diff --git a/module2/exo3/exercice.ipynb b/module2/exo3/exercice.ipynb index 0bbbe371b01e359e381e43239412d77bf53fb1fb..c000f04398522cae5fc19cc2e09ecc94c5d1526f 100644 --- a/module2/exo3/exercice.ipynb +++ b/module2/exo3/exercice.ipynb @@ -1,5 +1,86 @@ { - "cells": [], + "cells": [ + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "liste = (14.0, 7.6, 11.2, 12.8, 12.5, 9.9, 14.9, 9.4, 16.9, 10.2, 14.9, 18.1, 7.3, 9.8, 10.9,12.2, 9.9, 2.9, 2.8, 15.4, 15.7, 9.7, 13.1, 13.2, 12.3, 11.7, 16.0, 12.4, 17.9, 12.2, 16.2, 18.7, 8.9, 11.9, 12.1, 14.6, 12.1, 4.7, 3.9, 16.9, 16.8, 11.3, 14.4, 15.7, 14.0, 13.6, 18.0, 13.6, 19.9, 13.7, 17.0, 20.5, 9.9, 12.5, 13.2, 16.1, 13.5, 6.3, 6.4, 17.6, 19.1, 12.8, 15.5, 16.3, 15.2, 14.6, 19.1, 14.4, 21.4, 15.1, 19.6, 21.7, 11.3, 15.0, 14.3, 16.8, 14.0, 6.8, 8.2, 19.9, 20.4, 14.6, 16.4, 18.7, 16.8, 15.8, 20.4, 15.8, 22.4, 16.2, 20.3, 23.4, 12.1, 15.5, 15.4, 18.4, 15.7, 10.2, 8.9, 21.0)" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztvXmYJGd95/l9MzIj8qyrq7r6qD4ltS5AEghJ3Ie51wN4vNgGDPjEO+PZwYN3Z/HMzq7x7Dzr8T0z9ngsGwzLADMe47GwGWMwh8UlgQQCXS211Oru6u6qrjOr8o7IiHf/iHjjfCMy6og8It/P8/TTVVlZlfFmRvzi935/F6GUQiAQCASjT2bQByAQCASC/UEYdIFAIEgJwqALBAJBShAGXSAQCFKCMOgCgUCQEoRBFwgEgpQgDLpAIBCkBGHQBQKBICUIgy4QCAQpIdvPF5udnaUnT57s50sKBALByPPwww+vUUrnej2vrwb95MmTeOihh/r5kgKBQDDyEEIuxnmekFwEAoEgJQiDLhAIBClBGHSBQCBICcKgCwQCQUoQBl0gEAhSgjDoAoFAkBKEQRcIBIKUIAy6QCAYa75zYQNPLm0P+jD2BWHQBQLBWPOhz/wAv/vFpwd9GPuCMOgCgWCsWd5qo6Xpgz6MfUEYdIFAMLbUO100VB1q1xj0oewLwqALBIKxZXmrDQDoCIMuEAgEo83KtmnQhYcuEAgEI84yM+i6MOgCgUAw0lzb7gAQHrpAIBCMPNe2mYYuslwEAoFgpLkmNHSBQCAYfnSD4r0f/Ta+8cxa6HOWhUEXCASC4afW1nD/06v4zoWN0OesMA1dBEUFAoFgeKl3ugCAhvW/H8OgWKmZHrqmUxgG7duxJYUw6AKBIJU0VTPQWQ8x6BtNFZpOcWgiDyAdXrow6AKBIJUwQ17v8DNYWED02EwBQDqqRYVBFwgEqaRpGfIwycUx6EUA6QiMCoMuEAhs1uudQR/CvuF46GEG3VzrccugpyEXXRh0gUAAAHjg/Dru/Dd/h0vrzUEfyr7QVC2D3uYb9OWtNggBjk6Zkovw0AUCQWr4/mIVlAKr9fagD2VfaFhB0YbKN+grtTYOlBSUlCwAERQVCAQjQqPTxfnVeuRzzq82AAAdbfQNG+Bo52Ea+vJWG/MTCpSsaQbTsG5h0AWCMeCjX38Ob/uDb4DS8Fzr82umwU9DtgcANGNo6Icm8pAtgy48dIFAMBKs1juotbuRxtr20FMQHAScdMW2ZqDLMdbXtts4OJGHLFkGPQU3MmHQBYIxgBXZhMkP1aaK9YYKIEUeuks7b/hy0dWugfWG6vXQU7BuYdAFgjGAGTe/YWM8a3nnQDq0ZMArtdR9gdFVKz3T1NAlAMntTJa32vj9L5/DxfVG7yfvEWHQBYIxgBnyMD3ZHTDtpEBLBpxdCRDcmbBZovOTjoee1M7k8mYTv/WFp3GxD+mgwqALBGNAq0cK3/k1t4eeDg3dbcRrvlx0Nkt0vpK3s1ySklxYsDUnJW9uhUEXCMYAZsijPPSF6fT0NAHMNU/kzRzzgIduGfRDky6DntDOhN0o2E4gSYRBFwjGgF5B0fOrDdx0qAIgPQa92dExb3VS9K/72nYHspTBdDHnSC4JxQ6YQVeEQRcIBsN9j1zBl568NujD2Deiimx0g+LiehPXzZWhZDMpSlvs4uCEYn/txkxZVEAISTwPnf1d4aELBAPi97/8DD72zQuDPox9o2X3Bg8a68ubTai6gdNzJdOg9ynL5W8eXcK99z+757/T1nT8i//+KNZ8jcWaqo75SpiH3ra996Tz0NnfHQoNnRByjBDyFULIk4SQxwkhH7AenyGEfJEQcs76fzrxoxUI+sRqvZMa6YFSamvoPA+dFRSdnitDyUl9WffiRhO//N++j498/bk9/63Hr27jUw9e8swOZWueC/HQl7fNsn8AyEoZSBmSmEHXhsxD7wL4ZUrpzQDuAfCLhJBbAHwIwJcopTcA+JL1vUAw8qhdA9WmlhqD3ukaYNPVeAb9WStl8fRsCbKUvORCKcW//MvH0FT10E6IO2GrpVr/a/ZjLU0HpcB0UYYsZQI7k/W6itmyYn+f5LrtoOgweOiU0iVK6Xetr2sAngRwFMDbAHzcetrHAbw9qYMUCPrJesMaHJwSg+7Ox+ZluZxfa2CykMNMSYaSyyR+I7vvkau4/+lVHJ0qoKHq0Pc4y7PaNA35VtMx6GydJVlCSZE8N7KubmCrpWGmJNuPydlMYp93Z1izXAghJwHcAeBBAPOU0iXANPoADu73wQkEg2Ctxkrg0xEcdBszrkFfreP0XAmEEChZKdEb2Xq9gw//1eO44/gU3vuSE+bxheTGx4V55lWXh86mFZWULMr5rOc9YM8LGPSEg6JDleVCCCkD+AyAX6KUbu/g995PCHmIEPLQ6urqbo5RINg3KKV470e/ja+cXQl9DusHnpYS+KiKScDU0K+bKwOAleWS3Lr/3ZfOod7p4t/+6AswWcgBCB9AERfmoVddHjq7SRTlLEpyFjXXujetnjXTRcegJ7lurWvuQIYiKAoAhJAcTGP+SUrpX1gPXyOEHLZ+fhgA9wqhlN5LKb2TUnrn3NzcfhyzQLBrGqqO+59exXcubIQ+x/HQ02HQ3R6w30OvtTWs1Do4PVcCYBm2BCtFz6828LyjkzgzX0HZKvrxV3HuFOahMy0dcFodlJUsyorXQ9+wDLrfQ0/q81Z1HVKGQMqQRP6+mzhZLgTARwA8SSn9HdePPgvgfdbX7wNw3/4fnkCwvzR69MgGnMZNakokF5ayWJKlQHOu56yS/9OzloeecJaL2jXs4GAlb3noHS3qV3pSbarW/xwPXZFQ8hn0zWbQQ5el5DR095qTJs6rvAzAewC8lhDyiPXvLQB+HcDrCSHnALze+l4gGGp6DQ4GgNWaadBT46Fba52rKAHJxTbobg89wXV3dMMODpaV/fHQqxwNna2Teeh1j4ce1NCVBIOiatfoS0AUALK9nkAp/TqAsL3CD+3v4QgEydJrLBkAu0Cl0zVAKYW5SR1dmIZ+sJLHBV8L17W6av3MTOFLulJU7Rp2cLBiSS5RN9c42FkunKBoUZYCBp156FPFnP1YksFgVad90c8BUSkqGDPqtkEPN1rMQwcATd9bSt0wwAz63ETQQ99qqiAEmLDkDyUrJRoMVrt6wEPfa1B0u+WkLbIRe07aYtaSXJzPe6OhoiRLyOck+zE5wRuZ+yaWNMKgC8aKXn3BAXhKyNOQusiGWxysKGioOgxX3ne1pWGykEPGCtglGRwEzBQ+pieX98tDtwy6qhtoWQFdtuaSkkVZkdBQu7ax32yomHbJLUDyaYv9klyEQReMFbGCorUOspaB65eOfnmzuecCG8BcF0vLY7Cb2JwlqzRdWSzVpoapglt6yCQaDHbrySV57xq6YVBUm07VJ5NfGqqOnGQ23iopWVDq7FQ2mqpHPweSDorqQxUUFQhSQ72Hht7p6thud3F4Km99n7xBv7zZxKt/86v4wuPLe/5bH/7s4/i5/+8hz2NNtQslm7FlFX+RzaQ7HzvhSlG3QZcyBGUluyeDXle7MChw4kARgMugd7ooWZKOfyew2VA9GS6Aue40BEWFQReMFb08dBYkPDplDnvoR/n/wxc30TWoPXRhL1zaaOLypnfUWVPV7eAg4F17tali2hccZMHgJDBT+Bzt2gxY7j5tkZX72wbdykVvdHR7B+Bfd5iHnlhhkU6Rk/oTWBcGXTBWuLNceEZrzQqIHp0yDUQ/NPTvXap6jm0vbLU0Tz42YOZkF63goP91eJILkGxvcLe3Ws5n96Shs7WePGCmXbIAqemhmzcOZtgbtoeuBTz0JHu5CA9dMDQYBsVXnlpJzGPrN6zrnkFhB9DcsIDoUTaOrQ/l/9+/XPUc215gXSLbrrU1OzpKimQbOL+HPuUrgQeSkZoMg0LTqdeg95BcWqruaYvrh6UqBiQX6yYGwL6R1TtddLo66p0uZko5z99JtDmXbkDOSr2fuA8Igy6I5O/PreKn//Q7ePTK1qAPZV/o1aiKpSwuTPVnvqbaNfD41e3Ase0WJjlsu3OyNR1FOWtLDyxIqhsU2+2u3VMFMCtFgWRuZLwmVZUeHvp//c4lvPtPHgzISAy2XuahV10eOluvOz2SGXx/louSldBJcKaoCIoKhoLnrOEHe63mGxbqrr4mvFx0v4eetIb+5NK2/Rp7Td9razraliH2dh7soihLAcmFebfeAhvmoe+/1GSPYpO8HnpUHvqz1vn31HKN+3NmoA9N5iFLGft7FjcAnKBoQ+06fVxCJJckdqKabkDOCg1dMAQsWp5RGvKxAa8XzPOIV2sdVPJZu4ox6XUzuWWqmNu3iknAWzXZUL0eOnudKqenSZKSiz3owSe5RK374oZ5/j19rc79OVvnZCGHyWLObtBVd2W5OFKT7nRaDHjo8WMHlzeb+JtHl3o+jyE8dMHQsLjRApCeVrKNThes6R1v17FWVzFXUaBYmmfSkssjl6qYqyi4bq68Z8ml6uo26DbuTbVraeheD5158ZM8Dz0JyYVj0Cv5XOTu76LVquDpa2Eeuop8LoN8TsJUIWcb+Kaq24a87Fr3RjPYaRHY2VzRj3/zAv7xp77riVNEIYKigqGBaZftlHjo9Y5uF6GEeeizZSVR6cHNI4tV3LYwFegIuBvCPHQmPxQtfdyWXKzne7NczOckkeXCG8XGslwMTlGVphu4smk6FOEGXcNUwTTOU8WcNw/dCooWchIyxNTQNzmtcwEzD919jFFc3WqDUmB5K16aqagUHVL+9vFlfPnstUEfRt+glOLyZvo89EOT1iR4zqSctXoHcxXFvgCT1NC3mhrOrzVwx/EplBVpXyUXJqcATEPPIpMhKMmSnU3DPHpulksCPdFVzrDkiuLo236uVlvoGhTTxRyeWalzK2m3WpodA5gsyKg2NXR1A52uYe9ICCEoWdIO67TovokBzk0mzo7smmXIr1RbPZ8LBHPvk0QY9B3we393Dvfef37Qh9E3qk3NNjKj1kpW0w382l894enLApgG/WDFNOjcLJd6B3MeDz25dTP9/PZjUyjJWW6Qdie4jTjLcjEMiqamo2QFCN07gU3LuHkKi3J91tAj+rlcWDd3h6+9aR6droHFjWCmC+tFA5g6+lZLQ0N1Oi3ar2Ote7OpYrKQQ9anae/kBr60U4OuG8iJoOjwsVprj5xhi+LRy1v4zb89G/rzRVeqWFy9cFg4u1TDR7/xHL76lHfsYb3TxfyEKbn4syvamo5au2tq6Amm7zEeWayCEOD5C5P7I7lYRlzOZuyv210dlAJFVwofy/SptjQQ4gyaAJBo7IA3LDmq4+IlSz9//S3zAPiyy1bT8dBNyUX19EJnlJSsneXil1vcx9RLajIMipWaadCvxjDolFKz26IIig4Xmm5gra6mZhI8AHzu0SX8wVeeDdWJWUAUGD0PfdOeYuN4rWwrzppU+Q0o8+Zny7ITJEsoNxkAvr9YxXVzZUzkc6YHqfKrV+NSbWrISQSHJ/Oe4CDgeKvuG8dWU8VEPucZjZZo2qJ1DilS0EOvhXjo+VwGL7v+AADg3Eow06XaUm0PfaqQQ0PV7bUXfQa91jY9dPeOhGHHDnqc5xtN1W6pzPT9KNhzhYY+ZKRtig1gzpM0/+d7hqPsodtTbNxjyXxzJv2VmewznqsoyEkEhCSjJQOm5/bIYhW3H5sCYBqcsOrVuGy1zKrPqYITHHQGPTgpfO4slymfcbM99AQLi9zGbSIf7qFfXG/gxEwJlXwOR6cK3Fz0alOzYwBsLcxzLituycVcdy8PvdeNzB0IvbrV26Dz1pwkwqDHZKXG5kymyaBbjapCDPrlzSYmC6b3OGo3MuaZb7o8dCY1lJWsx7AxWGOu2bICQkii49iuVFtYb6i4zTLo+9EbnPVlmXCl77FgI9PQ3TeyTZcxZPRdQ1dMI8xzKi6uN+2S/hvmywHJpa3p6HQNR0O31sIMOruJma9jxih4nRaB+EFRZtAXpgu4Wu2d5aJZf09MLBoyrlmd8NJSYAM4HnqYEVncaOHYTCHxsWRJwAJ+bg+d3bhKitmoqu7LrHB76IDTeTAJ2M2DtRhg3uReAqObTRVTxRymirIdFGWSSyFEcgnP9khOcuEHRb0NxQyD4uJGEydnzZL+G+crOL/aQNclgbHP1slyMf+/bBn0kuyVXOpWHnqkht7LoFt24EUnpnGl2uKmW3rWLDz04WTF+iDT5KEzQ77d5rcvXdxs4th0EfmcZJeUjwosJc9dbMPWW85nuSXnTEM/UDINepLTe5iU4x/2sJfAaLWpYbIgY7KQtSUn9+Qe9n+k5JKkh65ba5aCQVG/h7683YbaNXB8hnnoFai6YVeOAq7WBSwPvcAkF/NaLSneLJe1egdtzQhUiQLxK2SXt9qQMgS3LUxB7RpY9w0TCayZk3ufJMKgx2QllRp6uORiGGYO+rGZYuKT4JOAeW/MUweCk+B5QdGpYs42sknuTPyNqni9ynfKVkvDdDFnp+9RSm2Pv+iRXFjpvxbqoSfhuISV/gPBdV+0UhZZ060z82UAwDmX7FL1DXv2a+glX1CUncP+Pi6Aq/Q/hoc+V1ZwzLrR9Mp04WX2JIkw6DFxJJfRMmxRMIPO0y9X6x2oXQML0wXTUx21oCgny4UZcDY42G9EWJUoI8kbmd+48XqV75SqlcI3VZChGxT1Ttfx0FlQVDYNmzmZKaihZ6UMshnSN8lFyhAUZSngVLCSf6ahX3/QNOhPLTuZLlVXHxfA8dR5Bt2dwsjz0ONKLte225ifzNsDUHrlotuZPcKgDxfMQ9cN6tHxRpntCA2dFXHYksuI3cg2LQ/d3XWw7vfQ1aCHPlt2V01KieWh+z230h499Lamo6XpmCrKtoHbammctEXz/2WrfN0vuQDWjSyBdbM1K76qSV6DrosbTeQkgiOW4SzKWRybKeDpFcdDZ60L2Hor+SwIcZwv1uqAvQbD3wsdiJ+HvrTVxuEJx6D38tA1XQRFB0Knq0cGOK5tOxWHSeYm9wvD8uAAvhFhJf92UDRBD103qO1J7hfMM2+quu1t2h66NezB7xX6PfREJ8Hbnpu/gdTu3md/10HA9NjZ++ouLAKcz5dr0HPJBIPDAoSVfDaQh35xvYFj00VPjvyZgxWv5NLySi6ZDMFkIQeDmjewjOt33d46L8vFSdeMfv+vbbVxaDKPiUIWJVnq7aGLoGj/oZTi1b/5VXzy25dCn7PimveYhsCoWcRifs0LijIPfWG6mNgFzvi/7nsML/jVL+A9H3kQn/jWBTvbZC9UW5qtB7snwQNOlovfeK7UOnZbAACJ3siCkou3cdZOsQc3uDz07ZZmr7GQc7JcAKcohskUbnYSO9hua9weKzx4kgsAlDkdFy+sOSmLjBvmK3hurWF7vdWmZg+aZrC1u1MWAW9O+m4rReudLmqdLuYn8iCE4Oh0oWdxkQiKDgBVN7C01caFtQb355puRrMPWulsadDR3RcQLyi6uNnEXEVBPichn80kWli0tNVGScni8mYL/+q+x/ET935rT39PNyi2WhqO+8aS1TtdZDNmfnlFyULVDfuCa3S6aKo6Dk64NPQEb2TMYLILnWncu5Vc3AFC5rFWWxpamo58LmN7uraHXo3w0GPGDjTdwKt+4yv4xLcuxDpGtWsgmyEerxswG3TVXU4FpRSXNpo4YQVEGTcdqkDTqV1gtNUyg7qEOH+PBXndGS7m9+a6MwSYyHMklxjBYJaDfthq7nZkqtCzuCjsJpYUwqDDnFsIIHTbzzxGlkKVhs6DboPOC4oubrRwzJrao+SkRHclatfA9QfL+PIvvwo/ec9xj7y1G7ZbGih1MiRYcVHDGnrAuu+xxwAnRsJu2kCyQVFbT7bSBDNWcHDXHrpbcnFp6O42sgDHQw+RH+Kc48tbbWw2NZwNmSbkJ6wvuF9DX2+oqHe6AQ/95TfMghDgi0+YHU+rLc3Tyx1wiotKAQ/d/H66KHukGEZOIvYxhsG0+fkJ06AfnepdXKQKDb3/sMBRmH7JLnaWqsTyaUeZWjsYLHSzuNm015u0h67qhlVqT3CgpKDe6cbexvNgxu3ULPPQnSk27ML2ByGZpOaWXMyxZMmmLbq34iVOoDYuW64iG2bQTQ1dR9HlrTLPlfW596ctAiz/vve6mSy3k66DXIOe99YEsAyXkz4Pfbas4MUnZ/C3jy8DsBpz+Y4/zEO3DTpHbgEQqzKYeeiHXB76RkONjP+ILJcB4Bh0/gfD7szMYx21IhsezCvP5zIByaVrSVALtoeebB66phu2B1PZhxJ45pGfmjVT3TxDD3xTbOp+D32iTx66FjJfc5dB0U3XOLlCToIsZbgeOls3M8ITHIOuxAwGs14/S3EHPYSMYisr3qAoy0H3e+gA8KZbD+Hscg0X1hqexlwMJiG5g6Du73k56IxehWSsSvSQy0MHEOmlC8llADDJJcw7Yt7bgu2hj75BZ4HQI5OFQFB0aasN3aA4Nm2uN8kSeMA86ZkHw/TNWkj1ahyYt3rS8tA3bYOueyomzceiJJfk1q3qpnHzZmJESy6PX92yW7f6qbbMTotFWQIhxO7n0tJ0u+zffA1z3ctbbUzkswE9G7Bu4DGcFtaNc6naitUlMkxymbCmFrG/cX61ASlDsDAdNOhvfN4hAOawmSqnFw0z8H7JpWR76MEbGKPXjWx5q43JQs5+P9kg8ajURZHlMgDYlol56n5Wah1kiGn8gHRp6EemCgFvmHletuSSS1Zy4XnoUXMme8G81cOTZlEUT3IJeuhtyFLG4/ElneXiv8hLcvjA5Fpbwzv+07fw4c8+wf05K/tnAcIpa2BymIfeNWio/BD3RsbOk4aqY7vV+/PqREgulDrX39nlGk7NlrjPPTpVwAsWJvH5x5ex1dQCHvpkD8mFl+HCkKVMdFB0u2175wDsHPkoyUnjSGtJIgw6gKbWW3KZqyj2nXnUGlXxYAbz8GQ+YESWrC0k21IqWQndBAuqNJ26DHp49724bNopfDlMh8yZ9Od9r9bM0XPujIm40gMArNc7uP/p1d5PtOh09WD6XsSQi7985Cqaqo6/f3rVNhJuzNa5jnFj5f9snihDyToZLzz9nD0nzjl+2ZWyF6uVbKjk4v3Mn7q2jZsOVUL/zhtvPYTvXaqi1ukGsnSYx+5PW5QyBNcfLOOmQxOhf7dXVtOylYPOmK8okDIk2kNn3RaFh94/Wj2Cote2zfzkuP0eho1nVmp48Py657Fa28zhnasoqLW9gxU2rIZDB6yqSSVGju5ecHurjoe+F8lFBbHS06aLciDLBXA8ONbljxl0N0xDjyMnfOybF/BTf/rt2AVSPOMWNrWIUopPPXgJSjaDeqeL71zYCDyn2tQ8gxtYT3S/QSeE2K10J0P05Lixg8WNJm6wSvKXYhp0XnDQ3XGx3ulicaOFmw+HG943WbILELwpse/LPg0dAP7ug6/C+156MvTvmh56+I3M76FnpQwOTeQjPXS7Ilh46P2jp4Ze62B+oj9zJpPgd//uHP63P/++57F6p4tKPotKPgfdoJ5A73pDRU5yCjbyVlFKUsFgdd8lF3MrzioH3Xno5UBQ1PzsV7Y7Hv0cMD02Sp2pM1Fc2WzBoPGm2ACWccsFDTovKPr9y1t4cmkbH3z9GchSJjBWD2Brdgy046F3PZN7AGft4R5677TFtqZjpdbBXadmAABXYvQGD9PQ2aDoWrtr55jfOB/uoV83V7ZvJH4NnXnsRZ/kEgczq4m/bnNiWQfzLg8dAI5M5SM/c1FYNACY5NJUda43trLdxlwlH3tM1bCxXu9gZbvjWVutzQx60CPetKa6MPkhybFkgHmxyFYecGUfgqLmmDHzQp8uyqi2VLPzoBoVFG17MlwA7GgMHcv0uBwzha/D8dDLIUHRTz14EYWchHfdfRx3n57Bl8+uBJ6z1fRKLhOFHLaaZqVoSeYX2fBGsQEsqyn6s2ZyywuPTyObIViKse6otEXAvOGeXd4GANx0ONygA46X7s9Dt7Nc5KCH3osoiW2l1gGlTlER42iP4iKWksvLfU8CYdABtCzPXDdowPtmVaLzE4prTFXyBr3R6eJ3vvBU7BzfKKpNDZ2u4dHKa20NFSXnGHRfYYe73wXzJJPy0DWO5LId4aGvbLfxH750LjRXfcs1CX6qmMOmtX7doLYxy0kZKNkMGp0u1K6BzabmyUEHXL3BYwRGmeRweQceeiAoqmTR0nTPurbbGv7q+0t4621HUMnn8OobD+KZlbqdA86otrw52VPFHGqdrpXlws/4CJNcZKm35MICoicOFDE/kY+VuhimoVdcY+ieWq6homTt+E0YP/rCBdxyeAI3+zTxo1NFvOjENO44PtXzePzIEU3J7Bz0Cb+HXsCylRXGQ+safSsqAoRBB+DNbvF7SKxKdH4in7inythqavjJjzyIf//lZ/BFq4hiLzANeb3utJLd9nno7lz0zaZq6+cAkM8mGwx2Sy55K4c6SnL55IOX8NtffBpPXN3m/tw9CHiqKGOrqXk6LTJY/vNqPZiyCMQfekAptQ1abMlFD+rJdqDWJf3d970raGk63nX3cQDAa286CAD4ylOOl97p6miquidrxZ394ffQe0ouMeoOLm84mVBHpvI9uw4C0ZWigOlUnF2q4cZDFU9wmsfJ2RL+xwde4QlSAuZkps/8o5fiBQu7M+hhHrq/SpRxsKJA06ndHM1P2K4kKYRBh6OhA8HUxWt2BaFie2xJSi4rtTZ+/N5v4bErWwD2VmADmMaGZX2wiTwAk1xy3JmOGyEeehLpmpRST5YLYFUOdsIllwesAO8TS1vcn5sBQia55KDqhn1j9g89aHS6gdFzDLsDX4/Pm+2AAKcCsxcdje+hA16n4tPfXsQthyfwgoVJAMCp2RJOHijiKy7Zxd9GFvD2aPFr6CwgzOvjApjr7tUm+vJmC3I2g7mygsOTvXuaAMy4BbXtiuscfHJ5u6fckhT+tMUvPXkN/+dfPoovn72GC1b1ql9y6SURhu1KkkIYdPg8dF9gdMXloccdJLtb2pqOH/+jB3DfdbZYAAAgAElEQVRxvYmP/tSLTU91jwa9pen2Seo16Boq1ig2wDvTcaOh4kDJ2xecHd9+wwKObuNWyWdDPfS2puN7i1UAwOMhHnq16fT4YEaLSSFlxVtk0+h0uWX/7mPqdQN3yw1xJbIOx7j5DXpb0/HE0jbe9LxDHo/1NTcdxDefXbcdEdbqwJ+2aP/dUA09PMsFiI4dLG42sTBVQCZDbNmh53zNEOPGbjDnrtVQa3dxY0RqYZL4exZ94oGL+M8PXMLPfOwh/Mbnn4KczQRugr2C+GG7kqTo+UqEkI8SQlYIIY+5HvtVQsgVQsgj1r+3JHuYyeKVXHwtVV0eelYyc3iT8tDPrzbw3FoDH37rrXjFDXMo58PzkuPCvHMAWHVJLv6gKNOsNd0wR5m5DHo+0TmTwSyAKIP+/cUq1K4ZaOJJLqoVK2DGimVBMM/Z7aFXrKZQvLJ/IH4wmOnnZ+bLO9LQg5ILS6U0X4/JGMdmvHrya248iE7XsHcq9rBkT5aL83UxRHLxBxQZ9rojdmSLGy27cvrIVB6aTrHWiG6q1gkxblkpg0JOstMxb47IQU8Sf+xgtdbBK26Yxcd/5i68++7j+F9eeTogBTEPPWwu7zBKLh8D8CbO479LKb3d+vc/9vew+ktLc4yH34Be2zarRA9Ygw/MDz3Zhk2zFatjHGcIw07ZdA2xXbMMF6XUlbbo1dCZcZjheOhJGHSNFV5IzoVSUXKhW9gHn9sAIcBbnn8YTy5tB7xCpmUyDZ0ZdqZteyUXyTbohMCzKwHir5t56HeenMFqrRNrJ8MrLPIPimbePqtQZtx9egaFnIQvsK6DvtmagNdD9xfZlHpq6L3XbQ4QN4/r8GTvniYAoHb10CZV5XwWz66assaZQRn0bNCgH50q4FVn5vBvfuT5+OAbbgz8TiwPfZgkF0rp/QCClQwpoqnq9pvuLwxZqZlVoqy6LslGVf5xVWUlt2cNvery0NctD6qpmpkUpobuLYFnRUUzHA89GcklWEkX5aE/+Nw6bpyv4KXXHUBD1XHJn+1hGbdJ20P3Sy5+DV3Haq2NAyVzB+ZGjuGpAs4k+DuOmYG4uAFChVNYBDifBfs7R3wZH0pWwj+47TA+893LuFJt9ZZcQsrgea1zzb8fvTOptTVUm5rdGoLpyr1SF6O8VZaLfnSqwO1X3g8UV3dN3aBYb6iBuIqfiR6VzcPooYfxTwghP7Akmel9O6IB0FR1e5akX3JhVaIMJaL4YK/4ixCYJLAXWIZLTiJYq5lfs5Ovks/a213mEdsGvdgfD51XSVfhTLABzPfn4YubuOf0Adxy2AwS+nV0d9k/4DLo1aDkwvpw84qKALeW3EtyaeNgRbH75ceRXXiFRWWfhn5ls4UMQSCTAwA+8LozAAV+74tPuzx0fpZLIef10N962xH8yptvCs9D933etbaGt//BN/C9S5sAnKZcrHmb3XWwR+pilLfKPN2bBxQQBbx56BsNFbpBexr0XpXNQ+ehh/CHAK4DcDuAJQC/HfZEQsj7CSEPEUIeWl2N3+siCeqdLn74P3zNziBhtFQds9YHF/TQvRd7rxabe0H1eavl/P4Z9FOzJTsoyk4+pv+5X8c26J5hycl76P6gKE+TfPRKFW3NwD2nZ3DDfBnZDAlkulRdbWQBR1dmkktZDma5rHDK/oH42T1LWy0cnszbmnKcwCivsMgfFL1SbWN+Is/NYz46VcB7XnICn/nuZXznwiayGeIJfsrZTGAwNOPYTBG/8KrrQlMD/Rr6s6sNPLJYxe988WkATjyCtVeeKuaQz2UidyZd3YBBw7sOsuKiGwcktwDOtU0pdTKfytEGvTxqQVEelNJrlFKdUmoA+GMAd0U8915K6Z2U0jvn5uZ2e5z7wqX1Jh67so1HrCwJRlPt2sOB/aXXrGqSoWSTm97j99BLSnYfNHTTMF43V7YN+rbLQ2f/s8c2mhwPPYamultYlovbaLF2qn59/IHzpvJ316kDyOckXH+wHAiMVn0pfHI2g5Is2Z6727iVlSyaqo7l7XaIhx5v3ctbbRyeLNjNmuKkLvIudH87gqvVVmSBzS++5nqU5Cy++MQ1TBXlgIFmGrlfQ++F7JNcWOzla+fW8MTVbSzaA8TNGxghBEcmC5H9XHq1kWVrj2qelTSylAGlZidKVpvQy0PP+Xa4ftydRPvBrl6JEHLY9e2PAHgs7LnDBPP6/HfTlqpjuiiDkKCHvtXSPNrkTgbo7hS/t7qXgQeMzaaKipLF/EQea3UmuZjvwwQz6K4bx4b1nOlS0ENPYt28XheVfA6UBlNIH3xuA2fmy/YN9pbDE3hiyWfQW8HjZ1KEks14dHJmRFZrnUCGCxA0bDxYUdGhyTyyUgaHJ6N7ezDMwiKv55zPZZAh3qCoXz93M1OS8f5XnrbWGJRPJkJayfbCX1DFYi9ShuCPv3YeixtNlGTJI9kc6TGOrVdPE1YPEdVlMWncaaphtQk8omI+YZk9SREnbfHTAL4F4EZCyGVCyM8C+A1CyKOEkB8AeA2Af5bwce4LLAPCfzdtajpKioSS7J0E3+nqaGm6R49MVHLxa+g9CmziUG2qmCrlMFcxR7u1Nd2loQcll82miko+6/EqHMml97oppXjtb30Vn3zwYqzj88tM5nEFt7GabuDhCxu4+9QB+7Fbjkzg2nbHk1+/2TQHPbjlBzbUwN+Bz62n+3PQAZeGHvF5b7fM8noWGFyYLvTU0Lu62YbAf6GzWadsd7K0FW3QAeBnXn4Ks2UlkKEDOEY+zynmiYLtyJz6BfMm+eMvPoa/+v5VPHRxA8dmip4dweHJfLSH3mNyz7Ql25yaLXF/3g+UBAx6v4OiPfdilNJ3ch7+SALHkjjbLb6H3lTNqS4lRfJ46OwGMFn0equJZ7lYJ0BJzqKtGejqRiADIy6bVtUkC/qu1Tu28bYlFyWH1VodgNnHxW8cnHmLvT301XoH59caePjCJt5994mez3cye1xpi5zMgceubKGh6rj79Iz92C1Wi9Unrm7jlWdMOa/aVD2DHgBHRw+OJXMMXVRQNOrzZhWSLHXv6FQR33x2LfT5QLT8wHqir9Y70HRqT8UJo6Rk8YmfvQs8OXyykENRlnbcGMq/I1uvqyjJEv7xq6/Df/3OIh67so3X3XzQ8zuHpwpYqXVCNeNOD4P+8688jTc+79Cuz/P9QHZJbKu1DspKNpZcVc7nwvPQOdlMSTJWlaI8D103KNSugWIua3roriIjXkm1nORYMp+HzgIuYX3a41BtqpgqynaMYK2u8oOilvHcbKjcSTZKROMiNywDYjFmCTwz6O785DInc+C7l8y4B2vXCpgeOgCP7OLvCw6Ez5l0e+w8ySWOhu4fHLwwXcDydjvSq48aHMwGRbPA6tGp4M7Bz82HJ7ja8/xEPnJCTxg8yWW2omBhuoh/8AJTbfWPhzs6lQelTqsMPyrnc/Yf64tPznB/1i88kkudHyjnMRHhoWsjlLY4crDAnztzhHnkRVlC0de+1PbQfWPJEguKsjJ4V9oiANT2ILtsWgbONui1DmrtLghxSsLdW0aehw6waS5xptg0rf/jV0wC3qAorwPk1WoLJVnySCNTRRlHpwqewKi7dS6DfV8OyccG+JIL2zVEGXRWVMQkl6PTBVDqGHoeUd4q64keloO+E37pdWfwsZ8OzVcIxQ6Ca07LCHZO/Lyl2V9n9SNnsB1KWNfFfvcF3w22Qdd1s2V2jwwXRiUiG00V3RaTg0ku7tasLSsVryBLKMreUnunpLo/QVG/zugvNNkNzMCx7onrDdOgl5WsLUtUlCzqqqnbbjaCBhEwA3ZxPHRmyJe327HeJ38xFeAEa91ez/J2O9DpDjC9U7+HHtojO0JD53ljcaSm5S0zV5xJNiyVLyrTJcq4sZ7oLLDaq41sFDMlGdf7DG8ceJILq5S+9cgk/uYDr8A7XrTg+Z0j1k4iLHWxl4Y+DLh3Jjvx0KMqm0cibbHfnF3e9nSX2y08DZ01OCrKkp3GxuB56FE9k/eKX092JJfdGfSubqDWNucuuiWX7bbmqcZjQ3obahcbDdWTg86IPTjYqtyktHcpOODsSnK+LBfAK7msbAcHUACm7HJ+te40quJKLnwNnXnolXzWnsrkp5fUdHWrjYOVvK39Lkz1Li5i76PCec2S5VRcrbbsiVL9xi+5rNVVOwYDmDdR//tll/+HBEZ7pS0OA+55B7yRhGEMU1B0eN9dF5984BI++GeP7PnvOGmLjqFougx6UZY8qXK8kmolKyU6WzNDYBsHu0/0LnPRq3ZfExn5nISKksWqJbkwWQNwDOi17TZU3fDkoDOUbCZWYdHiZhNZKwjnH8LAg6cn87Jc/PMcGXccm4JBgU88cAFAmORixQpCeprwAqKMnQ4OPjSZR4ZETy5ini/fQze371eq7T1553vBbdgMg2Kj0cGBUrRxKylmX6CVbX6DrlGQXFjwstbuotbu7sCg59BU9UC7YcMwW0OPQqVoX2E9N/bKFsdDZwa9IGdt78j/fLeXZHpsyeWh5zh50ruVXPxNm2YrCtbqHbt1rv91Lq6bBpgXSMv3MGyMy5st3G71NIkTGOVJLoWcBClD7BsvpRTXtjtcyeXVN87hTbcewq//zVn83RPX0OkasSUX9h7w9HOGv0e2HzO10Pl9OZvB/EQ+luQSGhTtmEHRgRl01iZa01FtaTAoPANPwohqVTEKkgs7NiZ37URDB4LXqWb0f83D++66KCumV7zXYOR2ywmKsvmabKteyJlB0abrxrHd0jCRz9qNuYDouYN7xV+EsFfJZdPXOXG2LFsGveu5SbETkjW64hn0OB66blBcrbbwopPTyEkkVmCUl7ZICPFsY6tNDWrX4Bp0Qgh+68duw3VzZfyvn/4egGCf76mQoKiSNdsh86Qc+zkR8zXtoqIJr+FdmC7EGhwcZtDrluSyl4DoXrBjB9ZgZAC2ZBdFQZY8w2Lc9EpbHAZYVtMVq+/PTiQXILiTHsSuZHjfXRcsF9RfxblTmOSiG9T2zN1ZLmUrZYwZ+2pTDXh7LA+dN0x6r5jDkoMe+m4lF9Y6lxm4AyUF63WVI7nsj4e+vN2GplOcmCnh6FRhR5KL/0J3G/RrNf74L0ZZyeKP33unfVPwa+jTIRo6IQQ3Harg+UcnQ48vKnaw3e6iqercwcFxNHR+HrpkjzTrlYOeJCx2wAx6HA+9KGdDr9FeaYvDAPs82Ge3E8kFCPZEH8SuZHjfXRd7lR4YWy3NbljEjIU/y8WgzgW31dI8QwMA88Oh1OlBsp/4I+IsrXC3694MSC5yiORi/ryXh94ra2XRnjNZwMJ00e75EYXKkVwAb+aAk+sdfoGdnC3h37/zDkwVc4HMjkMTeRybKeDmw8Fc7c/901fg515xOvTvRlUGs+M67MsVX5guYnm7HTrCLepCd990BuWhA07sgM2hjeOhmzEo/jnieKs7q1rtJ37JJSq24oaXlQUMJhA8Egbd6UK3e+1a0w00Vd1OK2PGwh0ULSleA1p1TY9nsG1ZErKLX0NnrW33KrkwD3W2rGCzqVkDooOSy0VrbmK45NJjEvwG68JXxLGZgj1IOAqt6829dx8TSy9lgbYorRsAXn3jQXzvX70e1x/09gMpyBK+9s9fa1eT7gR3j2w/S3aVqPe45icU6Aa1O1f6cbxVTpaLy6DHKSpKCnYDX2ceeowCpWKE5DJKGvrlzRYI4V8HPMI6Load20kyvO+uC7+h3Q0sZZEFmpixsA16zinzZTr6ViuY0+wMPUigURUnxWkvLXQ3mypkyWmjyrwsc7iFy0O3vl7cbCEnkUDPE4BJLtFrZhfCkak8FqaLWG+oPW9Gqq4jmyGB8nS35LLMxgBGaN2MXtPid0pUq4cle+fg9aSZUfYPHGfYWS4hpf+Mo1PFwM/7BVv3ekNFhoQPw3ATKblErHlYYHLQtVobB0py7DYEYYOiWR/9nPDQvfgb/+8GZsBZyTJ781vWCViQJTtoxlIXt5o8D51VkyUwX7NLA9JDWeHnuOoGxbef28BvfP5saO+QasPsFMmMnHvb7PbQWTqf2jUwUwq2YQXi9bBZ3Gzi0EQeSlayW6v26g2u6cE1s+Njn9G17TZmSjLXo00aJSuF5qEvbbVBSHBrzm6gYQY9juSSzZDYGm4SsHWv1VXMlBRPYkAYRVkKX/MI5aFTGk9iYoQFRXnDW5JmZ42SB8R+BEVtD92WXBwPPZsh1kAA53UoNQNTAYMec+jBbuB66EpwUPRvf+EpfOrBS1i3tvRfeWoVf/OBVwT+nj8n210cMuHy0DMZYuc/h06Cz0k9s1wub7TsKTZs3uTiRhNn5sNborKBz348QdGQfuX9ICx2QCnFFx5fxo3zlcANqdf5GpXlwpyKw1P5WEY0KVh2z1q94zlvoog06COQh+4+tp3cTMOmFkV9zkkxvO+uC3/j/92w5ZNcmIzBOi0CbmlHR0PV0TVoYJAuC+okNTBZ9hm3si+31zAo/uNXn8WxmSJ+/1134H9/4414cmkbT1+rBf5etent5e72OvyyCvs+LJshHyO7Z3GziQVrQj3bCfXKdAlrXsT6Y7AcdN4Ytn4Qlqb6tXNrOLtcw8+8/FTgZ7089OgsF/Pz8g+G7jfmMHQD6/VOrAwXACgqUZJLMD112NitQVeyEuRsJqihs95MwqB7YYZ2b5KLadD9QdGWqtsXoKOhd7ll/0C8Htm7heehl3ySy0bTnHX4I3ccxQ+/4Ah+7M5jkDIEf/m9K4G/F/DQK3zJxfzeXHuUh05puNTU6ZqTf5iHPluWUchJPTNdwmYuVvI56AZFSzP/7nyPgGhSKCE9bO69/zwOVhS87fYjgZ8V4hp0zrrZuT6ooiKGneXSUHtWiTKKOTPlUuOcIx3r3N7vGMd+kskQ+zPZqdw1kc96mskB/MZzSTMiBr132uLF9QZ+8VPfxaV1vkfIDPThyQIyxCW5aLptyG2tXtXt1rn+STBxptjsFt64qko+62lH4G+8P1dR8LLrZ3HfI1cDI9s2m5o93AEw0yDzOWd4hhsWGA3LZujVG3yp2galzg2TEIKF6d656JpucING7Pg2mxrW6h3MD8xDD+ahP3ZlC19/Zg0/8/JT/EyVPUku5u8OMgcdcLqKmo254nnoUTeyfvcF3y3s+u6VUeWHN9icBUWFh+5DyWaQzZBID/2zj1zF536whP/5P30TTy0H5QdWJTpZyHkCjS21i0KOeejshOzao8wm+umhc7zVsm+uKG+SyttvP4Ir1RYetqayA6bGy3qhMwghtrflN+jMY+f1QgeCLVX9sDJ/FgxlX/eqFo0KigLAc6sNUGqmAg4CmdMu+d77z6OsZPGuu49zfyeO5CJLfG91spDDP3r1dXjrbUHPv58o2Qy2WxrqnW7sAKGT3RO8TvvddXC3sGPcqYduxnxCCouEh+6FEBIZcAGAR69s4WBFASHAj9/7rcAg6O22BlnKIJ/LoOKaMNJ0SS7unQALovoLi5IcmBwmubh3Jrxp5G+49RDyuYxHdql3uugaNFA1yWSXgOSixPPQwwKjbLCF26AvTBd69nPphEou5vGcWzFvzgOTXKygKIsdXN5s4nOPLuGddx3zdKx0U4wwbEC0cSOE4P940024ISKQ3A+UrGSni+4kKAqEe+gjYdCZ5LKDLBeA33FxEO0Ohv8dtvAHB/08emUL95w+gP/2Cy/FRD6Hd//xA57pKVstDROFbKBPiDsoqmTNIb3Nju5Mj/dLLlJykgvPQ6/ks9B0ar8ebxp5WcniDbccwuceXbK9AruXu08TnyvL9u+4Yd+Heej5Hjeyxc0mchLxdEQ8Nl1Erd215SseYZILy8J5ZsUcjTfIoKhhTYIHgE986yIIgJ9+WTAYymA7vvAUPn2oS+ABM3agW2uOq6Hb6+YkL/S7jexuYVlsO/bQOT3RWVBUZLlwKHHS9xhr9Q6Wttp4wcIkjh8o4nd+7DY0VB0/uLxlP8dstGUaZ/f2qK05Hjob0ttQnaCoP8vFTltMIsslJG0RgC27rNY6KMlSoC/J2+84gmpTw/1PrwJwyv79Qc65ioKKr+EY4HjEYdVx/qEHfi5vms2k3H/3mJXxEuWlm/1reGmL5vt+zjLocYqKkkD2xQ4ev7qNW49ORpblSxmzuVVooypt+I2b2wjF1dB7Si6joKHvMiha5njoIigagV96cPPoFdNwP89qsnTigDk5/IrLkJgeOjPoOY+H7h4EW5Kzpofe0pDNENvYMxwPPRkN3f/h+wPCYY33X3HDHGZKMv7soUUA7rJ/7w3p515xGr/1jtsCv1+OadDDyv8XN5p2hgsjTupi2Fac3WCeXalDyhDMxvQS9xu71YP1eV+ptuzAbxTMMeAxCt6qO9gbV0O3g6IcWW5kJJdsBnI246nTiANPchlEdezwv8MWvAIbxmOWJ36rNTR4tixDyWY8Abntdtdl0PmSCwAUFQl1y0N3V1kymIceJyh63yNX8Mrf+ErsAKqm03APvYdBz0kZvOeeE/jCE9fwg8tVu9OiX3K5bq6MN956KPD77n4vPBzJJcxDbwYMHdPTowKjvMwewFn3ekPFwYqy48n1+4V7Z2IYFFc24xn0Qi66yGbYJRd5Nx66r3WGm1G4iQHmuufKyo7TKyv5HOqdri1TAaI5VyRFWQptzvWDK1s4PVeyt+mEEBydLnjKzmtWb3PAK7m4s1wA5qGbuq8/wwWINwme8dc/WMKljWbksAM3PA/dbp7PGlXV2qHbwZ97xSnMlGT828+fdUku8UaYvf2Oo/iT994ZatBtw+bz0DXdwB9+9Vms1VV7Z8SYLORQyWejhz2EZLmU5CzYNRXWNrcfuCuD1+odqLqBhRg54iUlujf4sBs39nkXrS6kcXBnifkJC34PG2UlG2i2FgdmW9wqgqb3vznXSJT+A7B7lfN47MoW7jo143lsYdqbMucu42eSC6XUykN3GXTFbAGq6cEqUaC3lswwDIrvXNgAYPYZPz0XPayXUhqa5QI4/WVWax28/PpZ7t+o5HP4J6+5Hr/210+goxkgJFgYFcZkIYfX3TIf+nPnRuas++GLm/gXf/EonrpWwxtvnce77gqm8U1w8nPdqF2de8KzdgS1dndgKYuAtzKYtVpYmO7dNKsgZyNbyQ67cWPneVzvHHAkl1aI5OJPlR1GfvWtt+5q1oG7/J9dc51u/6tjh/uschEWFGUBUf+QggWXh04pNQcjuySXrmH2aqEUHsmlZHWMq7ZUrjFkF2IvGeWpazU70+SC1ZY2CuduHiz9B8xCqLamY7vHrMN333McR6cKeOjiJibyudgd43qR9wWD1+odvPOPH8B2W8O973kR/ug9dwYyggDzBhmVbsqTmRgsiM2bJdov3HUH7HyKU/RTzEl24zc/puQyvH3BASc9N26GC+BILryd9CjITIApSfrbL8fB6bjofObsxt3P6tjhf4ctwuaK+gOijKNTBWw0VDTVLlqa6XG7PXQAuGb12S7m3Bq6+Tq8xlyA6TnmJNJTcnnw/DoAs2vexZDqVTdhept7XuEaJ2XRj5KV8MHXnwEQX26JA7vAWR76hbUG1K6B//cfPh9v4GjyjIKc5QbJGKaGzj/h7ZmfwyC5dHVbOopTll9SwiXCTlcfGcklbg46YN70CQH3RjYqGvpu4XVcHEQgeGTe4bC5oo9e3gIhTkCUwQJXVzZbdpUo8/iY3rVijTbzZrmYAyW2mlpoD2glK/X00B98bgNHpwo4M1+xB0dEoYWkODnDPbrcKlEeb7/jKG46VNnXiTf+0n9WdHK4RxOpKE8VCA+KAs5FMlAN3RUzubzZwnQxF0gZ5VGQs1zpgf2tYTdutuSyAw+dEIJijj+1aBRkpr3A64mu6v2/cQ+/qGVRlB3DJmcdQ/volS2cmi0FKh+ZQTfzo83HJgpOUBRwPHSP5GLpti1N5wZFgd7j2Cg1e5W/6sY5tFSd24rAT5iHXsxJIMQMijKD3qvPhJQh+PTP3wN9H+ee5n2l//ZYuB7GtihLWN4OLyyKMm6VIZBc3L17zAyXeEMnSrIUOV9z2OUHdiObrcT30AFrRzbClaK7heeha13a95vYyLzDYXNFH7uyxR3yyy68y9WWXeYflFyYh+7W0CXbs+IFRQFrzmREP/RnVupYb6i459QBnDhQwuJm05POxCOsCCGTISjLZic3XpVoGNMleUdN+nvhL/1f3mqjkJPsm2QYUZPggeBgbDeOhz7IQQ+Ohn55sxm7C2JBlrjpe8CIFBbldu6hA2wM3RhLLi77pOoGctn+ptuOzDvMG+u1WuMHRAGzF4MsZXB5s2n3ZXFXigLAimXQvXnojoEKyxAJ65HNeOA5M7vl7tMzOHmgCE2nuNpjck/UVHQWEF6tdXY063A/yWYIMsQruRyazPcM+PTqwRPWnAtwGfQBlf0D3oKquEVFgLVuTedmTIyGh77zLBcgfFC0KbkMdyB4L1QUjuQyAJlpuM8qF7y5oo9ZAVGeQc9kCI5M5XFlsxXobc68fTso6tPQGf7WuYxeHvqD59dxaCKP4zNFHD9g7hR6BUZZD2lukY017GGl1sFMUe5rKTGDEOKZK7q81Y7lOUfNmdQNCt0Iz3K5fq6M4zNFu3HYIGDHdnWrhbZmxG5rW5Sz0A3KDZ6PQpbLwlQRspTBjYd2lvERNig67ZJLPmd2hHVLLqac2N/PeWQ0dN5cUdaJ76bDE9zfYbnotoful1xqHMkllocuhXrolFI8cH4DL7v+AAghOGkV21zcaODl4OePA9GtNlk+tqbTAc+ZzNil/8vbbbz45EyP37Akl5DgYNRNDADe99KTeO9LTg50KAIzvOdXzcB2XA2dnVMtVbfjD4xRyHI5fqCIs//6TTuu0C3KwXqRsBqLNOE0/XM89LBpXEkyMu+wOyjKWKuryOfC+y4cnSrg8mYLW1aWC9V5E4kAABfHSURBVNvCs5vDCguKutMWXd56mIceFRQ9v9bAWr2Du08dAGAG9ORsJr6HHjL0gEkugzTozEM3DIqV7U6s7BM2xYaXFaTq0YUXhJCBlfwzmJZ8ftVsEhZXcrHL4MP6moxAxsdu3nuehx4lJ6YJ/5ALlTNSMmlG5h3mBUXXah3MRvRdWJguYK3ewUqtjZIs2Z6gZFUhrnA9dOfrsCyXKMnlwfOOfg6YF8XxmSIurEWnLkaNJWOtg1drnR33ad5PmIe+0VSh6gYOxZBcCi5P1c8ghujuFHZsz1oeelzJxW5U5Qvid3UDBh3uNe8FXsxkFAZE7wf+Bl2D2JWMzDvMDK0nKFrv4ECEgWMX39nlWsA4sz7jgNcrd3+9m6DoN55Zw8GKgtOzTl+TkweKuNRzFBsbKBu8OZXz5tSi1fpgPXRzHJvupCzGGGRsz2nVgjp6L8llGGBGaMvqBRQ21MJP2LCHQQw96Ce8QdFqytfM8EsuIigaAW+u6FpdtQc28GB659ml7YBxZvILIU5ZO+DsBAo5KTRwFeaha7qB+59exWtuPOjZNRyfKeHCeiOyR4TjxQRf09xNdKB2jQFLLuYkeMeg95ZceDdihtY1349hNuiEENsQHY2pnwMuiXDMjFuR02VyEF0HBwFXchEeOh/eXNG1eicy15p56A1VD3hWLDBayEke48s8q6imVmFB0YcubKLW6eI1Nx30PH5ytoi2ZmDFKgzi4WjoHA9dydoTcwbtobc13a4SjVPww+ITXMnFGqLLixsME0weiaufA96gqBtHTx7uLJfdUrSC4O6B5eMquZhB0f5+ziPzDtvThCyDbhgUGw010qDPVxRkrcCOvwCGeegFXwYC2wmEBUQBKyjKCXZ99akV5CSCl9/gzWZhbWWjAqORWS6uoO9ADbrloV/bbkPKkFjHYksuXA29/+1FdwMzvnGLioDwnQnb2aXVWy0qWVAKtF1JA2nflTAmXLOKAVNe62enRWCEDDpg5ojXreq7akuDbtDIwoeslMHhKdOLDGrolofum0jEPKuwgChgSS6crI0vn13BXadmAvM6T1iDHqK6LqoRerI7lfLgoDV0zcDSVhtzZSUwxo6HHRzk5KJr9lZ8sJksvdiNh16wb2Q+yUXv/xSbfsKLHaQ9bsCoWPUibHcyiAKynq9GCPkoIWSFEPKY67EZQsgXCSHnrP+nkz1ME7eHzjoP9ipvZ15VUHIxLzj/iDkm7YSV/ZvPCTbnWtxo4txKHa+58WDg+UenzVmbl2J46LwTwF1YM1cebOfBdlfHNatKNA5h0gMQfRMbJnYluYQMio7KZkoDvEHR46Khl63dCYubDGtQ9GMA3uR77EMAvkQpvQHAl6zvE8c9p3GtFs+gs8BoWFC04JvGQog5RzRKQ+d56F99agUAAvo5YBqshelCpIceWSlqGXRZyvTsnZIkihUMXt5qx26YFZbtATgdJofduMm2Qd9BUDRMcmE37txwr3m32C06NG9wEACUIf+c9wrb9W9bOvpQFhZRSu8HsOF7+G0APm59/XEAb9/n4+Liniu6Zk2PmevRDc720H0GmnnsxVwwaPGhN9+Md99zIvRvsrRFd9bKV55axYkDRU+6opvjM8V4GnpILxfA1M8HWTXJCouWt+J76JGDgyOKqYYJ1gt+Jxq6LGUgZUhoCl9ajVuBcwMfFw399Jx57T95dRsAf6Rk0uz21eYppUsAYP0fdEsTwD00IL6HziQXflDUL7kAwLvuPo7bj02F/k3FN72nren45rNrgXRFNycPRKcuRnno7FhnB6ifA+aNbKulodbp7kByMY+d14FvEDMXd4MiZVCSpchAuR/WGzy0yCalxo03KDrta2bcfmwKcjaDB59bh2FQdCP6FCVF4q9GCHk/IeQhQshDq6ure/pbJTlr56Gv1TvIZkjPQg+2TfYPq7DzzTkGvRf2GDrLCH/r2XW0NYMrtzBOHCii1u7aY+n8OO1z+WmLwGADooDpoTMjHFdyKYRoycDoXOh5WcLCdHHHu6OiEmyha0suKU5bBLzB4HHR0PM5Cbcfm8KDz20MbM27fbVrhJDDAGD9vxL2RErpvZTSOymld87Nze3y5Uw8Gnq9gwNluWe/ibtOzeBfv+1WvPKMN5WQ6V08D70Xim/Yw98/vYp8LoO7T4U3q2Itb1nnRz+qTkPnD7oll0HiDtjGnSIkZQiUbIavoY9IUPSDrz+DX3vbrTv+vSJn/N6o3MR2S6TkMuSf835wz6kZPHZlyx4oPoxBUR6fBfA+6+v3Abhvfw4nGm+WS3QOOkPKELznJScDHpEjuew8yMj0T9ag69nVOs7MVwJd9dyEVQ4yoqrKKvksMmSwk3sAr1d5eAc9yosh03t6NecaFm4/NoW7Tx/Y8e/xhj2kPW2xxKk7SPtNzM3dpw/AoOauHeh/z56e1owQ8mkArwYwSwi5DOD/BvDrAP6MEPKzAC4BeEeSB8koK07nvvUeVaK9cLJcduOhO1NsAHPM3S0hLXwZUdkeQPSw5HxOwsd++i5u3/d+4m6REFdDB1hP9AjJJaWeW1EODopmu7q0Nufi1R10xkRyAYAXHp9GTiL42jlTXu737rOnQaeUvjPkRz+0z8fSE/fA5LW6iusOlnf9t6KyXHrhHphsGBRXNlt4wy3zkb8T1dME6N334ZVn9iZX7QfMQ58s5CJ3I37Chh5oKb/QC3I2ILGlXU/mOS5OZk864wZuCrKE2xam8PVzawBGR0MfCGw7V7fma+6llexUMYecRDCzwxFbgPMhqV2zP4uqG1iYic5RtkvgO3zJxfTQh/vjYDeyncgtQPgYulHR0HdLSZYCn3fa5YeclIEsZcZWcgHM1tm2hi4MejjMQ7+23YbaNfYoueRw3y++HD/6woUd/y7zVDtdA4ubZm75sR5VhCVbQw8ZHDwCE12YVx43IMoIGxQdNhg7LRQ4NzInyyWdawbY5x0sLBr283u/YMNtgP7LiSMzgg5wZIsLVoHObI+iol7cciRa9w5DzjpB0VUrH/5YDw89qqcJYFZNDruWzIzQToOzRdkZJuJG1Vn73OEOiu6WkpwNjN9Le+k/YO5M3I6LquvIZkis3j9p4EUnpiFlCHSD9r1obqTOKpaPfckqod+Lh74XFJfksrjRAtC7irCnhj4CHjoLBu8kIArwPVXAKo0OSdVMA2ZQNCi5pHnNQHBHlvYB0X5KStZOYOh3RfBIvctMcrloTf85UBqUQXckl8ubTRysKD2DhPmsBEJGW0Nna9ypQS/mwiWXtHrngGnYOl0Duqs3eKerp1puAYKDosfNoAPOCEqhoUfAdOj9klx2izsourjZ7Cm3AOZs0UJOCtXQR2Fw8OHJPLIZgpt7pGj6iQqKpvlCL3Fa6I6DcfN/3qo+/Of2fvO6m+eRzZAdx5v2ykhq6BfXGyAEmCkOxqArLg19caOFF5+M1z04LB8bMPXkgjzcJ/3CdBGPffiNO0pZBMz0vbC0xWHflewF94BsVpk8LgZ9ra7a33fGYM1+XnxyZlfXyl4ZqXeZSS7VpoaZoozsgIwBOzkbHR1LW61YHjpg3pDCgqKj4KED2NUJWpTNkX0sTZGhdmmqDTovbtLp9n/oQb8pKkJyAXZ3reyVkXqX2fAJAJGTivpxHIA5gcigwLGYfbKLcjZQOcgw5Yd06slhVbKjEAjeC4VcsN3DOBg3f8xkVJyVNDBS7zKbKwoMLsMFcIKiz67WAcSfZBPW0wRI90nvlh7cjEKq5l7gTWtK+00MCGb3DGIU27gycu9yybpIBmnQWWbGsytm+mRcySUsOAikW0/mBQcBa80p3ZUAYZKLntrWuYyi4s2/H4ddybAwcu/yMHjohJgtYZe325AyJHYpfEnORnvoKT3peS1VAdNzS+tNDHAkl0CWS4rXDJiSC2uiB6T73B42Ru5dtg36gFIWGe6+JnGDs7zue4w0GzdbeuD0Bk+zceN56ONg3NwSG6UUi5vNPfVdEsRnpNIWAadadHZARUUMOSsB6MYOiALmBBu/UWOoKc5+CAuKarph36DTCDNsjTHLcnEPiq51NFzb7uBFJ+Kl9gr2xshdTczrGRYPPW5AFDAlF38pOCPNGjqTHoLDHgxMpXTNAH+e6jh46O4b+GNXtgAALxQGvS+M3JnFAmyD1NABx6DHDYgC5gXuLwUHgK5uwKDp7UYX6qF3aaolF9481XEosim6BkU/dGETJVnCTYd21whPsDNG7swahqAo4BjfYzPxPXTeAF3APYpt5D6OWERJLv3uRtdPpAxBPpfhFBalPMvFdZ4/fHETdxyfHptOi4Nm5K6msjU6jg1dHhRsUPRONXSA76kC6fXQw/LQOylvzgUEM5vUMWjOxT7vlVoHZ5e3hX7eR0ZOQ3/HixZwfKY4kLJaN6wt5k4kF3vIhU9H77DBwSk1bkXO4GDA9NDHwbg1O+NVWMTO828+uw6DQhj0PjJyBv30XBmn53Y/S3S/UHIZyNnMjtKxwqWHdHvoUoZAzmb4hUUplZkY7mIySulYZLmw8/xr51aRIcAdx6cGfETjQ7rPrAQpyhKOTReQ2YE2GOapjsOILl6VrKanuzkXYHXYtFJVuwYFpemeVgQ4Bv3yZgs3HpqwO00KkmfkPPRh4ZffcCPqISmIYTANvcHxVIH0BkUBpiUHb2RpXjNg3cis82QcbtyA47gAwItOCO+8nwiDvkvOzFd2/DslVzqXG/tCT7FxK8gSWppzI6OUjoWeXJSzqDbNMYXjMCAaAPK5DAgBKAXuPDEz6MMZK9J9Zg0ZPdMWU3yh+yWXrpWLn9ZAMKMoO9XBjoee7rRFQgiKVtKCCIj2F+Gh95HQvuDMc0uzh56TAj1NgHTLTIC3ley4SC6AOaWqpGR3VEkt2DvCoPcRVhQVqqGn+EL3jyVja067cSu6xu91uub/aZdcAGCuouDMfBmEpHsHNmwIg95HlGwGGRIssBkHDd2cp9q0v097dSyjKEtoqF07ZRFI/00MAP70p15sFxgJ+ocw6H2EEMIdQzcOWS4FOTiWDEj3TQwwM5sMagZE1THZlQDAoZgzAgT7S/rPrCGDN4ZuHDy3oizZ+dhA+oupGCw42FJ1bFiS0zhILoLBIDz0PlNSsp7+2IDLuKXYWy34slzGYVcCODnZ7/ijb+GZlToIgRj2IEgMYdD7TCEnBfuCj4OHnstC7Rro6gayUsaV5ZLuoNmpuRKkDMFEPosPvfkmvPHWQzg1Wxr0YQlSijDofaakBMfQOd5qeo2bnbKp6ZiQMmORew8ALz45g6f/nzeL9rGCvpDuq2kIKXIGRY+Dh+5voauNQe49QxhzQb9I/9U0ZJSUYJOqcUjh8w9MZnGDtHvoAkE/EVdTnynk+E2qgJQHRXOs06RVNWn1gE/zTUwg6DfiauozJUXiVopmM2RHrXhHjaJPclG76c/sEQj6jbia+kxRznK7LaZZPweCfWyc0v/03sQEgn6TbisyhJRkCapu2AYNGI/JPQWfQR+X5lwCQT8RV1Of8Rs2YDzmTLICG9YTfVyacwkE/WRPeeiEkAsAagB0AF1K6Z37cVBphnVcbKpdTBbM0Vxql6ZeSw6TXISHLhDsH/tRWPQaSunaPvydsYDXE30cPHR/HnpHSC4Cwb4jrqY+U+SModO6RqqrRAGnSZU/Dz3tOxOBoJ/s9WqiAL5ACHmYEPL+/TigtFOSg4Oix8FDz0oZyFKGk+WS7nULBP1kr5LLyyilVwkhBwF8kRByllJ6v/sJlqF/PwAcP358jy83+hQtDb3l6zw4DtJDwdU6WO0ayBBRFi8Q7Cd7siKU0qvW/ysA/juAuzjPuZdSeiel9M65ubm9vFwq4Hnona4xFtJDydVCd1xuYgJBP9n1FUUIKRFCKuxrAG8A8Nh+HVhasdMWO14PfRykh5KSxUbDHPIwDjKTQNBv9nJFzQP4OiHk+wC+DeBzlNLP789hpZeSHBwUrY6Jh/6y62fxtXOrWK93zJvYGKxZIOgnu9bQKaXnAdy2j8cyFhSVYNriuMgP77r7OD72zQv484cvQ+2Ox5oFgn4irqg+I0sZSBni6Yk+Dr1cAODMfAV3npjGp799aWzWLBD0E3FF9RlCCIqyd2qRptOx8VbfdfdxXFhv4pvPrqc+914g6DfjYUWGjJKc9aQtdsbIW33L8w9jspDDSq0zNjcxgaBfiCtqABR9PdHNAOF4eKv5nIR/+MKjAABlTG5iAkG/EFfUACjK3jF046Ynv+sus8BMeOgCwf6yH825BDukKGfR6Hg99HEybjfMV/CqM3OYKuYGfSgCQaoQBn0AlGQJ61aBjWFQdA06Vh46APzJ++6ERMZDZhII+sV4WZEhoag4Hro6pn3Bc1Im1TNUBYJBMF5WZEgo5hwNnRl0ESAUCAR7RViRAVBSsmK2pkAg2HeEFRkARVcbWdEXXCAQ7BfCigyAoixB0ynUriE8dIFAsG8IKzIA2Bi6lqoLD10gEOwbwooMgJLiDLlgw5LHpVJUIBAkh8hDHwDMQ//o15/DmfkKAOGhCwSCvSMM+gC48+Q07jo1g4984zlQaj4mNHSBQLBXhEEfAIcnC/izX3gJ1uodfOnJa3j86jbuOD496MMSCAQjjjDoA2S2rODHX3x80IchEAhSgtjnCwQCQUoQBl0gEAhSgjDoAoFAkBKEQRcIBIKUIAy6QCAQpARh0AUCgSAlCIMuEAgEKUEYdIFAIEgJhLLa8368GCGrAC7u8tdnAazt4+GMCuO47nFcMzCe6x7HNQM7X/cJSulcryf11aDvBULIQ5TSOwd9HP1mHNc9jmsGxnPd47hmILl1C8lFIBAIUoIw6AKBQJASRsmg3zvoAxgQ47jucVwzMJ7rHsc1Awmte2Q0dIFAIBBEM0oeukAgEAgiGAmDTgh5EyHkKULIM4SQDw36eJKAEHKMEPIVQsiThJDHCSEfsB6fIYR8kRByzvo/dZMwCCESIeR7hJC/tr4fhzVPEUL+nBBy1vrMX5L2dRNC/pl1bj9GCPk0ISSfxjUTQj5KCFkhhDzmeix0nYSQX7Fs21OEkDfu5bWH3qATQiQAfwDgzQBuAfBOQsgtgz2qROgC+GVK6c0A7gHwi9Y6PwTgS5TSGwB8yfo+bXwAwJOu78dhzf8OwOcppTcBuA3m+lO7bkLIUQD/FMCdlNLnAZAA/ATSueaPAXiT7zHuOq1r/CcA3Gr9zn+0bN6uGHqDDuAuAM9QSs9TSlUA/wXA2wZ8TPsOpXSJUvpd6+sazAv8KMy1ftx62scBvH0wR5gMhJAFAP8TgD9xPZz2NU8AeCWAjwAApVSllFaR8nXDnJBWIIRkARQBXEUK10wpvR/Ahu/hsHW+DcB/oZR2KKXPAXgGps3bFaNg0I8CWHR9f9l6LLUQQk4CuAPAgwDmKaVLgGn0ARwc3JElwu8B+OcADNdjaV/zaQCrAP7Ukpr+hBBSQorXTSm9AuC3AFwCsARgi1L6BaR4zT7C1rmv9m0UDDrhPJba1BxCSBnAZwD8EqV0e9DHkySEkB8GsEIpfXjQx9JnsgBeCOAPKaV3AGggHVJDKJZm/DYApwAcAVAihPzkYI9qKNhX+zYKBv0ygGOu7xdgbtVSByEkB9OYf5JS+hfWw9cIIYetnx8GsDKo40uAlwF4KyHkAkwp7bWEkP+MdK8ZMM/py5TSB63v/xymgU/zul8H4DlK6SqlVAPwFwBeinSv2U3YOvfVvo2CQf8OgBsIIacIITLMAMJnB3xM+w4hhMDUVJ+klP6O60efBfA+6+v3Abiv38eWFJTSX6GULlBKT8L8XL9MKf1JpHjNAEApXQawSAi50XrohwA8gXSv+xKAewghRetc/yGYcaI0r9lN2Do/C+AnCCEKIeQUgBsAfHvXr0IpHfp/AN4C4GkAzwL4l4M+noTW+HKYW60fAHjE+vcWAAdgRsXPWf/PDPpYE1r/qwH8tfV16tcM4HYAD1mf918CmE77ugF8GMBZAI8B+AQAJY1rBvBpmHECDaYH/rNR6wTwLy3b9hSAN+/ltUWlqEAgEKSEUZBcBAKBQBADYdAFAoEgJQiDLhAIBClBGHSBQCBICcKgCwQCQUoQBl0gEAhSgjDoAoFAkBKEQRcIBIKU8P8DRKN2O9aFL9kAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(liste)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAACmRJREFUeJzt3UGIXId9x/Hfv3F6SXKw8dqY1KraYEp8qVKECbgUh5Dgxgc7h0B9KDoElIMNCeQickkuBfeQ5FQCCjbWIXEJJK4NNm2MCLiFEioHE8uowSGoqWMhyfgQ91Rs/3vYMai25J3dHe1o//p8QMzM2zd6f56evjze7put7g4A+98frHsAAFZD0AGGEHSAIQQdYAhBBxhC0AGGEHSAIQQdYAhBBxjihr3c2M0339wHDx7cy00C7HsvvPDC6929sdV6exr0gwcP5tSpU3u5SYB9r6r+a5n1XHIBGELQAYYQdIAhBB1gCEEHGELQAYYQdIAhBB1gCEEHGGJP7xQF3u/gsWfWst2zj9y3lu1y9ThDBxhC0AGGEHSAIQQdYAhBBxhC0AGGEHSAIQQdYAhBBxhC0AGGEHSAIQQdYAhBBxhC0AGG2DLoVXV7Vf2sqs5U1ctV9dXF8puq6rmqemXxeOPVHxeAK1nmDP2tJF/v7k8m+XSSh6rqziTHkpzs7juSnFy8BmBNtgx6d5/r7l8snr+Z5EySjye5P8mJxWonkjxwtYYEYGvbuoZeVQeTfCrJz5Pc2t3nks3oJ7ll1cMBsLylfwVdVX00yY+TfK27f19Vy77vaJKjSXLgwIGdzAhX3bp+DRys0lJn6FX14WzG/Afd/ZPF4vNVddvi67cluXC593b38e4+3N2HNzY2VjEzAJexzE+5VJJHk5zp7u9c8qWnkxxZPD+S5KnVjwfAspa55HJ3kr9N8lJVvbhY9o0kjyT5UVV9Oclvk3zp6owIwDK2DHp3/1uSK10w/+xqxwFgp9wpCjCEoAMMIegAQwg6wBCCDjCEoAMMIegAQwg6wBCCDjCEoAMMIegAQwg6wBCCDjCEoAMMIegAQwg6wBCCDjCEoAMMIegAQwg6wBCCDjCEoAMMIegAQwg6wBCCDjCEoAMMIegAQwg6wBCCDjCEoAMMIegAQwg6wBA3rHsAuNTBY8+sewTYt5yhAwwh6ABDCDrAEIIOMISgAwyxZdCr6rGqulBVpy9Z9q2q+l1Vvbj484WrOyYAW1nmDP3xJPdeZvl3u/vQ4s+zqx0LgO3aMujd/XySN/ZgFgB2YTfX0B+uql8uLsncuLKJANiRnQb9e0k+keRQknNJvn2lFavqaFWdqqpTFy9e3OHmANjKjoLe3ee7++3ufifJ95Pc9QHrHu/uw919eGNjY6dzArCFHQW9qm675OUXk5y+0roA7I0tP5yrqp5Ick+Sm6vq1STfTHJPVR1K0knOJvnKVZwRgCVsGfTufvAyix+9CrMAsAvuFAUYQtABhhB0gCEEHWAIQQcYQtABhhB0gCEEHWAIQQcYQtABhhB0gCEEHWAIQQcYQtABhhB0gCEEHWAIQQcYQtABhhB0gCEEHWAIQQcYQtABhhB0gCEEHWAIQQcYQtABhhB0gCEEHWAIQQcYQtABhhB0gCEEHWAIQQcYQtABhhB0gCEEHWAIQQcYQtABhtgy6FX1WFVdqKrTlyy7qaqeq6pXFo83Xt0xAdjKMmfojye59z3LjiU52d13JDm5eA3AGm0Z9O5+Pskb71l8f5ITi+cnkjyw4rkA2KadXkO/tbvPJcni8ZbVjQTATlz1b4pW1dGqOlVVpy5evHi1Nwdw3dpp0M9X1W1Jsni8cKUVu/t4dx/u7sMbGxs73BwAW9lp0J9OcmTx/EiSp1YzDgA7tcyPLT6R5N+T/FlVvVpVX07ySJLPVdUrST63eA3AGt2w1Qrd/eAVvvTZFc8CwC64UxRgCEEHGELQAYYQdIAhtvymKNefg8eeWfcI7IF1/juffeS+tW17MmfoAEMIOsAQgg4whKADDCHoAEMIOsAQgg4whKADDOHGImDPreumpuk3NDlDBxhC0AGGEHSAIQQdYAhBBxhC0AGGEHSAIQQdYAhBBxhC0AGGEHSAIQQdYAhBBxhC0AGGEHSAIQQdYAhBBxhC0AGGEHSAIQQdYAhBBxhC0AGGEHSAIQQdYIgbdvPmqjqb5M0kbyd5q7sPr2IoALZvV0Ff+Ex3v76CvweAXXDJBWCI3Qa9k/y0ql6oqqOrGAiAndntJZe7u/u1qrolyXNV9Z/d/fylKyxCfzRJDhw4sMvNXV8OHntm3SMA+8iuztC7+7XF44UkTya56zLrHO/uw919eGNjYzebA+AD7DjoVfWRqvrYu8+TfD7J6VUNBsD27OaSy61Jnqyqd/+eH3b3P69kKgC2bcdB7+7fJPnzFc4CwC74sUWAIQQdYAhBBxhC0AGGWMVnueyJdd5kc/aR+9a2bWB1pnfEGTrAEIIOMISgAwwh6ABDCDrAEIIOMISgAwwh6ABDCDrAEPvmTtF18qvggP3AGTrAEIIOMISgAwwh6ABDCDrAEIIOMISgAwwh6ABDCDrAEIIOMISgAwwh6ABDCDrAEIIOMISgAwwh6ABDCDrAEIIOMISgAwwh6ABDCDrAEIIOMISgAwyxq6BX1b1V9auq+nVVHVvVUABs346DXlUfSvIPSf46yZ1JHqyqO1c1GADbs5sz9LuS/Lq7f9Pd/5vkH5Pcv5qxANiu3QT940n++5LXry6WAbAGN+zivXWZZf2+laqOJjm6ePk/VfWrXWxz3W5O8vq6h9gH7Ket2UfLGbOf6u939fY/Xmal3QT91SS3X/L6j5K89t6Vuvt4kuO72M41o6pOdffhdc9xrbOftmYfLcd+2p7dXHL5jyR3VNWfVNUfJvmbJE+vZiwAtmvHZ+jd/VZVPZzkX5J8KMlj3f3yyiYDYFt2c8kl3f1skmdXNMt+MOLS0R6wn7ZmHy3HftqG6n7f9zEB2Ifc+g8whKAvoarOVtVLVfViVZ1a9zzXiqp6rKouVNXpS5bdVFXPVdUri8cb1znjteAK++lbVfW7xTH1YlV9YZ0zXguq6vaq+llVnamql6vqq4vljqklCfryPtPdh/wI1f/zeJJ737PsWJKT3X1HkpOL19e7x/P+/ZQk310cU4cW34+63r2V5Ovd/ckkn07y0OLjRBxTSxJ0dqy7n0/yxnsW35/kxOL5iSQP7OlQ16Ar7Cfeo7vPdfcvFs/fTHImm3efO6aWJOjL6SQ/raoXFne+cmW3dve5ZPM/aJJb1jzPtezhqvrl4pKMywiXqKqDST6V5OdxTC1N0Jdzd3f/RTY/WfKhqvqrdQ/Evve9JJ9IcijJuSTfXu84146q+miSHyf5Wnf/ft3z7CeCvoTufm3xeCHJk9n8pEku73xV3ZYki8cLa57nmtTd57v77e5+J8n345hKklTVh7MZ8x90908Wix1TSxL0LVTVR6rqY+8+T/L5JKc/+F3XtaeTHFk8P5LkqTXOcs16N1ALX4xjKlVVSR5Ncqa7v3PJlxxTS3Jj0Raq6k+zeVaebN5Z+8Pu/rs1jnTNqKonktyTzU/EO5/km0n+KcmPkhxI8tskX+ru6/obglfYT/dk83JLJzmb5CvvXie+XlXVXyb51yQvJXlnsfgb2byO7phagqADDOGSC8AQgg4whKADDCHoAEMIOsAQgg4whKADDCHoAEP8H8IJKtNnWIm7AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.hist(liste)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], "metadata": { "kernelspec": { "display_name": "Python 3", @@ -16,10 +97,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.3" + "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 } - diff --git a/module3/exo1/analyse-syndrome-grippal.ipynb b/module3/exo1/analyse-syndrome-grippal.ipynb index 59d72b5b58a3ae26346460dd39e62a39c55243d7..72d883919b2e8ed7c1495f2ce2a495c02fa68472 100644 --- a/module3/exo1/analyse-syndrome-grippal.ipynb +++ b/module3/exo1/analyse-syndrome-grippal.ipynb @@ -9,7 +9,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -28,13 +28,11 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, + "execution_count": 4, + "metadata": {}, "outputs": [], "source": [ - "data_url = \"http://www.sentiweb.fr/datasets/incidence-PAY-3.csv\"" + "data_url = \"https://www.sentiweb.fr/datasets/incidence-PAY-3.csv\"" ] }, { @@ -61,9 +59,976 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
020231633464827660.041636.05241.063.0FRFrance
120231533825631635.044877.05848.068.0FRFrance
220231434806040671.055449.07261.083.0FRFrance
320231336485956800.072918.09886.0110.0FRFrance
420231237275064499.081001.010997.0121.0FRFrance
520231137463866420.082856.0112100.0124.0FRFrance
620231037636868243.084493.0115103.0127.0FRFrance
720230936206254778.069346.09382.0104.0FRFrance
820230837639168065.084717.0115102.0128.0FRFrance
920230738985180397.099305.0135121.0149.0FRFrance
1020230639736887636.0107100.0146131.0161.0FRFrance
1120230539546986268.0104670.0144130.0158.0FRFrance
1220230437490166916.082886.0113101.0125.0FRFrance
1320230336957061893.077247.010593.0117.0FRFrance
1420230237826070090.086430.0118106.0130.0FRFrance
152023013121773111024.0132522.0183167.0199.0FRFrance
162022523155371142004.0168738.0234214.0254.0FRFrance
172022513248319232128.0264510.0374350.0398.0FRFrance
182022503234143219402.0248884.0353331.0375.0FRFrance
192022493163384151691.0175077.0246228.0264.0FRFrance
202022483121691111744.0131638.0184169.0199.0FRFrance
2120224739641687230.0105602.0145131.0159.0FRFrance
2220224636773560075.075395.010290.0114.0FRFrance
2320224534530638909.051703.06858.078.0FRFrance
2420224433471328880.040546.05243.061.0FRFrance
2520224334476936884.052654.06856.080.0FRFrance
2620224234746240773.054151.07262.082.0FRFrance
2720224134858342388.054778.07364.082.0FRFrance
2820224034192736115.047739.06354.072.0FRFrance
2920223933990234168.045636.06051.069.0FRFrance
.................................
197819852132609619621.032571.04735.059.0FRFrance
197919852032789620885.034907.05138.064.0FRFrance
198019851934315432821.053487.07859.097.0FRFrance
198119851834055529935.051175.07455.093.0FRFrance
198219851733405324366.043740.06244.080.0FRFrance
198319851635036236451.064273.09166.0116.0FRFrance
198419851536388145538.082224.011683.0149.0FRFrance
19851985143134545114400.0154690.0244207.0281.0FRFrance
19861985133197206176080.0218332.0357319.0395.0FRFrance
19871985123245240223304.0267176.0445405.0485.0FRFrance
19881985113276205252399.0300011.0501458.0544.0FRFrance
19891985103353231326279.0380183.0640591.0689.0FRFrance
19901985093369895341109.0398681.0670618.0722.0FRFrance
19911985083389886359529.0420243.0707652.0762.0FRFrance
19921985073471852432599.0511105.0855784.0926.0FRFrance
19931985063565825518011.0613639.01026939.01113.0FRFrance
19941985053637302592795.0681809.011551074.01236.0FRFrance
19951985043424937390794.0459080.0770708.0832.0FRFrance
19961985033213901174689.0253113.0388317.0459.0FRFrance
199719850239758680949.0114223.0177147.0207.0FRFrance
199819850138548965918.0105060.0155120.0190.0FRFrance
199919845238483060602.0109058.0154110.0198.0FRFrance
2000198451310172680242.0123210.0185146.0224.0FRFrance
20011984503123680101401.0145959.0225184.0266.0FRFrance
2002198449310107381684.0120462.0184149.0219.0FRFrance
200319844837862060634.096606.0143110.0176.0FRFrance
200419844737202954274.089784.013199.0163.0FRFrance
200519844638733067686.0106974.0159123.0195.0FRFrance
20061984453135223101414.0169032.0246184.0308.0FRFrance
200719844436842220056.0116788.012537.0213.0FRFrance
\n", + "

2008 rows × 10 columns

\n", + "
" + ], + "text/plain": [ + " week indicator inc inc_low inc_up inc100 inc100_low \\\n", + "0 202316 3 34648 27660.0 41636.0 52 41.0 \n", + "1 202315 3 38256 31635.0 44877.0 58 48.0 \n", + "2 202314 3 48060 40671.0 55449.0 72 61.0 \n", + "3 202313 3 64859 56800.0 72918.0 98 86.0 \n", + "4 202312 3 72750 64499.0 81001.0 109 97.0 \n", + "5 202311 3 74638 66420.0 82856.0 112 100.0 \n", + "6 202310 3 76368 68243.0 84493.0 115 103.0 \n", + "7 202309 3 62062 54778.0 69346.0 93 82.0 \n", + "8 202308 3 76391 68065.0 84717.0 115 102.0 \n", + "9 202307 3 89851 80397.0 99305.0 135 121.0 \n", + "10 202306 3 97368 87636.0 107100.0 146 131.0 \n", + "11 202305 3 95469 86268.0 104670.0 144 130.0 \n", + "12 202304 3 74901 66916.0 82886.0 113 101.0 \n", + "13 202303 3 69570 61893.0 77247.0 105 93.0 \n", + "14 202302 3 78260 70090.0 86430.0 118 106.0 \n", + "15 202301 3 121773 111024.0 132522.0 183 167.0 \n", + "16 202252 3 155371 142004.0 168738.0 234 214.0 \n", + "17 202251 3 248319 232128.0 264510.0 374 350.0 \n", + "18 202250 3 234143 219402.0 248884.0 353 331.0 \n", + "19 202249 3 163384 151691.0 175077.0 246 228.0 \n", + "20 202248 3 121691 111744.0 131638.0 184 169.0 \n", + "21 202247 3 96416 87230.0 105602.0 145 131.0 \n", + "22 202246 3 67735 60075.0 75395.0 102 90.0 \n", + "23 202245 3 45306 38909.0 51703.0 68 58.0 \n", + "24 202244 3 34713 28880.0 40546.0 52 43.0 \n", + "25 202243 3 44769 36884.0 52654.0 68 56.0 \n", + "26 202242 3 47462 40773.0 54151.0 72 62.0 \n", + "27 202241 3 48583 42388.0 54778.0 73 64.0 \n", + "28 202240 3 41927 36115.0 47739.0 63 54.0 \n", + "29 202239 3 39902 34168.0 45636.0 60 51.0 \n", + "... ... ... ... ... ... ... ... \n", + "1978 198521 3 26096 19621.0 32571.0 47 35.0 \n", + "1979 198520 3 27896 20885.0 34907.0 51 38.0 \n", + "1980 198519 3 43154 32821.0 53487.0 78 59.0 \n", + "1981 198518 3 40555 29935.0 51175.0 74 55.0 \n", + "1982 198517 3 34053 24366.0 43740.0 62 44.0 \n", + "1983 198516 3 50362 36451.0 64273.0 91 66.0 \n", + "1984 198515 3 63881 45538.0 82224.0 116 83.0 \n", + "1985 198514 3 134545 114400.0 154690.0 244 207.0 \n", + "1986 198513 3 197206 176080.0 218332.0 357 319.0 \n", + "1987 198512 3 245240 223304.0 267176.0 445 405.0 \n", + "1988 198511 3 276205 252399.0 300011.0 501 458.0 \n", + "1989 198510 3 353231 326279.0 380183.0 640 591.0 \n", + "1990 198509 3 369895 341109.0 398681.0 670 618.0 \n", + "1991 198508 3 389886 359529.0 420243.0 707 652.0 \n", + "1992 198507 3 471852 432599.0 511105.0 855 784.0 \n", + "1993 198506 3 565825 518011.0 613639.0 1026 939.0 \n", + "1994 198505 3 637302 592795.0 681809.0 1155 1074.0 \n", + "1995 198504 3 424937 390794.0 459080.0 770 708.0 \n", + "1996 198503 3 213901 174689.0 253113.0 388 317.0 \n", + "1997 198502 3 97586 80949.0 114223.0 177 147.0 \n", + "1998 198501 3 85489 65918.0 105060.0 155 120.0 \n", + "1999 198452 3 84830 60602.0 109058.0 154 110.0 \n", + "2000 198451 3 101726 80242.0 123210.0 185 146.0 \n", + "2001 198450 3 123680 101401.0 145959.0 225 184.0 \n", + "2002 198449 3 101073 81684.0 120462.0 184 149.0 \n", + "2003 198448 3 78620 60634.0 96606.0 143 110.0 \n", + "2004 198447 3 72029 54274.0 89784.0 131 99.0 \n", + "2005 198446 3 87330 67686.0 106974.0 159 123.0 \n", + "2006 198445 3 135223 101414.0 169032.0 246 184.0 \n", + "2007 198444 3 68422 20056.0 116788.0 125 37.0 \n", + "\n", + " inc100_up geo_insee geo_name \n", + "0 63.0 FR France \n", + "1 68.0 FR France \n", + "2 83.0 FR France \n", + "3 110.0 FR France \n", + "4 121.0 FR France \n", + "5 124.0 FR France \n", + "6 127.0 FR France \n", + "7 104.0 FR France \n", + "8 128.0 FR France \n", + "9 149.0 FR France \n", + "10 161.0 FR France \n", + "11 158.0 FR France \n", + "12 125.0 FR France \n", + "13 117.0 FR France \n", + "14 130.0 FR France \n", + "15 199.0 FR France \n", + "16 254.0 FR France \n", + "17 398.0 FR France \n", + "18 375.0 FR France \n", + "19 264.0 FR France \n", + "20 199.0 FR France \n", + "21 159.0 FR France \n", + "22 114.0 FR France \n", + "23 78.0 FR France \n", + "24 61.0 FR France \n", + "25 80.0 FR France \n", + "26 82.0 FR France \n", + "27 82.0 FR France \n", + "28 72.0 FR France \n", + "29 69.0 FR France \n", + "... ... ... ... \n", + "1978 59.0 FR France \n", + "1979 64.0 FR France \n", + "1980 97.0 FR France \n", + "1981 93.0 FR France \n", + "1982 80.0 FR France \n", + "1983 116.0 FR France \n", + "1984 149.0 FR France \n", + "1985 281.0 FR France \n", + "1986 395.0 FR France \n", + "1987 485.0 FR France \n", + "1988 544.0 FR France \n", + "1989 689.0 FR France \n", + "1990 722.0 FR France \n", + "1991 762.0 FR France \n", + "1992 926.0 FR France \n", + "1993 1113.0 FR France \n", + "1994 1236.0 FR France \n", + "1995 832.0 FR France \n", + "1996 459.0 FR France \n", + "1997 207.0 FR France \n", + "1998 190.0 FR France \n", + "1999 198.0 FR France \n", + "2000 224.0 FR France \n", + "2001 266.0 FR France \n", + "2002 219.0 FR France \n", + "2003 176.0 FR France \n", + "2004 163.0 FR France \n", + "2005 195.0 FR France \n", + "2006 308.0 FR France \n", + "2007 213.0 FR France \n", + "\n", + "[2008 rows x 10 columns]" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "raw_data = pd.read_csv(data_url, skiprows=1)\n", "raw_data" @@ -78,9 +1043,73 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
177119891930NaNNaN0NaNNaNFRFrance
\n", + "
" + ], + "text/plain": [ + " week indicator inc inc_low inc_up inc100 inc100_low inc100_up \\\n", + "1771 198919 3 0 NaN NaN 0 NaN NaN \n", + "\n", + " geo_insee geo_name \n", + "1771 FR France " + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "raw_data[raw_data.isnull().any(axis=1)]" ] @@ -94,9 +1123,976 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
020231633464827660.041636.05241.063.0FRFrance
120231533825631635.044877.05848.068.0FRFrance
220231434806040671.055449.07261.083.0FRFrance
320231336485956800.072918.09886.0110.0FRFrance
420231237275064499.081001.010997.0121.0FRFrance
520231137463866420.082856.0112100.0124.0FRFrance
620231037636868243.084493.0115103.0127.0FRFrance
720230936206254778.069346.09382.0104.0FRFrance
820230837639168065.084717.0115102.0128.0FRFrance
920230738985180397.099305.0135121.0149.0FRFrance
1020230639736887636.0107100.0146131.0161.0FRFrance
1120230539546986268.0104670.0144130.0158.0FRFrance
1220230437490166916.082886.0113101.0125.0FRFrance
1320230336957061893.077247.010593.0117.0FRFrance
1420230237826070090.086430.0118106.0130.0FRFrance
152023013121773111024.0132522.0183167.0199.0FRFrance
162022523155371142004.0168738.0234214.0254.0FRFrance
172022513248319232128.0264510.0374350.0398.0FRFrance
182022503234143219402.0248884.0353331.0375.0FRFrance
192022493163384151691.0175077.0246228.0264.0FRFrance
202022483121691111744.0131638.0184169.0199.0FRFrance
2120224739641687230.0105602.0145131.0159.0FRFrance
2220224636773560075.075395.010290.0114.0FRFrance
2320224534530638909.051703.06858.078.0FRFrance
2420224433471328880.040546.05243.061.0FRFrance
2520224334476936884.052654.06856.080.0FRFrance
2620224234746240773.054151.07262.082.0FRFrance
2720224134858342388.054778.07364.082.0FRFrance
2820224034192736115.047739.06354.072.0FRFrance
2920223933990234168.045636.06051.069.0FRFrance
.................................
197819852132609619621.032571.04735.059.0FRFrance
197919852032789620885.034907.05138.064.0FRFrance
198019851934315432821.053487.07859.097.0FRFrance
198119851834055529935.051175.07455.093.0FRFrance
198219851733405324366.043740.06244.080.0FRFrance
198319851635036236451.064273.09166.0116.0FRFrance
198419851536388145538.082224.011683.0149.0FRFrance
19851985143134545114400.0154690.0244207.0281.0FRFrance
19861985133197206176080.0218332.0357319.0395.0FRFrance
19871985123245240223304.0267176.0445405.0485.0FRFrance
19881985113276205252399.0300011.0501458.0544.0FRFrance
19891985103353231326279.0380183.0640591.0689.0FRFrance
19901985093369895341109.0398681.0670618.0722.0FRFrance
19911985083389886359529.0420243.0707652.0762.0FRFrance
19921985073471852432599.0511105.0855784.0926.0FRFrance
19931985063565825518011.0613639.01026939.01113.0FRFrance
19941985053637302592795.0681809.011551074.01236.0FRFrance
19951985043424937390794.0459080.0770708.0832.0FRFrance
19961985033213901174689.0253113.0388317.0459.0FRFrance
199719850239758680949.0114223.0177147.0207.0FRFrance
199819850138548965918.0105060.0155120.0190.0FRFrance
199919845238483060602.0109058.0154110.0198.0FRFrance
2000198451310172680242.0123210.0185146.0224.0FRFrance
20011984503123680101401.0145959.0225184.0266.0FRFrance
2002198449310107381684.0120462.0184149.0219.0FRFrance
200319844837862060634.096606.0143110.0176.0FRFrance
200419844737202954274.089784.013199.0163.0FRFrance
200519844638733067686.0106974.0159123.0195.0FRFrance
20061984453135223101414.0169032.0246184.0308.0FRFrance
200719844436842220056.0116788.012537.0213.0FRFrance
\n", + "

2007 rows × 10 columns

\n", + "
" + ], + "text/plain": [ + " week indicator inc inc_low inc_up inc100 inc100_low \\\n", + "0 202316 3 34648 27660.0 41636.0 52 41.0 \n", + "1 202315 3 38256 31635.0 44877.0 58 48.0 \n", + "2 202314 3 48060 40671.0 55449.0 72 61.0 \n", + "3 202313 3 64859 56800.0 72918.0 98 86.0 \n", + "4 202312 3 72750 64499.0 81001.0 109 97.0 \n", + "5 202311 3 74638 66420.0 82856.0 112 100.0 \n", + "6 202310 3 76368 68243.0 84493.0 115 103.0 \n", + "7 202309 3 62062 54778.0 69346.0 93 82.0 \n", + "8 202308 3 76391 68065.0 84717.0 115 102.0 \n", + "9 202307 3 89851 80397.0 99305.0 135 121.0 \n", + "10 202306 3 97368 87636.0 107100.0 146 131.0 \n", + "11 202305 3 95469 86268.0 104670.0 144 130.0 \n", + "12 202304 3 74901 66916.0 82886.0 113 101.0 \n", + "13 202303 3 69570 61893.0 77247.0 105 93.0 \n", + "14 202302 3 78260 70090.0 86430.0 118 106.0 \n", + "15 202301 3 121773 111024.0 132522.0 183 167.0 \n", + "16 202252 3 155371 142004.0 168738.0 234 214.0 \n", + "17 202251 3 248319 232128.0 264510.0 374 350.0 \n", + "18 202250 3 234143 219402.0 248884.0 353 331.0 \n", + "19 202249 3 163384 151691.0 175077.0 246 228.0 \n", + "20 202248 3 121691 111744.0 131638.0 184 169.0 \n", + "21 202247 3 96416 87230.0 105602.0 145 131.0 \n", + "22 202246 3 67735 60075.0 75395.0 102 90.0 \n", + "23 202245 3 45306 38909.0 51703.0 68 58.0 \n", + "24 202244 3 34713 28880.0 40546.0 52 43.0 \n", + "25 202243 3 44769 36884.0 52654.0 68 56.0 \n", + "26 202242 3 47462 40773.0 54151.0 72 62.0 \n", + "27 202241 3 48583 42388.0 54778.0 73 64.0 \n", + "28 202240 3 41927 36115.0 47739.0 63 54.0 \n", + "29 202239 3 39902 34168.0 45636.0 60 51.0 \n", + "... ... ... ... ... ... ... ... \n", + "1978 198521 3 26096 19621.0 32571.0 47 35.0 \n", + "1979 198520 3 27896 20885.0 34907.0 51 38.0 \n", + "1980 198519 3 43154 32821.0 53487.0 78 59.0 \n", + "1981 198518 3 40555 29935.0 51175.0 74 55.0 \n", + "1982 198517 3 34053 24366.0 43740.0 62 44.0 \n", + "1983 198516 3 50362 36451.0 64273.0 91 66.0 \n", + "1984 198515 3 63881 45538.0 82224.0 116 83.0 \n", + "1985 198514 3 134545 114400.0 154690.0 244 207.0 \n", + "1986 198513 3 197206 176080.0 218332.0 357 319.0 \n", + "1987 198512 3 245240 223304.0 267176.0 445 405.0 \n", + "1988 198511 3 276205 252399.0 300011.0 501 458.0 \n", + "1989 198510 3 353231 326279.0 380183.0 640 591.0 \n", + "1990 198509 3 369895 341109.0 398681.0 670 618.0 \n", + "1991 198508 3 389886 359529.0 420243.0 707 652.0 \n", + "1992 198507 3 471852 432599.0 511105.0 855 784.0 \n", + "1993 198506 3 565825 518011.0 613639.0 1026 939.0 \n", + "1994 198505 3 637302 592795.0 681809.0 1155 1074.0 \n", + "1995 198504 3 424937 390794.0 459080.0 770 708.0 \n", + "1996 198503 3 213901 174689.0 253113.0 388 317.0 \n", + "1997 198502 3 97586 80949.0 114223.0 177 147.0 \n", + "1998 198501 3 85489 65918.0 105060.0 155 120.0 \n", + "1999 198452 3 84830 60602.0 109058.0 154 110.0 \n", + "2000 198451 3 101726 80242.0 123210.0 185 146.0 \n", + "2001 198450 3 123680 101401.0 145959.0 225 184.0 \n", + "2002 198449 3 101073 81684.0 120462.0 184 149.0 \n", + "2003 198448 3 78620 60634.0 96606.0 143 110.0 \n", + "2004 198447 3 72029 54274.0 89784.0 131 99.0 \n", + "2005 198446 3 87330 67686.0 106974.0 159 123.0 \n", + "2006 198445 3 135223 101414.0 169032.0 246 184.0 \n", + "2007 198444 3 68422 20056.0 116788.0 125 37.0 \n", + "\n", + " inc100_up geo_insee geo_name \n", + "0 63.0 FR France \n", + "1 68.0 FR France \n", + "2 83.0 FR France \n", + "3 110.0 FR France \n", + "4 121.0 FR France \n", + "5 124.0 FR France \n", + "6 127.0 FR France \n", + "7 104.0 FR France \n", + "8 128.0 FR France \n", + "9 149.0 FR France \n", + "10 161.0 FR France \n", + "11 158.0 FR France \n", + "12 125.0 FR France \n", + "13 117.0 FR France \n", + "14 130.0 FR France \n", + "15 199.0 FR France \n", + "16 254.0 FR France \n", + "17 398.0 FR France \n", + "18 375.0 FR France \n", + "19 264.0 FR France \n", + "20 199.0 FR France \n", + "21 159.0 FR France \n", + "22 114.0 FR France \n", + "23 78.0 FR France \n", + "24 61.0 FR France \n", + "25 80.0 FR France \n", + "26 82.0 FR France \n", + "27 82.0 FR France \n", + "28 72.0 FR France \n", + "29 69.0 FR France \n", + "... ... ... ... \n", + "1978 59.0 FR France \n", + "1979 64.0 FR France \n", + "1980 97.0 FR France \n", + "1981 93.0 FR France \n", + "1982 80.0 FR France \n", + "1983 116.0 FR France \n", + "1984 149.0 FR France \n", + "1985 281.0 FR France \n", + "1986 395.0 FR France \n", + "1987 485.0 FR France \n", + "1988 544.0 FR France \n", + "1989 689.0 FR France \n", + "1990 722.0 FR France \n", + "1991 762.0 FR France \n", + "1992 926.0 FR France \n", + "1993 1113.0 FR France \n", + "1994 1236.0 FR France \n", + "1995 832.0 FR France \n", + "1996 459.0 FR France \n", + "1997 207.0 FR France \n", + "1998 190.0 FR France \n", + "1999 198.0 FR France \n", + "2000 224.0 FR France \n", + "2001 266.0 FR France \n", + "2002 219.0 FR France \n", + "2003 176.0 FR France \n", + "2004 163.0 FR France \n", + "2005 195.0 FR France \n", + "2006 308.0 FR France \n", + "2007 213.0 FR France \n", + "\n", + "[2007 rows x 10 columns]" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "data = raw_data.dropna().copy()\n", "data" @@ -122,7 +2118,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ @@ -152,10 +2148,8 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, + "execution_count": 9, + "metadata": {}, "outputs": [], "source": [ "sorted_data = data.set_index('period').sort_index()" @@ -179,9 +2173,17 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 10, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1989-05-01/1989-05-07 1989-05-15/1989-05-21\n" + ] + } + ], "source": [ "periods = sorted_data.index\n", "for p1, p2 in zip(periods[:-1], periods[1:]):\n", @@ -199,9 +2201,32 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 11, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAEKCAYAAADEovgeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztvXn8HEWd//96z8znM5879wEJIRzhvolcArqggNcCHitexBVl1x/e31VBV3FBVl3XCxUVVxTcVUBQQZEjhnCHkHDmIuQkd/JJPsknn08+1xz1+6Orerp7qrt6umc+05O8n4/H5zHzqe6qrq6prne9j6omIQQYhmEYppak6l0BhmEYZv+HhQ3DMAxTc1jYMAzDMDWHhQ3DMAxTc1jYMAzDMDWHhQ3DMAxTc1jYMAzDMDWHhQ3DMAxTc1jYMAzDMDUnU+8KjCYTJ04UM2fOrHc1GIZhGornn39+pxBiUpwyDihhM3PmTCxevLje1WAYhmkoiOj1uGWwGY1hGIapOSxsGIZhmJrDwoZhGIapOSxsGIZhmJrDwoZhGIapOUZhQ0S3EdEOIlrqSBtPRHOJaJX8HOc4dh0RrSailUR0sSP9dCJaIo/dTEQk07NEdJdMX0hEMx155shrrCKiOY70w+S5q2Te5vhNwTAMw9SKMJrNbwBc4km7FsA8IcQsAPPk/yCi4wBcAeB4mecWIkrLPD8DcDWAWfJPlXkVgN1CiCMB/ADAd2RZ4wFcD+BMAGcAuN4h1L4D4Afy+rtlGQzDMExCMQobIcQTAHo8yZcCuF1+vx3AZY70O4UQw0KIdQBWAziDiA4C0CWEWCCs91Df4cmjyroHwIVS67kYwFwhRI8QYjeAuQAukccukOd6r7/fct9Lm7F3KFfvajAMw0Qiqs9mihBiKwDIz8kyfRqAjY7zNsm0afK7N92VRwiRB9ALYEJAWRMA7JHnesvaL1m5rQ+fvfMlfPmeV+pdFYZhmEhUO0CANGkiID1KnqCyyitEdDURLSaixd3d3X6nJZr+YUuj2b53qM41YRiGiUZUYbNdmsYgP3fI9E0ADnGcNx3AFpk+XZPuykNEGQBjYJnt/MraCWCsPNdbVhlCiFuFELOFELMnTYq1tU/dyBcsWZpJcfAgwzCNSdTR634AKjpsDoD7HOlXyAizw2AFAjwnTW19RHSW9Llc6cmjynovgEelX+dhABcR0TgZGHARgIflsfnyXO/190vyRUvYpFM6pY5hGCb5GDfiJKLfA3gzgIlEtAlWhNi3AdxNRFcB2ADgfQAghFhGRHcDWA4gD+AaIURBFvVJWJFtrQAelH8A8CsAvyWi1bA0mitkWT1EdCOARfK8G4QQKlDhywDuJKJvAnhRlrHfooRNJs3ChmGYxsQobIQQH/A5dKHP+TcBuEmTvhjACZr0IUhhpTl2G4DbNOlrYYVDHxAUikUArNkwDNO4sBOgASj5bFjYMAzTmLCwaQCkFQ1y0wWGYZiGg4VNA8AyhmGYRoeFTQOgZI3wXU3EMAyTbFjYNBQsbRiGaUxY2DQAylfDmg3DMI0KC5sGwDaj1bUWDMMw0WFh0wCoXWoEqzYMwzQoLGwaAJK6DYsahmEaFRY2jYC0o7FiwzBMo8LCpgFgnw3DMI0OC5sGgn02DMM0KixsGIZhmJrDwqYBUPoMKzYMwzQqLGwaCJFQr83Hb1+MN3770XpXg2GYBGN8nw2TAKSMSapm8/cV2+tdBYZhEg5rNg1EUoUNwzCMCRY2DYAynyXVjMYwDGOChU0DwZoNwzCNCgubBkAJGZY1DMM0KixsGIZhmJrDwqYBYPMZwzCNDgsbhmEYpuawsGkAWLFhGKbRYWHTAPAGnAzDNDosbBiGYZiaw8KmAWC9hmGYRoeFDcMwDFNzWNg0AOyyYRim0WFhsx8wnC/g5P94BA8u2VrvqjAMw2iJJWyI6PNEtIyIlhLR74mohYjGE9FcIlolP8c5zr+OiFYT0UoiutiRfjoRLZHHbiYikulZIrpLpi8kopmOPHPkNVYR0Zw495F8glWbHXuH0TuYwzcfWDFK9WEYhqmMyMKGiKYB+AyA2UKIEwCkAVwB4FoA84QQswDMk/+DiI6Tx48HcAmAW4goLYv7GYCrAcySf5fI9KsA7BZCHAngBwC+I8saD+B6AGcCOAPA9U6htt/C5jSGYRqUuGa0DIBWIsoAaAOwBcClAG6Xx28HcJn8fimAO4UQw0KIdQBWAziDiA4C0CWEWCCsBSV3ePKosu4BcKHUei4GMFcI0SOE2A1gLkoCar+DfTYMwzQ6kYWNEGIzgP8GsAHAVgC9QohHAEwRQmyV52wFMFlmmQZgo6OITTJtmvzuTXflEULkAfQCmBBQFsMwDJNA4pjRxsHSPA4DcDCAdiL6cFAWTZoISI+ax1vPq4loMREt7u7uDqhecmHFhmGYRieOGe0tANYJIbqFEDkAfwRwDoDt0jQG+blDnr8JwCGO/NNhmd02ye/edFceaaobA6AnoKwyhBC3CiFmCyFmT5o0KeKt1hcRJHoZhmEagDjCZgOAs4ioTfpRLgSwAsD9AFR02BwA98nv9wO4QkaYHQYrEOA5aWrrI6KzZDlXevKost4L4FHp13kYwEVENE5qWBfJtP0bHxWHWAgxDJNwMlEzCiEWEtE9AF4AkAfwIoBbAXQAuJuIroIlkN4nz19GRHcDWC7Pv0YIUZDFfRLAbwC0AnhQ/gHArwD8lohWw9JorpBl9RDRjQAWyfNuEEL0RL2XpCNCGtJ4w06GYZJKZGEDAEKI62GFIDsZhqXl6M6/CcBNmvTFAE7QpA9BCivNsdsA3FZhlfdLiFUbhmESDu8g0ACwwsIwTKPDwoZhGIapOSxsGoCwig0rQAzDJBUWNvsB7LFhGCbpsLBpAMJGmTWqb+e+lzbja39eWu9qMAxTQ1jYMHXns3e+hN8++3q9q8EwTA1hYbMf0KAKDcMwBxAsbBoAk3mMF3MyDJN0WNjsByhZE3anAYZhmNGGhU0DwEKEYZhGh4XNfgBb0RiGSTosbBqAsMKEhQ7DMEmFhc1+AJvZGIZJOixsGgBzNNro1INhGCYqLGz2A1jWMAyTdFjYNAAmYaLW2bDQYRgmqbCwaQBMizZZyDAMk3RY2OxHsO+GYZikwsKmATCb0UalGgzDMJFhYbNfwNKGYZhkw8KmEeDQZ4ZhGhwWNg2E3+JNofnGMAyTJFjYNACmHQJYs2EYJumwsNkP4O1qGIZJOixsGgDeiJNhmEaHhU0DcKCHPvcN5dA7mKt3NRiGiUGm3hVoJBau3YVCUeCcIyfWuyoukiJshBAgoqqXe8oNc1EoCqz/9juqXjbDMKMDC5sKeP+tzwLAqA96SpgQ9AN5Unw2QgA1kDUoFJNxfwzDRIfNaA2Eb+izUMfrS72vzzBMcmFh0wAkRXNhGIaJCgub/QjT7tD7+/UZhkkusYQNEY0lonuI6FUiWkFEZxPReCKaS0Sr5Oc4x/nXEdFqIlpJRBc70k8noiXy2M0kvcxElCWiu2T6QiKa6cgzR15jFRHNiXMfSadR3tSZkGowDJNA4mo2PwLwkBDiGAAnA1gB4FoA84QQswDMk/+DiI4DcAWA4wFcAuAWIkrLcn4G4GoAs+TfJTL9KgC7hRBHAvgBgO/IssYDuB7AmQDOAHC9U6gdaCTFzJYUoccwTPKILGyIqAvA+QB+BQBCiBEhxB4AlwK4XZ52O4DL5PdLAdwphBgWQqwDsBrAGUR0EIAuIcQCYdlh7vDkUWXdA+BCqfVcDGCuEKJHCLEbwFyUBNR+R6Oss0mK0GMYJnnE0WwOB9AN4NdE9CIR/Q8RtQOYIoTYCgDyc7I8fxqAjY78m2TaNPndm+7KI4TIA+gFMCGgrAMS4fmsF0kRegzDJI84wiYD4DQAPxNCnApgH6TJzAfdCgwRkB41j/uiRFcT0WIiWtzd3R1QvQRjei00j/IMwyScOMJmE4BNQoiF8v97YAmf7dI0Bvm5w3H+IY780wFskenTNemuPESUATAGQE9AWWUIIW4VQswWQsyeNGlShNusP2FFSb1lTr2vzzBMcoksbIQQ2wBsJKKjZdKFAJYDuB+Aig6bA+A++f1+AFfICLPDYAUCPCdNbX1EdJb0x1zpyaPKei+AR6Vf52EAFxHROBkYcJFMOyBJyhjPPhuGYfyIu13NpwH8HxE1A1gL4J9hCbC7iegqABsAvA8AhBDLiOhuWAIpD+AaIURBlvNJAL8B0ArgQfkHWMEHvyWi1bA0mitkWT1EdCOARfK8G4QQPTHvJbE0SugzwzCMH7GEjRDiJQCzNYcu9Dn/JgA3adIXAzhBkz4EKaw0x24DcFsl9d1/SYa0iSv0arWRJ8Mw9Yd3EGgATAEASdFs4lYjKfeRNF7euAczr30Ay7fsrXdVGCYyLGz2A+zQZ96uZr/koWXbAADzV+4wnMkwyYWFTQPQOIs665u/EdmwawBLN/cGnsOGRWZ/gN9nsx9R78G6Gj6bA21oPf+78wGEe0cSa45MI8OaTQNgjkZLyCAUV9hUpxZMlVmwZhf2DIzUuxpMg8PCpoHwkylJGaQbdZ3NYyt34OZ5q+pdjUQyOFLAB375LD5xx+J6V4VpcNiM1gA0jM8mthmtOvWolI/+2lqu9ZkLZ9WnAgZUNHg92mcoZy2FW7Wjf/QvzuxXsGYTgdE2W6nr+S1BsTWKhAidqDSqZlRrqI5+rJFCEQDQlG7MoUKFjb+wYXe9q3LA05g9qM4UkzYmJqQ+SV5nMzhSwI6+IcP1E9KQPtSjdiN5S9g0N6iweWr1TgDAwzJ8nKkfjdmD6kwhcdLGot61SvJg/U+/WIAzbpoXeI6axSeNem6qMKyETaYxh4r2Zuv9jIMjBcOZTK1pzB5UZ4oJG1STUpuk1EPHEsNaFqA0sCaVenS7fNFqk3SqMUPS25ott/QAC5u6w8ImAqMtbBplI85GDRBQ5Av1q0CQVqiG+Xr4tOr9m8QlJYVkMaHWiAMJFjYRqJcZzT/0ORkPUtx61Ps+chHNaEO5Ap54Ld6L+RJrmlWxJw0qdRpTH9s/YWETgeIoW1tMg3BixoGk1CMiUYXNjX9djitve8647UwQtZQ1O/qGMG/F9kh56z0BqBb7x100NixsIlBIzOhukZiNOOPmb1Az2rqd+wAAewZyka8daJqNGSHwoV8uxFW3L44kTG3NJlYNGIaFTST8TB7LtvTijgXrq369htmuJib1ugvl/I6q2aj8cXx5YfJGLV4Jw1jdpE4/zq7+YZz0jYfx8sY99akAUzVY2ETAb2B4x81P4ev3Lav69dTVTBPceouc6mzEOfqkSQmbaNdXL3yLo/EG+Wzi+h3sHQhi9JB69a2F63qwdyiPnz22JlJ+fhdfcmBhE4GkOXNLZrS6VqNh7ftKM8lHdMal7e1k4mg25nOilq52IIhye/XuU1m5vmc4Hy90eX/R/hsZFjYRMAmbandsY3EJeY5iazbVqUbFqNlv1DlESmk2MQJHgkJz7dl51Aa276/y/KYJxIqte2s6kGcz1qLMqGugWLNJDixsImB6aGul+SQ/9Dlm/jrdhhqPovpcUlXw2QSZ4OLujRbn/oJCnx9buQNv+9GT+MPzm2LULpiWJmuI6hvK1+wazOjAwiYCJmGSr7KwCRv6XG+hE3uGW28zYGTNxvqMs3CwlguF42huQVkWr7c2t9yyZ7DygkOitsnZ0DMQq5xkTMcObFjYRMA0MFRb2JhIijk6KfWISlRhWYpGi37t0Vi7FeX+VB5dzlyx9vumxe1T9dwxm3HDwiYCJtt8vsobOoZ94Bp+sK/T/FNFk0UVFtWIRgsV+hyxbDtAIEbz6qqnyq1lv1PtEldrbvRnY3+AhU0ETGa0qCG0URGez3rRqHujxfXZlPz3NQp9jjk5V/mj+BJLfas872g43+vdp5nqwcImAvUKEPBjfwnrrPdd1HM37zCXjhmMFtGMFuac2rVbkBmPaSxY2ETAJExGfVfosi/1od4BCmHQDowxX7tMVZjiB/WZuLs+xzMTKjOWf71qSfyYk+T3yQMFFjYRMNnmqy1sTDPHpCg2jbCDQNCgWVfNJuBYtcxVcUKfdVBMIR0GW0BGvIYKvEjII3JAw8ImAqYQ12o/fObykvEoxV5nU5VaRL9GUoS2H3HNaNEWdfpf2w4QiFatcNePaUZL+E96QMHCJgImc0S9Xq5Wb5NBI0QMBdWxvj6bGl67RhrIaGg2cYtO2lt1D2RY2ETA7LOp7vXCFlfv56oRHmvdb6N8GnE1h6RTdTNajLqEJW7os4iZn6kesYUNEaWJ6EUi+qv8fzwRzSWiVfJznOPc64hoNRGtJKKLHemnE9ESeexmkk8/EWWJ6C6ZvpCIZjryzJHXWEVEc+LeRyWYHtp6BQjU+3FqBGduUAhv3N8tTvZgn008c1Vp77YYizoDbq6mv1uDhtMz5VRDs/ksgBWO/68FME8IMQvAPPk/iOg4AFcAOB7AJQBuIaK0zPMzAFcDmCX/LpHpVwHYLYQ4EsAPAHxHljUewPUAzgRwBoDrnUKt1iRtI87kPFCxpU3NCWqrhG3mXTVqtV0NYmqEYVB1jnqJ/fU3bURiCRsimg7gHQD+x5F8KYDb5ffbAVzmSL9TCDEshFgHYDWAM4joIABdQogFwhql7/DkUWXdA+BCqfVcDGCuEKJHCLEbwFyUBFTNMUejjVJFJGpmWW9TQaNujZaIaLQarrMp5Y9uRtPlLIVk1464WlO9/ZhMibiazQ8BfAmAc3+WKUKIrQAgPyfL9GkANjrO2yTTpsnv3nRXHiFEHkAvgAkBZY0Kpmi0qoc+h9yIsyjAbzQ0oI2qsmfoUdexxKlR7csvCdPK8wb1vdivPghB3IlbXM2IqR6RhQ0RvRPADiHE82GzaNJEQHrUPO6LEl1NRIuJaHF3d3eoipowBgiMwqaKTpy1ufyWp0f34j71iJR/FEaEoIlAfX1O5rzxF3VGt6MFhT7Xkvg7iddXzKzYuhd3LdpQ1zokhTiazRsB/CMRrQdwJ4ALiOh/AWyXpjHIzx3y/E0ADnHknw5gi0yfrkl35SGiDIAxAHoCyipDCHGrEGK2EGL2pEmTot2ph9EOEEiOTyaYpAYIOAesoCvEnUXX6neq1qAep18G/Ta1XWfj/qyUuItC4/K2Hz2JL9+7pD4XTxiRhY0Q4johxHQhxExYjv9HhRAfBnA/ABUdNgfAffL7/QCukBFmh8EKBHhOmtr6iOgs6Y+50pNHlfVeeQ0B4GEAFxHROBkYcJFMGxVMmzrXyvbvV2q9fTWK2Pb1Gt2Gs1xdW1XLZxMrGq2GP2HpfTuV57XHaq350f9YtYjfp5LxbDC1WWfzbQBvJaJVAN4q/4cQYhmAuwEsB/AQgGuEEOrF4p+EFWSwGsAaAA/K9F8BmEBEqwF8ATKyTQjRA+BGAIvk3w0ybVQY7QCBSoqLsk/XSL6IPyzemMhFmS6tJOIFiqE1m3g3ULtJRlzHQ7AZbXCkgF39w/prB1xzVNbZ2NvNRP3t4+VnqkemGoUIIR4D8Jj8vgvAhT7n3QTgJk36YgAnaNKHALzPp6zbANwWtc5xGO0AAfXE+w22cS/388fX4PtzX0NzJoVLT4keZ1GLaDS3VhLNWe4sVwTM7uPvqhwtPxAsR6rVnfz65WU/fRort/dh/bffoamX7HuafLZmU8OBPLYfsCq1YKoB7yAQgdFeZ2Mi7sPes28EALCzf6Su9dC1m/D5XgluzUZjRqvSos6aaTYx9wczrbNZub0v4NpB5Y7my9Oi5WczWnJgYROB4Xyw8btWZjR/n0288tVrfXMx3zBai8ChYhXMaF7tyO947ACBOHkDMldrvIy0zqZK50Ql7r3z3mjJgYVNBAZG8oHHTWa2pJGRHuScQYjWA+dYEbVZw/ps4s6CazWw2X6HqOuAPOVEQS+k42kd4a4bT6tLiqxhDYuFTUW0NVu76wyMFALPq7pmYwj/dKZHcdo2paVmk0Ah6TR7xXUSW98DQnij+mxivZxMXjswtDjeoB7rtdD2RcvzjkZ3iXuJouHZGS3qff0kwMKmAtSGhoO5YGFTq1mMrxktZrlJNqOZTGBhcJviwp0XhTi/exgzWmSfDaLvkGCLmgATZy0DBIoxbz4pUWimCNYDARY2ETBHo1X3eubtakrHo0RrpeKsMHfWI6H7WDkj0IKukdRFnXHNVXE24gz6SeIuuAx1+Sr9JvUe69l3xMKmItRDnx/t0OdSBfTJ5lMCKe1xVXleVz1qcNvV1myC7rGe0WiBmo39GddnE0Wz8feZqOehlj7KuNpTUnwlCalGXWFhUwGqv5hfnlbdnmUsLublqrV7b+z8AaYaq/yIA47P9/Lr188BH0Tc8F9vOZUQbHZ0fyaRpCzqjOIv299gYVMB6sEzr7Op8nU9n+XH45nR7HLq6LMAfGbPrvKjlescZHUDrrCPRSvfLieOZhMUIGAP6hGFYYz1MCUzlK7dRKx6hSH+OpsqViYGbEZjYVMR6uGqlxmtVv01VaXFefE1G82AFjJsOYiwAQJJ3K4HcGoQdTTzacuLX67xunXQ5moBKzYsbCrCnmHWMEBgZ/9wWVSY6XlxHo+irpe2HYlHTXw2rvKDLzB/5Q584/5l5WWEc9lU4d0ptfLZKA0iWtmxQp/VpyZrXI0rDHHfRzMaa4EqqceBDAubClDdxaTZRLXP5gtFzP7m3/Hle1/xub45QKDaC/dGE70TOvi4k3/+9SL85pn1ZemmXQhi7/ocJ9orDAGmrEow1c+kWfodixkxH0hJWMTz19Vbs2CfDQubyrB9NsFPV9QHQwmxv7zsfjVP2Dd1RsW26dc5REB7H8JwPATFkGUk1WSjyo3/Ur7KNfJgTdAsCO5atAFnf2seRiLuTlGt36TemgXLGhY2FaEG44Kh48TtWDmfC/g9L9WKtKnFoswKSyhLCRu2HITT7FnLRZ21orSuMWqAgPVp6pe62XdggIA9+fIv+LsPv4atvUPY6fMKAxPVekdS0G/7tyVbcdZ/zou9qDm4HsnsW6MJC5sKKD1c5Z3SOaD5dey13f3YsmfQt3zfB6ICn00UUlV6MUktHie3iTCiKcUlr/zLiO2ziVHAaIQYm5pP377m9gqq10je2m0j6kAeX7Nxf+r4+n1LsW3vEHYPVLbr+Yqte/GOm59E/3DwXokA7yAAsLCpCNtno9E8nJ3Jb1C84HuP45xvP+pbvtmmbqxiJErvY6mBGSxm/mpEo7n2VwswFUUOLUb8vdGCqFaIsSl/mIWluvKC+k0mHW8rpNgBAqHaLlqEzHcfXollW/Zi4dpdxnPZjMbCpiLsFdOajlsIaaoJwu+BEJ5Pv+NRKfls/BFC4KGlW5EPGDRqv84mWvnhN+KM6oSOLwzCrLOpdWi6dg2SqfMheNauwur9TMOApfE/uapbe6xaZrSgtrOj9Sps4EoW8zbaTvC1gIVNBdiajabjmBYOhiFyh4w5CoV5l/zc5dvxr//7An46f41/NWLVIji8tpLyvUIj/CsGQl6gLKO5bP31wuUImuRU83q6wTaoS9qBCwHn2K+vCJikXPC9x/GRXz3ncw3rM/qiTql9hfh1cvkKhQ2F3+CUrWgsbCoiyCFacPlsopXvl88U/lmtfhz0QKq3eW7eM+CfvwYPlMkEFqYeLlNcCN+Il+F8AR/51UIs3dzrU8fy64TBJUhDmLBq7bPRvTJbCSDdzhRh1p2p/E+u2hmqjr4XiYjtswmw4qlbG6nQ1FfJBqfss2FhEwmdsHF25siajZ8wqbEvJ8z7WFIhzqnFrs/Oewtq130OJ633PHedddcI1hyWb9mLJ1ftxFf/vFR7vGjI70fY86OWryj5lILz644rQZLSRJGEqVdnNgPA0oyjUC0BG6btKvUrlVrEXHZSIx1HExY2IXHOWnVmtLxD2kT3LUT0GYxGRw5haouLyYwWFGL76d+/aH/3nuY2cWquYV9LXz4Z7IylAc23evp8Pt/9yo/rUzJl182+VV9PaVSbMNvVnDpjHADg5OljwlS1jGq9PTVMMTph89SqnVi0vkd7fhjzs4JDn4FMvSvQiOjMBgXDgBYGU+RzxMjoENc1P5ClnaHdJ7keoggVMZm4nNcLEjavbNpjfy/TbJzvs9EUoX5Pv+JNjuCom0W6zWj+mav1tsk4mo0+Ot46FqQQqDKjmpGqtTlq0L0H/X4f/tVCAMD6b7+j7FgqRGCNopa7LDQKrNmExNkRtQECVTCj1WtLizAz55TPBmoxZU1FJsKg9nHOvL1lml5TYDK1mHbSNmlG/vnCnh88YPYP53HfS5tDlhJwXHNCyWej0WyKKp95II/at2NPpDz10KHq5hWIpt+z5LNhM1oYWLMJibOraEOfnZpNxAfL5LPx3RutSjPeQM3G58FymYKiaDau7xpB4PgeNDvOOHwKweHN/nXw12yCt/OJGi0WVlCbzHQ3/mU57lq8EYeMb8Np0mylLyi4Prr6q4lVWjMtDaO12AN5VGFTJTNa0OVV3bzX2j2QCyy7klc3sLBhzSY0Lp+NZs2AU8BEf7AiZatayHHQTNtvZ2j3osvgmmzrHcLJ//EIXtveZ6eZtv8XIYV4KkDYmK4R9m2QvmZMgzCIi0k72CUjBbv79FvChA0Q0Ae+KDNauWZjEtJAqW1Mm9c6r6XLH5UwWnvBx4w6lCsEll3JBq71kDX/9oeXcb9nn8V6wsImJK4ZtiH02bR3mh/+izqDNY9aLKb0Ys/uvWY0Vz2Cy3hk+Tb0DuZwx4L1ofO4zGihNRv3MdOiTpNmZzKjVcdnYz7PL1qqPZsG4I7I05ZTQX0Uql/rtjQqbRBaHTOafp1PXM3G+gwqpeBzH6boNF3QhO816mAiv+f5TfiMI3Cm3rCwCYlp0KuOGc187VoQKkDAz4wW0hQE6J3MlWgTgT6blNNn46/Z6CitxYir2fjnv/2Z9djY416jFNZno6rlN/hlUtZjrNO43eVUfly1uc5ngxD3XYkZTbsRqDGXCaW1VK7ZmIQN+2wqg4VNSExRUS4zWpUDBEqroH3qViVTQxhzSNClwq+IN3+300JGowVpNsaIN4Nd37SepBQtpj++bziP6+/SaYmLAAAgAElEQVRfhvf/YoHnuq7/9BdHqQ38hInyp0TZ+8xZZ63GLo+nAnw2wZFe/mV7Me3MEQUVxBC0qNPPZzNseC1CJW+45d1qWNiExjTDdj4o1XaGCsPxuNhmuoABL+9jj3Ct8DddyBAqalrUGdSuacdoGLSoU3cN03oR8+8ZTlht2zukyWXGZEYLs+DWKsf/3v3yl8xoAetswoQ+h9FsNMI09kQqhGZjC0TPOUH7uQEV7o3Gmg0LmygYt6sxmmOCZ8jl5wfXJ+7Kffu6AcWo1yqUr7Nxfq+8HmbNpkTQAxsUjeZ+/UN5XtPuxWHNcH6/g9JIKtW4vOeN+Ax+yoRo1Gw0ae4NZP37tU7YqLOrZkbTlFOtt5NG0T7MZrTwe6ON9kacSdz4k4VNSJz9Ka97n43THBEh6sdbhuvatuZhrlsQC9fuwrIt5ft7hcmvNJvAWWyEhWsmzcht5glZpqcgl2ZT5nMSRjOi6bomM5xfJFZozUZ++ms2kNfXl2j7FkyTpADNRudvU+UF9fdKFnXqnqu8QRiaqGSrH+85Jh9YZT4b4ylVJRf/ta5VJ7KwIaJDiGg+Ea0gomVE9FmZPp6I5hLRKvk5zpHnOiJaTUQriehiR/rpRLREHruZ5JSBiLJEdJdMX0hEMx155shrrCKiOVHvIyxu30H5cZNmE8anY/IJ+NctHO+/9Vm84+anfK8bVI5t1w7QbEwPXem9Ofr8JgexbjBSOF87XL4WyF+guQMc9PU3zcpNPht/X5zz2uby/V7vkFZmNJNGraubwWcT1DfCrGFRA3bUAAHngB9pwLYnEubM3t/PVGfVn8OEdY/2djX1WiAeRBzNJg/g/wkhjgVwFoBriOg4ANcCmCeEmAVgnvwf8tgVAI4HcAmAW4goLcv6GYCrAcySf5fI9KsA7BZCHAngBwC+I8saD+B6AGcCOAPA9U6hVgvcg2Llmo3poQb8NQM7q0//qVY/Dnog1UPvPcU5QJv6d8kSox/89a8edgpx/7KH86U1EeXmKv9rmPZN856jwzYn+dTPV0iG/N1Unf18CMqcE+V15QXXYK4Z7H2c54C/Y911TgU+G50m4Zyh+/0OM699ADfPW6U9ZgpLd5lYPT9T0OQGCNYYvfhNMBev78HDy7YZ81eKyd9UDyILGyHEViHEC/J7H4AVAKYBuBTA7fK02wFcJr9fCuBOIcSwEGIdgNUAziCigwB0CSEWCKvX3uHJo8q6B8CFUuu5GMBcIUSPEGI3gLkoCaiaUDQIC+ekM8gc4Zffew03wZpH/BdMBT+QgH94aFyfjXGTTKeQDyjf+XB5H/6gawSZ2HT5dZjemeJnjjEtNvUe89sCP2XwHQT5pAqGOgTtGxcm0kzlDzP7N2k2QdF035/7mrZMwzwNW3pLr2n3/s4ma4Vq91ALVn1Oee/PF+Bffvu8MX+lBL3ksF5UxWcjzVunAlgIYIoQYitgCSQAk+Vp0wBsdGTbJNOmye/edFceIUQeQC+ACQFl6ep2NREtJqLF3d36twGGQfUVomgBAq4Bz6cfGLerqZEq7hNo5qL0QLnPcv5nssvrFoaadl5wpgTNIM+bNbGUJ0CgeAf+ML+LaVZu8vnE99kozcbHjBYy9FmHc/au1ch9zKfO6wWa0WxfXwjNRitsgjUb00BvijTMBWh2zrJ111Gajcm3E3T9WrG/mdEAAETUAeBeAJ8TQuwNOlWTJgLSo+ZxJwpxqxBithBi9qRJkwKqF4x6sVRTKmVc6WwSRn7qucmM4zeYx+3HYYSZHY0WcK2wZjS3n8dZD42wcQqKwNDncNvVBM7CI0ejicDzTOunvN/Lz7M+/QY1NcP2m8yWhKFhkhQwmOu6bCU7CETVbHKuAIFweZyY9q3rH3K+B8m/bF3+Jinlw7x0bbR9Nrn9TdgQURMsQfN/Qog/yuTt0jQG+blDpm8CcIgj+3QAW2T6dE26Kw8RZQCMAdATUFbNUJ0tkybzOhudMHL0R3+hESxMahVgEiZAwB50vM73kAOmH6ZoqPCCQp/HWy+voA/js1FjiXYVPZzCWp/fb3IRtrVUHX3NaFLQ+plOgupnCn0Ot/Le/5xS2HcYzUYTjWbQbEzhyaZnp2+4tNlmpZqNEvKDI8F7qAG1fcXAXYs24Mcen9V+ZUaTvpNfAVghhPi+49D9AObI73MA3OdIv0JGmB0GKxDgOWlq6yOis2SZV3ryqLLeC+BR6dd5GMBFRDROBgZcJNNqhi1sUuTzigGh/a5wb2fjdw19ukoOM0OOgsod+HpfH9u7878opgJTYIVbCwoQNgFCK+j1D2F8NuZoNBEpv8vfFVC+7bPxWdGuRKBpNmvyJQYdD9I6w4Q+hzE1maPRgjUzHaV9BaNoNg4To87EK8scNGzYaZVdO03jy/cuwfc8PqswmuRoE+cVA28E8BEAS4joJZn2FQDfBnA3EV0FYAOA9wGAEGIZEd0NYDmsSLZrhBDqV/okgN8AaAXwoPwDLGH2WyJaDUujuUKW1UNENwJYJM+7QQihf51elVA/XXMmBTFkDW7O/bjcG3HqNJ+i9rsT06BUKzOaKiDowVWd1ztouP0vwZfRvYDNrVkEz6zDmsCCIs689XfN7EOUrcMW1j6n+UUGuUKyAy7h0to8/c553DSb1fldTIErfoEhzmNBdQ+j/Sh0A+RQQJQhYI66srer8Tlt30hJ2Hj7TT4g6AQoPY99Q8GvItCVXWvCCPfRJrKwEUI8Bb8X+AEX+uS5CcBNmvTFAE7QpA9BCivNsdsA3Ba2vnEpaTaWMlgQAinH7btDmzX5i/rvTvzNaPKBjelo9iNMVFFJs/FUPqTmYSoXMD+QYbYc8X4HPEEM3kg1g11el8eLyS/gmz90c7knMinPY6eu7xuIYGtewXUL0hx0gur513f75vPmj+qzGcoFv249rGYTJkDAW5bbz6qbCFmf63buC6yDVZbxlKpiMi/WA95BICSqr2bSyhkbMGgZzGj+izp9rm3IFztAQF5h3qs7fM9RMyXvlilhZ+dAqf5+2lCQE9pZBx2u9TiBPhvPgBLCZxN6uxqf08L4bILC14P8UUCpL/oNMCqHbrB2r9Avz2tvv685pnxIgZOUEEEE9rmac5z+EL1mEzyolqLRzNf0npM3CGJ1TwMhfDamPlTt6LH9MhrtQEH1lWYZgVI2CzIIE3eIr180WvDMtFYdyFnsq9v0AYWqzl5TjbPKptBn1QYuTaMCn00Y34D3u/W/o4yA2WvUaDTTOpswPpsw5QN6gazaxU8Y205yg2YTZEYLqmvQMVWnyJqNw4xmivLU1024PsvqF/D7O/t60I7UfgECQRMgL9XWREwLUusBC5uQOKPRgPKBz7TOxv1QB1/Di0r1N6OV0v/haH14d5jQWsDfCe3rs3F8jzJ7C/K1eI8Hh9g66hQwQy3TbEKY8exoNMO1fXcQCOGzCTKp+Qln+7hM8l/P4y8wQpvRArTFML60qK8YGHaY0aKss1FZ/M4qFPzNdHnjM219+mk2QX3SS5jw6UrYr3YQONAo89kELA6MvF2NwbxmMqNN7sxiSleL9pygh9056DVn9F3CNtUEzJhM44lqMrcZzTnY6ermzO9/Abc5zH2eU4B6tUr3JEFfdtg9x/x+P39fSmCxpesHaGbONFPos1aYuIS97tpKa3MTtBhSV7dwe6OV1z9n0C5MM3jjGihnX/ScYvLZKOE0MKJ/Q2rY4BYAyBnenVMpbEZrYFS/aUrrt6hQs9cmn3U4ppXy1jl+11YPjM9x+UkU5DcIp9n4ofJ71f1K1tnoBhOTEA47g3abLNzHggYsUzQcYA5tNf0+fmZT4fPdi8kfaFo4KTyf7roF37/fOpmca/2L9rKu8kPt+qyZjTtn/Lr33ZiirtRhvwmD87cJWmejFfLyfGcQg5MwfUtRDU3EeY8cINDAlISN1WR+q9Sb0ynjDLLSXZ/tmbOvtLHSydfQE36g9nt4S7Nn93HnfyYNwLhbttaMpj+37LyAtTRuzcZ9LEzo8/X3LwPg3EjUTelylWk2Yd85Ym4j/UTAex1TNFeQmdNb15xhsaVdZgVmNN05I/mirW2bXkGgLzN454sgU5m5bWQdC0X0D5drN87qGs1oVdBscoZ1QfWGhU0INvYMYN6r2wGUfDbltn/rsymTMjoy/c1oPhWQ6b5mNDi2gqlwwAPcD4LfeSXNxiNsAswQXkomGac2pC9LlxZ1nY3zQQ7aG82kmfkdNu0R5ldvUySYnd8YfCLLM2z4afbZ+B/3HjvlhrkArG2CAoVNBa8Y0PW9kXwRrU1pWQfdcxU8SJt2MHDveu1fH5O14qlV5fsumkzrTqrx/hlnHZPos4mzqPOA4aIfPGGbUpTPpmwWJDtTUzplXGdTuc+mNFgIIbTbphD8Z95B17TKL333s/urh7rMjOazQDOwDj4CxBRAEHWdjcsU4zV/GgZbJ2qi4SXIJwL4P/imgdKul8GvZEejGfbc001ETC8nU8f9Zt5Zn8mVt26RNZtCER3ZDHoHc1phZBpUgxalAsHRaKYdBNw+Gc21RzkazdkWHI3WoDht9qZ1NqHMaCFmuk5Ms3uTdmCV7d/5nIOQr2ajQli9D0WIaytKCwQdaYYHMozWZZ3nHJADNJsAU4lpQNC9GtmZr1KfjWugD/DahA2r9xt4g+pneqmfc182nTDKZlKhdhDw91MG9z2nZqPT3ExCzG9PP/v6Ab4+036HhaJAZ4s1X+8fLt9FQLhMu4HVRC4fXxPJB0yqkgALmwpx7iDgRP24fgECYcxo/o7k4E4vYGk7BH+/Q/CCSPN5pWg093E/waFDFxnkHGz0ZjR/IaIrW1cPt2bj2YjTMCA4r59OBaiO8DfDmQS4ibABAtt6h7T5g9bKmDQ7Z1/Vhec2mzQbg7BxT8LKg09GCkW0Nvub0UwagWmdUJBm5zSx6V+YCHRkLWGjW2tTiYm2GqHPzntJohmNhU2FqGg070O/fKu1GDKbSWu1iDD2W9OiPOu6+uOWGa0KAQKGWXjQos6wETd+A5xekDqOBzyPhYA2cs2OfcyfgHmFvf86m+DZs99anig+G73WbH3u6NMLm9JbVk2TIE20oGEAy2bS4QIEQrSN9/fNFwWEgO9vB5gFtv2m0RALboOj0crzFoVAmxSEg5qItDDWDIXzTbNRcQsbNqM1PGp26+079zxvvf8t25TSqsSmRZ/ec5yYBuSCKG3OGGYG58V5xKTZFIV/PU1mNCWo3DPG4IE0rJPV8mVZ373O1lyhiGxTCinNi+9M13ea4EzroPzazjlI53xmy0Hh1c5xI8h30D+c9xGYMiJLW7ajboZ+q/PbtDT5m9GKUliockyLdr3CTg2YSrPx8+kEocr09dkUBDIp/fuAcgazlCVsLM1mSPP7BZnoALfw/+AvF+oraMAdSVqq77Csj0kbH01Y2FRIqWPqe297c0YbWWKyTXvT3QIpeIYkBGDqU0HOaNf+Y76aTSnd+RC6AgQMszeVz2+mrn8gHfU0mNHsrYQ8g/5IvojmdAqZVMqwg0B5ucPOsOmAQRXw/12dbe9ux9L5n7/rJfhh2izU6bMZ9giEYlE4djjwF0QAMKwZuJ33rBM2zRn9ywStvMI+x6q75pyA50JdL8hnYwoZNvlsCsWi73KGMFv5pFOEbCalFTZuX2qw1hwVP9OZ6gfpoKihUYaFTYVkfDqmoqUppXdkhlCpXZ3bZd4pneO3FY7qVLUKffYbFNxmNN9LACj5e/weYtPrtIPuoVgs7VunG7SaMymkU+X+NJNm4zRvmHwyfpF8fgOC89pBmzmadhR3luMVNu4ghOC8uoHbKSh1x4dzRaP5MJsOWCcTsOuyul5bgM/GJGzUBEdFcpbVUQjbNO497vqtfIJX0ilCa3Naq5mahFU1XgPgLMM1cZDtkkrQCJ+gqjQGTT7RaIpMOqW1l4Yxx/jF9TvP9jM1pVJkmZECzAV+OG/F7zzXgJl3ajbBdXOi8vmFm5qi0XoHR3zLLgqBJp/FfyMFS9hkUuS7zsZaL1JernNvLtMkwbsjtn3cOeN0DEphZ7bFYmlANDnJvYOvsy30wjRYmDi78og9cJfKOWHaGP+BvOjRbDRyIefS+txlqLq1SlOVdu+0gL3NAPfqfj/txE/zcoc+6/1ZKbI0L1OAgO6nVvdOVBKoleI0Izr7tvoth3JF/OffVkQqu9qwsKmQrpYmAP7+g+YQwiaMucVvEPYLfU0RRV5ngxChzy7bflH/gJsibkrvs/cTNrqalRI37R70LVsI/4mAMqOl01Q2aKhzMynS1t9lRjO0TRjNZvdAKUQ27Kt7rdm3frdxwD0D9/owTEEITo0qrGaj6vC5t8zCYRPbAfiYyDxmtEo1G9tn06R8NpU/V0OO+/Nqfer6fm3rjLz0CxBIEVnCxmBG0wZ2yHtva0pHduj77Uzt1MhvfWJtpLKrDQubChnb1gzAPbDOvPYB+3smrX9ttHMQ8PM9uDc3LKW7TU3l+Yqi5Aj0G+6D1tnkCyXnut8A6JzhOweIisxosmy347V0XOtAlscntDdj76D/GxELojRD9WovLs3Ga0aT12xKp/SajXxom9P+jvDSoko/rbB0kz37Rhzp4TQb54CoNSUFaTau30o383cIm4LeFKQGe3UdVe+mdMr2FQYNpkGajcsMpPndgNKs3+Sz0QniwVwBnVl/J36hKJBJE9IpKntG3OtW9BGmKSK0NKV9y1bo2l5N2lqbM8gVROjti1xluNqv3IyWJFjYVMiRkzsAlAZJZ4c6eEyL5YSO8FAAwG7HQOQOOXU6qfV25xQF742W9+mU6lpZOSD4vcd+IFfa+8k3Ys0Y+qwig/SzWW3wg/wc09qEvUP63XUBawBsyeijljb0DNjO3DKfjbyXTFq/7Yp6aFuaAhzhtoM+jGaj/42DyBeLaGkK0mycg4x70HMOgrqrDY4UkE4RWppS2tDmoihFg9kBHrawITvcXmuiUppNgM/GqSV7hZ0dIBDSZ+Nt/1yhiHxRYGy7ZY3QajbS39mUprL7LzjMl3rNpuSz0W3GadphQD1HSphGWWvjvGdXgIDP5qD1hIVNBXzgjEPQnnUPaM6H+z2nT0dTmrSd5ov3vGJ/9xtklm7ptb+7d3AV2nSFkDMs9V1H0HqJfFGgRZkqfDr8wHDBXi3tvL9K1tnoXqQVtFuzs8yu1qZAzSYvw5uB8tDntd37sGzLXn00mlBmNB/NRj607dmM0YzmJ2ycPhunZhPWdJIrlH6fSn0233xguf1dl3dgpIDWpjSa0ymtGS1fLK1RGvH43NKpVEmj1v12Dg0I0E9GnBOXwRGPr80bjaa1GDh8YJ5+rUxbY1sta4Sf9pFOEZo0958rCGQz6tp6nw2RNRHRmdFM/kivsIliSvMLz/ZOOlZt76u47GrDwqYCjp7SaUd96d7S15xOoSmdKtMcvJ1Y99D1DuTw7Noe7TmmbSgKIXw2To2lrD4OrcDPtDMwUsCY1iZ5jt63ZFpno3uNcNjtasa2NWHvUC5QmPppNgqdZlMaEPXvZ1AP7ZjWJt83MpZ8Nn5mtJIpavveobJ8JnL5on1vWkdzXqC92S0QFE+u2ml/1zXdYK6AlqY0mjNp7cy/WCxpFrawkb9jJkW2GU0rSDwBAiatbDDn1lxVfwlcZ+PUbDwCQflrxrZZ/VanfeQKRWRSKTSnU2UCxanx6/umJaj8AgRyJhOm7Ftd8rmKsvOzU9t3a4nusr7xl2UVl11tWNiE4PyjrLdfXnn2THsmpzr+kKODPLNml+Wz8Qw6+zzbj+tmMBt6Blz/O8swhWCG8dm4bfPlEUtKK9AJm0JRYDBXEjYu/41T8BgGz9L+anrTWdA6kPFtzdp1JIpcoWjP/nUmw3+aPT3QZ2OZ0crLXbjOmgCMb28u+x299+BvRrO2XDl4TAtWbutzpJcuePqh47R5Aev3yhrMaB1S6/S2z4fPOhSAJUx1v85QroC25jSyGb1mUygK24Q37AkQyKTJ1qiDtmgKLWxG9Ga0tpDCxvvcDdjCplnWXycQLH9eU7p8MXauULSFjd9yhiCfjTsCteywnUcFHVVqRtuwawCX/fRp+/+8x4zmXHvX3TdcUdm1gIVNCL717hPx+BffjFSK7HU26iFxPiDfvPwEq9N6Zkj75Jv8rn3bMQCAr99XPsv47iMrAQAfe+NhANwPRr5YtBeTDgxr1HWpzhP8tYsgYePSbDQdXpkIDhrTCgBYv2ufo27BZjAnXpu/lSc4v3qAxrVbA4afKc05KOrWnRwxqUNqNvpotKaUfgNVFckzrr0Z+0b0K/RLwsZf60qnCAeNbbX7gvPejpnaGRiZlis4NBtNIw3ni2iXTnCvwEiRNREZ29asrfugMqNlUtrB2KmVqd9P/eaZFDmCMvSCCoA9YPs58BXetUYjtr/MP0AgKLRZlT0uQLNRwSNNGSqbLOSLAtkA82W+EByN5l4QrG97AOhqtX67Sjfj3LTbO0F1BwiccshYXH7qtLK61AsWNiGYNrYVh06wQjw7pM9mn+wozkH8iEkdWkejeojUpn1eVu/oxxOvWe/DOO7gLgDuzpEvCEzsyAJwO5gVRanO68xECmd53lfQWg+VEqIau76c0au69Q3pgwWM62yUuclnFX2QP2K8EjY+QQK5QmlgcAp79fu0NKWRSacw4nmgnbPvILPWhPZmFEX5tjJCCPt+fHdfKAg0SXOLc0BVgq+tWW/CUvUrCpQ0G582Un3LW87giOVzSfm8xXUgV0BLcxod2Yz+BWBC2OtcSma0ks9GOf919fcGCGiFzUhpWxVv26pJkZr5D2mEYb9DeHuFhe2zCdJs8lYQQFM6pQ0btzUbnwjTbFPKd1Gn83q6vq2sIiXNprL90dZ095fV13ntbCaNmy4/ASkCxsk2qCcsbCpEzSCVSWX1DusH/9a7TwRgOZq9+0DtkWsrpna1aMvc0FPSFMZqTFXD+SKOntoJoLThp5OCsLa/1z0wCpNmEySsdvZbAm762NayskzvQ3GS12g2zgFi9Y5+zLz2ATzpeBGVKr8kbAI0G+WzcQiwIXt2nEJbc7rML6AGyY5sJtBBq/bAWrR+tyt9MFewhEHGiubytoEQAmt37kNKrTR3CJv+YTXzbva116v327fL6/ua0bLlwRuANUC3NKVB0EfbPbduF5rThDGtTejVaI2FokCbFOJqsFdCNZMiWwj67S4AwDbx6fqmGqTHtzeXmdHU7zGhw/rt+zQTjX7nxMfTNrbPptWk2aS16+OsoBN/jXIkX0Q2nfL12TifYa2/zNZs/KPlgvjxo6vd9ZW/S+9gDovW70a2KYW25gzedsJB6PN5bkYTFjYVooTNK5usyLGv/mkJgNKeaeqh3ztYeghUBNLUMS34+LmH2bMlwHoL6Md+s9j+P2vbx62O+P1HVmLznkFM6GjGxI4s1u8sCSbAUqWfWb0TKbJm5zpzxtrufpfpTrcWI5MiZFKk3ddtu9xNeMaENgBuYeM0S/mFTSvUw6XbjaA5ncJDy7YBAP784hZH3dyajW7AscrU+52cmk17NmMP8Aq1or89mwlc97Kt11pQOue251zp63cOuOrnFQYvbNiD51/fjU27BzG1qwWbHQtTd/YPo605jbFtzb4DzR0LXrfrB+gHrVxB2MeHPTPsoZECWptT0kzmjdLrx1CuiEXrd2PT7gG8uGFPWd8YzBUwqdPSqtXAXopGIztaS1d/pSlNklq5brC/V25gO7kzW2ZG2zdc8mk0Z1J6YTPsr9mo8sbZoc96v0qz1Gx0oc9BJsDhfNEe0IfzxbJnz2ky9f4uzvp0SWFc6WsBzp010fW/yv+Lx9cAAJZutsaozpaM73MzmrCwqRA1w/z9cxuwsWfANqe96+SDAQCHjLdm/yu2lTSQR5Zbg+j49mZM6MhiOF+0B97Lbyk5+ACUPbw3y9nLtt4hOyLLyWU/fRq79o1AwBJ4ug77woY9rv+9M8wBGZGUSVHZJpYAbKf2tLGtZeYO5/X6Azp0oWjN8NV3b/5JnVk7XflenMfHG3w2QznLr+HVztTsMptJoyObLnPyuzQbz4A5d/l2+/sNl50AAJjSlXWd8/abn5Tplta6a5/bzLnOMTkY196MPsfOzDv7hzGxI4uObNpXY/vuw5YvT1qiygbUpZt70T+cL1t4qRjMWT6ZrtbyAWePoy3X77KE5qodjgCGQhEj+SImdmSRThF6pAlX9d225rRtItM5yNULxSZKYaWb/c9faWmx08e1lpmiXt+1D9lMCpM7s+jMZrQvKNs3nLcnel6fjvItHjHJWhunW3uysWcAk7takEmX+2xcAQI+mk1zOmVrbvs8E5lnVu8CYE0C+zQmSjtAQBON9vfl243hyt5nQd3/KmltURaJjiwLm4bEuWX3tx4s7TmknJinzrCiilRH2do7iD++sBmANWAqZ6V6cFWHUKjO7Z2Fvf8Nh2g7jcq/dzAnZ2flD5RXhfY+dHsGRjCurVk7+wWA+a/uwJGTOzB9XCtam9K+TlmdGUbxJcc6o0GNSU8NSEBpXQVQMg0om7PuofnF42vQP5xHR9YSNi6fjWxHNQP1Ezbt2XSZZub8fbtamvCmoyZhqgyS8KL8Wc5oM8DttG2WCwSVAO3uG8akziwmdmTRN5TXDtgKdf/O2TIAfOCXzwIoDVQ6zaS1KY2ulnIzmTINHT6pHUdMsnySzoXBA7bWl8bhE9vte1PaREc2g0PGW9quMic7Ub9VSbNx35+z74xtbbZNhoruvmFM7soilSJ0tGS0k5m+obztk/EKhC17htDWnMbByvzreabyhSL6hvOY2tWiXWcznC8GbgI6lCsg25S2/bj9nvrf/fxGAJYg1dVdvZZkjEfYCCHw8TsW460/eKIsj2LvUA5/X7HDlfaLJ9bg0p88VdbO4zuaMZgr+E5oRgsWNjFQi9WcTOrIojmTwkZpLvgfJG4AABoASURBVPn2g6/ax1qa0vaDsXufflNJZQpSA/qUriwuP3UaLj1lGjpb9E5cwJpV+QmbjT3uPcW+81CpTn9fvh2v7xrAuLYmjGtvdi06BIDbn1mPhet6cPzBXSCisgVsSlh0ZDO+nfnVbXtx7wvWg9XVYr1P3hsuPKmj5MBscQgbNTBPsM1o7msIIfAt2ca5ouWId0b1qOi9tibLCe4UNq9u24sXNuyWK+jTZWYQ77Kltua0HSzhZZbcWeL1XW4zp1M4NjkiGQtFgWfW7MKm3QO2oPVqRU7OPHw8ALf2OJwv2OW/+WgrPL9M2IxYWusYzaJY1Ze++96Tcf27jrfOd/i09uyzzu9qbcLUMS227/Er0nTcns3Y9z1/pXvgc5ZvazaeQfAnUms/54gJZf4sAOjuH7YFlS6AYWAkj817BjFtnCVMvL9fd/8wJndm7f7kHYRfl8sNlIZWFmAwUkBni1pb5hY2w/kChvNFdLVkbBOmV6Ccc8QEzBjfhgntzdpJkvL/TZR9X11/+15zmPLTjvVT9v3sGsDLm3rtZ/h/rzoTAHDStLE4ekonduzVv1xvtGBhE4FvvOs4AHqnaCpFmD6u1Q5LVD4WNRgoc9Ajy7dja2/5xpIlM5r1YPQP5e08HVn97E6d35Qm10CuUGt4TjlkLAB3FMvH77D8RelUChM7sujud3f06++3fD1Tx1hmop39I/jdwg32cTWYHzSmxVezueSHT9rfP/nmIyFEyQQwlLNMESriCXCbgvYO5pDNpDC2rQnpFJUJNKcmtn3vEMa2Ndv12NgzgO/NtcxQEzqa0Z5NY99IwTZjXfLDJ/HYym65XUm5zd7rY+gfzmPVjn57YeanfveCfezKs2eipSllm6MUqi73f+qNtrDJFwR2yXaePq7NbttF60qLenfvG8Ebv/2o/f85R1j2eWWO2bF3CMd87SH7+PtmHwKgFCVZuocCWpstzWaP5/dRZp+ObMaewTtNQd391n1O7sxicmcL1nb3o1gUeF3e45SuFvulfX99ZSu8eDUbrzBR5uVtvUPaiK7uvmE7CtOazLj7/t+WWPlPl9YEp0DY2juIVdv7MKkzi/ZmS+P19s/3/8LSCi2rQPnOHwMjBTtSzGsNUPfW1dpk+2m9wnDPQA5HTu7QCkqnYFPCUPXlvy0pteWq7X344h9expfuedmVX5l4PyLXUTktLmu6+/HBM2fYPp1zZ03Ew58/H0dO7kQ9YWETgQuPnQIAeHCp1dkPlzvfKqaPa7O1icFcAcdM7cRtc94AoBTzf/O8VXjbj56EF/XQ79g7jGJRYN9Iwe7MHdmMa/brnMl95KxD0ZxJYU33PvzzbxbZ6df98RX8fcV2XHL8VPz5mjdiUmfWXqTqFJYDI3lM6sjagyDgNnMcO7VL2xZ3L7ZMBYdOaEP33uHAiLSLj5+CqWOswaNnYAR7BkZw16INaMumsXVPSfA6tYPdAyMY29YEIssX8/hrpUg1IQSu++MS+/9/Of8ITOhoxtzl27Bp9wDm/Po5vCj9VePamtHWbG054zUVjhSKMlKt4Lpn70xY7Yv3+Mpu/PKJtfYAe/jEdqRThCMnd2CZY8uh4XwBP5m/Gi1NKZw0faz9CoSRQhE75CK7T5x3OE6aNgYA8DnHC9QeXLoNm2WbfPLNRyArNxJVk43HXuu2gwXefuJUpOUkx+kjev8vFuDlTb1obUpj+rhWdPcN25pdsShwjRSW7dm0HW3nNGXtkDPsyZ0tOGXGWOwdymObY3Y8scMdTuv87TfsGrC1ehVN5hQmSzb1YtkWy6/5nfeeJHc+FvYgfOVtz+G17f22CaxTY0b7tz9YA/D5R1mDqvPe333LM3h1Wx8md7aAiDCuza21P7t2F3bKvp5KkdwOqVT+4EjBXsis245GCa4xrU229uPUHAtFgWVb9mJ8ezO6Wpuwx/N6jFe3WibJH7z/5DLT+Q1/LW0x9NYfPIE/PL8Jdy/eZJs9F67dhT++aJnmb7j0eLx64yW2QAesSdLBY/SRr/WkoYUNEV1CRCuJaDURXTta150+rtVezAYAf/7UG8uOL9nci409A9i0exBnHzHBngEqGzdgzXyaMylcff7hdtrkziyOmdqJB5dus23AzrDWnn0jmHntA9iwa8AWPP920VH4+ruOt6Nv1JodIQR+/5wlDE6WWs2E9mY88MpWjOSLLpPUZy6chQkdzbb5DwC2yMHun2ZPx6WnWAEQbzpqku3A7xvK2YP/OUdMRN9wHi9uLAUjPLVqp70j9luOnYJffGQ2JrRbD8X8V3fgh39fhd0DOewZyOGmy09EOkXozGawwWH2e2xlt0vjWLp5L1bI8O8HlmzFn+RD91/vOQlHT+1EV4u1Yee535mPtd2OkPK2Zrsd1YDb7DCDTpYBCj+at8qO4tnnaf/r3nYsmjMp/GT+atzkeEfI4dLfcdqMcXh2bQ8+cOuz6BvK4eh/tzQPpSE1pZTPpohF6y0tZnJX1tZcnb+dc9A/aIw1YHY4ooqcK8IvO2WarEeHrUkXisLe/WBKVwumy8AVpZXd9vQ6O78liNPyuqVBdYX00UzqzGKG7LdqcvHpC460N+H81zcdAcDtf7zuTyUfndpuxqnZvOsnT9nf3zBzfOmcXAHForDb4TXp++xqbcLyrXsx89oHMJQr4GEZuQgA582ahCldWbywoRSWvrXXus+M9JNNaG/GLkf9rrj1Wfv7lWfPxIT2rC18ANiC+KTpY9De7NZMNvYM4GLpT+lqacLBY62BfYvDUqGsB4eOb8P0ca3YumfIpc28stl6TmYfOh4Hj20FEVz9VYcq89FXSyZLkjsYbPOYyJRpMUk0rLAhojSAnwJ4G4DjAHyAiI4bpWtjwbUX2P8rVVuhHNzn/dd8DDjsvoDbHwFY2sVMuWBU7aJ76oxxeGnjHpz0jUcAlExvp0qBAQDnf3e+PWAcNaUT6RTh5x8+HYAVEffs2l0uX83Hzp0JADjuIEtD+dI9L9sP5I8/cCoOHtuKqWNaMJIv4o4F6wEAL0nB8f43zLAHlsMmtmMoV8T3Hllp7+XW2ZKxo/EeXbEDQ7kChvMFLFhbsiur3ROmy4fgmw+scGkYR0/txJr/fDvec/p0rO3ux8BIHt+4fxl29A3bM9KPnmPdwwelU/w5h9npUBmWrQtRPXHaGKRTZAuN3QM5PLhkq9tsIu/v5nmr8M4fW07WlqY0Zoxvw7NfuRCAFVV0yvSxZVsLKfPkZOmbWLB2Fz70P6V3yn/ozBkASoPur59eZ0cMHTO1025bwJrRf/r3L9q/DQD8w9GTAQBTOlvw22dfx3C+YM+s33bCVJw3y9JUW5tSWLK5F4MjBVtgqusrc9SDS7dhKFfAvTJo5eTpY9CezdgRUet3DWAoV8DCtbtw87xVAKz+N1O27w//bqU5205pFvNX7sCKrXuxbuc+1wShozmDKV1ZPLvWis5yauRfvPhoAHD5PZ5dt8s+/t7Tp1t1cCxKXLdzH/7lt88DsLTldIpw6Ph2vLa9D3uHcna/BWBP5CZ2NtsD8nzHYH3bR2djfHszJnY2Y2CkYPuB1IB+zpETQAT8buEGu2/9/PE1tslu+rhW+/lUfthCUeALd1ta6kXHT8XMCe3IF4U9edszMIKv/mmpnb+tOYPDJrZj2ZZeu21Om1F61hV3L96Id/74SfxC7mpx60dOt4+9SVorFIeMa0PS0C9pbwzOALBaCLEWAIjoTgCXAlgemKtKTOjI+h77/958BH71VGnmONuz79UdHzsDVzrWa5w4bQyeufYCW0i9/w2H4PfPlfwiMydaHWfOOTOx6PXdeECab37xuNXpJsuw2/ZsBl+8+Gh89+GVuOLWZ21V+n+unG37gv7t4qPxxxc3488vbcGfX7LWsyht68NnHYpb5q/B1+9b5lqXc9L0MaX7lg+Wc0HZwq9caNf9J/NX4yfz3YvNfv3RN9gmqMMndWDW5A6s2tGPeSu248jJHfj7F95kn/vmoyfhN8+sx3Fff9hOu+VDpwGwZtC/eWY9dg/kXO8QAoAzDrMc6JM63b/LnLMPxdfeeZxsR0uov+X7j5flvfj4Kfjan5faacof8p7Tprt2fvD6jD56zkx88s1HAij9DkBpHRYA3HipFTZ98nRrAPnlk1bfGNPaZJuv7v3k2XjPzxYAAP7ysvW7HDO1Ew997ny7HOUHVBoTAPzsw6UBZ4m85rFffwjvlz4cAJg1pdNezf/dh1fa4dQd2Qzu+9S5AEoTmpvnrbKFjGoby0TnHrw+/5aj7O+nzRiHtua0K+JQ8ZkLZyGVIrz7tOn42WNryn63T5xnCQOlOZ3j8FP938fPxBuPtATZMQeVzLhO8/ONMiQ9Xyxi6ea99gQNsPrd8QdbfbdvKI9XNvXi6jsW24L4nn89296T7iD5rDj73ZmHjUc2k8Zbjp2COxdtxCfuWIy9gzksft3SoNIpwqwpJT/Ifz/yGlZs68PQSAFLN+9FNpPCUVM67D7z739eineddDB+J5/tzpaMPdF4w6HjcdfijTjyqw8CAC4/dRouP3UaZkxox3lHTsThX/mb3W8A4D8vPxEXHT/V/v9nHz4N63cO4FdPrcOfXtzkqldSaFjNBsA0ABsd/2+SaaPGym9egmX/cXFZ+oSOLH74/lPs/8/zLL46/6hJ+Pd3HAsA+Mrbj8EJ07pw8NhWe/+vUw4Za8/iT54+Bqcfag2kRISffvA0/PXT59plNaUJx0wtdaxTHNrPFjk7dgqLg8e24ncfP9NVn8OkZtXV0oT/d9FRrmPHHdTlirq7/DR3E7c1W/Z+IsJnLjiyrC0Om9iOfzhmsivtq/Led/QN46LjpriOvWHmeNc6m8tPnYa3n3gQACtI4ZNvPsJ1/onTxmDdt95uP7RXn3+4rUkA1msf1H52znZSPHPtBbj7X87G5M4WV7sqjj3I7atSg6PiK28/1nbO/qPU7pys+9bbbRPqTI9vb4LDfHb6oePxhbe62/6swye4/r9G075OvvGPx9vf75LmrtU3vQ0AcPjEjrLz1WJHhepzTu66+iwA1sD63FcuxOmHjsMDnznXpaG3NKVxpzzPyQOfOde+J6WhKFIE/P0Lb7LN0brf5pwjJmi/Kx7+3PmY3GkJictOdffLM2aOd/W7a/7BartHlm/Hlt4hTBvbitkzx9v95vxZk3DUFHcb/e4T1j0pM+Gjr+6wBc0/HD0Jz//7W8rv+ZWtmPfqDhx/cBfu+9QbQUT2JOPJVTvxpXtfwUsb9+C8WRPxwtfeaud758kHucp501GT8ZGzZ+JNR01CKkX43SesZ3b2oeNw7yfPwQcdfRywdrg47uAu/Oe7T8CzX7nQDqdOEmTaYiSpENH7AFwshPi4/P8jAM4QQnzac97VAK4GgBkzZpz++uuvj0r9ikWBB5duw4zxbTjRMdgrhBAYyhVt00ql7Ogbwuod/XaUkpO7Fm1AUQC/fHItPv+Wo2wTl5OhXAG/fno93nrc5LIolXyhiEw6Ze+vpOP1XfvQ1dJkO+8Ve4dyuOEvy9E/lMdV5x2GUw8Zaw/2TpZu7sWi9T348FmHloWQ9w7k8PDybXhp4x584a1H2SYgwDJRrNrRh8XrdyNfKGLOOTNd11cs37IXw/mCve5JMZwvoDmdwoK1u3DKIWNtzcLJ4vU9uOLWZ3HLh07DW46dYgsLxeBIAV+69xW8+9RpZYIUsDSQB5dsw1mHTyj77YdyBazt3ocFa3fhvFkTcZRmBiqEwHPrevCGmeNd1xbCCm54Zs1OrO3ehw+fdWiZWVYIgc/c+RL+8vIW3Hn1WS6BNTCSx6vb+nDjX5cjVyjiR1ecai94VDy4ZCu29g7h+IO7cOiEdjtSLgyvbe9DSyaN2xesx4XHTMY5R7r7Zu9gDss292Ll9j584IwZZXXf2DOAAemYP2namLJ2n//qDjSlU1i/ax9OnTHW1loUI/kiNu0esHaLaM5gTJt7wC0UBdZ09+OvL2/B2UdMxNkaAbZ+5z48vWYnLj5+qqvf3bFgPVZu68OpM8bhzMPGY0pXi8tvu3nPIG6ZvxoXHjsZAyMFXHDMZFffWtPdj0eWbceGngEcNaUD75t9iEtjFkLgkeXb0dmSwfSxbfZuHU6KRVHWJqMFET0vhJgdq4wGFjZnA/iGEOJi+f91ACCE+JZfntmzZ4vFixf7HWYYhmE0VEPYNLIZbRGAWUR0GBE1A7gCwP11rhPDMAyjoWEDBIQQeSL6FICHAaQB3CaEqP/r6BiGYZgyGlbYAIAQ4m8A/lbvejAMwzDBNLIZjWEYhmkQWNgwDMMwNYeFDcMwDFNzWNgwDMMwNYeFDcMwDFNzGnZRZxSIaBBAUHj0GAC9AcdnANgQcNyUv9bHk1y/JNcNaOz6mfKazjmQ267W109y3cIcV/U7WggRb8M1IcQB8weg23D81hrnr/XxxNYvyXVr9PqZ8ob4bQ7Ytqv19ZNct0rqB2Bx0Hlh/g40M9oew/G/1Dh/rY8nuX5JrhvQ2PUz5TWdcyC3Xa2vn+S6hTluql9oDjQz2mIRY3+fuPlrTZLrl+S6AVy/OCS5bkCy65fkugGl+lWjngeaZnNrnfPXmiTXL8l1A7h+cUhy3YBk1y/JdQNK9YtdzwNKs2EYhmHqw4Gm2TAMwzB14IAXNkR0GxHtIKKljrSTiWgBES0hor8QUZdMbyKi22X6CvUOHXnsMSJaSUQvyb/yt2rVtm7NRPRrmf4yEb3Zked0mb6aiG4m3dvG6lu/WrTdIUQ0X/5Oy4joszJ9PBHNJaJV8nOcI891so1WEtHFjvSqt1+V61fV9qu0bkQ0QZ7fT0Q/8ZRV97Yz1K/ebfdWInpettHzRHSBo6wktF1Q/Spru7jhbI3+B+B8AKcBWOpIWwTgTfL7xwDcKL9/EMCd8nsbgPUAZsr/HwMwu451uwbAr+X3yQCeB5CS/z8H4GwABOBBAG9LWP1q0XYHAThNfu8E8BqA4wD8F4BrZfq1AL4jvx8H4GUAWQCHAVgDIF2r9qty/arafhHq1g7gXAD/CuAnnrKS0HZB9at3250K4GD5/QQAmxPWdkH1q6jtDnjNRgjxBIAeT/LRAJ6Q3+cCeI86HUA7EWUAtAIYAbA3IXU7DsA8mW8HrJDF2UR0EIAuIcQCYfWQOwBclpT6VaMePnXbKoR4QX7vA7ACwDQAlwK4XZ52O0ptcSmsicSwEGIdgNUAzqhV+1WrfnHrUY26CSH2CSGeAjDkLCcpbedXv1oQoW4vCiG2yPRlAFqIKJugttPWL8q1D3hh48NSAP8ov78PwCHy+z0A9gHYCmtV7X8LIZyD7a+lOvm1aqi8FdbtZQCXElGGiA4DcLo8Ng3AJkf+TTKtVlRaP0XN2o6IZsKaoS0EMEUIsRWwHjxYWhZgtclGRzbVTjVvv5j1U9Sk/ULWzY+ktJ2JpLTdewC8KIQYRjLbzlk/Rei2Y2Gj52MAriGi52GpmiMy/QwABQAHwzJl/D8iOlwe+5AQ4kQA58m/j4xy3W6D1SEXA/ghgGcA5GGp4F5qGYJYaf2AGrYdEXUAuBfA54QQQVqoXzvVtP2qUD+gRu1XQd18i9Ck1aPtgkhE2xHR8QC+A+BfVJLmtLq1naZ+QIVtx8JGgxDiVSHERUKI0wH8HpZ9HLB8Ng8JIXLSFPQ0pClICLFZfvYB+B1qZ+LQ1k0IkRdCfF4IcYoQ4lIAYwGsgjXAT3cUMR3AFm+5daxfzdqOiJpgPVD/J4T4o0zeLk0UysyzQ6ZvglvTUu1Us/arUv1q0n4V1s2PpLSdL0loOyKaDuBPAK4UQqixJjFt51O/ituOhY0GFVVBRCkA/w7g5/LQBgAXkEU7gLMAvCpNQxNlniYA74RlThq1uhFRm6wTiOitAPJCiOVSJe4jorOkmnslgPtqUbco9atV28l7/RWAFUKI7zsO3Q9gjvw+B6W2uB/AFdJefhiAWQCeq1X7Vat+tWi/CHXTkqC28yun7m1HRGMBPADgOiHE0+rkpLSdX/0itZ03YuBA+4M1+94KIAdrNnEVgM/CitJ4DcC3UVr82gHgD7AcZcsBfFGmt8OKrnpFHvsRZKTQKNZtJoCVsBx+fwdwqKOc2bIjrAHwE5UnCfWrYdudC8vs8AqAl+Tf2wFMgBWosEp+jnfk+apso5VwRP7Uov2qVb9atF/Euq2HFSzSL/vCcQlru7L6JaHtYE3I9jnOfQnA5KS0nV/9orQd7yDAMAzD1Bw2ozEMwzA1h4UNwzAMU3NY2DAMwzA1h4UNwzAMU3NY2DAMwzA1h4UNwyQEIvpXIrqygvNnkmPHbYZJMpl6V4BhGGuRnBDi5+YzGaYxYWHDMFVCbmz4EKyNDU+FtbD1SgDHAvg+rEXBOwF8VAixlYgeg7VH3BsB3E9EnQD6hRD/TUSnwNp9oQ3Wor6PCSF2E9HpsPaZGwDw1OjdHcPEg81oDFNdjgZwqxDiJFivn7gGwI8BvFdY+8XdBuAmx/ljhRBvEkJ8z1POHQC+LMtZAuB6mf5rAJ8RQpxdy5tgmGrDmg3DVJeNorSH1P8C+Aqsl07NlTuwp2Ft8aO4y1sAEY2BJYQel0m3A/iDJv23AN5W/VtgmOrDwoZhqot3/6c+AMsCNJF9FZRNmvIZpiFgMxrDVJcZRKQEywcAPAtgkkojoib5bhBfhBC9AHYT0Xky6SMAHhdC7AHQS0TnyvQPVb/6DFMbWLNhmOqyAsAcIvoFrB10fwzgYQA3SzNYBtbL45YZypkD4OdE1AZgLYB/lun/DOA2IhqQ5TJMQ8C7PjNMlZDRaH8VQpxQ56owTOJgMxrDMAxTc1izYRiGYWoOazYMwzBMzWFhwzAMw9QcFjYMwzBMzWFhwzAMw9QcFjYMwzBMzWFhwzAMw9Sc/x+AFzThIdE2cQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "sorted_data['inc'].plot()" ] @@ -215,9 +2240,32 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 12, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEKCAYAAADuEgmxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztvXl4W+WZ9/+5JVny7nhL4uwrhCRAgDSsLVsLtB2GLrSFaUu60lJ4ZzrTmeky83vptGWm9G1hysyUlpYMW1ugpQstUEiB0rKEbARCErInzuLYjndbtmRJz++Pc44s27It27IlHd+f69Jl5dE5R885kfQ99/LctxhjUBRFUZRU8GR6AoqiKEruoKKhKIqipIyKhqIoipIyKhqKoihKyqhoKIqiKCmjoqEoiqKkjIqGoiiKkjIqGoqiKErKqGgoiqIoKePL9ATSTVVVlVmwYEGmp6EoipJTbNmy5aQxpnqk7VwnGgsWLGDz5s2ZnoaiKEpOISKHU9lO3VOKoihKyqhoKIqiKCmjoqEoiqKkzIiiISJzReR5EdklIjtE5O/s8a+LyDER2WY/3pOwz1dFZJ+I7BaRKxPGzxGR7fZrd4mI2OMBEXnEHn9VRBYk7LNWRPbaj7XpPHlFURRldKQSCI8AXzLGbBWREmCLiKy3X7vTGPPdxI1FZDlwHbACmAX8UUROMcZEgbuBG4ENwJPAVcBTwKeBFmPMEhG5Drgd+IiIVAC3AqsBY7/348aYlvGdtqIoijIWRrQ0jDF1xpit9vMOYBcwe5hdrgEeNsaEjDEHgX3AGhGpAUqNMa8Yq/PTA8D7Eva5337+S+By2wq5ElhvjGm2hWI9ltAoiqIoGWBUMQ3bbXQW8Ko9dIuIvCEi60Sk3B6bDRxJ2O2oPTbbfj5wvN8+xpgI0AZUDnMsRVEUJQOkLBoiUgw8BnzRGNOO5WpaDKwC6oDvOZsm2d0MMz7WfRLndqOIbBaRzY2NjcOeh6IoymTy5rE2tta6x6OekmiISB6WYPzUGPMrAGNMvTEmaoyJAT8G1tibHwXmJuw+Bzhuj89JMt5vHxHxAWVA8zDH6ocx5h5jzGpjzOrq6hEXNCqKokwa3/j9Tr71+52ZnkbaSCV7SoB7gV3GmDsSxmsSNns/8Kb9/HHgOjsjaiGwFNhojKkDOkTkPPuYNwC/TdjHyYy6FnjOjns8DVwhIuW2++sKe0xRFCUnOHSyi57eWKankTZSyZ66EPg4sF1EttljXwOuF5FVWO6iQ8DnAIwxO0TkUWAnVubVzXbmFMBNwH1AAVbW1FP2+L3AgyKyD8vCuM4+VrOIfBPYZG/3DWNM89hOVVEUZXLpDkdp6AgxrTAv01NJGyOKhjHmRZLHFp4cZp/bgNuSjG8GViYZ7wE+NMSx1gHrRpqnoihKtnGkJQhAJDooFJuz6IpwRVGUCeJwkyUavTH3uKdUNBRFUSaI2mZbNCJqaSiKoigjUNvUBUBELQ1FURRlJOKWhsY0FEVRlJE43OwEwtXSUBRFUYYhGjMcbe4G1NJQFEVRRqC+vYdwNEZlkV+zpxRFUZThOdpiWRkLq4owxrI83ICKhqIoygTQ3WsVwnBWg/e6JK6hoqEoijIBhCOWSBQFrMIbKhqKoijKkDiiUei3RMMtpURUNBRFUSaAcNRyTxX5vYB7SomoaCiKokwAg91TamkoiqIoQ9AnGpal4ZYFfioaiqIoE0DIFo0Cv1oaiqIoygiEbcvCiWm4pWihioaiKMoEMDB7yi3l0VU0FEVRJoBwJIbXIwTyrJ9ZzZ5SFEVRhiQcieH3esjzWD+zuk5DURRFGZJwNIbf5yHPK4BmTymKoijD0GuLhs9r/cyGVTQURVGUoQg57qm4paHuKUVRFGUIwpEYAZ+HPNvS0JRbRVEUZUjCkf4xDV3cpyiKogyJEwj32dlTWhpdURRFGRIn5danMQ1FURRlJBz3lN+ri/sURVGUEQhHY+R5+1Ju1dJQspL69h6McceHU1FyGcfS8MUD4WppKFnGibYeLvz2czy7qyHTU1GUKU88eyoeCHfHzZyKhos41NRFJGY41NSV6akoypQnFIkR8E7BMiIiMldEnheRXSKyQ0T+zh6vEJH1IrLX/luesM9XRWSfiOwWkSsTxs8Rke32a3eJiNjjARF5xB5/VUQWJOyz1n6PvSKyNp0n7zbq23sAaOoKZ3gmiqI4Kbdez9RzT0WALxljTgPOA24WkeXAV4BnjTFLgWftf2O/dh2wArgK+IGIeO1j3Q3cCCy1H1fZ458GWowxS4A7gdvtY1UAtwLnAmuAWxPFSelPQ3sIgOZOFQ1FyTRO7SkRIc8r9MamiHvKGFNnjNlqP+8AdgGzgWuA++3N7gfeZz+/BnjYGBMyxhwE9gFrRKQGKDXGvGKsSO0DA/ZxjvVL4HLbCrkSWG+MaTbGtADr6RMaZQBqaShK9uCs0wDI83qmjnsqEdttdBbwKjDDGFMHlrAA0+3NZgNHEnY7ao/Ntp8PHO+3jzEmArQBlcMcS0nCibhohDI8E0VRnEA4gM8jUy8QLiLFwGPAF40x7cNtmmTMDDM+1n0S53ajiGwWkc2NjY3DTM3dxN1TamkoSkaJxQyRmImLRp7XM6ViGohIHpZg/NQY8yt7uN52OWH/dfI8jwJzE3afAxy3x+ckGe+3j4j4gDKgeZhj9cMYc48xZrUxZnV1dXUqp+RK6jssS0NjGoqSWZzeGXFLwytTZ3GfHVu4F9hljLkj4aXHASebaS3w24Tx6+yMqIVYAe+NtgurQ0TOs495w4B9nGNdCzxnxz2eBq4QkXI7AH6FPaYMwBhDfXsPItARihCKRDM9JUWZsoQitmgkxDTcUkbEl8I2FwIfB7aLyDZ77GvAt4FHReTTQC3wIQBjzA4ReRTYiZV5dbMxxvkFuwm4DygAnrIfYInSgyKyD8vCuM4+VrOIfBPYZG/3DWNM8xjP1dW090To6Y2xqKqIAye7aO4KU1NWkOlpKcqUJGyLRsCXGAh3h6UxomgYY14keWwB4PIh9rkNuC3J+GZgZZLxHmzRSfLaOmDdSPOc6jTYQfDTZpVy4GQXTZ0qGoqSKRz3lNOAyQqEu8PS0BXhLqHeDoIvrykFNBiuKJnEsTT6B8LdYWmoaLgEJ932tJoSQEVDUTLJYNEQbfeqZBf1cdGwLI2TnbpWQ1EyRXhAINznopiGioZLaGjvoSTfx4ySfHweUUtDUTLIoJRbj8THch0VDZdwsjNMdUkAj0coL/KraChZzw9f2M/v3xi07MoVDHRP+X1TtIyIkr1090YpyLPqQlYW+bX+lJL1PPjKYX699VimpzEhOFZFIMHSiEyVgoVKbhCOxOIf0IoiP00a01CynNZgmNbu3kxPY0Loi2lYN3I+zZ5Sso1QJBo3hSvUPaVkOb3RGF3hKG1uF42E7Cldp6FkFZalYd3VlBXk0d4TyfCMFGVoHLFoDbpUNKJWEQy/b4qXRleyl1BCGebigI+ukIqGkr04YtHWHcYqM+cuBloaPo+6p5QsIzGmUej3EYrEXHNno7iPtm7LfdobNXT3uq+45sB1GuqeUrKOREujKGC5qbrC7vsyKu4g0S3lRhdVsiq3mj2lZBWhhJhGUcCqQxkMq4tKyU7cLhrJ+mmopaFkFeFINME9ZVsaIbU0lOwkMWvKjRlUyQoWahkRJasIJcQ0ivxqaSjZTWs/0XBfeng4EsPrEbweq6uElkZXsgpjDOFoX0yj0I5pdGoGlZKltAX7hMKN7qneaCwez4C+mIYbMsVUNFxAb9RgTF/JgmInpqHuKSVLae3upao4ALjXPeXcxIGVPQW4IhiuouECBgbdCm33VJe6p5Qspa27l5qyfPK84spSIomWP1hlRABXxDVUNFxAyM5z78uesv4GNeVWyVJag71MK8yjrCDPle6pUKS/e8pnxzbcUB5dRcMFDLQ0nJRbXRWuZCtt3b1MK/RbJW/caGkkJKZA33fTDQtuVTRcQKi3fxnmwjxNuVWym9ZgmGkFeUwr9NPq0uypfu4pjy0aGtNQsoHBC4k8BHweTblVspJYzNiWhnvdU4NjGpZ7yg1ptyoaLqDP0vDGx4oDPk25VbKSznCEmLGqMU9zq2gMiGk4z91QtFBFwwUMLMMM1loNDYQr2UibLRJlBXmUFbo3ppHnHWxpaExDyQocSyPxzqbIr+XRlezEsSycQHhHKOIKt00ioUiM/LzBMQ21NJSsIOT0I074kBYFfGppKFmJE/ieVmi5pwDXWRtd4QiFdhYj9C3uc4M4qmi4gGSWRqHfqzENJSuJWxp29hS4b1V4MBSlyN8XY3RcVZGYioaSBTjZU4nmcJHfp9lTSlbi3MwU5/viJW86XNaeOBiOxCszQGL2lLqnlCygr0tY351NYcCr6zSUrKTbdpsW5vkosO/Ge1zUvc8YQzAcjbcogARLQ0VDyQZCEbuMSIKlURxQS0PJTpz2rvl+T9w67onkvtvGIRyNEYmZeGUG6BMNjWkoWcHAfsRgFS1US0PJRrrDUbwewe/1xNcWdbsoacOpLt3f0phCtadEZJ2INIjImwljXxeRYyKyzX68J+G1r4rIPhHZLSJXJoyfIyLb7dfuEhGxxwMi8og9/qqILEjYZ62I7LUfa9N10m7D6UfcL3vK7yUcjcUFRVGyhWA4SkGeFxEh3y5541jLbiBoW1JFCTGNYhfVg0vF0rgPuCrJ+J3GmFX240kAEVkOXAessPf5gYg4cns3cCOw1H44x/w00GKMWQLcCdxuH6sCuBU4F1gD3Coi5aM+wylAMkvDMY3ddAenuIPu3mg8luHGmEbQFoYCf/8KDeCOgP+IomGM+TPQnOLxrgEeNsaEjDEHgX3AGhGpAUqNMa8Yq3XVA8D7Eva5337+S+By2wq5ElhvjGk2xrQA60kuXlOeUMQy9339RMPu3qdxDSXL6A5HKLAtjHy7ioGbbm667HNxvoNgZYqBO7ppjiemcYuIvGG7rxwLYDZwJGGbo/bYbPv5wPF++xhjIkAbUDnMsZQBDKxzA32NmIIu+JAq7qK7ty+zyHFPuSkQ7nznElNuAz4vfp+H9p7cX48yVtG4G1gMrALqgO/Z45JkWzPM+Fj36YeI3Cgim0Vkc2Nj43DzdiWhSKxfPAMSfKguuoNT3EEwHI2LRVw03OSeCg+OaQCU5vumhnsqGcaYemNM1BgTA36MFXMAyxqYm7DpHOC4PT4nyXi/fUTEB5RhucOGOlay+dxjjFltjFldXV09llPKaZJbGnb3PrU0lCyjJ8HScLKoenrdY2k4bZYTYxoAJfl5dE5V0bBjFA7vB5zMqseB6+yMqIVYAe+Nxpg6oENEzrPjFTcAv03Yx8mMuhZ4zo57PA1cISLltvvrCntMGUAyS8MJhLvBh6q4Cyd7yiGQ53GnpRHoLxrFAR8dLnBP+UbaQER+DlwCVInIUayMpktEZBWWu+gQ8DkAY8wOEXkU2AlEgJuNMc6n4SasTKwC4Cn7AXAv8KCI7MOyMK6zj9UsIt8ENtnbfcMYk2pAfkqRzNJwREOLFirZRmL2FEBBntdVotGVJKYBUOIS99SIomGMuT7J8L3DbH8bcFuS8c3AyiTjPcCHhjjWOmDdSHOc6oQi0X4NmIB4sTS1NJRso3uApZHvMtGIl0nxD7Y0aruCmZhSWtEV4S4gNKAfMbgrxU9xFwPrMuXneeKlRdxAVziK3+vp14QJrJiGGywNFQ0XEIrECAwQjYI8L16PuCLwpriL7t4o+YPcU+4JhAfDEQoHxDPAcU/lfkxDRcMFhJNYGiLimsCb4h6iMUM4EqMwL2ENg8vcU12h6KB0W7BEozMUwcrzyV1UNFyAZWkMdWejloaSPThuqAJ/30+P62IavZFB8QywYhoxk/trp1Q0XEA4Eh3kngLLh9quoqFkEcH4Goa+O/F8n8vWaYSiSUWjJN9qbZvrLmMVDRcQjg52T4F7fKiKe+gJW+KQmD1V4PfS46YqtwO69jmU5DtFC3P7O6mi4QJCvYMD4QAlAZ9mTylZRbDXWcOQkD3l87qrYGEoOmhhH/RlNHbk+HdSRcMFDG9p5PYHVHEXjjj0X6fhrhXhVkHGwZZGab47yqOraLiAIS2N/LycN4UVdxEXjURLw+91VZXbrlAkuaURsGIauf6dVNFwASNZGrme4qe4h3j2VF5/91Q4EiMac8fn1KqtNXRMQwPhSkaJRK0vW7KU2+J8H5GYcVVmipLbBJOU2HBTy1djDF3hISwNdU8p2YDTqD65peEOc1hxD46lkZ+YPWVXaHbDzU0oEsOYwcUKAYr9GghXsoCQ/UVLFtModUm2huIekhXzc1MjJqfCbTJLw+NxR5UGFY0cZ3hLwx3msOIe+txTCYv7bNFwQ9HCYJLssETckNGoopHj9FkaQ69AzfU7G8U9OMKQaBm7ydLoa8CUvOtESb5PA+FKZglHrQ9pMkvD6ROe63c2invoDkcoyPPi8Uh8LN9FMQ2n1WuyMiJgd+8L5fZNnIpGjuN80QZ27gP3lC1Q3MPArn3gMksjNJKlkft9wlU0chwnTXHgFxES3VO5/SFV3MPA/uDgLtHoDI1gaWhMQ8k0XaHkrSVB3VNK9tGTxNIoiItG7runWoNhAMoL/UlfL8zzxuMeuYqKRo4zXLaGN57ip6KhZAcDW71CX0zDDdlTLUHLFTykaPi98fLwuYqKRo7TnaRqaCJuyAtX3EN3ONpvYR+4yz3VEgwT8HmSuosBCgO+nBdHFY0cJ5UUP7U0lGzBqgDrYtHoClNRlNzKAMs91Ru1Wt7mKioaOU6yqqGJlOTnfoqf4h66kwbCnZRbF4hGMMy0IVxT0Pc9zeX+ISoaOU58he2QK1D7Uvy6w1H2NXRO2twUZSDB8OBAuN/rQcQdgfCWYC8VRXlDvu54BJxmVLmIikaOEwxH8Xs9+JKs04D+7qm7/7SP99z1F9o1xqFkCKsVan/REBEK8rxTwtJwzj2XM6hUNHKcYDgypGsKLNFot0XjxX0nCUdibD7UjDFGxUOZVIwxdPRE4uuHEsnPc0ef8JauMOWFQ1sajmvOWQSYi6ho5DjJUhgTmVVWQFNXiNqmIG8cbQNgw4FmHtxwmPP//dmc9q0quUVPb4xIzMQrFSSS7/PQHc5t91Q0Zmjr7qViWEvDdk/lcNqtikaO0z2CaFy1cibGwDef2EkkZijI8/LK/iYeeOUwXeEozfZiJEWZaJyEjKSWhj/3LY327l5ihuHdU3bJ9GAOu+JUNHIcy0ecPN0WYOmMEpbNLGH9zno8An9z7jy2H2uLB8S7tNeGMkk4sbWSJOnh+T4voRz+IQUrngEMn3Kr2VNKpkmWjTKQq8+cBcDK2WVcvmx6v9d0DYcyWcRFI5l7Ks+T84venNXg04aJaRTavcNz+WZNRSPHSbZYaiBXn2GJxnmLKjl7fjkFeV4WVxcBuf3hVXILpzLBkIHwHE+5bekavu4UJKzTyGGBHFE0RGSdiDSIyJsJYxUisl5E9tp/yxNe+6qI7BOR3SJyZcL4OSKy3X7tLhERezwgIo/Y46+KyIKEfdba77FXRNam66TdxEiBcIB5lYU8+Ok13HTxYvLzvPz2lgu5/YNnAH1VORVlohnO0nBDym0q7imnDazbU27vA64aMPYV4FljzFLgWfvfiMhy4Dpghb3PD0TE+UW7G7gRWGo/nGN+GmgxxiwB7gRut49VAdwKnAusAW5NFCfFIhiKUJA3dEzD4e1Lqym3P8ynzChhRmk+QM7X9ldyh85h3VPenL77hj7RGM49le+bAqJhjPkz0Dxg+Brgfvv5/cD7EsYfNsaEjDEHgX3AGhGpAUqNMa8YYwzwwIB9nGP9ErjctkKuBNYbY5qNMS3AegaL15Qn2BtN2sR+JJwvrloaymTRPox7KpDnibcuzlVagr3keSXekiAZHo+1kDGYw9+7scY0Zhhj6gDsv050dTZwJGG7o/bYbPv5wPF++xhjIkAbUDnMsZQEUgmEJ8MpZ6CioUwWjnsq2Y+qK9xTXdZqcNvzPiRFAa+m3CaQ7GqZYcbHuk//NxW5UUQ2i8jmxsbGlCbqBqIxq1pmYQruqYHkeT0EfB4NhCuTRkdPhCK/F69n8FfbLe6p4VaDOxT4vVMy5bbedjlh/22wx48CcxO2mwMct8fnJBnvt4+I+IAyLHfYUMcahDHmHmPMamPM6urq6jGeUu4RHKGJ/UhYFXBVNJTJoTPUm9Q1BVbKbU9vFMt7nZu0BHuHzZxyKMzzJV0R3tDRw2fu38TL+09OxPTSxlhF43HAyWZaC/w2Yfw6OyNqIVbAe6PtwuoQkfPseMUNA/ZxjnUt8Jwd93gauEJEyu0A+BX2mGIzUln0kSgK+DQQrkwaVt2p5FZxQZ6XmIHeaA6LRlc4JdEo8A9u+drQ0cN192zgj7sa+OmG2omaYloY0a8hIj8HLgGqROQoVkbTt4FHReTTQC3wIQBjzA4ReRTYCUSAm40xztW5CSsTqwB4yn4A3As8KCL7sCyM6+xjNYvIN4FN9nbfMMYMDMhPaeJl0ccoGsUBn7qnlEljONFwGjF190bx+3Jz+Vhbdy9lBSO7p4oCg0Xj3hcPUtsU5Mw5ZWw40IQxZsTYSKYYUTSMMdcP8dLlQ2x/G3BbkvHNwMok4z3YopPktXXAupHmOFXpirunRh/TAMvSUPeUMll09PRSNsSdeMAWjVBvFFL44c1G2rp7h023dSjI89Hc1d1vrK61h9nlBXzsvPn80y/fYE99J6fOLJmoqY6L3JR0BehzT405pqGWhjKJjOSegtxtxNTTGyUUiVGaguAV+r2DYhqNHSGqiwOcv7gSgFeyOK6hopHDjNs9le/TlFtl0ugIRSgd0j1lt3zN0Uq37d3WGpRU3FOFSWIajZ0hqksCzCkvZG5FAa8caJqQeaYDFY0cJqiBcCWH6OgZJnvKl9vVX9tGJRq+Qed50hYNgPMXVbLhQDOxWHYmBaho5DDdveOLaZQE1NJQJofeaIye3ljSsujQFwjP1QV+raO2NCLx9OJQJEprsJeqYks0Tp8zjbbuXho7QxM34XGgopHDjNc9VRTwEYrE6I3mph9ZyR2GK1YIUOB33FO5+VlsC6YuGgV+K704ZJ9rU6dVs8qxNOZXFAJw6GTXREx13Kho5DDjXafhlHPQYLgy0Thl0YuHcE8FppB7qsjfv2hhY4dlUVTblsb8Sks0DjcH0z7PdKCikcN02c3pC/PGHggHbcSkTDwjWRqOeyqUo4Hw0cY0oK+iQ1w0bEtj9rQCfB6htklFQ0kzwd4Ifp8Hn3ds/43FWrRQmSRGdk/ldkzDEY1UUm4LBrR8PdnZXzR8Xg+zyws41KTuKSXNdKfQgGk41D2lTBaOe6p0yOwp66col91TJQFf0mKMA3G+s10D3FOVxX0LH+dVFFKr7ikl3QTD0TG7pqCvPLquClcmmlTdU7kaCG/v7k3JyoAk7qnOEGUFefG4DlhxjcPqnlLSTfcYe2k4OF9gtTSUicZxgQ7VoCjXU25TrTsFfZZGd4Kl4bimHBZUFtHW3Uur3Q0wm1DRyGGC4ciY12hAQkxDA+HKBBMXjSEsDa9H8Hs9OdtTYyyikZg95WROOcyz026z0dpQ0chhhqvlkwravU+ZLDpDEfxeTz8XzEByueXraETDWcR3tMUqWpi4GtxhfmUR0Jd2G42ZrOk1oqKRwzQHw5QXjVy/fyg0e0qZLDp7IiP2ss/llq+jEY3yIj/zKwvZdqQFsCyNqiEsjVo7g+r9P3iJT923KSsSBVQ0cpiWrjAVKTR9GQqv3eRe3VPKRNMVigzpmnLIz3XRSKEsusPZ88rZWttKe08vXeHoIEujwO9lekmAQ01BwpEY24+18fzuRtau20i7nYmWKVQ0cpRozNDa3TsuSwO00q0yOXSEIhSNEH/Lz8vNmIZTFj1VSwPgrHnTaOwI8dCGwwCcPW/aoG0WVBZR2xTkWGs3xsC7V85ka20LH/3xq7R0ZS5ArqKRo7R392IMKTWyH44ivzeeL64oE0VXaOT4m2Vp5F5Mo30UC/sczp5XDsB/P7eP2dMKeNuCikHbzKss5HBzV3y9xqcvWsg9N5zD7voOvv67HWmY+dhQ0chRmu1UvIpxWhpFAR9BtTSUCaYzFIknXgxFrrqnRlNCxOHUmSXk53kIhqNcs2oWniSLAudXFFLfHmL3iXbAinNctmwG7z29hpf2ncxYYFxFI0dxzNNUGtkPR5HfF28bqygTxVQQjWmjEI08r4czZlsuqfedNTvpNvPswoUv7msi4PPE4x5rFlZwsjPMgQxVwR17vqaSUZq70mVpeDnZmX0LiBR30RWKDNlLwyHf56E+B91TY7E0AD78trnMqyzklBnJe4EvsNNuNx5sYl5FISKWNXLuwgp7vJnF1cVjnfaYUUsjR2m16/en0sh+OAoDamkoY6MzFOHau1/mjvV7RrQQrJTb4UWjwO/NyXavraPopZHItefM4bsfOnPI150S6T29sXgKLsDCqiKqigNsPNg8htmOHxWNHCVtMQ2/l2Ao976oSubZfaKdzYdbuOvZvXzkng1D+thjMUNXODpkCRGHfJ83K9YhjJa41V88vu/iQKYV+uM91ecmiIaIcO7CChUNZXS0dIUJ+DwUjKNgIViBcK09pYwFZ0Xz9Wvm8fqRVt481p50O8eSHVE08jw5GdM42RXC7/WM6H4bC87KcMfqcFizsIJjrd0ca+1O+3uOhIpGjtLcFaaiyB/3c44VJxCeLSUKlNzBEY3/c9kS8rzC468fS7qd0yxsxMV9fm9OVrlt6gxTWTz+72IyHLFIdE+BlX0FcLBx8oPhKho5Skuwl2njzJwCKAxY/YpzMT9eySxHW4JUFvmZNa2Adyyt5vdv1BGLDb756AxZPv8Rs6d8XsKRGNEkx8hmmrvC/XphpJOhRGNWWQEAx9XSUFKlJRimomh8QXBIaMSkwXBllBxt6WZOufXj9derZlHX1sPmwy2Dtuu0LY0Rs6dytOVrU2eIyqLAyBuOgctPm8Glp1bH3VQOM8oCiMDxNhUNJUVausLjXqMBCQ1hNBiujBJLNKw74EuXTQdgSzLRsGubjZg9lWf9HOUjyjLfAAAgAElEQVSa1Xuyc+IsjbPnlfO/n1yD39f/pzrg81JVHKCutWdC3nc4VDRylOZgeNyZUwDFduVRrT+ljIZYzHCspZs5FZalUZqfR0nAR3374B8x57M1UpVbx9LIpfpTxhiaukJUpuG7OFpmleWrpaGkRjRmaOtOU0xjQOtJRUmFxs4Q4WgsbmkAzCjL50TbYNFwsvNKAsO7U3Oxe18wHKWnN0Zl8cS4p4ajpqyAuiTXe6JR0chB2uxihRXjXNgHfXd/WrRQGQ1HW6wiek5MA2BmaT4n0mBp5JJoNNnVFDJhadRMy+d4a/ekZz6qaOQgzmKi8ZZFhz4/s67VUFJlf2NnvA3p3ATRmF4aGNY9NXI/jdyLaZzsCgEMaqI0GcwqKyAYjtLePbnf3XGJhogcEpHtIrJNRDbbYxUisl5E9tp/yxO2/6qI7BOR3SJyZcL4OfZx9onIXWInPItIQEQescdfFZEF45mvW2gJpqdYIRDvcaCioaTC1toWLv/eC3zriV0AzJ7W556aWZpPQ0doUMpsZyhCnleGbfUKfZl8mW4yNBqaHUtjggLhw1EzLR+Y/AyqdFgalxpjVhljVtv//grwrDFmKfCs/W9EZDlwHbACuAr4gYg4n6K7gRuBpfbjKnv800CLMWYJcCdwexrmm/M4d3PTS8d/dzOwyb2iDMfTO04AlrVbVeynwN8nBDPL8onGDE2doX77dIUiI64GB5hRav0INiSxVrKVJtvSyERMY9Y0y8qry0HRGMg1wP328/uB9yWMP2yMCRljDgL7gDUiUgOUGmNeMZZz7oEB+zjH+iVwuUzEssscw1nQ43xoxkOR9glXRsGzuxq4aEkVX3n3Mq5fM6/fa86P/sC4RirFCqHvJqi+PTTCltnDyQzGNPoW+E2uyI63WIoBnhERA/zIGHMPMMMYUwdgjKkTken2trOBDQn7HrXHeu3nA8edfY7Yx4qISBtQCZwc57xzmuOtPRQHfJTmjz8QHvB58HpEs6eUETnc1MW+hk7+Zs08PnXRwkGvz3REo62HM+b0jXemaGkEfF7KC/OSBtOzlabOMEV+bzyIP5lUlwTweWTSLY3xisaFxpjjtjCsF5G3htk2mYVghhkfbp/+Bxa5Ecu9xbx58wbt4Dbq2rqpKctPy7FExGr5qov7lBF4dlcDAJefNj3p6zPtz+TAYHhXODXRAMtayTb3VDRm+MJPt7CoupibL13S71yaukIZcU0BeD3CjNL8Sbc0xuWeMsYct/82AL8G1gD1tssJ+2+DvflRYG7C7nOA4/b4nCTj/fYRER9QBgyqB2yMuccYs9oYs7q6uno8p5QT1LX1UJMG15SDVrpVUuEvextZVF00qKSFQ1VxAK9HBrmXOnsiI2ZOOcwYIm03k2w70srTO+q5+0/7ufLOP/eL2TRN4GrwVJhTXsChpsktWjhm0RCRIhEpcZ4DVwBvAo8Da+3N1gK/tZ8/DlxnZ0QtxAp4b7RdWR0icp4dr7hhwD7Osa4FnjNajpXjrT3MnpYeSwOsYLgGwpWR2FPfyemzy4Z83esRqosDg2MaKbR6dZhZmp91MY0XdjfgEbjn4+fQ2BHiy49tj6+NODmBdadSYfmsUnbVtU9qkcfxWBozgBdF5HVgI/CEMeYPwLeBd4nIXuBd9r8xxuwAHgV2An8AbjbGOL9UNwE/wQqO7weessfvBSpFZB/wD9iZWFOZUCTKyc4QNWXpszSKAz4NhCvD0h2Ocqy1m0VVw7cXnVGWP8g91RmKUOxP0dIoy+dkZ4jeaPas1Xh+dyNnzyvnihUz+eerTuWPu+r59WtWGfiGjhDVJZmzNFbOKqOnN8aBxs5Je88xxzSMMQeAQb0KjTFNwOVD7HMbcFuS8c3AyiTjPcCHxjpHN+KUaUhXTAOsUiIaCFeG4+BJywWyeHpy15TDzNIABwb0eBideyqAMaT9xmisNHT0sP1YG/905akAfOrChfzvS4d4dlcDb19aTXNXmCXTk/f4ngxW2pbfm8fbWDpEr/F0oyvCcwwn6JWOdFuHooAGwpXh2W/fyS6uHt7SmFmaT11bT9x909HTS1c4yvSS1Fw4iRlY2cCf3moE4JJTrVipxyOcPruMHcfbeOuE1anwtJmZE43F1UUEfJ4huyZOBCoaOYaTXpdOS6Mo4NN+Gsqw7G/sRAQWVg1vaSyqLqYzFInHJZx2pLPLU7vJcdZ6ZENc460T7dz25C4WVxexvKY0Pr5iVimHmoJsOmSVgV+W8Npk4/N6OK2mlDePtU3ae6po5BjpXNjnUOj35Zyl0Rbs1Ra1k8iBxi5mTysYcT2C04bUuQs/2mx9XhOr4Q5Hn2hk1tLo6Y2ydt1GCvK83PfJNf1aua6YbYnEb147xozSQFpaFIyHlbNL2Xm8PWnXxIlARSPHON7WQ0WRP62LiYoD3pyKaWw82Myaf/8jt/zstZxrDZqr7G/sHNE1BbDMFo3dJzqABEsjxZucyiI/Po9kXDT21HdQ3x7iX//qNOYOaLW6vMaKI9Q2B1k2M3NWhsPKWWV0hCIcbg5OyvupaOQYda3pW9jnYAXCo5N2pzIe9jd28tkHNlPo9/LE9jq+8bsdmZ6S64nFDAcau1ISjWmFfmaUBvqJRsDnoSrFtQwejzC9ZHDa7mTjzH95EtfTjNJAvGzIaRl0TTmcu6gSEXh4Y+2kvJ+KRo5x4GTXoCbz48XpcxDMgT4Gdz27l5gxPH7LRVy/Zi73v3JY04UnmBPtPXT3RllUPXw8w+GUGSXsrrdFo6Wb2dMKGE3JuOmlg9N2U2XbkVZu/unWcafs7qnvwO/zJF3IKCIsn2WJxWk1mQuCOyysKuL9q2Zz38uHJqWkiIpGFtPTG+Xl/X1ltpo6QxxuCrJq7rS0vo+z8CqY5T++vdEYz7/VwJUrZjK3opCLllgZLUcmySyfKnz98R3c8rOtPL+7gc2HmvnSo68DVgA4FZbNLGFvQyeRaIyjrd0pB8EdFlcX81Zdx5hiVg++cpgnttfFU4THyu76TpZOL8brSS52jmhkg3sK4O/fdQoxY7jr2b0T/l4qGlnMLzYf4W9+/CobDjQB1l0UwFnzyofbbdRU2H05Gjoyn7EyHJsONtPeE+Fdy2cAxC2uWhWNtHGgsZP7Xj7EU2+e4JP/u4lrf/gKrx9t5fYPnp7y5+7UmaWEIzEONQXjlsZoOGd+OU1d4Xijp1SJxQwv7GmIn8d42HOig1OHWfdw7dlzWHv+fJZMH9llNxnMrSjkY+fNJxozE54gMt6ChcoE4qT03ffSIc5bVMlrta147TzxdOKY4IeauuKLhbKRZ3bWE/B5ePvSKiBBNEb546IMzc831uLzCM//4yUcbgoSikRZPqt0VAvtnGD460daOdkZGpNoAGw+3MKCEVJ8E9l+rC1eqnx/49gtjbZgLyfaezhlmPUXS2eU8G/XDFqPnFH+718tH5UbcKyoaGQxW2tb8Ag8s/MER5qDvHakhdNqSvo1vkkHC6qsH9/R3tlNJsYY1u+s5+1Lqyi0S1KUFeZRmu9TSyNN9PRG+cWWo1yxYgZzKwoHZQ2lypLpxfh9Hn5mB2bnVIxONJZOL6Yk38eWwy1ce86ckXeweX53AyJWWZzxuKf2NFjxmOEsjWxksloNqXsqS2no6OFoSzefunAhIsL3ntnN60faOGtuel1TYGVPTS8JjNsPPJHsquvgWGt33DXlMK+yUEUjTTyzs57WYC9/s2b+uI6Tn+fl4+fNZ8thy1JObAmbCh6PcPa8crYcHlTQelie393IqrnTWDGrdFzuKSdzajhLYyqjopGlbD1sxS/ec0YNX7hkMb/ZdpzOUISz5qU3CO6woKqIw5NcYnk0rN9ZjwhctmyAaFQUaiA8TTyz4wRVxX7OX1w57mMl9p0YbSAcYPX8cvbUd9LWnVq/8JOdId442sqlp05nUXUxB8ZxA/TWiXaKAz5mpTm13S2oaGQpW2tb8Hs9rJhVypeuOJV/++sVLKou4sIlVRPyfgsqCzmUxe6p9btOcPa8cqoH1DCaV1HE0ZZuXeQ3TsKRGC/sbuTyZTOGzBgaDRVFfv7u8qXMLM1nRop1pxJx4hqv1baktP0LuxsxBks0qopoDfbS3BUe9fsCbDjQzNnzyyfN3ZNrqGhkKVsPt7BydikBnxW/WHvBAp770iXxMgvpZn5lEY0doaxc83C8tZs3j7UPck2BZWmEo7FJX0F85/o9rN9ZP6nvOZFsPNhMRyjCO5Nc47Hy2Xcs4uWvXIbPO/qfmRV2QsbOutQK8T2/u4HqkgArZpXG15McPDl6F1VDew/7Gjq5IA3WlltR0chCth9tY0ttCxctnbwuhE4humx0UTk/zkOJBkxuEP94azfff3YvX/v1drpd0rxq/c4TBHweLkqzJesZo9VSVpDH7GkF7Dw+smhEojH+vKeRS06pxuOReM+PsWRQvbzfSm+/cPHEWPRuQEUjyzDG8PXf7aCyyM9n3r5w0t53fmV2ZFCFIlHuWL+H1mCfa2H9znoWVRclLWPhiMZ44xpHmoMp57c/9eYJABo7Qjy04fC43neyGUrknn2rgYuWVKU9M288OF3pRmJrbSvtPREuW2b1Lp9TXkCeV9hjB7RHw0v7TlJWkBdfvKcMRkUjy/jdG3VsOdzCP1+5jNL8vEl73wWVjkmfWUvjpX0nuevZvdz74kEA2rp72XCgKamVAVAzLR+fRzg4Dgvp+bcaePt3nueePx9Iafsnt9exbGYJb19axd0v7M+ZYo8N7T2c/+1nueOZ3f3G69q6OdrSPWHxsrFyWk0pB0920TNCeZvHthzF7/Vwob1+x+f1cPEp1Ty44XA8EyoVjDG8vL+J8xdVpiWu41ZUNLKISDTGHc/sZtnMklHlp6eDooCP6pJAvNlOpthWa2WNPbzpCOFIjD/tbiASM1yxfGbS7fPsZIHNh0aXnunQFYrwr795E4C7X9hPR8/w2Tp1bd1sOdzCe0+v4ZZLl9DcFeb3b9SN6b0nm/95fh+twV5++MKBfm7IzfYi0tUL0p/OPR6W15QQMwz7w7+3voNfbDnCx86b3+8m6z8+cAYl+Xnc8rOthCKpuRAPNwU51trNhUs0njEcKhpZxGNbj3KoKcg/XnHqmH3B42HNwgpe2N2Y0f7Mrx1pJeDz0NgR4pmdJ1i/s56q4gBnDVNv67zFlWw70ppyfGHH8bZ4Vs6d6/dwvK2br1+9nNZgL1969HVuemgLd/9pPyc7B5dVeXTTUcBKhV6zsILF1UWTVl10PBxtCfKzjbVcuWIGeV7htid2xV/bcriFgjxvVlRsTcSZz1AuKmMMt/9hN4V+H7dctqTfa9UlAb71vhXsbejkz3tOJt1/IC/Zdd7O13jGsKhoZAntPb18/497OXPuNC4/bXpG5nDNmbNo6grz4r7UvmTpJhYzvH6klfetms3cigL+7Xc7+eOuet552vRhRfSCxVX0Rg2bU1gMFosZbnpoKzfcu5GNB5u5/5VDfPicuXziwoVctWImz+ysZ2ttC7f/4S3eeccL/WIlx1u7+eEL+7lqxUwWVxcjIlz3tnlsrW1lT/3o/eeTxcMba7n27lcQEW69egU3XbKYZ3bWx7u9bTrUzFnzppE3hiyniWRueSFFfu+QGVQ//ssB/rirni9cujhpI6TLT5tBWUEeT21PzRJ8eX8TM0oDLE6xmu9UJbs+JVMUYwz/8us3qe8IcevVk1M/JhkXn1pNab6Px7cdz8j7H2rqor0nwtnzp/Hda89kxaxSqooDfGj18K661fPL8XkknvkyHH/Zd5La5iAdoQgf+8mr+Dwe/uGKUwC48yOr+Ms/X8qrX3snT/ztRURjhi/8tM+9cduTu4gZw7+897T48T5w9mzyvGKVbM/CtSJPba/jK7/azpzyAn76mXOZNa2AGy5YQEnAxw9f2E9nKMKuunZWz88u1xRYmVfLakp5bMtRLv5/z8dXmIMVV/r3J9/ivWfU8Pl3LE66f57XwxXLZ7B+Z/2ILqpYzPDK/iYuXFyl6zNGQEUjC3hiex2/e/04f//OpZyd5gq2oyHg8/Ke02t4eseJjAR3nSq+q+aWc+6iSu775Bpe/PJlnDO/Ytj9igI+Vs2dxispiMZDGw5TWeTnH684hXA0xmffvjC+9qXA743XW1oxq4zvfehMth9r4471e3j9SCtPvFHH5y9e3K8mU2VxgJsvXcLv36jjHx7dllWLDFuDYf6/3+5g5exSHr7xPN62wLqOpfl5/M1583hyex33vLCfmIFzFgx/jTPFJy5YwLmLKmnqDPNTO1OtsSPE1369nbPmTeOOD585rBX6ntNr6AhFeGkE6/mtEx00d4W5IMuSAbIRFY0s4JFNR5hfWchNlywZeeMJ5tpz5hAMR3nwlclPJd12pJUiv3dM5aYvWFzJ9mNtPLbl6JCps8dbu3l2Vz0ffttcbrpkCes+sZpbLls65DGvWDGTD50zh3v/cpCv/Xo7FUV+PvuORYO2++I7T+EfrziF32w7zgOvHBr13CeK2/+wm9ZgmO988MxBC+w+deFCfB4Pdz23j9J8H2dPUHma8XL1mbNY94m38V77ZqanN8qtj79JMBTl/117Znzx61BcuKSK0nwfd/9pP13DLFx1+tboor6RUdHIMK3BMK/sb+I9p9dkRZrf6gUVXHJqNf/z/D7agqnV/UkX2460cvqcsjFdh7UXLOCceeV86Rev82+/25lUOP7rub14PcJHz52H1yNctmwGft/wX4Evv3sZhX4vO463c9PFi+P1lAZy86VLuPiUar779O5J6Z42EgcaO3l0s5VVlGzNwYzSfH71hQv41RcuYMPXLqdkEtO7x8LVZ86iKxzl//z8NZ7cfoK/e+fSlG4u/D4P37hmJVtrW7n+xxuGjD39cZe1FmjWKMu4T0VUNDLM+p31RGKGd69MnlKaCf75ymV0hCLc/cL+SXvPnt4ou+raWTXGKr6VxQF+fuN5fOKCBdz38iH+9Tdv8p7v/4WLbn+OGx/YzG9eO8ajm4/y0XPnM6c89aqrVcUBvvX+07loSRUfP3/o6q8iwrfet5KoMfz7k2+N6RzSyR3r9xDweQZlFSWycnYZZ88rj5eaz2bOW1RBVbGf9TvrufiUaj5/cfI4RjLed9ZsfvSxczh4sour/vPP/GjA5/rgyS42HGjmg2dPbpp7rqKikWH+8OYJZk8rSHtjpfGwfFYp7181m/996eCk3TXvrGunN2rG1crW6xH+718t54rlM/jpq7WEIlHOmlfO1tpWvvjINvJH+BEdir8+cxYPfeZc8vOGd4XMrSjkExcs5Ik3jk9IY6gn3qhj48GRM8Qe3ljL79+o49MXLaSqePTFArMRn9fD2vMXcFpNKd+/btWordF3Lp/Bn//pUt6+tJrvP7u333qchzfV4vUIH5rktVG5iorGJNMdjnLn+j3sqmvnzWNt/GXvSa5aOTPrMjb+/l2nYAz85/qJ7zkMfYv6xlv63eMR7rr+LH722XN55u8v5r+uP4sX/ukS/unKU/nOtWdO+I/oJy5YgNcjrHvpYFqP+8imWm7+2VY+9pNXeWFP45Db/eQvB/jKr7Zz8SnV3Hxp5mNk6eSWy5bw5N9exLTCwem1qVBe5OdLV5xCMBzl168dA6yyNY9tOcrly6YzfYKKgbqN7LdLc5ie3ijffXo3jZ0hbr16BdGY4cYHN/NabSs/+csBigI+qor9ozK1J4u5FYXccP581r10kKoSP5+8cGLvWrcdaaWmLD8tVXzz87xckLBAqyjgm7Qf0Jll+Vx95iwe2XSEL1y6mOklYz+fSDTG1369nS2HWzh4sou3L62iqTPMjQ9sZt0n3oYx8B9P7WJxdTGrF5RT2xTkJy8e5L2n13DnR1aNGK/JNdJxY3XGnGmcMaeMB185zNVnzOKLj2zjZGeYtRcsGP8Epwgy0U3IJ5vVq1ebzZs3Z3oaNHT08Il1m9hZ106eVyjI8xIMR/GIcOtfL+ehDbUcOtnFLz5/ftb25W7r7uUrj73BH3ac4LSZpTzxtxdNmEX0ju88z/KaUn748XMm5PiTyd76Dq7+7xeZNa2Ab/z1Sg42dfHzV2vJ8wrrPvE2KlMU3zue2c1dz+3j8mXTWVRdxBffeQqhSIzr79lAbXOQqDFMLwnQ0xuN98b+8Oo5/McHzsiKpIps5dHNR/jnX74BgEfgPz5wOh9527wMzyrziMgWY8zqEbdT0Ug/wXCEj/xoA/saOvmfj57FjNJ87np2L4uqi/nAWbNZOqOEUCRKW3fvuO5EJ4tHNtXy5ce287PPnJtyHntPb5SHNhymuiTAe0+vGbanQnNXmLO/uZ6vvHtZVlpdY2HjwWY+fd8mOuw0z1NnlHCoqYsFlUV8//pVLJuZvGSHMYbfv1HHC3saeWzrUT549hy++6Ez+23T2BHioz/ZQH6el/s/uYaygjwaO0N09PTGV6orQxOJxvjVa8do7gqzau40zlukabagopGx9+8KRfj8Q1t4ad9JfnzDai4/LX1NbTJFT2+UC779HOfML+fHN4z4meJwUxefe3ALb9mF5hZUFnLPDas5ZcbgnsvHW7v54iPb2Hiwmd/cfOG4AuHZxtGWIHvqO5hXUcTi6iJe3t/EjQ9spiscZc2CCm64YD5XrphJnteDMYajLd18+w9v8cQbdZQX5nHhkiq+c+0ZSbObItEYHpGM1ChT3ImrRENErgK+D3iBnxhjvj3UtpkUjR3H2/jar7az/Vgb3/7gGXx49dyMzGMi+O7Tu/mfP+3jd7dcNKw7rTUY5v0/eJmWYJg7PnwmkajhX37zJj29Ue788CouP206IkJdWzff/+NefvXaMXwe4bb3r+T9Z7k/e6WlK8wvthzhwQ2HOdLczfSSAGfPK2fbkVZOtPfg9Qj/eMWpfO4di1QQlEnFNaIhIl5gD/Au4CiwCbjeGLMz2fZjFY227l4e2VTLb7cdpzsc5cvvXkZdazcbDjRTku/jSEuQlq5e3ntGDafMKCESixGJGhZXF1NdEuBff/Mmf9xVT3HAx50fWTVk/4dcpaGjh7+660W6QhG+/O5lnD67jEVVxRT4vTR09OARobY5yHef3s3rR1v52Wf7ylYcbQnyqfs2sae+k7ctKGdBZRFPbq8jEjNce86cQaU5pgLRmOGFPQ088Mph9jV0smruNNYsrOCiJVUsStJsSlEmGjeJxvnA140xV9r//iqAMeY/km0/VtFo6Qrzttv+yIpZpQTDUfY2WH0l5lUUEopEmVmaTyDPmzRP3usR8rzCLZcu4ePnL6CsILtX146VE209fO6hLbxu14gCEIHEj1CR38u/f+B0rlk1u9++4UiMhzYc5tHNR2joCHHW3GncevUK5lVOLbFQlGzFTaJxLXCVMeYz9r8/DpxrjLkl2fbjcU81tPcwvTSfUCTKb7cdZ2FVUfxu2aGurZvmrjB5Xg8eEbYcbmZXXQdrL1gQ77PtZmIxw6GmLg40dnHgZCddoSg1ZVYwvyQ/j8uWTc+qlqGKoqRGqqKRC+s0kjl2+ymdiNwI3Agwb97YU+ecxT0Bn3fIeERNWQE1ZX31acZSXC+X8XiERdXFtgvFXS44RVFGJhdW/xwFEn/B5wD9Gj4YY+4xxqw2xqyurq6e1MkpiqJMJXJBNDYBS0VkoYj4geuAxzM8J0VRlClJ1runjDEREbkFeBor5XadMWZHhqelKIoyJcl60QAwxjwJPJnpeSiKokx1csE9pSiKomQJKhqKoihKyqhoKIqiKCmjoqEoiqKkTNavCB8tItIB7B7nYcqAtjRMZ6KOVwWcTOPxsv1803k8vXbjQ6/f+Ejn9Uv396LIGDPyQjdjjKsewOY0HOOeNM8p3ccb9znm2Pmm7Xh67fT6ueX6Zep7oe6p5Pwuy4+XbrL9fLP5+mX7uWbztYPsP99svn4ZmZsb3VObTQpFt3KZqXCOE4Veu/Gh1298ZOv1G8283Ghp3JPpCUwCU+EcJwq9duNDr9/4yNbrl/K8XGdpKIqiKBOHGy0NRVEUZYJQ0cgCRGSuiDwvIrtEZIeI/J09XiEi60Vkr/233B5/l4hsEZHt9t/LEo51jj2+T0TuEhFXN5pO87W7TUSOiEhnps5nsknX9RORQhF5QkTeso/z7Uye12SR5s/fH0Tkdfs4P7RbXWcf6Uwn08eY091qgLPt5yVYPdGXA98BvmKPfwW43X5+FjDLfr4SOJZwrI3A+VjNq54C3p3p88uha3eefbzOTJ9Xrl0/oBC41H7uB/7i9s/eBHz+Su2/AjwGXJfp80t6zpmegD6S/KfAb4F3YS1SrLHHaoDdSbYVoAkI2Nu8lfDa9cCPMn0+uXDtBoxPGdGYiOtnv/Z94LOZPp9cvH5AHlY67UcyfT7JHuqeyjJEZAHW3cirwAxjTB2A/Xd6kl0+CLxmjAkBs7E6HToctcemBOO8dlOedF0/EZkGXA08O5HzzTbScf1E5GmgAegAfjnBUx4TKhpZhIgUY5mlXzTGtKew/QrgduBzzlCSzaZEelwart2UJl3XT0R8wM+Bu4wxByZirtlIuq6fMeZKLMskAFyWZNeMo6KRJYhIHtaH7qfGmF/Zw/UiUmO/XoN1B+JsPwf4NXCDMWa/PXwUq4e6w6B+6m4kTdduypLm63cPsNcY858TP/PsIN2fP2NMD1ZL62smeu5jQUUjC7AznO4Fdhlj7kh46XFgrf18LZa/1DH/nwC+aox5ydnYNoM7ROQ8+5g3OPu4lXRdu6lKOq+fiHwLq4jeFyd63tlCuq6fiBQniIwPeA/w1sSfwRjIdFBFHwbgIiw30hvANvvxHqASyy+81/5bYW//r0BXwrbbgOn2a6uBN4H9wH9jL+B06yPN1+47WNZazP779UyfX65cPyyr1gC7EsY/k+nzy6HrNwPYZB9nB/BfgC/T55fsoSvCFUVRlJRR95SiKIqSMioaiq+22mEAAAHWSURBVKIoSsqoaCiKoigpo6KhKIqipIyKhqIoipIyKhqKMsmIyOdF5IZRbL9ARN6cyDkpSqr4Mj0BRZlKiIjPGPPDTM9DUcaKioaijBK7MN0fsArTnYVVDvsG4DTgDqAYOAl8whhTJyJ/Al4GLgQeF5ESrEq63xWRVcAPsUqL7wc+ZYxpEZFzgHVAEHhx8s5OUYZH3VOKMjZOBe4xxpwBtAM3Y63ivdYY4/zg35aw/TRjzMXGmO8NOM4DwJft42wHbrXH/xf4W2PM+RN5EooyWtTSUJSxccT01Q56CPgaVlOd9XazRC9Ql7D9IwMPICJlWGLygj10P/CLJOMPAu9O/ykoyuhR0VCUsTGw/k4HsGMYy6BrFMeWJMdXlKxA3VOKMjbmiYgjENcDG4BqZ0xE8uyeCUNijGkDWkTk7fbQx4EXjDGtQJuIXGSPfzT901eUsaGWhqKMjV3AWhH5EVYl0/8Cngbust1LPuA/sSqWDsda4IciUggcAD5pj38SWCciQfu4ipIVaJVbRRkldvbU740xKzM8FUWZdNQ9pSiKoqSMWhqKoihKyqiloSiKoqSMioaiKIqSMioaiqIoSsqoaCiKoigpo6KhKIqipIyKhqIoipIy/z8OYGRVw9zujQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "sorted_data['inc'][-200:].plot()" ] @@ -252,10 +2300,8 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, + "execution_count": 13, + "metadata": {}, "outputs": [], "source": [ "first_august_week = [pd.Period(pd.Timestamp(y, 8, 1), 'W')\n", @@ -274,7 +2320,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 14, "metadata": {}, "outputs": [], "source": [ @@ -298,9 +2344,32 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 15, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAD8CAYAAABQFVIjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAG2JJREFUeJzt3X2Q1dWd5/H3BxubjEEFBMOD2myFZaLJro5daMp9ELMCmUmJ2TFZRjdSNVbhGFPlrFOrUGHLbGR2ZGsrzrBWHK1oxsQHdDOxZMcgQYSKM8sCzaqjaJjGDYOMxG4WFEwVPWn57h/3tN6+dje3u899/ryqbt17zz3n3MPh3vvt8/D7/RQRmJmZjdeEWjfAzMyagwOKmZll4YBiZmZZOKCYmVkWDihmZpaFA4qZmWXhgGJmZlk4oJiZWRYOKGZmlkVbrRtQTeecc050dHTUuhlmZg1l9+7dhyNi+qnytVRA6ejooKurq9bNMDNrKJL+vpx8nvIyM7MsHFDMzCwLBxQzM8vCAcXMzLJwQDEzsywcUOpEz7ETfPWB7fQcP1HrppiZjYkDSp1Yt6WbXfuPsO757lo3xcxsTFrqOJR6NH/1Rvr6T374/NEdB3h0xwHa2yawd80Xa9gyM7PR8Qilxl68YyHXXDyLSRML/xWTJk5g6cWzePHOhTVumZnZ6Dig1NiMMycxub2Nvv6TtLdNoK//JJPb25gxeVKtm2ZmNiqe8qoDh9/v44bLLuD6Befz+M4D9Hph3swakCKi1m2oms7OzvC5vMzMRkfS7ojoPFU+T3mZmVkWDihmZpaFA4qZmWXhgNJAfDS9mdUzB5QG4qPpzayeedtwA/DR9GbWCDxCaQA+mt7MGoEDSgPw0fRm1ggcUMpQD4vhA0fTP/31K7jhsgvofb+vZm0xMxuKj5Qvw+qnX+WxnQe4YcH5rPny5yrQMjOz+lXukfJelB+BF8PNzMrnKa8ReDHczKx8ZQUUSfslvSrpZUldKW2qpM2SutP9lKL8qyTtk7RX0uKi9EtTPfskrZOklN4u6cmUvkNSR1GZ5ek9uiUtL0qfm/J2p7Knj787BvNiuJlZ+UYzQlkYERcXzaOtBLZExDxgS3qOpAuBZcBFwBLgu5JOS2XuB1YA89JtSUq/CTgaEZ8G7gXWprqmAncBlwELgLuKAtda4N70/kdTHdl5MdzMrDxlLcpL2g90RsThorS9wJURcUjSTGBbRMyXtAogIv4k5dsEfAvYD2yNiN9M6b+Xyt88kCcitktqA34JTKcQmK6MiJtTmQeAbcB6oBf4VET0S/p8Kv/haGgoPn29mdno5T59fQA/lbRb0oqUdm5EHAJI9zNS+mzgraKyB1Pa7PS4NH1QmYjoB94Dpo1Q1zTg3ZS3tC4zM6uBcnd5XRERb0uaAWyW9PMR8mqItBghfSxlRqprcGMKAXAFwPnnnz9UFjMzy6CsEUpEvJ3ue4CnKaxnvJOmukj3PSn7QeC8ouJzgLdT+pwh0geVSVNeZwFHRqjrMHB2yltaV2nbH4yIzojonD59ejn/XDMzG4NTBhRJZ0iaPPAYWAS8BmwABnZdLQeeSY83AMvSzq25FBbfd6ZpseOSLk+7u24sKTNQ13XAC1FY3NkELJI0JS3GLwI2pde2pryl729mZjVQzpTXucDTaYdvG/B4RDwnaRfwlKSbgAPAVwAiYo+kp4DXgX7g1oj4INV1C/AXwCeAjekG8BDwQ0n7KIxMlqW6jki6G9iV8n07Io6kx3cC6yWtAV5KdZiZWY341CtmZjai3Lu8zMzMRuSAYmZmWTigmJlZFg4oZmaWhQOKmZll4YBiZmZZOKCYmVkWDihmZpaFA4qZmWXhgGJmZlk4oJiZWRYOKGZmloUDipmZZeGAYmZmWTigmJlZFg4oZmaWhQOKmZll4YBiZmZZOKCYmVkWDihmZpaFA4qZmWXhgGJmZlk4oJiZWRYOKGZmloUDipmZZeGAYmZmWTigmFlD6Tl2gq8+sJ2e4ydq3RQr4YBiZg1l3ZZudu0/wrrnu2vdFCvRVusGmJmVY/7qjfT1n/zw+aM7DvDojgO0t01g75ov1rBlNsAjFDPLppLTUS/esZBrLp7FpImFn61JEyew9OJZvHjnwuzvZWPjgGJm2VRyOmrGmZOY3N5GX/9J2tsm0Nd/ksntbcyYPCn7e9nYeMrLzMatWtNRh9/v44bLLuD6Befz+M4D9Hphvq4oImrdhqrp7OyMrq6uWjfDrOn0HDvBmp+8wU/3/JITvz7JpIkTWHzRp/jm73zGI4gmIGl3RHSeKl/ZU16STpP0kqS/Ss+nStosqTvdTynKu0rSPkl7JS0uSr9U0qvptXWSlNLbJT2Z0ndI6igqszy9R7ek5UXpc1Pe7lT29HL/LWaWl6ejDEa3hnIb8EbR85XAloiYB2xJz5F0IbAMuAhYAnxX0mmpzP3ACmBeui1J6TcBRyPi08C9wNpU11TgLuAyYAFwV1HgWgvcm97/aKrDzGpkYDrq6a9fwQ2XXUDv+321bpJVWVlTXpLmAI8AfwzcHhFfkrQXuDIiDkmaCWyLiPmSVgFExJ+kspuAbwH7ga0R8Zsp/fdS+ZsH8kTEdkltwC+B6RQC05URcXMq8wCwDVgP9AKfioh+SZ9P5T8cDQ3FU15mZqOXe8rrT4E7gJNFaedGxCGAdD8jpc8G3irKdzClzU6PS9MHlYmIfuA9YNoIdU0D3k15S+syM7MaOGVAkfQloCcidpdZp4ZIixHSx1JmpLoGN0ZaIalLUldvb+9QWaxJ+RQdZtVVzgjlCuAaSfspTDVdJelR4J001UW670n5DwLnFZWfA7yd0ucMkT6oTJryOgs4MkJdh4GzU97SugaJiAcjojMiOqdPn17GP9eahU/RYVZdpwwoEbEqIuZERAeFNY0XIuLfAxuAgV1Xy4Fn0uMNwLK0c2suhcX3nWla7Liky9PurhtLygzUdV16jwA2AYskTUmL8YuATem1rSlv6ftbi5u/eiMdK5/l0R0HiCgcE9Gx8lnmr95Y66aZNbXxHCl/D3C1pG7g6vSciNgDPAW8DjwH3BoRH6QytwDfA/YBbwID3/CHgGmS9gG3k3aMRcQR4G5gV7p9O6UB3AncnspMS3WY+RQdZjUyqiPlI2IbhV1WRMT/A74wTL4/prAjrDS9C/jsEOkngK8MU9fDwMNDpP9fCluJzQYp95iInmMn+MYTL3Hf9ZfU/fESjdRWa10+l5c1pXKOiWikNZZGaqu1Lp96xVpO6XmnBtTjadAbqa3WvLKfesWsWTTSGksjtdXMAcVaTiOdd6qR2mrm09dbS2qk06A3UluttXkNxczMRuQ1FDOzYfi0PJXhgGJmLcfbsCvDayhWl3wgn1VCtS5V3Ko8QrG65L8grRK8DbuyPEKxutKKf0F6NFY93oZdWR6hWE0Mtyjain9BejRWXb5UceV4hGKjluMv6uIf0TVf/tyH6a30F2QrjsbqwQNf+2j365prP3auWhsHBxQbteGCQTnK+RFtlQP5XrxjIWt+8gY/3fNLTvz6JJMmTmDxRZ/im7/zmVo3zWxMHFCsbDn+oi7nR7RV/oJspdGYtQavoVjZcqxv+Ed0sEaaz/fBgHYqHqFY2XIFg1aZ0ipHI43GxjPVaa3B5/KyUbn5h11MnzxpUDAo/lG05uNrsli55/JyQDGzEfUcOzHsulerTlW2Gp8c0syy8LqXlctrKGZ2Sl73snJ4ysvMzEbkKS8zM6sqBxQzM8vCAcXMzLJwQDEzsywcUMzMLAsHFDMzy8IBxWwcfMJEs484oJiNg6+2aPYRHylvNga+2qLZx3mEYjYGOa4NY9ZsHFCsIdV67cInTDT7uFMGFEmTJO2U9IqkPZL+c0qfKmmzpO50P6WozCpJ+yTtlbS4KP1SSa+m19ZJUkpvl/RkSt8hqaOozPL0Ht2Slhelz015u1PZ0/N0iTWCeli7aKSrLZpVwylPDpl+9M+IiPclTQT+GrgN+LfAkYi4R9JKYEpE3CnpQuAJYAEwC3ge+KcR8YGknans/wZ+AqyLiI2Svg78s4j4A0nLgC9HxL+TNBXoAjqBAHYDl0bEUUlPAT+OiPWS/hx4JSLuH+nf4pNDNj5f7Mms+rKdHDIK3k9PJ6ZbAEuBR1L6I8C16fFSYH1E9EXEL4B9wAJJM4EzI2J7FKLYD0rKDNT1I+ALKZAtBjZHxJGIOApsBpak165KeUvf35qY1y4qp9bTiNb4ylpDkXSapJeBHgo/8DuAcyPiEEC6n5GyzwbeKip+MKXNTo9L0weViYh+4D1g2gh1TQPeTXlL6ypt+wpJXZK6ent7y/nnWh3z2kXl1MM0ojW2srYNR8QHwMWSzgaelvTZEbJrqCpGSB9LmZHqGpwY8SDwIBSmvIbKY43FF3vKy1ugLZdRHYcSEe9K2gYsAd6RNDMiDqXprJ6U7SBwXlGxOcDbKX3OEOnFZQ5KagPOAo6k9CtLymwDDgNnS2pLo5TiuqzJPfC1j6Zy11w70t82Vo4X71g47DXjzUajnF1e09PIBEmfAP4N8HNgAzCw62o58Ex6vAFYlnZuzQXmATvTtNhxSZenNZAbS8oM1HUd8EJaZ9kELJI0Je0iWwRsSq9tTXlL39/MRqGa04iNtE7TSG2tF+WsocwEtkr6W2AXhTWUvwLuAa6W1A1cnZ4TEXuAp4DXgeeAW9OUGcAtwPcoLNS/CWxM6Q8B0yTtA24HVqa6jgB3p/fdBXw7pQHcCdyeykxLddSEP3jW6Kq1BbqR1mkaqa31wteUz2D106/y2M4D3LDgfNZ8+XPZ6zdrdI203buR2lot5W4bdkAZB3/wzMrTc+zEsOs09bZDr5HaWi3ZjkOx4Y3mmAhPi1mt1fIz2EjbvRuprfXGAWUcRvPB83ys1VqtP4ONdKqaRmprPfGU1zjd/MMupk+eNOiYiOJtrZ4Ws1rzZ9DGy2soQ6jFubwabT6259gJvvHES9x3/SV12T4bvUb7DDaTZvk+eQ2lTjTafGytp0Usv0b7DDaTVvs++YqNVdAIpwrx6TeaWyN8BptJq36fPOVlgKdFzHJqtu+Tp7xsVDwtYpZPq36fHFBazEjHInirpFk+rfh98pRXi/FpYsxstMqd8vKifIto1UXC8WqWbZ9m1eAprxbhS+eOTatt+zQbD49QWkSrLhKOlUd0ZqPnEUoLacVFwrHyiM5s9DxCaSG+dG75PKIzGz0HFLNh+Ohys9HxtmEzMxuRj5Q3M7OqckAxM7MsHFDMmoAvMV197vOPc0AxawI+ALP63Ocf50V5swbmy/tWXyv2uRflzVqAD8Csvpx93mzTZg4oZhVWyR8NH4BZfTn7vNmmzXxgo1mFFf9oVOKSAT4As/rG2+fNeq44r6GYVUgrzrXn0AqXDGi0SwR7DcWsxry+MTbNNg00lGadqvSUl1mFNOuPRqU06zTQcJpxqtIBxayCmvFHo1JevGPhsNNAzagZz/7tgGJWQc34o1EpHtE1Pq+hmFnd8EXg8qvmsS7e5WVm1sRWP/0qj+08wA0Lzh/ztvVsu7wknSdpq6Q3JO2RdFtKnypps6TudD+lqMwqSfsk7ZW0uCj9UkmvptfWSVJKb5f0ZErfIamjqMzy9B7dkpYXpc9NebtT2dPL7Rwzs0YwntHF/NUb6Vj5LI/uOEBEYZNDx8pnmb96YwVaWlDOlFc/8EcR8RngcuBWSRcCK4EtETEP2JKek15bBlwELAG+K+m0VNf9wApgXrotSek3AUcj4tPAvcDaVNdU4C7gMmABcFdR4FoL3Jve/2iqw8ysaYxnC3Uttq2fclE+Ig4Bh9Lj45LeAGYDS4ErU7ZHgG3AnSl9fUT0Ab+QtA9YIGk/cGZEbAeQ9APgWmBjKvOtVNePgPvS6GUxsDkijqQym4ElktYDVwHXF73/tygELDOzhpZjC3UtNjmMalE+TUVdAuwAzk3BZiDozEjZZgNvFRU7mNJmp8el6YPKREQ/8B4wbYS6pgHvpryldZW2eYWkLkldvb29o/nnmpnVRK7RRbU3OZS9bVjSJ4G/BP4wIo6l5Y8hsw6RFiOkj6XMSHUNTox4EHgQCovyQ+UxM6snuUYX1d62XtYIRdJECsHksYj4cUp+R9LM9PpMoCelHwTOKyo+B3g7pc8ZIn1QGUltwFnAkRHqOgycnfKW1mVm1vAacQv1KUcoaS3jIeCNiPhO0UsbgOXAPen+maL0xyV9B5hFYfF9Z0R8IOm4pMspTJndCPz3krq2A9cBL0RESNoE/JeihfhFwKr02taUd33J+5uZNbxGPCi2nBHKFcDXgKskvZxuv00hkFwtqRu4Oj0nIvYATwGvA88Bt0bEB6muW4DvAfuANyksyEMhYE1LC/i3k3aMpcX4u4Fd6fbtgQV6ChsAbk9lpqU6rA4020WDzKw8PrDRsstxIJWZ1Y9yD2z0ubwsm1Y7W6yZDeZzeVk2vv6HWWtzQLFsfLZYs9bmKS/Lytf/MGtdXpQ3M7MR+ZryZmZWVQ4oTcTHf5hZLTmgNJHxnOrazGy8vCjfBHz8h9lgPcdO8I0nXuK+6y/xLsMq8gilCfj4D7PBPFqvDY9QmoCP/zAr8Gi9tjxCaRKNeKprs9w8Wq8tj1CaRCOe6tosN4/Wa8sBxcyais/WUDs+Ut7MzEbkI+XNzKyqHFDMzCwLBxQzM8vCAcXMzLJwQDEzsywcUMzMLAsHFDMzy8IBxczMsnBAMTOzLBxQzMwsCwcUMzPLwgHFzMyycEAxM7MsHFDMzCwLBxQzM8vCAcXMzLJwQDEzsywcUMzMLItTBhRJD0vqkfRaUdpUSZsldaf7KUWvrZK0T9JeSYuL0i+V9Gp6bZ0kpfR2SU+m9B2SOorKLE/v0S1peVH63JS3O5U9ffxdYWZm41HOCOUvgCUlaSuBLRExD9iSniPpQmAZcFEq811Jp6Uy9wMrgHnpNlDnTcDRiPg0cC+wNtU1FbgLuAxYANxVFLjWAvem9z+a6jAzsxo6ZUCJiJ8BR0qSlwKPpMePANcWpa+PiL6I+AWwD1ggaSZwZkRsj4gAflBSZqCuHwFfSKOXxcDmiDgSEUeBzcCS9NpVKW/p+5uZWY2MdQ3l3Ig4BJDuZ6T02cBbRfkOprTZ6XFp+qAyEdEPvAdMG6GuacC7KW9pXR8jaYWkLkldvb29o/xnmplZuXIvymuItBghfSxlRqrr4y9EPBgRnRHROX369OGymZnZOI01oLyTprFI9z0p/SBwXlG+OcDbKX3OEOmDykhqA86iMMU2XF2HgbNT3tK6zMysRsYaUDYAA7uulgPPFKUvSzu35lJYfN+ZpsWOS7o8rYHcWFJmoK7rgBfSOssmYJGkKWkxfhGwKb22NeUtfX8zM6uRtlNlkPQEcCVwjqSDFHZe3QM8Jekm4ADwFYCI2CPpKeB1oB+4NSI+SFXdQmHH2CeAjekG8BDwQ0n7KIxMlqW6jki6G9iV8n07IgY2B9wJrJe0Bngp1WFmZjWkwh/8raGzszO6urpq3Qwzs4YiaXdEdJ4qn4+UNzOzLBxQzMwsCwcUM7MG1nPsBF99YDs9x0/UuikOKGZmjWzdlm527T/Cuue7a92UU+/yMjOz+jN/9Ub6+k9++PzRHQd4dMcB2tsmsHfNF2vSJo9QzMwa0It3LOSai2cxaWLhZ3zSxAksvXgWL965sGZtckAxM2tAM86cxOT2Nvr6T9LeNoG+/pNMbm9jxuRJNWuTp7zMzBrU4ff7uOGyC7h+wfk8vvMAvTVemPeBjWZmNiIf2GhmZlXlgGJmZlk4oJiZWRYOKGZmloUDipmZZeGAYmZmWbTUtmFJvcDfD/PyORQuL1zv3M68GqWd0DhtdTvzqod2XhAR00+VqaUCykgkdZWzz7rW3M68GqWd0DhtdTvzapR2gqe8zMwsEwcUMzPLwgHlIw/WugFlcjvzapR2QuO01e3Mq1Ha6TUUMzPLwyMUMzPLomkDiqSHJfVIeq0o7Z9L2i7pVUn/U9KZKX2ipEdS+huSVhWV2SZpr6SX021GDdt5uqTvp/RXJF1ZVObSlL5P0jpJytnOzG2tWJ9KOk/S1vT/uEfSbSl9qqTNkrrT/ZSiMqtSv+2VtLgovaJ9mrmtddOnkqal/O9Luq+kror1aeZ21lN/Xi1pd+q33ZKuKqqr4t/7UYmIprwB/wr4LeC1orRdwL9Oj38fuDs9vh5Ynx7/BrAf6EjPtwGdddLOW4Hvp8czgN3AhPR8J/B5QMBG4It13NaK9SkwE/it9Hgy8HfAhcB/BVam9JXA2vT4QuAVoB2YC7wJnFaNPs3c1nrq0zOAfwH8AXBfSV0V69PM7ayn/rwEmJUefxb4h2r051huTTtCiYifAUdKkucDP0uPNwO/O5AdOENSG/AJ4B+BY3XYzguBLalcD/Au0ClpJnBmRGyPwqfsB8C19djW3G0aoo2HIuL/pMfHgTeA2cBS4JGU7RE+6p+lFP6Y6IuIXwD7gAXV6NNcbc3ZphztjIhfRcRfA4Ou9lTpPs3VzkobQztfioi3U/oeYJKk9mp970ejaQPKMF4DrkmPvwKclx7/CPgVcAg4APy3iCj+4fx+Gvb+pyoNKYdr5yvAUkltkuYCl6bXZgMHi8ofTGnVMNq2Dqh4n0rqoPDX3Q7g3Ig4BIUvNIVRExT66a2iYgN9V9U+HWdbB9RLnw6nan06znYOqMf+/F3gpYjoo7bf+yG1WkD5feBWSbspDDX/MaUvAD4AZlGYSvgjSf8kvXZDRHwO+Jfp9rUatvNhCh+aLuBPgf8F9FMY7paq1va90bYVqtCnkj4J/CXwhxEx0mhzuL6rWp9maCvUV58OW8UQadn7NEM7oQ77U9JFwFrg5oGkIbLVdNtuSwWUiPh5RCyKiEuBJyjMQUNhDeW5iPh1mp75G9L0TET8Q7o/DjxOdaYYhmxnRPRHxH+IiIsjYilwNtBN4Yd7TlEVc4C3S+utk7ZWvE8lTaTwRX0sIn6ckt9JUwQDUy89Kf0gg0dOA31XlT7N1NZ669PhVLxPM7Wz7vpT0hzgaeDGiBj43arZ9344LRVQBnZqSJoArAb+PL10ALhKBWcAlwM/T9M156QyE4EvUZjiqUk7Jf1Gah+Srgb6I+L1NDw+LunyNDS/EXim0u0cS1sr3afp3/8Q8EZEfKfopQ3A8vR4OR/1zwZgWZqTngvMA3ZWo09ztbUO+3RIle7TXO2st/6UdDbwLLAqIv5mIHMtv/fDyr3KXy83Cn8tHwJ+TSGS3wTcRmFHxd8B9/DRgZ2fBP4HhQWv14H/GB/tAtkN/G167c9Iu2pq1M4OYC+FRbznKZwBdKCeTgof+jeB+wbK1FtbK92nFHbtRKr/5XT7bWAahU0C3el+alGZb6Z+20vRLplK92muttZpn+6nsIHj/fRZubDSfZqrnfXWnxT+UPtVUd6XgRnV+t6P5uYj5c3MLIuWmvIyM7PKcUAxM7MsHFDMzCwLBxQzM8vCAcXMzLJwQDEzsywcUMzMLAsHFDMzy+L/A9t1yP3IuE0bAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "yearly_incidence.plot(style='*')" ] @@ -314,9 +2383,57 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 16, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "2021 743449\n", + "2014 1600941\n", + "1991 1659249\n", + "1995 1840410\n", + "2020 2010315\n", + "2022 2060304\n", + "2012 2175217\n", + "2003 2234584\n", + "2019 2254386\n", + "2006 2307352\n", + "2017 2321583\n", + "2001 2529279\n", + "1992 2574578\n", + "1993 2703886\n", + "2018 2705325\n", + "1988 2765617\n", + "2007 2780164\n", + "1987 2855570\n", + "2016 2856393\n", + "2011 2857040\n", + "2008 2973918\n", + "1998 3034904\n", + "2002 3125418\n", + "2009 3444020\n", + "1994 3514763\n", + "1996 3539413\n", + "2004 3567744\n", + "1997 3620066\n", + "2015 3654892\n", + "2000 3826372\n", + "2005 3835025\n", + "1999 3908112\n", + "2010 4111392\n", + "2013 4182691\n", + "1986 5115251\n", + "1990 5235827\n", + "1989 5466192\n", + "dtype: int64" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "yearly_incidence.sort_values()" ] @@ -331,9 +2448,32 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 17, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAEKCAYAAAAyx7/DAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAE6lJREFUeJzt3XuQZGV5x/Hvk10uC8MtWRl0QcZbjMjKbVCRiLNoeWFRo1KCgrqUuJgoEFwrWSmVqCHiBVNqvGS9lyJTCiQqGC+BDCoaZBfUFVfRglVYBAQEXSDCypM/3jOhazOz07tMT/fb/f1UTVV3n9N93uftnl+f855z+kRmIkmqx590uwGSpK1jcEtSZQxuSaqMwS1JlTG4JakyBrckVcbglqTKGNySVBmDW5IqM78TL7pw4cIcGRnpxEvP6O6772bnnXfuyrJ7xaD3waDXD/ZBjfWvWbPmtsx8WDvzdiS4R0ZGWL16dSdeekYTExOMjY11Zdm9YtD7YNDrB/ugxvoj4pftzutQiSRVxuCWpMoY3JJUGYNbkipjcEtSZQxuSaqMwS1JlTG4JakyHTkBR5rJyMqLO/baKxZvYtk0r7/+7KUdW640V1zjlqTKGNySVBmDW5IqY3BLUmUMbkmqjMEtSZUxuCWpMga3JFXG4JakyhjcklQZg1uSKmNwS1JlDG5JqozBLUmVMbglqTIGtyRVxuCWpMoY3JJUGYNbkirTVnBHxOkRcU1E/DgizouIHTvdMEnS1GYM7ohYBJwKjGbm/sA84LhON0ySNLV2h0rmAwsiYj6wE3BT55okSdqSyMyZZ4o4DTgLuBf4RmYeP8U8y4HlAMPDw4eMj4/PclPbs3HjRoaGhrqy7F5RQx+s3XBXx157eAHccu/U0xYv2q1jy+0lNXwGOqnG+pcsWbImM0fbmXfG4I6IPYALgGOBO4EvAudn5ueme87o6GiuXr26/RbPoomJCcbGxrqy7F5RQx+MrLy4Y6+9YvEmzlk7f8pp689e2rHl9pIaPgOdVGP9EdF2cLczVPIs4PrM/E1m3g9cCDztoTRQkrTt2gnuXwFPjYidIiKAZwLrOtssSdJ0ZgzuzLwCOB+4CljbPGdVh9slSZrG1AOBm8nMM4EzO9wWSVIbPHNSkipjcEtSZQxuSaqMwS1JlTG4JakyBrckVcbglqTKGNySVBmDW5IqY3BLUmUMbkmqjMEtSZUxuCWpMga3JFXG4JakyhjcklQZg1uSKtPWFXDUnzp5pXVJneMatyRVxuCWpMoY3JJUGYNbkipjcEtSZQxuSaqMwS1JlTG4JakyBrckVcbglqTKGNySVBmDW5IqY3BLUmUMbkmqjMEtSZUxuCWpMga3JFXG4JakyhjcklSZtoI7InaPiPMj4qcRsS4iDut0wyRJU2v3YsHvB76WmcdExPbATh1skyRpC2YM7ojYFTgCWAaQmfcB93W2WZKk6URmbnmGiAOBVcBPgAOANcBpmXn3ZvMtB5YDDA8PHzI+Pt6RBs9k48aNDA0NdWXZvaLdPli74a45aM3cG14At9w79bTFi3ab28Z0yaD/H9RY/5IlS9Zk5mg787YT3KPAfwOHZ+YVEfF+4HeZ+ZbpnjM6OpqrV6/emjbPmomJCcbGxrqy7F7Rbh+MrLy4843pghWLN3HO2qk3JtefvXSOW9Mdg/5/UGP9EdF2cLezc/JG4MbMvKK5fz5w8LY2TpL00MwY3Jl5M3BDRDy+eeiZlGETSVIXtHtUySnAuc0RJdcBJ3auSZKkLWkruDPzB0BbYy+SpM7yzElJqozBLUmVMbglqTIGtyRVxuCWpMoY3JJUGYNbkipjcEtSZQxuSaqMwS1JlTG4JakyBrckVcbglqTKGNySVBmDW5IqY3BLUmUMbkmqTLuXLpP6Qr9e2X5zKxZvYllT66Bc2X6QuMYtSZUxuCWpMga3JFXG4JakyhjcklQZg1uSKmNwS1JlDG5JqozBLUmVMbglqTIGtyRVxuCWpMoY3JJUGYNbkipjcEtSZQxuSaqMwS1JlTG4JakyBrckVabt4I6IeRFxdURc1MkGSZK2bGvWuE8D1nWqIZKk9rQV3BGxN7AU+HhnmyNJmklk5swzRZwPvBPYBXhjZh49xTzLgeUAw8PDh4yPj89yU9uzceNGhoaGurLsXtFuH6zdcNcctGbuDS+AW+7tdiu6q7UPFi/arbuN6YIac2DJkiVrMnO0nXnnzzRDRBwN3JqZayJibLr5MnMVsApgdHQ0x8amnbWjJiYm6Naye0W7fbBs5cWdb0wXrFi8iXPWzvjR7mutfbD++LHuNqYL+j0H2hkqORx4QUSsB8aBIyPicx1tlSRpWjMGd2a+KTP3zswR4Djg0sw8oeMtkyRNyeO4JakyWzUQmJkTwERHWiJJaotr3JJUGYNbkipjcEtSZQxuSaqMwS1JlTG4JakyBrckVcbglqTKGNySVBmDW5IqY3BLUmUMbkmqjMEtSZUxuCWpMga3JFXG4JakyhjcklSZwb4Udo8YmeWrra9YvKlvr+AutWPthru68j+w/uylc7Ic17glqTIGtyRVxuCWpMoY3JJUGYNbkipjcEtSZQxuSaqMwS1JlTG4JakyBrckVcbglqTKGNySVBmDW5IqY3BLUmUMbkmqjMEtSZUxuCWpMga3JFXG4JakyswY3BGxT0T8V0Ssi4hrIuK0uWiYJGlq7VwseBOwIjOviohdgDUR8c3M/EmH2yZJmsKMa9yZ+evMvKq5/XtgHbCo0w2TJE0tMrP9mSNGgG8B+2fm7zabthxYDjA8PHzI+Pj47LVyK2zcuJGhoaGtft7aDXd1oDXdMbwAbrm3263onkGvH3qjDxYv2q1ry771jru6Uv9DqXnJkiVrMnO0nXnbDu6IGAIuA87KzAu3NO/o6GiuXr26rdedbRMTE4yNjW3180ZWXjz7jemSFYs3cc7adkbB+tOg1w+90Qfrz17atWV/8NwvdaX+h1JzRLQd3G0dVRIR2wEXAOfOFNqSpM5q56iSAD4BrMvM93W+SZKkLWlnjftw4BXAkRHxg+bvqA63S5I0jRkHgTLzO0DMQVskSW3wzElJqozBLUmVMbglqTIGtyRVxuCWpMoY3JJUGYNbkipjcEtSZQxuSaqMwS1JlTG4JakyBrckVcbglqTKGNySVBmDW5IqY3BLUmUMbkmqTM9dCvuhXm19xeJNLOujK7ZL0uZc45akyhjcklQZg1uSKmNwS1JlDG5JqozBLUmVMbglqTIGtyRVxuCWpMoY3JJUGYNbkipjcEtSZQxuSaqMwS1JlTG4JakyBrckVcbglqTKGNySVBmDW5Iq01ZwR8RzI+JnEfGLiFjZ6UZJkqY3Y3BHxDzgQ8DzgP2Al0XEfp1umCRpau2scT8Z+EVmXpeZ9wHjwAs72yxJ0nQiM7c8Q8QxwHMz86Tm/iuAp2Tm6zebbzmwvLn7eOBns9/ctiwEbuvSsnvFoPfBoNcP9kGN9e+bmQ9rZ8b5bcwTUzz2/9I+M1cBq9pZaCdFxOrMHO12O7pp0Ptg0OsH+6Df629nqORGYJ+W+3sDN3WmOZKkmbQT3FcCj4uIR0XE9sBxwJc72yxJ0nRmHCrJzE0R8Xrg68A84JOZeU3HW7btuj5c0wMGvQ8GvX6wD/q6/hl3TkqSeotnTkpSZQxuSaqMwS1JlTG4NxMRiyJiUbfb0S0R8eiIOD0ijux2W7rB+ge7fqijDwzuRkSMRMRlwNeA90TE07vdprkWEX8JfJPymzSvjYi/7nKT5pT1D3b9UE8fDHRwR8SOLXcPBq7MzMWUQx9PjYjFzXxTnT1avYg4MiIe1dwO4EjgzMx8DXAOcFREjLVM7yvWP9j1Q719MHDBHRG7RsRHI+Ja4L0RsW8z6UXAr5rb48AvgJMmnzbHzeyoiNgvIn4E/APwqYg4MstxofsBewFk5hXAd4ETJ5/WjbZ2gvUPdv1Qfx8MXHADzwV2pLxB9wFvjYgFlM2j5wNk5h+A84GnN/cf6E5TZ0dE7B0Ru7Y8dCxwQWYeQfmSenlEPA74PE0fNP4N2D8idqi5D6x/sOuH/uuDvgzuKOZHxKsj4tsRcVpEPKaZ/FjgvszcBPwz8FvgBOAbwMMj4k+b+a4FboiIw+a8gFkSEU+IiK8C3wHeHhGTP8f7P8BOze0vADcDSylrF3/WshVyB+VXHg+Yu1bPHusf7Pqhf/ugL4O72eR5BvBK4N3ADsDHmsk3A7c236A3UN6Ux1DeyJ/w4E/Tbgfc3jxejYjYueXugcCNmTkCXAq8t3n8DuAPEbFLZt4B/Bx4BKXW7wJvaObbHvgjsL7zLZ8d1j/Y9cNg9EFfBHdEHBYR74qIZc39AJ4AfC0zv5KZ7wb2jYinARso37RPaJ6+DhhqHvsXys6I51NCfxj44ZwWsw0iYo+I+HREXAmcHREPa/pgMXB5RERmfhm4MyKWUrYmdmmm09zfE3iAshWyZ0R8DDgP2JSZt851TVvD+ge7fhi8Pqg+uCPiicBHgN8DL42IN1DqWgT8vmVP8KeBl1OCeBPwtObxqyh7ku/JzG8BK4FlwOHAOzLzgV7amzyNIyg1HUXZgXIGsCvlR8H2ygd/kOYzlD74PqW/ngeQmd9rXmN+Zq4DTgauAf4pM0+k91n/YNcPg9YHmVnNH2XN+CTK5s/85rH3Aac1t0eBDwDHAM8Cvt7y3H0om0xQgvpqypV6DgK+BDy8Zd7odq3T1D+P8oG6jDKks7B5/AvAqc3tRwFnN9MPpYztzWvpv980r7OIsrXxeuBTwIeBnbtdo/Vbv30w8181a9wRcQBlB+ILgTOBNzeTNlCuiwnlG/Jy4CXAJcBeEfGkiNguy3j2hoh4emZeSvnZx3cBFwLnZeavJ5eVzTvcg44GXgC8DTiMMn4P5YiYyS2IG4BvA8/LzCspax9LADJzI3AFcGhmbgBeQRkOuhl4c2bePUd1bCvrH+z6wT4A2rt0WVdExEHA3Zl5bfPQk4FrM3NZRBwMnBURo8AE8JyI2Ckz74mIHwIvpRyL+XngNcAHIuJeYC1wffN6HwU+n5l3zV1VM2vG4jIiDqVs0n0buDjLIYp/DlyXmZdGxPWUMzyfDawBXhQRCzPztoj4OXB3RDwS+CBwQkTsSbl60e2UzUQyczWwes6L3ALrH+z6wT5oR8+tcUfEYyPiO5Qx6bdGxCubSQ8A65u156somziHAffw4KE8APdTNoX2oqxV/7h5rcuA2zLzRihr1T0c2kcAn6Ts4X4W8M5mlgeAayNiQWZeT+mDJ1HG6m6iHJsKZS/4PMr7ewGlH44HDgFWZQ8dj9oqIuY19T+Dsuk6aPUvaOofYwDffygnyA16H7Sl22M1wM7AYS33jwbe39x+CuXbcF/gVZTNo0XNtGMo49mT0y5rHt+RMkyysOU1DwK273at09S/E/BaHtw62A74W+B1zfQ9gB81NRxLGbsbaemrVZQrWh9N2aLYjTKG/9XWmoE/6XatW3j/T6L8c62g7FAamPqbtu0CXEy5uhTA6QNW/07N//AllJNiBq4Ptvavq2vcEXEGcB3w1YgYbh5+DuXYarKccvp94BTKMZj7UI65hjKWfSDlaJDPAL+NiM9Sdjr+DPi/sarMvDoz7+t8RVsnIvYCLgLGgM9Sdqa8mLIlsQkgM39L2Xl6KmUcb08ePJTxW5Tj1e/LzIuAT1DO+PwQZe/5/ZPLyh5cw2iOt72E8k/2MeDZlP0Th1LWrPq6/hYLKOcaPCYiFlI+4/Og/+uPiO0o+6aOAd6TmS9pJh00OU+/98E26fI37RhlM+fjwIrmsTdQxrMm59kPuKG5fRbw9pZpVwIHNbd3oBwKdGi3vw23ov4FwFNa7i+j7Gx5FfD9lscfAdzU3H4d5RTdPZrnfwV4ZMu8C+ei7bPYB7u33P47yj/n8YNSf9PmVwHvAd4CvJpyyvWVA1T/hcDxmz12LHDFoPTBVvdZl9+wyUN0juXBoY7dgTuBHVvmu5LyDbw78EXKptF/UL5Rd+h2Jz6E+mPyr7l/cEs/3E45/nRy3m9Ohjzwj5QjbG4H/r7bdcxCP+xK2Q9xC/D25v7twHA/19/yvp9IGS57MXBu89ht/V5/S21HU06AOYdysMFbKUOgdwB7DkIfbO1fV4dKMvOPzc3/BHaJiAMy807KuPbJLbNeBezSTDuFMhzy78DyLHuaq5SNlodOo6x9QBmfOx0gyu+n/BKYPGTxbZQtk0WZ+a45am7HZObvKENiT6XsVH4pZbjr5Cj6sv6W9/4oylDRJcDeEfFmyg735TAQ7/9FlKO9bqccnvdE4K8on4HX9vNnYFv1zFXeI+LDlPHqNzZHVfwNJcD3oJxYc1RL0PediNibMj53SmZeG+VHsZZTPsSLgB9kL57BNcsi4kDKl/b3KOOY+1MO4erL+iNiiDJMsgOl3r+gnDByBmVN/HH0cf2TJg/nbW4fQPnsX045Jb2vPwPbopeC+0DKUSLPpHyA76Gcfn4v8NHMvKaLzeu4KL+P8gzgTZQxzxspm4bHAj/Ncghk34uIfShfYC/LzNsj4gTgmsy8ustN64goF/P4V8pOtPMoh7GdkZnPbqb3df1TifLLfB8Hjs3MOwaxD2bSS8F9HOWQuHuAd1D2MPfPXuAZRMTlwKMpv0J2E/C2zPxRVxs1RyJiN8oX9sspO6NXAR/KzPu3+MQ+1Jww8mJgPDNv7nZ75kpE7ED5rfzJoZKPAB/O8vPL2kxPBHdEPIly+vn5lJ0zVf2U6kPVHBJ1JmWc73M1j9tvi4iYTxke+QOl/oF6/6GcfAQ8kL3wD9klEXEy5TDQzw7iZ2Br9ERwS5La13OnvEuStszglqTKGNySVBmDW5IqY3BLUmUMbkmqjMEtSZX5XwHKcVej17E2AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "yearly_incidence.hist(xrot=20)" ] @@ -364,7 +2504,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.1" + "version": "3.6.4" } }, "nbformat": 4,