCQORHQvEW0iog+EtH5ENJOIlvq/fYV7NxBRHREtIaJzhPSJRDTfv3cr+SNARLVE9JCfPpuIRmX7iFGoqHEhl4t4snKodQ7eS71Vkn//419PxYu+v4MsMuL/f3fq4dr+8MkteyOLZ+rKOPGQ/njwqilKzkFthhvfoXMdx48+NR7njB+MExQOYQcP7IlXv3saHrrqBJw8dgBuPM9b2BlTjye/pxbLET559FCM6BfdYZsWsrOEOFT/9czi4Fq3OwXMoR1CowLvfxVnQaQ2ZZXzBs50JX4/Rh28+0J7044bEcnCucViiWHxhlA/I49RGic42z1uUowpz5tcPQ6j+ntGDMMO6IYSC0NuAPF3wy3mAs5BqpK/L84p//HNVZF3Lbct1gXEjT5U3EVwD4TBvcPAe0wzBqwY6QsAACAASURBVAHnkOL8CLmsConmz2ElyrJVog1WnMMfAEyV0q4H8AJjbCyAF/z/QUTjAEwDMN4vczsRcTOgOwBcBWCs/8frvBLAdsbYGAC3APhZuQ9jA9X78BYD7zqRc8ipd/KjBvTAIH/CySKjhuYS8jmKmInKOxsuVpLjGKnCZ3CcethADOrVNQxdnRDGl/ddPC+BmzaOGtADd142Cd00x0WO6NcdPWoLuP/K44NFQWdaGrSnUKzxj0Zux+TwyTkEHSYJ4SgCsZLIOcT6RRHCJi/oz3zjZBCSTSnF9gLlpUwbInm9PP8qWWyZnBhFiL4EJvDdfho/DW2IDIpumA7kc5wIF08cjr9cfQI+efTQRIW0vPkyhbsoMeApSZEeMR2Xvi8gfqayiXOQ3xF/z3Hi4P3yZ2lOESbb9Cp5vSY1hs581iSezBqJxIEx9goAOdbChQBm+NczAFwkpD/IGGtkjK0AUAdgMhENAdCbMTaLeTP2PqkMr+sRAGdQbPuVHVQDrorc6KWr8iZTfFlmuLm+MfAADSuK9ocvDDXSzDUpT+Wdr3iAilqs5PVdNKGT/RpsRl4Um5lGgu8GVXn4UY8cppqSYun//svHhfWwaNtiWtCvQOcQpn3lpFDkN6BnrVac17O2gAsnDMORw3rjkIE9YjJ0+cMVFylen5yH+5F87/8+gAnfOutQ4/2wUc9U18bChi9Q+oUvKor8y9Un4L6vTPabIRw3qp8yaoAsVuL6u8Qz03PqPBGxkkJcKfdfxV2EN6P/JomVRLGfCqroADrTdK9eNecgilp1Oi8ewLMaKLeZwYyx9QDg/w7y04cBWC3kW+OnDfOv5fRIGcZYC4CdAOKyjYyQNDltdQ4mhFyIdyzoQ3NXY680gUTnKCDc9cd1DnpiJMpEbcDt+0VzwvgOz6Yev31mJpQqyc6hflDBI4f2jqTrdrpvXH+60jFP1N/06hrfUZt2V7LdOhHw/U+OQ2//qEzuJCX3Z8lPpqJrTR79enTBU/98Mkb06x7k0XEOvB879zVr8+ismGR0rclrObvo80XFWCYUGcO81Tswz1fYPvb1E6N1ESAusQN61sasqcRAhhyxTYf/myRvTzLAUNXV1FLCNt/P5pO+mbGKuwjLR8dbF0Lk2IM8jpR/IzJ3wvGXt1fH0oyhj/gYSNQ7erCTuu/7s0Ja1WtmSDeViVdOdBURzSWiuZs3m88k1kG7P7IVK0mL9WcnDVfV5rXFWHCguq49Ds45FPKyzkFPjHg/+ioOh1cxX1zWLs7JmMmhxbwTQ0yr+jZuSG985+zDlGEhuMOZ/JwlFne0AoChB3RT6g+GiqeeCeC7MlM4D+4HMGu5dzi8vJDkiTzFqPRwtZJ4S2VZI487J/b/+1JdMO4xb+MUH3sazs60yHJuq1RieODNVUH6MQfJEWPL46bldybOmeZiyXj+gmgswHGQqH+RuIKv3jcXX/nDXADAZVNGRvqp05eI4O9ZfIQjhvQO3h3n7PgGrlhi+E+By1O9EhPnsKuhJdIuh8j98KjAMvYHP4eNvqgI/u8mP30NAFHbNhzAOj99uCI9UoaICgD6IC7GAgAwxu5ijE1ijE0aOLBMW3DN96JSSKtegbyzOfzA3rE8/N09v2gTbnn+Q6vucGWybEqqCp/BcajgQt9PIhC8lnxkN+JNOHHHInMONrsSkTNS4ZlvnIzDDuwVhoWwkG+UmN4Hwsb3QsZwgXjICwRf1L/shyGRF9NcDtjd0II1CRFNSSgTiLOkfvGzkY8f3S80nZW+uu4K73xTm7aQR108S/xg3yNenFtD+nSFDBvvYFW4DpngiXNm7H88izeXq6MCq0RUH/7kXPQXPNNlrvuVD8ONos7LOdpGNI9KrCTm4HVysdLiDbtwv0BQVYu1iXO4+o9vR9rlOFsIg+IZFUQzzFu9A2t37Gv3fg5PALjCv74CwONC+jTfAmk0PMXzHF/0VE9EU3x9wuVSGV7XxQBeZFkZFCtgUrwBatlmNF+Uoqtq48WefG8d6jZpOAde3q8g5Bwk4mBQSJ8pWPHIE2Zk/x645tRDcM8VoTye7/BE2WlMjKVsSe67nmWP9N2vjO+Q+nTTK1RLjOH/3l2rvKfaWetoA+9TraCniFvGqBcC/l7zOcKepqLxjArehySFNAAcPLAHBvSq1RIQIor5DejbtCDe8PslPbh4JnoQ+pmx4P3oQqckilEVadoDjRLqyivESipRK6D+9jh3Zxom+VZSFNiaQCEd9XCW+yPCdPQo4G2Ybn8pavE40jf04HXKVVz0m9exub6x/YiViOjPAGYBOIyI1hDRlQBuBnAWES0FcJb/PxhjCwA8DGAhgOcAXMsY4/z9NQDuhqekXgbgWT/9HgD9iagOwLfhWz61FsQBP/3wQXjv+2cDiC8QgPpDlFPSeufKdTPG8MKijXjE95tQHkxjQSrlvuYI+Peph2PUgB6RPIyZrWJsFh+Tk040n78AFbnIRZ+XMaYNb6AqV99gNis060LiOgexjPVxnIKsXadsBrwFT/Q70IVlAczmuYCtTsgzP22SlLSiaEYM8aLzsQE8XcnaHSEHpRoanVWfCqr38kMhZEwQMVfIFrMA838ZA+6ftTJyj3NhpvhEvLsPfPV4AAhCjOjmDDcv52KfGHFQvBWTWAkA3li2NWK2LEMMKx+/Z6w6MyRqMhljn9PcOkOVyBibDmC6In0ugCMV6Q0ALknqR1YQx7trTQ59fPNA27DJacQuxjy8PwCunDFXqF9uL+zTwQN6YLkfj0UUEQB6Nl6uCzAfHWk18RLESnIfihaLrqquf/ZPQVMtWrv2qT2zdWaJpvb4x92lkEvl6OTt0P1dZ6hQiMELQ82MBIQ/4vGj++HVpVu0bdoczck5h9++HJ7ZccqhAyOEJzw0JtwsqMZ5b1MRbyzbam7PgmCY3v3xB4f2Jyr9hbxhoaDvDD94amHkXvfaKOegVEj7N08aMyCSrtOtBOFNijygpoWYNGEaJXEWnshSc6+9cA4dDeJ4RyKX+r9JC57N4mnjrKR6vzVCjKewvXCXK3ZNjuGTpl86kzwxjwk5w5dXkHQcQLhgm2pW6SX4WKjESrrX9NNnF3n1Gd6jbF3Dq//rNSfiO2cdGugJkqDi6ky+MTovarFcEnHaqSGKIlQiCblJzqAWGcMwXz9z+mGDkARdvDEZMTsHvqFQnmEg1mVhDej/quYxD+8ehkFXlNeKJNUNc+OJJg1xiJmpI5lzkE3WZZisttq7zmG/hS7UtkrnoIK8c1O9wDSEXSyulvmqo1TKYS50uysRNpyDjdxCR0hn33gGlk4/V2hPIg6GgVGNOicKqt2y7j1xRWf0kBdZIR1Nm7PCK3Po4F745zPGavsoQ9zlmkVG3qLILDgoE+G27pfiJcpN8rEtlVgQ3vrqUw9JrlvRdaX4VcM5JO2YuT7IJLLkVSuJQw0XK3lQe0jH0dRSwn//TX3eNrfo42Iled7LhwQBUc7h5585KmZ0IFvrycjnSWvIUS2dg52BfAdClHMIr7M8jctOrESx/sihM4Cwj97iEqbHrJosyDxfZHX22oBd30PlYnSsxJAEYl3cBNC049EFudPnN/fR9BrlXdm7q9WB7pIgciBGnYNvVGAWK/nvJqv4PQn6IL4REa2VVPMvVq/lTjwm5vR/VV78chDLImPY22AwRQafx9G6Lp00IpjjNmIlEb9/fUUgsgVCfxwgPGsiDE8TrVQVsVUkgoU8xd55km9LIUfG0yGrgc5HHCQWVkaSrFAuYzv54pl4eYEbUEwY/pFt2NWAj7btDdOllVP3Mapg2p1mYcoa1uX92ugclCaHFfDP4oIjV02U/J6toOAcdDvrIkvmLoBsOIdczmIe58LNUODfYeGMZ1Kmi5CTgt1+Qse4ufWSjXplLTRjdcigqPEFYLYmFNEgRLD9zwvG4fOTw9MTuZFIk8ZaSbWIF0tRi0C5TZkQi06dvIxN+JbWRKcjDuJ0iYti7ENjmGDz7lQveIci/DX/iG96ckEkXRXaOwk2u1Orviu4HmU+vz3uHW7qoppzSEdMovWZ+5V0ypgM2XM4KMd4f/QEME/e7vLBOauD9lV9AtLF79GhtpDHDkk3MeXgaNABvpkQFeW6g5g4bv/CsUpxiN1895+vJfp8xx50AI4QfIVUwSF1kHfsyvmSUNdVpxyM+2atjCjrJ4zog26CGIiLlVo0YiUVNyR2rZDLxQZJ7Oob158ec+os5HIRojNLMApoN6asHRkqE7lk232Jc1DkSWWtZGvxI83IuK28poFIGe/XpPS06rttnJwU3IxqMTeJZWWxyfkfGxK9bxQrGTqiwE2fGh/zHPbqiYuVdMrmN5ZtxQbpFD9VnzjhPvdI9VnPNqgt5NAoeYj/0ykHR/4PxEqMBbtc3Ul1HLrAf/w9Hz3iAGP5HEV3+6cfPgiPfv2kCIdoFT4j4Byi+VT+EKqa5CgIpVLUee6A7lGH0oLkBCf3r6jghkSFdCFvNvNQefvLnMPnfvem0GdDZRmi0xEH8b0eOzL6weuCXcl5dPVxpPFzEKHylJWVuhxxT2p7cZCZc7Cox/+1dYLjGNZXHfICUHMOJn8MOfuJY6I7Y9W50mG/0p0JrBtakdPku0fV7tvK/FSwVjrziMG4Q3BYS4suhRyaWko4eGBczBL0SVBIB6asCXNIN8d4Mo9NBejFrcu3hE6hqmEhf7E2gReTdWfy2IubPW5R1Ku2EIlPlfcV4KLF0SEDo2biNYFC2mtP5hRU87QU4RxIa8hy9+XR8785Ptq2F49pnEKrhc5HHPzfOy+bGIurT0gvVrK1htD3Jyx/+uFxU8LgrIaSeZcU93RWLFIWootUCmlLJziOn33mqMj/r19/On49bYJXl2LcN+7U77RlyMUj1kqK8Bk2EUs5dEMiml0GJ/kZjApMCN9NKVG8k4TaQh6NLSVj2JJQIe1tPHKUTMR0d1XH1KqQI+D1OtFnQjVHbYxCuIgqShwG9qqN5ePvnjHg6k8cgvk3nRMRjXEFuMl8WbZW2rY3GuZFKVYSnmHSyH4K51m//TJW4KTQ7lmh8xEHf1xH9e+h1DmkFivZarw0WcTyquijOc2HJ+sc5GfpWRuf7DxPU4s5KF3QRo4i4bDlPOIcvVzyu5DrArzjFkUMO6AbRvse3KrdYrcuepWYTEzk1yD+H3tHFgtQNL9mxwyBc+C7b5VRgRXn4P02F0vWUVp1qK3xnPlMZqOisUBLiSmJWqyM5jl4qk6BGuajCDejU27bRmWVw8CcNe7AWD5eVZExpZiSE/heXfVzLR+c8V3Chxvr8S9/fjdy36SQnvGVyejTvSYWlTkwYEhYLFQGClkYLdig8xGH4ICX+D0CJdphJ4U34PUk5iHenxBKkYRGrCT7OfCiJ48dgBvOPRxfk2TMYh7OjuvGgOOLU0biNIVjFO/TEsH9v2/3eGTYuM5B/3xJsmEZMWIg5N1c32jcNddt3I3lm0OzxUTFuuFGwDloTvIDbI0FvN+mlpJyk5AGXfI5NLUUjeIZIgr8L4olFiFgk0b2xbf9syN+dOH4WB91fU/0+qXoJkdpAmsw4ZTLiRzwt84cGyPChTwFItRiiSnFZryMiZsOwsUwYKkiyrLSlNVP4t+0rOfjrSVNDZXTYxKHlhU6nbUSn7+qd5LPUeLAx0JcK5BGjCAu+qowBboPT6dz6JLP4Z8+oXZmCndcXl0vfufUWB6x3qQdrygTVRHNeAgFRZ8CLkQlt7XXOYj/3/jYfBw/up+2rGwmOW5IPLKuqo8ynnpvPZqKJdQ3NIdRdRW7/jQ6KG8XXxnnwMVmSTv5fM7bDLUUo20+cs2JkTxCL9Xt5cK+m+ARh3CR1JnAJn2DoZ9DWJccTh0AhvbphnU79wXzSMX5qPw9ZIgOfKpXo3puLmbUvft3P/J8a5LM3lX9anZipdaBiWIX8mR0EAOi0T4BXWCv5I+bf4yiV6YY4IxD9+HJC3dwBq9hYclJu5jeClY6l6NgYdURB9XjyaGSAYU1mKIg/3g2KPQLhx0YOiKdIJliynoE8T3MXLgRP3l6kZDXjB9fGAv5FYGOE+RzZc32fWFUXcMCZG4jRBqx0h1fOFbRnreo8A2FTmTCDTCKpZLWx0HcbeseIxQrJfswiAubzrIrSWwiiuA4VKcF9upawJ7GImb7HvAmfwxel2rzF3D5LP59eZxOvL88SffuN9c3+n1S3g7rURlqOLFS6yBcROJvpZCjxIGXdyifP14ha7foh82CAYQLqunUKCCcZKZdJ69r625vYupc+DkXoNv1qNJVohBZx2ByoHr3o2hE1umfPhIXTwyPABk7OGpBIn8zlWym+iSczWyjpA8U0kq9UXJ5cUxt5P8cSo7N5wiSztHIE6GhqYgZs1Ypj7oEovNUt+kJA+GZ+0qILui6EC8bDSa/IsS6VJZwPNw9NwNVfXOc+HHi/uw3T9bmKSlEUzpP5g997lRH6Ht1jcaAkjGqvxdBV33gj+McWhVqziGX6IQkfoxfOP6g2CE7urrjeeyIg85zNsY5UDLnwO88MPsjAOrdvpee89sw1yNCtSh2lxTKpqBtu6QQ3OOG9I6MkVzSpICWYfqWzh432HjOhKptGcUSC+aNSW9kgkgP0nAOqvfNwz0XA6WnGvkc4a/veKJBne+L2Bct58BFn8IOWuT6OFpKLOLoqapu8YZ662i/okPdwJ7xg4ryFPUV0IU2AcLduCm0SYnFrYsKGlH0j/xosUkiQt3da0/zIhIzxiIOcF6ascrM0OmIg0nnUJMjNBoseYBoBEbdiy83pO7g3rWxNNGTVUT83IdofhVi8V00O1RONHR1qT6gi49VHZcqQalzUD+f6kAcE0wOeeOG6nUKqkVMRtLrbGguBv03WZwZ2xAGx6SQPvOIqIGAUsnqL4rhORq695hM+ETDhyROUnyHKtNQmQCpdvLy4VgqkZhK56A8LVByJNNZKwEh55CkF1uxZW/kXiGfM+ordBKCloR3E573Ej+jukq0oRMSB+hfSj5PwQ7wlX87TVk+cuxmCpm8jZLxB58cH0vjk1c+E1nHOZjEVfItHefAiYbu+XI5irTzvfOPiIQbsG0f0Cuk46a60XImhbSMLx5/UOT//zjvCKHedAu3Cg3NpYCzU4ouUpiyJuX/2LCoF7JuUSyx0IhB94j5HKFrwnuzOd861DmkW7ZUdYtz7qB+3dVhSxTctNoQIDmWWuBHFASHjOchIhABW3Y34sfS+RGFnFlHotuAcTGkbnhzwnchj2srHpQZ7UNVWmlHMHMO3nB0KeRwUP/uihyybFhDHBRpT/9LXJZpA97cFl9PwCErzm2IgzwRtTvKnJlzABAJTGZj3qtrT7cblUVS8Xyyn4P+g5HbFcMV6J5RPLZTNwy/utRz4CsxFphMqmL72zCS4vOZYv3HlfzxPLIcXYed+5oDxagO8hnk6j75nEPKRUstEguvrzt9DMYMinN2PIvpuFueJvZJ1b3AlDVxsSalWWkhrw+Qp+uX13c9MRLTGQMen7cucq9KxkqdmDioPir/RZp2+eIt2dcgzBMvbyW+MNQlRo0EgJ610uLpd8W0oNuKu/jzm/QX4qS3tctXK6S9X5lzkEOJyEVlA5E061J0wVPn+erHQz8R3biN6MeVhiwQmaiIgw3nENl0GMZT7opy9+0ncYKla91mkYkc3qTrlp+lmNL+Xt33ME01loDgIS20p9P1iAu3KiJsYA2YuFjH08498sBYgDwZOu68xeBrJKbf+Nj82D2nkG4lhLZK8bfCP0pbuf2eRvU5xraWSDaQP8jhfbvhlX87LXZMqI1C2jaaY1CX5TjY+H4AZic42RBAFlMlhXZIs5uKLnjqeiNWOpp6AhNHQCAO+vhYAHDaYQONdQFmhbRMqHRiJVOZNBBNXHXitWw5Bwvi4P+KFlY6zkFcSFWKY5nL0sePiqd7UWrNFo5anYNBxyG2p/J92i84ByJaSUTziWgeEc310/oR0UwiWur/9hXy30BEdUS0hIjOEdIn+vXUEdGt1IqHpDKDHDbtjvmtlduUecSddK+uBfz1mrjc1BaqyaoSefF8tlyPuU3v17Tmi3WpTsJSQTXmKvkxEJ7oFeSTyg2XTBeT4jyJsBOVxPsYz8NZf0GspLC3F9v4zwvGJbZnNkeWypWp45DxxHUnKdOjx76qy/L01DoHpYI4vNaJK/kY7G0KN2c6M1WxTybOPLRWUvc1R1Hi0qdbDYgo0aNbN7/C+W7PqXDsTzqH0xhjExhjPLzg9QBeYIyNBfCC/z+IaByAaQDGA5gK4HYi4ivAHQCuAjDW/5uaQb+UMA0r/9BsP07dDi+foyDfZVNGYuLIeLhnW1jFcoK4oNsvLDrwOkycg9iOLeegguqMiRU/PS8mWhFj09z7pUm4RjrSslyxktZcVzSj1e3uhLZ/9txiAOqxEF+Jbky3CyaeJj+HuNe5Xqwk99ME3bzJR8ZBt6v2frfsblLe5/jWmYdq6+YQiZ2KCxMhilptrJWUnAoXKyUcZSs75932uWMAeHpKk0e37k7S6YgmI4j9Wax0IYAZ/vUMABcJ6Q8yxhoZYysA1AGYTERDAPRmjM1iHkm8TyiTPQw6B/6ibEUzJlk7JzCViphi9vyaiZFWFGRCzqLv4hiZgpaJUC+cXKxkdo46TgiHcfrhg2PEI81uKm14iiRxSsQiJmEnr3sHx40Kn08np/bKS3VbKPltXruWOIjitQQOKrkNqZxmt8+RpHMQjTJUBDVP0qFOim7yPjUncA55IilcB/cFMnMOunnZHOgc7DmH/r5PVSanGFqgUuLAAPydiN4moqv8tMGMsfUA4P9yw+xhAESD3TV+2jD/Wk6PgYiuIqK5RDR38+bNFXVceRqX/2vSOdgqYvlkTSMhGz+0Tyztjbotkf91h8DzdkybeNu+8Oc35RbH6KB+assuGSbrlKSzkzNU40REP7KDkQpJSsM0Z4Do6hLDTRsV0tJbUTEZ5WxIdHM+6gRnV++fvnq8Mj2mL9GYjXIM6Bn3+9FBp3MQOU6Tg2KSQpoouoHhc7kmrw6fwaFykgXC+EhJOgcRv73MO+Njf+EcTmKMHQvgXADXEtEphryqYWCG9HgiY3cxxiYxxiYNHKhW7CXBJJtO6ytgEqcEYh7LD2rxj6cqdQnbhdjx3zxzLC4/YZSyPO+KzoIKsBMveHV4OU0iZHEcdDs8K/j1cIX037+lnkJJC9OXThqtTL/3S/HDVEQHrUqUe6JC2gRxmui40ugBNPaiQVVeOeXkscnfip5zEJ3g1GXld3PimAFWbShFQULSgF564iCPg2rhJ/LiXnF8QRHqJnSC8zkHzUPmchQxmhDFuCpdy+gBPfCpo4fGTLI5eNj8pAOUOM4/aggOGdgTvbsW8K2zDlWWyRoVEQfG2Dr/dxOAxwBMBrDRFxXB/93kZ18DQDxdZziAdX76cEV6q8Dk55D2BDcz+8/FPPq6/vfzxwTXusNG/vn0scG1bL4q4m8LNgKIKul0fQKAX3726MR8ph2K+BFVIjrjbXFrn4MH9NDkM9fTs7YQM389oHsNTj98cCyv7ULMoZW187O0UxyXqmtOnEu7FPb0ur6ojpgUF7HPHDscN3/mY8b+AZY6B832wpY5lptIslYyif9iMY4sztHoofh+5JDdJtFZ1GiC/HZzSic4Xej1p//l4wCS9TPyWjSgRxf069EF7//wHJwzvvwjZNOgbOJARD2IqBe/BnA2gA8APAHgCj/bFQAe96+fADCNiGqJaDQ8xfMcX/RUT0RTfCuly4UymSMwZVVMgh37vBemio7KIU5KE/tvEyXVRvZ9YJ8wZoyORRWxaute7T2xOfnULBH8sYzOPZbjkARZ56CPBGuxiEv/67g20Uw2bcRUEXxTff+bq4zlo8Qh+fk279Y7pvHuDuxVi5U3n4/eXeNxoRoEb/pDBvVIVOya+pWlzsEmhLutGEteeFVcvA3XLhtEqM7j4H0VRZ+87wUF5/Ds/PVYu2OfcqM2tI9HzN9etT12T25PRLXMV0VUcp7DYACP+ZO6AOBPjLHniOgtAA8T0ZUAPgJwCQAwxhYQ0cMAFgJoAXAtY4zP4msA/AFANwDP+n+tgpBziE8c+bQmFXKRnZQpXzy/qS4dRALS14I42IokTG3ziWjsu9BOJecP5IWPs5Ajo7VIEuSy3RWn4QES55DyHUTa82dA9OjLOCJzxmaojOI8zq3o84gKUt1iJ0M3b8TFOslqKwnyO5y3ekcsj7jom+Zyl0IuElJG6X1vMS95Gzymms4CkYiwWDjcShRB722KvgwedG+DIrpsTSGHXl0LqPcDTdY3qDl9+XGqdfqbiLKJA2NsOYCYbIIxthXAGZoy0wFMV6TPBWAOqp8RTCfB2Xj62rPQfPLo89hE3xQneD/FaWu6dlWwUYwCoTjJ1mrL5jnOGR8X7wAA+ePTVCylstJR1iX9300jquuaUqyky2NLEyM6hxQGCirYFO9Rm+75AL1PgY2llTivzjxC/Z5VfVER1RqLKLBevuRv1SaPbBCh2wjERGL+M9coAu9t9UVG4oJe48dtyxPhgO41AVHQKbNlYqcjIq2JzuchbdQ5JJe32Y0A4cutlHMQd7Y2YiWz41pYl2nHHBx+buie2I7N+QO/uvQYZboY0TONfb8Smg9YhqhAt3mf+t1k9P9PHKpW/NqIlUSYJAh8XpmMAD47KVTtmQiuCF194mKpW2zFxfHuK+IGABxWYy3MAZMo0cYIYvZye0u0l5ZsNrZpErvJpqzc5FUMKX7ZlFEAvLkkhoj/uEZ5L7eniuvU2uh8xIFflLmBs7U+4t9RxcRB+KBkhasKpt2S2JrpQw04B8u+2+xOdVFbxaLmsBGJTViDIkQyOb/eAixaeOgB8TMFgOhY2wQpvGxK3KpGbtG06B/QvQtG+pZvJus1ETq9hLjw6azztu01eYFQLQAAEYZJREFUK1c55GkiOzIC9sRMzCeecy1i+ZY9ynQR2/fYLbryt8BDhdQYwmdMHBU6v37v/COw+MdTUZPPoasw1npjhygampNF3lmj050hzbfFKp2Djc5HnOC6s5q9fKFMUtsVi/YifhUWC4tp8clFxBv6OkLiYNevSmBrnWJ3JkIUojK/EtiKGnTYJlim2HiTjzD4jQTBIRPq4e/QVh+kW5TFHXpNQZ2nwUJXB8Q3VicdEt812wZx5PN89IAeWvPuLoVcov+MybpPhGwpyLmlfC4uVurbvQYj+nWPHD+byxG65vJ+m+l0mwDQkHDOTGug03IOyrXGYrUWKb0pLMZ6/0zkStdQ8YOyUS6a8ogE0cSyX/2JQzBpZF9ccNRQbZ5KZedhP8LrSsVK8jP9/OKjEsvYWIHYWlDpFv6ZizYG17Y746S+JC36PCidzTkbgH4+DO8bEirdws0Vw4dKR7nKsPHctj0Fj+uTTMOg0zmJ2GNJ2GTrvuBwpxzFor22FBkmjuyrnTcL1+9KbE8u2thcfYV05yMOBp2D6DCTFSqNIZiLyHwtxFCGPOIOR3dmMOAtCI9cc6LROspW95IEW/FUOc0N6qXnHH49LTyLIQm2nEOtZjH63vnpDhcyITilL2FAtu7xuBWTyXJa6MaBE4dPHa3fTADxOVOuUQgADPFNQk2K2qOGxyMOyLjgqCFW7fWQLN+4Ijmfo1io8pYSs34OLaSxkc9vqQY6IXHQB9jiL+DCCfpJbnKVN7WXBawsawyLjxhSebulnFiLjJ4rGqvKpHOw4RzC6y+fNMqY96QxA9C1JoevnnywMR+gJ4SyaFLHOeiUjuWA6xCS5gJ/Paa4V/dfOTlV27p3cPRw73S6Yw8yB5jsIYdhV9R30QRl5JwY6hs9XcEmw2FFt05TG0GIGN63Ow4ZqHa8FNFF0snwjVYhnwtCYXC0lEoVi13lsfm3cw7T5Gw9dD7i4P+aXt2hg/UH86i8LE1IG8bYBJsFsn9P/W6/JPRFDPRWDpJOGbOF+A1VyjmIO7gk2jWgZy0W//hcTBhxgDZPL/9d688Kj/7/NQ2hqcRJUAY/Jc528THtYCuJpiti6pEHYs5/nKENm8Eh64BUxOEzEy3OIoedhZxoFWQCH0udtRkQt44KiIPgBLd1dyPeWLbF4xwqJA5i6b9ec4JRxNta6HQKadNJcDbo3bUGc/7jDCufA8BuEa0oNpGPEw7uj1nLt+Lrp47R5uFdOe9jB2Jw78qUtVkRvWg4EtMJaMkvrFFgvTNxGvKb1OscwuuhfbqiT3f1YpTl4U+2OgebtrMSDQJmER6HHGdolOYoXhtkanbuv+gjh/XW5pENPQ4Z6OlXCvkwrMYX7p4dOMrZWonpIPY9K/1eWnQ+4uD/muKlJ70Mmw+Bw0amPXl0Zbt4AJjxlclobCkarZWKFiaqtsiKcxBhWshsiJFomZJkpWID3hvdLtX2aM9KldAiCpY6h6DtDAIxfu/8I7Bbc+phGojK5rrp51bEUaWdfTO+ohehrdvp6RpH9tOLlziX9amjh+KXnz066LvIOYge1LaKdR1sOerWROcjDiaNtI8sCPXQPl2xbmcDstjAfunEUcZ4T4C3s0myoS+WzPGL0iBLcRmHabFI214WCjzeoo0TnGkxsBGBAMAnjx6aKI7gO1LbOk0GChxJh1HZ6GVsIBKqrERt/3OJPoCkiFPG6kVeXKk9qLdeec+5+0KOIn0v5NWH/ZiCJ9ogGg3XEYeqwjTeWehazx5/IP7wxkrjgs1FA7qIrBw//JTaySctuC7d1pHPBNPpV+XCJCqxMQSYPLof5qzwjm79/+2de6wU9RXHP+feCwjyuApclDdapPJQgQsoXMQQsaJNaaWNGiMgxkfrO/6h1jZN2lqhaU19NLGkhaittWm1FR+tsaZqfbQKFVSkiCgpKBWtioBRiz39Y35z2bu7Mzu7OzsP7vkkmzv3t7O//e7Z2TnzO7/fnBPHyMFfPtgvYJ6py2R6yMk6agjIry4WRpTUJlHfO+lcblEcVVT83+ghAaG8YqKEJfuHzFH4v+Niu7c0la/n8EmE429gyGrAvgWro+odhdRKt5uQ9gkzdxzFNPyrkaATC3jzBJfN/Rw3nlE5pXIcfFbliSW0L/eDKC79WA9RbswLY9WSaZ3bcTgHf/TRN2DFT6HcsB9wnLF9/4o07LgqpJ6ss3FT7yRtIf7REMW2s0NGDYX0D1nZ5YeVig/DlqYm/qddF3tAtHnEsFQjfXvtd1SDqyh6FCfdbuQQ5bxf/EXXwtKO0fx18zvMPbotcJ+mJuHqU5JbouZ/rlhGDp1L+eL7wYfNA0UZqRSuJIsjrHTsiFbWb/sg+GaqLmGlZK6z/BU400ZHq0seNqJJqKBYJ1FtNG5IPza9vTt0n6CUFcW8+v35kcOoYanN/eqBxRcp/vFfPAcXZaQyOWTpb+EFSZScao2g+zmHzqyswV9e1LtKw5gwdADPXX9y3f3Eyf6RQwx9daYPiPG6M6SrquccYhg53Ll0Otve+yhSMrbdH4fHmI8dPoCzp4+sW9NJ49r43cUnVJwn8IkzlFMvUS8kVl82q0vBonKce/wontnyHyYMDV5hBNFyWflEWfZbfBz6Ybvi9nqvv/r0qJx/qdF0P+dQeT46MFdL3vE/exwn9H0F67zj4v29wTfmfVblZW4cI4cBvXswYFjwXbaFn/z1d8KTvN1/aUfdenzaq7hHJc7vp16i1pbo1dJMpajZ/EmH88aNp8V64gxbVean2Viz9b0u7Z2V5IrmHcJU3X3BDF7avitUS5yhyFrpdnMOobmVHNVcbeSJhVOGc2b7CK6eV38oq9WFN1oj3u8Rhc079wQ+5w/Bx7aF5++5+wKvuH0cI4dKpLWKpBrCNI5xJVnPnDYicJ84iXtiNe4r6rDfvX8yf2tX1wI+vvMtTkcTZveZRw4KTdqZFbrdyGH+xMM4akjfSKUTDzR692xmeYRkdFG4aM6RDO7XizMmR0t3UC/DWnuzddnpFfcbPdA74U0KueKPiyz7hj9cMov7170ZejXslxpNipYmYcrIVpZ2jEnsPashLKw0apB3w16xA/HnUWb84LEu7UsqpG+Jwg1fmcjIkAy9jabbOYdRAw9m1MDyN7vMPHIgz2ypXCDE8H4kZ8UQQy9kyczRdfcxtLU3D13e0XkHayMpvHJ95MoTG/5+1XDciNbQ1CBpICLc941ZacsIJCydyFUnH0Vr754lObvKLVm9aM4RDIphhdE5M4LreiRBZpyDiJwK3Aw0Az9X1WVJa7jr/BlVJ9Yzwrn36zMjLw2OuuSwEhOGNn7UAF1HDkdESN5mZJNBfXvy7p5PQ+P8B/VoLlucqPgVG797aiwLWrJAJpyDiDQDPwXmAduB50Vktaq+kqSO5iahuenA+GKzQpRVNUtnjWHl02/Eml46CboUwkloKasRPw9eNpuN/65cY6Ecxf7kQHEMkBHnAEwHXlPV1wFE5B5gAZCoczDS4Zr545j7+TaOGZ6tMEgluuO81YHIYQMOqrlq4KwY07Fnjaw4h2HAtoL/twMzUtJiJEyvlmY6YgopJc3yhZM6J8GN7sfYIf3Yuux0dn74cWr3IzSKrDiHclYtCVSLyIXAhQAjR8Y7GWoYtXDmNDsODWirMwV+FslKoHQ7ULjYejjwVvFOqrpCVdtVtX3w4ODCHIZhGEZ9ZMU5PA+MFZExItITOAtYnbImwzCMbksmwkqquk9ELgUewVvKulJVN6QsyzAMo9uSCecAoKoPAw+nrcMwDMPITljJMAzDyBDmHAzDMIwSzDkYhmEYJZhzMAzDMEoQTbpWYEyIyG5gU8DTI4F/VehiABBecSPaPnH2FUV3nO8Xd195tTuY9mrez7R75FX7OFXtV/HdVDWXD2BNyHPvRHj9ijj2ibOvKLqzqj3Pdjftpr07aQ87dxY+DtSw0gcR9nkgpn3i7CuK7jjfL+6+8mp3MO3VvJ9p98iz9orkOay0RlXbq30uy+RVt0+e9Zv2dDDtyRNVd55HDitqfC7L5FW3T571m/Z0MO3JE0l3bkcOhmEYRuPI88jBMAzDaBC5cA4islJEdorIywVtx4rIsyLykog8ICL9XXtPEVnl2teLyEkFr5nq2l8TkVskgeocMWp/XEQ2icg692hLQPsIEfmLiGwUkQ0icoVrP1REHhWRze7vIQWvuc7Zd5OIfKGgPVHbx6w9UdtXq11EBrr994jIbUV9ZdruFbRn3e7zRGSts+9aEZlb0Ffi55rYibKkKe0HcCIwBXi5oO15YI7bXgp8z21fAqxy223AWqDJ/f8ccAJecaE/AvNzpP1xoD1hux8OTHHb/YBXgfHAD4FrXfu1wHK3PR5YD/QCxgBbgOY0bB+z9kRtX4P2g4EO4GLgtqK+sm73MO1Zt/tkYKjbngi8mZbdG/HIxchBVZ8E3itqHgc86bYfBRa67fHAY+51O/GWm7WLyOFAf1V9Vr1v707gy3nQ3miNQajqDlX9h9veDWzEK+m6ALjD7XYH++24ALhHVT9R1TeA14Dpadg+Lu2N1BhEtdpVda+qPgV8XNhPHuwepD0NatD+gqr6Rck2AAeJSK+0zjVxkwvnEMDLwJfc9tfYX0luPbBARFpEZAww1T03DK/inM9215YG1Wr3WeWG199OepgqIqPxrpT+DgxR1R3g/aDwRjlQvhb4MFK2fZ3afVKxfUTtQeTB7pXIi90XAi+o6idk61xTM3l2DkuBS0RkLd4Q8FPXvhLvy1gD/AR4BthHxDrVCVGtdoBzVHUSMNs9zk1KrIj0Be4FrlTVD8N2LdOmIe0NJwbtkJLtq9Ae2EWZtqzZPYxc2F1EJgDLgYv8pjK75W5ZaG6dg6r+U1VPUdWpwK/xYsSo6j5VvUpVj1PVBUArsBnvpDu8oIuydaqToAbtqOqb7u9u4G4SCnmISA+8H8qvVPU+1/y2Gzr7oYudrj2oFngqto9Jeyq2r1J7EHmweyB5sLuIDAd+DyxS1S2uOTPnmnrIrXPwVy6ISBPwLeB2938fETnYbc8D9qnqK244uFtEjnfD00XA/XnQ7sJMg1x7D+CLeKGpRusU4BfARlW9qeCp1cBit72Y/XZcDZzl4q5jgLHAc2nYPi7tadi+Bu1lyYndg/rJvN1FpBV4CLhOVZ/2d87SuaYu0poJr+aBd3W9A/gvnlc+H7gCbzXBq8Ay9t/QNxovW+tG4M/AqIJ+2vEOsC3Abf5rsq4db0XHWuBFvImvm3EraRqsvQNvOPwisM49TgMG4k2cb3Z/Dy14zfXOvpsoWKGRtO3j0p6G7WvUvhVv4cMed5yNz5HdS7Tnwe54F3Z7C/ZdB7SlYfdGPOwOacMwDKOE3IaVDMMwjMZhzsEwDMMowZyDYRiGUYI5B8MwDKMEcw6GYRhGCeYcDKMBiMjFIrKoiv1HS0HmXsNIm5a0BRjGgYaItKjq7WnrMIx6MOdgGGVwidf+hJd4bTLeDYuLgKOBm4C+wLvAElXdISKP4+XCmgWsFpF+wB5V/ZGIHId3F3wfvJuilqrq+yIyFS+f1kfAU8l9OsOojIWVDCOYccAKVT0G+BCv3satwFfVy4u1ErihYP9WVZ2jqj8u6udO4BrXz0vAd1z7KuByVT2hkR/CMGrBRg6GEcw23Z8z55fAN/GKujzqskc346VG8flNcQciMgDPaTzhmu4Aflum/S5gfvwfwTBqw5yDYQRTnFtmN7Ah5Ep/bxV9S5n+DSMzWFjJMIIZKSK+Izgb+Bsw2G8TkR4ul38gqroLeF9EZrumc4EnVPUDYJeIdLj2c+KXbxi1YyMHwwhmI7BYRH6Gl5HzVuAR4BYXFmrBK8q0oUI/i4HbRaQP8Dpwnms/D1gpIh+5fg0jM1hWVsMog1ut9KCqTkxZimGkgoWVDMMwjBJs5GAYhmGUYCMHwzAMowRzDoZhGEYJ5hwMwzCMEsw5GIZhGCWYczAMwzBKMOdgGIZhlPB/aIiBhOhUsMkAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "sorted_data['inc'].plot()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 10,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEKCAYAAAD5MJl4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXl4ZFd55/85tasWbaWl1VJ3qzfbvXhvb9hsNmCzBCeBBJMhNgkZJwRmkiHP5AfZhswMz7BMCCGTOHECiUMI4CFkcBJWG6/YuN1tvLZ7Ve/q1i7Vvp/fH/eeW1VSSSpJtanqfJ5Hj6Rbt65uXVXd93zfVUgp0Wg0Go2mEFu9T0Cj0Wg0jYc2DhqNRqNZgDYOGo1Go1mANg4ajUajWYA2DhqNRqNZgDYOGo1Go1mANg4ajUajWYA2DhqNRqNZgDYOGo1Go1mAo94nsFp6enrk8PBwvU9Do9Fo1hUHDx6clFL2LrffujUOw8PDHDhwoN6nodFoNOsKIcTpcvbTbiWNRqPRLEAbB41Go9EsQBsHjUaj0SxAGweNRqPRLEAbB41Go9EsQBsHjUaj0SxAGweNRqPRLEAbB41G0xBcnEvww0Nj9T4NjYk2DhqNpiH4p2dP8+tfOUA2p+faNwLaOGg0moYgksySkxBJZup9Khq0cdBoNA1CIpMFtHFoFLRx0Gg0DUEibRqHhDYOjYA2DhqNpiGwjEMyXecz0YA2DhqNpkFIpHMAhLVyaAi0cdBoNA1BXjlo49AIaOOg0WgaAmUctHJoDLRx0Gg0DUHcdCvpgHRjoI2DRqNpCJJKOcxzK/1kZIo3fe5RXjk/V4/Talm0cdBoNA3BYqmsr10IcWoqxt1f3s+JiUg9Tq0l0cZBo9E0BImM6Vaal8oaNZVEIp3lrx47UfPzalW0cdBoNA1BPFU6WymayuK0C4a62nSwuoZo46DRaOqOlNJqnzHfAESTGbwuB26H3dpHU320cdBoNHUnlc0hzWasC5RDMovf7cDjtJE0M5o01UcbB41GU3cSqfxNv5Ry8LnteJxaOdQSbRw0Gk3dKbzpz89WiqaUW0krh1qijYNGo6k7Ko210+ss4VbK4Hc7cGvlUFO0cdBoNHVHNd3r8buJJDPkCqbBRZNZvC67Vg41RhsHjUZTd+KmcujxuwDDlaSIpjJmQNpO0lQOM9EU4YRu7V1NtHHQaDR1R7mVegMeoDhjKZrM4HUXK4ff/Orz/NG3X639ibYQjnqfgEaj0VjGwe8GzKB0h/FYNJXF53ZgE8KKOYyFEthtoi7n2ipo46DRaOqOFXMIGG4l1Xwvnc2RyuTwuxxkpSSdlWRzklgqa7mYNNVBGweNRlN35isHVesQSxrbvW4H6axhQJKZLPF0lmRGB6eriY45aDSauqOMQ0+gwK0ERMzAtN+MOQAk0zniqazOXKoyWjloNJq6syDmYHZmjZnuJa/LQa6gvUYqm9NupSqjjYNGo6k78YI6B8i7lVTWkt/tIJMz9pmNGYZDu5Wqy7JuJSHEJiHEo0KI14QQrwohfsvc3i2E+KEQ4pj5vavgOZ8QQhwXQhwRQtxesP1aIcTL5mNfFEIIc7tbCPENc/uzQojhyr9UjUbTKCTSWX7jKwd5dXTO+h0gaNY5WDEHs423UQRnB2AmlgK0cag25cQcMsDvSCl3ATcCHxFC7AY+DjwipdwJPGL+jvnYXcAe4A7gL4UQdvNY9wH3AjvNrzvM7R8CZqSUO4A/BT5Tgdem0WgalGdGpvjeqxd5+vgUYPRWcjlsOO02un0uxsMJIK8cfGZXVigwDmntVqomyxoHKeUFKeXz5s9h4DVgELgTeMDc7QHgZ82f7wS+LqVMSilPAseB64UQA0C7lPIZKaUE/mHec9SxvgncplSFRqNpPp44OgHAbFzd6HN4zIDz5m4vZ6ZjAMRSebeSUg7KrZTQyqGqrChbyXT3XA08C/RLKS+AYUCAPnO3QeBswdPOmdsGzZ/nby96jpQyA8wBwZWcm0ajWT8o4zBj3ujjqSxtLuPmX2gcIlYqq32BcsjmJJmsNhDVomzjIITwA/8M/LaUMrTUriW2ySW2L/Wc+edwrxDigBDiwMTExHKnrNFoGpDzs3FOTEQBmDVv9IlMFo/TMA5bgl5GZxOkszlrfnShcpiJpqxj6bhD9SjLOAghnBiG4atSym+Zm8dMVxHm93Fz+zlgU8HTh4BRc/tQie1FzxFCODAK56fnn4eU8n4p5T4p5b7e3t5yTl2j0TQYT5qqIehzMRM1XUTpLB7z5r+p20s2JxmdjRNLZhAC2pyFyiHfcE8bh+pRTraSAL4EvCal/HzBQw8B95g/3wN8u2D7XWYG0laMwPN+0/UUFkLcaB7z7nnPUcd6L/AjMy6h0WiajOdOzdAbcHP15k7LRZRI56yb/5ZuLwBnpmNEkll8LgdCiAXZSoCudagi5dQ53Az8MvCyEOIFc9vvAZ8GHhRCfAg4A/wCgJTyVSHEg8AhjEynj0gp1X/ww8DfA23Ad80vMIzPV4QQxzEUw11rfF0ajaZBuRiKs6mrjU6vi1dHDQ91PJ13K20OGsbh9FSMWCqD14xFuE3jMVuoHHSVdNVY1jhIKZ+idEwA4LZFnvMp4FMlth8A9pbYnsA0LhqNprmZCCfZ2uOjy+ssSkvt9Bo1Dv0BDy6HjbPTMSLmFDjAUg7TOuZQE3RvJY1GU1PGw0n6Ah46vS4S6RyJdLbIrWSzCTZ1tZnKIYvXbRgFj6UctFupFmjjoNFoakYyk2U2lqYv4KbLVAozsRTxdJY2p93aT6WzRpIZfC5DObjsNoQw5jvkj6eVQ7XQxkGj0dSMiXASgL52N11eJ2DEEBIFMQeALUEfZ6djRAvcSkZQuviWpWMO1aPljMNL52b5q8dPoJOhNJraM66Mg+lWAkM5zDcOuze2E05meO1CCK87Hxot3Ae0W6matJxxeHZkmk9/97A1aUqj0dSO8ZBhHHoDbjoLlUMmZ2UjAbz3miF+7upBctKY5aCYrxwSWjlUjZZr2d3tM1Yr05EU7R5nnc9Go2ktJsyGen3tbswO3ExFU6QyuaKYg80m+Ox7r6DH7+KNl/RZ25Vy8DhtJNJ6pkM1aV3jEEsxjK/OZ6PRtBbj4SQ2AUGf2xr7eWrSaKXhdxffjpx2G7//zt1F25Ry6GxzcTGd0AHpKtJybqVC5aDRaGrLeChJ0O/GbhN4nHbanHYeeW0MgCuGOpd9vlIOyiWl23ZXj9Y1DlFtHDSaWjMeTtBnzokG6PI6OTUVw+WwccVQx7LPV8pBpcFq5VA9Wtc4xLRx0GhqjVEAlzcOKmPp6k2dCzKRSrFAOWjjUDVazjgY4wZtWjloNHVgwqyOVqib/A1bu8t6vlIOAY8Du03ogHQVaTnjIISg2+fSxkGjqTHZnGQykqSvvdCtZCiH67eWN9vLbSqHNqexyNNFcNWj5YwDoI2DRlMHpqJJcpIit1K3z4XDJrhmy/LBaMCa+dDmchjGQbuVqkbLpbKCNg4aTT0YMae/DXa1Wds+dMtW3nBJL15XebciVSjnddnxOO3arVRFWtY4nJ6K1fs0NJqW4uDpGQCu2tRlbRvu8THcU369kaUclFtJK4eq0bJupRmtHDSamvL86Rm29fqsjMHVoJRDm8uO22EnoescqkZrGgevi3AyoyWpRlMjpJQcPDPDvi1dy++8BEo5eF123E6tHKpJaxoHv9kNMppeZk+NRlMJRiajzMbSXLtG42ApB52tVHVa0jgEdZW0RlNTVLxhrcbB4yh2K2n1Xz1a0jio3GptHDSa2vD86Rk6vU629fjXdBxV5+DVqaxVpyWNQ9CvW2hoNLVkZCLKJf0BbDaxpuN4Ct1KOuZQVVrSOFjKIZKs85loNK3B+dk4g51ty++4DLsHOri0P8Dmbi8e7VaqKi1Z59DpdSEETMd0QFqjqTbZnORiKMHGTs/yOy/DpRsCfP+/vAEwgtM6IF09WlI52G2CjjYns9qtpNFUnYlwkmxOsrECyqEQIyCtjUO1aEnjAEa+tF51aDTV5/xsHICNHZU2DjbtVqoiLWsc3E4bCf3G0miqzqgyDhVXDsYcaSllRY+rMWhZ4+DRpfcaTU24MKeMw9pjDoWotNZUVnsAqkHrGgedBqfR1ITR2QQBt4OAx1nR46rBP/pzXB1a1jjopl0aTW04PxuvuEsJCoyDjh1WhdY1Dlo5aDQ14cJcvOIuJci7lXRQujq0rHHwOO0k9IpDo6k6o7MJBqqpHPQiryq0rHEwOjrqFYdGU03iqSzT0VRFqqPn4zbbd2u3UnVoWeNgjBjUbyqNpppUK1MJ8u2743qRVxWWNQ5CiC8LIcaFEK8UbPukEOK8EOIF8+sdBY99QghxXAhxRAhxe8H2a4UQL5uPfVEIIcztbiHEN8ztzwohhiv7Ekvjcdp0QFqjqTKvXQgDsHWN3VhLsd085kvnZit+bE15yuHvgTtKbP9TKeVV5td3AIQQu4G7gD3mc/5SCGE3978PuBfYaX6pY34ImJFS7gD+FPjMKl/LitDZShpN9dl/cgqvy86eje0VP/bmoJdtvT5+dHi84sduJObiad7+Z0/yyvm5mv7dZY2DlPIJYLrM490JfF1KmZRSngSOA9cLIQaAdinlM9IoZ/wH4GcLnvOA+fM3gduUqqgmus5Bo6k+z56c5totXTjt1fFg33ppH8+OTBNLZapy/Ebg+HiE1y6EePzoRE3/7lr+Yx8VQrxkup3UeKdB4GzBPufMbYPmz/O3Fz1HSpkB5oDgGs6rLNwOO5mcJKOrKzWaqjAbS3FkLMz1w91V+xtvvqyPVDbHj49PVe1v1JuJsDFa4PDFcE3/7mqNw33AduAq4ALwJ+b2Uit+ucT2pZ6zACHEvUKIA0KIAxMTa7OiamhIQqsHjaYqHDg1g5Rw/dbqGYfrhrvxux1N7VqaMOfOHF0PxkFKOSalzEopc8DfANebD50DNhXsOgSMmtuHSmwveo4QwgF0sIgbS0p5v5Ryn5RyX29v72pO3cKjCmh03EGjqQr7T03jstu4clNn1f6Gy2Fj72A7R8dqe+OsJUo5nJiIkKrhYnZVxsGMISh+DlCZTA8Bd5kZSFsxAs/7pZQXgLAQ4kYznnA38O2C59xj/vxe4EeyBm0WVQGNVg4aTXV4+dwcewbbrYVYtfC6HDW9adYaZRwyOcnJyWjN/u6yk+CEEF8D3gT0CCHOAf8NeJMQ4ioM988p4NcBpJSvCiEeBA4BGeAjUkq1NP8wRuZTG/Bd8wvgS8BXhBDHMRTDXZV4Ycuh3rA6Y0mjqQ6z8XRVit/m0+xzHSbCSfM15jh8McSlGwI1+bvLGgcp5ftLbP7SEvt/CvhUie0HgL0ltieAX1juPCqNrq7UaKpLKJ5m10D1b2TqxtmsTESSXL25kwOnZmrqPmvZCmm3FZBu3hWHRlNPwok07RVu010Kd5NPdZwMJ9nY2ca2Xh9HahiUblnj4HFot5JGA5DLSf7fT88TT1Xus5DLScLJDO2eZZ0Ta8bosNycn2MpJRPhJL0BNzv7Axwbj9Tsb7eucXDqjo4aDcCPDo/z2994gW8+f67k49mcLLmISqSzPHVssuRzoqkMUlLxAT+laGa3UiieIZXN0et3M9DusYLTtaBljUM+5tCcKw6Nply+tv8MAM+fnin5+D89e5o3fu7RBbOa//XFUT7wpWetGdGFhBJGxXJ7Ww2Ug6N5m2hORBIA9AbcBP1uYqlszarBW9Y4WEVwTeyr1GiWY3Q2zqNHxhECDhYYhxfPzvLVZ08DcHYmzlgouWBW81w8DcDFUGLBcUPmY7WJOdjINmm3g3FTKRjGwQXAVCRVk7/dssah2aZIXZxLNHV/GU11ePDAWSTwyzdu4cx0zHJbfPb7h/lf3zkM5NX1/JhEzPx9PLTQ1RE2lUNN3EpN7CJW/4++gJugzzQOUW0cqorH0VzK4T33Pc1fPHq83qexrkhlcvzJD46w/2S5fSWbj4OnZ9i7sYM7r9oIwPNnZpiOpvjJyLQVZ1A33flzE5RxUO0dCrGUQ43cStDcxqE34CHodwMwVeJ6V4Pq/+caFE8TKQcpJRfm4jUNVq13IskMv/GVgzx1fJKxUKKq/X8amalIio2dHvZs7MBlt/H86RlmYymyOSO+kMnmLCMRm6cc4qZSLfW+CycN41CrgDQ0x2d5PhORJC6HjXaPI68cauRWalnj4G4i5RBPZ8lJiDfBa6kVX/3JaZ46PknA7WA6mq736dSNqWiSvWaLiz2D7TxyeJyDp/M39EQml1cOi7iVCo3Do0fGCbgdhOJmQLpGqazQnAWtE+EkvX43Qggr5jAZrc0isGXdSg67DYdNNEWdg/LvVjJPvdk5Mhamv93NFZs6mInVZiXWaEgpmY6mLHfFB27YwumpKAdOz1g39WQ6a31GFriV0guNw6e/c5jP//Ao4UQtlUPzupWmoym6TcXgdTnwuuxaOdSCZpkjrYxDMxi6WjEyEWVbj58ur4tDo6F6n05dCCUypLPScle859ohXrcjyEMvjJLJST73/SNLKoe4pRzy2Upz8TSpbI5QIoPHacPlqP76s5ndSqF4uihuE/S7mNYB6erjdjTHHGm1StOD1stDSsnIRIStvT66fa6aZX80Giqw2WMqB4CBjjZ+/Y3bGeoyGuYlCpTD/JhDrETMYS6eZnQ2TiierolqgOZWDuFEpigdOOhzM6kD0tXH47Q3RcwhktRupZUwHU0RSmTY1uMjkswwF0+TyeZwVGmUZaOijKJyWxRircbTeeUwfyEVL8hWklKSzkprgXJ6KlaTeAM0d8whNK8/VY/fxejswrqSatBan4Z5NEtPloh2K62IEbMn/vZev3VjnI23XlBaKQcV6CxE1QElMkspB+P3dFYyF09bChaMmE7tlEMzu5UyBAqMbNDnZkoHpKuP29EcysEKSGvjUBYjE0bzsm29Prq8xo2xVn7cRkIph0K3kqKwMeVSdQ4qpjARTloV02Bcz/Y27VZaC+lsjng6W3Qdu/0upiKpBa1MqkFLGwdPkyiHcFIbh5UwMhHFZbcx1OW1grEtaRzMrBdlIAspdNWoBdQCt1I6y+ZuL2C0eVD9lBSBWrmVmlQ5qEVfe5FycJHJSStVuJq0tHFwO2xN4ae0AtI65lAWI5NRtgS92G2CLtM4zLSkcUjS7nGUzCjyOPJFouqmO789SyyVYYtpHCbCSasqWlGLvkqAdf7NNipUXc9AUczBUHm1qHVoaePgcdqbYtiPijkkMzlyuerLzfXOyESErT0+IB+MnW7BWofJaKqkSwmKG1PmU1nzN99cTpJI59gczBsH5VYSwtinFq0zoFA5NJdxsJRDgVupls33Wts4OOxNEcQNF8j5ZjB21eThQ2OcnIxymTmHt9NrfPCma1RY1EhMR1Ilg9GQby8TT2etFXk8nX+fKRdmf7sHt8PGRCRJyFSwW4OG4a2VcrCaaDaBF6AQdT3b5wWkoTb9lVraOBjZSuv/DaVSWaG1XUvZnOQvHzvOP/7kNKenogseP3Bqmt/86vNcPtjBr71hG2AEMwNuR9WVwxcfOcaPj5cejFMvpqJJ62YzH7UaL3QVFb63VKaS12WnN+BmLJSwlMOlpuGtWSprk8Yc8s0Li1NZwVB91aa16xyaRTkkF67oWpFXR+f47PeOADAc9PLYf31z0eM/ODQGwD/86g1Fq9oun6vqMYf7HjvBz1w5wM07eqr6d1bCVCTFdcNLK4fCDKTCVFZlKNqcdgY6PFyYSzDQ0YbTLtjWayiHWqWyOmwCm2het1JhYL/b5+Kffu0GdvT7q/73W1o5eJy2JkllzX+Am8HYrZZzM8ZEsjdd2svZmfiC4S/hRJr2Nicd3uKbVleVq6RTGSMlcTbWOLUU2ZxkOpaysrXmo4xDYf1H4cIjZrqYfG4HAx1tXJxLEEqk6WhzMtBhVFfXKuYghGjKaXCWW6lAOTjsNl63o4e+gKfqf7+ljYPbaW8KKRpJZHCZ1b2FQcNW49xMDIBbdvSQzUkuzBVXkoYSmZLplUGfq6rN95TxnmugQruZWAopsZruzcduEzjtouicS7mV2lx2Bjo9XJxLMBczqnm3mcH+WtzAFG6nrelG/obiaYQAv6s+Dp6WNg4eh6EcalFQUk3CiQy9AeND3spupXMzcdo9DnYNtFu/FxJexDh0eV3MlGjbnctJHjsyvub3h8r/byTjoGIyiwWkwYjHhBZRDspQeJ12Nna0kcrmGJmMEmhzctP2IP/vIzezd7CjSmdf6lybI35YSCiRwe92YLOJuvz9ljYOKsth/mzc9UYkmaFHGwfOzcQZ6vJaTeOUklBEEumSxqHb5yzZkuDHJyb54N89x/NnZtd0XuoGO78OoF48enice778HAGPg6s2dS66n8dpswxam9O+SEDawUCHoRBOjEfoaHMihFjyuNWgWd1Ktcr4KkVrG4cmGPiTzUkiyQx9yji0cLbSuZkYQ11tDHS0IcQiysG98MPW5XORSOcWXDvlljo/G1/wnJWgAouN0r/pvsdO0OVz8t3fej1DXd5F93M77FacpMvrLI45mAVxbS67FWNIZXM1y1Caj6Ecmuu9H4pnataCpBQtbRy8pi9vroEChSslan5IlXFo1YC0lNJSDi6HjQ3tnrLdSpvMG+TjR8eLtqtCo/FQgkgyw8cefIH33vc0X3j46IrOTQUWY6ks6QZQqaFEml0b2pc0DGD48ZVy6PC6SruVzJiDol43MyPmUP9rW0lCiyjdWtHSxuHaLV0APNVg+ecrQVVHt3rMYSaWJpbKWi6loa62BW6lcKL0jIE79m7gsg0B/vhfDxEtSAueNl1N4+EkB0/P8K3nz/PS+Tm+8/KFFZ1boTupEeIOhpFc/ibucdgtw9bldRalshbWOQR9LquFRUe9jEMTupXmz3KoNS1tHC7p97O528vDr43V+1RWjXJZqMyQVnUrKUOgjMNgZ1uRcsjmJNFUtuRKzGm38amfu5wLcwn++okRa7tSDmOhBOfNY1051LHiHj6hRKMZh/JWpB6nDRWL7/K6SGVyZM32LGoR0uayI4Sw4g71upk1p1spXbN04FK0tHEQQvCWXf08dXxyQVOx9UIkadxsWl05KEOgXCVDXV4uhhJWrUOkREFRIddu6WLXQDuvnp+ztqkq1PFQkvOzMew2waYu74pXqIUdNOttHKQ0YlR+dznGwW79rNqM/PTMDJ986FUiyQx2m7BSqC3jUKebWXNmK+mAdF15y+4+UpkcTx5bn64llSbZ7XNhE60bc1DKYbDArZTNSS6GjKByyBp4v/jNqy/gZqKgZ41yK42FDeWwod1Dm8u+NuVQ5/hWLJUlJ8trp+0u6Naq2np/47mz/P3Tpzh8IYTXaagGwApK19Wt1EQxh5yZaFKvAD9o48B1w90EPA4eOzJR71NZFZGCnu/z0w1bCVXjoG5OSkEoRaH6Ty3la+8NuIvmIecD0knOz8YZ7GrD5bCt2DiEExmrU2m9lYO6Dv6y3EoLlcPhi2EAXjw3R5sr/3jd3UpNMptFEUllkLJ+AX7QxgGn3ca2Xv+C4OV6ofDD3uayt6xbaXQ2wcbONuv3QavWwTAOpfrUzKc3YAxvl1IipWQqksJhE0SSGY6NRxgyjUNyhRlHoXiafjMmVG/jELYUVBkB6QLjoJTD0THDOExHU3gLjUNnvZVDc7mV8rMctHKoK/0BN+Oh2sxlrTSFA0E8ztY1DuF5/llV+atcQ+XcFHv9bmseciSZIZXNsaPPaHA2G0sz1NmG224oh5VUTYcSaTZ1GzfP+hsH00iWEXModCsp5VB4A24raOtwy44ebtnRw/a+6jeEK0WzZSupOFVDxxyEEF8WQowLIV4p2NYthPihEOKY+b2r4LFPCCGOCyGOCCFuL9h+rRDiZfOxLwrTWSmEcAshvmFuf1YIMVzZl7g8/e0exsKJ5XdsQC7MJQi4HfhcdtqcRpfZuVi65WIP0VQGnzu/kvW7HNhE/kNWrnIAY3CNcint3thuPT7Y1WZV1aezKzAO8QzdPhc+l73uzffy7rXy3Uouh82qCSqkUDls7fHxj792Q1mB7mpgTHVsnve8SpDx1ul6QnnK4e+BO+Zt+zjwiJRyJ/CI+TtCiN3AXcAe8zl/KYRQ76D7gHuBneaXOuaHgBkp5Q7gT4HPrPbFrJb+djezsfS69Fmem4kx2NWGEMJwK6WyvO/+Z/j0dw/X+9RqSjSZxV+wyrLZBO1tTmulHi4jIF1kHEzFsXugwDh0eq3snJW8V1TWSUfB+dQLZSTLiTmoOdJuh63IEKhBSYXb6k2zzGZRqNfiKTHCtVYs+5ellE8A0/M23wk8YP78APCzBdu/LqVMSilPAseB64UQA0C7lPIZaejxf5j3HHWsbwK3KVVRK/raDX/wenQtGVXBhsvC47QzE0tzZCzMyOTCYTfNjJGeWXyzKrwZhxLLy3TLOETyymHXQLFyWM284nDCaIPQ3gDGQSUwlJXKas6RdjvsRcHnt+3uB4x+S42C22Enk5NWHcZ6Ryl/Tx2v8WrNUr+U8gKA+b3P3D4InC3Y75y5bdD8ef72oudIKTPAHBAs9UeFEPcKIQ4IIQ5MTFQuu6hfGYcGci2Vk3UkpeT8TJxBMxjY5rRzdCyMlLUZI9hIRBIZfPNcHx1FyiGD0y6K/OjzUfOUDeVgGIetPT7rORs7PXnjUGZQOpPNmSmJhnKod/O90AoC0ko5eJw2yxAIAbftMoxDQymHVRjtRkYpB/U/qAeV/sulVvxyie1LPWfhRinvl1Luk1Lu6+3tXeUpLkT1JRprEOUwFkpw5R//gGdHppbcLxTPEE5mrLTNNqfdamtQiwHkjUI2J4mns/jcSxkHo3XGUqK03ePA5bCZMQfjvRD0u+hrd9MXcON22C23Urk3IeXjb29z0OldqBzGQ4mqT6ErdT4rUw42SzkMtHu4bCCA3SaKAtL1ptlGhVrKwbH+lMOY6SrC/K46lp0DNhXsNwSMmtuHSmwveo4QwgF0sNCNVVWUchgLNYZyGJmIksrmOFViDnIh52aLC78Kpf9UNLnu51SUi2o+OP+G116wUi+nKlgIQa/fbSmHgNvUO6RfAAAgAElEQVSB22FnqNPLcNAYYKNWcuUaBxUQD5jKYTZebAju/vJ+/vDbr5R6alUIJzL4XHbsZcwIUC4Nj9NuqYQtQR9uh50/eOcu3nvt0FJPrykqUWA9xB2kXN79tZ6Vw0PAPebP9wDfLth+l5mBtBUj8LzfdD2FhRA3mvGEu+c9Rx3rvcCPZI3val1eJ067aBjloNxbKni4GPmWEfmYgyKdlUVtG5qZ6CKFXfPdSuVk6PSaVdJTkZSVDvvp91zO537hCoCCgHSZxkGNejQL9AqVw3goweGL4ZouSiKJTFnBaMivxt0Om7WC3RI0VOqv3LzValzZCFjKYR1UST9+dIIr//gHRZXz81kXykEI8TXgGeBSIcQ5IcSHgE8DbxVCHAPeav6OlPJV4EHgEPA94CNSSqXzPgz8LUaQ+gTwXXP7l4CgEOI48DHMzKdaIoSgL+BhvEGUg6rSjSTLNQ55t1IhkyUG2DQjyjgs5laSUpbdbE5VSU9Fk3Sb85W3BH1sMZWDy7FC4xDPzwHuaHOSSOcs18czpttwuUXASjk6FubD/3iwpIslkiyvIysUKwebTXDPTVt495UbK3qulcLtUMqh8d1KJyaiRJIZxuYWv980gnJY9tMipXz/Ig/dtsj+nwI+VWL7AWBvie0J4BeWO49q09/ubphaB8s4LHLTiCYzXJiLc34mTpvTTpdZoNTmMt5I23p8jExGmQwn2d5bn6KkWhJJGjeEUtlKmZwklsoSTmTY1L30/AIwjMNPRqYYDyd53faFeRErzVYqzJLqMKuM52Jp+trtPHPCMA6VDlI/OzLFd1+5yEfGIgtGdYYS6bJrETwFqawAf3zngo9vw7BSo11P1Oc6tMSiQCkHdyMrh1ahv93TMG6l5ZTDn//oOHd84Ul+fHySIbPGAfLK4brhbgAr46bZUR+2UtlKYFQll+1W8rsJJzJMR1P82uu3LXjcvcJsJcut1OYgaCoR9X9RymGpm8RqUDfI01MLW8IYyqFc42Av+t7IrKeAtOqkvJRbKZnJ4bSLsmJD1UIbBxPDODSIcjAzZcKLGIdnTkySyUmOjIWtYDTkP8TXbzWNQ4uks0YWcSupmoa5eLrs9seq1uFdVwyUnIOsVnLlB6TzqaOWcYikOD8b5/RUjG6fi0gyY7UWrwRq1VkqoaFcIwnFMYdGZz3FHJTSXcqdmEhn6xpvAG0cLPrajRVjI8x1UMV4pdxK0WSGV0ZDbO5WcwvyxiHoN9p237CtGyFgokXSWaOLtIRQymE2li57xXzVpk529Pn53dsvK/n4St1KKrXY57LTYxqeqWiSn56ZAeDNlxolQsvFl1ZCXjkYxkFKyee+f5iv7z9jBKTLdivli+AaHdXeI7oOuhKr//VS7sRkJlfXeAOUEXNoFVTXzLFQkq099b0sSjmUumH89Mws2Zzkj9+9hx8cusg7Lh+wHnvn5RvZ2RdgqMtLl9fVMspBpbKWCkgDnJmOImV5HUP3Dnbw8MfeuOjjK22fEUtlcdltOOw2enz5IjuVj7dnYzv//Lyxiuw0YxJrRSkH5VZ64OlT/MWjJ9jW61t0VGopPAVFcI1Ol894TdPrIAkjkshn0C1GIp2tu1HWxsFEBSvPTMfY2uOr23mkMjmmTZ90KeWw/9Q0NgH7hrt482V9RY+5HDYrABn0uVqmEG6xwi5lDH56ZhaAbb1r/7+uVDnEUxmr/qS9zYHTLpiKpkhncrQ57Vab8bl4uqhAaC0k0vmYw6ujc/zPf3+NgMfByIShJMpVDurm5F4HMYegT6myxn/PW8phmZhDvZVD4y8JasSwmb99qs49iVTDNyFKK4fnTk6za6B92dVf0O9iskWUQyRhjKyc7xtXxuHgacOFs6M3sOa/tdL2GfF01iogE0IQ9LmZiiS5GErQ3+62znGpG8VKUarmYijB1/afwSYEX7zrauvxsmMOSjmsg5hDm8so1FsPC6J8zGEJ45DO6ZhDo9AbcON12ZetSq42Kt4w1NW24M2TzGT56dkZKxtpKXr87nWxiqoE0aRR9Tu/NUbA40AIODYeweO0FQXvV8tKe/jEUtmi+hPDaKcYCyXob/dYM5crWbCYKAjK/vPB89y0PcjNO3qs81hpttJ6UA5gXNvpdfCeV9lKS7mVkpmsVg6NghCCLUFf3ZWDSmPd2uMnkswUtcB47MgEiXSON126fF+pHr+7dZRDMltSSdlswhpqs63HX5G0wJXm08dT2aK2Jj1+QzmMhZJs6PBYGVRLrSJXSjKTtcaSxtNZ3rK7H5fDxjVbjOyrcmMOAbeD/3TrDm7f01+xc6smQd/6eM9bdQ5LBaS1cmgstvZ4OVUiN7yWjJvGYVuPj5ykaLLbQy+MEvS5uGVHz7LHCfpchBOZlhj6E00WD/oppMMsENxRoQllK22fEUtli7qXKuVwUSkHj3IrVVY5bCko+HvLLiM2pRRnuTEHIQS/87ZL2dG3dndcLQj6Gl85SCktd7FSDrkSfZYSWjk0FluCPs5Oxyqac75SlHJQMRC1yggn0jz82hjvumIAh335f1s+bbKxPyyVwJgCV/qGp3z6OytkHIQQuMxRoeUQT2eLupf2+N2MzsVJZXL0t3usPkeVrJJOZrL0tXvoaHNy+WAHAx2GO+0tu/rxux11TbioJkF/YyRhZHOSu7+8n6eOTS54LJnJWVMEQ4k0B05Ns/u/fY8Lc/Hi/bRyaCy2Bn1kcpLzs/Hld64SE5EE3T4XXWbBlCqE+8GrYyQzOd591eBST7fYZPZbGpmIVOdEG4jwErn7yjhUSjmA4VoqP1spS1vBCrDH77LSWPvb3dhN11clA9KJdA63w8Yn3n4Zv3vHpdb2vYMdvPzJt5XVRmQ90u1zN0Q34tlYiieOTvDEsYUzZ6IFSSbhRIaXzs2RSOd4+dxc0X5aOTQYquNkPV1L46EkvX63FTRUyuHA6Wm6fS6u2bywarcUV27qQIh8pk4zYwSka2wcsmXWOaQzRfOXVcolwAazVXzA46hoQDqZyeFx2rnr+s28fmdxfKrGQxZrSo/fRTorF+0sUCuUu6jUIlO5lLq8Rjt5pRhOTBTHOrVyaDCU3K5nUHoqmqIn4MLvNm5q6s00EU7S3+4p+8Md8Di5tD/QMsZhsTbUHW0u7DZhdVWtBO6VKofCgHQgbxzUHJH2NmdlA9Lp7LpoeVFpVIv1E+MR3vFnT1pV6LVGqcALJYyDMhwDHW1EU1mrs/J8ha+VQ4PRCOmsU5EkQZ/bcpOoN9NEJEWPf2UVtNdu6eIFs6K6mVlqkM9/uGEzn/rZvVaWUSVYqVvJW5jK6sv/D/vaDUPR7nFWuM4hty6a5VWablOVfe/Vixy6EOJvnzxZl/NQn9kLJVpyq8Xexk5jYXBkLAzAiXnGIZmu//9QG4cChBBs6vJa1rwaTEWSfOrfD5FeJOg9FU3R7XPl3Urmm2kynLRmHJfLtVu6CCczHBsPr+2kGxgpJdFUdtFspb2DHdx1/eaK/k2X3bZottL52bhlOKSUxNILU1nBcCuoCuT2tsq6lRLp7LpoeVFplOF9/Ijh6//BoYt1aSGjkgvGQokFyS0q5qCSBJSX4sRE1IqVSCkN5VBn9dd676BlCHgcRUGjSvPksUn+5smTHBoNLXgsmTHmDvT4XdZKOJIwhtVMRZOrUg7Q3HGHZCZHNicXzVaqBosph7lYmlv/92N8bf8Z69ykLB7fqgYIKZcSGC7ASiuHevflqQfKrXT4YphOr5N0VvKt58/X/DysFFUJY+Fi46QWewOmcshJY0rgXDxtpeGmsxIp698qXRuHeXjdjqp2dlR1C6WKddSbI+h3Wze7SDJDNJUlkc6tWDls7vbS43fx/OnZNZ5146I+iOXm7lcCIyC90Di8cG6WZCZnuQpUR9ZCt5LLYaOjzcmGjrxxaPc4KjoNrlWVQ3eBy+7Wy/q4enMn//LT2huHQkM/P+6g/s+Dnflq/ddtN+qWRkwVkcioQT9aOTQUXqedWBWVQ2IJ46BytIM+Fy6HDbfDRjiRYdJcfazUOAgh2NTttWZSNyPRRZruVRO3o7RbSQVAz04b2W6q/bt3XibVbbv6eENBFpEKSD/w9Cn+6dkzazq3TDZHJidbUjm4HXbLHXvFYAeXbQhYHY5rSWFB4/yMpcg8txLALTsN43Bi3Ig7qJkU9W5boruyzsPrtlsrvmqg+t5MlijWUQYjaBqBgMdBOJmxthdmupSL313ZVWmjsdign2ricthLFq29cNZQaMo4WEPiXcUf8s//4lVFv7d7nOQk/I9/O8SugXZ+6YbVx0iU0WpF5QD5zgCXD3VwaipWlw4BoXgap12QzsoFQelIIoNNGDUuiuuGu3E5bHnlkNbKoSHxuuxVHfij3EoT4aWVAxg39kiiwDisMOYAxujMasZQ6s2ceZMuZ8pbpSgVkJZSWq3Bz8/GyZqzq6HYrVQKtdrN5CQzsbVV+DbC7OF6EvS7sQnYPdCBx2mvy2S4cCJDX8BDwONY4FaKJI1q/sL362BXG1uDPqulet7Aa+XQUPhcjqoqh+RSbqWoUg6mcfA4iCQz1kS3lbqV1DGa2Tio69gbqMygnHIw6hyK3yMnJ6PMxdNcOdTBi+fmGAsl8sbBtfSHvL1gCNFsbG2B6VZXDluCXjLZHG0uOx6nERvK5mRNZzGHEmkCHgcBj4Pzs/OUQzJDwO2w6nLaPQ78bgd97fmmgVo5NChel4NkJle1/kpLKodoCpfDZvnPLeVg7lsYcCsXv9tR94rRSpPJ5njoxVFyOWm551ZjOFdLqYC0cin9zJUbAWNoVNw0Dm3LGIcdfX7aPQ5u39NPJJkpu4aiFK2uHP77nXt54FevB/Ir71q7lsLmvPKBDs+CnkmRhFGw6bTb8Lryw54KmwY2inLQxmEeapUXq9IbqjAgfXw8wq1/8hj7T04Dhlupx+eyqqD9bqcVc+jyOnGW0XBvPn63oRzq3W+mkjx+dIL//LWfcuD0DJORJE67KGsEaKUoVSH96miINqedW83pfGenY9ZCYDnjcEl/gBf/29u4xQxSz67BtdTqysHvdljjVtWQomobhx8fn+TLT+UL7kJxY175QGfbwphDQcFmwONgwMxa6zaHQEHeu6CVQ4PhNYup4lVyLcULAtLPjEwxMhHlQ3//HIdGQ0Z1dMEKuKPNyUQ4wWRk5QVwCp/bsaD193pn1PTjnp+NMRk2Kspr2TOoVJ3DtNn2ZKjLixBwdiZeEHNY3nsrhKDLbC8+swbXUqsrh0KUUU6sQYmVwwNPn+K//9shXrtg1C6Fk2na25zs7PMzHU0VtcYIJ/MdhO++aZj3XmsMhw36XWbKelYrh0ZFNXCrlp9efXjn4mkOjYbwuuz43A5+719eZiqasuINAK/bHjSMyImpVRsH/7xK62ZArcYuzBmGM7iKQP1aKNWyey6epqPNicthY6Ddw7npGHEzsWE55aDoMle8awlKqxtLvfvyNAK1ciupdNUvPnIMyCuHt+8dQAj49gujZHOS01NRImY8AuAjb97BO68YAPJJKFPRlDXmVSuHBkN9kFcblJZS8tbPP86Dz50t+XjhG/UnI1Nc0h/gAzdu5oWzs5yciBbFFW7b1YfdJgglMqtKYwXwm0oommwe5XAxZBiHi3MJo1FhDeMNYCiH+dlKc/G0lYEy1O3lzHSs7IC0olMphzXM4NDKIY+6BrUwDm6Hje++cpHDF0NWzGFDh4cbtwZ56MVRPvGtl3jj5x7jxES0ZE2O8hhMR1JWurtWDg2GUg6rNQ5GL6MIz52aLvl44Rv15GSUS/r93Lar33pu4Y2u0+vipm1BYHVprJB/PZEmqnW4OJc3DqvpObVWXA4bmZwsmuCllAMYlelnZ/LGodwPuVoYrMWt1Ooxh0LUNUhUMJ1VSsnDh8asZpbRZIbZWJq7b9oCGNMaczKfnnznVRs5ORnlwQPneNcVA9x2WR9v2bVw7Kr6309Gk1o5NCoq5hBdZa2DqlVYrHlfIp0rUgeX9Ae4bEPAKqcPzstIun3vBmD12TjN6FZSysFwK628W+1aUSvSwoyl+cZhLJRkNpbC7bCVnUZZCbeSVg55lFFOVlA5vHx+jl/7hwM8/NoYkHcp7R3sYLCzjQNmHzOVnvz2vQN4XXZu3hHkz+66mi998DretmfDguOq97BWDg2McgGsNiA9bdYqnJstPTAons4y1JUvnd/ZH0AIwW3mnN/gPCNw+55+2j0Odg2sbo6v391cxkFKaSmHExMRUtmV95xaK6r9d6FrqdA4qKFRhy+Gy3YpgXEz8Dhta3IraeWQR91cV5OMEU9l+dr+Mwuy/NTY3SMXjf5Z581F4FBXG5f0+3nRTGlWyqHD6+SHH3sjf/fB65dcJKjP/ZRWDo3LWgPSKu/+wqzRrveV83NFBW+JdNYa4QlwSb8xoex2czWh+rwr+gIefvpHb+PWyxZK0XJQxqFZCuHCyQyxVJaAO1+s2FPDAjjIGwcVlE6ks6QyOWu1OGwOFnrtQmhBX6Xl6Pa61uZW0srBYi1upR8cusgnvvUyr5wv7p6sWtEcM/sgnTOVw2Cnl0s2BCzjXFQB3dm27DwRn8uOy2FjKppXDto4NBgqIL3a1E9VyJLJSUZnE9x1/0/4s4ePWY8n0lk6vU78bgcBt8MaFXnzjh4e+ujNVoyhkLVUdzabclCq4YpNHda2WisHt10pB+M9ovosdcwzDqFEZsUr+E6vS9c5VAjPGgLSqkj1/DwPgPpfHxvLKwenXdAXcHNpf17dBxaZTLgYQgh6fC6mIka2ksMmcKyirqmS6HfQPPLKYXXGoXC4yONHx4nMG7aTMCc89fhd7Oz3F+XnXzHUWfF8/WaLOSjjcPWmLmtb4VzmWjBfOczNMw4dXqdVs7BS5dDlc+qYQ4XI1zms/LOsPACj89pfKOUwMhklk81xfjbOQEcbNpvgkgLj0L6Kosxuv1ElnUjn6q4aQPdWWoDHaUMIVt18b6rAX/ydly8CRlaSIm722v/Im3fUpKq3zWnHJprHraSC0Vdv7rS21dqtpD64KiA93zgAbAn6mInNll3joOj0uhidXTgIqlySmRw2AU577YoCG5W8cli5W0kt8ua3v1CzvlOZHGdn4pyfiVnJJDv6/NgERdlKKyFoVklv7PTUPRgNa1QOQohTQoiXhRAvCCEOmNu6hRA/FEIcM793Fez/CSHEcSHEESHE7QXbrzWPc1wI8UVRy3LXeQghjJkOqw5Ip6yS+GdPTgEwFkoSS2VIm03A2px2fmHfppJZC5VGCIHP1Txtu5VyuHKTYRyEMPz0tWQ55QAwbAalVxKQBhVzWJty8DjtNa0Yb1TcztW3z1CLvNG50soBDNfS+dk4g2aCicdpZ4vpUlxNl+Cgz2XFHBpBOVTiDN4spbxKSrnP/P3jwCNSyp3AI+bvCCF2A3cBe4A7gL8UQqhPzn3AvcBO8+uOCpzXqvG6HatXDpEUGzo89Le7yUnj5gVwajLfa6fWq4Jm6sx6MZQg6HMR9Lnwuex0e101980uZhwKXQnDPcZNom2F/+sur5O5eNrKo18pjXJjaQTcDsMLsJpUVks5LJjklrbSzQ9dCDEeThZNdbuk34/LblvVZzzoVzGH3PpXDotwJ/CA+fMDwM8WbP+6lDIppTwJHAeuF0IMAO1SymekkTf2DwXPqQs+1+qVw1Q0RdDnZsjMSHrddiPAfHIymh/+UuN/vM/tWHXdRqNxcS5Bf7sHIQQbOjw1b50BRvsMWE45mMZhFW4lKfPHXCnJTLYhbiyNgBACt8O2qt5KVtZhCeWwocPDQIeHbzx3FilhU3c++/DnrxnifddtWtX5dvvcxNNZZmOpZbObasFaz0ACPxBCHBRC3Gtu65dSXgAwv/eZ2weBwp4S58xtg+bP87fXjTaXY00B6aDPZdUy/MwVRgvnU1NRa/BIzZVDE02DG52NW267azZ3ccVQ5zLPqDzz6xzyA4fyfuYtq3Ur+dZWCKeVQzEep72smqXJSNJavEkprfTzsVCiqH2/mtVw2YYAF+YSvPPyAd55+YD1+O17NvA/fnbvqs5VLXRGJqINYeDXGpC+WUo5KoToA34ohDi8xL6lnKByie0LD2AYoHsBNm9e/SjF5fCtchqclJJps3mezfQn3bAtSH+7m5GJaL6Fcx2MQzO4laSUnJmOcZOpxj73C1fW5TxUJpBKZZ2Lp/G7HUXura2mW2ml2Uqqv9Jq01m1cijG47CXFXP4+b98mlsv6+OT795DNGV0Rh0Oejk1FWM8nLTmLoQTGTZ1e/mjd+1mMpLk6s1dyxy5fHrNlOzzs3HecElPxY67WtZkHKSUo+b3cSHEvwDXA2NCiAEp5QXTZTRu7n4OKNRbQ8CouX2oxPZSf+9+4H6Affv2VW1AgdftKDkjeDlC8QyZnKTb5+JNl/YihBGYHA76ODVV6Faq7crO73YwHk4sv2ODMx5OEktlrRtvvegNuHE5bHz8Wy8TSWaLqqMVnV4Xv7hviDeYMxrKRQ2ePzkZ49ot3Ss+N60civE4l3crSSk5PxvnsSPjwB4r3rB30JhDfWEuXmQc2j1ONnV7i9xJleDmHT188md2s2+4mz0b2yt67NWw6neREMInhAion4G3Aa8ADwH3mLvdA3zb/Pkh4C4hhFsIsRUj8LzfdD2FhRA3mllKdxc8py4Y2UorX2mrMZ89fjc7+gL8ztsuRQjBtl4fpyajlrytS8yhCbqyqpRg5c+vF70BN9/68OvY0u3lj779CjPRVMm89s++90pu2bmyFeDOPj/dPhdPn5hc1bklM1ncWjlYeJzLK4doKks2Jzk1FWN0Nm7FGy4fNAotC2sdQgUttyuNy2HjgzdvZe9gR0Nkm61lidEPPCWEeBHYD/y7lPJ7wKeBtwohjgFvNX9HSvkq8CBwCPge8BEppfqvfRj4W4wg9Qngu2s4rzXjda8uIK3S3+aP8xwO+piKphg3qy5rH3OwW/nZ64lsThbNTThlGod6KwcwVpUfev02YqksB07P0NFWmRuGzSa4aXuQHx+fXNH0vslIkn97aVQrh3mUYxwKvQTPnJiylIMyDqrWIZeTRJKZothSM7PqVymlHAEWOH2llFPAbYs851PAp0psPwCsLopTBXwux+qMQ6S0cVCSVN3cau5W8jiIprJIKRtiRbIc2Zzkg3+3n6eOT+JzOXj8v76JoN/NyakoLrvNup71Zt8Ww98cTmQqWtB4y44e/v2lC5yYiLKjz7/ofhfm4rx8bo637dnAgwfO8tnvHaHNaV+xWmlmPE6blQiyGKGChdMzI1Nca/5fh3t8+N0OSzlEUxmkhMAqahjWI3qJUQLvKgLSDx44y+NHjfDK/F4/feagntPTRp+WWgekfW4H2ZxcMKCmUfnOyxd48tgkb9vdTySZ4ccnjGLCU5NRNge9a+o1VUk2drZZOe6VNg5gzCZeiq88c5rf+MeDpDI5qxdQPJ3VyqEAj9O+bPuMUNz4rHd5nTxzYopJ81oG/S42dnoYMRd1KuOvWm6lRkO/i0rgdTlIpHNlFyJdnEvwu998ia/tNzJ1u3zFN4o+s7neGdM41NqtFDCb762HdFYpJX/x6HG29/r4P790DQGPg2dM//upyVjd4w3z2TdsrDJXUxG7GEaws40nj00sud9UJEVOGlX50wVtW3S2Up5yspVUKvJbd/dzfjbOk8cnCXgcuB123nxpHz8+PslYKGEpDK0cWhivNSq0vJvpEbND46/cPMwfvmv3gqZnSjmcraNygMbvr/TDQ2P81tdf4PDFML/5ph047TZu2Brkx8enyOUkp6aibO2pbIbIWtk3bGQUVbpP1jsv38jDr42z/2TpiYIA02a662QkaVTmt3sQQndkLcTjtC3bYVnFHD5w4xa8Ljv7T05b6v/9128mm5N847mzWjlo8tPgyh34o9r3fvTNO/jQLVsXPO5zO/C57Fa1ZT2K4KCxO7Nmsjk+/I8HefTIOD9/9SDvvsooHrx5R5Az0zEOnpkxcs8bIBhdyHWmcujyVbZS+z/duoOhrjY+/s8vLbryVUOBJiNJpqIp9g6284X3XcXdNw1X9FzWM0ZAuryYw6YuL7+4z8i2Vy0yhnt8vH5nD1/bf4bZmFIO2ji0LFbb7jKNw9GxsNHvZ4m5Asq1BLUf4qFWtbNrGCJTbSYjKTI5yf93x2V8/n1X4TQLym42/e9/8oMjAGxtMLfSpf0B/s8vXc3PXLmxosf1uR389zv3MDIZ5ZHXxkvuM2MphxRTkSTdPhd3XjVY1Dq61SkvWymvCH7l5mGEoKgtyy9dv5kLcwl+dHjM3K813EqtYQJXiOqHU64b5uhYZNkPZG/AzcnJKG6HDVuNA6q9pltrItK4hXAqoKpccIqdfX42tHv4ycg0l/T72TPYUerpdUMIwbuuqKxhUFxptgYpnCRYiJoYNxFOMhNLLbk4aVU8Tvuy2Upz8TQ+lx2H3caWoI8/fOduthdkib3OXKA8etiIAbVXKG250WmNV7lCtpmui4dfG2PvMjcjKSXHxyO855ql20Gpm149goWWcQiXvsk0AqqCu3eecRBC8PV7bySTy7G9178uUnErhVJ80yVmSudy0mqxcXIyQjorLVeIJo/HaSNltspfLMstlCiucP/Vea7hjjYnl/T7OTpmjAatZPJBI6PdSiXY2R/g9j39/O2TJ5cd9j46lyCSzLBzGeXQFzDcSrUORoMRc3A7bFblZyNiKYd2z4LHhnt87OgLtJRhAHDYbbR7HEV9lr701Enec9/ThBJpVDLdEfOmVY8OtY2OWowll0hnDcXTy05uU7UPTrtomVTh1niVq+B33nYp0VSGv35iZMn9jprB6OXcSn3tSjnU/pILIegNuBtcOajWI/oGV0i3z2W5jwB+eOgiB0/PFLV0UAkRtR6Xuh7wONTAn8VdS3Px9LJqQPW5CnicLbNI0cZhEV0whxoAABCySURBVC7pD3DLjh4eP7p4rnk6m+MZs0Drkv7FK1mhvm4lMNw1i/muG4GJcJJOr1PPPp5HZ8FkuFxO8sp5Y4Toq6NzgNGPR1Xzz6/M1+Q/b0sFpUOJzLJxBKUcWiVTCbRxWJIdfX5OT0VL9riJJjPc8pkfcf8TI1zS76dzmVGVyq1UL+PQ42905ZCwWhZr8nR5nZZxGJmMWOnIr5w3jMP23vyiZH5lvib/eVuq1qEct9Jw0Eu3z6WNg8ZgOOgjlsoyUWLFfX42zlgoyW+/ZScPffSWZY9VT7cSsC7cSuoaafJ0+VzMRA230kvn5qztL5vGoVCxzq/M1+Q/b0srh+XdSkII7rpu04pbsK9nWscMrgI1zev0VMxa+SuUi+aGrcGy1IByK9UjIA3GqnI6liKTzdV85nI5TISTXDe88vkFzU5XgVvppXNzeF12kpkchy4Y7qWdZsqlavegKSbvViodc8jmpDGjoYwK99+947KKnluj03h3iQZC9fFR3VQLUR1Yyw2gdrQ5cTlWN3i8EvQG3EhZOi2y0lyYi1ttjstBSsl4OLkgjVVjuJViqSzJTJaXzs2yd2MHAx0eEukcTrtgi/ke1S6l0ljZSosoh4jZEqPS7U+aAW0clmCwqw27TXB6KrbgMdXzvdzCIyEEw0Fv3W6Ayp9fykVWaT72jRf52DdeLHv/UCJDKpNbUACnwYplTUZSvDoa4vKhDqsTbKfXZRkFHYwujaUcFkllVa0zWmVGw0rQV2QJnHYbm7raODVVQjlEU9gEdK5gxfGPH7rBqr6uNb0B4+ZRi7jD8YnIivafWKQATpO/6T9/2ugttWdju+FmOgndXpf1f9UFcKXJxxxKu5VUR9Zy3EqthjYOy7Al6CupHCYjKbp9rhW1wihV4FUrev3G3662cYinsvnZAqksDrtASiPlcjFUjYM2Dgvp9Bo3rQOnjO6sO/sCnDLfj51ep6UcdAFcaTyOpVNZVUfWVql6XgnarbQMw0Evp0qks05Fkuuq6KgnkHdPVBM1swLg3EyM3/+Xl/nQA88t2O+rz57mV/5uP1DYV6l+xrNR6TLdSs+dmgFge5+PIdOt1O1z0dHmJOhzNcTo1EZEtd9fbJaJcivpmMNCtHJYhi1BH+FEhplYusivOxVNravVmtdltA2vtnIoNA5npmP8ZGS6aAyj4sHnzvLiuTmiyQzjIa0cFkMZh8MXQwx2tuF1ORjsyscchBA8/LE34tc+85L0Btz0BtwcPD3DPa8bXvC46sjaKs30VoJWDsswbA6XOTkvY2kqklx3XTB7A+6qB6QLjcOh0RBnpmPMxtKECwzETDTFS2ae/snJKOdn4/hcdh0ULIFyK+UkVqfQoS6lHIzHunwuq8W5phghBDdvD/L0icmSxawvnZ9FCJYtYm1F9DtqGbb1GB/IE+PFQdapSGrdBQF7A27GQtVt231mKkrA7cDrsvPD18as7edn86mtT5+YQn1ORyajHL4YYmd/6zXWKweP0265RnaY1dAbO9u4YqiDazZ31fPU1g037+hhMpKyJjYqnjs1zVefPcMHbthiDcTS5NFXZBk2dXtxO2xWgz0wglvhZGbdNYnbEvTxxBK9oirBmekYm4NesjlZVNF7bjrOZRvaAXjy2AR+t4NoKsPIRIQjF8PcvmdDVc9rPdPldRFLxdneZ8QVnHZbWVX5GgM1MOqpY5NctqGd8XCCLzx8jO+/ctGYtvf21ipuKxetHJbBbhPs6PNztEA5qEKy9eZW2t7rZzycLHLxVJoz0zE2d3vZ1G2441SW0rkZw90kpeTJY5PcvCPIxo429p+cZiaW5tINenrZYqi2GDt6l27uqCnNxs42tvX4eNpskvkn3z/K/z1wlis3dXLff7jWmrGuKUYbhzK4pD9gtUWGfHX0enMrbe81Vp4jEwvrNipBLic5OxNnc7eXzaZxuHpTJx6njXMzhltJxRhev7OXbb0+fjJifGC1cVgcFZTe0aeNw2q5ZWcPz5yYIpbK8OSxCW67rJ8vf/C6ZYd5tTLaOJTBzn4/F+YSVtbNZHRl1dGNggponlhhkVo5PPTiKF945BipTI7Nwbxx2L2xnaEur2Ucnjo+CcDrd/awrcdnDaxRLifNQoI+F93LzCjXLM07Lh8gns7yV4+PMDqX4PWX9NT7lBoerafK4JI+Y1X7wplZHj0ybhXMrLeYw+ZuLw6bqLhxSKSz/N63XrbaSW/u9pLJGnf9XRvaOTkZ5dys4VZ64ugkm7u9bAn6rNz83oBbt39Ygo/eupNf3Lep3qexrrl+uJuBDg/3PXYcoKW6q64WbRzKQE15++RDrzIyGbVm0a63lZzTbmNz0MuJ8cq6lZ44OkEkmeH337GLTE5y47YgyUyOX9w3xG27+njp/CwvnJ0lnc3xk5Ep3n3VRgC2mT70y7RLaUl29Pm1S2mN2GyCd1+5kb9+YoStPT4rJqZZHO1WKoOhrjbanHZGJqMEfS6yOYnbYcNXpz5Ja2F7r3/NykFKyWhBaup3Xr5Ap9fJB28e5sNv2o7TbsPvdvDZ915J0O9mqMvLbCzNU8cniSQzvGGnIemVcrh0mRGrGk0lUIsS9f7TLI02DmVgMzOWAB741eu5bEOADR2edZmXv73Xz6mpKJms0YhMfV8Jn/v+EW7+zI94/OgEiXSWh18b5/bdGxYtxNrUZazS7nvsBDYBN203PpyDnW3c+4ZtvHff0CpfjUZTPrsH2vn0z1/OvW/cXu9TWRdot1KZfODGzYzOJtg72MHf/cp1NZmLUA229/pIZ42sIrsQvO0Lj/NXH7iWfcPdfPSfnueXb9zCbbv6F33+kYth7n9iBAH81//7Im+4pJdIMsM7rhhY9Dmqonf/yWl+6YbNVh8bm03we+/YVdHXp9EshhCCu67fXO/TWDdo41Am77su/6Ya6GhjoKOtjmezelTK6POnZ5iIJEmkc/zfg+eYiqR47MgE+09O863ffN2i2UN/9O1XCHgc/Pn7r+FX/n4/33r+HP/x9Vt5/Y7FpfrewQ4+/vbLuG642xrUrtFoGhttHFqMvRs7GOpq419+ep5Yysgu+tFr40yEkmzs8JDJSX7jKwf5/n95A8fHIzx6eJx737Adl8PGq6NzPHtymj98125u2dnDP/3HG/G7HewaWDoN1W4T/IaW8hrNukIbhxbDZhP8/DVD/PmPjgHwuu1Bnj4xxf5T03zkzdu5cVuQX/7Sfv768RG+efAcZ6Zj7D81w1994BoefO4sLoeN91wzCKBnPms0TUzDBKSFEHcIIY4IIY4LIT5e7/NpZt5zzSBSgpTwB+/cbdVr3HnVIK/f2cubLu3l8z88ypnpGB983TBPHZvgl/7mWf7fC6PcsWeD7mCp0bQADWEchBB24C+AtwO7gfcLIXbX96yaly1BHzds7WZbj49dAwHuuWmYWy/rs+o5fu8du3DaBe+/fjOffPce7vvAtRy6EGIunuZ91+liLI2mFRClepzX/CSEuAn4pJTydvP3TwBIKf/XYs/Zt2+fPHDgQI3OsPmYiiRJZXOLBtYvziXoC7itMagHT0/z5LFJ/vOtO1c0GlWj0TQWQoiDUsp9y+3XKDGHQeBswe/ngBvqdC4twXLV3Rs6ikd2Xrulm2u36BiDRtMqNIRbCSi1FF0gaYQQ9wohDgghDkxMVHcugUaj0bQyjWIczgGFzuwhYHT+TlLK+6WU+6SU+3p7deMsjUajqRaNYhyeA3YKIbYKIVzAXcBDdT4njUajaVkaIuYgpcwIIT4KfB+wA1+WUr5a59PSaDSalqUhjAOAlPI7wHfqfR4ajUajaRy3kkaj0WgaCG0cNBqNRrMAbRw0Go1Gs4CGqJBeDUKIMHBkjYfpAOYqcDrVOl4PMFmhYzX6a23kaweN/3pb6frpa7c61HltkVIuXwsgpVyXX8CBChzj/gqfU6WPt+bXuI5ea8Neu3Xyelvm+ulrV5vzanW30r82+PEqSaO/1ka+dtD4r7eVrp++djVgPbuVDsgymketZ1rhNVYLfe3Whr5+q6dRr91Kz2s9K4f7630CNaAVXmO10Ndubejrt3oa9dqt6LzWrXLQaDQaTfVYz8pBo9FoNFVCG4caIoTYJIR4VAjxmhDiVSHEb5nbu4UQPxRCHDO/d5nb3yqEOCiEeNn8fmvBsa41tx8XQnxRCNHUE3gqfO0+JYQ4K4SI1Ov11JpKXT8hhFcI8e9CiMPmcT5dz9dVCyr83vueEOJF8zh/ZU7BbEwqmXKlv5ZNJRsArjF/DgBHMcaifhb4uLn948BnzJ+vBjaaP+8Fzhccaz9wE8YsjO8Cb6/361tH1+5G83iRer+u9Xb9AC/wZvNnF/Ckfu+t6L3Xbn4XwD8Dd9X79S36uut9Aq38BXwbeCtGMd+AuW0AOFJiXwFMAW5zn8MFj70f+Ot6v571cO3mbW8Z41CN62c+9mfAf6z361lv1w5wYqSovq/er2exL+1WqhNCiGGMFcazQL+U8gKA+b2vxFPeA/xUSpnEGKt6ruCxc+a2lmCN167lqdT1E0J0Aj8DPFLN820kKnHthBDfB8aBMPDNKp/yqtHGoQ4IIfwYkvK3pZShMvbfA3wG+HW1qcRuLZF2VoFr19JU6voJIRzA14AvSilHqnGujUalrp2U8nYMpeEGbi3x1IZAG4caI4RwYrzBviql/Ja5eUwIMWA+PoCxqlD7DwH/AtwtpTxhbj6HMUpVUXKsarNRoWvXslT4+t0PHJNSfqH6Z15/Kv3ek1ImMKZd3lntc18t2jjUEDOj6EvAa1LKzxc89BBwj/nzPRg+TSXb/x34hJTyx2pnU8KGhRA3mse8Wz2nWanUtWtVKnn9hBD/E6MZ3G9X+7wbgUpdOyGEv8CYOIB3AIer/wpWSb2DHq30BdyC4f55CXjB/HoHEMTw2x4zv3eb+/8BEC3Y9wWgz3xsH/AKcAL4P5gFjc36VeFr91kM9ZUzv3+y3q9vvVw/DJUqgdcKtv9avV/fOrl2/cBz5nFeBf4ccNT79S32pSukNRqNRrMA7VbSaDQazQK0cdBoNBrNArRx0Gg0Gs0CtHHQaDQazQK0cdBoNBrNArRx0GiqgBDiN4QQd69g/2EhxCvVPCeN5v9v7/5hZAqjMIw/b4xGCI1WKxIRohJErdeIsFYr0Uo0Kh0iNEOx4k8jOlEQjU02ohdR0Si2kawltj2Keyc2c2dWdiyzkedXntycfF8zZ74vM+9dj960FyD9b5L0qqo/7XVIf8LhII3QBqy9oAlYO0QT03wO2AfcBLYDX4DzVbWY5DXwBjgKPEuygyb19XqSg0CfJu76I3ChqpaSHAbmgBVg4d/tTvo9r5Wk8fYC96rqAPANuEjzr9ZTVTX4YL+26vldVXWiqm4M9XkIXG77vAOutvX7wKWqOvI3NyFNwpODNN7n+pWN8xi4QvPyllfti/e2AIurnn8y3CDJTpqhMd+WHgBPR9QfASc3fgvSZBwO0njD2TLfgfdrfNP/sY7eGdFf2jS8VpLG25NkMAhOA2+B3YNakq1tZv9YVbUMLCU53pbOAvNV9RVYTnKsrZ/Z+OVLk/PkII33AZhJcpcmefMO8BK43V4L9YBbNAmba5kB+km2AZ+A2bY+C8wlWWn7SpuGqazSCO2vlZ5X1f4pL0WaCq+VJEkdnhwkSR2eHCRJHQ4HSVKHw0GS1OFwkCR1OBwkSR0OB0lSx086FFTA5kTlCAAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ " sorted_data['inc'][-200:].plot()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Etude de l'incidence annuelle\n",
+ "\n",
+ "Nous définissons la période de référence entre deux minima de l'incidence, du 1er septembre de l'année N au 1er septembre de l'année N+1.\n",
+ "\n",
+ "Notre tâche est un peu compliquée par le fait que l'année ne comporte pas un nombre entier de semaines. Nous modifions donc un peu nos périodes de référence: à la place du 1er septembre de chaque année, nous utilisons le premier jour de la semaine qui contient le 1er septembre.\n",
+ "\n",
+ "Encore un petit détail: les données commencent en décembre 1990, ce qui rend la première année incomplète. Nous commençons donc l'analyse en 1991."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ " first_september_week = [pd.Period(pd.Timestamp(y, 9, 1), 'W')\n",
+ " for y in range(1991,\n",
+ " sorted_data.index[-1].year)]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "En partant de cette liste des semaines qui contiennent un 1er septembre, nous obtenons nos intervalles d'environ un an comme les périodes entre deux semaines adjacentes dans cette liste. \n",
+ "\n",
+ "Nous calculons les sommes des incidences hebdomadaires pour toutes ces périodes.Nous vérifions également que ces périodes contiennent entre 51 et 52 semaines, pour nous protéger contre des éventuelles erreurs dans notre code."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "year = []\n",
+ "yearly_incidence = []\n",
+ "for week1, week2 in zip(first_september_week[:-1],\n",
+ " first_september_week[1:]):\n",
+ " one_year = sorted_data['inc'][week1:week2-1]\n",
+ " assert abs(len(one_year)-52) < 2\n",
+ " yearly_incidence.append(one_year.sum())\n",
+ " year.append(week2.year)\n",
+ "yearly_incidence = pd.Series(data=yearly_incidence, index=year)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Voici les incidences annuelles."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 13,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAD8CAYAAACLrvgBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAG+dJREFUeJzt3X+QldWd5/H3B5t0qwOm0cbwS2EqxAqaDIZbwGyys2OYAdxMCdZo0hsndq1UMVE3Y6a2SiG6Za0yVTq1tZmhUnGl4ihq/MGyY8nOypoWNzXsLgGaaEbRMN2JBAnEbreJYqroseG7f9zTw+22+/Zzm+77qz+vqlv3uec+5/Q5PN187/nxnKuIwMzMLIspla6AmZnVDgcNMzPLzEHDzMwyc9AwM7PMHDTMzCwzBw0zM8vMQcPMzDJz0DAzs8wcNMzMLLOGSldgvF1yySUxf/78SlfDzKymHDhw4N2IaBntvLoLGvPnz6ejo6PS1TAzqymSfpHlPA9PmZlZZg4aZmaWmYOGmZll5qBhZmaZOWiYmVlmDhpmNar7/VN8+eE9dJ88Vemq2CTioGFWozbv6mT/4V42v9RZ6arYJFJ392mY1bsr7tlJX/+Zf3795N4jPLn3CI0NUzi06doK1swmA/c0Cri7b7Vg953XcN3i2TRNzf/5Nk2dwprFs9l91zUVrplNBg4aBdzdt1owc3oT0xob6Os/Q2PDFPr6zzCtsYGZ05qGPd8fhmw8eXgKd/et9rz7QR83Lbucry69jKf2HaGnSEAo/DC06frPlLGWVo8UEZWuw7jK5XJR6t5T3e+fYtMLb/KDg7/i1IdnaJo6hVVXfoK7v/TpET+9mVW7oR+GBvjDkA1H0oGIyI12noenKL27b1YLPPdhE8HDU0kp3X2zWuAPQzYRHDSSh792tle2ae1VFayJ2fjxhyEbb57TMDMzz2mYmdn4c9AwM7PMMgUNSX8u6aCk1yU9LalJ0gxJ7ZI603NzwfkbJXVJOiRpVUH6Ekmvpfc2S1JKb5T0bErfK2l+QZ629DM6JbWNX9PNzKxUowYNSXOAPwNyEXEVcB7QCmwAdkXEQmBXeo2kRen9K4HVwHclnZeKewhYDyxMj9UpfR1wIiI+CXwbeDCVNQO4F1gGLAXuLQxOZmZWXlmHpxqA8yU1ABcAx4A1wNb0/lZgbTpeAzwTEX0R8RbQBSyVNAuYHhF7Ij/7/viQPANlbQdWpF7IKqA9Inoj4gTQztlAY2ZmZTZq0IiIXwL/CTgCHAfei4gfAJdGxPF0znFgZsoyB3i7oIijKW1OOh6aPihPRPQD7wEXFynLzMwqIMvwVDP5nsACYDZwoaQ/KZZlmLQokj7WPIV1XC+pQ1JHT09PkaqZmdm5yDI89QfAWxHRExEfAn8L/AvgnTTkRHruTucfBeYV5J9LfjjraDoemj4oTxoCuwjoLVLWIBGxJSJyEZFraWnJ0CQzMxuLLEHjCLBc0gVpnmEF8CawAxhYzdQGPJ+OdwCtaUXUAvIT3vvSENZJSctTOTcPyTNQ1g3Ay2ne40VgpaTm1ONZmdLMzEbk7eAnzqjbiETEXknbgR8D/cArwBbgt4BtktaRDyw3pvMPStoGvJHOvz0iTqfibgUeA84HdqYHwCPAE5K6yPcwWlNZvZLuB/an8+6LiN5zarGZ1T1vBz9xvI2ITSrd75/i3z39Ct/56tXeuK8OeTv4sfM2ImbD8Lcz1jdvBz/xvMutTQr+dsbJwdvBTzz3NGxS8CfQyWNgO/jnbvs8Ny27nJ4P+ipdpbrinoZNCv4EOnn4u3EmloOGTRr+QiKzc+fVU1YXvCrK7Nx49ZSNq2q/WcqroszKw8NTlkm13izlVVFm5eXhKSuq2m+W6n7/FJteeJMfHPwVpz48Q9PUKay68hPc/aVP1+wwlYfarBI8PGXjotqXqtbjqigPtVk18/CUFVUL/ynXy6ooD7VZLXDQsFFV+3/K9bIuf/ed14w41GZWLRw0bFT18p9ytauFXp2Zg4ZZFan2Xp2ZV0+ZmZlXT5mZ2fhz0DAzs8wcNMzMLDMHDbMyqfb9u8yycNAwKxPf6W31wEtuzSaY7/S2euKehtkEq/b9u8xK4aBhNsF8p7fVk1GDhqQrJL1a8Hhf0jclzZDULqkzPTcX5NkoqUvSIUmrCtKXSHotvbdZklJ6o6RnU/peSfML8rSln9EpqW18m29WHgN3ej932+e5adnl9HzQV+kqmY1JSXeESzoP+CWwDLgd6I2IByRtAJoj4i5Ji4CngaXAbOAl4FMRcVrSPuAO4EfAC8DmiNgp6TbgsxHxdUmtwPUR8RVJM4AOIAcEcABYEhEnRqqj7wg3qx7+bpDaMVF3hK8AfhYRvwDWAFtT+lZgbTpeAzwTEX0R8RbQBSyVNAuYHhF7Ih+pHh+SZ6Cs7cCK1AtZBbRHRG8KFO3A6hLrbGYV4hVj9afU1VOt5HsRAJdGxHGAiDguaWZKn0O+JzHgaEr7MB0PTR/I83Yqq1/Se8DFhenD5DGzKuUVY/Urc09D0seA64D/Otqpw6RFkfSx5ims23pJHZI6enp6RqmemU00rxirX6UMT10L/Dgi3kmv30lDTqTn7pR+FJhXkG8ucCylzx0mfVAeSQ3ARUBvkbIGiYgtEZGLiFxLS0sJTTKziVDqijHfLV87Sgka/4azQ1MAO4CB1UxtwPMF6a1pRdQCYCGwLw1lnZS0PM1X3Dwkz0BZNwAvp3mPF4GVkprT6qyVKc2K8B+gVYNSVox57qN2ZFo9JekC8nMLvx0R76W0i4FtwGXAEeDGiOhN790N3AL0A9+MiJ0pPQc8BpwP7AS+EREhqQl4AriafA+jNSJ+nvLcAnwrVeUvIuLRYnX16im457nX+P6+I9y09DI2Xf+ZSlfHbERD5z4GeO6j/LKunvKXMNWRsfwBekmkVVL3+6dG/F50/z6Wl7+EaRIay+SjhwWskny3fO3xhoV1pJQ/QC+JtGrh70WvLQ4adSbrH+DuO68ZcVjArJwe/trZEZFNa6+qYE0sCweNOpP1D9DDAmY2Fp7TmEDVvvTVm+iZWam8emoCeemrmdWKrKunPDw1ATzJbGb1ysNTE6DUpa/VPoxlZjbAQWMClDrJ7HslzKxWeHhqgmRZ+uphLDOrNe5pjEGW4aSHv5Zj09qrWDR7OpvWXjVoKewAbx9t1cTDpLWtXNfPQWMMxms4yfdKWDXxMGltK9f185LbEkzEjpx/+kQHLdOaBg1jDdcrMZso3mm2to3X9fMutxPAO3LacGp9p2D/Xte28bp+3uV2Ang4aXLJOkZc68M6/r2ubeW+fl49VSLvyDl5FAaD4e7or6fVb/69rm3lvH4enjIbIusY8WQe1qn1ITn7KA9PWVWr5uWdWZdCT+ZhnVofkrOx8/CUjausn0BHG/qppFKCwWQb1qmnITkbGw9P2bgabWffWlne6aXQw5vMQ3L1zrvcWlll/QRaK98Y6G+TG95kHpKzPM9p2LjwPMDk4S/vmtzc07Bx4XmAyaOSvTCv2qq8TD0NSR+XtF3STyW9Kel3Jc2Q1C6pMz03F5y/UVKXpEOSVhWkL5H0WnpvsySl9EZJz6b0vZLmF+RpSz+jU1Lb+DXdxlvWT6BZNnM0G45XbVVepolwSVuB3RHxPUkfAy4AvgX0RsQDkjYAzRFxl6RFwNPAUmA28BLwqYg4LWkfcAfwI+AFYHNE7JR0G/DZiPi6pFbg+oj4iqQZQAeQAwI4ACyJiBMj1dUT4Wb1p1YWUNSycbtPQ9J04PeARwAi4p8i4tfAGmBrOm0rsDYdrwGeiYi+iHgL6AKWSpoFTI+IPZGPVI8PyTNQ1nZgReqFrALaI6I3BYp2YPVodTaz+uKvEageWYanfhvoAR6V9Iqk70m6ELg0Io4DpOeZ6fw5wNsF+Y+mtDnpeGj6oDwR0Q+8B1xcpKxBJK2X1CGpo6enJ0OTzKyWeAFF9cgSNBqAzwEPRcTVwG+ADUXO1zBpUSR9rHnOJkRsiYhcRORaWlqKVM3MapVXbVWHLKunjgJHI2Jver2dfNB4R9KsiDiehp66C86fV5B/LnAspc8dJr0wz1FJDcBFQG9K//0heX6YqWVmVldq5d6Zel/hNWpPIyJ+Bbwt6YqUtAJ4A9gBDKxmagOeT8c7gNa0ImoBsBDYl4awTkpanuYrbh6SZ6CsG4CX07zHi8BKSc1pddbKlGZmVpXqfYVX1vs0vgF8P62c+jnwb8kHnG2S1gFHgBsBIuKgpG3kA0s/cHtEnE7l3Ao8BpwP7EwPyE+yPyGpi3wPozWV1SvpfmB/Ou++iOgdY1vNzCbMZNmXy3tPmZmNg1rfl8tbo5uZldFkWeHlbUTMzMbJZNgix8NTZmbm4al6VM3fdmdmk4ODRg2p96V8Zlb9PKdRAybLUj4zq37uadQAb9ZmZtXCQaMGTJalfGbl5nnC0jlo1Ahv1mY2/jxPWDovuTWzScdf6vRRXnJrZjaCUucJPYx1loOGmU06pc4TehjrLC+5NbNJKcuWH17u/lGe0zAzG0Gt71xbCs9pmJmdIy93/ygPT5mZFTEZdq4thYenzMzMw1NmZjb+HDSsqnl9vFl1cdCwqub18WbVxRPhVpW8Pt6sOrmnYVXJ28GbVScHDatKXh9vVp0yBQ1JhyW9JulVSR0pbYakdkmd6bm54PyNkrokHZK0qiB9SSqnS9JmSUrpjZKeTel7Jc0vyNOWfkanpLbxarhVP28Hb1Z9Mt2nIekwkIuIdwvS/hLojYgHJG0AmiPiLkmLgKeBpcBs4CXgUxFxWtI+4A7gR8ALwOaI2CnpNuCzEfF1Sa3A9RHxFUkzgA4gBwRwAFgSESdGqqvv0zAzK1057tNYA2xNx1uBtQXpz0REX0S8BXQBSyXNAqZHxJ7IR6rHh+QZKGs7sCL1QlYB7RHRmwJFO7D6HOpsZmbnIGvQCOAHkg5IWp/SLo2I4wDpeWZKnwO8XZD3aEqbk46Hpg/KExH9wHvAxUXKGkTSekkdkjp6enoyNsnMzEqVdcnt5yPimKSZQLuknxY5V8OkRZH0seY5mxCxBdgC+eGpInUzM7NzkKmnERHH0nM38Bz5+Yp30pAT6bk7nX4UmFeQfS5wLKXPHSZ9UB5JDcBFQG+RsszMrAJGDRqSLpQ0beAYWAm8DuwABlYztQHPp+MdQGtaEbUAWAjsS0NYJyUtT/MVNw/JM1DWDcDLad7jRWClpOa0OmtlSjMzswrIMjx1KfBcWh3bADwVEf9T0n5gm6R1wBHgRoCIOChpG/AG0A/cHhGnU1m3Ao8B5wM70wPgEeAJSV3kexitqaxeSfcD+9N590VE7zm018zMzoG3RjczM2+NbmZm489Bw8zMMnPQMDOzzBw0zMwsMwcNMzPLzEHDzMwyc9AwM7PMHDTMzCwzBw0zM8vMQcPMzDJz0DAzs8wcNMzMLDMHDTMzy8xBw8zMMnPQMDOzzBw0zMwsMwcNMzPLzEHDzMwyc9AwM7PMHDTMzCwzBw0zM8vMQcPMzDLLHDQknSfpFUl/l17PkNQuqTM9Nxecu1FSl6RDklYVpC+R9Fp6b7MkpfRGSc+m9L2S5hfkaUs/o1NS23g02szMxqaUnsYdwJsFrzcAuyJiIbArvUbSIqAVuBJYDXxX0nkpz0PAemBheqxO6euAExHxSeDbwIOprBnAvcAyYClwb2FwMjOz8soUNCTNBb4EfK8geQ2wNR1vBdYWpD8TEX0R8RbQBSyVNAuYHhF7IiKAx4fkGShrO7Ai9UJWAe0R0RsRJ4B2zgYaMzMrs6w9jb8C7gTOFKRdGhHHAdLzzJQ+B3i74LyjKW1OOh6aPihPRPQD7wEXFynLzMwqYNSgIemPgO6IOJCxTA2TFkXSx5qnsI7rJXVI6ujp6clYTTMzK1WWnsbngeskHQaeAb4o6UngnTTkRHruTucfBeYV5J8LHEvpc4dJH5RHUgNwEdBbpKxBImJLROQiItfS0pKhSWZmNhajBo2I2BgRcyNiPvkJ7pcj4k+AHcDAaqY24Pl0vANoTSuiFpCf8N6XhrBOSlqe5ituHpJnoKwb0s8I4EVgpaTmNAG+MqWZmVkFNJxD3geAbZLWAUeAGwEi4qCkbcAbQD9we0ScTnluBR4Dzgd2pgfAI8ATkrrI9zBaU1m9ku4H9qfz7ouI3nOos5mZnQPlP9DXj1wuFx0dHZWuhplZTZF0ICJyo53nO8LNzKpY9/un+PLDe+g+earSVQEcNMzMqtrmXZ3sP9zL5pc6K10V4NzmNMzMbIJccc9O+vrP3hr35N4jPLn3CI0NUzi06dqK1cs9DTOzKrT7zmu4bvFsmqbm/5tumjqFNYtns/uuaypaLwcNM7MqNHN6E9MaG+jrP0NjwxT6+s8wrbGBmdOaKlovD0+ZmVWpdz/o46Zll/PVpZfx1L4j9FTBZLiX3JqZmZfcmpnZ+HPQMDOzzBw0zMwsMwcNMzPLzEHDzMwyc9AwM7PMHDTMzCwzBw0zM8vMQcPMzDJz0DAzs8wcNMzMLDMHDTMzy8xBw8zMMnPQMDOzzBw0zMwsMwcNMzPLbNSgIalJ0j5JP5F0UNJ/TOkzJLVL6kzPzQV5NkrqknRI0qqC9CWSXkvvbZaklN4o6dmUvlfS/II8belndEpqG8/Gm5lZabL0NPqAL0bE7wCLgdWSlgMbgF0RsRDYlV4jaRHQClwJrAa+K+m8VNZDwHpgYXqsTunrgBMR8Ung28CDqawZwL3AMmApcG9hcDIzs/IaNWhE3gfp5dT0CGANsDWlbwXWpuM1wDMR0RcRbwFdwFJJs4DpEbEn8t8x+/iQPANlbQdWpF7IKqA9Inoj4gTQztlAY2ZmZZZpTkPSeZJeBbrJ/ye+F7g0Io4DpOeZ6fQ5wNsF2Y+mtDnpeGj6oDwR0Q+8B1xcpCwzM6uATEEjIk5HxGJgLvlew1VFTtdwRRRJH2uesz9QWi+pQ1JHT09PkaqZmdm5KGn1VET8Gvgh+SGid9KQE+m5O512FJhXkG0ucCylzx0mfVAeSQ3ARUBvkbKG1mtLROQiItfS0lJKk8zMrARZVk+1SPp4Oj4f+APgp8AOYGA1UxvwfDreAbSmFVELyE9470tDWCclLU/zFTcPyTNQ1g3Ay2ne40VgpaTmNAG+MqWZmVkFNGQ4ZxawNa2AmgJsi4i/k7QH2CZpHXAEuBEgIg5K2ga8AfQDt0fE6VTWrcBjwPnAzvQAeAR4QlIX+R5GayqrV9L9wP503n0R0XsuDTYzs7FT/gN9/cjlctHR0VHpapiZ1RRJByIiN9p5viPczMwyc9AwM7PMHDTMzCwzBw0zM8vMQcPMzDJz0DAzs8wcNMzMLDMHDTMzy8xBw8zMMnPQMDOzzBw0zMwsMwcNMzPLzEHDzMwyc9AwM7PMHDTMzCwzBw0zM8vMQcPMzDJz0DAzq4Du90/x5Yf30H3yVKWrUhIHDTOzCti8q5P9h3vZ/FJnpatSkoZKV8DMbDK54p6d9PWf+efXT+49wpN7j9DYMIVDm66tYM2ycU/DzKyMdt95Ddctnk3T1Px/v01Tp7Bm8Wx233VNhWuWjYOGmVkZzZzexLTGBvr6z9DYMIW+/jNMa2xg5rSmSlctEw9PmZmV2bsf9HHTssv56tLLeGrfEXpqaDJcEVH8BGke8DjwCeAMsCUi/lrSDOBZYD5wGPhyRJxIeTYC64DTwJ9FxIspfQnwGHA+8AJwR0SEpMb0M5YA/w/4SkQcTnnagHtSdTZFxNZi9c3lctHR0ZH9X8DMzJB0ICJyo52XZXiqH/j3EfFpYDlwu6RFwAZgV0QsBHal16T3WoErgdXAdyWdl8p6CFgPLEyP1Sl9HXAiIj4JfBt4MJU1A7gXWAYsBe6V1JyhzmZmNgFGDRoRcTwifpyOTwJvAnOANcDAp/6twNp0vAZ4JiL6IuItoAtYKmkWMD0i9kS+e/P4kDwDZW0HVkgSsApoj4je1Itp52ygMTOzMitpIlzSfOBqYC9waUQch3xgAWam0+YAbxdkO5rS5qTjoemD8kREP/AecHGRsszMrAIyBw1JvwX8N+CbEfF+sVOHSYsi6WPNU1i39ZI6JHX09PQUqZqZmZ2LTEFD0lTyAeP7EfG3KfmdNOREeu5O6UeBeQXZ5wLHUvrcYdIH5ZHUAFwE9BYpa5CI2BIRuYjItbS0ZGmSmZmNwahBI80tPAK8GRH/ueCtHUBbOm4Dni9Ib5XUKGkB+QnvfWkI66Sk5anMm4fkGSjrBuDlNO/xIrBSUnOaAF+Z0szMrAKyLLn9ArAbeI38kluAb5Gf19gGXAYcAW6MiN6U527gFvIrr74ZETtTeo6zS253At9IS26bgCfIz5f0Aq0R8fOU55b08wD+IiIeHaW+PcAvMra/mlwCvFvpSowTt6X61Es7wG2ZKJdHxKhDNaMGDSsPSR1Z1kjXArel+tRLO8BtqTRvI2JmZpk5aJiZWWYOGtVjS6UrMI7clupTL+0At6WiPKdhZmaZuadhZmaZOWhMEEl/I6lb0usFab8jaY+k1yT9d0nTU/rHJD2a0n8i6fcL8vxQ0iFJr6bHzGF+3ES3ZZ6k/yXpTUkHJd2R0mdIapfUmZ6bC/JslNSV6r6qIH1JameXpM3pnp1abUvFrk2p7ZB0cTr/A0nfGVJWTV2TUdpS0b+XMbTlDyUdSP/+ByR9saCsil6XEUWEHxPwAH4P+BzwekHafuBfpeNbgPvT8e3Ao+l4JnAAmJJe/xDIVbgts4DPpeNpwD8Ci4C/BDak9A3Ag+l4EfAToBFYAPwMOC+9tw/4XfJbxOwErq3htlTs2oyhHRcCXwC+DnxnSFm1dk2KtaWify9jaMvVwOx0fBXwy2q5LiM93NOYIBHx9+RvVCx0BfD36bgd+ON0vIj89vJERDfwa6Bq1m5HeXY6Lovxaks56zycUtsREb+JiP8NDPq2n1q8JiO1pRqMoS2vRMTA1kgHgSbld9Oo+HUZiYNGeb0OXJeOb+Tsvlo/AdZIalB+65UlDN5z69HU1f4Ple6iauJ2Oi67c2zLgIpfm4ztGEktXpPRVPyawJja8sfAKxHRR5Vdl0IOGuV1C/kvsTpAvuv6Tyn9b8j/UnQAfwX8X/JbsADcFBGfAf5lenytrDUuoInd6bisxqEtUAXXpoR2jFjEMGnVfk2Kqfg1gdLbIulK8l8+96cDScOcVhVLXR00yigifhoRKyNiCfA0+fFxIqI/Iv48IhZHxBrg40Bneu+X6fkk8BQVGhrRxO90XDbj1JaKX5sS2zGSWrwmI6r0NYHS2yJpLvAccHNE/CwlV8V1GY6DRhkNrOSQNIX8957/l/T6AkkXpuM/BPoj4o00XHVJSp8K/BH5Ia5y17scOx2XxXi1pdLXZgztGFaNXpORyqn430upbZH0ceB/ABsj4v8MnFwN12VElZ6Jr9cH+Z7EceBD8p8a1gF3kF9N8Y/AA5y9uXI+cIj8pNlL5HebhPwqkQPAP5CfJPtr0sqdMrflC+S7xv8AvJoe/5r8tyvuIt8r2gXMKMhzN/me1CEKVn2Qn+B/Pb33nYF/g1prS6WvzRjbcZj84owP0u/kohq+Jh9pS6WvyVjaQv7D428Kzn0VmFkN12Wkh+8INzOzzDw8ZWZmmTlomJlZZg4aZmaWmYOGmZll5qBhZmaZOWiYmVlmDhpmZpaZg4aZmWX2/wFIULHVnmtEQwAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ " yearly_incidence.plot(style='*')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Une liste triée permet de plus facilement répérer les valeurs les plus élevées (à la fin)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "2020 221186\n",
+ "2021 376290\n",
+ "2002 516689\n",
+ "2018 542312\n",
+ "2017 551041\n",
+ "1996 564901\n",
+ "2019 584066\n",
+ "2015 604382\n",
+ "2000 617597\n",
+ "2001 619041\n",
+ "2012 624573\n",
+ "2005 628464\n",
+ "2006 632833\n",
+ "2022 641397\n",
+ "2011 642368\n",
+ "1993 643387\n",
+ "1995 652478\n",
+ "1994 661409\n",
+ "1998 677775\n",
+ "1997 683434\n",
+ "2014 685769\n",
+ "2013 698332\n",
+ "2007 717352\n",
+ "2008 749478\n",
+ "1999 756456\n",
+ "2003 758363\n",
+ "2004 777388\n",
+ "2016 782114\n",
+ "2010 829911\n",
+ "1992 832939\n",
+ "2009 842373\n",
+ "dtype: int64"
+ ]
+ },
+ "execution_count": 14,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ " yearly_incidence.sort_values()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Enfin, un histogramme montre bien que les épidémies fortes, qui touchent environ 10% de la population française, sont assez rares: il y en eu une au cours des 35 dernières années."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 15,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEICAYAAABPgw/pAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAEtNJREFUeJzt3X2wXHV9x/H3l0Q0cCGigUsbtKFIqZSolGvxYYr3gjooVCvaKqKFjjZ2fKI2HYc6INr6kBZxtA60ExVBUa8KduTB+jDqVfEBScAxYESoIBIURQW9FIHAt3/8zqU314Tk7tnc3fPr+zWTydmzu2e/33t2P3v2d87ZjcxEktR9uwy6AElSfxjoklQJA12SKmGgS1IlDHRJqoSBLkmVMNAlqRIGuiRVwkCXpEosXsgHW7ZsWa5YsWKLeXfeeSe77777QpbRd/YwHOxhONhD/61fv/62zNx7e7db0EBfsWIF69at22Le1NQU4+PjC1lG39nDcLCH4WAP/RcRP9yR2znkIkmVMNAlqRIGuiRVwkCXpEoY6JJUie0GekScExE/jYirZ817RER8PiKua/7fa+eWKUnanh3ZQj8XOHrOvFOAL2TmgcAXmsuSpAHabqBn5leAX8yZ/VzgvGb6PODP+1yXJGmeYkd+UzQiVgCXZOYhzeXbM/Phs67/ZWZuddglIlYBqwBGR0cPm5yc3OL66elpRkZGeq1/KNjDcOhqDxs23fHA9OgSuPWuhXnclcuX7pTldnU9zDZsPUxMTKzPzLHt3W6nnymamWuBtQBjY2M59+yrYTsjqxf2MBy62sNJp1z6wPTqlZs5c8PCnMB94wnjO2W5XV0Ps3W1h16Pcrk1In4HoPn/p/0rSZLUi14D/SLgxGb6ROBT/SlHktSrHTls8aPAN4CDIuLmiHgZsAZ4RkRcBzyjuSxJGqDtDtZl5vHbuOqoPtciSWrBM0UlqRIGuiRVwkCXpEoY6JJUCQNdkiphoEtSJQx0SaqEgS5JlTDQJakSBrokVcJAl6RKGOiSVAkDXZIqYaBLUiUMdEmqhIEuSZUw0CWpEga6JFXCQJekShjoklQJA12SKmGgS1IlDHRJqoSBLkmVMNAlqRIGuiRVwkCXpEoY6JJUCQNdkiphoEtSJQx0SaqEgS5JlWgV6BHxuoi4JiKujoiPRsTD+lWYJGl+eg70iFgOvBYYy8xDgEXAi/pVmCRpftoOuSwGlkTEYmA34Jb2JUmSetFzoGfmJuAdwE3Aj4E7MvNz/SpMkjQ/kZm93TFiL+BC4IXA7cAngAsy8/w5t1sFrAIYHR09bHJycovlTE9PMzIy0lMNw8IehkNXe9iw6Y4HpkeXwK13Lczjrly+dKcst6vrYbZh62FiYmJ9Zo5t73aLWzzG04EbMvNnABHxSeApwBaBnplrgbUAY2NjOT4+vsVCpqammDuva+xhOHS1h5NOufSB6dUrN3PmhjYvyx134wnjO2W5XV0Ps3W1hzZj6DcBT4qI3SIigKOAjf0pS5I0X23G0C8HLgCuBDY0y1rbp7okSfPU6rNdZp4OnN6nWiRJLXimqCRVwkCXpEoY6JJUCQNdkiphoEtSJQx0SaqEgS5JlTDQJakSBrokVcJAl6RKGOiSVAkDXZIqYaBLUiUMdEmqhIEuSZUw0CWpEga6JFXCQJekShjoklQJA12SKmGgS1IlDHRJqoSBLkmVMNAlqRIGuiRVwkCXpEoY6JJUCQNdkiphoEtSJQx0SaqEgS5JlTDQJakSBrokVaJVoEfEwyPigoj4XkRsjIgn96swSdL8LG55/3cDn8nMF0TErsBufahJktSDngM9IvYEjgBOAsjMe4B7+lOWJGm+IjN7u2PEE4C1wHeBxwPrgZMz8845t1sFrAIYHR09bHJycovlTE9PMzIy0lMNw8IehkNXe9iw6Y4HpkeXwK13DbCYPtiRHlYuX7owxfRo2J5LExMT6zNzbHu3axPoY8A3gadm5uUR8W7gV5l52rbuMzY2luvWrdti3tTUFOPj4z3VMCzsYTh0tYcVp1z6wPTqlZs5c0PbkdDB2pEeblxzzAJV05they5FxA4FepudojcDN2fm5c3lC4A/brE8SVILPQd6Zv4E+FFEHNTMOooy/CJJGoC2n+1eA3y4OcLlB8Bfty9JktSLVoGemd8GtjuuI0na+TxTVJIqYaBLUiUMdEmqhIEuSZUw0CWpEga6JFXCQJekShjoklQJA12SKmGgS1IlDHRJqoSBLkmVMNAlqRIGuiRVwkCXpEoY6JJUCQNdkiphoEtSJQx0SaqEgS5JlTDQJakSBrokVcJAl6RKGOiSVAkDXZIqYaBLUiUMdEmqhIEuSZUw0CWpEga6JFXCQJekShjoklSJ1oEeEYsi4qqIuKQfBUmSetOPLfSTgY19WI4kqYVWgR4R+wHHAO/rTzmSpF5FZvZ+54gLgLcDewD/kJnHbuU2q4BVAKOjo4dNTk5ucf309DQjIyM91zAM7GE4tOlhw6Y7+lxNb0aXwK13DbqKduxh61YuX9rzfScmJtZn5tj2bre41weIiGOBn2bm+ogY39btMnMtsBZgbGwsx8e3vOnU1BRz53WNPQyHNj2cdMql/S2mR6tXbubMDT2/LIeCPWzdjSeM93V5W9NmyOWpwHMi4kZgEjgyIs7vS1WSpHnrOdAz8x8zc7/MXAG8CPhiZr6kb5VJkubF49AlqRJ9GSTKzClgqh/LkiT1xi10SaqEgS5JlTDQJakSBrokVcJAl6RKGOiSVAkDXZIqYaBLUiUMdEmqhIEuSZUw0CWpEga6JFXCQJekShjoklQJA12SKmGgS1IlDHRJqoSBLkmVMNAlqRIGuiRVwkCXpEoY6JJUCQNdkiphoEtSJQx0SaqEgS5JlTDQJakSBrokVcJAl6RKGOiSVAkDXZIqYaBLUiUMdEmqRM+BHhGPiogvRcTGiLgmIk7uZ2GSpPlZ3OK+m4HVmXllROwBrI+Iz2fmd/tUmyRpHnreQs/MH2fmlc30r4GNwPJ+FSZJmp/IzPYLiVgBfAU4JDN/Nee6VcAqgNHR0cMmJye3uO/09DQjIyOtaxgkexgObXrYsOmOPlfTm9ElcOtdg66iHXvYupXLl/Z834mJifWZOba927UO9IgYAb4MvDUzP/lgtx0bG8t169ZtMW9qaorx8fFWNQyaPQyHNj2sOOXS/hbTo9UrN3PmhjYjoYNnD1t345pjer5vROxQoLc6yiUiHgJcCHx4e2EuSdq52hzlEsD7gY2Z+c7+lSRJ6kWbLfSnAi8FjoyIbzf/nt2nuiRJ89TzIFFmXgZEH2uRJLXgmaKSVAkDXZIqYaBLUiUMdEmqhIEuSZUw0CWpEga6JFXCQJekShjoklQJA12SKmGgS1IlDHRJqoSBLkmVMNAlqRIGuiRVojM//DfI33xs81uAbSxkz6tXbuak5vEG1S+063l2D9L/R26hS1IlDHRJqoSBLkmVMNAlqRIGuiRVwkCXpEoY6JJUCQNdkiphoEtSJQx0SaqEgS5JlTDQJakSBrokVcJAl6RKGOiSVAkDXZIq0SrQI+LoiLg2Iq6PiFP6VZQkaf56DvSIWAScBTwLOBg4PiIO7ldhkqT5abOF/ifA9Zn5g8y8B5gEntufsiRJ8xWZ2dsdI14AHJ2ZL28uvxQ4PDNfPed2q4BVzcWDgGvnLGoZcFtPRQwPexgO9jAc7KH/fi8z997ejdr8SHRsZd5vvTtk5lpg7TYXErEuM8da1DFw9jAc7GE42MPgtBlyuRl41KzL+wG3tCtHktSrNoF+BXBgROwfEbsCLwIu6k9ZkqT56nnIJTM3R8Srgc8Ci4BzMvOaHha1zeGYDrGH4WAPw8EeBqTnnaKSpOHimaKSVAkDXZIqYaBLUiU6GegRcWRE7D/oOtroeg9dr39GDX3Yw+ANS/2d2inafFfMJHA7cD9wemZ+ebBVzU/Xe+h6/TNq6MMeBm/Y6h/qLfSI2C8i9pw164XAhZl5BOWPeHxEPHkw1e2Yrvcwn/ojYmtnDw+Frq8HsIdhMOz1D2WgR8RjI+LTwGXAP0XEzJd+/QbYrZn+OOW7Fp40jEHS9R56qT+H8ONe19cD2MMw6Er9QxPoEbH7rItPAG7OzBXAF4F3NPN/AdwdEXtk5i+A7wOjwIoFLHWbut7Dg9T/JX67/pGm/usYkvpndH09gD0wBD10sf6BBnpE7BUR50bEFcCaiNi7eWd7HPC1ZqvvIuD2iDiG8sfaA1jZLOI6yrei3TOI+qH7PTxI/Stn1f+prdT/uGYR3x9k/TO6vh7AHppFDOvroRP1D3oL/QhgM/Bsyrc3vgHYk1LXvrM+wp8HvBj4FvBryo9qkJnfAI4EfrWwZW+h6z1sq/5FdKP+GV1fD2APw9BDt+vPzJ3+jxIOrwC+TPlu9GXN/I8Dr22m9wfWNNc/kTJWtai5bgT4WbOc5cBG4NXAB4Czgd3soe76a+rDHgbfQ9fr39a/hdpCPxZ4DvBm4MnAvzbzPw88pZn+EfBV4FmZeQXl3XECIDOngcuBJ2bmJuCllHGqnwCnZub/2EP19dfUhz0Mvoeu179VbX7gYgszRzlExBMpH0W+ClyamXcDfwD8IDO/GBE3AGdExDOB9cDzImJZZt4WEdcBd0bEo4H3AC+JiH0o37X+c8rHGzJzHbCuX7XX0kPX66+tj6YXe/D1sGD6soU+6w93BHAO5VCepwNvb25yP/D9iFiSmTdQPp48jjL2dAvlWE6A+ygfYXYBLqR8heUJwGHA2sy8vx/1bqOHRU0PT6N8bOpUD01dGRHjdHQdNH3s2fU+IuKRzf9PAc7taA/7RMQjI2KMMl7cqR4iYtcuv5571utYDeXYy78FPgL8DfAQ4O+AVzXX7wV8BziU8sdZA6xorjuW8odZ1kxvAJZSdiZ8Gth11uPs0u9xplnL3h14OWVFrabs/OhaD3sAl1K+jx7gdV2qf9Zz6UTgC5STNDrVB/93xvVfUMZZpyi/n9u159LuwEmUYYc7gGO61AMlg14JXAz8O/AY4OSu1N+Pfz1toUfEvsAlwDjwIcpOg+MoY1GbATLzl8CngNc2T5B9gMc2i/gK8DTgnsy8BHg/cAFwFmVr4N6Zx8qd9w6+OyVAjgTeCzwTeD5l58f9XeihsQR4KHBARCwDDqBsUXSi/oh4CHAN8ALgjMx8fnPVobMef6j7yMyMiKXAXwLvyszxzLyWshXXiR4i4jGUIYmjgFOBTcBNlB2DXXk+vYryen4X5feNj2su39eR+tvr8Z1wCXD4rMsnUXYqnAh8a9b83wVuaaZfRTk1dq/m/hcDj55122UL/W4GPHzW9OspK/qEjvVwInAGcBrwMuDPgCu6Un/zuJ8ETpgz74XA5V3pg7Jl+M/N9MwW+3Fd6YES2g+ddfkcypvsczvUw8XAXzXTLwNe0zyPOvN6bvuv1zH03wDfag64h/Ix5vDMPI+ypbgvQGbeAlwTEYdn5lnA9cDHKD8wfVlm3jSzwMy8rcdaepaZt0fEnhFxLmXIZRllpR4QEaPD3MOsv/0uwH9TtnKPzMyLgf2Hvf45zgFOj4gzI2IqIt4IfJPym7X7NLUNex+3AX8aEScA6yPiPMqW4R82n5yGuofMvC/LzsKZfQBB+cKpiynroQuv6f8CToyITwBvAh4PXN3Uv3cH6m+v5TvizJbIecDJzfSHgH9pph8BvI/mXY8yxnUI8LBBv5PN6eOVlI+Waylj6l8H3kh5Ug91D8AnKFtXSynH1J5KeRKf1rF18FnKSRyPorzATga+0aH1cGBT779RtvheDLyTcqzy6ylvvEPdw5x+rgKOa6bP78prunn9nkPZOHsTcDpwbfPc6tQ66OVfq6NcMjMjYj9gX8q7I80fkYi4hDJGvSibd73MvDczr87M37R53H7LzLOz7Ok+mzLu+R+Uj2AXMcQ9RMQIZcvwvcBnKHvpDweOB/aKiIsZ4vrneF5mvi0zfwS8jXJY2XvowHpo3EQ53XtxlrHaS5p5l1B2+nahByJiJhMuo+xUBHhruaoTz6eDgaksW9cfoGzsfJTuPI9a6cdx6IdS9gjfEBEvp3x0eQNl7Op7mXllHx5jofycslPx1Mz8YES8BLgmM68acF3bspkSFvdStszvA96QmRuAv+9A/Q/ILU/EuJ0S6Kdl5ke60Edm3h0Ra4C3NLN2oRwksCYzr+pCD1B2+EXEzLcHXt/M2wi8vhlO+u6w9hARiyj5cwTwQeBOykEOr8zMG7qyDtpo/QMXEfE14PeBGynHb745M7/TvrSF0RydcBTlI/LBlGGXszLz3ge94xBqTn44DpjMzJ8Mup75iIiHAkdTzrj7I8phZ2dn5uaBFjZPEfFWyuvhUOBzlB88+OVgq5q/iLgWeGNmfmzmPJNB17QjIuIAymv4Hsp6+E/gLVnO7Kxeq0BvDjk7HbgBOD+bnSpdEhGLKd/pcDelh8599Gq2TO7vyotuWyLiFZRDRj/UxfUwIyIOAn7YxR5mnST4BMqO9s1de141GzYHAl/PzLsGXc9C6tRP0EmStm3QX58rSeoTA12SKmGgS1IlDHRJqoSBLkmVMNAlqRIGuiRV4n8Bc3dQMZDbe6kAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "yearly_incidence.hist(xrot=20)"
+ ]
+ }
+ ],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
@@ -16,10 +2411,9 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.6.3"
+ "version": "3.6.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
-