diff --git a/module2/exo1/toy_notebook_fr.ipynb b/module2/exo1/toy_notebook_fr.ipynb index 0bbbe371b01e359e381e43239412d77bf53fb1fb..0ddaee4d6d8a5a96722e9d5c95bc93e9eee8f5e8 100644 --- a/module2/exo1/toy_notebook_fr.ipynb +++ b/module2/exo1/toy_notebook_fr.ipynb @@ -22,4 +22,42 @@ "nbformat": 4, "nbformat_minor": 2 } +# A propos du calcul de $\pi$ +## En demandant à la lib maths +Mon ordinateur m'indique que $\pi$ vaut *approximativement* + +In [1] : +from math import * +print(pi) + +## En utilisant la méthode des aiguilles de Buffon +Mais calculé avec la __méthode__ des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme __approximation__ : + +In [2]: +import numpy as np +np.random.seed(seed=42) +N = 10000 +x = np.random.uniform(size=N, low=0, high=1) +theta = np.random.uniform(size=N, low=0, high=pi/2) +2/(sum((x+np.sin(theta))>1)/N) + +## Avec un argument "fréquentiel" de surface +Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d'appel à la fonction sinus se base sur le fait que si $X\sim U(0,1)$ et $Y\sim U(0,1)$ alors $P[X^2+Y^2\leq 1] = \pi/4$ (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait : + +In [3] : +%matplotlib inline +import matplotlib.pyplot as plt + +np.random.seed(seed=42) +N = 1000 +x = np.random.uniform(size=N, low=0, high=1) +y = np.random.uniform(size=N, low=0, high=1) + +accept = (x*x+y*y) <= 1 +reject = np.logical_not(accept) + +fig, ax = plt.subplots(1) +ax.scatter(x[accept], y[accept], c='b', alpha=0.2, edgecolor=None) +ax.scatter(x[reject], y[reject], c='r', alpha=0.2, edgecolor=None) +ax.set_aspect('equal') \ No newline at end of file