{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Analysis of the risk of failure of the O-rings on the Challenger shuttle" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "On January 27, 1986, the day before the takeoff of the shuttle _Challenger_, had\n", "a three-hour teleconference was held between \n", "Morton Thiokol (the manufacturer of one of the engines) and NASA. The\n", "discussion focused on the consequences of the\n", "temperature at take-off of 31°F (just below\n", "0°C) for the success of the flight and in particular on the performance of the\n", "O-rings used in the engines. Indeed, no test\n", "had been performed at this temperature.\n", "\n", "The following study takes up some of the analyses carried out that\n", "night with the objective of assessing the potential influence of\n", "the temperature and pressure to which the O-rings are subjected\n", "on their probability of malfunction. Our starting point is \n", "the results of the experiments carried out by NASA engineers\n", "during the six years preceding the launch of the shuttle\n", "Challenger." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Loading the data\n", "We start by loading this data:" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
DateCountTemperaturePressureMalfunction
04/12/81666500
111/12/81670501
23/22/82669500
311/11/82668500
44/04/83667500
56/18/82672500
68/30/836731000
711/28/836701000
82/03/846572001
94/06/846632001
108/30/846702001
1110/05/846782000
1211/08/846672000
131/24/856532002
144/12/856672000
154/29/856752000
166/17/856702000
177/29/856812000
188/27/856762000
1910/03/856792000
2010/30/856752002
2111/26/856762000
221/12/866582001
\n", "
" ], "text/plain": [ " Date Count Temperature Pressure Malfunction\n", "0 4/12/81 6 66 50 0\n", "1 11/12/81 6 70 50 1\n", "2 3/22/82 6 69 50 0\n", "3 11/11/82 6 68 50 0\n", "4 4/04/83 6 67 50 0\n", "5 6/18/82 6 72 50 0\n", "6 8/30/83 6 73 100 0\n", "7 11/28/83 6 70 100 0\n", "8 2/03/84 6 57 200 1\n", "9 4/06/84 6 63 200 1\n", "10 8/30/84 6 70 200 1\n", "11 10/05/84 6 78 200 0\n", "12 11/08/84 6 67 200 0\n", "13 1/24/85 6 53 200 2\n", "14 4/12/85 6 67 200 0\n", "15 4/29/85 6 75 200 0\n", "16 6/17/85 6 70 200 0\n", "17 7/29/85 6 81 200 0\n", "18 8/27/85 6 76 200 0\n", "19 10/03/85 6 79 200 0\n", "20 10/30/85 6 75 200 2\n", "21 11/26/85 6 76 200 0\n", "22 1/12/86 6 58 200 1" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import numpy as np\n", "import pandas as pd\n", "data = pd.read_csv(\"shuttle.csv\")\n", "data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The data set shows us the date of each test, the number of O-rings (there are 6 on the main launcher), the temperature (in Fahrenheit) and pressure (in psi), and finally the number of identified malfunctions." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Graphical inspection\n", "Flights without incidents do not provide any information\n", "on the influence of temperature or pressure on malfunction.\n", "We thus focus on the experiments in which at least one O-ring\n", "was defective." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
DateCountTemperaturePressureMalfunction
111/12/81670501
82/03/846572001
94/06/846632001
108/30/846702001
131/24/856532002
2010/30/856752002
221/12/866582001
\n", "
" ], "text/plain": [ " Date Count Temperature Pressure Malfunction\n", "1 11/12/81 6 70 50 1\n", "8 2/03/84 6 57 200 1\n", "9 4/06/84 6 63 200 1\n", "10 8/30/84 6 70 200 1\n", "13 1/24/85 6 53 200 2\n", "20 10/30/85 6 75 200 2\n", "22 1/12/86 6 58 200 1" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data = data[data.Malfunction>0]\n", "data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We have a high temperature variability but\n", "the pressure is almost always 200, which should\n", "simplify the analysis.\n", "\n", "How does the frequency of failure vary with temperature?" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEKCAYAAAD9xUlFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAFYRJREFUeJzt3XuQpXV95/H3Zy7AIBMhsJm4MxBBCFlKAXG4GEx2IokLbgmxiBHcDS5ZMqGE3TK7m8BariHGVEWM2WiJjiOLCqmERFEgu+MiJNUaExCQTIaLgcwiQjMGBFFoHObW3/3jnHlyprun5/TQzzlM9/tV1TXnufa3vz6cj8/l/E6qCkmSABYMuwBJ0kuHoSBJahgKkqSGoSBJahgKkqSGoSBJarQWCkmuSfJkkvt2szxJPppkY5INSU5qqxZJUn/aPFP4DHDmNMvPAo7p/qwGPtFiLZKkPrQWClX1VeB706xyDnBtddwBHJzkFW3VI0nas0VD/N3Lgcd6pke7874zccUkq+mcTbBkyZLXHX744QMp8MUaHx9nwQJv2/SyJ5PZk6nZl8leTE8eeuihp6rqX+xpvWGGQqaYN+WYG1W1FlgLsHLlyrr77rvbrGvWjIyMsGrVqmGX8ZJiTyazJ1OzL5O9mJ4k+XY/6w0zhkeB3v/LvwLYNKRaJEkMNxRuBi7oPoV0GvCDqpp06UiSNDitXT5K8qfAKuCwJKPAbwOLAapqDbAOeDOwEfghcGFbtUiS+tNaKFTV+XtYXsAlbf1+SdLMeWtfktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktRoNRSSnJnkwSQbk1w+xfKXJ/mLJH+f5P4kF7ZZjyRpeq2FQpKFwFXAWcBxwPlJjpuw2iXAA1V1ArAK+HCS/dqqSZI0vTbPFE4BNlbVw1W1FbgeOGfCOgUsTRLgIOB7wPYWa5IkTWNRi/teDjzWMz0KnDphnY8BNwObgKXA26tqfOKOkqwGVgMsW7aMkZGRNuqddWNjY/tMrYNiTyazJ1OzL5MNoidthkKmmFcTpv8NsB54I/Aq4NYkf11Vz+6yUdVaYC3AypUra9WqVbNfbQtGRkbYV2odFHsymT2Zmn2ZbBA9afPy0ShweM/0CjpnBL0uBL5QHRuBbwE/1WJNkqRptBkKdwHHJDmye/P4PDqXino9CpwBkGQZcCzwcIs1SZKm0drlo6ranuRS4BZgIXBNVd2f5OLu8jXA7wKfSXIvnctNl1XVU23VJEmaXpv3FKiqdcC6CfPW9LzeBLypzRokSf3zE82SpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqtBoKSc5M8mCSjUku3806q5KsT3J/kq+0WY8kaXqL+lkpyaur6r6Z7DjJQuAq4BeAUeCuJDdX1QM96xwMfBw4s6oeTfJjM/kdkqTZ1e+ZwpokdyZ5V/eNvB+nABur6uGq2gpcD5wzYZ13AF+oqkcBqurJPvctSWpBX2cKVfWGJMcAvwrcneRO4NNVdes0my0HHuuZHgVOnbDOTwKLk4wAS4GPVNW1E3eUZDWwGmDZsmWMjIz0U/bQjY2N7TO1Doo9mcyeTM2+TDaInvQVCgBV9Y9J3gvcDXwUeG2SAO+pqi9MsUmm2s0Uv/91wBnAEuD2JHdU1UMTfvdaYC3AypUra9WqVf2WPVQjIyPsK7UOij2ZzJ5Mzb5MNoie9HtP4XjgQuDfArcCb6mqe5L8S+B2YKpQGAUO75leAWyaYp2nqup54PkkXwVOAB5CkjRw/d5T+BhwD3BCVV1SVfcAVNUm4L272eYu4JgkRybZDzgPuHnCOjcBP5NkUZID6Vxe+uZM/whJ0uzo9/LRm4HNVbUDIMkC4ICq+mFVXTfVBlW1PcmlwC3AQuCaqro/ycXd5Wuq6ptJ/i+wARgHrp7pU06SpNnTbyjcBvw8MNadPhD4MvDT021UVeuAdRPmrZkw/SHgQ33WIUlqUb+Xjw6oqp2BQPf1ge2UJEkaln5D4fkkJ+2cSPI6YHM7JUmShqXfy0fvBj6XZOfTQ68A3t5OSZKkYen3w2t3Jfkp4Fg6nz/4h6ra1mplkqSB6/vDa8DJwCu727w2CVN9+liStO/q98Nr1wGvAtYDO7qzCzAUJGkO6fdMYSVwXFVNHKZCkjSH9Pv00X3Aj7dZiCRp+Po9UzgMeKA7OuqWnTOr6uxWqpIkDUW/oXBFm0VIkl4a+n0k9StJfgI4pqpu6w5et7Dd0iRJg9bXPYUkvwZ8Hvhkd9Zy4Ma2ipIkDUe/N5ovAU4HnoXOF+4Afp+yJM0x/YbClu73LAOQZBGTv0VNkrSP6zcUvpLkPcCSJL8AfA74i/bKkiQNQ7+hcDnwXeBe4NfpfEfC7r5xTZK0j+r36aNx4FPdH0nSHNXv2EffYop7CFV11KxXJEkampmMfbTTAcDbgB+d/XIkScPU1z2Fqnq65+fxqvoj4I0t1yZJGrB+Lx+d1DO5gM6Zw9JWKpIkDU2/l48+3PN6O/AI8MuzXo0kaaj6ffro59ouRJI0fP1ePvov0y2vqj+cnXIkScM0k6ePTgZu7k6/Bfgq8FgbRUmShmMmX7JzUlU9B5DkCuBzVXVRW4VJkgav32EujgC29kxvBV4569VIkoaq3zOF64A7k3yRzieb3wpc21pVkqSh6Pfpo99L8iXgZ7qzLqyqv2uvLEnSMPR7+QjgQODZqvoIMJrkyJZqkiQNSb9fx/nbwGXAf+/OWgz8cVtFSZKGo98zhbcCZwPPA1TVJhzmQpLmnH5DYWtVFd3hs5O8rL2SJEnD0m8o/HmSTwIHJ/k14Db8wh1JmnP6ffroD7rfzfwscCzwvqq6tdXKJEkDt8czhSQLk9xWVbdW1W9W1X/rNxCSnJnkwSQbk1w+zXonJ9mR5JdmUrwkaXbtMRSqagfwwyQvn8mOkywErgLOAo4Dzk9y3G7W+yBwy0z2L0maff1+ovkF4N4kt9J9Agmgqv7zNNucAmysqocBklwPnAM8MGG9/wTcQGfAPUnSEPUbCv+n+zMTy9l1FNVR4NTeFZIsp/O46xuZJhSSrAZWAyxbtoyRkZEZljIcY2Nj+0ytg2JPJrMnU7Mvkw2iJ9OGQpIjqurRqvrsXuw7U8yrCdN/BFxWVTuSqVbvblS1FlgLsHLlylq1atVelDN4IyMj7Cu1Doo9mcyeTM2+TDaInuzpnsKNO18kuWGG+x4FDu+ZXgFsmrDOSuD6JI8AvwR8PMkvzvD3SJJmyZ4uH/X+3/ejZrjvu4BjumMkPQ6cB7yjd4WqasZPSvIZ4H9X1Y1IkoZiT6FQu3m9R1W1PcmldJ4qWghcU1X3J7m4u3zNjCqVJLVuT6FwQpJn6ZwxLOm+pjtdVfUj021cVeuAdRPmTRkGVfUf+qpYktSaaUOhqhYOqhBJ0vDN5PsUJElznKEgSWoYCpKkhqEgSWrMq1B4emwLf//Y93l6bMuwS5GkGXl6bAubt+1o/f1r3oTCTesf5/QP/hX//uqvc/oH/4qb1z8+7JIkqS8737++9d3nW3//mheh8PTYFi67YQMvbBvnuS3beWHbOL91wwbPGCS95PW+f+2oav39a16Ewugzm1m8YNc/dfGCBYw+s3lIFUlSfwb9/jUvQmHFIUvYNj6+y7xt4+OsOGTJkCqSpP4M+v1rXoTCoQftz5XnHs8BixewdP9FHLB4AVeeezyHHrT/sEuTpGn1vn8tTFp//+r3S3b2eWefuJzTjz6M0Wc2s+KQJQaCpH3GzvevO2//Gn9z9htaff+aN6EAncQ1DCTtiw49aH+WLF7Y+nvYvLh8JEnqj6EgSWoYCpKkhqEgSWoYCpKkhqEgSWoYCpKkhqEgSWoYCpKkhqEgSWoYCpKkhqEgSWoYCpKkhqEgSWoYCpKkhqEgSWoYCpKkhqEgSWoYCpKkhqEgSWoYCpKkRquhkOTMJA8m2Zjk8imW/7skG7o/f5vkhDbrkSRNr7VQSLIQuAo4CzgOOD/JcRNW+xbwr6vqeOB3gbVt1SNJ2rM2zxROATZW1cNVtRW4Hjind4Wq+tuqeqY7eQewosV6JEl7sKjFfS8HHuuZHgVOnWb9/wh8aaoFSVYDqwGWLVvGyMjILJXYrrGxsX2m1kGxJ5PZk6nZl8kG0ZM2QyFTzKspV0x+jk4ovGGq5VW1lu6lpZUrV9aqVatmqcR2jYyMsK/UOij2ZDJ7MjX7MtkgetJmKIwCh/dMrwA2TVwpyfHA1cBZVfV0i/VIkvagzXsKdwHHJDkyyX7AecDNvSskOQL4AvArVfVQi7VIkvrQ2plCVW1PcilwC7AQuKaq7k9ycXf5GuB9wKHAx5MAbK+qlW3VJEmaXpuXj6iqdcC6CfPW9Ly+CLiozRrmi6fHtjD6zGZWHLKEQw/av/Xt5jJ7Mnwbn3iOZ364jY1PPMfRy5YOu5x5pdVQ0GDctP5xLrthA4sXLGDb+DhXnns8Z5+4vLXt5jJ7Mnzvu/Ferr3jUf7ra7bzG//zq1zw+iN4/zmvGXZZ84bDXOzjnh7bwmU3bOCFbeM8t2U7L2wb57du2MDTY1ta2W4usyfDt/GJ57j2jkd3mXft7Y+y8YnnhlTR/GMo7ONGn9nM4gW7/s+4eMECRp/Z3Mp2c5k9Gb71j31/RvM1+wyFfdyKQ5awbXx8l3nbxsdZcciSVraby+zJ8J14+MEzmq/ZZyjs4w49aH+uPPd4Dli8gKX7L+KAxQu48tzj93iDdG+3m8vsyfAdvWwpF7z+iF3mXfD6I7zZPEDeaJ4Dzj5xOacffdiMn5jZ2+3mMnsyfO8/5zVccNorufcbd3Dbb5xmIAyYoTBHHHrQ/nv1Bra3281l9mT4jl62lNEDFxsIQ+DlI0lSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDVaDYUkZyZ5MMnGJJdPsTxJPtpdviHJSW3WI0maXmuhkGQhcBVwFnAccH6S4yasdhZwTPdnNfCJtuqRJO1Zm2cKpwAbq+rhqtoKXA+cM2Gdc4Brq+MO4OAkr2ixJknSNBa1uO/lwGM906PAqX2ssxz4Tu9KSVbTOZMAGEvy4OyW2prDgKeGXcRLjD2ZzJ5Mzb5M9mJ68hP9rNRmKGSKebUX61BVa4G1s1HUICW5u6pWDruOlxJ7Mpk9mZp9mWwQPWnz8tEocHjP9Apg016sI0kakDZD4S7gmCRHJtkPOA+4ecI6NwMXdJ9COg34QVV9Z+KOJEmD0drlo6ranuRS4BZgIXBNVd2f5OLu8jXAOuDNwEbgh8CFbdUzJPvcJa8BsCeT2ZOp2ZfJWu9JqiZdwpckzVN+olmS1DAUJEkNQ2EWJXkkyb1J1ie5uzvviiSPd+etT/LmYdc5SEkOTvL5JP+Q5JtJXp/kR5PcmuQfu/8eMuw6B2k3PZm3x0mSY3v+7vVJnk3y7vl8nEzTk9aPE+8pzKIkjwArq+qpnnlXAGNV9QfDqmuYknwW+Ouqurr7FNqBwHuA71XV73fHxDqkqi4baqEDtJuevJt5fJzs1B0e53E6H3S9hHl8nOw0oScX0vJx4pmCWpPkR4CfBf4XQFVtrarv0xne5LPd1T4L/OJwKhy8aXqijjOA/1dV32YeHycT9PakdYbC7Crgy0m+0R2aY6dLu6PAXjOfToGBo4DvAp9O8ndJrk7yMmDZzs+jdP/9sWEWOWC76wnM3+Ok13nAn3Zfz+fjpFdvT6Dl48RQmF2nV9VJdEZ/vSTJz9IZ+fVVwIl0xnT68BDrG7RFwEnAJ6rqtcDzwKQh1OeZ3fVkPh8nAHQvpZ0NfG7YtbxUTNGT1o8TQ2EWVdWm7r9PAl8ETqmqJ6pqR1WNA5+iM3rsfDEKjFbV17vTn6fzhvjEztFwu/8+OaT6hmHKnszz42Sns4B7quqJ7vR8Pk522qUngzhODIVZkuRlSZbufA28CbhvwlDgbwXuG0Z9w1BV/wQ8luTY7qwzgAfoDG/yzu68dwI3DaG8odhdT+bzcdLjfHa9TDJvj5Meu/RkEMeJTx/NkiRH0Tk7gM4lgj+pqt9Lch2dU70CHgF+fT6N75TkROBqYD/gYTpPTywA/hw4AngUeFtVfW9oRQ7YbnryUeb3cXIgnWH0j6qqH3TnHcr8Pk6m6knr7yeGgiSp4eUjSVLDUJAkNQwFSVLDUJAkNQwFSVKjtW9ekwat+wjjX3YnfxzYQWdICeh8kHDrUAqbRpJfBdZ1P78gDZ2PpGpOeimNTptkYVXt2M2yrwGXVtX6GexvUVVtn7UCpR5ePtK8kOSdSe7sjkH/8SQLkixK8v0kH0pyT5Jbkpya5CtJHt45Vn2Si5J8sbv8wSTv7XO/H0hyJ3BKkt9JcleS+5KsScfb6XwQ6c+62++XZDTJwd19n5bktu7rDyT5ZJJb6QymtyjJH3Z/94YkFw2+q5qLDAXNeUleTWdIgJ+uqhPpXDY9r7v45cCXuwMZbgWuoDP0xNuA9/fs5pTuNicB70hyYh/7vaeqTqmq24GPVNXJwGu6y86sqj8D1gNvr6oT+7i89VrgLVX1K8Bq4MmqOgU4mc4AjEfsTX+kXt5T0Hzw83TeOO9OArCEzvABAJur6tbu63uBH1TV9iT3Aq/s2cctVfUMQJIbgTfQ+e9nd/vdyj8PewJwRpLfBA4ADgO+AXxphn/HTVX1Qvf1m4B/laQ3hI6hMxyEtNcMBc0HAa6pqv+xy8xkEZ03753GgS09r3v/+5h48632sN/N1b1h1x3D5mN0RkN9PMkH6ITDVLbzz2fwE9d5fsLf9K6q+kukWeTlI80HtwG/nOQw6DyltBeXWt6UzncrH0jnG8H+Zgb7XUInZJ7qjqR7bs+y54ClPdOPAK/rvu5db6JbgHd1A2jnd/oumeHfJE3imYLmvKq6N8nvALclWQBsAy4GNs1gN18D/oTOF5xct/NpoX72W1VPp/O9zPcB3wa+3rP408DVSTbTuW9xBfCpJP8E3DlNPZ+kM3ro+u6lqyfphJX0ovhIqrQH3Sd7Xl1V7x52LVLbvHwkSWp4piBJanimIElqGAqSpIahIElqGAqSpIahIElq/H/IxmFZztFAcQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "%matplotlib inline\n", "pd.set_option('mode.chained_assignment',None) # this removes a useless warning from pandas\n", "import matplotlib.pyplot as plt\n", "\n", "data[\"Frequency\"]=data.Malfunction/data.Count\n", "data.plot(x=\"Temperature\",y=\"Frequency\",kind=\"scatter\",ylim=[0,1])\n", "plt.grid(True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "At first glance, the dependence does not look very important, but let's try to\n", "estimate the impact of temperature $t$ on the probability of O-ring malfunction." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Estimation of the temperature influence\n", "\n", "Suppose that each of the six O-rings is damaged with the same\n", "probability and independently of the others and that this probability\n", "depends only on the temperature. If $p(t)$ is this probability, the\n", "number $D$ of malfunctioning O-rings during a flight at\n", "temperature $t$ follows a binomial law with parameters $n=6$ and\n", "$p=p(t)$. To link $p(t)$ to $t$, we will therefore perform a\n", "logistic regression." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "
Generalized Linear Model Regression Results
Dep. Variable: Frequency No. Observations: 7
Model: GLM Df Residuals: 5
Model Family: Binomial Df Model: 1
Link Function: logit Scale: 1.0000
Method: IRLS Log-Likelihood: -2.5250
Date: Wed, 27 Sep 2023 Deviance: 0.22231
Time: 22:48:16 Pearson chi2: 0.236
No. Iterations: 4 Covariance Type: nonrobust
\n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "
coef std err z P>|z| [0.025 0.975]
Intercept -1.3895 7.828 -0.178 0.859 -16.732 13.953
Temperature 0.0014 0.122 0.012 0.991 -0.238 0.240
" ], "text/plain": [ "\n", "\"\"\"\n", " Generalized Linear Model Regression Results \n", "==============================================================================\n", "Dep. Variable: Frequency No. Observations: 7\n", "Model: GLM Df Residuals: 5\n", "Model Family: Binomial Df Model: 1\n", "Link Function: logit Scale: 1.0000\n", "Method: IRLS Log-Likelihood: -2.5250\n", "Date: Wed, 27 Sep 2023 Deviance: 0.22231\n", "Time: 22:48:16 Pearson chi2: 0.236\n", "No. Iterations: 4 Covariance Type: nonrobust\n", "===============================================================================\n", " coef std err z P>|z| [0.025 0.975]\n", "-------------------------------------------------------------------------------\n", "Intercept -1.3895 7.828 -0.178 0.859 -16.732 13.953\n", "Temperature 0.0014 0.122 0.012 0.991 -0.238 0.240\n", "===============================================================================\n", "\"\"\"" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import statsmodels.api as sm\n", "\n", "data[\"Success\"]=data.Count-data.Malfunction\n", "data[\"Intercept\"]=1\n", "\n", "logmodel=sm.GLM(data['Frequency'], data[['Intercept','Temperature']], family=sm.families.Binomial(sm.families.links.logit)).fit()\n", "\n", "logmodel.summary()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The most likely estimator of the temperature parameter is 0.0014\n", "and the standard error of this estimator is 0.122, in other words we\n", "cannot distinguish any particular impact and we must take our\n", "estimates with caution." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Estimation of the probability of O-ring malfunction\n", "\n", "The expected temperature on the take-off day is 31°F. Let's try to\n", "estimate the probability of O-ring malfunction at\n", "this temperature from the model we just built:" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEKCAYAAADpfBXhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAGzdJREFUeJzt3X+UVOWd5/H3t6tBGhohoGGAJoHM4cA6UX41jUriNkYBc+KvWQ2io4k7LHEnJJPdIxs5J7OaWT1n57S7h0zWiIwyTOLR1nEVNcsG1E3HiauxQRAEhh9riDadBDGj0Noo3f3dP+6t6qrqbrq6qO6qevy8zulD3VvPfe7z7aI+dfupW7fM3RERkbBUFHsAIiJSeAp3EZEAKdxFRAKkcBcRCZDCXUQkQAp3EZEA9RvuZrbBzI6a2Rt93G9m9rdmdsjMdpnZ3MIPU0REBiKXI/eNwNLT3H8FMD3+WQncf+bDEhGRM9FvuLv7i8AfTtPkauDHHnkFGGtmEws1QBERGbjKAvQxGXg7bbklXvfb7IZmtpLo6J6qqqp5U6ZMyWuHXV1dVFSE8XaBailNodQSSh2gWpIOHDhwzN3P7a9dIcLdelnX6zUN3H09sB6gtrbWt23bltcOm5qaqK+vz2vbUqNaSlMotYRSB6iWJDP7TS7tCvEy2AKkH4LXAK0F6FdERPJUiHB/BrglPmvmQuB9d+8xJSMiIkOn32kZM3sUqAfOMbMW4E5gGIC7rwM2A18GDgEfArcO1mBFRCQ3/Ya7uy/v534HvlmwEYlIWTh16hQtLS2cPHlySPY3ZswY9u3bNyT7Gmy51DJixAhqamoYNmxYXvsoxBuqIvIJ1NLSwujRo5k6dSpmvZ1XUVgnTpxg9OjRg76fodBfLe7Ou+++S0tLC9OmTctrH2GcVyQiQ+7kyZOMHz9+SIL9k8bMGD9+/Bn9VaRwF5G8KdgHz5n+bhXuIiIB0py7iJStRCLB+eefn1retGkTU6dOLd6ASojCXUTKVlVVFTt37uzz/o6ODiorP5kxp2kZEQnKxo0buf7667nyyitZvHgxAA0NDcyfP58LLriAO++8M9X2nnvuYcaMGVx22WUsX76ce++9F4D6+nqSl0c5duxY6q+Bzs5OVq9enerrgQceALovJ3Ddddcxc+ZMbrrpJqKzxKG5uZmLL76YWbNmUVdXx4kTJ1iyZEnGi9LChQvZtWtXQX8Pn8yXNBEpqO8/u4e9rccL2ud5k87mziv/5LRt2tvbmT17NgDTpk3jqaeeAuDll19m165djBs3jq1bt3Lw4EFeffVV3J2rrrqKF198kVGjRtHY2MiOHTvo6Ohg7ty5zJs377T7e+ihhxgzZgzNzc189NFHLFy4MPUCsmPHDvbs2cOkSZNYuHAhL730EnV1dSxbtozHHnuM+fPnc/z4caqqqrjlllvYuHEja9eu5cCBA3z00UdccMEFBfitdVO4i0jZ6mta5vLLL2fcuHEAbN26la1btzJnzhwA2traOHjwICdOnODaa69l5MiRAFx11VX97m/r1q3s2rWLJ554AoD333+fgwcPMnz4cOrq6qipqQFg9uzZHD58mDFjxjBx4kTmz58PwNlnnw3Atddey8KFC2loaGDDhg18/etfP7NfRC8U7iJyxvo7wh5qo0aNSt12d9asWcM3vvGNjDZr167t83TDyspKurq6ADLONXd3fvjDH7JkyZKM9k1NTZx11lmp5UQiQUdHB+7e6z5GjhzJ5ZdfztNPP83jjz9OvlfIPR3NuYtI0JYsWcKGDRtoa2sD4MiRIxw9epRLLrmEp556ivb2dk6cOMGzzz6b2mbq1Kls374dIHWUnuzr/vvv59SpUwAcOHCADz74oM99z5w5k9bWVpqbm4Hok6kdHR0ArFixgm9/+9vMnz8/9VdGIenIXUSCtnjxYvbt28dFF10EQHV1NQ8//DBz585l2bJlzJ49m89+9rN88YtfTG1z++2389WvfpWf/OQnXHrppan1K1as4PDhw8ydOxd359xzz2XTpk197nv48OE89thjfOtb36K9vZ2qqiqef/55AObNm8fZZ5/NrbcO0rUW3b0oP/PmzfN8/fznP89721KjWkpTKLUMZh179+4dtL57c/z48UHt/8477/SGhoZB3UfS8ePH/ciRIz59+nTv7Ozss11vv2Ngm+eQsZqWEREZYo888ggLFizgnnvuGbSvDtS0jIgIcNdddw3Zvm688cYeb/AWmo7cRSRv7r1+XbIUwJn+bhXuIpKXESNG8O677yrgB4HH13MfMWJE3n1oWkZE8lJTU0NLSwvvvPPOkOzv5MmTZxR2pSSXWpLfxJQvhbuI5GXYsGF5f0tQPpqamlKfMi13Q1GLpmVERAKkcBcRCZDCXUQkQAp3EZEAKdxFRAKkcBcRCZDCXUQkQAp3EZEAKdxFRAKkcBcRCZDCXUQkQAp3EZEAKdxFRAKkcBcRCZDCXUQkQAp3EZEA5RTuZrbUzPab2SEzu6OX+8eY2bNm9rqZ7TGzWws/VBERyVW/4W5mCeA+4ArgPGC5mZ2X1eybwF53nwXUA//NzIYXeKwiIpKjXI7c64BD7v6mu38MNAJXZ7VxYLSZGVAN/AHoKOhIRUQkZ9bfN5eb2XXAUndfES/fDCxw91VpbUYDzwAzgdHAMnf/X730tRJYCTBhwoR5jY2NeQ26ra2N6urqvLYtNaqlNIVSSyh1gGpJWrRo0XZ3r+2vXS5fkG29rMt+RVgC7AQuBf4YeM7M/sndj2ds5L4eWA9QW1vr9fX1Oey+p6amJvLdttSoltIUSi2h1AGqZaBymZZpAaakLdcArVltbgWe9Mgh4NdER/EiIlIEuYR7MzDdzKbFb5LeQDQFk+4t4EsAZjYBmAG8WciBiohI7vqdlnH3DjNbBWwBEsAGd99jZrfF968D/guw0cx2E03jfNfdjw3iuEVE5DRymXPH3TcDm7PWrUu73QosLuzQREQkX/qEqohIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIByinczWypme03s0NmdkcfberNbKeZ7TGzXxR2mCIiMhCV/TUwswRwH3A50AI0m9kz7r43rc1Y4EfAUnd/y8w+PVgDFhGR/uVy5F4HHHL3N939Y6ARuDqrzY3Ak+7+FoC7Hy3sMEVEZCDM3U/fwOw6oiPyFfHyzcACd1+V1mYtMAz4E2A08AN3/3Evfa0EVgJMmDBhXmNjY16Dbmtro7q6Oq9tS41qKU2h1BJKHaBakhYtWrTd3Wv7a9fvtAxgvazLfkWoBOYBXwKqgJfN7BV3P5Cxkft6YD1AbW2t19fX57D7npqamsh321KjWkpTKLWEUgeoloHKJdxbgClpyzVAay9tjrn7B8AHZvYiMAs4gIiIDLlc5tybgelmNs3MhgM3AM9ktXka+KKZVZrZSGABsK+wQxURkVz1e+Tu7h1mtgrYAiSADe6+x8xui+9f5+77zOxnwC6gC3jQ3d8YzIGLiEjfcpmWwd03A5uz1q3LWm4AGgo3NBERyZc+oSoiEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIByinczWypme03s0Nmdsdp2s03s04zu65wQxQRkYHqN9zNLAHcB1wBnAcsN7Pz+mj3N8CWQg9SREQGJpcj9zrgkLu/6e4fA43A1b20+xbwP4GjBRyfiIjkwdz99A2iKZal7r4iXr4ZWODuq9LaTAYeAS4FHgJ+6u5P9NLXSmAlwIQJE+Y1NjbmNei2tjaqq6vz2rbUqJbSFEotodQBqiVp0aJF2929tr92lTn0Zb2sy35FWAt81907zXprHm/kvh5YD1BbW+v19fU57L6npqYm8t221KiW0hRKLaHUAaploHIJ9xZgStpyDdCa1aYWaIyD/Rzgy2bW4e6bCjJKEREZkFzCvRmYbmbTgCPADcCN6Q3cfVrytpltJJqWUbCLiBRJv+Hu7h1mtoroLJgEsMHd95jZbfH96wZ5jCIiMkC5HLnj7puBzVnreg11d//6mQ9LRETOhD6hKiISIIW7iEiAFO4iIgFSuIuIBEjhLiISoJzOlhEZLJt2HKFhy35a32tn0tgqVi+ZwTVzJhd7WJIjPX6lS+EuRbNpxxHWPLmb9lOdABx5r501T+4GUECUAT1+pU3TMlI0DVv2p4Ihqf1UJw1b9hdpRDIQevxKm8Jdiqb1vfYBrZfSosevtCncpWgmja0a0HopLXr8SpvCXYpm9ZIZVA1LZKyrGpZg9ZIZRRqRDIQev9KmN1SlaJJvuulsi/Kkx6+0KdylqK6ZM1lhUMb0+JUuTcuIiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgPQdqiKSoavL6XSns8txhy6Plru6onVdyXVdTpdHbTq7utt0xcvpbaKf7vVdXaS173ubzi5Sbfa9dYq3X/lNarm7PXGfcT/ueHx/97hJG0e0nN0muW16ne6Zv4vM9k6nkzEeT+/D02qNl5P7rJ8E9fWD+zgq3KVkZD8hkqHicRBET55kG9KehJlP8vQnWXKb04ZH6knXHQxvHDnFse0tWWPKDLfsfWYHTPc2PYOlOxy6t+m+Py18soIlo413B1SX9+yz050PPzzJWS+/EPeT2Wdv++3yYv8v6MfeN3JqVmFQYUZFhZEwi5YrjES8bPG6RIVRYfH6CsMMEvFytH3cT2pdtDy8siJubyTifsBIVGT22b0tGcuf+uh3g/t7IsdwN7OlwA+ABPCgu//XrPtvAr4bL7YB/97dXy/kQAdD8kmf+YSnO0RSr7ZpbdJDp7cnd3/bpx21uDu7ftfB8ddb+36SZh0Z9NwHWUcSWUHQ1d1PakwZYdMzJLt6CZLMcfUMlU532to+ZETzz+Px9AzAjPBLO5JJLpec3fn9F06GQPTETwuF7Cd7HDLpwVIRbxMFUWawGFEflRUVnFVpcX+k2ifDKn2/R3//eyZNPKc76LL67G2/6X2mB1oqsNLWRTWQ6is7BLtDMnus3WNJtkn1k94mDthEhfHKyy/zhYULM+usyBpDfNvMCvt/ocCamo4N+j76DXczSwD3AZcDLUCzmT3j7nvTmv0a+Nfu/i9mdgWwHlgwGAP+xYF3+N4vP6TqtV9kBFnGEVp6qPU4ius+qvJSyZOdO864i+wndnqYdB8xdD+Zsp8MmUcZWdvHbXo7WrG0J+CxinYm/tHYVD+ZT0LSjpjiJ3bqqCrtyCrtiZ1ZU+YTurfwSMT9ZuwjOzxS9VtakKSHV7T9tldf5eKLLszpd5PcPjn2UtLU1ER9/axiD6MgPjWignNHn1XsYZSNXI7c64BD7v4mgJk1AlcDqXB39/+b1v4VoKaQg0xXfVaCCaMqmPDp6h5BlgqKrCd1X0FD9vanOUrp7jvz6Cc9ELqDI3P/GUdyWcG0fds2Llwwv8f22WPv3nd32Gb3XWxRkMwp9jAK4u1RFUwZN7LYwxDJm3k/h69mdh2w1N1XxMs3AwvcfVUf7W8HZibbZ923ElgJMGHChHmNjY15DbqtrY3q6uq8ti01qqU0hVJLKHWAaklatGjRdnev7a9dLkfuvR0S9vqKYGaLgD8HvtDb/e6+nmjKhtraWq/P8+3i6Agxv21LjWopTaHUEkodoFoGKpdwbwGmpC3XAK3ZjczsAuBB4Ap3f7cwwxMRkXzk8iGmZmC6mU0zs+HADcAz6Q3M7DPAk8DN7n6g8MMUEZGB6PfI3d07zGwVsIXoVMgN7r7HzG6L718H/GdgPPCj+I29jlzmhEREZHDkdJ67u28GNmetW5d2ewXQ4w1UkaG2accRGrbsp/W9diaNrWL1khkAPdZdM2fykOx7MPaTi+9t2s2jv3qb73z+FH++ZjPLF0zh7mvOL8pYpDj0CVUJxqYdR1jz5G7aT3UCcOS9dlb/4+tgcKrTU+vWPLkboKDB29u+B2M/ufjept08/MpbqeVO99SyAv6TQxcOk2A0bNmfCtekU12eCvak9lOdNGzZP+j7Hoz95OLRX709oPUSJoW7BKP1vfZBaXsm/RV6P7no7OOzK32tlzAp3CUYk8ZWDUrbM+mv0PvJRaKPTyv3tV7CpHCXYKxeMoOqYYmMdcMqjGGJzFCrGpZIvdE6mPsejP3kYvmCKQNaL2HSG6oSjOQbl8U4W6avfRfjbJnkm6bJOfaEmc6W+QRSuEtQrpkzuddAHYqQ7WvfxXD3Nedz9zXn09TUxP+7qb7Yw5Ei0LSMiEiAFO4iIgFSuIuIBEjhLiISIIW7iEiAFO4iIgFSuIuIBEjhLiISIIW7iEiAFO4iIgFSuIuIBEjhLiISIIW7iEiAFO4iIgFSuIuIBEjhLiISIIW7iEiAFO4iIgFSuIuIBEjhLiISIIW7iEiAFO4iIgFSuIuIBEjhLiISIIW7iEiAFO4iIgFSuIuIBEjhLiISoJzC3cyWmtl+MztkZnf0cr+Z2d/G9+8ys7mFH6qIiOSq33A3swRwH3AFcB6w3MzOy2p2BTA9/lkJ3F/gcYqIyADkcuReBxxy9zfd/WOgEbg6q83VwI898gow1swmFnisIiKSo8oc2kwG3k5bbgEW5NBmMvDb9EZmtpLoyB6gzcz2D2i03c4BjuW5balRLaUplFpCqQNUS9Jnc2mUS7hbL+s8jza4+3pgfQ77PP2AzLa5e+2Z9lMKVEtpCqWWUOoA1TJQuUzLtABT0pZrgNY82oiIyBDJJdybgelmNs3MhgM3AM9ktXkGuCU+a+ZC4H13/212RyIiMjT6nZZx9w4zWwVsARLABnffY2a3xfevAzYDXwYOAR8Ctw7ekIECTO2UENVSmkKpJZQ6QLUMiLn3mBoXEZEyp0+oiogESOEuIhKgkg93MxthZq+a2etmtsfMvh+vH2dmz5nZwfjfTxV7rLkws4SZ7TCzn8bL5VrHYTPbbWY7zWxbvK5caxlrZk+Y2T+b2T4zu6gcazGzGfHjkfw5bmbfKdNa/kP8fH/DzB6Nc6Ds6gAws7+M69hjZt+J1w16LSUf7sBHwKXuPguYDSyNz8i5A3jB3acDL8TL5eAvgX1py+VaB8Aid5+ddr5uudbyA+Bn7j4TmEX0+JRdLe6+P348ZgPziE5ueIoyq8XMJgPfBmrd/fNEJ3LcQJnVAWBmnwf+HdEn/WcBXzGz6QxFLe5eNj/ASOA1ok/I7gcmxusnAvuLPb4cxl8TP5CXAj+N15VdHfFYDwPnZK0ru1qAs4FfE59cUM61ZI1/MfBSOdZC9yfexxGd0ffTuJ6yqiMe5/XAg2nLfwX8p6GopRyO3JNTGTuBo8Bz7v4rYILH59LH/366mGPM0VqiB7YrbV051gHRJ5C3mtn2+LISUJ61fA54B/j7eLrsQTMbRXnWku4G4NH4dlnV4u5HgHuBt4guYfK+u2+lzOqIvQFcYmbjzWwk0SnjUxiCWsoi3N2906M/NWuAuvhPnbJiZl8Bjrr79mKPpUAWuvtcoiuCftPMLin2gPJUCcwF7nf3OcAHlMGf+6cTf9jwKuAfiz2WfMTzz1cD04BJwCgz+7Pijio/7r4P+BvgOeBnwOtAx1DsuyzCPcnd3wOagKXA75NXnoz/PVrEoeViIXCVmR0murLmpWb2MOVXBwDu3hr/e5RoXreO8qylBWiJ/xoEeIIo7MuxlqQrgNfc/ffxcrnVchnwa3d/x91PAU8CF1N+dQDg7g+5+1x3vwT4A3CQIail5MPdzM41s7Hx7SqiB/6fiS558LW42deAp4szwty4+xp3r3H3qUR/Mv8fd/8zyqwOADMbZWajk7eJ5kPfoAxrcfffAW+b2Yx41ZeAvZRhLWmW0z0lA+VXy1vAhWY20syM6DHZR/nVAYCZfTr+9zPAnxI9NoNeS8l/QtXMLgD+gegd8wrgcXf/azMbDzwOfIboP8P17v6H4o00d2ZWD9zu7l8pxzrM7HNER+sQTWs84u73lGMtAGY2G3gQGA68SXT5jArKs5aRRG9Gfs7d34/Xld3jEp/yvIxoCmMHsAKopszqADCzfwLGA6eA/+juLwzFY1Ly4S4iIgNX8tMyIiIycAp3EZEAKdxFRAKkcBcRCZDCXUQkQLl8QbbIkIpPE3shXvwjoJPoEgEAde7+cVEGdhpm9m+BzfF58yJFp1MhpaSZ2V1Am7vfWwJjSbh7Zx/3/RJY5e47B9BfpbsPyUfR5ZNH0zJSVszsaxZd33+nmf3IzCrMrNLM3jOzBjN7zcy2mNkCM/uFmb1pZl+Ot11hZk/F9+83s+/l2O/dZvYq0XWNvm9mzfH1uddZZBnR5agfi7cfbmYtaZ+svtDMno9v321mD5jZc0QXK6s0s/8e73uXma0Y+t+qhEjhLmUjvmDctcDF8YXkKoku5QAwBtgaX8zsY+Auoo+tXw/8dVo3dfE2c4EbzWx2Dv2+5u517v4y8AN3nw+cH9+31N0fA3YCyzy6nnp/00ZzgCvd/WZgJdEF5eqA+UQXYftMPr8fkXSac5dychlRAG6LLjlCFdFH7QHa3f25+PZuosvEdpjZbmBqWh9b3P1fAMxsE/AFoudBX/1+TPelFgC+ZGargRHAOcB24H8PsI6n3f1kfHsx8K/MLP3FZDrRR9JF8qZwl3JiwAZ3/6uMlWaVRCGc1EX0DV7J2+n/z7PfZPJ++m33+I2p+Lot/wOY6+5HzOxuopDvTQfdfxlnt/kgq6a/cPcXECkgTctIOXke+KqZnQPRWTV5TGEstug7U0cSXTP8pQH0W0X0YnEsvirmv0m77wQwOm35MNFX3ZHVLtsW4C/iF5Lk96BWDbAmkR505C5lw913x1cLfN7MKoiusncb0DqAbn4JPAL8MfCT5NktufTr7u+a2T8QXd74N8Cv0u7+e+BBM2snmte/C/g7M/sd8OppxvMA0ZUBd8ZTQkeJXnREzohOhZRPjPhMlM+7+3eKPRaRwaZpGRGRAOnIXUQkQDpyFxEJkMJdRCRACncRkQAp3EVEAqRwFxEJ0P8HfLcy7/zjy3oAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "%matplotlib inline\n", "data_pred = pd.DataFrame({'Temperature': np.linspace(start=30, stop=90, num=121), 'Intercept': 1})\n", "data_pred['Frequency'] = logmodel.predict(data_pred[['Intercept','Temperature']])\n", "data_pred.plot(x=\"Temperature\",y=\"Frequency\",kind=\"line\",ylim=[0,1])\n", "plt.scatter(x=data[\"Temperature\"],y=data[\"Frequency\"])\n", "plt.grid(True)" ] }, { "cell_type": "markdown", "metadata": { "hideCode": false, "hidePrompt": false, "scrolled": true }, "source": [ "As expected from the initial data, the\n", "temperature has no significant impact on the probability of failure of the\n", "O-rings. It will be about 0.2, as in the tests\n", "where we had a failure of at least one joint. Let's get back\n", "to the initial dataset to estimate the probability of failure:" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.06521739130434782\n" ] } ], "source": [ "data = pd.read_csv(\"shuttle.csv\")\n", "print(np.sum(data.Malfunction)/np.sum(data.Count))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This probability is thus about $p=0.065$. Knowing that there is\n", "a primary and a secondary O-ring on each of the three parts of the\n", "launcher, the probability of failure of both joints of a launcher\n", "is $p^2 \\approx 0.00425$. The probability of failure of any one of the\n", "launchers is $1-(1-p^2)^3 \\approx 1.2%$. That would really be\n", "bad luck.... Everything is under control, so the takeoff can happen\n", "tomorrow as planned.\n", "\n", "But the next day, the Challenger shuttle exploded and took away\n", "with her the seven crew members. The public was shocked and in\n", "the subsequent investigation, the reliability of the\n", "O-rings was questioned. Beyond the internal communication problems\n", "of NASA, which have a lot to do with this fiasco, the previous analysis\n", "includes (at least) a small problem.... Can you find it?\n", "You are free to modify this analysis and to look at this dataset\n", "from all angles in order to to explain what's wrong." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Problem: the above analysis omitted a possible confounding variable (Pressure)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We see in the examples below that 1) pressure and temperature are related, and 2) very low or very high pressure may increase frequency of malfunction." ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "count 23.000000\n", "mean 152.173913\n", "std 68.221332\n", "min 50.000000\n", "25% 75.000000\n", "50% 200.000000\n", "75% 200.000000\n", "max 200.000000\n", "Name: Pressure, dtype: float64" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data['Pressure'].describe()" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEKCAYAAAAIO8L1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAG7FJREFUeJzt3X+cVfV95/HXe5gJvwYjgk4UdPFX3PqD0jChGtMUohtNH1txy5rgrg1tzbJpbRrdbKO2uzXJI+xDSdJs2tS21F+kSZ0SMermlz+QqasPlYBBEH9UNhgcf4AiRsbAODCf/eMe4mX8wtw7zLnn3sv7+XjwmHO/99xzPp853Puec8695yoiMDMzG6yl6ALMzKw+OSDMzCzJAWFmZkkOCDMzS3JAmJlZkgPCzMySHBBmZpbkgDAzsyQHhJmZJbUWXcDBmDx5ckybNq3oMvbx5ptvMn78+KLLyEWz9ua+Gk+z9larvtasWfNqRBw51HwNHRDTpk1j9erVRZexj+7ubmbPnl10Gblo1t7cV+Np1t5q1Zekn1Uynw8xmZlZkgPCzMySHBBmZpbkgDAzsyQHhJmZJeUWEJKOlbRS0lOSNkj6TDZ+hKR7JT2b/ZxY9pirJW2U9Iyk8/KqDWBbbx+PP/8623r78lzNiKim1kbqqxqN1tfGLTu4bfXzbNyyo7D1b/9Ff2Hrz1M1veWxHerh+Vir50Oeb3PdDXw2Ih6TNAFYI+le4PeAFRFxraSrgKuAKyWdCswHTgOOAe6T9N6I2DPShd259gWuXL6OtpYW+gcGWDxvOhfMmDLSqxkR1dTaSH1Vo9H6+os71vPNRzb/8vYnzjqOL849o+br/+wZu7niaw/UfP15qqa3PLZDPTwfa/l8yG0PIiJeiojHsukdwFPAFGAusDSbbSlwYTY9F+iKiL6I2ARsBGaNdF3bevu4cvk6dvUPsKNvN7v6B/jc8nV1+ZdpNbU2Ul/VaLS+Nm7Zsc+LEsA3H95cs7/ki15/nqrpLY/fQz08H2v9fFAtvpNa0jTgAeB0YHNEHF523/aImCjpG8AjEfGtbPxG4IcRcdugZS0EFgJ0dHTM7OrqqqqWnf172PTKm+wp63uUxPFHjmds26jhtLeP3t5e2tvbD3o5UF2tefcFI9tbpRqtr+2/6Kdn+y/eMT514jgmjmsbkXVUuv6OsbBlZ23Xn6dqestjO9Ti+TjU/8WRej7MmTNnTUR0DjVf7p+kltQOLAcuj4g3JO131sTYO9IrIpYASwA6Ozuj2k8dbuvt44rr7mdX/8Avx8a0tfDQBR9kUvvoqpaVMpKfhKym1rz7gmI+vdpofW3csoMrvvbAO8bvu+JMTuqYMCLrqHT9nz1jN19d31rT9eepmt7y2A61eD4O9X+xFs+Hcrm+i0lSG6Vw+HZE3J4Nb5F0dHb/0cDWbLwHOLbs4VOBF0e6pknto1k8bzpj2lqYMLqVMW0tLJ43PZdf7sGqptZG6qsajdbXSR0T+MRZx+0z9omzjqvZi3PR689TNb3l8Xuoh+djzZ8PEZHLP0p7BN8E/veg8S8DV2XTVwGLs+nTgMeB0cDxwE+BUQdax8yZM2O4Xt2xK9Zu3h6v7tg17GWkrFy5ckSXF1FdrXn1FZFPb5VqtL6effmN+M6PN8ezL78x4suudP23f/+ewtafp2p6y2M75Pl8rPT/4sE+H4DVUcHreJ6HmM4GfhdYL2ltNvZnwLXAMkmXApuBi7Kg2iBpGfAkpXdAXRY5vINpr0nto+v2r9DBqqm1kfqqRqP1dVLHhEL/aj+pYwI949qaYs9hsGp6y2M71MPzsVbPh9wCIiIeJH1eAeCc/TxmEbAor5rMzKxy/iS1mZklOSDMzCzJAWFmZkkOCDMzS3JAmJlZkgPCzMySHBBmZpbkgDAzsyQHhJmZJTkgzMwsyQFhZmZJDggzM0tyQJiZWZIDwszMkhwQZmaW5IAwM7MkB4SZmSXlFhCSbpK0VdITZWMzJD0iaa2k1ZJmld13taSNkp6RdF5edZmZWWXy3IO4BTh/0Nhi4AsRMQP4i+w2kk4F5gOnZY+5XtKoHGszM7Mh5BYQEfEA8NrgYeCwbPrdwIvZ9FygKyL6ImITsBGYhZmZFaa1xuu7HLhb0lcohdMHsvEpwCNl8/VkY2ZmVpBaB8QfAldExHJJHwNuBM4FlJg3UguQtBBYCNDR0UF3d3dOpQ5Pb29v3dU0Upq1N/fVeJq1t7rrKyJy+wdMA54ou/1zQNm0gDey6auBq8vmuxs4a6jlz5w5M+rNypUriy4hN83am/tqPM3aW636AlZHBa/htX6b64vAb2bTHwaezabvAuZLGi3peOBkYFWNazMzszK5HWKSdCswG5gsqQe4BvgvwNcltQK7yA4VRcQGScuAJ4HdwGURsSev2szMbGi5BUREXLyfu2buZ/5FwKK86jEzs+r4k9RmZpbkgDAzsyQHhJmZJTkgzMwsyQFhZmZJDggzM0tyQJiZWZIDwszMkhwQZmaW5IAwM7MkB4SZmSU5IMzMLMkBYWZmSQ4IMzNLckCYmVmSA8LMzJIcEGZmlpRbQEi6SdJWSU8MGv+0pGckbZC0uGz8akkbs/vOy6suMzOrTG5fOQrcAnwD+ObeAUlzgLnA9Ijok3RUNn4qMB84DTgGuE/Se/291GZmxcltDyIiHgBeGzT8h8C1EdGXzbM1G58LdEVEX0RsAjYCs/KqzczMhlbrcxDvBX5D0qOS/kXS+7PxKcDzZfP1ZGNmZlaQPA8x7W99E4EzgfcDyySdACgxb6QWIGkhsBCgo6OD7u7ufCodpt7e3rqraaQ0a2/uq/E0a2/11letA6IHuD0iAlglaQCYnI0fWzbfVODF1AIiYgmwBKCzszNmz56da8HV6u7upt5qGinN2pv7ajzN2lu99VXrQ0x3AB8GkPRe4F3Aq8BdwHxJoyUdD5wMrKpxbWZmVia3PQhJtwKzgcmSeoBrgJuAm7K3vr4FLMj2JjZIWgY8CewGLvM7mMzMipVbQETExfu565L9zL8IWJRXPWZmVh1/ktrMzJIcEGZmluSAMDOzJAeEmZklOSDMzCzJAWFmZkkOCDMzS3JAmJlZkgPCzMySHBBmZpbkgDAzsyQHhJmZJTkgzMwsyQFhZmZJDggzM0tyQJiZWZIDwszMkhwQZmaWlFtASLpJ0tbs+6cH3/ffJYWkyWVjV0vaKOkZSeflVZeZmVUmzz2IW4DzBw9KOhb4d8DmsrFTgfnAadljrpc0KsfazMxsCLkFREQ8ALyWuOtrwOeAKBubC3RFRF9EbAI2ArPyqs3MzIbWWsuVSboAeCEiHpdUftcU4JGy2z3ZWGoZC4GFAB0dHXR3d+dT7DD19vbWXU0jpVl7c1+Np1l7q7e+KgoISR3A/wKOiYiPZoeEzoqIGytdkaRxwJ8DH0ndnRiLxBgRsQRYAtDZ2RmzZ8+utISa6O7upt5qGinN2pv7ajzN2lu99VXpIaZbgLuBY7Lb/wpcXuW6TgSOBx6X9BwwFXhM0nso7TEcWzbvVODFKpdvZmYjqNKAmBwRy4ABgIjYDeypZkURsT4ijoqIaRExjVIovC8iXgbuAuZLGi3peOBkYFU1yzczs5FVaUC8KWkS2WEfSWcCPz/QAyTdCjwMnCKpR9Kl+5s3IjYAy4AngR8Bl0VEVQFkZmYjq9KT1P+N0l/5J0p6CDgS+I8HekBEXDzE/dMG3V4ELKqwHjMzy9mQASGpBRgD/CZwCqUTys9ERH/OtZmZWYGGDIiIGJD01Yg4C9hQg5rMzKwOVHoO4h5J8zTowwtmZta8qjkHMR7YLWkXpcNMERGH5VaZmZkVqqKAiIgJeRdiZmb1pdJPUn8oNZ5db8nMzJpQpYeY/rRsegylC+mtAT484hWZmVldqPQQ02+X384u2b04l4rMzKwuDPdy3z3A6SNZiJmZ1ZdKz0H8NW9fXbUFmAE8nldRZmZWvErPQawum94N3BoRD+VQj5mZ1YlKz0Es3TstaSL7XprbzMyaUEXnICR1SzpM0hGUDi3dLOkv8y3NzMyKVOlJ6ndHxBvA7wA3R8RM4Nz8yjIzs6JVGhCtko4GPgZ8L8d6zMysTlQaEF+k9JWjGyPix5JOAJ7NrywzMytapSepvwN8p+z2T4F5eRVlZmbFq/Qk9eLsJHWbpBWSXpV0yRCPuUnSVklPlI19WdLTktZJ+q6kw8vuu1rSRknPSDpv+C2ZmdlIqPQQ00eyk9T/ntKnqN/LvtdnSrkFOH/Q2L3A6RExHfhX4GoASacC84HTssdcL2lUhbWZmVkOKg2Ituznb1H6kNxrQz0gu9Lra4PG7omI3dnNR4Cp2fRcoCsi+iJiE7CR0gUBzcysIJUGxP+R9DTQCayQdCSw6yDX/QfAD7PpKcDzZff1ZGNmZlYQRcTQc/HLT1C/ERF7JI0HJkTEy0M8ZhrwvYg4fdD4n1MKm9+JiJD0N8DDEfGt7P4bgR9ExPLEMhcCCwE6OjpmdnV1VVR/rfT29tLe3l50Gblo1t7cV+Np1t5q1decOXPWRETnUPNVerG+ccBlwHGUXpyPAU5hGJ+JkLSA0rmMc+LtdOph38t3TAVeTD0+IpYASwA6Oztj9uzZ1ZaQq+7ubuqtppHSrL25r8bTrL3VW1+VHmK6GXgL+EB2uwf4UrUrk3Q+cCVwQUT8ouyuu4D5kkZLOh44GVhV7fLNzGzkVBoQJ0bEYqAfICJ2AjrQAyTdCjwMnCKpR9KlwDeACcC9ktZK+rtseRuAZcCTwI+AyyJiz3AaMjOzkVHp5b7fkjSW7DshJJ0I9B3oARFxcWL4xgPMvwhYVGE9ZmaWs0oD4hpKf9kfK+nbwNnA7+VVlJmZFW/IgJAk4GlKV3I9k9Khpc9ExKs512ZmZgUaMiCyt6HekV3i+/s1qMnMzOpApSepH5H0/lwrMTOzulLpOYg5wKckPQe8SekwU2TXVDIzsyZUaUB8NNcqzMys7hwwICSNAT4FnASsB24su9iemZk1saHOQSyldM2k9ZT2Ir6ae0VmZlYXhjrEdGpEnAG/vICeL39hZnaIGGoPon/vhA8tmZkdWobag/hVSW9k0wLGZrf3vovpsFyrMzOzwhwwICLCX/tpZnaIqvSDcmZmdohxQJiZWZIDwszMkhwQZmaW5IAwM7Ok3AJC0k2Stkp6omzsCEn3Sno2+zmx7L6rJW2U9Iyk8/Kqy8zMKpPnHsQtwPmDxq4CVkTEycCK7DaSTgXmA6dlj7lekt9iazZM23r72Nm/h229B/xm4NxrePz51wutwQ5ObgEREQ8Arw0ankvp+k5kPy8sG++KiL6I2ARsBGblVZtZM7tz7Qucfd39bHrlTc6+7n7uWvtCYTVccsOjhdVgB6/W5yA6IuIlgOznUdn4FOD5svl6sjEzq8K23j6uXL6OXf0D7IlgV/8An1u+rqZ/xZfXsKNvdyE12MhQROS3cGka8L2IOD27/XpEHF52//aImCjpb4CHI+Jb2fiNwA8iYnlimQuBhQAdHR0zu7q6cqt/OHp7e2lvby+6jFw0a2/N1NfO/j1seuVN9kTQMRa27IRREscfOZ6xbbU5altew14jXUMzbbNyteprzpw5ayKic6j5Kv3CoJGyRdLREfGSpKOBrdl4D3Bs2XxTgRdTC4iIJcASgM7Ozpg9e3aO5Vavu7ubeqtppDRrb83U17bePq647n529Q/w2TN289X1rYxpa+GhCz7IpPbRNa9hr5GuoZm2Wbl666vWh5juAhZk0wuAO8vG50saLel44GR8aXGzqk1qH83iedMZ09bCKIkxbS0snje9ZuEwuIYJo1sLqcFGRm57EJJuBWYDkyX1ANcA1wLLJF0KbAYuAoiIDZKWAU8Cu4HLImJPXrWZNbMLZkzh7JMms+rhB2u655CqoWf7TqZOHOtwaFC5BUREXLyfu87Zz/yLgEV51WN2KJnUPpqxbaMKfWGe1D7awdDg/ElqMzNLckCYmVmSA8LMzJIcEGZmluSAMDOzJAeEmZklOSDMzCzJAWFmZkkOCDMzS3JAmJlZkgPCzMySHBBmZpbkgDAzsyQHhJmZJTkgzMwsyQFhZmZJDggzM0tyQJiZWVIhASHpCkkbJD0h6VZJYyQdIeleSc9mPycWUZuZmZXUPCAkTQH+BOiMiNOBUcB84CpgRUScDKzIbpuZWUGKOsTUCoyV1AqMA14E5gJLs/uXAhcWVJuZmQGKiNqvVPoMsAjYCdwTEf9Z0usRcXjZPNsj4h2HmSQtBBYCdHR0zOzq6qpV2RXp7e2lvb296DJy0ay9ua/G06y91aqvOXPmrImIziFnjIia/gMmAvcDRwJtwB3AJcDrg+bbPtSyZs6cGfVm5cqVRZeQm2btzX01nmbtrVZ9AaujgtfrIg4xnQtsiohXIqIfuB34ALBF0tEA2c+tBdRmZmaZIgJiM3CmpHGSBJwDPAXcBSzI5lkA3FlAbWZmlmmt9Qoj4lFJtwGPAbuBnwBLgHZgmaRLKYXIRbWuzczM3lbzgACIiGuAawYN91HamzAzszrgT1KbmVmSA8LMzJIcEGZmluSAMDOzJAeEmZklOSDMzCzJAWFmZkkOCDMzS3JAmJlZkgPCzMySHBBmZpbkgDAzsyQHhJmZJTkgzMwsyQFhZmZJDggzM0tyQJiZWVIhASHpcEm3SXpa0lOSzpJ0hKR7JT2b/ZxYRG1mZlZS1B7E14EfRcS/BX4VeAq4ClgREScDK7LbZmZWkJoHhKTDgA8BNwJExFsR8TowF1iazbYUuLDWtZmZ2duK2IM4AXgFuFnSTyTdIGk80BERLwFkP48qoDYzM8soImq7QqkTeAQ4OyIelfR14A3g0xFxeNl82yPiHechJC0EFgJ0dHTM7OrqqlHllent7aW9vb3oMnLRrL25r8bTrL3Vqq85c+asiYjOIWeMiJr+A94DPFd2+zeA7wPPAEdnY0cDzwy1rJkzZ0a9WblyZdEl5KZZe3NfjadZe6tVX8DqqOD1uuaHmCLiZeB5SadkQ+cATwJ3AQuysQXAnbWuzczM3tZa0Ho/DXxb0ruAnwK/T+l8yDJJlwKbgYsKqs3MzCgoICJiLZA6/nVOrWsxM7M0f5LazMySHBBmZpbkgDAzsyQHhJmZJTkgzMwsyQFhVqFtvX08/vzrbOvtK2Teape5s39PRfNWo5oarPEV9TkIs4Zy59oXuHL5OtpaWugfGGDxvOlcMGNKzeYdzjL/5Ff6ueK6+w84bzWqqcGag/cgzIawrbePK5evY1f/ADv6drOrf4DPLV+X/Cs6j3mHu8w9EQecN6/fgTUPB4TZEHq276StZd+nSltLCz3bd9Zk3rzWX428lmv1zQFhNoSpE8fSPzCwz1j/wABTJ46tybx5rb8aeS3X6psDwmwIk9pHs3jedMa0tTBhdCtj2lpYPG86k9pH12Te4S5zlHTAefP6HVjz8ElqswpcMGMKZ580mZ7tO5k6cewBXxjzmHc4y1z18IM8dMEHR+xFvJoarDk4IMwqNKl9dMUvinnMW+0yx7aNGvEX8WpqsMbnQ0xmZpbkgDAzsyQHhJmZJTkgzMwsyQFhZmZJioiiaxg2Sa8APyu6jkEmA68WXUROmrU399V4mrW3WvX1byLiyKFmauiAqEeSVkdE6vu2G16z9ua+Gk+z9lZvffkQk5mZJTkgzMwsyQEx8pYUXUCOmrU399V4mrW3uurL5yDMzCzJexBmZpbkgDhIkp6TtF7SWkmrs7HPS3ohG1sr6beKrrNakg6XdJukpyU9JeksSUdIulfSs9nPiUXXWa399NUM2+uUsvrXSnpD0uWNvs0O0FczbLMrJG2Q9ISkWyWNqbft5UNMB0nSc0BnRLxaNvZ5oDcivlJUXQdL0lLg/0bEDZLeBYwD/gx4LSKulXQVMDEiriy00Crtp6/LafDtVU7SKOAF4NeBy2jwbbbXoL5+nwbeZpKmAA8Cp0bETknLgB8Ap1JH28t7EPYOkg4DPgTcCBARb0XE68BcYGk221LgwmIqHJ4D9NVszgH+X0T8jAbfZoOU99UMWoGxklop/aHyInW2vRwQBy+AeyStkbSwbPyPJa2TdFPRu4nDcALwCnCzpJ9IukHSeKAjIl4CyH4eVWSRw7C/vqCxt9dg84Fbs+lG32blyvuCBt5mEfEC8BVgM/AS8POIuIc6214OiIN3dkS8D/gocJmkDwF/C5wIzKC08b9aYH3D0Qq8D/jbiPg14E3gqmJLGhH766vRt9cvZYfNLgC+U3QtIynRV0NvsyzQ5gLHA8cA4yVdUmxV7+SAOEgR8WL2cyvwXWBWRGyJiD0RMQD8AzCryBqHoQfoiYhHs9u3UXph3SLpaIDs59aC6huuZF9NsL3KfRR4LCK2ZLcbfZvttU9fTbDNzgU2RcQrEdEP3A58gDrbXg6IgyBpvKQJe6eBjwBP7N3Amf8APFFEfcMVES8Dz0s6JRs6B3gSuAtYkI0tAO4soLxh219fjb69BrmYfQ/DNPQ2K7NPX02wzTYDZ0oaJ0mU/i8+RZ1tL7+L6SBIOoHSXgOUDl/8U0QskvSPlHZ9A3gO+K97jys2CkkzgBuAdwE/pfSukRZgGXAcpf/gF0XEa4UVOQz76euvaPDtBSBpHPA8cEJE/Dwbm0Tjb7NUX83wHPsC8HFgN/AT4JNAO3W0vRwQZmaW5ENMZmaW5IAwM7MkB4SZmSU5IMzMLMkBYWZmSa1FF2CWh+ztnSuym+8B9lC6zAaUPsz4ViGFHYCkPwB+kH1ew6xwfpurNb16urqupFERsWc/9z0I/HFErK1iea0RsXvECjQr40NMdsiRtEDSqux7BK6X1CKpVdLrkr4s6TFJd0v6dUn/Iumne79vQNInJX03u/8ZSf+jwuV+SdIqYJakL0j6cfY9AH+nko9T+uDXP2ePf5ekHkmHZ8s+U9J92fSXJP29pHspXXiwVdJfZuteJ+mTtf+tWjNyQNghRdLplC7N8IGImEHpMOv87O53A/dkF198C/g8pUsgXAR8sWwxs7LHvA/4T5JmVLDcxyJiVkQ8DHw9It4PnJHdd35E/DOwFvh4RMyo4BDYrwG/HRG/CywEtkbELOD9lC4aedxwfj9m5XwOwg4151J6EV1dugQOYyldxgFgZ0Tcm02vp3QJ5t2S1gPTypZxd0RsB5B0B/BBSs+l/S33Ld6+JAvAOZL+FBgDTAbWAD+sso87I2JXNv0R4FcklQfSyZQu1WA2bA4IO9QIuCki/uc+g6UvbSn/q30A6CubLn+uDD5xF0Msd2dkJ/uy6wp9g9JVZF+Q9CVKQZGym7f38gfP8+agnv4oIlZgNoJ8iMkONfcBH5M0GUrvdhrG4ZiPqPTd1uMoXdP/oSqWO5ZS4LyaXQl4Xtl9O4AJZbefA2Zm0+XzDXY38EdZGO39HuexVfZk9g7eg7BDSkSsz66ieZ+kFqAf+BSlr3us1IPAP1H6wpp/3Puuo0qWGxHbVPpe7CeAnwGPlt19M3CDpJ2UznN8HvgHSS8Dqw5Qz99Tuvrn2uzw1lZKwWV2UPw2V7MqZO8QOj0iLi+6FrO8+RCTmZkleQ/CzMySvAdhZmZJDggzM0tyQJiZWZIDwszMkhwQZmaW5IAwM7Ok/w8QKKDe+Y+mfwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "data.plot(x=\"Temperature\",y=\"Pressure\",kind=\"scatter\")\n", "plt.grid(True)" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEKCAYAAAD9xUlFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAF+FJREFUeJzt3Xu4XXV95/H3NxcgIeEi4EFJKCARn6iAHORSdUqE0oROSa1hCu0A0qEZZkxnoGNLHH3obehTwRYroqkihdjWPCCUi6QDgSdKxxKuQm4QPAJCCISLCAkBkpDv/LFWFjun57IPOevsRXi/nmc/7PVbv7335xzO3p+stddeOzITSZIARnU6gCSpOSwFSVLFUpAkVSwFSVLFUpAkVSwFSVKltlKIiCsi4tmIWN7P+oiIr0ZET0QsjYgj6soiSWpPnVsKVwLTB1g/A5hSXmYD36gxiySpDbWVQmbeAfx8gCkzgflZWALsERHvqSuPJGlwYzr42PsBT7Ysry7Hnu49MSJmU2xNMG7cuO7JkyePSMB2bNmyhVGjmvvWTNPzQfMzNj0fmHE4ND0fbF/GRx555PnM3GfQiZlZ2wU4AFjez7qbgY+3LN8OdA92n93d3dkkixcv7nSEATU9X2bzMzY9X6YZh0PT82VuX0bg3mzjdbuTtbgaaP0n/yRgTYeySJLo7CGpNwJnlEchHQO8lJn/bteRJGnk1PaeQkR8FzgO2DsiVgN/AowFyMx5wELgJKAH2ACcVVcWSVJ7aiuFzDxtkPUJfLaux5ckDV2z32qXJI0oS0GSVLEUJEkVS0GSVLEUJEkVS0GSVLEUJEkVS0GSVLEUJEkVS0GSVLEUJEkVS0GSVLEUJEkVS0GSVLEUJEkVS0GSVLEUJEkVS0GSVLEUJEkVS0GSVLEUJEkVS0GSVLEUJEkVS0GSVLEUJEkVS0GSVLEUJEkVS0GSVLEUJEkVS0GSVLEUJEkVS0GSVLEUJEkVS0GSVLEUJEmVWkshIqZHxKqI6ImIuX2s3z0iboqIByNiRUScVWceSdLAaiuFiBgNXAbMAKYCp0XE1F7TPguszMzDgOOAv46InerKJEkaWJ1bCkcBPZn5aGZuBBYAM3vNSWBiRAQwAfg5sLnGTJKkAURm1nPHEbOA6Zl5drl8OnB0Zs5pmTMRuBH4ADAR+O3MvLmP+5oNzAbo6urqXrBgQS2Z34r169czYcKETsfoV9PzQfMzNj0fmHE4ND0fbF/GadOm3ZeZRw46MTNruQCnAJe3LJ8OXNprzizgEiCAg4HHgN0Gut/u7u5sksWLF3c6woCani+z+Rmbni/TjMOh6fkyty8jcG+28dpd5+6j1cDkluVJwJpec84Crisz95Sl8IEaM0mSBlBnKdwDTImIA8s3j0+l2FXU6gngeICI6AIOAR6tMZMkaQBj6rrjzNwcEXOAW4DRwBWZuSIizinXzwP+ArgyIpZR7EI6PzOfryuTJGlgtZUCQGYuBBb2GpvXcn0NcGKdGSRJ7fMTzZKkiqUgSapYCpKkiqUgSapYCpKkiqUgSapYCpKkiqUgSapYCpKkiqUgSapYCpKkiqUgSapYCpKkiqUgSapYCpKkiqUgSapYCpKkiqUgSapYCpKkiqUgSapYCpKkiqUgSapYCpKkiqUgSapYCpKkiqUgSapYCpKkiqUgSapYCpKkiqUgSapYCpKkiqUgSapYCpKkiqUgSarUWgoRMT0iVkVET0TM7WfOcRHxQESsiIgf1plHkjSwMe1MiogPZebyodxxRIwGLgN+FVgN3BMRN2bmypY5ewBfB6Zn5hMR8e6hPIYkaXi1u6UwLyLujoj/Xr6Qt+MooCczH83MjcACYGavOb8DXJeZTwBk5rNt3rckqQaRme1NjJgC/B5wCnA38PeZuWiA+bMotgDOLpdPB47OzDktc74CjAU+CEwE/jYz5/dxX7OB2QBdXV3dCxYsaO+nGwHr169nwoQJnY7Rr6bng+ZnbHo+MONwaHo+2L6M06ZNuy8zjxx0Yma2fQFGA58GngIeAh4GfqufuacAl7csnw5c2mvO14AlwK7A3sBPgPcPlKG7uzubZPHixZ2OMKCm58tsfsam58s043Boer7M7csI3JttvM63+57CocBZwK8Di4DfyMz7I+K9wJ3AdX3cbDUwuWV5ErCmjznPZ+YrwCsRcQdwGPBIO7kkScOr3fcUvgbcDxyWmZ/NzPsBMnMN8MV+bnMPMCUiDoyInYBTgRt7zbkB+EREjImI8cDRFFsgkqQOaGtLATgJeDUz3wCIiFHALpm5ITO/09cNMnNzRMwBbqHY7XRFZq6IiHPK9fMy86GI+L/AUmALxe6mIR3lJEkaPu2Wwm3ACcD6cnk8cCvwywPdKDMXAgt7jc3rtXwxcHGbOSRJNWp399Eumbm1ECivj68nkiSpU9othVci4oitCxHRDbxaTyRJUqe0u/voXOCaiNh69NB7gN+uJ5IkqVPaKoXMvCciPgAcAgTwcGZuqjWZJGnEtbulAPBR4IDyNh+JCLKPTx9Lkt6+2v3w2neA9wEPAG+UwwlYCpK0A2l3S+FIYGr5UWlJ0g6q3aOPlgP71hlEktR57W4p7A2sjIi7gde3DmbmybWkkiR1RLul8Kd1hpAkNUO7h6T+MCJ+CZiSmbeVJ68bXW80SdJIa+s9hYj4feB7wN+VQ/sB19cVSpLUGe2+0fxZ4GPAywCZ+RPA71OWpB1Mu6XwehbfswxARIyh+JyCJGkH0m4p/DAi/jcwLiJ+FbgGuKm+WJKkTmi3FOYCzwHLgP9K8R0J/X3jmiTpbardo4+2AN8qL5KkHVS75z56jD7eQ8jMg4Y9kSSpY4Zy7qOtdgFOAd41/HEkSZ3U1nsKmflCy+WpzPwK8Mmas0mSRli7u4+OaFkcRbHlMLGWRJKkjml399Fft1zfDDwO/KdhTyNJ6qh2jz6aVncQSVLntbv76A8HWp+ZfzM8cSRJnTSUo48+CtxYLv8GcAfwZB2hJEmdMZQv2TkiM9cBRMSfAtdk5tl1BZMkjbx2T3OxP7CxZXkjcMCwp5EkdVS7WwrfAe6OiH+m+GTzp4D5taWSJHVEu0cfXRgR/wJ8ohw6KzN/XF8sSVIntLv7CGA88HJm/i2wOiIOrCmTJKlD2v06zj8Bzgc+Xw6NBf6hrlCSpM5od0vhU8DJwCsAmbkGT3MhSTucdkthY2Ym5emzI2LX+iJJkjql3VK4OiL+DtgjIn4fuA2/cEeSdjjtHn305fK7mV8GDgEuyMxFtSaTJI24QbcUImJ0RNyWmYsy848y83PtFkJETI+IVRHRExFzB5j30Yh4IyJmDSW8JGl4DVoKmfkGsCEidh/KHUfEaOAyYAYwFTgtIqb2M+9LwC1DuX9J0vBr9xPNrwHLImIR5RFIAJn5Pwa4zVFAT2Y+ChARC4CZwMpe8/4AuJbihHuSpA6K4qCiQSZFnNnXeGZeNcBtZgHTt540LyJOB47OzDktc/YD/oniqz2/DXw/M7/Xx33NBmYDdHV1dS9YsGDQzCNl/fr1TJgwodMx+tX0fND8jE3PB2YcDk3PB9uXcdq0afdl5pGDTszMfi/A/gOtH+S2pwCXtyyfDlzaa841wDHl9SuBWYPdb3d3dzbJ4sWLOx1hQE3Pl9n8jE3Pl2nG4dD0fJnblxG4N9t47R7sPYXrt16JiGuHWEyrgckty5OANb3mHAksiIjHgVnA1yPiN4f4OJKkYTLYewrRcv2gId73PcCU8hxJTwGnAr/TOiEzq/MnRcSVFLuPrkeS1BGDlUL2c31Qmbk5IuZQHFU0GrgiM1dExDnl+nlDSipJqt1gpXBYRLxMscUwrrxOuZyZudtAN87MhcDCXmN9lkFmfqatxJKk2gxYCpk5eqSCSJI6byjfpyBJ2sFZCpKkiqUgSapYCpKkiqUgSW8DPWvX8eKGTfSsXVfr41gKktRwF1y/jBMuuYPVL27ghEvu4IIbltX2WJaCJDVYz9p1zF/yxDZj8+98orYtBktBkhrsgSd/MaTx7WUpSFKDHT55jyGNby9LQZIa7OCuiZxx7P7bjJ1x7P4c3DWxlsdr95vXJEkd8uczP8wZxxzAsvuWcNt5x9RWCOCWgiS9LRzcNZE9x4+ttRDAUpAktbAUJEkVS0GSVLEUJEkVS0GSVLEUJEkVS0GSVLEUJEkVS0GSVLEUJEkVS0GSVLEUJEkVS0GSVLEUJEkVS0GSVLEUJEkVS0GSVLEUJEkVS0GSVLEUJEkVS0GSVKm1FCJiekSsioieiJjbx/rfjYil5eXfIuKwOvNIkgZWWylExGjgMmAGMBU4LSKm9pr2GPArmXko8BfAN+vKI0kaXJ1bCkcBPZn5aGZuBBYAM1snZOa/ZeaL5eISYFKNeSRJg4jMrOeOI2YB0zPz7HL5dODozJzTz/zPAR/YOr/XutnAbICurq7uBQsW1JL5rVi/fj0TJkzodIx+NT0fND9j0/OBGYdD0/PB9mWcNm3afZl55KATM7OWC3AKcHnL8unApf3MnQY8BOw12P12d3dnkyxevLjTEQbU9HyZzc/Y9HyZZhwOTc+XuX0ZgXuzjdfuMW+pctqzGpjcsjwJWNN7UkQcClwOzMjMF2rMI0kaRJ3vKdwDTImIAyNiJ+BU4MbWCRGxP3AdcHpmPlJjFklSG2rbUsjMzRExB7gFGA1ckZkrIuKccv084AJgL+DrEQGwOdvZ5yVJqkWdu4/IzIXAwl5j81qunw38uzeW6/DC+tdZ/eKrTNpzHHtN2HkkHlKShs3tK5/hmRdf5faVz3D81H1re5xaS6EpbnjgKc6/diljR41i05YtXPTpQzn58P06HUuS2nLiJT/gkbWv8L8+vJkvzL+PQ7p25ZbzjqvlsXb401y8sP51zr92Ka9t2sK61zfz2qYt/PG1S3lh/eudjiZJg7p95TM8svaVbcZWrX2F21c+U8vj7fClsPrFVxk7atsfc+yoUax+8dUOJZKk9t26cu2QxrfXDl8Kk/Ycx6YtW7YZ27RlC5P2HNehRJLUvhOndg1pfHvt8KWw14SduejTh7LL2FFM3HkMu4wdxUWfPtQ3myW9LRw/dV8O6dp1m7FDunat7c3md8QbzScfvh8fO3hvjz6S9LZ0y3nHFUcfrfox3z7jIx59NBz2mrCzZSDpbev4qfvyg2fHcVyNhQDvgN1HkqT2WQqSpIqlIEmqWAqSpIqlIEmqWAqSpIqlIEmqWAqSpIqlIEmqWAqSpIqlIEmqWAqSpIqlIEmqWAqSpIqlIEmqWAqSpIqlIEmqWAqSpIqlIEmqWAqSpIqlIEmqWAqSpIqlIEmqWAqSpIqlIEmqWAqSpIqlIEmqWAqSpEqtpRAR0yNiVUT0RMTcPtZHRHy1XL80Io6oK8v19z/J2Vfdw/X3P1nXQ+gt6Fm7jhc3bKJn7bpOR5Ea7cKblvPwM+u48KbltT5ObaUQEaOBy4AZwFTgtIiY2mvaDGBKeZkNfKOOLMf85SLOvXoptz30LOdevZRj/3JRHQ+jIbrg+mWccMkdrH5xAydccgcX3LCs05GkRjpo7s1860c/Y9MbW/jWj37GQXNvru2x6txSOAroycxHM3MjsACY2WvOTGB+FpYAe0TEe4YzxPX3P8kzL2/cZuzplze6xdBhPWvXMX/JE9uMzb/zCbcYpF4uvGk5W3qNbSnH6xCZWc8dR8wCpmfm2eXy6cDRmTmnZc73gb/KzP9XLt8OnJ+Z9/a6r9kUWxIAhwCr2s0xZs/3vm/UzuP36D2+5fUNv9j84pqfDvHH6svewPPDcD91aWS+UeN332vMbvscAPDGhpcYPX53ADa//NzjWza89EIns/Whkb/DXsy4/RqZb+w+B3w4Ro/ZCbZ9ruQbmzdueu7xoWxe/1Jm7jPYpDFvLWZboo+x3g3Uzhwy85vAN4cj1HCLiHsz88hO5+hP0/NBkXHzS882NuPb5Xdoxu3T9HwwMs+VOncfrQYmtyxPAta8hTmSpBFSZyncA0yJiAMjYifgVODGXnNuBM4oj0I6BngpM5+uMZMkaQC17T7KzM0RMQe4BRgNXJGZKyLinHL9PGAhcBLQA2wAzqorT40auVurRdPzQfMzNj0fmHE4ND0fjEDG2t5oliS9/fiJZklSxVKQJFUshSGIiD0i4nsR8XBEPBQRx0bEuyJiUUT8pPzvnh3OeF5ErIiI5RHx3YjYpZMZI+KKiHg2Ipa3jPWbJyI+X572ZFVE/FoHM15c/n9eGhH/HBF7tKxrRMaWdZ+LiIyIvTuVsb98EfEHZYYVEXFRp/L1lzEiDo+IJRHxQETcGxFHdSpjREyOiMXla8uKiPif5fjIPl8y00ubF+Aq4Ozy+k7AHsBFwNxybC7wpQ7m2w94DBhXLl8NfKaTGYH/ABwBLG8Z6zMPxelQHgR2Bg4EfgqM7lDGE4Ex5fUvNTFjOT6Z4mCOnwF7dypjP7/DacBtwM7l8rub9jsEbgVmlNdPAn7Qwd/he4AjyusTgUfKHCP6fHFLoU0RsRvFH9W3ATJzY2b+guJUHVeV064CfrMzCStjgHERMQYYT/G5j45lzMw7gJ/3Gu4vz0xgQWa+npmPURyVdhQ16ytjZt6amZvLxSUUn6FpVMbSJcAfs+2HPkc8Yz/5/hvFGQteL+c826l8A2RMYLfy+u68+TmpTvwOn87M+8vr64CHKP6hN6LPF0uhfQcBzwF/HxE/jojLI2JXoCvLz1aU/313pwJm5lPAl4EngKcpPvdxa5MylvrLsx/QelKq1eVYp/0e8C/l9cZkjIiTgacy88Feq5qS8f3AJyLiroj4YUR8tBxvSj6Ac4GLI+JJiufO58vxjmaMiAOAjwB3McLPF0uhfWMoNj2/kZkfAV6h2JRrjHJf40yKTcn3ArtGxH/ubKohaeu0JyMpIr4AbAb+cetQH9NGPGNEjAe+AFzQ1+o+xjrxexwD7AkcA/wRcHVEBM3JB8XWzHmZORk4j3JPAB3MGBETgGuBczPz5YGm9jG23RkthfatBlZn5l3l8vcoSmJtlGd2Lf/7bD+3HwknAI9l5nOZuQm4DvjlhmVkgDyNOu1JRJwJ/Efgd7PciUtzMr6PovwfjIjHyxz3R8S+NCfjauC6LNxNcXLPvRuUD+BMiucJwDW8ufulIxkjYixFIfxjZm7NNaLPF0uhTZn5DPBkRBxSDh0PrKQ4VceZ5diZwA0diLfVE8AxETG+/BfZ8RT7JZuUEfrPcyNwakTsHBEHUnzPxt0dyEdETAfOB07OzA0tqxqRMTOXZea7M/OAzDyA4gXiiPLvtBEZgeuBTwJExPspDs54vkH5oHgR/ZXy+ieBn5TXRzxj+Zz9NvBQZv5Ny6qRfb7U+W76jnYBDgfuBZZS/MHvCewF3E7xx3Q78K4OZ/wz4GFgOfAdiiMTOpYR+C7F+xubKF64/stAeSh2ifyU4vToMzqYsYdif+0D5WVe0zL2Wv845dFHncjYz+9wJ+Afyr/F+4FPNu13CHwcuI/iKJ67gO4O/g4/TrH7Z2nL391JI/188TQXkqSKu48kSRVLQZJUsRQkSRVLQZJUsRQkSZXavnlNarqIeANYRvE8eAg4M7f9TIL0juOWgt7JXs3MwzPzQ8BG4JzWlVEYsedIRIweqceS+mMpSIV/BQ6OiAPK89l/neIDV5Mj4sSIuDMi7o+Ia8pz0xARfxURK8vvXPhyOXZKFN9l8WBE3FGOfSYivrb1gSLi+xFxXHl9fUT8eUTcBRwbEd3lyePui4hbtp7eQBoploLe8crTjM+g2JUEcAgwP9888eEXgRMy8wiKT7T/YUS8C/gU8MHMPBT4P+VtLwB+LTMPA05u4+F3pTi//9EUn6i9FJiVmd3AFcCFw/EzSu3yPQW9k42LiAfK6/9Kcd6Z9wI/y8wl5fgxFF9m8qPi1DTsBNwJvAy8BlweETcD3y/n/wi4MiKu5s0TrQ3kDYoToEFRRh8CFpWPNZritAzSiLEU9E72amYe3jpQvhi/0joELMrM03rfuPzqxuOBU4E5FOf2OScijgZ+HXggIg6nOPV261b5Li3XX8vMN1oea0VmHrt9P5b01rn7SBrYEuBjEXEwFN9jEBHvL99X2D0zF1J8Ucvh5fr3ZeZdmXkBxRlBJ1OcrO7wiBgVEZPp/9uxVgH7RMSx5X2NjYgP1vnDSb25pSANIDOfi4jPAN+NiJ3L4S8C64AbImIXin/hn1euuzgippRjt1OcfROK785exptnDO3rsTZGxCzgqxGxO8Xz8yvAimH/waR+eJZUSVLF3UeSpIqlIEmqWAqSpIqlIEmqWAqSpIqlIEmqWAqSpMr/B7ZTo8X/XbLnAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "data[\"Frequency\"]=data.Malfunction/data.Count\n", "\n", "data.plot(x=\"Pressure\",y=\"Frequency\",kind=\"scatter\",ylim=[0,1])\n", "plt.grid(True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let us redo the analysis by adjusting for the Pressure variable" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "
Generalized Linear Model Regression Results
Dep. Variable: Frequency No. Observations: 23
Model: GLM Df Residuals: 20
Model Family: Binomial Df Model: 2
Link Function: logit Scale: 1.0000
Method: IRLS Log-Likelihood: -3.7926
Date: Wed, 27 Sep 2023 Deviance: 2.7576
Time: 22:48:16 Pearson chi2: 4.19
No. Iterations: 6 Covariance Type: nonrobust
\n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "
coef std err z P>|z| [0.025 0.975]
Intercept 2.5202 8.541 0.295 0.768 -14.220 19.260
Temperature -0.0983 0.110 -0.894 0.371 -0.314 0.117
Pressure 0.0085 0.019 0.451 0.652 -0.028 0.045
" ], "text/plain": [ "\n", "\"\"\"\n", " Generalized Linear Model Regression Results \n", "==============================================================================\n", "Dep. Variable: Frequency No. Observations: 23\n", "Model: GLM Df Residuals: 20\n", "Model Family: Binomial Df Model: 2\n", "Link Function: logit Scale: 1.0000\n", "Method: IRLS Log-Likelihood: -3.7926\n", "Date: Wed, 27 Sep 2023 Deviance: 2.7576\n", "Time: 22:48:16 Pearson chi2: 4.19\n", "No. Iterations: 6 Covariance Type: nonrobust\n", "===============================================================================\n", " coef std err z P>|z| [0.025 0.975]\n", "-------------------------------------------------------------------------------\n", "Intercept 2.5202 8.541 0.295 0.768 -14.220 19.260\n", "Temperature -0.0983 0.110 -0.894 0.371 -0.314 0.117\n", "Pressure 0.0085 0.019 0.451 0.652 -0.028 0.045\n", "===============================================================================\n", "\"\"\"" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import statsmodels.api as sm\n", "\n", "data[\"Success\"]=data.Count-data.Malfunction\n", "data[\"Intercept\"]=1\n", "\n", "\n", "logmodel=sm.GLM(data['Frequency'], data[['Intercept', 'Temperature', 'Pressure']], family=sm.families.Binomial(sm.families.links.logit)).fit()\n", "\n", "logmodel.summary()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We see that the sign of the temperature effect, although still not significant (likely due to the small number of data), is reversed compared to the non-adjusted analysis. Now, low temperature are associated with increased frequencies of malfunctions." ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfAAAAFgCAYAAABEyiulAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd4VHXe/vH3mZbJpMwESCH0XkOzF0BBRKVIU8G2i+1ZV1HXB3ysiL3suvayiCsWRF1BRRBXRQVsuKIQQIr0mhAgvUwy5fcHKz+HGmAmZ2Zyv64rl5mZkzMfPp7JndO+XyMYDAYRERGRmGIxuwARERE5egpwERGRGKQAFxERiUEKcBERkRikABcREYlBCnAREZEYFLEAv+OOOzjttNMYPHjwQV8PBoM8+OCDDBgwgCFDhrBixYpIlSIiIhJ3IhbgI0aMYMqUKYd8fcGCBWzcuJFPP/2UBx54gEmTJkWqFBERkbgTsQA/6aSTcLvdh3x93rx5DBs2DMMw6NGjByUlJezcuTNS5YiIiMQVm1lvnJ+fT1ZW1r7HWVlZ5Ofnk5GRccCylZXV2GzWsL231Wrg92sAut+oH6HUj1DqRyj1I5T6ESoS/bDbD55/pgX4wUZwNQzjoMuWlXnD+t4ej4uiooqwrjOWqR+h1I9Q6kco9SOU+hEqEv1IT0856POmXYWelZVFXl7evsd5eXkH3fsWERGRA5kW4P369eODDz4gGAyyZMkSUlJSFOAiIiK1FLFD6Lfeeis//PADhYWF9OnTh3HjxuHz+QAYM2YMffv2Zf78+QwYMIDExEQefvjhSJUiIiISd4xYmE60oKA0rOvTOZtQ6kco9SOU+hFK/QilfoSqF+fARURE5NgpwEVERGKQAlxERCQGKcBFRERikGkDuYiISP3Rp8/JtG7dFr/fR4sWrbj77vtwOp1ml3VMduzYzmWXXUTz5i0A6NKlKxMm3AnAihUruOOO2/F6vZx22hncfPP4Qw5Sdry0By4iIhGXkJDA1Klv8cYb72K32/ngg/dCXg8GgwQCgTqrx+/3H9fPN2nShKlT32Lq1Lf2hTfAAw/cz2233cXbb7/Pli1b+P77b4+31EPSHriIiNSp7t17sHbtWnbs2M748TfRs+eJrFiRyyOPPMHmzZt45ZV/UFNTTXZ2U+68815cLhcvvvgs33yzAKvVykknncqNN97CF198zquvTsZisZKcnMzzz7/Mxx9/xKpVv3Drrf8HwG233cLo0ZfTq9eJDBjQm0suuYxFi77jxhv/QkJCAs899yQVFRV4PB7uvHMSjRo1OuZ/165duygvL6Nr124AnHfeBSxc+BWnnXZGWPq2PwW4iEg9MmdFPrOW5x15wVqy2Sxc0DGDQV0ya7W8z+fj+++/5ZRTTgdg8+ZN3HHHvYwffztFRUW89torPPXUCyQmJvLmm1N5551pjBx5MQsWfMlbb83AMAxKS/eODTJ16sv8/e/PkZ6ese+5w6msrKRVqzZcc82f8Pl83HjjdTzyyBOkpaUxb96nTJ78PHfeeS9vvfU6n376yQE/36NHT265ZQKw9zD62LGXkpSUzLXXXk/37j3ZtWsnmZn/vw8ZGZns2lVQq74cCwW4iIhEnNfr5Y9/vBTYuwc+ePCF7NpVQFZWY7p2zQFgxYplbNy4nuuvvxoAn6+GLl1ycLmScDgSePTRBzj99DM5/fTeAOTkdOehhybRr98A+vY9+4g1WK1WzjqrHwCbN29k/fp1/OUvNwAQCPhp2HDv3vell17JpZdeecj1NGzYiBkzZuN2e1i1aiV33jmeN95456CTdEFkzn+DAlxEpF4Z1CWz1nvLtVHbkcd+Owe+v99fyBYMBjnxxFO4774Dh9Z++eXXWLz4Bz7//FNmzHiXZ555iQkT7mTFiuV8993XjB17Ga++Og2r1Uog8P+D1Out3ve9w+HAarX+972gVavW/OMfrx7wXkfaA3c4HDgcDgA6duxEdnYTtmzZTHp6Jvn5+fuW37kz/7gOyR+JAlxERKJCly45/P3vj7F16xaaNm1GVVXVf0MwHa+3itNOO5MuXXK45JLhAGzbtpUuXbrSpUtXvvlmATt35pOVlc37779HIBCgoGAnK1euOOh7NW/egqKiQpYvz6Vr1274fD42b95E69ZtjrgHXlhYSGpqKlarlW3btrJ16xays5uQmurG5Upi+fJldOnSlU8++ZhRoy6OSK9AAS4iIlEiLS2Nu+6axKRJd1FTs3fP+dprr8flSuKOO26lurqaYDDITTfdCsDzzz/N1q2bCQaDnHDCybRt2x6Axo2zufLK0bRu3Yb27Tsc9L3sdjsPPvgYTz31N8rKyvD7/Vx88Rhat25zxDqXLv2JKVP+gdVqxWq1MH78HaSmugG4556J+24jO/XU0zn11MhcwAaazERQP/anfoRSP0KpH6HUj1CazEREREQOSwEuIiISgxTgIiIiMUgBLiIiEoMU4CIiIjFIAS4iIhKDdB+4iIhEXDxNJ/qf/3zPiy8+h89Xg81m54YbbuaEE04CDj2daHV1NQ8+eC+rV68kNdXN/fc/QuPG2cdVh/bARUQk4uJpOlG328Pjjz/J66+/w913T+KBBybue+1Q04nOnv0hKSkpvPPOB1xyyaW8+OKzx/1v0B64iIjUqVifTrR9+477vm/Vqg3V1dVUV1dTUlJyyOlEv/56PldddR0AZ53VnyeffJxgMIhhHPtkJwpwEZF6JGHVezhXvh229VltVhLaXYS346haLR8v04n+5quv5tGuXQccDsdhpxMtKNhJRsbe12w2G0lJyRQXF+PxeGrVt4NRgIuISMTF03Siv1m/fh0vvvgsTz75PMBhpxM92EvHsfMNKMBFROoVb8dRtd5brg2Px4W3nk0nCnunCr3zzgncffd9NGnSFOCw04lmZGSwc2c+GRmZ+Hw+ysvL9k2AcqwU4CIiEhViZTrR0tJSJky4hT/96Qa6deux7/lGjRodcjrRM87ow9y5s+natRtffTWPXr1OOq7z36AAFxGRKBEr04nOmPEO27ZtYerUV5g69RUAnnzyOdLSGhxyOtHBgy/kgQcmcsklw0hNTWXSpAOPMhwtTScq6sd+1I9Q6kco9SOU+hFK04mKiIjIYSnARUREYpACXEREJAYpwEVERGKQAlxERCQGKcBFRERikAJcREQkBinARUREYpACXEREJAYpwEVERGKQAlxERCQGKcBFRERikAJcREQkBinARUREYpACXEREJAYpwEVERGKQAlxERCQGKcBFRERikAJcREQkBinARUREYpACXEREJAYpwEVERGKQAlxERCQGKcBFRERikAJcREQkBkU0wBcsWMDAgQMZMGAAkydPPuD10tJS/vSnPzF06FAGDRrEjBkzIlmOiIhI3IhYgPv9fu6//36mTJnCnDlzmD17NmvXrg1ZZtq0abRp04ZZs2bxxhtv8Nhjj1FdXR2pkkREROJGxAI8NzeXFi1a0KxZMxwOB4MGDWLevHkhyxiGQXl5OcFgkPLyctxuNzabLVIliYiIxI2IpWV+fj5ZWVn7HmdmZpKbmxuyzGWXXcb1119P7969KS8v58knn8RiOfBviuTkBGw2a9hqs1oteDyusK0v1qkfodSPUOpHKPUjlPoRqi77EbEADwaDBzxnGEbI46+//ppOnTrx+uuvs3nzZsaOHcuJJ55IcnJyyHJlZd6w1ubxuCgqqgjrOmOZ+hFK/QilfoRSP0KpH6Ei0Y/09JSDPh+xQ+hZWVnk5eXte5yfn09GRkbIMjNnzuTcc8/FMAxatGhB06ZNWb9+faRKEhERiRsRC/CcnBw2btzIli1bqK6uZs6cOfTr1y9kmcaNG/Pdd98BsGvXLjZs2EDTpk0jVZKIiEjciNghdJvNxsSJE7nmmmvw+/2MHDmSdu3aMX36dADGjBnDn//8Z+644w6GDBlCMBhk/PjxNGjQIFIliYiIxA0jeLCT1VGmoKA0bOty5r5K0qa5FPV+FL+nddjWG8t0DiuU+hFK/QilfoRSP0LFxTnwaOXL6I5RsBLPvwbhWD/X7HJERESOSf0L8Kxe+K7+Cr+nNe6515L0zQMQ8JldloiIyFGpdwEOgLsZRSNmUtn1D7iW/AP3rDEYFbvMrkpERKTW6meAA1gTKOv7ECXnPIU97yfS/nU+tvyfza5KRESkVupvgP+Xt8MoikZ+AIYVz8yROH952+ySREREjqjeBziALz2HwovnUpN9CilfjidpwT3grzG7LBERkUNSgP9X0JlG8ZA3qOh+Ha5lr+L+6DKMyj1mlyUiInJQCvDfs9goP3Pif8+LLybtX4Ow7l5ldlUiIiIHUIAfhLfDKIqGz4BANZ4ZF+LY+LnZJYmIiIRQgB+CL7MHRaNm4/e0IXXOWBJ/fgmif9A6ERGpJxTghxFIbkzR8Bl42wwi+dsHSf5iPPirzS5LREREAX5E9kRKB75A+Yk3k7jqHdwfXY5RVWR2VSIiUs8pwGvDsFBxyoS9F7ft+A+eGRdiKd5odlUiIlKPKcCPgrfDKIovnI6lcjdp7w3FlrfY7JJERKSeUoAfpZrsUykaNYtAQiqeDy7Gse5js0sSEZF6SAF+DPye1hSN/BBfoy6kfvI/JC6dYnZJIiJSzyjAj1EwsSFFw96huvV5JH89iaSv74NgwOyyRESknlCAHw9bIiUDX6Ki21W4lr5Myqc3gN9rdlUiIlIP2MwuIOZZrJSfeR+BpMYkf/cQlspdlJw/hWCC2+zKREQkjmkPPBwMg8pe11NyzjPYd/yI5/2RWMrzza5KRETimAI8jLwdRlA8+DWsxZvxzBiGtWi92SWJiEicUoCHWU2zPhQNexejphzPzOHYduaaXZKIiMQhBXgE+DJ7UDTifYJWJ+4PLsK+9RuzSxIRkTijAI8Qf1obikZ+QCC5Ce7ZV+JY/2+zSxIRkTiiAI+gQHJjikbMwNewE6mfXEfCqvfMLklEROKEAjzCgs40ii98m5rsU0mddwvO3H+aXZKIiMQBBXgdCDqSKR78Gt5WA0lZOBHXj8+aXZKIiMQ4BXhdsTkpOe8fVLUfQdKix0j67hEIBs2uSkREYpRGYqtLFhul5zxF0J6E66fnMWrKKet9Pxj6O0pERI6OAryuGRbK+j5M0O7CteQf4Kui7KzHwGI1uzIREYkhCnAzGAblp99N0JZI0o9PYfi9lPZ/Eiz63yEiIrWjxDCLYVBxyniwJpC06DEMfzUlA54Fq8PsykREJAYowE1WceI4gjYnyd/cR2rAR8nAF8CaYHZZIiIS5XT1VBSo7HEtpX0eJGHDv0mdex34qswuSUREopwCPEpU5fyR0rMeJWHTPNxzrwZfpdkliYhIFFOAR5GqLpdTevbfsG9egHvOVQpxERE5JAV4lKnqPJrS/n/HvvVrhbiIiBySAjwKeTtepBAXEZHDUoBHKYW4iIgcjgI8ioWE+MfX6Op0ERHZRwEe5bwdL6K039+wb1mAe+414PeaXZKIiEQBBXgM8Ha6hLKzH8ex+au994krxEVE6j0FeIyo6jxm333iqf/+M/hrzC5JRERMpACPIVVdLqe0z0N7R2z77EYI+MwuSURETKKx0GNMVc4fMPzVJH9zHymf2yg95xlNRSoiUg8pwGNQZY9rwe8l+ftHweqgtN8TYOhgiohIfaIAj1GVJ9yI4a8m6T9/J2h1Utb3YTAMs8sSEZE6ogCPYRUn/QXDX4XrpxcI2hIpP+MehbiISD2hAI9lhkH5qXdATSWupZMJ2hOpOGWC2VWJiEgdUIDHOsOgvPd9GP4qkn58mqAtkcoTbjS7KhERiTAFeDwwLJT1fRSjppLk7x8laE+iqttYs6sSEZEIUoDHC4uV0v5PYvgqSVl4D0F7Et5OF5tdlYiIREhE7z1asGABAwcOZMCAAUyePPmgyyxatIgLL7yQQYMGcfnll0eynPhntVNy7vNUN+1NypfjcaydbXZFIiISIRHbA/f7/dx///28+uqrZGZmMmrUKPr160fbtm33LVNSUsJ9993HlClTyM7OZvfu3ZEqp/6wOSm+4BU8H11G6mfjKLYnUdPibLOrEhGRMIvYHnhubi4tWrSgWbNmOBwOBg0axLx580KW+eijjxgwYADZ2dkANGzYMFLl1C92F8WDXsPXoAPuT67Fvn2R2RWJiEiYRWwPPD8/n6ysrH2PMzMzyc3NDVlm48aN+Hw+rrjiCsrLy7nyyisZNmzYAetKTk7AZgvfcKFWqwWPxxW29UUnF1w+A94YjHvOH/BdPgsa9zjokvWjH7WnfoRSP0KpH6HUj1B12Y+IBXgwGDzgOWO/QUb8fj8rVqxg6tSpVFVVMXr0aLp3706rVq1ClisrC+/0mR6Pi6KiirCuMzolYRk8Dc/MEVjfGknR8Jn4G7Q7YKn604/aUT9CqR+h1I9Q6keoSPQjPT3loM9H7BB6VlYWeXl5+x7n5+eTkZFxwDK9e/fG5XLRoEEDTjzxRFatWhWpkuqlQHI2RUOng2HDPWsMlpKtZpckIiJhELEAz8nJYePGjWzZsoXq6mrmzJlDv379Qpbp378/P/74Iz6fj8rKSnJzc2nTpk2kSqq3Ap5WFA2dhuGrxD1rDEZFgdkliYjIcYrYIXSbzcbEiRO55ppr8Pv9jBw5knbt2jF9+nQAxowZQ5s2bejduzdDhw7FYrEwatQo2rdvH6mS6jV/o84UD3oNz6zRuD+6nOJh7xJMcJtdloiIHCMjeLCT1VGmoKA0rOurz+ds7Ju/wj1nLL7MnhQNmQb2xHrdj4NRP0KpH6HUj1DqR6i4OAcu0amm+VmUnvMMth3/IfXffwJ/jdkliYjIMahVgK9ZsybSdUgd8rYbQlnfh0nYNI+UL/4XggGzSxIRkaNUq3Pg9957LzU1NQwfPpwhQ4aQmpoa6bokwqq6XoGlqpCkRY/j/6wRnKS5xEVEYkmtAnz69Ols3LiRGTNmMHLkSLp168aIESM444wzIl2fRFDFCeMwqgpx/WcyLoubihNvNrskERGppVpfhd6yZUtuueUWunbtyoMPPsgvv/xCMBjk1ltv5dxzz41kjRIphkH5GffgDJSQtOivBJwNqOp6hdlViYhILdQqwFetWsXMmTOZP38+p59+Oi+99BJdunQhPz+f0aNHK8BjmWHBP+gZakp2kTz/TgLONKrbDja7KhEROYJaBfgDDzzARRddxK233orT6dz3fGZmJjffrMOuMc9qp2TgS/9/BrMENzXNeptdlYiIHEat7gMvLy/H6XRite6dUCQQCOD1eklMTIx4gaD7wCPtt34YVUV4PhiFpWQLxcPexZfR3ezSTKHtI5T6EUr9CKV+hIq6+8DHjh1LVVXVvseVlZWMHTs2PJVJ1Ag6PRQPeZOgswHuj67AWrTe7JJEROQQahXgXq+XpKSkfY+TkpKorKyMWFFinkBSFsVDpwHgnnUplvK8I/yEiIiYoVYBnpiYyIoVK/Y9Xr58eci5cIkvfk9rioe8gVFViHvWZRjeYrNLEhGR/dTqIrY777yTm2++ed90oAUFBTz55JMRLUzM5cvoTsn5U3DPvpLUOVdRPPRNsNXNNQ8iInJktQrwbt26MXfuXDZs2EAwGKR169bY7fZI1yYmq2nWm9Jznibl0xtI/fRGSs77B1giNoGdiIgchVr/Nl62bBnbtm3D7/ezcuVKAIYNGxaxwiQ6eNsNxajcRcrCiSTPv4Oysx7XkKsiIlGgVgE+YcIEtmzZQseOHffdSmYYhgK8nqjqdhWWil0kLX6GgCuDilMmmF2SiEi9V6sAX758OR9//DGG9rzqrYpTJmCpLCDpx6cJuNKpyvmj2SWJiNRrtboKvV27dhQUFES6FolmhkFZ30fwtjyX5AX34Fg72+yKRETqtVrtgRcWFjJo0CC6desWcvHaSy+9FLHCJApZbJQMfB7PrMtI/ewmip1p1DTVjHQiImaoVYCPGzcu0nVIrLAlUnzBP/G8P5LUj6+maPgM/OldzK5KRKTeqdUh9JNPPpkmTZrg8/k4+eSTycnJoXPnzpGuTaLU3iFX3yCYkIp79hVYSjabXZKISL1TqwB/9913uemmm5g4cSIA+fn53HDDDREtTKJbIDmb4iHTMPxe3LMuxajYZXZJIiL1Sq0CfNq0aUyfPp3k5GQAWrZsyZ49eyJamEQ/f4N2FA96DWt5Hu45f4DqcrNLEhGpN2oV4A6HA4fDse+xz+eLWEESW3yNT6Tk3BexFSzH/e/rwF9tdkkiIvVCrQL8pJNO4qWXXqKqqopvvvmGm2++mX79+kW6NokR1a0GUHbWozg2zyfli/EQDJhdkohI3KtVgI8fP54GDRrQvn173nnnHfr27cstt9wS6doiYvXOMj79Jd/sMuJOVecxlJ9yG841M0n69iGzyxERiXu1uo3MYrFw8cUXc/HFF0e6noj7bsMenv96I3cNaMewbo3NLieuVJwwDktFPq4l/yCQlEllj+vMLklEJG7VKsD79et30GFU582bF/aCIu3yE5uyLL+MRz7/lTSXg75tG5pdUvwwDMrOvB+jYjfJ39xPILER3g4jzK5KRCQu1SrAZ8yYse/76upq5s6dS3FxccSKiiSb1cIzl/Tg0imLuGvOSp4flUP3Jm6zy4ofFiul5zyFpWo3KV/cSiCxITXN+5pdlYhI3KnVOfC0tLR9X5mZmfzxj3/k+++/j3RtEZOUYOOp4V3ITEng1g9WsG6Xbn8KK5uTkvNfwZ/WjtRPrsO2M9fsikRE4k6tAnzFihX7vpYtW8b06dMpL4/t0EtzOXh2ZA52q4WbZiwjr6TK7JLiSjAhde9obc4GuGdfgbVovdkliYjEFSMYDAaPtNAVV1yx73ubzUaTJk246qqraN26dUSL+01BQWlY1+fxuCgqqgBgzc4yrntnKRnJCbw8ujvuRPsRfjr+/L4f4WYtWo9nxjCCjmQKR3xAMCkjIu8TTpHsRyxSP0KpH6HUj1CR6Ed6espBn69VgJstkgEOsHhLEeNmLKNTZgrPj8rBabeG9f2iXaQ/gLb8n/F8cDE+T2uKh79H0HHwjTFa6BdSKPUjlPoRSv0IVZcBXquL2F599dXDvj527NijryiKnNDMwwMXdOSOj1Zy5+yVPH5hF2yWA6+6l2Pjy+xJ8XmTcX88ltSPr6Z4yBtgTTC7LBGRmFarc+DLly9n+vTp5Ofnk5+fz9tvv83atWspLy+P+XPhv+nfPp3b+rdl4fo9PPLZGmLgwERMqWlxNqX9/oZj27ekfHYzBPxmlyQiEtNqtQdeWFjIzJkz901mcuONN3LzzTfz0EPxNeLWqB7Z7C6vZsr3m2mY5ODPZ7Yyu6S44u0wirKK3SR/+wDBrxtS1vtBOMj4AiIicmS1CvDt27eHTGbicDjYtm1bxIoy03Wnt2B3RTWvLtpCA5eD0b2amF1SXKns+T9YKnbuHa3NlUnFiTeZXZKISEyqVYBfeOGFjBo1igEDBmAYBp999hnDhg2LdG2mMAyD2/q3o7Cihr9/uY4GLjvndoz+K6djSfnpd2Gp3EXSoscJuBpR1flSs0sSEYk5tb4KfcWKFfz444/A3tnJOnfuHNHCfi/SV6EfTFWNn5tmLGPZjlKeGt6VU1qmhbWGaGLKVaT+Gtwfj8W+ZQEl502muvV5dfv+h6GrakOpH6HUj1DqR6i6vAq9VhexAVRWVpKcnMwf/vAHsrKy2LJlS9iKi0ZOu5UnhnWlZQMXt836hV/ywvtHRL1ntVN83mR8Gd1J/fQG7Ntjd2Q/EREz1CrAn3vuOaZMmcLkyZMBqKmpYcKECREtLBqkOG08M7IrnkQbt8xczqY9+iszrOwuige/jj+1GalzrsK66xezKxIRiRm1CvDPPvuMF198kcTERAAyMzPj5vaxI0lPTuCZkTkEgZtmLKOgzGt2SXEl6EyjeMg0go4k3B9dgaVks9kliYjEhFoFuN1uxzCMfVOKVlTUrz3RFg1cPD2iK0WVPsbNWEZJVY3ZJcWVQEoTiodMw/BX4Z51KUZFgdkliYhEvVoF+Pnnn8/EiRMpKSnh3XffZezYsVx88cWRri2qdM5K4a8XdmZzYSX/+8EKqmo0EEk4+Ru0p3jw61jL83B/dAVGta45EBE5HOukSZMmHWmhXr164XA4sNvtFBUVcdFFFzF48OA6KG+viorqsK7P6bRTdQx70U08ibRIc/HW4m38WlBO/w7pWOJgIJJj7Ue4BZKz8aV3JTH3Fex5i/G2HQKWWt3pGFbR0o9ooX6EUj9CqR+hItGPpKSDDz19xN+Ofr+fq6++mqlTp3LGGWeEtahYdE6HdIoqa3hs3loe/HQNEwe2j4sQjxbVLfpR2u8JUj+/mdTPbqRk4EumhLiISLQ74iF0q9WK0+mktFSHNH8zqkc2153egjkr8nlm/gaNmx5m3g4jKTtzEgnrPyH5q9tB/RUROUCtdm0SEhIYMmQIp59+Oi6Xa9/zd999d8QKi3bXnNqc4soapi3eSprLzh9ObmZ2SXGlsvs1GJV7SFr8DMHEhpSfdofZJYmIRJVaBfhZZ53FWWedFeFSYothGNx6dhuKKmt4buEGUp02hndrbHZZcaXilAlYqvbg+ul5As4GVPb8H7NLEhGJGocN8O3bt5Odnc3w4cPrqp6YYjEM7j2vA6VeH49+/iupThv926ebXVb8MAzK+jyEUVVE8rcPEHB68Ha6xOyqRESiwmHPgd9www37vh83blzEi4lFdquFx4Z0JqdxKnfPWcWijYVmlxRfLFZKBzxNdbM+pHw5Acf6uWZXJCISFQ4b4L+/OCvexz4/Hk67lb8P70LLBi7Gf7iCZdtLzC4pvlgTKD7vZXwZPUj99w3Yt35jdkUiIqY7bIAbv7s9ytCtUoeV6rTz7MiuNEp2cMv7y1lbUD+Gmq0zjiSKB7+G39OK1I+vwpb/s9kViYiY6rABvmrVKnr16kXPnj1ZvXo1vXr12ve4V69eR1z5ggULGDhwIAMGDNg3EcrB5Obm0qlTJz755JOj/xdEkUbJCTw3KocEm4UbZyxja1Gl2SXFlaAzjeKh0wgmNsL90RVYd682uyQREdMc9iK2lStXHvOK/X4/999IrkGKAAAgAElEQVR/P6+++iqZmZmMGjWKfv360bZt2wOW+9vf/saZZ555zO8VTZq4E3l2ZA7/885SbnhvGVNGdyc9+eCj6MjRCyRlUTT0LTwzR+CedSlFI2YScLcwuywRkTpX6/nAj1Zubi4tWrSgWbNmOBwOBg0axLx58w5Y7o033mDgwIE0bNgwUqXUuTaNknh6ZA5FFTXc8N4yiio1zGA4BdwtKB66d/ITz6xLsZTnm12SiEidi1iA5+fnk5WVte9xZmYm+fn5Byzz+eefM3r06EiVYZouWSk8MawL24oquWnGMsq8PrNLiiv+hh0pHvImRuWuvTOYVenqfxGpXyI2yPTBhhfd/0K4hx56iPHjx2O1Wg+7ruTkBGy2wy9zNKxWCx6P68gLHqdzPC6ecdi4cfrP3DZ7Jf+88kSc9vD9O8KlrvoRdp4zCFz8Fta3L6bBx1fiv+x9SEg97tXGbD8iRP0IpX6EUj9C1WU/IhbgWVlZ5OXl7Xucn59PRkZGyDLLly/n1ltvBaCwsJD58+djs9k455xzQpYrK/OGtTaPx0VRUd3MaX5CVjL3nd+Bu+es4k9vLOavF3bGbo3YgY9jUpf9CDvPCTgGvkTqJ9cSfOsSige/CfbE41tlLPcjAtSPUOpHKPUjVCT6kZ6ectDnI5YkOTk5bNy4kS1btlBdXc2cOXPo169fyDJffPHFvq+BAwdy7733HhDe8eDcjhncMaAd32zYw8SPV+EPaHKOcKpuNYDSc57Gvv0HUj+5DvzhnX5WRCQaRWwP3GazMXHiRK655hr8fj8jR46kXbt2TJ8+HYAxY8ZE6q2j0vBujamo9vPU/PU47Wu4R9OQhpW33YUY1WWkfPV/e6chPfcFTUMqInHNCMbAXJgFBeGdytTMQz4vf7eJyd9u4qIe2Uzo1yYqBsiJp0NgiUunkPz1JKo6jKS0/5NgHP1BpnjqRzioH6HUj1DqR6i6PISuXZQ6ds2pzams9vPGj1tJtFu4sXerqAjxeFHZ/RqMmgqSFj1O0OairO/DoP6KSBxSgNcxwzAY16cVFTV+Xv/PVpw2K9eeroFIwqnihHEYNeW4fnqeoM1J+RkTFeIiEncU4CYwDIPb+rel2hdg8nebSLBZuPLkZmaXFT8Mg/JTbwdfJa6lLxO0Oak49f/MrkpEJKwU4CaxGAZ3nduean+AZxduwGGzMLpXE7PLih+GQfmZ92H4qkha/CzYnFSceLPZVYmIhI0C3ERWi8Gk8zrg9QV44st1OKwGI7pnm11W/DAMys56FMPvJWnRXwlaE6js+SezqxIRCYvoGlGkHrJZLTw8uBNntm7AI5+vZdayvCP/kNSeYaG03xNUtR1C8rcPkrj0FbMrEhEJCwV4FLBbLTw6pDOntkzjwU/X8PEvmpwjrCw2Ss95Bm/r80n++l6cy183uyIRkeOmAI8SCTYLfx3amROae7jvk9V8umqn2SXFF6udknOfx9tyACnz78S5YprZFYmIHBcFeBRx2q38fVgXujdxM/HjVXy+usDskuKL1UHJeS/hbX42yV/dTsLKd8yuSETkmCnAo0yi3cpTw7uSk53K3XNW8sUahXhYWRMoOf9lapr1IeWL8SSsfNfsikREjokCPAq5HFaeGtGVLo1TuXPOKr74dZfZJcUXm5PiC6ZQ06w3KV/8Lwmr3jO7IhGRo6YAj1JJDhtPj+hK58wU7py9UiEebrZEii94hZqmZ5Ay7y8KcRGJOQrwKJacYOOZkb8LcR1ODy9bIsUXvEpNk9P/G+L/CvtbzF2Zz5DJizj5iQUMmbyIuSt1h4EcH21T8hsFeJT7LcS7ZO0NcV3YFmb2RIoHTaWm6ZmkzLs1rOfE567M5+FPfyWv1EsQyCv18vCnv+oXrhwzbVPyewrwGPBbiHdtvPfCNt1iFmb2RIoH/XPfOXFjyZthWe0LCzdS5QuEPFflC/DCwo1hWb/UP9qm5PcU4DEiyWHj6ZF7r06/5+NVGuwl3H47J968D7Y5N+Fcfvwhnl/qParnRY5E25T8ngI8hiQ5bDwzModeTd1Mmruaj5Zr2NWwsiVSfP4rBNqeS8r823Hm/vO4VpeZknBUz4scibYp+T0FeIxJtFt5cnhXTm7h4YF/r+H93B1mlxRfbE78o17H22ogKQsnkvjzP455VX/u3RKnLfQj5rRZ+HPvlsdZpNRX2qbk96yTJk2aZHYRR1JRUR3W9TmddqqqasK6zrpks1ro3z6dVTtLeWvxNlKdNro2Tj3m9cV6P8LN6XJSnD0Aa+E6XLlTwGKjJvuUo15Pu/RkGrsTWJlXRnm1n6yUBG7t14bzO2VGoOrI0fYRysx+ROM2pe0jVCT6kZR08CMsmk40Ru0dO70Ld81ZyRNfrsPrC/CHk5uZXVb8sNopPfc5mOcgadHj4Kuk4pTbwDCOajXnd8qMucCW6KZtSn6jQ+gxzGGz8MjgTgzsmM5zCzfwj282EgwGzS4rflhslJ7zFJWdLyVp8bMkfT0J1F8RiRLaA49xNquF+87viMNqYcr3m6mo8XNL39YYR7mnKIdgWCg76zGCtkRcua9g+Cop6/sIWKxmVyYi9ZwCPA5YLQZ3D2yPy2HlrcXbKK/2c8c57bBaFOJhYRiUnzmJoN1F0uJnMWrKKe3/FFjtZlcmIvWYAjxOWAyD/z27DUkJNv75/WYqqv3cd34H7FadJQkLw6Di1P8j6Egm+btHMKrLKDnvJbAlml2ZiNRT+u0eRwzD4PozWnJTn1Z8trqACR/+QlWN3+yy4kplrxso7fswjk1f4J59JUZ1qdkliUg9pQCPQ1ec1Iw7BrTj2w17GDdjGaVVPrNLiitVXa+k9JynsW//AfcHl2BU7ja7JBGphxTgcWpEt8Y8NLgTy3eU8j/vLmVXeXjvpa/vvB1GUHLBP7HtWY1n5ggspdvMLklE6hkFeBwb0CGdvw/vwpbCSq59ewlbiyrNLimuVLfsT/HQt7BUFOCZOQzrnl/NLklE6hEFeJw7rWUDXrioG6VVPq6evoTVO8vMLimu1GSfQtHw9zD8Pjwzh2PLW2x2SSJSTyjA64Gc7FReHt0Du9XC/7yzlB83F5ldUlzxN+pM4cgPCCa48Xx4CY6N88wuSUTqAQV4PdGqoYtXxvQgIyWBm2Yu4/PVBWaXFFcC7hYUjvwQX1p7Uj++ioSV75pdkojEOQV4PZKZksDLl3Snc2YKd85eyVuLt5pdUlwJuhpRPOxdapqeQeoXt+L68WkNvSoiEaMAr2fciXaeG5VD37YNefKr9Tz11XoCAYVMuAQdyRQPmkpVh5EkLforyV/dDgHdxici4aeR2Oohp93Ko0M68+RX65i2eCtFXh939G9Lgk1/z4WF1UFp/6fwJ2eTtPhZLOV5lAx8EewusysTkTii39j1lNWyd+jVm/q0Ys7yPG74Vy5FlZrTN2z+O/Rqad9HcGz+Es/7o7CU55tdlYjEEQV4PWYYBlec1IynL+7OyvxSrp6+hC2Fulc8nKq6XrF3wJfCtXjeG4p192qzSxKROKEAFy7IacwLF3WjuLKGq6YvYem2YrNLiivVLc+haMQMCPjwzByGfctCs0sSkTigABcAujdx889Le5LqtHH9v3KZu1KHe8PJl55D0ahZBJKzcX90Oc4Vb5pdkojEOAW47NM8LZF/julBTuNUJn68mpe+2UhAt0GFTSClCUUjP6C6WR9SvrqdpK/vg4BmixORY6MAlxC/3WY2pEsmr3y/mbtmr9KUpGEUdKRQMuhVKrpdhWvpy6TOvRqjWsPbisjRU4DLAexWC/cMbM9NfVoxb00B172zlPxSr9llxQ+LjfLe91Pa5yEcm77EM+NCLMWbzK5KRGKMAlwO6rcr1J8Y1oVNeyr5w7SfWb6jxOyy4kpVzh8oHjINS3keae8Nxr7tW7NLEpEYogCXw+rdpiH/vLQHCba9E6HMXpFndklxpabZmRSOmk0gsRHuWZfiXPaahl8VkVpRgMsRtWmUxGuX9qRbEzf3fbKGv32xFp8/YHZZcSPgaUXRyA+pbtaXlAV3kfzlBPDrlIWIHJ4CXGrF47Lz7MgcxvRqwjs/b2fcjGUUVWjktnAJJqRSMuhVyk+8mcSVb+N5/yIs5TraISKHpgCXWrNZDG49uw2TzutA7vYSrnjzJ37JKzW7rPhhWKg4ZQLF5/0D2+5VeN69ANv2H8yuSkSilAJcjtqgLpm8PLoHANe+vYQPl+0wuaL4Ut1mEIWjZhG0J+H58GISl76i8+IicgAFuByTzlkpvHF5L3o2dfPgp7/y4Kdr8Pp0Xjxc/A07UnTRHKpb9Cf563tJ+Wwc1FSYXZaIRBEFuBwzj8vO0yNyGHtKMz5clsfV05ewtUiToYRLMCGVkvNfpuzU20n49UPS/jUY655fzS5LRKKEAlyOi9Vi8OczW/H3YV3YUVLFFW/+xFe/7jK7rPhhWKg84UaKh76FpWo3af8aRMKa982uSkSigAJcwqJ3m4a8cXkvmnkSmTDrF578ah01utUsbGqa9abw4k/wpXcl9bNxJH91O/h0tEOkPlOAS9hku51MGd2Di3tk89bibVz79lK2FStkwiWQ3JiiC9+houf1JK54k7T3hmItXGt2WSJiEgW4hJXDZmFC/7Y8NrQzmworuPyNn5i3psDssuKH1U756XdRPPh1LOX5pL17Pgmr/mV2VSJigogG+IIFCxg4cCADBgxg8uTJB7w+a9YshgwZwpAhQxg9ejSrVq2KZDlSh/q1a8SbV/SiRZqL2z9ayUOfrqFSs5qFTXWLfhRe8m9qMrqROu8vpHw2DqNa9+SL1CcRC3C/38/999/PlClTmDNnDrNnz2bt2tDDfU2bNuXNN9/ko48+4vrrr+eee+6JVDligibuRKaM7s4fTt57lfqVb/7E6p2aOjNcAsmNKb7wXcpPHk/Cr7NIe2cgtrzFZpclInUkYgGem5tLixYtaNasGQ6Hg0GDBjFv3ryQZXr16oXb7QagR48e5OVp6Mh4Y7NauLF3K54blUOZ18/Yt37mjf9sIaCBScLDYqXipFsoGj4DgkE8M0fg+s9TEPCZXZmIRJgtUivOz88nKytr3+PMzExyc3MPufx7771Hnz59DvpacnICNps1bLVZrRY8HlfY1hfr6qIf53pcnNg2nbs/XM4zCzbww5ZiHh+ZQ2N3YkTf91jE5Pbh6UOg1UKMT8aT9MPfSNw2H/+FL0Faq+NedUz2I4LUj1DqR6i67EfEAjx4kD0swzAOuuz333/Pe++9x1tvvXXQ18vKwjszk8fjoqhIo1r9pq76YQEeOr8Dpzbz8MSX67jg2a+5rX9bzuuYcchtwwyxu33Y4KynSGhyNsnz78Q2uTdlvSdR1WkMHEd/Y7cfkaF+hFI/QkWiH+npKQd9PmKH0LOyskIOiefn55ORkXHAcqtWreLuu+/mhRdeIC0tLVLlSJQwDIOhOVlMu7IXrRsmMfHj1dz+0UoKK6rNLi1ueNtdSOEln1GT2ZOUL28jdc4fNLOZSByKWIDn5OSwceNGtmzZQnV1NXPmzKFfv34hy2zfvp1x48bx+OOP06rV8R/qk9jR1JPI5Eu6M653Kxau383o1xZrBLcwCqRkU3zhdEp7349j27ekTe+/dwQ3XXsgEjeM4MGOdYfJ/Pnzefjhh/H7/YwcOZLrr7+e6dOnAzBmzBjuuusuPv30U7KzswGwWq3MnDnzgPUUFIT39hgd8glldj/WFpRz79xVrCkoZ2DHdMaf3RaPy25aPWb3I9ysRetJ+fwW7Pk/4W01kLK+DxNIyqz1z8dbP46X+hFK/QhVl4fQIxrg4aIAj6xo6IfPH2DqD1t45fvNpDpt3Na/Lf3bp5tSSzT0I+wCfhKXTCbph78RtDkpO/M+vB1G1urceFz24zioH6HUj1BxcQ5c5GjYrBauOa0Fb1zei8yUBG7/aCUTPlxBQZgvYKy3LFYqe11P4ejP8DdoT+q8W3DPvgJLyRazKxORY6Q9cIm6fvgCQab9uJWXv9uEzWJwU59WDOvWGEsdXakebf2orbkr83lh4UbyS71kpiTw594tOb9T5gGvZSXbebrVD5y04XkgSPkpt1HZ7SqwHPxWzXD243A1RrtHP1/D+7l5BIJgMWB4tyxuP6e92WWZLlY/L5FSl3vg1kmTJk0K6ztFQEWYr1B2Ou1UVdWEdZ2xLNr6YTEMejRxM6BDOqt2lvHuz9v5cXMRXbJSaOByRPz9o60ftTF3ZT4Pf/orRVV7B3Apq/bz3YZCGrsTWLurfL/XAny0pwnZp19GG7biWjYVx+Yv8WV0O+i58XD143A1tktPPu71R9Kjn69hxtI8ftvbCQIr88vYU+HlzNYNzSzNdLH4eYmkSPQjKSnhoM/rELpErWZpibwwKod7BrZnw+4KLnvjJ55buIEqjal+gBcWbqTKFzp9a5UvwAsLNx7ytb/+x0vJoNcoOfd5rKXb8PxrEEkL743YmOqHqzHavZ978NvwDvW8SF1QgEtUMwyDoV2zeG/sSVzQKYPXftjCJVN/ZP7a3QcdLKi+yi89+LUC+aXew76GYeBtdyF7LptPVZcrSMz9J2lvnUXCrx+F/Zazw9YR5QKHaMWhnhepCwpwiQkel52J53XgH5d0w2m3Mv7DFfzl/RVsLdJ84wCZKQc/xJaZknDY134TTHBT1vchikbNIpCYTuqn1+P+cDTWPWvqpMZoZznE5ReHel6kLijAJab0auph2hW9uKVva5ZsK+aSqT/y4tcbqKiu34fV/9y7JU5b6MfZabPw594tD/va/nyZPSm6aA6lfR7Ctms5ae+ci+XzuzG8JRGtMdoN75Z1VM+L1AVdxCYx1w+LxaBbdiqDu2RSUFbNv5bsYM4v+aS57LRplHTc46rHWj8A2qUn09idwMq8Msqr/WSlJHBrvzac3ynzsK8dlGHBl9mDqk6jsVQVYl8ylcSVbxNMcONr2BmMY/u7/6jriCJntm7Ingovq3eWEWTvnveI7roKHWLz8xJJdXkRm24jk5jvx9JtxTzx5TpW5pfRtXEKfzmrDd2yU495fbHej3DzVK6Buf+Hfcd/qGnUlfIzJ1LT5HSzyzKNto9Q6kcoDeQichS6N3Ez9bKe3DOwPXklXq6evoQ7PlrJtmKdHw+Lxj0oGj6TknNfwFK1B88HF5M65yqshevMrkykXlOAS1yw/Pdq9RlXncS1pzXn6/W7uejVH3nyq3UUVerw3nEzDLzthrLnsvmUnXo79m3fkja9H8nz78KoKDC7OpF6SefAJa76YbdaOKGZh8FdMimqrOH93B3MzN0BQeiYmYzNeuS/WeOpH+EQ0g+LHV/2yXvPj9eU41wxDdey1yBQjS+9G1gjP9CO2bR9hFI/Qukc+H50Djyy4rkfa3eV88LCDSxcv4dGSQ6uPrU5F+ZkYT9MkMdzP47F4fphLVqP6/vHca6bTSCxIRW9bqSy6xVgc9ZxlXVH20co9SOUZiPbjwI8supDP37eWswLX29gybYSst1Orj2tOed1ysR2kBt560M/jkZt+mHL/5mk7x/DsfVr/ElZVJx4C1WdLgGredPCRoq2j1DqRygF+H4U4JFVX/oRDAb5bmMhL369kVU7y2ielsjVpzZnYMcMrL8L8vrSj9o6mn7Yt35D0qLHsectxp/SjIoTb6Kqw6i4CnJtH6HUj1AK8P0owCOrvvUjGAzy1drdvPzdJn4tKN8X5Od2zMBmMepdP47kqPsRDOLY9AWu//wd+86l+FObU3HCOKo6jIyLc+TaPkKpH6EU4PtRgEdWfe1HIBjkq1938fJ3m1m7q5wmbid/PLkZl57eioqyKrPLixrHvH3sH+TJTajodT1VnUbH9Dny+vp5ORT1I5QCfD8K8Miq7/0IBIMsXLebV77fzMr8MrJSnYzplc2wnMa4HAefI7s+Oe7tIxjEsflLXD8+gz3vR/yuDCq7X0NVl8sJJhz7gDtmqe+fl/2pH6EU4PtRgEeW+rHXb+fIp/20jR82FuJ22rioRzYX9cyuk3nIo1XYto9gEPv273D9+CyOrQsJOFKo6noFld2uPug85NFKn5dQ6kcoBfh+FOCRpX6E8nhcLPwlj9f/s4Wv1u7GYTUY1CWTS09oSssGLrPLq3OR2D5sO3NJ/PlFEtbNAcOGt/0wKnpci79hp7C+TyTo8xJK/QilAN+PAjyy1I9Qv+/Hxt0VvPXTVuasyKfaH+TM1g0Y3bMJJ7fwHPekKbEiktuHpXgjrqVTcK58B8NXSXWzPlR2u5rqFmcf86QpkabPSyj1I5QCfD8K8MhSP0IdrB97Kqp5b8l2ZizdwZ6KGlo1dDG6ZzbndcqM+/PkdbF9GFWFOFdMIzH3VawV+fjcrajsNhZvx4sIOg7+y8ss+ryEUj9CKcD3owCPLPUj1OH6Ue0L8Onqnbz903ZW7ywjyWFlcJdMRvXIjtvD63W6ffirSVg/l8Tcf2LPW0zAnoS3w0gqu14RNYfX9XkJpX6EUoDvRwEeWepHqNr0IxgMkru9hH8t2c68NbvwBYKc2MzN8G6NObtdo8MO1RprzNo+bPlLSFz+Ogm/fojh91LT+GQqu1yGt80FYEus83p+o89LKPUjlAJ8PwrwyFI/Qh1tP3aXV/Phsjw+WLaDHSVe0hLtDO6SydCcrLjYKzd7+zCqCnH+8jbOX6ZhK95IIMFNVYdRVHUeg79hxzqvx+x+RBv1I5QCfD8K8MhSP0Idaz/8gSCLNhXyfu4OFq7bjT8I3bNTGdo1i/4dGpHksEWg2siLmu0jGMC+7TucK6aRsH4uRqCGmozuVHUajbfdhXV2T3nU9CNKqB+hFOD7UYBHlvoRKhz92FVezdxf8vlwWR6bCitx2iyc3a4Rg7pkcmIzT8jY69EuGrcPo3I3zjXv4/xlOrY9qwlaE/C2Goi3w0iqm/cFS+T+WIrGfphJ/QilAN+PAjyy1I9Q4ezHb+fK5/ySz2erCyjz+slIdnBuxwzO65RB+/SkqL8dLaq3j2AQ286lOFf/i4Q1H2LxFhFITKeq3VC87Yfhy+gBYe5vVPfDBOpHKAX4fhTgkaV+hIpUP6pq/CxYt5tPVu7k242F+ANBWjV0cW6HdAZ0SKdFlJ4vj5ntw1+NY9M8nKtn4Nj4BUagGp+7Fd52Q/G2HYq/YYewvE3M9KOOqB+hFOD7UYBHlvoRqi76UVRZw7w1Bfx75U6WbCshCLRPT+KcDun0b59O8zTzrrLeXyxuH4a3mIR1H5Ow5n3s27/HCAbwNeiAt+0QvG0G4W/Q7pjXHYv9iCT1I5QCfD8K8MhSP0LVdT92lnr5fE0Bn68uYNmOvdt6u/Qkzm7XiLPbNqJNI5eph9ljffswyneSsG4OzrUfYd/xAwC+tHZ421xAdevz8TXqclSH2WO9H+GmfoRSgO9HAR5Z6kcoM/uRV1LFF7/uYt6aXSzbvnfPvKnHSd82jejTtgHdst3Y6vgCuHjaPizleTjWf0LCujnYty/CCAbwpzTF22og1a3OpabxyWC1H3Yd8dSPcFA/QinA96MAjyz1I1S09GNXmZcF6/cwf+0ufthUhC8QxO20cVqrBvRu3YBTW6aR6jx82IRDtPQj3IzK3SRs+AzHhn/j2LIAw+8l4EiluvlZVLfsT3XzswkmNjjg5+K1H8dK/QilAN+PAjyy1I9Q0diPMq+PRZsKWbhuN1+v30NxlQ+LAd2yUzm9VQNOa5lG+4xkLBE41B6N/Qi76nIcWxfi2PgZCRvnYancRRADX2ZPqlv0o7r5WfjSc8BirR/9OArqRygF+H4U4JGlfoSK9n74A0FW5JXyzYY9fLt+D6t2lgGQlmjnlJZpnNLCw8nN08hISQjL+0V7P8IuGMC2cymOTV/i2PwltvwlGAQJONOobtobW4dzKG54CoGUJmZXGhXq3fZxBArw/SjAI0v9CBVr/dhVXs2ijYV8v6mQRRsLKaysAaBVAxcnNfdwQnMPvZq68SQe2+H2WOtHuBmVu3FsWYhjy3zsmxdgrcgHwOduSU3T3tQ0OZ3qJqcRdDUyuVJz1PftY38K8P0owCNL/QgVy/0IBIOsLSjnh81F/LCpkCXbiqmsCWAAbdOTOKGZh55N3fRskkqay1GrdcZyP8IuGMRTswnvys+xb/0a+7bvsNSUA+Br0IGaJqdSnX0aNY1PJpiUYXKxdUPbRygF+H4U4JGlfoSKp374/AFW5JXy45YiFm8pJnd7CV5fANi7h96tSSo9mqTSPdtNU4/zoLerxVM/wiGkH/4abAW52Ld9h2Pbt9h3/Ijh2/uaz9OamqyT8DU+kZrGJ+H3tAn7qHDRQNtHKAX4fhTgkaV+hIrnftT4A6zML+OnLUUs3V7C0m0llHp9wN5z6DnZqeQ0TqFr41Q6ZSWT5LDFdT+OxWH74a/Btms59u2L9n7l/YilqhCAQIKHmqxe+LJOoCazF76M7nU2AUskafsIVZcBHpvTI4nIMbFbLXTLTqVb9t7gCASDrN9dQe62YnJ3lLJsewkL1u0GwGJAq4YuejZPo22DRDplptAuPSmu5joPO6sdX2ZPfJk9qez5JwgGsRatw77jB2x5i7Hn/UTCpi8ACGLgT2uLL7MHNRnd8aV3w9eoM9icJv8jJFZoD1zUj/3U934UVdawIq+UFTtKWL6jlFU7yyis2HthnN1q0KZhEh0yk+mYkUyHjGTapieRaLeaXHXdOd7tw6gqwrZzCfb8Jfv+a6ncBUDQYsOf1p6a9Bx86V33fjXsDI6kcJUfdvX987I/HULfjwI8stSPUOpHKLc7kZWbC1mZX8oveaWsyi9j9c4yiqv2Hno3gOZpibTPSKZdehJtGiXRLj2JrJSEqJ9p7ViEffsIBrGU7cBWsBR7/lJsu5ZhK1iOpXLvkZAgBn53C/yNuuBr2Alfw474GnYikNoMDPOPhujzEkqH0EUkahiGQbbbSbbbSf/26cDeaY/PFCUAABO3SURBVFJ3lHj5taCMNTvLWVNQxoodJXy2umDfzyU5rLRu6KJ1o72h3rqBi5YNXWQkO+Iy2I+ZYRBIyaY6JZvq1ufvfS4YxFK+A1vBCmy7f8G2awW2guUkrJuz78eCNhe+Bu3xNeiAv2EHfGnt8DdoTyA5Oy4vlpMDaQ9c1I/9qB+hjqYfZV4f63aVs3ZXOet2VbBuVznrdpXv21uHvcHeooGLlg0SadnARYu0RJqnuWjqceKMgUPxpm4f1eXY9qzCtnsV1t2rsO1Zg23P6n2H4AEC9iT8aW3xe1rvPcfuabP3e3crsId/ljt9XkJpD1xEYlJygo3uTdx0b+Le91wwGGRPRQ0b91SwfncFG3ZXsGlPBT9uLuLjX3buW84AMlMSaJaWSPO0RJp6EmnqdtLUk0gTj7NenWc/JEcSvqwT8GWdEPK0UbkHW+GvWPf8irVwDbbCddi3/4Bzzfshy/mTs/G7W+F3t9z75WmJP7UFgdTmBB3JdfkvkTBQgItIRBmGQcMkBw2THJzQzBPyWnm1jy2FlWwurGTTf/+7taiSz1cXhOy1AzRw2Wny30P5TdxOGqc6aex2kp3qJDMlAYfN/PPBZgkmNqAm8RRqsk8JfaGmAmvRBmxF67EWr8dauA5r8UYS1s/FUrUnZNFAYkP8qc3xpzYnkNIMf2oz/ClNCaQ2w5+cravjo5ACXERMk+Sw0TEzhY6ZBx4iLK6sYWtxFduKKtlWXMXWokq2F1exbHsJn68uwL/fyb+GSQ4apyaQlZJARkoCmb/7Sk9OoGGSo86nYjWd3cX/a+/eY6Ms8wWOf9/bdC69Tq8UG49WQFIF0XjWujWsCC5H2NAj9mRdT4irZJN1CcF1N9FTl7jZFEzYIKwJUczuogYvZ6ilK132IGVpm6IGL1CPwOkJHLBCL0Av02nn9l7OH+90oPQGLm1p5/kkb973ed93nnnm1+n83uvzGtlFGNlFQxZJ4R6UnjPI/m9Qek6j+M+g+Fvsq+JP1iCZgzegTFc2Rko+ZspMjOR8zOR8TM8MpBm3IFteTHf2mI9iFa4vkcAFQbghpbk00lwaRXlDk7tuWpwPhDnXE+JcT4i23jDt/jBtvSGaz/fRcKoz3uPcAFmyk3yWx0FOchJZyfZ0lsdBdnISWR4HXo9GhjsxEr2VlIaeMw9y5g1daOrIfe0ovS3Ivd+i+L9FDpxDCZxF6WzGceZgvMc5gEzsq+VNdw6mJxfTkxcb51ya587BdGdjurJEor9ORAIXBGHKUWXJPoSe6uSegqHLLcuiJ6TT3hvmfCBMR2+Y9kCE871hzvdFONsT4sjZniGH6cE+F5/u0uLJPNOt4XU7yHBreN0aN2WloFkmGS6NdJdGcpIy/a6ql1XMlJkjP3HNspDCPciBc6TSRbD9NHKgFbmvFSWW+LW2w/Fe6K5kOr3xZG66szBdWViuLEyX157nysRyeTGdXqykNHFV/QhEAhcEYdqRJIn0WIKdkzPyxVkR3eRif4QLgQgX+yJc7LfHF/oidPZF6eyP8t+tvXT1R+mPGsPWocgD76WS5rSPGqQ51fg41amS6tRIdaqkJF0quzR56iZ+ScJypmM407HS3YSyRupaNoLcfx65rx25vwO5/0JsfB45eB65/wJa+xGk4IX4Q2GuZEkKltNrJ3dnOpYzA9OZYY+T0rGc6YPHSWn2oHmmfeIXCVwQhITlUOX4nvxYQlGDrmAUXVH4pqOX7v4oXcEoPcEo3bGhJ6RzprOfnpBOTzCKbo58l64iS6QkqaQkKSQn2ck9OUklOVZOdqh44tMKnljZPTDtUHBpCsqNfLhfcYy+J385PYQc7EQOnkcKdiKHOpGDnUixsRzuQgp22hflhb5EDnUhmZERq7MkBSspFcuRipmUhuVIwUpKxXSkYiWl2GVHKpYjBdORHCsnY2kD0x4sLRnkG/fuB5HABUEQroJTU5ihKaSnuynwjH0O17IsglETf8hO7L0hHX8oij+k0xu2B39sfiCi0xsyOB/oJxDRCYR1glFzzPcAcKoyboed2N2aPXZdNrYHGadmLx+YdmoKTlXGpSk4NRmnOjCWSYpNyxO5B6s6MVPyMVPyr259ywI9iBzqRgp32wk93IMc7kGKDXLYjxTuRor0Iof9yF0nUSN+uzzCHv+Qt1GddlLXPPbg8GBp7ktl1R0ru7FUN9JtxZAyzHUF42BcE3h9fT0VFRWYpklZWRk/+9nPBi23LIuKigrq6upwOp28/PLLFBUNvVpSEARhOHuPt7Ot4TTtvWFyU5J45oF/4l/m5gLwzH8e4XCLP77uvQWpbPu3u0Z93Wj1vby/maqmNkzLviDuX+fl8fzi2SO2TZIk3A6FupMXhtRZOq9gzPbrpkVfWKc/atAXNgiEdfqiBo2nLvJfx8/jD+t4HArzZ6aSk5xEMGrQdM5P8/lLicmtyWiKTDBqELnysv2roMgSpmlhAYoEXo+DTLeDJFXGocokqTLJLg3JtOyyYr9fS3c/X7T0EIgYpCQpPDgriwU3peFQZFRFxqFIaIqMQ5HRYtOaItnL5UtlVR4YS0NPN0gSaG5MzQ0p+Qx/gmMUpoEUDSBFAkiRXqRIADniR4r0XZofH/fZQyQ2DnUj97Zemq8HkYywXe2Ze6G0aow3vz7GrSc2wzD44Q9/yJ///Gdyc3N57LHH2Lx5M7fddlt8nbq6Ot5++23eeOMNjh49SkVFBT6fb0hdoie28SXiMZiIx2A3ajz2Hm9nw77/JXTZ1eZOVeY/Hp7Fh1+1DkreA+4tSOVHd84Y9nXLinKo+bpj2PqOnu2h8mjbkPpWzh89iY/WRmDEZQNJ/FrqG6uNumkRihqEogbBqEkwahCMGjScusg7n50letnhflWWmJ3t4X86AoNu15MlKMzykObSiOgmEd0kalmEIgYRwySs2/VGv8PGwlgUWUKTJVRFQpNl1Fhit4cryxJKbGNg0LxBYxklNq1IA/NAjk1fvu7l8xTpsnUkCTk2T8VAs8LcUZhPinp9r7Kf8J7YmpqauPnmmykosLc0ly1bRm1t7aAEXltbS2lpKZIkcdddd+H3++no6CAnJ2e8miUIwjSxreH0oEQGENJNtjWcpq03POxrDrf4aekOD/u6gb3r4errCAxfX1VT26gJfLQ2DkwPt2ykBD5afWO1UZWl2Dn2wT/7L9acGJS8wd77P9ERGBIP04LekM47qy71BHflBt6Ptn86bPyzPA62lc0japhEDZOIYdnTpkVUj40Ne6NAN634fN200E2TqGERNexpPbaublrohhVbJ7YsVo7qJsHYfCM2DLzWMC0MC3TDxLAuX24N+czX6vbcTt7+9wX/WCVXadwSeHt7O3l5efFybm4uTU1No66Tl5dHe3v7kAQ+0tbHP2I86pzKRDwGE/EY7EaMR/sISXqk+WMtH+mHu703zEi/6aY1emy+Sxvbe8Mj1jlafde7jaPF48r6Li+PVN/Fvgj/fPvwGybCdzNuCXy4I/NXnsO4mnUEQRCG838vL5vsJozperdxPD7zVGijMLxx6zw4Ly+PtrZL52OG27O+cp22tjZx+FwQBEEQrsK4JfA777yT06dP09LSQiQSoaamhkWLFg1aZ9GiRezevRvLsjhy5AgpKSkigQuCIAjCVRi3Q+iqqrJ+/XpWr16NYRisXLmSWbNm8e677wLw+OOPs3DhQurq6liyZAkul4sNGzaMV3MEQRAEYVoZt9vIbgThcJgnnniCSCQSv61t7dq1dHd38+yzz3L27FlmzpzJli1bSEtLG7vCaWJggyo3N5fXX3894eOxaNEiPB4PsiyjKAoffPBBQsfE7/fz4osv0tzcjCRJbNiwgVtuuSUh43Hq1CmeffbZeLmlpYW1a9dSWlqakPHYsWMHPp8PSZKYPXs2GzduJBgMJmQsAN588018Ph+WZVFWVsaTTz45ob8d0/oBug6HgzfffJO//OUv7N69m4aGBo4cOcL27dspLi5m3759FBcXs3379slu6oR66623KCwsjJcTPR5g/yNWV1fzwQcfAIkdk4qKCh544AH+9re/UV1dTWFhYcLG49Zbb6W6ujr+3XC5XCxZsiQh49He3s5bb71FZWUle/bswTAMampqEjIWAM3Nzfh8Pnw+H9XV1Rw8eJDTp09PaDymdQKXJAmPxwOAruvouo4kSfH7zwFKS0vZv3//ZDZzQrW1tXHw4EEee+yx+LxEjsdIEjUmgUCAw4cPx78fDoeD1NTUhI3H5T7++GMKCgqYOXNmwsbDMAxCoRC6rhMKhcjJyUnYWJw8eZL58+fjcrlQVZV7772Xjz76aELjMa0TONhfuBUrVnD//fdz//33M3/+fC5evBi/WC4nJ4fOzs5JbuXE2bBhA7/+9a+R5Ut/+kSOx4Cnn36aRx99lPfffx9I3Ji0tLTg9Xp54YUXKC0tpby8nP7+/oSNx+VqampYvnw5kJjfj9zcXJ566ikefPBBSkpKSE5OpqSkJCFjATB79mw+++wzurq6CAaD1NfX09bWNqHxmPYJXFEUqqurqauro6mpiebm5slu0qT5+9//jtfr5Y477pjsptxQ3n33XaqqqnjjjTfYuXMnhw8fnuwmTRpd1zl27BiPP/44u3fvxuVyJcwh0dFEIhEOHDjA0qVLJ7spk6anp4fa2lpqa2tpaGggGAxSXV092c2aNIWFhaxevZqnnnqK1atXM2fOHBRlYp9cNu0T+IDU1FS+973v0dDQQGZmJh0dHQB0dHTg9XonuXUT44svvuDAgQMsWrSIX/7yl3zyySf86le/Sth4DMjNtXuHyszMZMmSJTQ1NSVsTPLy8sjLy2P+/PkALF26lGPHjiVsPAbU19dTVFREVlYWQELG49ChQ9x00014vV40TePhhx/myy+/TMhYDCgrK6OqqoqdO3eSnp7OzTffPKHxmNYJvLOzE7/ffqBBKBTi0KFD3HrrrfH7zwF2797NQw89NJnNnDDPPfcc9fX1HDhwgM2bN3Pffffx+9//PmHjAdDf308gEIhPNzY2MmvWrISNSXZ2Nnl5eZw6dQqwz/sWFhYmbDwG1NTUsGzZpR7GEjEe+fn5HD16lGAwiGVZ4ruBfSoF4Ny5c+zbt4/ly5dPaDym9W1kJ06c4Pnnn8cwDCzLYunSpaxZs4auri7WrVtHa2srM2bMYOvWraSnp092cyfUp59+yp/+9Cdef/31hI5HS0sLv/jFLwD7eonly5fz85//PKFjcvz4ccrLy4lGoxQUFLBx40ZM00zYeASDQX7wgx+wf/9+UlLsPr8T9fvxhz/8gb/+9a+oqsrcuXOpqKigr68vIWMB8JOf/ITu7m5UVeWFF16guLh4Qr8b0zqBC4IgCMJ0Na0PoQuCIAjCdCUSuCAIgiBMQSKBC4IgCMIUJBK4IAiCIExBIoELgiAIwhQ0bo8TFQTh+ujq6uLJJ58E4MKFC8iyHO8cwufz4XA4JrF1w9u1axcLFy4kOzt7spsiCNOWSOCCcIPLyMiId1n56quv4na7efrppye5VfZ98yN1HVlZWUlRUdE1JXBd11FV8ZMkCFdL/LcIwhQ20I1jNBplwYIFrF+/HtM0ue+++ygrK+OTTz7B6/Wydu1aNm3aRGtrK+vXr2fhwoX4fD4OHjxIKBTi22+/ZcWKFTzzzDNj1vvEE0/Q2NhIeXk5DQ0N1NXVEQ6Hufvuu/ntb3/L3r17OXHiBOvWrcPpdOLz+Vi8eDF79uwhNTWVI0eOsGXLFnbs2MErr7xCV1cXLS0tZGVlsXHjRjZt2sTnn39OOBxm1apVlJWVTXKUBeHGJM6BC8IU1dzczEcffcR7771HdXV1/PnMAL29vZSUlFBVVYWmabz66qvs2LGDrVu3snXr1ngdTU1NbN68maqqKvbs2cPx48fHrLeoqIhdu3axYMECVq1aRWVlJR9++CGBQID6+noeeeQRbr/9drZs2UJ1dfWYh/iPHTvGa6+9xqZNm3j//ffJzMxk165dVFZWsnPnTs6dOzd+QRSEKUzsgQvCFHXo0CG++uorVq5cCdj9/efl5QHgdDr5/ve/D9iPPUxOTkZVVWbPns3Zs2fjdZSUlJCWlgbA4sWL+fzzz9F1fcR6NU1jyZIl8dd//PHH/PGPfyQcDtPV1UVRURELFy68ps/x0EMPkZSUBEBjYyMnT54ctMFw5swZ8vPzrzk+gjDdiQQuCFPYypUrWbdu3aB5uq6jaVq8LElSfC9YlmUMwxi07HID5ZHqdTqd8XWCwSC/+93vqKqqIjc3l1deeYVwODxsO1VVxTRNgCHruFyu+LRlWbz00ksUFxeP/eEFIcGJQ+iCMEUVFxezd+9eOjs7Aftq9Ws93NzY2Ijf7ycYDFJbW8vdd9991fWGQiFkWSYjI4NAIMC+ffviyzweD319ffHyzJkz+frrrwEGrXelkpIS3nnnHXRdB+DUqVOEQqFr+kyCkCjEHrggTFFz5sxhzZo1/PSnP8U0TTRN46WXXiInJ+eq67jnnnt47rnn+Oabb1ixYgVz584FuKp6MzIyKC0tZfny5eTn58efIQ7w6KOPUl5eHr+Ibc2aNfzmN78hKyuLefPmjdieH//4x7S2tlJaWgqA1+tl27Zt1xIWQUgY4mlkgpCgfD4fzc3NlJeXT3ZTBEH4DsQhdEEQBEGYgsQeuCAIgiBMQWIPXBAEQRCmIJHABUEQBGEKEglcEARBEKYgkcAFQRAEYQoSCVwQBEEQpqD/B5TaFplc+VXjAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "%matplotlib inline\n", "data_pred_50 = pd.DataFrame(\n", " {\n", " 'Temperature': np.linspace(start=30, stop=90, num=121), \n", " 'Pressure': 50, \n", " 'Intercept': 1\n", " }\n", ")\n", "\n", "data_pred_200 = pd.DataFrame(\n", " {\n", " 'Temperature': np.linspace(start=30, stop=90, num=121), \n", " 'Pressure': 200, \n", " 'Intercept': 1\n", " }\n", ")\n", "\n", "data_pred_50['Frequency'] = logmodel.predict(data_pred_50[['Intercept', 'Temperature', 'Pressure']])\n", "data_pred_200['Frequency'] = logmodel.predict(data_pred_200[['Intercept', 'Temperature', 'Pressure']])\n", "\n", "\n", "import seaborn as sns\n", "\n", "with sns.axes_style('darkgrid'):\n", " fig, ax = plt.subplots(figsize=(7, 5), nrows=1, ncols=1)\n", "\n", "\n", " data_pred_50.plot(x=\"Temperature\", y=\"Frequency\", kind=\"line\", ylim=[0,1], ax=ax, label='Pressure=50')\n", " data_pred_200.plot(x=\"Temperature\", y=\"Frequency\", kind=\"line\", ylim=[0,1], ax=ax, label='Pressure=200')\n", " ax.scatter(x=data[\"Temperature\"], y=data[\"Frequency\"])\n", " \n", " ax.set_ylabel(\"Frequency\")\n", " \n", " plt.tight_layout()\n", " plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Conclusion: by adjusting for a possible confounder, the malfunction frequency is predicted to be much higher than in the non-adjusted model (between 0.5 and 0.8 depending on the pressure, compared to 0.2 in the naive analysis)." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "celltoolbar": "Hide code", "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }