From 873f4387e3e730d7665a67e169084a853653059b Mon Sep 17 00:00:00 2001 From: 1ed6a8939c7714d38b1fe3c75581e0cf <1ed6a8939c7714d38b1fe3c75581e0cf@app-learninglab.inria.fr> Date: Wed, 5 Oct 2022 19:48:15 +0000 Subject: [PATCH] Update toy_notebook_en.ipynb --- module2/exo1/toy_notebook_en.ipynb | 51 +++++++++++++++--------------- 1 file changed, 25 insertions(+), 26 deletions(-) diff --git a/module2/exo1/toy_notebook_en.ipynb b/module2/exo1/toy_notebook_en.ipynb index 5bca4a1..669b417 100644 --- a/module2/exo1/toy_notebook_en.ipynb +++ b/module2/exo1/toy_notebook_en.ipynb @@ -2,20 +2,20 @@ "cells": [ { "cell_type": "markdown", - "id": "93d7cca7", + "id": "fa916478", "metadata": {}, "source": [ - "# 1 On the computation of π\n", + "# On the computation of $\\pi$\n", "\n", - "## 1.1 Asking the maths library\n", + "## Asking the maths library\n", "\n", - "My computer tells me that π is approximativel" + "My computer tells me that $\\pi$ is *approximatively*" ] }, { "cell_type": "code", - "execution_count": 2, - "id": "d0bc647a", + "execution_count": 1, + "id": "08c5c563", "metadata": {}, "outputs": [ { @@ -33,18 +33,17 @@ }, { "cell_type": "markdown", - "id": "99049b47", + "id": "8c9199c1", "metadata": {}, "source": [ - "## 1.2 Buffon’s needle\n", - "\n", - "Applying the method of Buffon’s needle , we get the approximation" + "## Buffon's needle\n", + "Applying the method of [Buffon's needle](https://en.wikipedia.org/wiki/Buffon%27s_needle_problem), we get the __approximation__" ] }, { "cell_type": "code", - "execution_count": 3, - "id": "d9073c83", + "execution_count": 2, + "id": "abff8880", "metadata": {}, "outputs": [ { @@ -53,7 +52,7 @@ "3.128911138923655" ] }, - "execution_count": 3, + "execution_count": 2, "metadata": {}, "output_type": "execute_result" } @@ -69,18 +68,17 @@ }, { "cell_type": "markdown", - "id": "2b0f149b", + "id": "4bd4c67b", "metadata": {}, "source": [ - "## 1.3 Using a surface fraction argument\n", - "\n", - "A method that is easier to understand and does not make use of the sin function is based on the fact that if X ∼ U(0,1) and Y ∼ U(0,1), then P[X2 +Y2 ≤ 1] = π/4 (see \"Monte Carlo method\" on Wikipedia ). The following code uses this approach:\n" + "## Using a surface fraction argument\n", + "A method that is easier to understand and does not make use of the $\\sin$ function is based on the fact that if $X\\sim U(0,1)$ and $Y\\sim U(0,1)$, then $P[X^2+Y^2\\leq 1] = \\pi/4$ (see [\"Monte Carlo method\" on Wikipedia](https://en.wikipedia.org/wiki/Monte_Carlo_method)). The following code uses this approach:" ] }, { "cell_type": "code", - "execution_count": 4, - "id": "6b5b21e8", + "execution_count": 3, + "id": "5413190d", "metadata": {}, "outputs": [ { @@ -97,9 +95,9 @@ } ], "source": [ - "%matplotlib inline\n", - "\n", + "%matplotlib inline \n", "import matplotlib.pyplot as plt\n", + "\n", "np.random.seed(seed=42)\n", "N = 1000\n", "x = np.random.uniform(size=N, low=0, high=1)\n", @@ -107,6 +105,7 @@ "\n", "accept = (x*x+y*y) <= 1\n", "reject = np.logical_not(accept)\n", + "\n", "fig, ax = plt.subplots(1)\n", "ax.scatter(x[accept], y[accept], c='b', alpha=0.2, edgecolor=None)\n", "ax.scatter(x[reject], y[reject], c='r', alpha=0.2, edgecolor=None)\n", @@ -115,16 +114,16 @@ }, { "cell_type": "markdown", - "id": "ca88818e", + "id": "c1e500ca", "metadata": {}, "source": [ - "It is then straightforward to obtain a (not really good) approximation to π by counting how many times, on average, X2 + Y2 is smaller than 1:" + "It is then straightforward to obtain a (not really good) approximation to $\\pi$ by counting how many times, on average, $X^2 + Y^2$ is smaller than 1:" ] }, { "cell_type": "code", - "execution_count": 5, - "id": "fe6e57c1", + "execution_count": 4, + "id": "fc8a2a3e", "metadata": {}, "outputs": [ { @@ -133,7 +132,7 @@ "3.112" ] }, - "execution_count": 5, + "execution_count": 4, "metadata": {}, "output_type": "execute_result" } -- 2.18.1