diff --git a/module2/exo1/toy_document_fr.Rmd b/module2/exo1/toy_document_fr.Rmd index f59e77616f71d20086b538bb4774498a07489228..7d719e45465aea2dee4ad78f78ce474cc3bc8fce 100644 --- a/module2/exo1/toy_document_fr.Rmd +++ b/module2/exo1/toy_document_fr.Rmd @@ -11,7 +11,6 @@ knitr::opts_chunk$set(echo = TRUE) ``` ## En demandant à la lib maths - Mon ordinateur m'indique que $\pi$ vaut *approximativement* ```{r} @@ -19,7 +18,6 @@ pi ``` ## En utilisant la méthode des aiguilles de Buffon - Mais calculé avec la **méthode** des [aiguilles de Buffon] (https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme **approximation** : ```{r} @@ -30,10 +28,9 @@ theta = pi/2*runif(N) 2/(mean(x+sin(theta)>1)) ``` -## Avec un argument “fréquentiel” de surface - +## Avec un argument "fréquentiel" de surface Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d'appel à la fonction sinus se base sur le fait que si $X \approx U(0,1)$ -et $Y \approx U(0,1)$ alors $P[X^2+Y^2 \leq 1]=\pi/4$ (voir [méthode de Monte Carlo sur Wikipedia] (https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait: +et $Y \approx U(0,1)$ alors $P[X^2+Y^2 \leq 1]=\pi/4$ (voir [méthode de Monte Carlo sur Wikipedia] (https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait : ```{r} set.seed(42) @@ -44,7 +41,7 @@ library(ggplot2) ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + theme_bw() ``` -Il est alors aisé d'obtenir une approximation (pas terrible) de $\pi$ en comptant combien de fois, en moyenne, $X^2 + Y^2$ est inférieur à 1: +Il est alors aisé d'obtenir une approximation (pas terrible) de $\pi$ en comptant combien de fois, en moyenne, $X^2 + Y^2$ est inférieur à 1 : ```{r} 4*mean(df$Accept)