Peer Exercise

parent 45f11980
......@@ -261,30 +261,30 @@
"</div>"
],
"text/plain": [
" Date Count Temperature Pressure Malfunction\n",
"0 4/12/81 6 66 50 0\n",
"1 11/12/81 6 70 50 1\n",
"2 3/22/82 6 69 50 0\n",
"3 11/11/82 6 68 50 0\n",
"4 4/04/83 6 67 50 0\n",
"5 6/18/82 6 72 50 0\n",
"6 8/30/83 6 73 100 0\n",
"7 11/28/83 6 70 100 0\n",
"8 2/03/84 6 57 200 1\n",
"9 4/06/84 6 63 200 1\n",
"10 8/30/84 6 70 200 1\n",
"11 10/05/84 6 78 200 0\n",
"12 11/08/84 6 67 200 0\n",
"13 1/24/85 6 53 200 2\n",
"14 4/12/85 6 67 200 0\n",
"15 4/29/85 6 75 200 0\n",
"16 6/17/85 6 70 200 0\n",
"17 7/29/85 6 81 200 0\n",
"18 8/27/85 6 76 200 0\n",
"19 10/03/85 6 79 200 0\n",
"20 10/30/85 6 75 200 2\n",
"21 11/26/85 6 76 200 0\n",
"22 1/12/86 6 58 200 1"
" Date Count Temperature Pressure Malfunction\n",
"0 4/12/81 6 66 50 0\n",
"1 11/12/81 6 70 50 1\n",
"2 3/22/82 6 69 50 0\n",
"3 11/11/82 6 68 50 0\n",
"4 4/04/83 6 67 50 0\n",
"5 6/18/82 6 72 50 0\n",
"6 8/30/83 6 73 100 0\n",
"7 11/28/83 6 70 100 0\n",
"8 2/03/84 6 57 200 1\n",
"9 4/06/84 6 63 200 1\n",
"10 8/30/84 6 70 200 1\n",
"11 10/05/84 6 78 200 0\n",
"12 11/08/84 6 67 200 0\n",
"13 1/24/85 6 53 200 2\n",
"14 4/12/85 6 67 200 0\n",
"15 4/29/85 6 75 200 0\n",
"16 6/17/85 6 70 200 0\n",
"17 7/29/85 6 81 200 0\n",
"18 8/27/85 6 76 200 0\n",
"19 10/03/85 6 79 200 0\n",
"20 10/30/85 6 75 200 2\n",
"21 11/26/85 6 76 200 0\n",
"22 1/12/86 6 58 200 1"
]
},
"execution_count": 1,
......@@ -431,6 +431,7 @@
}
],
"source": [
"dataall = data\n",
"data = data[data.Malfunction>0]\n",
"data"
]
......@@ -453,7 +454,7 @@
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEKCAYAAAD9xUlFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAFaNJREFUeJzt3X2QZXV95/H3p2cGGASFwGZiMSAQWFdKCWALGtxkiMRCqxzWwgfYSjRGnWwJlTImRuK6hLCmaiUxJlaIOroaYUuRh1Vnd3ERNK3REmHUCY/BzCJCgwHFUWkY5oH+7h/3zvFOd0/37aHPvUz3+1XVNfec+zvnfvvL4X76PNxzU1VIkgQwMuwCJElPH4aCJKlhKEiSGoaCJKlhKEiSGoaCJKnRWigk+XiSh5Pcvofnk+SDSTYnuTXJKW3VIknqT5t7Cn8PnDXL868Aju/+rAM+1GItkqQ+tBYKVfVV4MezDDkbuLw6bgIOSfLstuqRJM1t+RBf+wjg/p7p8e68H0wdmGQdnb0JVq5c+cIjjzxyIAU+VZOTk4yMeNqmlz2Zzp5MZ09m9lT68t3vfvdHVfVv5ho3zFDIDPNmvOdGVa0H1gOMjo7Wxo0b26xrwYyNjbFmzZphl/G0Yk+msyfT2ZOZPZW+JPl+P+OGGcXjQO+f/KuBB4dUiySJ4YbCBuAN3auQXgz8tKqmHTqSJA1Oa4ePknwaWAMcnmQc+FNgBUBVfRi4DnglsBl4HHhTW7VIkvrTWihU1XlzPF/A+W29viRp/jy9L0lqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqtBoKSc5KcneSzUkunOH5o5L8Q5LvJLk1ySvbrEeSNLvWQiHJMuAy4BXACcB5SU6YMuw9wFVVdTJwLvB3bdUjSZpbm3sKpwKbq+qeqtoOXAmcPWVMAc/sPn4W8GCL9UiS5pCqamfFyWuAs6rqLd3p3wZOq6oLesY8G/gicCjwDODMqvrWDOtaB6wDWLVq1QuvvPLKVmpeaBMTExx00EHDLuNpxZ5MZ0+msyczeyp9OeOMM75VVaNzjVu+V2vvT2aYNzWBzgP+vqren+QlwBVJnl9Vk7stVLUeWA8wOjpaa9asaaPeBTc2Nsa+Uuug2JPp7Ml09mRmg+hLm4ePxoEje6ZXM/3w0JuBqwCq6hvAAcDhLdYkSZpFm6FwC3B8kmOS7EfnRPKGKWPuA14GkOR5dELhhy3WJEmaRWuhUFU7gQuA64G76FxldEeSS5Ks7Q77Q+CtSf4J+DTwO9XWSQ5J0pzaPKdAVV0HXDdl3kU9j+8ETm+zBklS//xEsySpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqthkKSs5LcnWRzkgv3MOZ1Se5MckeST7VZjyRpdsv7GZTk+VV1+3xWnGQZcBnwm8A4cEuSDVV1Z8+Y44E/AU6vqi1JfnE+ryFJWlj97il8OMnNSd6W5JA+lzkV2FxV91TVduBK4OwpY94KXFZVWwCq6uE+1y1JakFfewpV9dLuX/W/C2xMcjPwiaq6YZbFjgDu75keB06bMubfAiT5OrAMuLiq/u/UFSVZB6wDWLVqFWNjY/2UPXQTExP7TK2DYk+msyfT2ZOZDaIvfYUCQFX9S5L3ABuBDwInJwnw7qr6nzMskplWM8PrHw+sAVYD/9g9VPWTKa+9HlgPMDo6WmvWrOm37KEaGxtjX6l1UOzJdPZkOnsys0H0pa/DR0lOTPIB4C7gN4BXVdXzuo8/sIfFxoEje6ZXAw/OMObzVbWjqr4H3E0nJCRJQ9DvOYW/Bb4N/EpVnV9V3waoqgeB9+xhmVuA45Mck2Q/4Fxgw5QxnwPOAEhyOJ3DSffM71eQJC2Ufg8fvRLYWlVPAiQZAQ6oqser6oqZFqiqnUkuAK6nc77g41V1R5JLgI1VtaH73MuT3Ak8Cbyzqh55ir+TJGkv9RsKNwJnAhPd6QOBLwK/OttCVXUdcN2UeRf1PC7gHd0fSdKQ9Xv46ICq2hUIdB8f2E5JkqRh6TcUHktyyq6JJC8EtrZTkiRpWPo9fPR24Ooku64eejbw+nZKkiQNS78fXrslyb8Dnkvn8wf/XFU7Wq1MkjRwfX94DXgRcHR3mZOTUFWXt1KVJGko+r0h3hXALwOb6Fw6Cp1PJxsKkrSI9LunMAqc0L2EVJK0SPV79dHtwC+1WYgkafj63VM4HLize3fUbbtmVtXaVqqSJA1Fv6FwcZtFSJKeHvq9JPUrSZ4DHF9VNyY5kM79jCRJi0i/t85+K3AN8JHurCPo3OFUkrSI9Hui+XzgdOBn0PnCHcDvU5akRabfUNjW/Z5lAJIsZ/q3qEmS9nH9hsJXkrwbWJnkN4Grgf/VXlmSpGHoNxQuBH4I3Ab8Hp3vSNjTN65JkvZR/V59NAl8tPsjSVqk+r330feY4RxCVR274BVJkoZmPvc+2uUA4LXALyx8OZKkYerrnEJVPdLz80BV/TXwGy3XJkkasH4PH53SMzlCZ8/h4FYqkiQNTb+Hj97f83gncC/wugWvRpI0VP1efXRG24VIkoav38NH75jt+ar6q4UpR5I0TPO5+uhFwIbu9KuArwL3t1GUJGk45vMlO6dU1aMASS4Grq6qt7RVmCRp8Pq9zcVRwPae6e3A0QtejSRpqPrdU7gCuDnJZ+l8svnVwOWtVSVJGop+rz768yRfAP59d9abquo77ZUlSRqGfg8fARwI/Kyq/gYYT3JMSzVJkoak36/j/FPgXcCfdGetAP5HW0VJkoaj3z2FVwNrgccAqupBvM2FJC06/YbC9qoqurfPTvKM9kqSJA1Lv6FwVZKPAIckeStwI37hjiQtOv1effSX3e9m/hnwXOCiqrqh1cokSQM3555CkmVJbqyqG6rqnVX1R/0GQpKzktydZHOSC2cZ95oklWR0T2MkSe2bMxSq6kng8STPms+KkywDLgNeAZwAnJfkhBnGHQz8PvDN+axfkrTw+v1E8xPAbUluoHsFEkBV/f4sy5wKbK6qewCSXAmcDdw5Zdx/BS4F/qjfoiVJ7eg3FP5P92c+jmD3u6iOA6f1DkhyMnBkVf3vJHsMhSTrgHUAq1atYmxsbJ6lDMfExMQ+U+ug2JPp7Ml09mRmg+jLrKGQ5Kiquq+qPrkX684M86pn3SPAB4DfmWtFVbUeWA8wOjpaa9as2YtyBm9sbIx9pdZBsSfT2ZPp7MnMBtGXuc4pfG7XgyTXznPd48CRPdOrgQd7pg8Gng+MJbkXeDGwwZPNkjQ8c4VC71/7x85z3bcAxyc5Jsl+wLn8/Et6qKqfVtXhVXV0VR0N3ASsraqN83wdSdICmSsUag+P51RVO4ELgOuBu4CrquqOJJckWTu/MiVJgzDXieZfSfIzOnsMK7uP6U5XVT1ztoWr6jrguinzLtrD2DV9VSxJas2soVBVywZViCRp+ObzfQqSpEXOUJAkNQwFSVLDUJAkNZZMKDwysY1/uv8nPDKxbdilSNK8PTKxja07nmz9PWxJhMLnNz3A6e/7Mr/1sW9y+vu+zIZNDwy7JEnq2673sO/98LHW38MWfSg8MrGNd117K0/smOTRbTt5Ysckf3ztre4xSNon9L6HPVnV+nvYog+F8S1bWTGy+6+5YmSE8S1bh1SRJPVv0O9hiz4UVh+6kh2Tk7vN2zE5yepDVw6pIknq36DfwxZ9KBx20P5ces6JHLBihIP3X84BK0a49JwTOeyg/YddmiTNqfc9bFnS+ntYv1+ys09be9IRnH7c4Yxv2crqQ1caCJL2Kbvew27+xtf4+tqXtvoetiRCATppaxhI2lcddtD+rFyxrPX3sUV/+EiS1D9DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSY1WQyHJWUnuTrI5yYUzPP+OJHcmuTXJl5I8p816JEmzay0UkiwDLgNeAZwAnJfkhCnDvgOMVtWJwDXApW3VI0maW5t7CqcCm6vqnqraDlwJnN07oKr+oaoe707eBKxusR5J0hyWt7juI4D7e6bHgdNmGf9m4AszPZFkHbAOYNWqVYyNjS1Qie2amJjYZ2odFHsynT2Zzp7MbBB9aTMUMsO8mnFg8lvAKPDrMz1fVeuB9QCjo6O1Zs2aBSqxXWNjY+wrtQ6KPZnOnkxnT2Y2iL60GQrjwJE906uBB6cOSnIm8J+BX6+qbS3WI0maQ5vnFG4Bjk9yTJL9gHOBDb0DkpwMfARYW1UPt1iLJKkPrYVCVe0ELgCuB+4CrqqqO5JckmRtd9hfAAcBVyfZlGTDHlYnSRqANg8fUVXXAddNmXdRz+Mz23z9peSRiW2Mb9nK6kNXcthB+7e+3GJmT4Zr80OPsuXxHWx+6FGOW3XwsMtZcloNBQ3G5zc9wLuuvZUVIyPsmJzk0nNOZO1JR7S23GJmT4bros/dxuU33ccfvmAnf/CBr/KGlxzFJWe/YNhlLSne5mIf98jENt517a08sWOSR7ft5Ikdk/zxtbfyyMTs5+z3drnFzJ4M1+aHHuXym+7bbd7l37iPzQ89OqSKliZDYR83vmUrK0Z2/8+4YmSE8S1bW1luMbMnw7Xp/p/Ma77aYSjs41YfupIdk5O7zdsxOcnqQ1e2stxiZk+G66QjD5nXfLXDUNjHHXbQ/lx6zokcsGKEg/dfzgErRrj0nBPnPEG6t8stZvZkuI5bdTBveMlRu817w0uO8mTzgHmieRFYe9IRnH7c4fO+YmZvl1vM7MlwXXL2C3jDi4/mtm/dxI1/8GIDYQgMhUXisIP236s3sL1dbjGzJ8N13KqDGT9whYEwJB4+kiQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUqPVUEhyVpK7k2xOcuEMz++f5DPd57+Z5Og265Ekza61UEiyDLgMeAVwAnBekhOmDHszsKWqjgM+ALyvrXokSXNrc0/hVGBzVd1TVduBK4Gzp4w5G/hk9/E1wMuSpMWaJEmzWN7iuo8A7u+ZHgdO29OYqtqZ5KfAYcCPegclWQes605OJLm7lYoX3uFM+V1kT2ZgT6azJzN7Kn15Tj+D2gyFmf7ir70YQ1WtB9YvRFGDlGRjVY0Ou46nE3synT2Zzp7MbBB9afPw0ThwZM/0auDBPY1Jshx4FvDjFmuSJM2izVC4BTg+yTFJ9gPOBTZMGbMBeGP38WuAL1fVtD0FSdJgtHb4qHuO4ALgemAZ8PGquiPJJcDGqtoA/HfgiiSb6ewhnNtWPUOyzx3yGgB7Mp09mc6ezKz1vsQ/zCVJu/iJZklSw1CQJDUMhQWS5N4ktyXZlGRjd97FSR7oztuU5JXDrnPQkhyS5Jok/5zkriQvSfILSW5I8i/dfw8ddp2DtIeeLNltJclze37vTUl+luTtS3k7maUnrW8nnlNYIEnuBUar6kc98y4GJqrqL4dV17Al+STwj1X1se5VaAcC7wZ+XFX/rXtPrEOr6l1DLXSA9tCTt7PEtxVobo/zAJ0Pup7PEt5OdpnSkzfR8nbinoJak+SZwK/RucqMqtpeVT9h99ubfBL4D8OpcPBm6Yk6Xgb8v6r6Pkt4O5mityetMxQWTgFfTPKt7m05drkgya1JPr6Udn+7jgV+CHwiyXeSfCzJM4BVVfUDgO6/vzjMIgdsTz2Bpb2t7HIu8Onu46W8nfTq7Qm0vJ0YCgvn9Ko6hc5dYc9P8mvAh4BfBk4CfgC8f4j1DcNy4BTgQ1V1MvAYMO0W6kvMnnqy1LcVuofS1gJXD7uWp4sZetL6dmIoLJCqerD778PAZ4FTq+qhqnqyqiaBj9K5c+xSMg6MV9U3u9PX0HlDfCjJswG6/z48pPqGYcaeuK0AnT+ovl1VD3Wnl/J2sstuPRnEdmIoLIAkz0hy8K7HwMuB23dt0F2vBm4fRn3DUlX/Ctyf5LndWS8D7mT325u8Efj8EMobij31ZKlvK13nsfthkiW7nfTYrSeD2E68+mgBJDmWzt4BdA4PfKqq/jzJFXR28wq4F/i9XcdIl4okJwEfA/YD7qFz9cQIcBVwFHAf8NqqWjI3QtxDTz7IEt5WkhxI5zb6x1bVT7vzDmNpbycz9aT19xRDQZLU8PCRJKlhKEiSGoaCJKlhKEiSGoaCJKnR2jevSYPWvYTxS93JXwKepHNLCeh8mHD7UAqbRZLfBa7rfn5BGjovSdWi9HS6Q22SZVX15B6e+xpwQVVtmsf6llfVzgUrUOrh4SMtCUnemOTm7j3o/y7JSJLlSX6S5C+SfDvJ9UlOS/KVJPfsuld9krck+Wz3+buTvKfP9b43yc3AqUn+LMktSW5P8uF0vJ7OB5E+011+vyTjSQ7prvvFSW7sPn5vko8kuYHOzfSWJ/mr7mvfmuQtg++qFiNDQYtekufTuSXAr1bVSXQOm57bffpZwBe7NzPcDlxM59YTrwUu6VnNqd1lTgH+Y5KT+ljvt6vq1Kr6BvA3VfUi4AXd586qqs8Am4DXV9VJfRzeOhl4VVX9NrAOeLiqTgVeROcmjEftTX+kXp5T0FJwJp03zo1JAFbSuX0AwNaquqH7+Dbgp1W1M8ltwNE967i+qrYAJPkc8FI6///sab3b+fmtTwBeluSdwAHA4cC3gC/M8/f4fFU90X38cuB5SXpD6Hg6t4OQ9pqhoKUgwMer6r/sNjNZTufNe5dJYFvP497/P6aefKs51ru1uifsuvew+Vs6d0N9IMl76YTDTHby8z34qWMem/I7va2qvoS0gDx8pKXgRuB1SQ6HzlVKe3Go5eXpfLfygXS+Eezr81jvSjoh86Pu3XTP6XnuUeDgnul7gRd2H/eOm+p64G3dANr1nb4r5/k7SdO4p6BFr6puS/JnwI1JRoAdwH8CHpzHar4GfIrOF5xcsetqoX7WW1WPpPO9zLcD3we+2fP0J4CPJdlK57zFxcBHk/wrcPMs9XyEzt1DN3UPXT1MJ6ykp8RLUqU5dK/seX5VvX3YtUht8/CRJKnhnoIkqeGegiSpYShIkhqGgiSpYShIkhqGgiSp8f8B+Q9eu+sB8EwAAAAASUVORK5CYII=\n",
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEKCAYAAAD9xUlFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAFYRJREFUeJzt3XuQpXV95/H3Zy7AIBMhsJm4MxBBCFlKAXG4GEx2IokLbgmxiBHcDS5ZMqGE3TK7m8BariHGVEWM2WiJjiOLCqmERFEgu+MiJNUaExCQTIaLgcwiQjMGBFFoHObW3/3jnHlyprun5/TQzzlM9/tV1TXnufa3vz6cj8/l/E6qCkmSABYMuwBJ0kuHoSBJahgKkqSGoSBJahgKkqSGoSBJarQWCkmuSfJkkvt2szxJPppkY5INSU5qqxZJUn/aPFP4DHDmNMvPAo7p/qwGPtFiLZKkPrQWClX1VeB706xyDnBtddwBHJzkFW3VI0nas0VD/N3Lgcd6pke7874zccUkq+mcTbBkyZLXHX744QMp8MUaHx9nwQJv2/SyJ5PZk6nZl8leTE8eeuihp6rqX+xpvWGGQqaYN+WYG1W1FlgLsHLlyrr77rvbrGvWjIyMsGrVqmGX8ZJiTyazJ1OzL5O9mJ4k+XY/6w0zhkeB3v/LvwLYNKRaJEkMNxRuBi7oPoV0GvCDqpp06UiSNDitXT5K8qfAKuCwJKPAbwOLAapqDbAOeDOwEfghcGFbtUiS+tNaKFTV+XtYXsAlbf1+SdLMeWtfktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktRoNRSSnJnkwSQbk1w+xfKXJ/mLJH+f5P4kF7ZZjyRpeq2FQpKFwFXAWcBxwPlJjpuw2iXAA1V1ArAK+HCS/dqqSZI0vTbPFE4BNlbVw1W1FbgeOGfCOgUsTRLgIOB7wPYWa5IkTWNRi/teDjzWMz0KnDphnY8BNwObgKXA26tqfOKOkqwGVgMsW7aMkZGRNuqddWNjY/tMrYNiTyazJ1OzL5MNoidthkKmmFcTpv8NsB54I/Aq4NYkf11Vz+6yUdVaYC3AypUra9WqVbNfbQtGRkbYV2odFHsymT2Zmn2ZbBA9afPy0ShweM/0CjpnBL0uBL5QHRuBbwE/1WJNkqRptBkKdwHHJDmye/P4PDqXino9CpwBkGQZcCzwcIs1SZKm0drlo6ranuRS4BZgIXBNVd2f5OLu8jXA7wKfSXIvnctNl1XVU23VJEmaXpv3FKiqdcC6CfPW9LzeBLypzRokSf3zE82SpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqtBoKSc5M8mCSjUku3806q5KsT3J/kq+0WY8kaXqL+lkpyaur6r6Z7DjJQuAq4BeAUeCuJDdX1QM96xwMfBw4s6oeTfJjM/kdkqTZ1e+ZwpokdyZ5V/eNvB+nABur6uGq2gpcD5wzYZ13AF+oqkcBqurJPvctSWpBX2cKVfWGJMcAvwrcneRO4NNVdes0my0HHuuZHgVOnbDOTwKLk4wAS4GPVNW1E3eUZDWwGmDZsmWMjIz0U/bQjY2N7TO1Doo9mcyeTM2+TDaInvQVCgBV9Y9J3gvcDXwUeG2SAO+pqi9MsUmm2s0Uv/91wBnAEuD2JHdU1UMTfvdaYC3AypUra9WqVf2WPVQjIyPsK7UOij2ZzJ5Mzb5MNoie9HtP4XjgQuDfArcCb6mqe5L8S+B2YKpQGAUO75leAWyaYp2nqup54PkkXwVOAB5CkjRw/d5T+BhwD3BCVV1SVfcAVNUm4L272eYu4JgkRybZDzgPuHnCOjcBP5NkUZID6Vxe+uZM/whJ0uzo9/LRm4HNVbUDIMkC4ICq+mFVXTfVBlW1PcmlwC3AQuCaqro/ycXd5Wuq6ptJ/i+wARgHrp7pU06SpNnTbyjcBvw8MNadPhD4MvDT021UVeuAdRPmrZkw/SHgQ33WIUlqUb+Xjw6oqp2BQPf1ge2UJEkaln5D4fkkJ+2cSPI6YHM7JUmShqXfy0fvBj6XZOfTQ68A3t5OSZKkYen3w2t3Jfkp4Fg6nz/4h6ra1mplkqSB6/vDa8DJwCu727w2CVN9+liStO/q98Nr1wGvAtYDO7qzCzAUJGkO6fdMYSVwXFVNHKZCkjSH9Pv00X3Aj7dZiCRp+Po9UzgMeKA7OuqWnTOr6uxWqpIkDUW/oXBFm0VIkl4a+n0k9StJfgI4pqpu6w5et7Dd0iRJg9bXPYUkvwZ8Hvhkd9Zy4Ma2ipIkDUe/N5ovAU4HnoXOF+4Afp+yJM0x/YbClu73LAOQZBGTv0VNkrSP6zcUvpLkPcCSJL8AfA74i/bKkiQNQ7+hcDnwXeBe4NfpfEfC7r5xTZK0j+r36aNx4FPdH0nSHNXv2EffYop7CFV11KxXJEkampmMfbTTAcDbgB+d/XIkScPU1z2Fqnq65+fxqvoj4I0t1yZJGrB+Lx+d1DO5gM6Zw9JWKpIkDU2/l48+3PN6O/AI8MuzXo0kaaj6ffro59ouRJI0fP1ePvov0y2vqj+cnXIkScM0k6ePTgZu7k6/Bfgq8FgbRUmShmMmX7JzUlU9B5DkCuBzVXVRW4VJkgav32EujgC29kxvBV4569VIkoaq3zOF64A7k3yRzieb3wpc21pVkqSh6Pfpo99L8iXgZ7qzLqyqv2uvLEnSMPR7+QjgQODZqvoIMJrkyJZqkiQNSb9fx/nbwGXAf+/OWgz8cVtFSZKGo98zhbcCZwPPA1TVJhzmQpLmnH5DYWtVFd3hs5O8rL2SJEnD0m8o/HmSTwIHJ/k14Db8wh1JmnP6ffroD7rfzfwscCzwvqq6tdXKJEkDt8czhSQLk9xWVbdW1W9W1X/rNxCSnJnkwSQbk1w+zXonJ9mR5JdmUrwkaXbtMRSqagfwwyQvn8mOkywErgLOAo4Dzk9y3G7W+yBwy0z2L0maff1+ovkF4N4kt9J9Agmgqv7zNNucAmysqocBklwPnAM8MGG9/wTcQGfAPUnSEPUbCv+n+zMTy9l1FNVR4NTeFZIsp/O46xuZJhSSrAZWAyxbtoyRkZEZljIcY2Nj+0ytg2JPJrMnU7Mvkw2iJ9OGQpIjqurRqvrsXuw7U8yrCdN/BFxWVTuSqVbvblS1FlgLsHLlylq1atVelDN4IyMj7Cu1Doo9mcyeTM2+TDaInuzpnsKNO18kuWGG+x4FDu+ZXgFsmrDOSuD6JI8AvwR8PMkvzvD3SJJmyZ4uH/X+3/ejZrjvu4BjumMkPQ6cB7yjd4WqasZPSvIZ4H9X1Y1IkoZiT6FQu3m9R1W1PcmldJ4qWghcU1X3J7m4u3zNjCqVJLVuT6FwQpJn6ZwxLOm+pjtdVfUj021cVeuAdRPmTRkGVfUf+qpYktSaaUOhqhYOqhBJ0vDN5PsUJElznKEgSWoYCpKkhqEgSWrMq1B4emwLf//Y93l6bMuwS5GkGXl6bAubt+1o/f1r3oTCTesf5/QP/hX//uqvc/oH/4qb1z8+7JIkqS8737++9d3nW3//mheh8PTYFi67YQMvbBvnuS3beWHbOL91wwbPGCS95PW+f+2oav39a16Ewugzm1m8YNc/dfGCBYw+s3lIFUlSfwb9/jUvQmHFIUvYNj6+y7xt4+OsOGTJkCqSpP4M+v1rXoTCoQftz5XnHs8BixewdP9FHLB4AVeeezyHHrT/sEuTpGn1vn8tTFp//+r3S3b2eWefuJzTjz6M0Wc2s+KQJQaCpH3GzvevO2//Gn9z9htaff+aN6EAncQ1DCTtiw49aH+WLF7Y+nvYvLh8JEnqj6EgSWoYCpKkhqEgSWoYCpKkhqEgSWoYCpKkhqEgSWoYCpKkhqEgSWoYCpKkhqEgSWoYCpKkhqEgSWoYCpKkhqEgSWoYCpKkhqEgSWoYCpKkhqEgSWoYCpKkRquhkOTMJA8m2Zjk8imW/7skG7o/f5vkhDbrkSRNr7VQSLIQuAo4CzgOOD/JcRNW+xbwr6vqeOB3gbVt1SNJ2rM2zxROATZW1cNVtRW4Hjind4Wq+tuqeqY7eQewosV6JEl7sKjFfS8HHuuZHgVOnWb9/wh8aaoFSVYDqwGWLVvGyMjILJXYrrGxsX2m1kGxJ5PZk6nZl8kG0ZM2QyFTzKspV0x+jk4ovGGq5VW1lu6lpZUrV9aqVatmqcR2jYyMsK/UOij2ZDJ7MjX7MtkgetJmKIwCh/dMrwA2TVwpyfHA1cBZVfV0i/VIkvagzXsKdwHHJDkyyX7AecDNvSskOQL4AvArVfVQi7VIkvrQ2plCVW1PcilwC7AQuKaq7k9ycXf5GuB9wKHAx5MAbK+qlW3VJEmaXpuXj6iqdcC6CfPW9Ly+CLiozRrmi6fHtjD6zGZWHLKEQw/av/Xt5jJ7Mnwbn3iOZ364jY1PPMfRy5YOu5x5pdVQ0GDctP5xLrthA4sXLGDb+DhXnns8Z5+4vLXt5jJ7Mnzvu/Ferr3jUf7ra7bzG//zq1zw+iN4/zmvGXZZ84bDXOzjnh7bwmU3bOCFbeM8t2U7L2wb57du2MDTY1ta2W4usyfDt/GJ57j2jkd3mXft7Y+y8YnnhlTR/GMo7ONGn9nM4gW7/s+4eMECRp/Z3Mp2c5k9Gb71j31/RvM1+wyFfdyKQ5awbXx8l3nbxsdZcciSVraby+zJ8J14+MEzmq/ZZyjs4w49aH+uPPd4Dli8gKX7L+KAxQu48tzj93iDdG+3m8vsyfAdvWwpF7z+iF3mXfD6I7zZPEDeaJ4Dzj5xOacffdiMn5jZ2+3mMnsyfO8/5zVccNorufcbd3Dbb5xmIAyYoTBHHHrQ/nv1Bra3281l9mT4jl62lNEDFxsIQ+DlI0lSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDVaDYUkZyZ5MMnGJJdPsTxJPtpdviHJSW3WI0maXmuhkGQhcBVwFnAccH6S4yasdhZwTPdnNfCJtuqRJO1Zm2cKpwAbq+rhqtoKXA+cM2Gdc4Brq+MO4OAkr2ixJknSNBa1uO/lwGM906PAqX2ssxz4Tu9KSVbTOZMAGEvy4OyW2prDgKeGXcRLjD2ZzJ5Mzb5M9mJ68hP9rNRmKGSKebUX61BVa4G1s1HUICW5u6pWDruOlxJ7Mpk9mZp9mWwQPWnz8tEocHjP9Apg016sI0kakDZD4S7gmCRHJtkPOA+4ecI6NwMXdJ9COg34QVV9Z+KOJEmD0drlo6ranuRS4BZgIXBNVd2f5OLu8jXAOuDNwEbgh8CFbdUzJPvcJa8BsCeT2ZOp2ZfJWu9JqiZdwpckzVN+olmS1DAUJEkNQ2EWJXkkyb1J1ie5uzvviiSPd+etT/LmYdc5SEkOTvL5JP+Q5JtJXp/kR5PcmuQfu/8eMuw6B2k3PZm3x0mSY3v+7vVJnk3y7vl8nEzTk9aPE+8pzKIkjwArq+qpnnlXAGNV9QfDqmuYknwW+Ouqurr7FNqBwHuA71XV73fHxDqkqi4baqEDtJuevJt5fJzs1B0e53E6H3S9hHl8nOw0oScX0vJx4pmCWpPkR4CfBf4XQFVtrarv0xne5LPd1T4L/OJwKhy8aXqijjOA/1dV32YeHycT9PakdYbC7Crgy0m+0R2aY6dLu6PAXjOfToGBo4DvAp9O8ndJrk7yMmDZzs+jdP/9sWEWOWC76wnM3+Ok13nAn3Zfz+fjpFdvT6Dl48RQmF2nV9VJdEZ/vSTJz9IZ+fVVwIl0xnT68BDrG7RFwEnAJ6rqtcDzwKQh1OeZ3fVkPh8nAHQvpZ0NfG7YtbxUTNGT1o8TQ2EWVdWm7r9PAl8ETqmqJ6pqR1WNA5+iM3rsfDEKjFbV17vTn6fzhvjEztFwu/8+OaT6hmHKnszz42Sns4B7quqJ7vR8Pk522qUngzhODIVZkuRlSZbufA28CbhvwlDgbwXuG0Z9w1BV/wQ8luTY7qwzgAfoDG/yzu68dwI3DaG8odhdT+bzcdLjfHa9TDJvj5Meu/RkEMeJTx/NkiRH0Tk7gM4lgj+pqt9Lch2dU70CHgF+fT6N75TkROBqYD/gYTpPTywA/hw4AngUeFtVfW9oRQ7YbnryUeb3cXIgnWH0j6qqH3TnHcr8Pk6m6knr7yeGgiSp4eUjSVLDUJAkNQwFSVLDUJAkNQwFSVKjtW9ekwat+wjjX3YnfxzYQWdICeh8kHDrUAqbRpJfBdZ1P78gDZ2PpGpOeimNTptkYVXt2M2yrwGXVtX6GexvUVVtn7UCpR5ePtK8kOSdSe7sjkH/8SQLkixK8v0kH0pyT5Jbkpya5CtJHt45Vn2Si5J8sbv8wSTv7XO/H0hyJ3BKkt9JcleS+5KsScfb6XwQ6c+62++XZDTJwd19n5bktu7rDyT5ZJJb6QymtyjJH3Z/94YkFw2+q5qLDAXNeUleTWdIgJ+uqhPpXDY9r7v45cCXuwMZbgWuoDP0xNuA9/fs5pTuNicB70hyYh/7vaeqTqmq24GPVNXJwGu6y86sqj8D1gNvr6oT+7i89VrgLVX1K8Bq4MmqOgU4mc4AjEfsTX+kXt5T0Hzw83TeOO9OArCEzvABAJur6tbu63uBH1TV9iT3Aq/s2cctVfUMQJIbgTfQ+e9nd/vdyj8PewJwRpLfBA4ADgO+AXxphn/HTVX1Qvf1m4B/laQ3hI6hMxyEtNcMBc0HAa6pqv+xy8xkEZ03753GgS09r3v/+5h48632sN/N1b1h1x3D5mN0RkN9PMkH6ITDVLbzz2fwE9d5fsLf9K6q+kukWeTlI80HtwG/nOQw6DyltBeXWt6UzncrH0jnG8H+Zgb7XUInZJ7qjqR7bs+y54ClPdOPAK/rvu5db6JbgHd1A2jnd/oumeHfJE3imYLmvKq6N8nvALclWQBsAy4GNs1gN18D/oTOF5xct/NpoX72W1VPp/O9zPcB3wa+3rP408DVSTbTuW9xBfCpJP8E3DlNPZ+kM3ro+u6lqyfphJX0ovhIqrQH3Sd7Xl1V7x52LVLbvHwkSWp4piBJanimIElqGAqSpIahIElqGAqSpIahIElq/H/IxmFZztFAcQAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
......@@ -471,6 +472,10 @@
"\n",
"data[\"Frequency\"]=data.Malfunction/data.Count\n",
"data.plot(x=\"Temperature\",y=\"Frequency\",kind=\"scatter\",ylim=[0,1])\n",
"plt.grid(True)\n",
"\n",
"dataall[\"Frequency\"]=dataall.Malfunction/dataall.Count\n",
"dataall.plot(x=\"Temperature\",y=\"Frequency\",kind=\"scatter\",ylim=[0,1])\n",
"plt.grid(True)"
]
},
......@@ -524,10 +529,10 @@
" <th>Method:</th> <td>IRLS</td> <th> Log-Likelihood: </th> <td> -2.5250</td> \n",
"</tr>\n",
"<tr>\n",
" <th>Date:</th> <td>Sat, 13 Apr 2019</td> <th> Deviance: </th> <td> 0.22231</td> \n",
" <th>Date:</th> <td>Tue, 05 Sep 2023</td> <th> Deviance: </th> <td> 0.22231</td> \n",
"</tr>\n",
"<tr>\n",
" <th>Time:</th> <td>19:11:24</td> <th> Pearson chi2: </th> <td> 0.236</td> \n",
" <th>Time:</th> <td>14:34:56</td> <th> Pearson chi2: </th> <td> 0.236</td> \n",
"</tr>\n",
"<tr>\n",
" <th>No. Iterations:</th> <td>4</td> <th> Covariance Type: </th> <td>nonrobust</td>\n",
......@@ -555,8 +560,8 @@
"Model Family: Binomial Df Model: 1\n",
"Link Function: logit Scale: 1.0000\n",
"Method: IRLS Log-Likelihood: -2.5250\n",
"Date: Sat, 13 Apr 2019 Deviance: 0.22231\n",
"Time: 19:11:24 Pearson chi2: 0.236\n",
"Date: Tue, 05 Sep 2023 Deviance: 0.22231\n",
"Time: 14:34:56 Pearson chi2: 0.236\n",
"No. Iterations: 4 Covariance Type: nonrobust\n",
"===============================================================================\n",
" coef std err z P>|z| [0.025 0.975]\n",
......@@ -610,7 +615,7 @@
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEKCAYAAAAcgp5RAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAGyFJREFUeJzt3X2UVPWd5/H3pxuQBhEjkhkFDWSWtHF9ABRQWZ3WqGhORLPrE2vGMRNCdmeMk83Knng2E43Rc2YHd2I26zgy6jgxiUo8iiSHCahjT2Y8PoCCILAIY4g2JEGND7Q2Snd/9497u6kuqunqpvqhfnxe5/Tpurd+de/3V7fvp27fuvUrRQRmZpaumsEuwMzM+peD3swscQ56M7PEOejNzBLnoDczS5yD3swscT0GvaR7Je2U9HI390vS/5G0VdI6SdMrX6aZmfVVOUf09wEX7Of+C4Ep+c8C4M4DL8vMzCqlx6CPiF8Av9tPk4uBH0TmWeBwSUdVqkAzMzswwyqwjAnA6wXTTfm8Xxc3lLSA7KifkSNHnnLsscdWYPVDU3t7OzU16b4FknL/Uu4buH/V7pVXXnkzIsb35jGVCHqVmFdyXIWIWAwsBqivr4/NmzdXYPVDU2NjIw0NDYNdRr9JuX8p9w3cv2on6Ve9fUwlXvaagGMKpicCOyqwXDMzq4BKBP0y4Or86pvTgHcjYp/TNmZmNjh6PHUj6QGgAThSUhNwIzAcICL+FlgOfBbYCnwAfLG/ijUzs97rMegjYl4P9wfwZxWryMyqwp49e2hqamL37t2DXUoXY8eOZdOmTYNdxgEbOXIkEydOZPjw4Qe8rEq8GWtmB6GmpibGjBnDpEmTkEpdkzE4du3axZgxYwa7jAMSEbz11ls0NTUxefLkA15eutcgmVm/2r17N+PGjRtSIZ8KSYwbN65i/y056M2szxzy/aeSz62D3swscT5Hb2ZVq7a2lhNPPLFzeunSpYwbN24QKxqaHPRmVrXq6upYu3Ztl3m7du3qvN3a2sqwYY45n7oxs6T86Ec/4rLLLuOiiy7i/PPPB2DRokXMmDGDk046iRtvvLGz7a233kp9fT3nnnsu8+bN47bbbgOgoaGB1atXA/Dmm28yadIkANra2li4cGHnsu666y5g77ALl156KccddxxXXXUV2ZXnsGrVKs444wxOPvlkZs6cya5duzjzzDO7vEDNnj2bdevW9dtz4pc6Mztg3/7pBjbueK+iyzz+6MO48aJ/v982LS0tTJ06FYDJkyfz6KOPAvDMM8+wbt06jjjiCFauXMmWLVt4/vnniQjmzp3LL37xC0aPHs2DDz7ImjVraG1tZfr06Zxyyin7Xd8999zD2LFjWbVqFR9++CGzZ8/ufDFZs2YNGzZs4Oijj2b27Nk8/fTTzJw5kyuuuIKHHnqIGTNm8N5771FXV8f8+fO57777uP3223nllVf48MMPOemkkyrwrJXmoDezqlXq1A3AeeedxxFHHAHAypUrWblyJdOmTQOgubmZLVu2sGvXLj7/+c8zatQoAObOndvj+lauXMm6det4+OGHAXj33XfZsmULI0aMYObMmUycOBGAqVOnsm3bNsaOHctRRx3FjBkzADjssMMAuOyyy/jOd77DokWLuPfee7nmmmsO7InogYPezA5YT0feA2306NGdtyOCG264ga985Std2tx+++3dXsI4bNgw2tvbAbpcyx4RfP/732fOnDld2jc2NnLIIYd0TtfW1tLa2kpElFzHqFGjOO+883jsscdYsmRJ52mi/uJz9GaWtDlz5nDvvffS3NwMwPbt29m5cydnnXUWjz76KC0tLezatYuf/vSnnY+ZNGkSL7zwAkDn0XvHsu6880727NkDwCuvvML777/f7bqPO+44duzYwapVq4DsjeLW1lYA5s+fz3XXXceMGTM6//voLz6iN7OknX/++WzatInTTz8dgEMPPZQf/vCHTJ8+nSuuuIKpU6fyiU98gjPPPLPzMddffz2XX345999/P+ecc07n/Pnz57Nt2zamT59ORDB+/HiWLl3a7bpHjBjBQw89xFe/+lVaWlqoq6vjiSee4NBDD+WUU07hsMMO44tfHIBxICNiUH4+9alPRcqeeuqpwS6hX6Xcv5T7FlG5/m3cuLEiy6m09957r0+Pu/HGG2PRokUVrqZ727dvjylTpkRbW1u3bUo9x8Dq6GXe+tSNmdkA+8EPfsCsWbO49dZbB+RrD33qxswMuOmmmwZsXVdffTVXX331gK3PR/Rm1mcRJb8e2iqgks+tg97M+mTkyJG89dZbDvt+EPl49CNHjqzI8nzqxsz6ZOLEiTQ1NfHGG28Mdild7N69u2IBOZg6vmGqEhz0ZtYnw4cPr8i3H1VaY2Nj56dgLeNTN2ZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeLKCnpJF0jaLGmrpG+UuP9YSU9JWiNpnaTPVr5UMzPrix6DXlItcAdwIXA8ME/S8UXNvgksiYhpwJXA31S6UDMz65tyjuhnAlsj4tWI+Ah4ELi4qE0Ah+W3xwI7KleimZkdCPX0De6SLgUuiIj5+fQfAbMi4tqCNkcBK4GPAaOBcyPihRLLWgAsABg/fvwpS5YsqVQ/hpzm5mYOPfTQwS6j36Tcv5T7Bu5ftTv77LNfiIhTe/OYcr4cXCXmFb86zAPui4j/Lel04H5JJ0REe5cHRSwGFgPU19dHQ0NDb2qtKo2Njbh/1SnlvoH7dzAq59RNE3BMwfRE9j018yVgCUBEPAOMBI6sRIFmZnZgygn6VcAUSZMljSB7s3VZUZvXgM8ASPo0WdC/UclCzcysb3oM+ohoBa4FVgCbyK6u2SDpZklz82b/HfiypJeAB4BroqeT/2ZmNiDKOUdPRCwHlhfN+1bB7Y3A7MqWZmZmleBPxpqZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWuLKCXtIFkjZL2irpG920uVzSRkkbJP24smWamVlfDeupgaRa4A7gPKAJWCVpWURsLGgzBbgBmB0Rb0v6eH8VbGZmvVPOEf1MYGtEvBoRHwEPAhcXtfkycEdEvA0QETsrW6aZmfVVj0f0wATg9YLpJmBWUZtPAUh6GqgFboqInxcvSNICYAHA+PHjaWxs7EPJ1aG5udn9q1Ip9w3cv4NROUGvEvOixHKmAA3AROBfJJ0QEe90eVDEYmAxQH19fTQ0NPS23qrR2NiI+1edUu4buH8Ho3JO3TQBxxRMTwR2lGjzWETsiYhfApvJgt/MzAZZOUG/CpgiabKkEcCVwLKiNkuBswEkHUl2KufVShZqZmZ902PQR0QrcC2wAtgELImIDZJuljQ3b7YCeEvSRuApYGFEvNVfRZuZWfnKOUdPRCwHlhfN+1bB7QC+nv+YmdkQ4k/GmpklzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeLKCnpJF0jaLGmrpG/sp92lkkLSqZUr0czMDkSPQS+pFrgDuBA4Hpgn6fgS7cYA1wHPVbpIMzPru3KO6GcCWyPi1Yj4CHgQuLhEu+8AfwXsrmB9ZmZ2gIaV0WYC8HrBdBMwq7CBpGnAMRHxM0nXd7cgSQuABQDjx4+nsbGx1wVXi+bmZvevSqXcN3D/DkblBL1KzIvOO6Ua4LvANT0tKCIWA4sB6uvro6Ghoawiq1FjYyPuX3VKuW/g/h2Myjl10wQcUzA9EdhRMD0GOAFolLQNOA1Y5jdkzcyGhnKCfhUwRdJkSSOAK4FlHXdGxLsRcWRETIqIScCzwNyIWN0vFZuZWa/0GPQR0QpcC6wANgFLImKDpJslze3vAs3M7MCUc46eiFgOLC+a961u2jYceFlmZlYp/mSsmVniHPRmZolz0JuZJc5Bb2aWOAe9mVniyrrqxqxSlq7ZzqIVm9nxTgtHH17Hwjn1XDJtwmCXZf3A23rocNDbgFm6Zjs3PLKelj1tAGx/p4UbHlkP4ABIjLf10OJTNzZgFq3Y3Lnjd2jZ08aiFZsHqSLrL97WQ4uD3gbMjndaejXfqpe39dDioLcBc/Thdb2ab9XL23pocdDbgFk4p5664bVd5tUNr2XhnPpBqsj6i7f10OI3Y23AdLwJ5ysx0udtPbQ46G1AXTJtgnf2g4S39dDhUzdmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOH9nrJmVJSJoaw/aA9oj8h9oa49u72tvL9Eugvb20svYp13RMtoj8mloi6L15u02vbaH15/9Vba89qAtStS+T61BW3vpPnZMd3df5DV31Fiq9s52HevrspyCdlG0vKK+tkfftp2D3gZN4Y7dJRwiiPaCnaI4GPLbe3f0vfdFqeX1cud8eUcrv3uxqcdgiYKAKL1Tlg6P0kGwd3n7C7G2gvW2t5doV+r5KgqSDz7YzSHPPLnf9RSHS1tfE2awbHy57KYS1ErUSNTUQI1ErYQENTUdt0WNoLZmb7u9j8nuqylaRo0K5teI2hoxvOPxUr4sAFFbky1b+bq7PK5omWv68HSUFfSSLgC+B9QCd0fEXxbd/3VgPtAKvAH8SUT8qg/19Nk+r/qljgAKjhpKvcruEzzFO0vnEUL2uP0dtaz/TSvvvbRjnzCIotvdBl3Rq3rbfu7b35HBPvOLQ6rLkcq+Ry7dHYE1N3/AyFVPdd7X2ZcSwVNYb9fneyD/Qnpp3UsH9PDC8FBhQOThURwEtTXZziyU7/D7Pr62RojC8MkeO6y2hkOG7Q2cjmDqWEbn8vL17vztbzn6qCP3CaWOdvvczutUPr+wPqlrqGX9UNewLFFDTan11AhREKI1RcuVgL3PRZdw7QjfGvHsM88we/YZBbUL1RQ9FwXPrfLlVotb+vCYHoNeUi1wB3Ae0ASskrQsIjYWNFsDnBoRH0j6r8BfAVfsb7nbm9s596//uXQQlArtff716Ro8Q9Lavrz2ltbxh93lFb9oR+g86ug4AqnpLmz2hkoWGnuPHrJ1lA6O2jwUJHizpoWjfv/wLjt58Tpqa9Sl9pJHPwV9KWyX9TN7LHmfawtrrum6jNqa7LkR+4ZNjYAuobdvUBTWvnrV85x+2qx9gqXrkV/R9ig6EhzK4dHY2EhDw8mDXUa/+djIGj4+ZuRglzGklHNEPxPYGhGvAkh6ELgY6Az6iHiqoP2zwBd6WujwGlH/e2M6d8CSQdBNKOzdWfNQoGvoFR/xFP6bpOLbRUc1xUddxQGyN/T2hlvx0UiNxIurVzNr1oyCYN7fkR37HAWpKJiGmiwspg12Gf2iaXQNnxg3erDLMKuYcoJ+AvB6wXQTMGs/7b8E/GOpOyQtABYAjB8/nssmvFdmmX0Q+U8FteU/5RirD2ja+EJlCxhCmpubaWxsHOwy+kXKfQP372BUTtCXOpwsGaGSvgCcCvxhqfsjYjGwGKC+vj4aGhrKq7IKZUe8DYNdRr9JuX8p9w3cv4NROUHfBBxTMD0R2FHcSNK5wP8E/jAiPqxMeWZmdqDK+cDUKmCKpMmSRgBXAssKG0iaBtwFzI2InZUv08zM+qrHoI+IVuBaYAWwCVgSERsk3Sxpbt5sEXAo8BNJayUt62ZxZmY2wMq6jj4ilgPLi+Z9q+D2uRWuy6zXlq7ZzqIVm9nxTgtHH17Hwjn1APvMu2TahAGtoT/X1xvfXLqeB557na+dsIcv3bCcebOO4ZZLThzssmwA+JOxloSla7ZzwyPradmTXRe1/Z0WFv7kJRDsaYvOeTc8sh6gX8K3VA39ub7e+ObS9fzw2dc6p9siOqcd9unzoGaWhEUrNncGbIc97dEZ8h1a9rSxaMXmAauhP9fXGw8893qv5ltaHPSWhB3vtPRL20rU0F/r6422bsab6G6+pcVBb0k4+vC6fmlbiRr6a329UdvNp6u7m29pcdBbEhbOqadueG2XecNrxPDarkFWN7y2803agaihP9fXG/NmHdOr+ZYWvxlrSeh4s3Mwr7rprobBfiMW9r7h2nFOvlbyVTcHEQe9JeOSaRNKhupABm13NQwFt1xyIrdcciKNjY3821UNg12ODSCfujEzS5yD3swscQ56M7PEOejNzBLnoDczS5yD3swscQ56M7PEOejNzBLnoDczS5yD3swscQ56M7PEOejNzBLnoDczS5yD3swscQ56M7PEOejNzBLnoDczS5yD3swscQ56M7PEOejNzBLnoDczS5yD3swscQ56M7PEOejNzBLnoDczS5yD3swscQ56M7PEOejNzBJXVtBLukDSZklbJX2jxP2HSHoov/85SZMqXaiZmfVNj0EvqRa4A7gQOB6YJ+n4omZfAt6OiH8HfBf4X5Uu1MzM+qacI/qZwNaIeDUiPgIeBC4uanMx8A/57YeBz0hS5co0M7O+GlZGmwnA6wXTTcCs7tpERKukd4FxwJuFjSQtABbkkx9KerkvRVeJIynqf2JS7l/KfQP3r9rV9/YB5QR9qSPz6EMbImIxsBhA0uqIOLWM9Vcl9696pdw3cP+qnaTVvX1MOadumoBjCqYnAju6ayNpGDAW+F1vizEzs8orJ+hXAVMkTZY0ArgSWFbUZhnwx/ntS4F/ioh9jujNzGzg9XjqJj/nfi2wAqgF7o2IDZJuBlZHxDLgHuB+SVvJjuSvLGPdiw+g7mrg/lWvlPsG7l+163X/5ANvM7O0+ZOxZmaJc9CbmSVuQIJe0khJz0t6SdIGSd/O50/Oh0zYkg+hMGIg6ukPkmolrZH0s3w6pb5tk7Re0tqOS7skHSHp8bx/j0v62GDX2VeSDpf0sKT/J2mTpNNT6Z+k+ny7dfy8J+lrCfXvv+WZ8rKkB/KsSWnf+/O8bxskfS2f1+ttN1BH9B8C50TEycBU4AJJp5ENlfDdiJgCvE02lEK1+nNgU8F0Sn0DODsiphZcn/wN4Mm8f0/m09Xqe8DPI+I44GSy7ZhE/yJic77dpgKnAB8Aj5JA/yRNAK4DTo2IE8guFrmSRPY9SScAXyYbneBk4HOSptCXbRcRA/oDjAJeJPt07ZvAsHz+6cCKga6nQn2amD/h5wA/I/sAWRJ9y+vfBhxZNG8zcFR++yhg82DX2ce+HQb8kvzChNT6V9Sn84GnU+kfez+RfwTZFYQ/A+aksu8BlwF3F0z/BfA/+rLtBuwcfX5qYy2wE3gc+DfgnYhozZs0kW24anQ72QZoz6fHkU7fIPuU80pJL+TDWAD8XkT8GiD//fFBq+7AfBJ4A/j7/NTb3ZJGk07/Cl0JPJDfrvr+RcR24DbgNeDXwLvAC6Sz770MnCVpnKRRwGfJPpja6203YEEfEW2R/fs4kexfkU+XajZQ9VSKpM8BOyPihcLZJZpWXd8KzI6I6WQjmP6ZpLMGu6AKGgZMB+6MiGnA+1ThaYye5Oep5wI/GexaKiU/N30xMBk4GhhN9jdarCr3vYjYRHYa6nHg58BLQOt+H9SNAb/qJiLeARqB04DD8yEToPTQCtVgNjBX0jaykT3PITvCT6FvAETEjvz3TrLzuzOB30o6CiD/vXPwKjwgTUBTRDyXTz9MFvyp9K/DhcCLEfHbfDqF/p0L/DIi3oiIPcAjwBmkte/dExHTI+Issg+jbqEP226grroZL+nw/HYd2QbaBDxFNmQCZEMoPDYQ9VRSRNwQERMjYhLZv8b/FBFXkUDfACSNljSm4zbZed6X6TrsRdX2LyJ+A7wuqWNEwM8AG0mkfwXmsfe0DaTRv9eA0ySNyodF79h2Sex7AJI+nv8+FviPZNuw19tuQD4ZK+kksvHqa8leXJZExM2SPkl2FHwEsAb4QkR82O8F9RNJDcD1EfG5VPqW9+PRfHIY8OOIuFXSOGAJcCzZDndZRFTlQHaSpgJ3AyOAV4Evkv+dkkb/RpG9afnJiHg3n5fE9ssv1b6C7JTGGmA+2Tn5qt/3ACT9C9l7fnuAr0fEk33Zdh4Cwcwscf5krJlZ4hz0ZmaJc9CbmSXOQW9mljgHvZlZ4sr5cnCzAZVfPvZkPvn7QBvZMAUAMyPio0EpbD8k/QmwPL8u32xI8eWVNqRJuglojojbhkAttRHR1s19/wpcGxFre7G8YQVjspj1G5+6saoi6Y+VfbfBWkl/I6lG0jBJ70haJOlFSSskzZL0z5JelfTZ/LHzJT2a379Z0jfLXO4tkp4HZkr6tqRV+Rjhf6vMFWTDbz+UP36EpKaCT4OfJumJ/PYtku6S9DjZQGrDJP11vu51kuYP/LNqqXPQW9XIx+f+PHBGPkDeMPZ+Ef1YYGU++NpHwE1kH4m/DLi5YDEz88dMB/6zpKllLPfFiJgZEc8A34uIGcCJ+X0XRMRDwFrgisjGfu/p1NI04KKI+CNgAdmgeDOBGWSDxh3bl+fHrDs+R2/V5FyyMFydDW1CHdlH+wFaIuLx/PZ64N2IaJW0HphUsIwVEfE2gKSlwH8g2w+6W+5H7B0CAuAzkhYCI4EjyYbF/cde9uOxiNid3z4f+LSkwheWKWQfbTerCAe9VRMB90bEX3SZmY1UWHgU3U72rWYdtwv/zovflIoeltsS+RtZ+Zgx/xeYHhHbJd1CFviltLL3P+biNu8X9elPI+JJzPqJT91YNXkCuFzSkZBdndOH0xznK/uO2FFkY5k/3Yvl1pG9cLyZj+j5nwru2wWMKZjeRvbVfRS1K7YC+NOOYXWVfcdrXS/7ZLZfPqK3qhER6/PRCp+QVEM2ot9/oXfjjf8r8GPgD4D7O66SKWe5EfGWpH8gG6b5V8BzBXf/PXC3pBay9wFuAv5O0m+A5/dTz11koxCuzU8b7SR7ATKrGF9eaQeN/IqWEyLia4Ndi9lA8qkbM7PE+YjezCxxPqI3M0ucg97MLHEOejOzxDnozcwS56A3M0vc/wcowwoTqhaBUgAAAABJRU5ErkJggg==\n",
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEKCAYAAADpfBXhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAGzdJREFUeJzt3X+UVOWd5/H3t6tBGhohoGGAJoHM4cA6UX41jUriNkYBc+KvWQ2io4k7LHEnJJPdIxs5J7OaWT1n57S7h0zWiIwyTOLR1nEVNcsG1E3HiauxQRAEhh9riDadBDGj0Noo3f3dP+6t6qrqbrq6qO6qevy8zulD3VvPfe7z7aI+dfupW7fM3RERkbBUFHsAIiJSeAp3EZEAKdxFRAKkcBcRCZDCXUQkQAp3EZEA9RvuZrbBzI6a2Rt93G9m9rdmdsjMdpnZ3MIPU0REBiKXI/eNwNLT3H8FMD3+WQncf+bDEhGRM9FvuLv7i8AfTtPkauDHHnkFGGtmEws1QBERGbjKAvQxGXg7bbklXvfb7IZmtpLo6J6qqqp5U6ZMyWuHXV1dVFSE8XaBailNodQSSh2gWpIOHDhwzN3P7a9dIcLdelnX6zUN3H09sB6gtrbWt23bltcOm5qaqK+vz2vbUqNaSlMotYRSB6iWJDP7TS7tCvEy2AKkH4LXAK0F6FdERPJUiHB/BrglPmvmQuB9d+8xJSMiIkOn32kZM3sUqAfOMbMW4E5gGIC7rwM2A18GDgEfArcO1mBFRCQ3/Ya7uy/v534HvlmwEYlIWTh16hQtLS2cPHlySPY3ZswY9u3bNyT7Gmy51DJixAhqamoYNmxYXvsoxBuqIvIJ1NLSwujRo5k6dSpmvZ1XUVgnTpxg9OjRg76fodBfLe7Ou+++S0tLC9OmTctrH2GcVyQiQ+7kyZOMHz9+SIL9k8bMGD9+/Bn9VaRwF5G8KdgHz5n+bhXuIiIB0py7iJStRCLB+eefn1retGkTU6dOLd6ASojCXUTKVlVVFTt37uzz/o6ODiorP5kxp2kZEQnKxo0buf7667nyyitZvHgxAA0NDcyfP58LLriAO++8M9X2nnvuYcaMGVx22WUsX76ce++9F4D6+nqSl0c5duxY6q+Bzs5OVq9enerrgQceALovJ3Ddddcxc+ZMbrrpJqKzxKG5uZmLL76YWbNmUVdXx4kTJ1iyZEnGi9LChQvZtWtXQX8Pn8yXNBEpqO8/u4e9rccL2ud5k87mziv/5LRt2tvbmT17NgDTpk3jqaeeAuDll19m165djBs3jq1bt3Lw4EFeffVV3J2rrrqKF198kVGjRtHY2MiOHTvo6Ohg7ty5zJs377T7e+ihhxgzZgzNzc189NFHLFy4MPUCsmPHDvbs2cOkSZNYuHAhL730EnV1dSxbtozHHnuM+fPnc/z4caqqqrjlllvYuHEja9eu5cCBA3z00UdccMEFBfitdVO4i0jZ6mta5vLLL2fcuHEAbN26la1btzJnzhwA2traOHjwICdOnODaa69l5MiRAFx11VX97m/r1q3s2rWLJ554AoD333+fgwcPMnz4cOrq6qipqQFg9uzZHD58mDFjxjBx4kTmz58PwNlnnw3Atddey8KFC2loaGDDhg18/etfP7NfRC8U7iJyxvo7wh5qo0aNSt12d9asWcM3vvGNjDZr167t83TDyspKurq6ADLONXd3fvjDH7JkyZKM9k1NTZx11lmp5UQiQUdHB+7e6z5GjhzJ5ZdfztNPP83jjz9OvlfIPR3NuYtI0JYsWcKGDRtoa2sD4MiRIxw9epRLLrmEp556ivb2dk6cOMGzzz6b2mbq1Kls374dIHWUnuzr/vvv59SpUwAcOHCADz74oM99z5w5k9bWVpqbm4Hok6kdHR0ArFixgm9/+9vMnz8/9VdGIenIXUSCtnjxYvbt28dFF10EQHV1NQ8//DBz585l2bJlzJ49m89+9rN88YtfTG1z++2389WvfpWf/OQnXHrppan1K1as4PDhw8ydOxd359xzz2XTpk197nv48OE89thjfOtb36K9vZ2qqiqef/55AObNm8fZZ5/NrbcO0rUW3b0oP/PmzfN8/fznP89721KjWkpTKLUMZh179+4dtL57c/z48UHt/8477/SGhoZB3UfS8ePH/ciRIz59+nTv7Ozss11vv2Ngm+eQsZqWEREZYo888ggLFizgnnvuGbSvDtS0jIgIcNdddw3Zvm688cYeb/AWmo7cRSRv7r1+XbIUwJn+bhXuIpKXESNG8O677yrgB4HH13MfMWJE3n1oWkZE8lJTU0NLSwvvvPPOkOzv5MmTZxR2pSSXWpLfxJQvhbuI5GXYsGF5f0tQPpqamlKfMi13Q1GLpmVERAKkcBcRCZDCXUQkQAp3EZEAKdxFRAKkcBcRCZDCXUQkQAp3EZEAKdxFRAKkcBcRCZDCXUQkQAp3EZEAKdxFRAKkcBcRCZDCXUQkQAp3EZEA5RTuZrbUzPab2SEzu6OX+8eY2bNm9rqZ7TGzWws/VBERyVW/4W5mCeA+4ArgPGC5mZ2X1eybwF53nwXUA//NzIYXeKwiIpKjXI7c64BD7v6mu38MNAJXZ7VxYLSZGVAN/AHoKOhIRUQkZ9bfN5eb2XXAUndfES/fDCxw91VpbUYDzwAzgdHAMnf/X730tRJYCTBhwoR5jY2NeQ26ra2N6urqvLYtNaqlNIVSSyh1gGpJWrRo0XZ3r+2vXS5fkG29rMt+RVgC7AQuBf4YeM7M/sndj2ds5L4eWA9QW1vr9fX1Oey+p6amJvLdttSoltIUSi2h1AGqZaBymZZpAaakLdcArVltbgWe9Mgh4NdER/EiIlIEuYR7MzDdzKbFb5LeQDQFk+4t4EsAZjYBmAG8WciBiohI7vqdlnH3DjNbBWwBEsAGd99jZrfF968D/guw0cx2E03jfNfdjw3iuEVE5DRymXPH3TcDm7PWrUu73QosLuzQREQkX/qEqohIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIByinczWypme03s0NmdkcfberNbKeZ7TGzXxR2mCIiMhCV/TUwswRwH3A50AI0m9kz7r43rc1Y4EfAUnd/y8w+PVgDFhGR/uVy5F4HHHL3N939Y6ARuDqrzY3Ak+7+FoC7Hy3sMEVEZCDM3U/fwOw6oiPyFfHyzcACd1+V1mYtMAz4E2A08AN3/3Evfa0EVgJMmDBhXmNjY16Dbmtro7q6Oq9tS41qKU2h1BJKHaBakhYtWrTd3Wv7a9fvtAxgvazLfkWoBOYBXwKqgJfN7BV3P5Cxkft6YD1AbW2t19fX57D7npqamsh321KjWkpTKLWEUgeoloHKJdxbgClpyzVAay9tjrn7B8AHZvYiMAs4gIiIDLlc5tybgelmNs3MhgM3AM9ktXka+KKZVZrZSGABsK+wQxURkVz1e+Tu7h1mtgrYAiSADe6+x8xui+9f5+77zOxnwC6gC3jQ3d8YzIGLiEjfcpmWwd03A5uz1q3LWm4AGgo3NBERyZc+oSoiEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIByinczWypme03s0Nmdsdp2s03s04zu65wQxQRkYHqN9zNLAHcB1wBnAcsN7Pz+mj3N8CWQg9SREQGJpcj9zrgkLu/6e4fA43A1b20+xbwP4GjBRyfiIjkwdz99A2iKZal7r4iXr4ZWODuq9LaTAYeAS4FHgJ+6u5P9NLXSmAlwIQJE+Y1NjbmNei2tjaqq6vz2rbUqJbSFEotodQBqiVp0aJF2929tr92lTn0Zb2sy35FWAt81907zXprHm/kvh5YD1BbW+v19fU57L6npqYm8t221KiW0hRKLaHUAaploHIJ9xZgStpyDdCa1aYWaIyD/Rzgy2bW4e6bCjJKEREZkFzCvRmYbmbTgCPADcCN6Q3cfVrytpltJJqWUbCLiBRJv+Hu7h1mtoroLJgEsMHd95jZbfH96wZ5jCIiMkC5HLnj7puBzVnreg11d//6mQ9LRETOhD6hKiISIIW7iEiAFO4iIgFSuIuIBEjhLiISoJzOlhEZLJt2HKFhy35a32tn0tgqVi+ZwTVzJhd7WJIjPX6lS+EuRbNpxxHWPLmb9lOdABx5r501T+4GUECUAT1+pU3TMlI0DVv2p4Ihqf1UJw1b9hdpRDIQevxKm8Jdiqb1vfYBrZfSosevtCncpWgmja0a0HopLXr8SpvCXYpm9ZIZVA1LZKyrGpZg9ZIZRRqRDIQev9KmN1SlaJJvuulsi/Kkx6+0KdylqK6ZM1lhUMb0+JUuTcuIiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgPQdqiKSoavL6XSns8txhy6Plru6onVdyXVdTpdHbTq7utt0xcvpbaKf7vVdXaS173ubzi5Sbfa9dYq3X/lNarm7PXGfcT/ueHx/97hJG0e0nN0muW16ne6Zv4vM9k6nkzEeT+/D02qNl5P7rJ8E9fWD+zgq3KVkZD8hkqHicRBET55kG9KehJlP8vQnWXKb04ZH6knXHQxvHDnFse0tWWPKDLfsfWYHTPc2PYOlOxy6t+m+Py18soIlo413B1SX9+yz050PPzzJWS+/EPeT2Wdv++3yYv8v6MfeN3JqVmFQYUZFhZEwi5YrjES8bPG6RIVRYfH6CsMMEvFytH3cT2pdtDy8siJubyTifsBIVGT22b0tGcuf+uh3g/t7IsdwN7OlwA+ABPCgu//XrPtvAr4bL7YB/97dXy/kQAdD8kmf+YSnO0RSr7ZpbdJDp7cnd3/bpx21uDu7ftfB8ddb+36SZh0Z9NwHWUcSWUHQ1d1PakwZYdMzJLt6CZLMcfUMlU532to+ZETzz+Px9AzAjPBLO5JJLpec3fn9F06GQPTETwuF7Cd7HDLpwVIRbxMFUWawGFEflRUVnFVpcX+k2ifDKn2/R3//eyZNPKc76LL67G2/6X2mB1oqsNLWRTWQ6is7BLtDMnus3WNJtkn1k94mDthEhfHKyy/zhYULM+usyBpDfNvMCvt/ocCamo4N+j76DXczSwD3AZcDLUCzmT3j7nvTmv0a+Nfu/i9mdgWwHlgwGAP+xYF3+N4vP6TqtV9kBFnGEVp6qPU4ius+qvJSyZOdO864i+wndnqYdB8xdD+Zsp8MmUcZWdvHbXo7WrG0J+CxinYm/tHYVD+ZT0LSjpjiJ3bqqCrtyCrtiZ1ZU+YTurfwSMT9ZuwjOzxS9VtakKSHV7T9tldf5eKLLszpd5PcPjn2UtLU1ER9/axiD6MgPjWignNHn1XsYZSNXI7c64BD7v4mgJk1AlcDqXB39/+b1v4VoKaQg0xXfVaCCaMqmPDp6h5BlgqKrCd1X0FD9vanOUrp7jvz6Cc9ELqDI3P/GUdyWcG0fds2Llwwv8f22WPv3nd32Gb3XWxRkMwp9jAK4u1RFUwZN7LYwxDJm3k/h69mdh2w1N1XxMs3AwvcfVUf7W8HZibbZ923ElgJMGHChHmNjY15DbqtrY3q6uq8ti01qqU0hVJLKHWAaklatGjRdnev7a9dLkfuvR0S9vqKYGaLgD8HvtDb/e6+nmjKhtraWq/P8+3i6Agxv21LjWopTaHUEkodoFoGKpdwbwGmpC3XAK3ZjczsAuBB4Ap3f7cwwxMRkXzk8iGmZmC6mU0zs+HADcAz6Q3M7DPAk8DN7n6g8MMUEZGB6PfI3d07zGwVsIXoVMgN7r7HzG6L718H/GdgPPCj+I29jlzmhEREZHDkdJ67u28GNmetW5d2ewXQ4w1UkaG2accRGrbsp/W9diaNrWL1khkAPdZdM2fykOx7MPaTi+9t2s2jv3qb73z+FH++ZjPLF0zh7mvOL8pYpDj0CVUJxqYdR1jz5G7aT3UCcOS9dlb/4+tgcKrTU+vWPLkboKDB29u+B2M/ufjept08/MpbqeVO99SyAv6TQxcOk2A0bNmfCtekU12eCvak9lOdNGzZP+j7Hoz95OLRX709oPUSJoW7BKP1vfZBaXsm/RV6P7no7OOzK32tlzAp3CUYk8ZWDUrbM+mv0PvJRaKPTyv3tV7CpHCXYKxeMoOqYYmMdcMqjGGJzFCrGpZIvdE6mPsejP3kYvmCKQNaL2HSG6oSjOQbl8U4W6avfRfjbJnkm6bJOfaEmc6W+QRSuEtQrpkzuddAHYqQ7WvfxXD3Nedz9zXn09TUxP+7qb7Yw5Ei0LSMiEiAFO4iIgFSuIuIBEjhLiISIIW7iEiAFO4iIgFSuIuIBEjhLiISIIW7iEiAFO4iIgFSuIuIBEjhLiISIIW7iEiAFO4iIgFSuIuIBEjhLiISIIW7iEiAFO4iIgFSuIuIBEjhLiISIIW7iEiAFO4iIgFSuIuIBEjhLiISIIW7iEiAFO4iIgFSuIuIBEjhLiISoJzC3cyWmtl+MztkZnf0cr+Z2d/G9+8ys7mFH6qIiOSq33A3swRwH3AFcB6w3MzOy2p2BTA9/lkJ3F/gcYqIyADkcuReBxxy9zfd/WOgEbg6q83VwI898gow1swmFnisIiKSo8oc2kwG3k5bbgEW5NBmMvDb9EZmtpLoyB6gzcz2D2i03c4BjuW5balRLaUplFpCqQNUS9Jnc2mUS7hbL+s8jza4+3pgfQ77PP2AzLa5e+2Z9lMKVEtpCqWWUOoA1TJQuUzLtABT0pZrgNY82oiIyBDJJdybgelmNs3MhgM3AM9ktXkGuCU+a+ZC4H13/212RyIiMjT6nZZx9w4zWwVsARLABnffY2a3xfevAzYDXwYOAR8Ctw7ekIECTO2UENVSmkKpJZQ6QLUMiLn3mBoXEZEyp0+oiogESOEuIhKgkg93MxthZq+a2etmtsfMvh+vH2dmz5nZwfjfTxV7rLkws4SZ7TCzn8bL5VrHYTPbbWY7zWxbvK5caxlrZk+Y2T+b2T4zu6gcazGzGfHjkfw5bmbfKdNa/kP8fH/DzB6Nc6Ds6gAws7+M69hjZt+J1w16LSUf7sBHwKXuPguYDSyNz8i5A3jB3acDL8TL5eAvgX1py+VaB8Aid5+ddr5uudbyA+Bn7j4TmEX0+JRdLe6+P348ZgPziE5ueIoyq8XMJgPfBmrd/fNEJ3LcQJnVAWBmnwf+HdEn/WcBXzGz6QxFLe5eNj/ASOA1ok/I7gcmxusnAvuLPb4cxl8TP5CXAj+N15VdHfFYDwPnZK0ru1qAs4FfE59cUM61ZI1/MfBSOdZC9yfexxGd0ffTuJ6yqiMe5/XAg2nLfwX8p6GopRyO3JNTGTuBo8Bz7v4rYILH59LH/366mGPM0VqiB7YrbV051gHRJ5C3mtn2+LISUJ61fA54B/j7eLrsQTMbRXnWku4G4NH4dlnV4u5HgHuBt4guYfK+u2+lzOqIvQFcYmbjzWwk0SnjUxiCWsoi3N2906M/NWuAuvhPnbJiZl8Bjrr79mKPpUAWuvtcoiuCftPMLin2gPJUCcwF7nf3OcAHlMGf+6cTf9jwKuAfiz2WfMTzz1cD04BJwCgz+7Pijio/7r4P+BvgOeBnwOtAx1DsuyzCPcnd3wOagKXA75NXnoz/PVrEoeViIXCVmR0murLmpWb2MOVXBwDu3hr/e5RoXreO8qylBWiJ/xoEeIIo7MuxlqQrgNfc/ffxcrnVchnwa3d/x91PAU8CF1N+dQDg7g+5+1x3vwT4A3CQIail5MPdzM41s7Hx7SqiB/6fiS558LW42deAp4szwty4+xp3r3H3qUR/Mv8fd/8zyqwOADMbZWajk7eJ5kPfoAxrcfffAW+b2Yx41ZeAvZRhLWmW0z0lA+VXy1vAhWY20syM6DHZR/nVAYCZfTr+9zPAnxI9NoNeS8l/QtXMLgD+gegd8wrgcXf/azMbDzwOfIboP8P17v6H4o00d2ZWD9zu7l8pxzrM7HNER+sQTWs84u73lGMtAGY2G3gQGA68SXT5jArKs5aRRG9Gfs7d34/Xld3jEp/yvIxoCmMHsAKopszqADCzfwLGA6eA/+juLwzFY1Ly4S4iIgNX8tMyIiIycAp3EZEAKdxFRAKkcBcRCZDCXUQkQLl8QbbIkIpPE3shXvwjoJPoEgEAde7+cVEGdhpm9m+BzfF58yJFp1MhpaSZ2V1Am7vfWwJjSbh7Zx/3/RJY5e47B9BfpbsPyUfR5ZNH0zJSVszsaxZd33+nmf3IzCrMrNLM3jOzBjN7zcy2mNkCM/uFmb1pZl+Ot11hZk/F9+83s+/l2O/dZvYq0XWNvm9mzfH1uddZZBnR5agfi7cfbmYtaZ+svtDMno9v321mD5jZc0QXK6s0s/8e73uXma0Y+t+qhEjhLmUjvmDctcDF8YXkKoku5QAwBtgaX8zsY+Auoo+tXw/8dVo3dfE2c4EbzWx2Dv2+5u517v4y8AN3nw+cH9+31N0fA3YCyzy6nnp/00ZzgCvd/WZgJdEF5eqA+UQXYftMPr8fkXSac5dychlRAG6LLjlCFdFH7QHa3f25+PZuosvEdpjZbmBqWh9b3P1fAMxsE/AFoudBX/1+TPelFgC+ZGargRHAOcB24H8PsI6n3f1kfHsx8K/MLP3FZDrRR9JF8qZwl3JiwAZ3/6uMlWaVRCGc1EX0DV7J2+n/z7PfZPJ++m33+I2p+Lot/wOY6+5HzOxuopDvTQfdfxlnt/kgq6a/cPcXECkgTctIOXke+KqZnQPRWTV5TGEstug7U0cSXTP8pQH0W0X0YnEsvirmv0m77wQwOm35MNFX3ZHVLtsW4C/iF5Lk96BWDbAmkR505C5lw913x1cLfN7MKoiusncb0DqAbn4JPAL8MfCT5NktufTr7u+a2T8QXd74N8Cv0u7+e+BBM2snmte/C/g7M/sd8OppxvMA0ZUBd8ZTQkeJXnREzohOhZRPjPhMlM+7+3eKPRaRwaZpGRGRAOnIXUQkQDpyFxEJkMJdRCRACncRkQAp3EVEAqRwFxEJ0P8HfLcy7/zjy3oAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
......@@ -705,7 +710,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.3"
"version": "3.6.4"
}
},
"nbformat": 4,
......
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Analyse du risque de défaillance des joints toriques de la navette Challenger"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Le 27 Janvier 1986, veille du décollage de la navette *Challenger*, eu\n",
"lieu une télé-conférence de trois heures entre les ingénieurs de la\n",
"Morton Thiokol (constructeur d'un des moteurs) et de la NASA. La\n",
"discussion portait principalement sur les conséquences de la\n",
"température prévue au moment du décollage de 31°F (juste en dessous de\n",
"0°C) sur le succès du vol et en particulier sur la performance des\n",
"joints toriques utilisés dans les moteurs. En effet, aucun test\n",
"n'avait été effectué à cette température.\n",
"\n",
"L'étude qui suit reprend donc une partie des analyses effectuées cette\n",
"nuit là et dont l'objectif était d'évaluer l'influence potentielle de\n",
"la température et de la pression à laquelle sont soumis les joints\n",
"toriques sur leur probabilité de dysfonctionnement. Pour cela, nous\n",
"disposons des résultats des expériences réalisées par les ingénieurs\n",
"de la NASA durant les 6 années précédant le lancement de la navette\n",
"Challenger.\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Chargement des données\n",
"Nous commençons donc par charger ces données:"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Date</th>\n",
" <th>Count</th>\n",
" <th>Temperature</th>\n",
" <th>Pressure</th>\n",
" <th>Malfunction</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>4/12/81</td>\n",
" <td>6</td>\n",
" <td>66</td>\n",
" <td>50</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>11/12/81</td>\n",
" <td>6</td>\n",
" <td>70</td>\n",
" <td>50</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>3/22/82</td>\n",
" <td>6</td>\n",
" <td>69</td>\n",
" <td>50</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>11/11/82</td>\n",
" <td>6</td>\n",
" <td>68</td>\n",
" <td>50</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>4/04/83</td>\n",
" <td>6</td>\n",
" <td>67</td>\n",
" <td>50</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>6/18/82</td>\n",
" <td>6</td>\n",
" <td>72</td>\n",
" <td>50</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6</th>\n",
" <td>8/30/83</td>\n",
" <td>6</td>\n",
" <td>73</td>\n",
" <td>100</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7</th>\n",
" <td>11/28/83</td>\n",
" <td>6</td>\n",
" <td>70</td>\n",
" <td>100</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8</th>\n",
" <td>2/03/84</td>\n",
" <td>6</td>\n",
" <td>57</td>\n",
" <td>200</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9</th>\n",
" <td>4/06/84</td>\n",
" <td>6</td>\n",
" <td>63</td>\n",
" <td>200</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>10</th>\n",
" <td>8/30/84</td>\n",
" <td>6</td>\n",
" <td>70</td>\n",
" <td>200</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>11</th>\n",
" <td>10/05/84</td>\n",
" <td>6</td>\n",
" <td>78</td>\n",
" <td>200</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>12</th>\n",
" <td>11/08/84</td>\n",
" <td>6</td>\n",
" <td>67</td>\n",
" <td>200</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>13</th>\n",
" <td>1/24/85</td>\n",
" <td>6</td>\n",
" <td>53</td>\n",
" <td>200</td>\n",
" <td>2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>14</th>\n",
" <td>4/12/85</td>\n",
" <td>6</td>\n",
" <td>67</td>\n",
" <td>200</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>15</th>\n",
" <td>4/29/85</td>\n",
" <td>6</td>\n",
" <td>75</td>\n",
" <td>200</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>16</th>\n",
" <td>6/17/85</td>\n",
" <td>6</td>\n",
" <td>70</td>\n",
" <td>200</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>17</th>\n",
" <td>7/29/85</td>\n",
" <td>6</td>\n",
" <td>81</td>\n",
" <td>200</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>18</th>\n",
" <td>8/27/85</td>\n",
" <td>6</td>\n",
" <td>76</td>\n",
" <td>200</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>19</th>\n",
" <td>10/03/85</td>\n",
" <td>6</td>\n",
" <td>79</td>\n",
" <td>200</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>20</th>\n",
" <td>10/30/85</td>\n",
" <td>6</td>\n",
" <td>75</td>\n",
" <td>200</td>\n",
" <td>2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>21</th>\n",
" <td>11/26/85</td>\n",
" <td>6</td>\n",
" <td>76</td>\n",
" <td>200</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>22</th>\n",
" <td>1/12/86</td>\n",
" <td>6</td>\n",
" <td>58</td>\n",
" <td>200</td>\n",
" <td>1</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Date Count Temperature Pressure Malfunction\n",
"0 4/12/81 6 66 50 0\n",
"1 11/12/81 6 70 50 1\n",
"2 3/22/82 6 69 50 0\n",
"3 11/11/82 6 68 50 0\n",
"4 4/04/83 6 67 50 0\n",
"5 6/18/82 6 72 50 0\n",
"6 8/30/83 6 73 100 0\n",
"7 11/28/83 6 70 100 0\n",
"8 2/03/84 6 57 200 1\n",
"9 4/06/84 6 63 200 1\n",
"10 8/30/84 6 70 200 1\n",
"11 10/05/84 6 78 200 0\n",
"12 11/08/84 6 67 200 0\n",
"13 1/24/85 6 53 200 2\n",
"14 4/12/85 6 67 200 0\n",
"15 4/29/85 6 75 200 0\n",
"16 6/17/85 6 70 200 0\n",
"17 7/29/85 6 81 200 0\n",
"18 8/27/85 6 76 200 0\n",
"19 10/03/85 6 79 200 0\n",
"20 10/30/85 6 75 200 2\n",
"21 11/26/85 6 76 200 0\n",
"22 1/12/86 6 58 200 1"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import numpy as np\n",
"import pandas as pd\n",
"data = pd.read_csv(\"shuttle.csv\")\n",
"data"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Le jeu de données nous indique la date de l'essai, le nombre de joints\n",
"toriques mesurés (il y en a 6 sur le lançeur principal), la\n",
"température (en Farenheit) et la pression (en psi), et enfin le\n",
"nombre de dysfonctionnements relevés. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Inspection graphique des données\n",
"Les vols où aucun incident n'est relevé n'apportant aucun information\n",
"sur l'influence de la température ou de la pression sur les\n",
"dysfonctionnements, nous nous concentrons sur les expériences où au\n",
"moins un joint a été défectueux.\n"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Date</th>\n",
" <th>Count</th>\n",
" <th>Temperature</th>\n",
" <th>Pressure</th>\n",
" <th>Malfunction</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>11/12/81</td>\n",
" <td>6</td>\n",
" <td>70</td>\n",
" <td>50</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8</th>\n",
" <td>2/03/84</td>\n",
" <td>6</td>\n",
" <td>57</td>\n",
" <td>200</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9</th>\n",
" <td>4/06/84</td>\n",
" <td>6</td>\n",
" <td>63</td>\n",
" <td>200</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>10</th>\n",
" <td>8/30/84</td>\n",
" <td>6</td>\n",
" <td>70</td>\n",
" <td>200</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>13</th>\n",
" <td>1/24/85</td>\n",
" <td>6</td>\n",
" <td>53</td>\n",
" <td>200</td>\n",
" <td>2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>20</th>\n",
" <td>10/30/85</td>\n",
" <td>6</td>\n",
" <td>75</td>\n",
" <td>200</td>\n",
" <td>2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>22</th>\n",
" <td>1/12/86</td>\n",
" <td>6</td>\n",
" <td>58</td>\n",
" <td>200</td>\n",
" <td>1</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Date Count Temperature Pressure Malfunction\n",
"1 11/12/81 6 70 50 1\n",
"8 2/03/84 6 57 200 1\n",
"9 4/06/84 6 63 200 1\n",
"10 8/30/84 6 70 200 1\n",
"13 1/24/85 6 53 200 2\n",
"20 10/30/85 6 75 200 2\n",
"22 1/12/86 6 58 200 1"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data = data[data.Malfunction>0]\n",
"data"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Très bien, nous avons une variabilité de température importante mais\n",
"la pression est quasiment toujours égale à 200, ce qui devrait\n",
"simplifier l'analyse.\n",
"\n",
"Comment la fréquence d'échecs varie-t-elle avec la température ?\n"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEKCAYAAAD9xUlFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAFYRJREFUeJzt3XuQpXV95/H3Zy7AIBMhsJm4MxBBCFlKAXG4GEx2IokLbgmxiBHcDS5ZMqGE3TK7m8BariHGVEWM2WiJjiOLCqmERFEgu+MiJNUaExCQTIaLgcwiQjMGBFFoHObW3/3jnHlyprun5/TQzzlM9/tV1TXnufa3vz6cj8/l/E6qCkmSABYMuwBJ0kuHoSBJahgKkqSGoSBJahgKkqSGoSBJarQWCkmuSfJkkvt2szxJPppkY5INSU5qqxZJUn/aPFP4DHDmNMvPAo7p/qwGPtFiLZKkPrQWClX1VeB706xyDnBtddwBHJzkFW3VI0nas0VD/N3Lgcd6pke7874zccUkq+mcTbBkyZLXHX744QMp8MUaHx9nwQJv2/SyJ5PZk6nZl8leTE8eeuihp6rqX+xpvWGGQqaYN+WYG1W1FlgLsHLlyrr77rvbrGvWjIyMsGrVqmGX8ZJiTyazJ1OzL5O9mJ4k+XY/6w0zhkeB3v/LvwLYNKRaJEkMNxRuBi7oPoV0GvCDqpp06UiSNDitXT5K8qfAKuCwJKPAbwOLAapqDbAOeDOwEfghcGFbtUiS+tNaKFTV+XtYXsAlbf1+SdLMeWtfktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktRoNRSSnJnkwSQbk1w+xfKXJ/mLJH+f5P4kF7ZZjyRpeq2FQpKFwFXAWcBxwPlJjpuw2iXAA1V1ArAK+HCS/dqqSZI0vTbPFE4BNlbVw1W1FbgeOGfCOgUsTRLgIOB7wPYWa5IkTWNRi/teDjzWMz0KnDphnY8BNwObgKXA26tqfOKOkqwGVgMsW7aMkZGRNuqddWNjY/tMrYNiTyazJ1OzL5MNoidthkKmmFcTpv8NsB54I/Aq4NYkf11Vz+6yUdVaYC3AypUra9WqVbNfbQtGRkbYV2odFHsymT2Zmn2ZbBA9afPy0ShweM/0CjpnBL0uBL5QHRuBbwE/1WJNkqRptBkKdwHHJDmye/P4PDqXino9CpwBkGQZcCzwcIs1SZKm0drlo6ranuRS4BZgIXBNVd2f5OLu8jXA7wKfSXIvnctNl1XVU23VJEmaXpv3FKiqdcC6CfPW9LzeBLypzRokSf3zE82SpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqtBoKSc5M8mCSjUku3806q5KsT3J/kq+0WY8kaXqL+lkpyaur6r6Z7DjJQuAq4BeAUeCuJDdX1QM96xwMfBw4s6oeTfJjM/kdkqTZ1e+ZwpokdyZ5V/eNvB+nABur6uGq2gpcD5wzYZ13AF+oqkcBqurJPvctSWpBX2cKVfWGJMcAvwrcneRO4NNVdes0my0HHuuZHgVOnbDOTwKLk4wAS4GPVNW1E3eUZDWwGmDZsmWMjIz0U/bQjY2N7TO1Doo9mcyeTM2+TDaInvQVCgBV9Y9J3gvcDXwUeG2SAO+pqi9MsUmm2s0Uv/91wBnAEuD2JHdU1UMTfvdaYC3AypUra9WqVf2WPVQjIyPsK7UOij2ZzJ5Mzb5MNoie9HtP4XjgQuDfArcCb6mqe5L8S+B2YKpQGAUO75leAWyaYp2nqup54PkkXwVOAB5CkjRw/d5T+BhwD3BCVV1SVfcAVNUm4L272eYu4JgkRybZDzgPuHnCOjcBP5NkUZID6Vxe+uZM/whJ0uzo9/LRm4HNVbUDIMkC4ICq+mFVXTfVBlW1PcmlwC3AQuCaqro/ycXd5Wuq6ptJ/i+wARgHrp7pU06SpNnTbyjcBvw8MNadPhD4MvDT021UVeuAdRPmrZkw/SHgQ33WIUlqUb+Xjw6oqp2BQPf1ge2UJEkaln5D4fkkJ+2cSPI6YHM7JUmShqXfy0fvBj6XZOfTQ68A3t5OSZKkYen3w2t3Jfkp4Fg6nz/4h6ra1mplkqSB6/vDa8DJwCu727w2CVN9+liStO/q98Nr1wGvAtYDO7qzCzAUJGkO6fdMYSVwXFVNHKZCkjSH9Pv00X3Aj7dZiCRp+Po9UzgMeKA7OuqWnTOr6uxWqpIkDUW/oXBFm0VIkl4a+n0k9StJfgI4pqpu6w5et7Dd0iRJg9bXPYUkvwZ8Hvhkd9Zy4Ma2ipIkDUe/N5ovAU4HnoXOF+4Afp+yJM0x/YbClu73LAOQZBGTv0VNkrSP6zcUvpLkPcCSJL8AfA74i/bKkiQNQ7+hcDnwXeBe4NfpfEfC7r5xTZK0j+r36aNx4FPdH0nSHNXv2EffYop7CFV11KxXJEkampmMfbTTAcDbgB+d/XIkScPU1z2Fqnq65+fxqvoj4I0t1yZJGrB+Lx+d1DO5gM6Zw9JWKpIkDU2/l48+3PN6O/AI8MuzXo0kaaj6ffro59ouRJI0fP1ePvov0y2vqj+cnXIkScM0k6ePTgZu7k6/Bfgq8FgbRUmShmMmX7JzUlU9B5DkCuBzVXVRW4VJkgav32EujgC29kxvBV4569VIkoaq3zOF64A7k3yRzieb3wpc21pVkqSh6Pfpo99L8iXgZ7qzLqyqv2uvLEnSMPR7+QjgQODZqvoIMJrkyJZqkiQNSb9fx/nbwGXAf+/OWgz8cVtFSZKGo98zhbcCZwPPA1TVJhzmQpLmnH5DYWtVFd3hs5O8rL2SJEnD0m8o/HmSTwIHJ/k14Db8wh1JmnP6ffroD7rfzfwscCzwvqq6tdXKJEkDt8czhSQLk9xWVbdW1W9W1X/rNxCSnJnkwSQbk1w+zXonJ9mR5JdmUrwkaXbtMRSqagfwwyQvn8mOkywErgLOAo4Dzk9y3G7W+yBwy0z2L0maff1+ovkF4N4kt9J9Agmgqv7zNNucAmysqocBklwPnAM8MGG9/wTcQGfAPUnSEPUbCv+n+zMTy9l1FNVR4NTeFZIsp/O46xuZJhSSrAZWAyxbtoyRkZEZljIcY2Nj+0ytg2JPJrMnU7Mvkw2iJ9OGQpIjqurRqvrsXuw7U8yrCdN/BFxWVTuSqVbvblS1FlgLsHLlylq1atVelDN4IyMj7Cu1Doo9mcyeTM2+TDaInuzpnsKNO18kuWGG+x4FDu+ZXgFsmrDOSuD6JI8AvwR8PMkvzvD3SJJmyZ4uH/X+3/ejZrjvu4BjumMkPQ6cB7yjd4WqasZPSvIZ4H9X1Y1IkoZiT6FQu3m9R1W1PcmldJ4qWghcU1X3J7m4u3zNjCqVJLVuT6FwQpJn6ZwxLOm+pjtdVfUj021cVeuAdRPmTRkGVfUf+qpYktSaaUOhqhYOqhBJ0vDN5PsUJElznKEgSWoYCpKkhqEgSWrMq1B4emwLf//Y93l6bMuwS5GkGXl6bAubt+1o/f1r3oTCTesf5/QP/hX//uqvc/oH/4qb1z8+7JIkqS8737++9d3nW3//mheh8PTYFi67YQMvbBvnuS3beWHbOL91wwbPGCS95PW+f+2oav39a16Ewugzm1m8YNc/dfGCBYw+s3lIFUlSfwb9/jUvQmHFIUvYNj6+y7xt4+OsOGTJkCqSpP4M+v1rXoTCoQftz5XnHs8BixewdP9FHLB4AVeeezyHHrT/sEuTpGn1vn8tTFp//+r3S3b2eWefuJzTjz6M0Wc2s+KQJQaCpH3GzvevO2//Gn9z9htaff+aN6EAncQ1DCTtiw49aH+WLF7Y+nvYvLh8JEnqj6EgSWoYCpKkhqEgSWoYCpKkhqEgSWoYCpKkhqEgSWoYCpKkhqEgSWoYCpKkhqEgSWoYCpKkhqEgSWoYCpKkhqEgSWoYCpKkhqEgSWoYCpKkhqEgSWoYCpKkRquhkOTMJA8m2Zjk8imW/7skG7o/f5vkhDbrkSRNr7VQSLIQuAo4CzgOOD/JcRNW+xbwr6vqeOB3gbVt1SNJ2rM2zxROATZW1cNVtRW4Hjind4Wq+tuqeqY7eQewosV6JEl7sKjFfS8HHuuZHgVOnWb9/wh8aaoFSVYDqwGWLVvGyMjILJXYrrGxsX2m1kGxJ5PZk6nZl8kG0ZM2QyFTzKspV0x+jk4ovGGq5VW1lu6lpZUrV9aqVatmqcR2jYyMsK/UOij2ZDJ7MjX7MtkgetJmKIwCh/dMrwA2TVwpyfHA1cBZVfV0i/VIkvagzXsKdwHHJDkyyX7AecDNvSskOQL4AvArVfVQi7VIkvrQ2plCVW1PcilwC7AQuKaq7k9ycXf5GuB9wKHAx5MAbK+qlW3VJEmaXpuXj6iqdcC6CfPW9Ly+CLiozRrmi6fHtjD6zGZWHLKEQw/av/Xt5jJ7Mnwbn3iOZ364jY1PPMfRy5YOu5x5pdVQ0GDctP5xLrthA4sXLGDb+DhXnns8Z5+4vLXt5jJ7Mnzvu/Ferr3jUf7ra7bzG//zq1zw+iN4/zmvGXZZ84bDXOzjnh7bwmU3bOCFbeM8t2U7L2wb57du2MDTY1ta2W4usyfDt/GJ57j2jkd3mXft7Y+y8YnnhlTR/GMo7ONGn9nM4gW7/s+4eMECRp/Z3Mp2c5k9Gb71j31/RvM1+wyFfdyKQ5awbXx8l3nbxsdZcciSVraby+zJ8J14+MEzmq/ZZyjs4w49aH+uPPd4Dli8gKX7L+KAxQu48tzj93iDdG+3m8vsyfAdvWwpF7z+iF3mXfD6I7zZPEDeaJ4Dzj5xOacffdiMn5jZ2+3mMnsyfO8/5zVccNorufcbd3Dbb5xmIAyYoTBHHHrQ/nv1Bra3281l9mT4jl62lNEDFxsIQ+DlI0lSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDVaDYUkZyZ5MMnGJJdPsTxJPtpdviHJSW3WI0maXmuhkGQhcBVwFnAccH6S4yasdhZwTPdnNfCJtuqRJO1Zm2cKpwAbq+rhqtoKXA+cM2Gdc4Brq+MO4OAkr2ixJknSNBa1uO/lwGM906PAqX2ssxz4Tu9KSVbTOZMAGEvy4OyW2prDgKeGXcRLjD2ZzJ5Mzb5M9mJ68hP9rNRmKGSKebUX61BVa4G1s1HUICW5u6pWDruOlxJ7Mpk9mZp9mWwQPWnz8tEocHjP9Apg016sI0kakDZD4S7gmCRHJtkPOA+4ecI6NwMXdJ9COg34QVV9Z+KOJEmD0drlo6ranuRS4BZgIXBNVd2f5OLu8jXAOuDNwEbgh8CFbdUzJPvcJa8BsCeT2ZOp2ZfJWu9JqiZdwpckzVN+olmS1DAUJEkNQ2EWJXkkyb1J1ie5uzvviiSPd+etT/LmYdc5SEkOTvL5JP+Q5JtJXp/kR5PcmuQfu/8eMuw6B2k3PZm3x0mSY3v+7vVJnk3y7vl8nEzTk9aPE+8pzKIkjwArq+qpnnlXAGNV9QfDqmuYknwW+Ouqurr7FNqBwHuA71XV73fHxDqkqi4baqEDtJuevJt5fJzs1B0e53E6H3S9hHl8nOw0oScX0vJx4pmCWpPkR4CfBf4XQFVtrarv0xne5LPd1T4L/OJwKhy8aXqijjOA/1dV32YeHycT9PakdYbC7Crgy0m+0R2aY6dLu6PAXjOfToGBo4DvAp9O8ndJrk7yMmDZzs+jdP/9sWEWOWC76wnM3+Ok13nAn3Zfz+fjpFdvT6Dl48RQmF2nV9VJdEZ/vSTJz9IZ+fVVwIl0xnT68BDrG7RFwEnAJ6rqtcDzwKQh1OeZ3fVkPh8nAHQvpZ0NfG7YtbxUTNGT1o8TQ2EWVdWm7r9PAl8ETqmqJ6pqR1WNA5+iM3rsfDEKjFbV17vTn6fzhvjEztFwu/8+OaT6hmHKnszz42Sns4B7quqJ7vR8Pk522qUngzhODIVZkuRlSZbufA28CbhvwlDgbwXuG0Z9w1BV/wQ8luTY7qwzgAfoDG/yzu68dwI3DaG8odhdT+bzcdLjfHa9TDJvj5Meu/RkEMeJTx/NkiRH0Tk7gM4lgj+pqt9Lch2dU70CHgF+fT6N75TkROBqYD/gYTpPTywA/hw4AngUeFtVfW9oRQ7YbnryUeb3cXIgnWH0j6qqH3TnHcr8Pk6m6knr7yeGgiSp4eUjSVLDUJAkNQwFSVLDUJAkNQwFSVKjtW9ekwat+wjjX3YnfxzYQWdICeh8kHDrUAqbRpJfBdZ1P78gDZ2PpGpOeimNTptkYVXt2M2yrwGXVtX6GexvUVVtn7UCpR5ePtK8kOSdSe7sjkH/8SQLkixK8v0kH0pyT5Jbkpya5CtJHt45Vn2Si5J8sbv8wSTv7XO/H0hyJ3BKkt9JcleS+5KsScfb6XwQ6c+62++XZDTJwd19n5bktu7rDyT5ZJJb6QymtyjJH3Z/94YkFw2+q5qLDAXNeUleTWdIgJ+uqhPpXDY9r7v45cCXuwMZbgWuoDP0xNuA9/fs5pTuNicB70hyYh/7vaeqTqmq24GPVNXJwGu6y86sqj8D1gNvr6oT+7i89VrgLVX1K8Bq4MmqOgU4mc4AjEfsTX+kXt5T0Hzw83TeOO9OArCEzvABAJur6tbu63uBH1TV9iT3Aq/s2cctVfUMQJIbgTfQ+e9nd/vdyj8PewJwRpLfBA4ADgO+AXxphn/HTVX1Qvf1m4B/laQ3hI6hMxyEtNcMBc0HAa6pqv+xy8xkEZ03753GgS09r3v/+5h48632sN/N1b1h1x3D5mN0RkN9PMkH6ITDVLbzz2fwE9d5fsLf9K6q+kukWeTlI80HtwG/nOQw6DyltBeXWt6UzncrH0jnG8H+Zgb7XUInZJ7qjqR7bs+y54ClPdOPAK/rvu5db6JbgHd1A2jnd/oumeHfJE3imYLmvKq6N8nvALclWQBsAy4GNs1gN18D/oTOF5xct/NpoX72W1VPp/O9zPcB3wa+3rP408DVSTbTuW9xBfCpJP8E3DlNPZ+kM3ro+u6lqyfphJX0ovhIqrQH3Sd7Xl1V7x52LVLbvHwkSWp4piBJanimIElqGAqSpIahIElqGAqSpIahIElq/H/IxmFZztFAcQAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"%matplotlib inline\n",
"pd.set_option('mode.chained_assignment',None) # this removes a useless warning from pandas\n",
"import matplotlib.pyplot as plt\n",
"\n",
"data[\"Frequency\"]=data.Malfunction/data.Count\n",
"data.plot(x=\"Temperature\",y=\"Frequency\",kind=\"scatter\",ylim=[0,1])\n",
"plt.grid(True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"À première vue, ce n'est pas flagrant mais bon, essayons quand même\n",
"d'estimer l'impact de la température $t$ sur la probabilité de\n",
"dysfonctionnements d'un joint. \n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Estimation de l'influence de la température\n",
"\n",
"Supposons que chacun des 6 joints toriques est endommagé avec la même\n",
"probabilité et indépendamment des autres et que cette probabilité ne\n",
"dépend que de la température. Si on note $p(t)$ cette probabilité, le\n",
"nombre de joints $D$ dysfonctionnant lorsque l'on effectue le vol à\n",
"température $t$ suit une loi binomiale de paramètre $n=6$ et\n",
"$p=p(t)$. Pour relier $p(t)$ à $t$, on va donc effectuer une\n",
"régression logistique."
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<table class=\"simpletable\">\n",
"<caption>Generalized Linear Model Regression Results</caption>\n",
"<tr>\n",
" <th>Dep. Variable:</th> <td>Frequency</td> <th> No. Observations: </th> <td> 7</td> \n",
"</tr>\n",
"<tr>\n",
" <th>Model:</th> <td>GLM</td> <th> Df Residuals: </th> <td> 5</td> \n",
"</tr>\n",
"<tr>\n",
" <th>Model Family:</th> <td>Binomial</td> <th> Df Model: </th> <td> 1</td> \n",
"</tr>\n",
"<tr>\n",
" <th>Link Function:</th> <td>logit</td> <th> Scale: </th> <td> 1.0000</td> \n",
"</tr>\n",
"<tr>\n",
" <th>Method:</th> <td>IRLS</td> <th> Log-Likelihood: </th> <td> -2.5250</td> \n",
"</tr>\n",
"<tr>\n",
" <th>Date:</th> <td>Tue, 05 Sep 2023</td> <th> Deviance: </th> <td> 0.22231</td> \n",
"</tr>\n",
"<tr>\n",
" <th>Time:</th> <td>14:35:55</td> <th> Pearson chi2: </th> <td> 0.236</td> \n",
"</tr>\n",
"<tr>\n",
" <th>No. Iterations:</th> <td>4</td> <th> Covariance Type: </th> <td>nonrobust</td>\n",
"</tr>\n",
"</table>\n",
"<table class=\"simpletable\">\n",
"<tr>\n",
" <td></td> <th>coef</th> <th>std err</th> <th>z</th> <th>P>|z|</th> <th>[0.025</th> <th>0.975]</th> \n",
"</tr>\n",
"<tr>\n",
" <th>Intercept</th> <td> -1.3895</td> <td> 7.828</td> <td> -0.178</td> <td> 0.859</td> <td> -16.732</td> <td> 13.953</td>\n",
"</tr>\n",
"<tr>\n",
" <th>Temperature</th> <td> 0.0014</td> <td> 0.122</td> <td> 0.012</td> <td> 0.991</td> <td> -0.238</td> <td> 0.240</td>\n",
"</tr>\n",
"</table>"
],
"text/plain": [
"<class 'statsmodels.iolib.summary.Summary'>\n",
"\"\"\"\n",
" Generalized Linear Model Regression Results \n",
"==============================================================================\n",
"Dep. Variable: Frequency No. Observations: 7\n",
"Model: GLM Df Residuals: 5\n",
"Model Family: Binomial Df Model: 1\n",
"Link Function: logit Scale: 1.0000\n",
"Method: IRLS Log-Likelihood: -2.5250\n",
"Date: Tue, 05 Sep 2023 Deviance: 0.22231\n",
"Time: 14:35:55 Pearson chi2: 0.236\n",
"No. Iterations: 4 Covariance Type: nonrobust\n",
"===============================================================================\n",
" coef std err z P>|z| [0.025 0.975]\n",
"-------------------------------------------------------------------------------\n",
"Intercept -1.3895 7.828 -0.178 0.859 -16.732 13.953\n",
"Temperature 0.0014 0.122 0.012 0.991 -0.238 0.240\n",
"===============================================================================\n",
"\"\"\""
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import statsmodels.api as sm\n",
"\n",
"data[\"Success\"]=data.Count-data.Malfunction\n",
"data[\"Intercept\"]=1\n",
"\n",
"logmodel=sm.GLM(data['Frequency'], data[['Intercept','Temperature']], family=sm.families.Binomial(sm.families.links.logit)).fit()\n",
"\n",
"logmodel.summary()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"L'estimateur le plus probable du paramètre de température est 0.0014\n",
"et l'erreur standard de cet estimateur est de 0.122, autrement dit on\n",
"ne peut pas distinguer d'impact particulier et il faut prendre nos\n",
"estimations avec des pincettes.\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Estimation de la probabilité de dysfonctionnant des joints toriques\n",
"La température prévue le jour du décollage est de 31°F. Essayons\n",
"d'estimer la probabilité de dysfonctionnement des joints toriques à\n",
"cette température à partir du modèle que nous venons de construire:\n"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEKCAYAAADpfBXhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAGzdJREFUeJzt3X+UVOWd5/H3t6tBGhohoGGAJoHM4cA6UX41jUriNkYBc+KvWQ2io4k7LHEnJJPdIxs5J7OaWT1n57S7h0zWiIwyTOLR1nEVNcsG1E3HiauxQRAEhh9riDadBDGj0Noo3f3dP+6t6qrqbrq6qO6qevy8zulD3VvPfe7z7aI+dfupW7fM3RERkbBUFHsAIiJSeAp3EZEAKdxFRAKkcBcRCZDCXUQkQAp3EZEA9RvuZrbBzI6a2Rt93G9m9rdmdsjMdpnZ3MIPU0REBiKXI/eNwNLT3H8FMD3+WQncf+bDEhGRM9FvuLv7i8AfTtPkauDHHnkFGGtmEws1QBERGbjKAvQxGXg7bbklXvfb7IZmtpLo6J6qqqp5U6ZMyWuHXV1dVFSE8XaBailNodQSSh2gWpIOHDhwzN3P7a9dIcLdelnX6zUN3H09sB6gtrbWt23bltcOm5qaqK+vz2vbUqNaSlMotYRSB6iWJDP7TS7tCvEy2AKkH4LXAK0F6FdERPJUiHB/BrglPmvmQuB9d+8xJSMiIkOn32kZM3sUqAfOMbMW4E5gGIC7rwM2A18GDgEfArcO1mBFRCQ3/Ya7uy/v534HvlmwEYlIWTh16hQtLS2cPHlySPY3ZswY9u3bNyT7Gmy51DJixAhqamoYNmxYXvsoxBuqIvIJ1NLSwujRo5k6dSpmvZ1XUVgnTpxg9OjRg76fodBfLe7Ou+++S0tLC9OmTctrH2GcVyQiQ+7kyZOMHz9+SIL9k8bMGD9+/Bn9VaRwF5G8KdgHz5n+bhXuIiIB0py7iJStRCLB+eefn1retGkTU6dOLd6ASojCXUTKVlVVFTt37uzz/o6ODiorP5kxp2kZEQnKxo0buf7667nyyitZvHgxAA0NDcyfP58LLriAO++8M9X2nnvuYcaMGVx22WUsX76ce++9F4D6+nqSl0c5duxY6q+Bzs5OVq9enerrgQceALovJ3Ddddcxc+ZMbrrpJqKzxKG5uZmLL76YWbNmUVdXx4kTJ1iyZEnGi9LChQvZtWtXQX8Pn8yXNBEpqO8/u4e9rccL2ud5k87mziv/5LRt2tvbmT17NgDTpk3jqaeeAuDll19m165djBs3jq1bt3Lw4EFeffVV3J2rrrqKF198kVGjRtHY2MiOHTvo6Ohg7ty5zJs377T7e+ihhxgzZgzNzc189NFHLFy4MPUCsmPHDvbs2cOkSZNYuHAhL730EnV1dSxbtozHHnuM+fPnc/z4caqqqrjlllvYuHEja9eu5cCBA3z00UdccMEFBfitdVO4i0jZ6mta5vLLL2fcuHEAbN26la1btzJnzhwA2traOHjwICdOnODaa69l5MiRAFx11VX97m/r1q3s2rWLJ554AoD333+fgwcPMnz4cOrq6qipqQFg9uzZHD58mDFjxjBx4kTmz58PwNlnnw3Atddey8KFC2loaGDDhg18/etfP7NfRC8U7iJyxvo7wh5qo0aNSt12d9asWcM3vvGNjDZr167t83TDyspKurq6ADLONXd3fvjDH7JkyZKM9k1NTZx11lmp5UQiQUdHB+7e6z5GjhzJ5ZdfztNPP83jjz9OvlfIPR3NuYtI0JYsWcKGDRtoa2sD4MiRIxw9epRLLrmEp556ivb2dk6cOMGzzz6b2mbq1Kls374dIHWUnuzr/vvv59SpUwAcOHCADz74oM99z5w5k9bWVpqbm4Hok6kdHR0ArFixgm9/+9vMnz8/9VdGIenIXUSCtnjxYvbt28dFF10EQHV1NQ8//DBz585l2bJlzJ49m89+9rN88YtfTG1z++2389WvfpWf/OQnXHrppan1K1as4PDhw8ydOxd359xzz2XTpk197nv48OE89thjfOtb36K9vZ2qqiqef/55AObNm8fZZ5/NrbcO0rUW3b0oP/PmzfN8/fznP89721KjWkpTKLUMZh179+4dtL57c/z48UHt/8477/SGhoZB3UfS8ePH/ciRIz59+nTv7Ozss11vv2Ngm+eQsZqWEREZYo888ggLFizgnnvuGbSvDtS0jIgIcNdddw3Zvm688cYeb/AWmo7cRSRv7r1+XbIUwJn+bhXuIpKXESNG8O677yrgB4HH13MfMWJE3n1oWkZE8lJTU0NLSwvvvPPOkOzv5MmTZxR2pSSXWpLfxJQvhbuI5GXYsGF5f0tQPpqamlKfMi13Q1GLpmVERAKkcBcRCZDCXUQkQAp3EZEAKdxFRAKkcBcRCZDCXUQkQAp3EZEAKdxFRAKkcBcRCZDCXUQkQAp3EZEAKdxFRAKkcBcRCZDCXUQkQAp3EZEA5RTuZrbUzPab2SEzu6OX+8eY2bNm9rqZ7TGzWws/VBERyVW/4W5mCeA+4ArgPGC5mZ2X1eybwF53nwXUA//NzIYXeKwiIpKjXI7c64BD7v6mu38MNAJXZ7VxYLSZGVAN/AHoKOhIRUQkZ9bfN5eb2XXAUndfES/fDCxw91VpbUYDzwAzgdHAMnf/X730tRJYCTBhwoR5jY2NeQ26ra2N6urqvLYtNaqlNIVSSyh1gGpJWrRo0XZ3r+2vXS5fkG29rMt+RVgC7AQuBf4YeM7M/sndj2ds5L4eWA9QW1vr9fX1Oey+p6amJvLdttSoltIUSi2h1AGqZaBymZZpAaakLdcArVltbgWe9Mgh4NdER/EiIlIEuYR7MzDdzKbFb5LeQDQFk+4t4EsAZjYBmAG8WciBiohI7vqdlnH3DjNbBWwBEsAGd99jZrfF968D/guw0cx2E03jfNfdjw3iuEVE5DRymXPH3TcDm7PWrUu73QosLuzQREQkX/qEqohIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIByinczWypme03s0NmdkcfberNbKeZ7TGzXxR2mCIiMhCV/TUwswRwH3A50AI0m9kz7r43rc1Y4EfAUnd/y8w+PVgDFhGR/uVy5F4HHHL3N939Y6ARuDqrzY3Ak+7+FoC7Hy3sMEVEZCDM3U/fwOw6oiPyFfHyzcACd1+V1mYtMAz4E2A08AN3/3Evfa0EVgJMmDBhXmNjY16Dbmtro7q6Oq9tS41qKU2h1BJKHaBakhYtWrTd3Wv7a9fvtAxgvazLfkWoBOYBXwKqgJfN7BV3P5Cxkft6YD1AbW2t19fX57D7npqamsh321KjWkpTKLWEUgeoloHKJdxbgClpyzVAay9tjrn7B8AHZvYiMAs4gIiIDLlc5tybgelmNs3MhgM3AM9ktXka+KKZVZrZSGABsK+wQxURkVz1e+Tu7h1mtgrYAiSADe6+x8xui+9f5+77zOxnwC6gC3jQ3d8YzIGLiEjfcpmWwd03A5uz1q3LWm4AGgo3NBERyZc+oSoiEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIByinczWypme03s0Nmdsdp2s03s04zu65wQxQRkYHqN9zNLAHcB1wBnAcsN7Pz+mj3N8CWQg9SREQGJpcj9zrgkLu/6e4fA43A1b20+xbwP4GjBRyfiIjkwdz99A2iKZal7r4iXr4ZWODuq9LaTAYeAS4FHgJ+6u5P9NLXSmAlwIQJE+Y1NjbmNei2tjaqq6vz2rbUqJbSFEotodQBqiVp0aJF2929tr92lTn0Zb2sy35FWAt81907zXprHm/kvh5YD1BbW+v19fU57L6npqYm8t221KiW0hRKLaHUAaploHIJ9xZgStpyDdCa1aYWaIyD/Rzgy2bW4e6bCjJKEREZkFzCvRmYbmbTgCPADcCN6Q3cfVrytpltJJqWUbCLiBRJv+Hu7h1mtoroLJgEsMHd95jZbfH96wZ5jCIiMkC5HLnj7puBzVnreg11d//6mQ9LRETOhD6hKiISIIW7iEiAFO4iIgFSuIuIBEjhLiISoJzOlhEZLJt2HKFhy35a32tn0tgqVi+ZwTVzJhd7WJIjPX6lS+EuRbNpxxHWPLmb9lOdABx5r501T+4GUECUAT1+pU3TMlI0DVv2p4Ihqf1UJw1b9hdpRDIQevxKm8Jdiqb1vfYBrZfSosevtCncpWgmja0a0HopLXr8SpvCXYpm9ZIZVA1LZKyrGpZg9ZIZRRqRDIQev9KmN1SlaJJvuulsi/Kkx6+0KdylqK6ZM1lhUMb0+JUuTcuIiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgPQdqiKSoavL6XSns8txhy6Plru6onVdyXVdTpdHbTq7utt0xcvpbaKf7vVdXaS173ubzi5Sbfa9dYq3X/lNarm7PXGfcT/ueHx/97hJG0e0nN0muW16ne6Zv4vM9k6nkzEeT+/D02qNl5P7rJ8E9fWD+zgq3KVkZD8hkqHicRBET55kG9KehJlP8vQnWXKb04ZH6knXHQxvHDnFse0tWWPKDLfsfWYHTPc2PYOlOxy6t+m+Py18soIlo413B1SX9+yz050PPzzJWS+/EPeT2Wdv++3yYv8v6MfeN3JqVmFQYUZFhZEwi5YrjES8bPG6RIVRYfH6CsMMEvFytH3cT2pdtDy8siJubyTifsBIVGT22b0tGcuf+uh3g/t7IsdwN7OlwA+ABPCgu//XrPtvAr4bL7YB/97dXy/kQAdD8kmf+YSnO0RSr7ZpbdJDp7cnd3/bpx21uDu7ftfB8ddb+36SZh0Z9NwHWUcSWUHQ1d1PakwZYdMzJLt6CZLMcfUMlU532to+ZETzz+Px9AzAjPBLO5JJLpec3fn9F06GQPTETwuF7Cd7HDLpwVIRbxMFUWawGFEflRUVnFVpcX+k2ifDKn2/R3//eyZNPKc76LL67G2/6X2mB1oqsNLWRTWQ6is7BLtDMnus3WNJtkn1k94mDthEhfHKyy/zhYULM+usyBpDfNvMCvt/ocCamo4N+j76DXczSwD3AZcDLUCzmT3j7nvTmv0a+Nfu/i9mdgWwHlgwGAP+xYF3+N4vP6TqtV9kBFnGEVp6qPU4ius+qvJSyZOdO864i+wndnqYdB8xdD+Zsp8MmUcZWdvHbXo7WrG0J+CxinYm/tHYVD+ZT0LSjpjiJ3bqqCrtyCrtiZ1ZU+YTurfwSMT9ZuwjOzxS9VtakKSHV7T9tldf5eKLLszpd5PcPjn2UtLU1ER9/axiD6MgPjWignNHn1XsYZSNXI7c64BD7v4mgJk1AlcDqXB39/+b1v4VoKaQg0xXfVaCCaMqmPDp6h5BlgqKrCd1X0FD9vanOUrp7jvz6Cc9ELqDI3P/GUdyWcG0fds2Llwwv8f22WPv3nd32Gb3XWxRkMwp9jAK4u1RFUwZN7LYwxDJm3k/h69mdh2w1N1XxMs3AwvcfVUf7W8HZibbZ923ElgJMGHChHmNjY15DbqtrY3q6uq8ti01qqU0hVJLKHWAaklatGjRdnev7a9dLkfuvR0S9vqKYGaLgD8HvtDb/e6+nmjKhtraWq/P8+3i6Agxv21LjWopTaHUEkodoFoGKpdwbwGmpC3XAK3ZjczsAuBB4Ap3f7cwwxMRkXzk8iGmZmC6mU0zs+HADcAz6Q3M7DPAk8DN7n6g8MMUEZGB6PfI3d07zGwVsIXoVMgN7r7HzG6L718H/GdgPPCj+I29jlzmhEREZHDkdJ67u28GNmetW5d2ewXQ4w1UkaG2accRGrbsp/W9diaNrWL1khkAPdZdM2fykOx7MPaTi+9t2s2jv3qb73z+FH++ZjPLF0zh7mvOL8pYpDj0CVUJxqYdR1jz5G7aT3UCcOS9dlb/4+tgcKrTU+vWPLkboKDB29u+B2M/ufjept08/MpbqeVO99SyAv6TQxcOk2A0bNmfCtekU12eCvak9lOdNGzZP+j7Hoz95OLRX709oPUSJoW7BKP1vfZBaXsm/RV6P7no7OOzK32tlzAp3CUYk8ZWDUrbM+mv0PvJRaKPTyv3tV7CpHCXYKxeMoOqYYmMdcMqjGGJzFCrGpZIvdE6mPsejP3kYvmCKQNaL2HSG6oSjOQbl8U4W6avfRfjbJnkm6bJOfaEmc6W+QRSuEtQrpkzuddAHYqQ7WvfxXD3Nedz9zXn09TUxP+7qb7Yw5Ei0LSMiEiAFO4iIgFSuIuIBEjhLiISIIW7iEiAFO4iIgFSuIuIBEjhLiISIIW7iEiAFO4iIgFSuIuIBEjhLiISIIW7iEiAFO4iIgFSuIuIBEjhLiISIIW7iEiAFO4iIgFSuIuIBEjhLiISIIW7iEiAFO4iIgFSuIuIBEjhLiISIIW7iEiAFO4iIgFSuIuIBEjhLiISoJzC3cyWmtl+MztkZnf0cr+Z2d/G9+8ys7mFH6qIiOSq33A3swRwH3AFcB6w3MzOy2p2BTA9/lkJ3F/gcYqIyADkcuReBxxy9zfd/WOgEbg6q83VwI898gow1swmFnisIiKSo8oc2kwG3k5bbgEW5NBmMvDb9EZmtpLoyB6gzcz2D2i03c4BjuW5balRLaUplFpCqQNUS9Jnc2mUS7hbL+s8jza4+3pgfQ77PP2AzLa5e+2Z9lMKVEtpCqWWUOoA1TJQuUzLtABT0pZrgNY82oiIyBDJJdybgelmNs3MhgM3AM9ktXkGuCU+a+ZC4H13/212RyIiMjT6nZZx9w4zWwVsARLABnffY2a3xfevAzYDXwYOAR8Ctw7ekIECTO2UENVSmkKpJZQ6QLUMiLn3mBoXEZEyp0+oiogESOEuIhKgkg93MxthZq+a2etmtsfMvh+vH2dmz5nZwfjfTxV7rLkws4SZ7TCzn8bL5VrHYTPbbWY7zWxbvK5caxlrZk+Y2T+b2T4zu6gcazGzGfHjkfw5bmbfKdNa/kP8fH/DzB6Nc6Ds6gAws7+M69hjZt+J1w16LSUf7sBHwKXuPguYDSyNz8i5A3jB3acDL8TL5eAvgX1py+VaB8Aid5+ddr5uudbyA+Bn7j4TmEX0+JRdLe6+P348ZgPziE5ueIoyq8XMJgPfBmrd/fNEJ3LcQJnVAWBmnwf+HdEn/WcBXzGz6QxFLe5eNj/ASOA1ok/I7gcmxusnAvuLPb4cxl8TP5CXAj+N15VdHfFYDwPnZK0ru1qAs4FfE59cUM61ZI1/MfBSOdZC9yfexxGd0ffTuJ6yqiMe5/XAg2nLfwX8p6GopRyO3JNTGTuBo8Bz7v4rYILH59LH/366mGPM0VqiB7YrbV051gHRJ5C3mtn2+LISUJ61fA54B/j7eLrsQTMbRXnWku4G4NH4dlnV4u5HgHuBt4guYfK+u2+lzOqIvQFcYmbjzWwk0SnjUxiCWsoi3N2906M/NWuAuvhPnbJiZl8Bjrr79mKPpUAWuvtcoiuCftPMLin2gPJUCcwF7nf3OcAHlMGf+6cTf9jwKuAfiz2WfMTzz1cD04BJwCgz+7Pijio/7r4P+BvgOeBnwOtAx1DsuyzCPcnd3wOagKXA75NXnoz/PVrEoeViIXCVmR0murLmpWb2MOVXBwDu3hr/e5RoXreO8qylBWiJ/xoEeIIo7MuxlqQrgNfc/ffxcrnVchnwa3d/x91PAU8CF1N+dQDg7g+5+1x3vwT4A3CQIail5MPdzM41s7Hx7SqiB/6fiS558LW42deAp4szwty4+xp3r3H3qUR/Mv8fd/8zyqwOADMbZWajk7eJ5kPfoAxrcfffAW+b2Yx41ZeAvZRhLWmW0z0lA+VXy1vAhWY20syM6DHZR/nVAYCZfTr+9zPAnxI9NoNeS8l/QtXMLgD+gegd8wrgcXf/azMbDzwOfIboP8P17v6H4o00d2ZWD9zu7l8pxzrM7HNER+sQTWs84u73lGMtAGY2G3gQGA68SXT5jArKs5aRRG9Gfs7d34/Xld3jEp/yvIxoCmMHsAKopszqADCzfwLGA6eA/+juLwzFY1Ly4S4iIgNX8tMyIiIycAp3EZEAKdxFRAKkcBcRCZDCXUQkQLl8QbbIkIpPE3shXvwjoJPoEgEAde7+cVEGdhpm9m+BzfF58yJFp1MhpaSZ2V1Am7vfWwJjSbh7Zx/3/RJY5e47B9BfpbsPyUfR5ZNH0zJSVszsaxZd33+nmf3IzCrMrNLM3jOzBjN7zcy2mNkCM/uFmb1pZl+Ot11hZk/F9+83s+/l2O/dZvYq0XWNvm9mzfH1uddZZBnR5agfi7cfbmYtaZ+svtDMno9v321mD5jZc0QXK6s0s/8e73uXma0Y+t+qhEjhLmUjvmDctcDF8YXkKoku5QAwBtgaX8zsY+Auoo+tXw/8dVo3dfE2c4EbzWx2Dv2+5u517v4y8AN3nw+cH9+31N0fA3YCyzy6nnp/00ZzgCvd/WZgJdEF5eqA+UQXYftMPr8fkXSac5dychlRAG6LLjlCFdFH7QHa3f25+PZuosvEdpjZbmBqWh9b3P1fAMxsE/AFoudBX/1+TPelFgC+ZGargRHAOcB24H8PsI6n3f1kfHsx8K/MLP3FZDrRR9JF8qZwl3JiwAZ3/6uMlWaVRCGc1EX0DV7J2+n/z7PfZPJ++m33+I2p+Lot/wOY6+5HzOxuopDvTQfdfxlnt/kgq6a/cPcXECkgTctIOXke+KqZnQPRWTV5TGEstug7U0cSXTP8pQH0W0X0YnEsvirmv0m77wQwOm35MNFX3ZHVLtsW4C/iF5Lk96BWDbAmkR505C5lw913x1cLfN7MKoiusncb0DqAbn4JPAL8MfCT5NktufTr7u+a2T8QXd74N8Cv0u7+e+BBM2snmte/C/g7M/sd8OppxvMA0ZUBd8ZTQkeJXnREzohOhZRPjPhMlM+7+3eKPRaRwaZpGRGRAOnIXUQkQDpyFxEJkMJdRCRACncRkQAp3EVEAqRwFxEJ0P8HfLcy7/zjy3oAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"%matplotlib inline\n",
"data_pred = pd.DataFrame({'Temperature': np.linspace(start=30, stop=90, num=121), 'Intercept': 1})\n",
"data_pred['Frequency'] = logmodel.predict(data_pred[['Intercept','Temperature']])\n",
"data_pred.plot(x=\"Temperature\",y=\"Frequency\",kind=\"line\",ylim=[0,1])\n",
"plt.scatter(x=data[\"Temperature\"],y=data[\"Frequency\"])\n",
"plt.grid(True)"
]
},
{
"cell_type": "markdown",
"metadata": {
"hideCode": false,
"hidePrompt": false,
"scrolled": true
},
"source": [
"Comme on pouvait s'attendre au vu des données initiales, la\n",
"température n'a pas d'impact notable sur la probabilité d'échec des\n",
"joints toriques. Elle sera d'environ 0.2, comme dans les essais\n",
"précédents où nous il y a eu défaillance d'au moins un joint. Revenons\n",
"à l'ensemble des données initiales pour estimer la probabilité de\n",
"défaillance d'un joint:\n"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.06521739130434782\n"
]
}
],
"source": [
"data = pd.read_csv(\"shuttle.csv\")\n",
"print(np.sum(data.Malfunction)/np.sum(data.Count))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Cette probabilité est donc d'environ $p=0.065$, sachant qu'il existe\n",
"un joint primaire un joint secondaire sur chacune des trois parties du\n",
"lançeur, la probabilité de défaillance des deux joints d'un lançeur\n",
"est de $p^2 \\approx 0.00425$. La probabilité de défaillance d'un des\n",
"lançeur est donc de $1-(1-p^2)^3 \\approx 1.2%$. Ça serait vraiment\n",
"pas de chance... Tout est sous contrôle, le décollage peut donc avoir\n",
"lieu demain comme prévu.\n",
"\n",
"Seulement, le lendemain, la navette Challenger explosera et emportera\n",
"avec elle ses sept membres d'équipages. L'opinion publique est\n",
"fortement touchée et lors de l'enquête qui suivra, la fiabilité des\n",
"joints toriques sera directement mise en cause. Au delà des problèmes\n",
"de communication interne à la NASA qui sont pour beaucoup dans ce\n",
"fiasco, l'analyse précédente comporte (au moins) un petit\n",
"problème... Saurez-vous le trouver ? Vous êtes libre de modifier cette\n",
"analyse et de regarder ce jeu de données sous tous les angles afin\n",
"d'expliquer ce qui ne va pas."
]
}
],
"metadata": {
"celltoolbar": "Hide code",
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
This source diff could not be displayed because it is too large. You can view the blob instead.
......@@ -9,7 +9,7 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
......@@ -28,10 +28,8 @@
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"data_url = \"http://www.sentiweb.fr/datasets/incidence-PAY-3.csv\""
......@@ -61,12 +59,1057 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 3,
"metadata": {},
"outputs": [],
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"True\n"
]
},
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>0</th>\n",
" <th>202334</th>\n",
" <th>3</th>\n",
" <th>30119</th>\n",
" <th>23068.0</th>\n",
" <th>37170.0</th>\n",
" <th>45</th>\n",
" <th>34.0</th>\n",
" <th>56.0</th>\n",
" <th>FR</th>\n",
" <th>France</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>1</td>\n",
" <td>202333</td>\n",
" <td>3</td>\n",
" <td>19344</td>\n",
" <td>13318.0</td>\n",
" <td>25370.0</td>\n",
" <td>29</td>\n",
" <td>20.0</td>\n",
" <td>38.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>2</td>\n",
" <td>202332</td>\n",
" <td>3</td>\n",
" <td>14661</td>\n",
" <td>10302.0</td>\n",
" <td>19020.0</td>\n",
" <td>22</td>\n",
" <td>15.0</td>\n",
" <td>29.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>3</td>\n",
" <td>202331</td>\n",
" <td>3</td>\n",
" <td>15286</td>\n",
" <td>10705.0</td>\n",
" <td>19867.0</td>\n",
" <td>23</td>\n",
" <td>16.0</td>\n",
" <td>30.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>4</td>\n",
" <td>202330</td>\n",
" <td>3</td>\n",
" <td>13205</td>\n",
" <td>8647.0</td>\n",
" <td>17763.0</td>\n",
" <td>20</td>\n",
" <td>13.0</td>\n",
" <td>27.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>5</td>\n",
" <td>202329</td>\n",
" <td>3</td>\n",
" <td>11122</td>\n",
" <td>7113.0</td>\n",
" <td>15131.0</td>\n",
" <td>17</td>\n",
" <td>11.0</td>\n",
" <td>23.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>6</td>\n",
" <td>202328</td>\n",
" <td>3</td>\n",
" <td>9179</td>\n",
" <td>5703.0</td>\n",
" <td>12655.0</td>\n",
" <td>14</td>\n",
" <td>9.0</td>\n",
" <td>19.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6</th>\n",
" <td>7</td>\n",
" <td>202327</td>\n",
" <td>3</td>\n",
" <td>8999</td>\n",
" <td>5763.0</td>\n",
" <td>12235.0</td>\n",
" <td>14</td>\n",
" <td>9.0</td>\n",
" <td>19.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7</th>\n",
" <td>8</td>\n",
" <td>202326</td>\n",
" <td>3</td>\n",
" <td>9023</td>\n",
" <td>5934.0</td>\n",
" <td>12112.0</td>\n",
" <td>14</td>\n",
" <td>9.0</td>\n",
" <td>19.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8</th>\n",
" <td>9</td>\n",
" <td>202325</td>\n",
" <td>3</td>\n",
" <td>10090</td>\n",
" <td>6739.0</td>\n",
" <td>13441.0</td>\n",
" <td>15</td>\n",
" <td>10.0</td>\n",
" <td>20.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9</th>\n",
" <td>10</td>\n",
" <td>202324</td>\n",
" <td>3</td>\n",
" <td>11308</td>\n",
" <td>7639.0</td>\n",
" <td>14977.0</td>\n",
" <td>17</td>\n",
" <td>11.0</td>\n",
" <td>23.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>10</th>\n",
" <td>11</td>\n",
" <td>202323</td>\n",
" <td>3</td>\n",
" <td>14300</td>\n",
" <td>10661.0</td>\n",
" <td>17939.0</td>\n",
" <td>22</td>\n",
" <td>17.0</td>\n",
" <td>27.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>11</th>\n",
" <td>12</td>\n",
" <td>202322</td>\n",
" <td>3</td>\n",
" <td>18303</td>\n",
" <td>13822.0</td>\n",
" <td>22784.0</td>\n",
" <td>28</td>\n",
" <td>21.0</td>\n",
" <td>35.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>12</th>\n",
" <td>13</td>\n",
" <td>202321</td>\n",
" <td>3</td>\n",
" <td>16460</td>\n",
" <td>12188.0</td>\n",
" <td>20732.0</td>\n",
" <td>25</td>\n",
" <td>19.0</td>\n",
" <td>31.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>13</th>\n",
" <td>14</td>\n",
" <td>202320</td>\n",
" <td>3</td>\n",
" <td>16162</td>\n",
" <td>11963.0</td>\n",
" <td>20361.0</td>\n",
" <td>24</td>\n",
" <td>18.0</td>\n",
" <td>30.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>14</th>\n",
" <td>15</td>\n",
" <td>202319</td>\n",
" <td>3</td>\n",
" <td>16901</td>\n",
" <td>12577.0</td>\n",
" <td>21225.0</td>\n",
" <td>25</td>\n",
" <td>18.0</td>\n",
" <td>32.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>15</th>\n",
" <td>16</td>\n",
" <td>202318</td>\n",
" <td>3</td>\n",
" <td>19929</td>\n",
" <td>15402.0</td>\n",
" <td>24456.0</td>\n",
" <td>30</td>\n",
" <td>23.0</td>\n",
" <td>37.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>16</th>\n",
" <td>17</td>\n",
" <td>202317</td>\n",
" <td>3</td>\n",
" <td>27007</td>\n",
" <td>21779.0</td>\n",
" <td>32235.0</td>\n",
" <td>41</td>\n",
" <td>33.0</td>\n",
" <td>49.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>17</th>\n",
" <td>18</td>\n",
" <td>202316</td>\n",
" <td>3</td>\n",
" <td>27875</td>\n",
" <td>22767.0</td>\n",
" <td>32983.0</td>\n",
" <td>42</td>\n",
" <td>34.0</td>\n",
" <td>50.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>18</th>\n",
" <td>19</td>\n",
" <td>202315</td>\n",
" <td>3</td>\n",
" <td>37455</td>\n",
" <td>30993.0</td>\n",
" <td>43917.0</td>\n",
" <td>56</td>\n",
" <td>46.0</td>\n",
" <td>66.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>19</th>\n",
" <td>20</td>\n",
" <td>202314</td>\n",
" <td>3</td>\n",
" <td>48060</td>\n",
" <td>40671.0</td>\n",
" <td>55449.0</td>\n",
" <td>72</td>\n",
" <td>61.0</td>\n",
" <td>83.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>20</th>\n",
" <td>21</td>\n",
" <td>202313</td>\n",
" <td>3</td>\n",
" <td>64859</td>\n",
" <td>56800.0</td>\n",
" <td>72918.0</td>\n",
" <td>98</td>\n",
" <td>86.0</td>\n",
" <td>110.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>21</th>\n",
" <td>22</td>\n",
" <td>202312</td>\n",
" <td>3</td>\n",
" <td>72750</td>\n",
" <td>64499.0</td>\n",
" <td>81001.0</td>\n",
" <td>109</td>\n",
" <td>97.0</td>\n",
" <td>121.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>22</th>\n",
" <td>23</td>\n",
" <td>202311</td>\n",
" <td>3</td>\n",
" <td>74638</td>\n",
" <td>66420.0</td>\n",
" <td>82856.0</td>\n",
" <td>112</td>\n",
" <td>100.0</td>\n",
" <td>124.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>23</th>\n",
" <td>24</td>\n",
" <td>202310</td>\n",
" <td>3</td>\n",
" <td>76368</td>\n",
" <td>68243.0</td>\n",
" <td>84493.0</td>\n",
" <td>115</td>\n",
" <td>103.0</td>\n",
" <td>127.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>24</th>\n",
" <td>25</td>\n",
" <td>202309</td>\n",
" <td>3</td>\n",
" <td>62062</td>\n",
" <td>54778.0</td>\n",
" <td>69346.0</td>\n",
" <td>93</td>\n",
" <td>82.0</td>\n",
" <td>104.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>25</th>\n",
" <td>26</td>\n",
" <td>202308</td>\n",
" <td>3</td>\n",
" <td>76391</td>\n",
" <td>68065.0</td>\n",
" <td>84717.0</td>\n",
" <td>115</td>\n",
" <td>102.0</td>\n",
" <td>128.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>26</th>\n",
" <td>27</td>\n",
" <td>202307</td>\n",
" <td>3</td>\n",
" <td>89851</td>\n",
" <td>80397.0</td>\n",
" <td>99305.0</td>\n",
" <td>135</td>\n",
" <td>121.0</td>\n",
" <td>149.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>27</th>\n",
" <td>28</td>\n",
" <td>202306</td>\n",
" <td>3</td>\n",
" <td>97368</td>\n",
" <td>87636.0</td>\n",
" <td>107100.0</td>\n",
" <td>146</td>\n",
" <td>131.0</td>\n",
" <td>161.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>28</th>\n",
" <td>29</td>\n",
" <td>202305</td>\n",
" <td>3</td>\n",
" <td>95469</td>\n",
" <td>86268.0</td>\n",
" <td>104670.0</td>\n",
" <td>144</td>\n",
" <td>130.0</td>\n",
" <td>158.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>29</th>\n",
" <td>30</td>\n",
" <td>202304</td>\n",
" <td>3</td>\n",
" <td>74901</td>\n",
" <td>66916.0</td>\n",
" <td>82886.0</td>\n",
" <td>113</td>\n",
" <td>101.0</td>\n",
" <td>125.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1995</th>\n",
" <td>1996</td>\n",
" <td>198521</td>\n",
" <td>3</td>\n",
" <td>26096</td>\n",
" <td>19621.0</td>\n",
" <td>32571.0</td>\n",
" <td>47</td>\n",
" <td>35.0</td>\n",
" <td>59.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1996</th>\n",
" <td>1997</td>\n",
" <td>198520</td>\n",
" <td>3</td>\n",
" <td>27896</td>\n",
" <td>20885.0</td>\n",
" <td>34907.0</td>\n",
" <td>51</td>\n",
" <td>38.0</td>\n",
" <td>64.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1997</th>\n",
" <td>1998</td>\n",
" <td>198519</td>\n",
" <td>3</td>\n",
" <td>43154</td>\n",
" <td>32821.0</td>\n",
" <td>53487.0</td>\n",
" <td>78</td>\n",
" <td>59.0</td>\n",
" <td>97.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1998</th>\n",
" <td>1999</td>\n",
" <td>198518</td>\n",
" <td>3</td>\n",
" <td>40555</td>\n",
" <td>29935.0</td>\n",
" <td>51175.0</td>\n",
" <td>74</td>\n",
" <td>55.0</td>\n",
" <td>93.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1999</th>\n",
" <td>2000</td>\n",
" <td>198517</td>\n",
" <td>3</td>\n",
" <td>34053</td>\n",
" <td>24366.0</td>\n",
" <td>43740.0</td>\n",
" <td>62</td>\n",
" <td>44.0</td>\n",
" <td>80.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2000</th>\n",
" <td>2001</td>\n",
" <td>198516</td>\n",
" <td>3</td>\n",
" <td>50362</td>\n",
" <td>36451.0</td>\n",
" <td>64273.0</td>\n",
" <td>91</td>\n",
" <td>66.0</td>\n",
" <td>116.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2001</th>\n",
" <td>2002</td>\n",
" <td>198515</td>\n",
" <td>3</td>\n",
" <td>63881</td>\n",
" <td>45538.0</td>\n",
" <td>82224.0</td>\n",
" <td>116</td>\n",
" <td>83.0</td>\n",
" <td>149.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2002</th>\n",
" <td>2003</td>\n",
" <td>198514</td>\n",
" <td>3</td>\n",
" <td>134545</td>\n",
" <td>114400.0</td>\n",
" <td>154690.0</td>\n",
" <td>244</td>\n",
" <td>207.0</td>\n",
" <td>281.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2003</th>\n",
" <td>2004</td>\n",
" <td>198513</td>\n",
" <td>3</td>\n",
" <td>197206</td>\n",
" <td>176080.0</td>\n",
" <td>218332.0</td>\n",
" <td>357</td>\n",
" <td>319.0</td>\n",
" <td>395.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2004</th>\n",
" <td>2005</td>\n",
" <td>198512</td>\n",
" <td>3</td>\n",
" <td>245240</td>\n",
" <td>223304.0</td>\n",
" <td>267176.0</td>\n",
" <td>445</td>\n",
" <td>405.0</td>\n",
" <td>485.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2005</th>\n",
" <td>2006</td>\n",
" <td>198511</td>\n",
" <td>3</td>\n",
" <td>276205</td>\n",
" <td>252399.0</td>\n",
" <td>300011.0</td>\n",
" <td>501</td>\n",
" <td>458.0</td>\n",
" <td>544.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2006</th>\n",
" <td>2007</td>\n",
" <td>198510</td>\n",
" <td>3</td>\n",
" <td>353231</td>\n",
" <td>326279.0</td>\n",
" <td>380183.0</td>\n",
" <td>640</td>\n",
" <td>591.0</td>\n",
" <td>689.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2007</th>\n",
" <td>2008</td>\n",
" <td>198509</td>\n",
" <td>3</td>\n",
" <td>369895</td>\n",
" <td>341109.0</td>\n",
" <td>398681.0</td>\n",
" <td>670</td>\n",
" <td>618.0</td>\n",
" <td>722.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2008</th>\n",
" <td>2009</td>\n",
" <td>198508</td>\n",
" <td>3</td>\n",
" <td>389886</td>\n",
" <td>359529.0</td>\n",
" <td>420243.0</td>\n",
" <td>707</td>\n",
" <td>652.0</td>\n",
" <td>762.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2009</th>\n",
" <td>2010</td>\n",
" <td>198507</td>\n",
" <td>3</td>\n",
" <td>471852</td>\n",
" <td>432599.0</td>\n",
" <td>511105.0</td>\n",
" <td>855</td>\n",
" <td>784.0</td>\n",
" <td>926.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2010</th>\n",
" <td>2011</td>\n",
" <td>198506</td>\n",
" <td>3</td>\n",
" <td>565825</td>\n",
" <td>518011.0</td>\n",
" <td>613639.0</td>\n",
" <td>1026</td>\n",
" <td>939.0</td>\n",
" <td>1113.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2011</th>\n",
" <td>2012</td>\n",
" <td>198505</td>\n",
" <td>3</td>\n",
" <td>637302</td>\n",
" <td>592795.0</td>\n",
" <td>681809.0</td>\n",
" <td>1155</td>\n",
" <td>1074.0</td>\n",
" <td>1236.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2012</th>\n",
" <td>2013</td>\n",
" <td>198504</td>\n",
" <td>3</td>\n",
" <td>424937</td>\n",
" <td>390794.0</td>\n",
" <td>459080.0</td>\n",
" <td>770</td>\n",
" <td>708.0</td>\n",
" <td>832.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2013</th>\n",
" <td>2014</td>\n",
" <td>198503</td>\n",
" <td>3</td>\n",
" <td>213901</td>\n",
" <td>174689.0</td>\n",
" <td>253113.0</td>\n",
" <td>388</td>\n",
" <td>317.0</td>\n",
" <td>459.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2014</th>\n",
" <td>2015</td>\n",
" <td>198502</td>\n",
" <td>3</td>\n",
" <td>97586</td>\n",
" <td>80949.0</td>\n",
" <td>114223.0</td>\n",
" <td>177</td>\n",
" <td>147.0</td>\n",
" <td>207.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2015</th>\n",
" <td>2016</td>\n",
" <td>198501</td>\n",
" <td>3</td>\n",
" <td>85489</td>\n",
" <td>65918.0</td>\n",
" <td>105060.0</td>\n",
" <td>155</td>\n",
" <td>120.0</td>\n",
" <td>190.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2016</th>\n",
" <td>2017</td>\n",
" <td>198452</td>\n",
" <td>3</td>\n",
" <td>84830</td>\n",
" <td>60602.0</td>\n",
" <td>109058.0</td>\n",
" <td>154</td>\n",
" <td>110.0</td>\n",
" <td>198.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017</th>\n",
" <td>2018</td>\n",
" <td>198451</td>\n",
" <td>3</td>\n",
" <td>101726</td>\n",
" <td>80242.0</td>\n",
" <td>123210.0</td>\n",
" <td>185</td>\n",
" <td>146.0</td>\n",
" <td>224.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2018</th>\n",
" <td>2019</td>\n",
" <td>198450</td>\n",
" <td>3</td>\n",
" <td>123680</td>\n",
" <td>101401.0</td>\n",
" <td>145959.0</td>\n",
" <td>225</td>\n",
" <td>184.0</td>\n",
" <td>266.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2019</th>\n",
" <td>2020</td>\n",
" <td>198449</td>\n",
" <td>3</td>\n",
" <td>101073</td>\n",
" <td>81684.0</td>\n",
" <td>120462.0</td>\n",
" <td>184</td>\n",
" <td>149.0</td>\n",
" <td>219.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2020</th>\n",
" <td>2021</td>\n",
" <td>198448</td>\n",
" <td>3</td>\n",
" <td>78620</td>\n",
" <td>60634.0</td>\n",
" <td>96606.0</td>\n",
" <td>143</td>\n",
" <td>110.0</td>\n",
" <td>176.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2021</th>\n",
" <td>2022</td>\n",
" <td>198447</td>\n",
" <td>3</td>\n",
" <td>72029</td>\n",
" <td>54274.0</td>\n",
" <td>89784.0</td>\n",
" <td>131</td>\n",
" <td>99.0</td>\n",
" <td>163.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2022</th>\n",
" <td>2023</td>\n",
" <td>198446</td>\n",
" <td>3</td>\n",
" <td>87330</td>\n",
" <td>67686.0</td>\n",
" <td>106974.0</td>\n",
" <td>159</td>\n",
" <td>123.0</td>\n",
" <td>195.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2023</th>\n",
" <td>2024</td>\n",
" <td>198445</td>\n",
" <td>3</td>\n",
" <td>135223</td>\n",
" <td>101414.0</td>\n",
" <td>169032.0</td>\n",
" <td>246</td>\n",
" <td>184.0</td>\n",
" <td>308.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2024</th>\n",
" <td>2025</td>\n",
" <td>198444</td>\n",
" <td>3</td>\n",
" <td>68422</td>\n",
" <td>20056.0</td>\n",
" <td>116788.0</td>\n",
" <td>125</td>\n",
" <td>37.0</td>\n",
" <td>213.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>2025 rows × 11 columns</p>\n",
"</div>"
],
"text/plain": [
" 0 202334 3 30119 23068.0 37170.0 45 34.0 56.0 FR \\\n",
"0 1 202333 3 19344 13318.0 25370.0 29 20.0 38.0 FR \n",
"1 2 202332 3 14661 10302.0 19020.0 22 15.0 29.0 FR \n",
"2 3 202331 3 15286 10705.0 19867.0 23 16.0 30.0 FR \n",
"3 4 202330 3 13205 8647.0 17763.0 20 13.0 27.0 FR \n",
"4 5 202329 3 11122 7113.0 15131.0 17 11.0 23.0 FR \n",
"5 6 202328 3 9179 5703.0 12655.0 14 9.0 19.0 FR \n",
"6 7 202327 3 8999 5763.0 12235.0 14 9.0 19.0 FR \n",
"7 8 202326 3 9023 5934.0 12112.0 14 9.0 19.0 FR \n",
"8 9 202325 3 10090 6739.0 13441.0 15 10.0 20.0 FR \n",
"9 10 202324 3 11308 7639.0 14977.0 17 11.0 23.0 FR \n",
"10 11 202323 3 14300 10661.0 17939.0 22 17.0 27.0 FR \n",
"11 12 202322 3 18303 13822.0 22784.0 28 21.0 35.0 FR \n",
"12 13 202321 3 16460 12188.0 20732.0 25 19.0 31.0 FR \n",
"13 14 202320 3 16162 11963.0 20361.0 24 18.0 30.0 FR \n",
"14 15 202319 3 16901 12577.0 21225.0 25 18.0 32.0 FR \n",
"15 16 202318 3 19929 15402.0 24456.0 30 23.0 37.0 FR \n",
"16 17 202317 3 27007 21779.0 32235.0 41 33.0 49.0 FR \n",
"17 18 202316 3 27875 22767.0 32983.0 42 34.0 50.0 FR \n",
"18 19 202315 3 37455 30993.0 43917.0 56 46.0 66.0 FR \n",
"19 20 202314 3 48060 40671.0 55449.0 72 61.0 83.0 FR \n",
"20 21 202313 3 64859 56800.0 72918.0 98 86.0 110.0 FR \n",
"21 22 202312 3 72750 64499.0 81001.0 109 97.0 121.0 FR \n",
"22 23 202311 3 74638 66420.0 82856.0 112 100.0 124.0 FR \n",
"23 24 202310 3 76368 68243.0 84493.0 115 103.0 127.0 FR \n",
"24 25 202309 3 62062 54778.0 69346.0 93 82.0 104.0 FR \n",
"25 26 202308 3 76391 68065.0 84717.0 115 102.0 128.0 FR \n",
"26 27 202307 3 89851 80397.0 99305.0 135 121.0 149.0 FR \n",
"27 28 202306 3 97368 87636.0 107100.0 146 131.0 161.0 FR \n",
"28 29 202305 3 95469 86268.0 104670.0 144 130.0 158.0 FR \n",
"29 30 202304 3 74901 66916.0 82886.0 113 101.0 125.0 FR \n",
"... ... ... .. ... ... ... ... ... ... .. \n",
"1995 1996 198521 3 26096 19621.0 32571.0 47 35.0 59.0 FR \n",
"1996 1997 198520 3 27896 20885.0 34907.0 51 38.0 64.0 FR \n",
"1997 1998 198519 3 43154 32821.0 53487.0 78 59.0 97.0 FR \n",
"1998 1999 198518 3 40555 29935.0 51175.0 74 55.0 93.0 FR \n",
"1999 2000 198517 3 34053 24366.0 43740.0 62 44.0 80.0 FR \n",
"2000 2001 198516 3 50362 36451.0 64273.0 91 66.0 116.0 FR \n",
"2001 2002 198515 3 63881 45538.0 82224.0 116 83.0 149.0 FR \n",
"2002 2003 198514 3 134545 114400.0 154690.0 244 207.0 281.0 FR \n",
"2003 2004 198513 3 197206 176080.0 218332.0 357 319.0 395.0 FR \n",
"2004 2005 198512 3 245240 223304.0 267176.0 445 405.0 485.0 FR \n",
"2005 2006 198511 3 276205 252399.0 300011.0 501 458.0 544.0 FR \n",
"2006 2007 198510 3 353231 326279.0 380183.0 640 591.0 689.0 FR \n",
"2007 2008 198509 3 369895 341109.0 398681.0 670 618.0 722.0 FR \n",
"2008 2009 198508 3 389886 359529.0 420243.0 707 652.0 762.0 FR \n",
"2009 2010 198507 3 471852 432599.0 511105.0 855 784.0 926.0 FR \n",
"2010 2011 198506 3 565825 518011.0 613639.0 1026 939.0 1113.0 FR \n",
"2011 2012 198505 3 637302 592795.0 681809.0 1155 1074.0 1236.0 FR \n",
"2012 2013 198504 3 424937 390794.0 459080.0 770 708.0 832.0 FR \n",
"2013 2014 198503 3 213901 174689.0 253113.0 388 317.0 459.0 FR \n",
"2014 2015 198502 3 97586 80949.0 114223.0 177 147.0 207.0 FR \n",
"2015 2016 198501 3 85489 65918.0 105060.0 155 120.0 190.0 FR \n",
"2016 2017 198452 3 84830 60602.0 109058.0 154 110.0 198.0 FR \n",
"2017 2018 198451 3 101726 80242.0 123210.0 185 146.0 224.0 FR \n",
"2018 2019 198450 3 123680 101401.0 145959.0 225 184.0 266.0 FR \n",
"2019 2020 198449 3 101073 81684.0 120462.0 184 149.0 219.0 FR \n",
"2020 2021 198448 3 78620 60634.0 96606.0 143 110.0 176.0 FR \n",
"2021 2022 198447 3 72029 54274.0 89784.0 131 99.0 163.0 FR \n",
"2022 2023 198446 3 87330 67686.0 106974.0 159 123.0 195.0 FR \n",
"2023 2024 198445 3 135223 101414.0 169032.0 246 184.0 308.0 FR \n",
"2024 2025 198444 3 68422 20056.0 116788.0 125 37.0 213.0 FR \n",
"\n",
" France \n",
"0 France \n",
"1 France \n",
"2 France \n",
"3 France \n",
"4 France \n",
"5 France \n",
"6 France \n",
"7 France \n",
"8 France \n",
"9 France \n",
"10 France \n",
"11 France \n",
"12 France \n",
"13 France \n",
"14 France \n",
"15 France \n",
"16 France \n",
"17 France \n",
"18 France \n",
"19 France \n",
"20 France \n",
"21 France \n",
"22 France \n",
"23 France \n",
"24 France \n",
"25 France \n",
"26 France \n",
"27 France \n",
"28 France \n",
"29 France \n",
"... ... \n",
"1995 France \n",
"1996 France \n",
"1997 France \n",
"1998 France \n",
"1999 France \n",
"2000 France \n",
"2001 France \n",
"2002 France \n",
"2003 France \n",
"2004 France \n",
"2005 France \n",
"2006 France \n",
"2007 France \n",
"2008 France \n",
"2009 France \n",
"2010 France \n",
"2011 France \n",
"2012 France \n",
"2013 France \n",
"2014 France \n",
"2015 France \n",
"2016 France \n",
"2017 France \n",
"2018 France \n",
"2019 France \n",
"2020 France \n",
"2021 France \n",
"2022 France \n",
"2023 France \n",
"2024 France \n",
"\n",
"[2025 rows x 11 columns]"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"raw_data = pd.read_csv(data_url, skiprows=1)\n",
"raw_data"
"from os.path import exists\n",
"boo=exists(\"DATA.csv\")\n",
"#boo Check if file has already been downloaded to not download the data at every execution\n",
"if boo:\n",
" raw_data=raw_data = pd.read_csv(\"DATA.csv\", skiprows=0)\n",
"else: \n",
" raw_data = pd.read_csv(data_url, skiprows=1)\n",
" raw_data.to_csv(\"DATA.csv\")\n",
"\n",
"print(boo)\n",
"raw_data\n"
]
},
{
......@@ -78,9 +1121,72 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 4,
"metadata": {},
"outputs": [],
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>0</th>\n",
" <th>202334</th>\n",
" <th>3</th>\n",
" <th>30119</th>\n",
" <th>23068.0</th>\n",
" <th>37170.0</th>\n",
" <th>45</th>\n",
" <th>34.0</th>\n",
" <th>56.0</th>\n",
" <th>FR</th>\n",
" <th>France</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>1788</th>\n",
" <td>1789</td>\n",
" <td>198919</td>\n",
" <td>3</td>\n",
" <td>-</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>-</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" 0 202334 3 30119 23068.0 37170.0 45 34.0 56.0 FR France\n",
"1788 1789 198919 3 - NaN NaN - NaN NaN FR France"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"raw_data[raw_data.isnull().any(axis=1)]"
]
......@@ -94,9 +1200,1038 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 5,
"metadata": {},
"outputs": [],
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>0</th>\n",
" <th>202334</th>\n",
" <th>3</th>\n",
" <th>30119</th>\n",
" <th>23068.0</th>\n",
" <th>37170.0</th>\n",
" <th>45</th>\n",
" <th>34.0</th>\n",
" <th>56.0</th>\n",
" <th>FR</th>\n",
" <th>France</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>1</td>\n",
" <td>202333</td>\n",
" <td>3</td>\n",
" <td>19344</td>\n",
" <td>13318.0</td>\n",
" <td>25370.0</td>\n",
" <td>29</td>\n",
" <td>20.0</td>\n",
" <td>38.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>2</td>\n",
" <td>202332</td>\n",
" <td>3</td>\n",
" <td>14661</td>\n",
" <td>10302.0</td>\n",
" <td>19020.0</td>\n",
" <td>22</td>\n",
" <td>15.0</td>\n",
" <td>29.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>3</td>\n",
" <td>202331</td>\n",
" <td>3</td>\n",
" <td>15286</td>\n",
" <td>10705.0</td>\n",
" <td>19867.0</td>\n",
" <td>23</td>\n",
" <td>16.0</td>\n",
" <td>30.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>4</td>\n",
" <td>202330</td>\n",
" <td>3</td>\n",
" <td>13205</td>\n",
" <td>8647.0</td>\n",
" <td>17763.0</td>\n",
" <td>20</td>\n",
" <td>13.0</td>\n",
" <td>27.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>5</td>\n",
" <td>202329</td>\n",
" <td>3</td>\n",
" <td>11122</td>\n",
" <td>7113.0</td>\n",
" <td>15131.0</td>\n",
" <td>17</td>\n",
" <td>11.0</td>\n",
" <td>23.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>6</td>\n",
" <td>202328</td>\n",
" <td>3</td>\n",
" <td>9179</td>\n",
" <td>5703.0</td>\n",
" <td>12655.0</td>\n",
" <td>14</td>\n",
" <td>9.0</td>\n",
" <td>19.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6</th>\n",
" <td>7</td>\n",
" <td>202327</td>\n",
" <td>3</td>\n",
" <td>8999</td>\n",
" <td>5763.0</td>\n",
" <td>12235.0</td>\n",
" <td>14</td>\n",
" <td>9.0</td>\n",
" <td>19.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7</th>\n",
" <td>8</td>\n",
" <td>202326</td>\n",
" <td>3</td>\n",
" <td>9023</td>\n",
" <td>5934.0</td>\n",
" <td>12112.0</td>\n",
" <td>14</td>\n",
" <td>9.0</td>\n",
" <td>19.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8</th>\n",
" <td>9</td>\n",
" <td>202325</td>\n",
" <td>3</td>\n",
" <td>10090</td>\n",
" <td>6739.0</td>\n",
" <td>13441.0</td>\n",
" <td>15</td>\n",
" <td>10.0</td>\n",
" <td>20.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9</th>\n",
" <td>10</td>\n",
" <td>202324</td>\n",
" <td>3</td>\n",
" <td>11308</td>\n",
" <td>7639.0</td>\n",
" <td>14977.0</td>\n",
" <td>17</td>\n",
" <td>11.0</td>\n",
" <td>23.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>10</th>\n",
" <td>11</td>\n",
" <td>202323</td>\n",
" <td>3</td>\n",
" <td>14300</td>\n",
" <td>10661.0</td>\n",
" <td>17939.0</td>\n",
" <td>22</td>\n",
" <td>17.0</td>\n",
" <td>27.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>11</th>\n",
" <td>12</td>\n",
" <td>202322</td>\n",
" <td>3</td>\n",
" <td>18303</td>\n",
" <td>13822.0</td>\n",
" <td>22784.0</td>\n",
" <td>28</td>\n",
" <td>21.0</td>\n",
" <td>35.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>12</th>\n",
" <td>13</td>\n",
" <td>202321</td>\n",
" <td>3</td>\n",
" <td>16460</td>\n",
" <td>12188.0</td>\n",
" <td>20732.0</td>\n",
" <td>25</td>\n",
" <td>19.0</td>\n",
" <td>31.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>13</th>\n",
" <td>14</td>\n",
" <td>202320</td>\n",
" <td>3</td>\n",
" <td>16162</td>\n",
" <td>11963.0</td>\n",
" <td>20361.0</td>\n",
" <td>24</td>\n",
" <td>18.0</td>\n",
" <td>30.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>14</th>\n",
" <td>15</td>\n",
" <td>202319</td>\n",
" <td>3</td>\n",
" <td>16901</td>\n",
" <td>12577.0</td>\n",
" <td>21225.0</td>\n",
" <td>25</td>\n",
" <td>18.0</td>\n",
" <td>32.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>15</th>\n",
" <td>16</td>\n",
" <td>202318</td>\n",
" <td>3</td>\n",
" <td>19929</td>\n",
" <td>15402.0</td>\n",
" <td>24456.0</td>\n",
" <td>30</td>\n",
" <td>23.0</td>\n",
" <td>37.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>16</th>\n",
" <td>17</td>\n",
" <td>202317</td>\n",
" <td>3</td>\n",
" <td>27007</td>\n",
" <td>21779.0</td>\n",
" <td>32235.0</td>\n",
" <td>41</td>\n",
" <td>33.0</td>\n",
" <td>49.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>17</th>\n",
" <td>18</td>\n",
" <td>202316</td>\n",
" <td>3</td>\n",
" <td>27875</td>\n",
" <td>22767.0</td>\n",
" <td>32983.0</td>\n",
" <td>42</td>\n",
" <td>34.0</td>\n",
" <td>50.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>18</th>\n",
" <td>19</td>\n",
" <td>202315</td>\n",
" <td>3</td>\n",
" <td>37455</td>\n",
" <td>30993.0</td>\n",
" <td>43917.0</td>\n",
" <td>56</td>\n",
" <td>46.0</td>\n",
" <td>66.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>19</th>\n",
" <td>20</td>\n",
" <td>202314</td>\n",
" <td>3</td>\n",
" <td>48060</td>\n",
" <td>40671.0</td>\n",
" <td>55449.0</td>\n",
" <td>72</td>\n",
" <td>61.0</td>\n",
" <td>83.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>20</th>\n",
" <td>21</td>\n",
" <td>202313</td>\n",
" <td>3</td>\n",
" <td>64859</td>\n",
" <td>56800.0</td>\n",
" <td>72918.0</td>\n",
" <td>98</td>\n",
" <td>86.0</td>\n",
" <td>110.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>21</th>\n",
" <td>22</td>\n",
" <td>202312</td>\n",
" <td>3</td>\n",
" <td>72750</td>\n",
" <td>64499.0</td>\n",
" <td>81001.0</td>\n",
" <td>109</td>\n",
" <td>97.0</td>\n",
" <td>121.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>22</th>\n",
" <td>23</td>\n",
" <td>202311</td>\n",
" <td>3</td>\n",
" <td>74638</td>\n",
" <td>66420.0</td>\n",
" <td>82856.0</td>\n",
" <td>112</td>\n",
" <td>100.0</td>\n",
" <td>124.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>23</th>\n",
" <td>24</td>\n",
" <td>202310</td>\n",
" <td>3</td>\n",
" <td>76368</td>\n",
" <td>68243.0</td>\n",
" <td>84493.0</td>\n",
" <td>115</td>\n",
" <td>103.0</td>\n",
" <td>127.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>24</th>\n",
" <td>25</td>\n",
" <td>202309</td>\n",
" <td>3</td>\n",
" <td>62062</td>\n",
" <td>54778.0</td>\n",
" <td>69346.0</td>\n",
" <td>93</td>\n",
" <td>82.0</td>\n",
" <td>104.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>25</th>\n",
" <td>26</td>\n",
" <td>202308</td>\n",
" <td>3</td>\n",
" <td>76391</td>\n",
" <td>68065.0</td>\n",
" <td>84717.0</td>\n",
" <td>115</td>\n",
" <td>102.0</td>\n",
" <td>128.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>26</th>\n",
" <td>27</td>\n",
" <td>202307</td>\n",
" <td>3</td>\n",
" <td>89851</td>\n",
" <td>80397.0</td>\n",
" <td>99305.0</td>\n",
" <td>135</td>\n",
" <td>121.0</td>\n",
" <td>149.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>27</th>\n",
" <td>28</td>\n",
" <td>202306</td>\n",
" <td>3</td>\n",
" <td>97368</td>\n",
" <td>87636.0</td>\n",
" <td>107100.0</td>\n",
" <td>146</td>\n",
" <td>131.0</td>\n",
" <td>161.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>28</th>\n",
" <td>29</td>\n",
" <td>202305</td>\n",
" <td>3</td>\n",
" <td>95469</td>\n",
" <td>86268.0</td>\n",
" <td>104670.0</td>\n",
" <td>144</td>\n",
" <td>130.0</td>\n",
" <td>158.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>29</th>\n",
" <td>30</td>\n",
" <td>202304</td>\n",
" <td>3</td>\n",
" <td>74901</td>\n",
" <td>66916.0</td>\n",
" <td>82886.0</td>\n",
" <td>113</td>\n",
" <td>101.0</td>\n",
" <td>125.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1995</th>\n",
" <td>1996</td>\n",
" <td>198521</td>\n",
" <td>3</td>\n",
" <td>26096</td>\n",
" <td>19621.0</td>\n",
" <td>32571.0</td>\n",
" <td>47</td>\n",
" <td>35.0</td>\n",
" <td>59.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1996</th>\n",
" <td>1997</td>\n",
" <td>198520</td>\n",
" <td>3</td>\n",
" <td>27896</td>\n",
" <td>20885.0</td>\n",
" <td>34907.0</td>\n",
" <td>51</td>\n",
" <td>38.0</td>\n",
" <td>64.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1997</th>\n",
" <td>1998</td>\n",
" <td>198519</td>\n",
" <td>3</td>\n",
" <td>43154</td>\n",
" <td>32821.0</td>\n",
" <td>53487.0</td>\n",
" <td>78</td>\n",
" <td>59.0</td>\n",
" <td>97.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1998</th>\n",
" <td>1999</td>\n",
" <td>198518</td>\n",
" <td>3</td>\n",
" <td>40555</td>\n",
" <td>29935.0</td>\n",
" <td>51175.0</td>\n",
" <td>74</td>\n",
" <td>55.0</td>\n",
" <td>93.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1999</th>\n",
" <td>2000</td>\n",
" <td>198517</td>\n",
" <td>3</td>\n",
" <td>34053</td>\n",
" <td>24366.0</td>\n",
" <td>43740.0</td>\n",
" <td>62</td>\n",
" <td>44.0</td>\n",
" <td>80.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2000</th>\n",
" <td>2001</td>\n",
" <td>198516</td>\n",
" <td>3</td>\n",
" <td>50362</td>\n",
" <td>36451.0</td>\n",
" <td>64273.0</td>\n",
" <td>91</td>\n",
" <td>66.0</td>\n",
" <td>116.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2001</th>\n",
" <td>2002</td>\n",
" <td>198515</td>\n",
" <td>3</td>\n",
" <td>63881</td>\n",
" <td>45538.0</td>\n",
" <td>82224.0</td>\n",
" <td>116</td>\n",
" <td>83.0</td>\n",
" <td>149.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2002</th>\n",
" <td>2003</td>\n",
" <td>198514</td>\n",
" <td>3</td>\n",
" <td>134545</td>\n",
" <td>114400.0</td>\n",
" <td>154690.0</td>\n",
" <td>244</td>\n",
" <td>207.0</td>\n",
" <td>281.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2003</th>\n",
" <td>2004</td>\n",
" <td>198513</td>\n",
" <td>3</td>\n",
" <td>197206</td>\n",
" <td>176080.0</td>\n",
" <td>218332.0</td>\n",
" <td>357</td>\n",
" <td>319.0</td>\n",
" <td>395.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2004</th>\n",
" <td>2005</td>\n",
" <td>198512</td>\n",
" <td>3</td>\n",
" <td>245240</td>\n",
" <td>223304.0</td>\n",
" <td>267176.0</td>\n",
" <td>445</td>\n",
" <td>405.0</td>\n",
" <td>485.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2005</th>\n",
" <td>2006</td>\n",
" <td>198511</td>\n",
" <td>3</td>\n",
" <td>276205</td>\n",
" <td>252399.0</td>\n",
" <td>300011.0</td>\n",
" <td>501</td>\n",
" <td>458.0</td>\n",
" <td>544.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2006</th>\n",
" <td>2007</td>\n",
" <td>198510</td>\n",
" <td>3</td>\n",
" <td>353231</td>\n",
" <td>326279.0</td>\n",
" <td>380183.0</td>\n",
" <td>640</td>\n",
" <td>591.0</td>\n",
" <td>689.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2007</th>\n",
" <td>2008</td>\n",
" <td>198509</td>\n",
" <td>3</td>\n",
" <td>369895</td>\n",
" <td>341109.0</td>\n",
" <td>398681.0</td>\n",
" <td>670</td>\n",
" <td>618.0</td>\n",
" <td>722.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2008</th>\n",
" <td>2009</td>\n",
" <td>198508</td>\n",
" <td>3</td>\n",
" <td>389886</td>\n",
" <td>359529.0</td>\n",
" <td>420243.0</td>\n",
" <td>707</td>\n",
" <td>652.0</td>\n",
" <td>762.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2009</th>\n",
" <td>2010</td>\n",
" <td>198507</td>\n",
" <td>3</td>\n",
" <td>471852</td>\n",
" <td>432599.0</td>\n",
" <td>511105.0</td>\n",
" <td>855</td>\n",
" <td>784.0</td>\n",
" <td>926.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2010</th>\n",
" <td>2011</td>\n",
" <td>198506</td>\n",
" <td>3</td>\n",
" <td>565825</td>\n",
" <td>518011.0</td>\n",
" <td>613639.0</td>\n",
" <td>1026</td>\n",
" <td>939.0</td>\n",
" <td>1113.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2011</th>\n",
" <td>2012</td>\n",
" <td>198505</td>\n",
" <td>3</td>\n",
" <td>637302</td>\n",
" <td>592795.0</td>\n",
" <td>681809.0</td>\n",
" <td>1155</td>\n",
" <td>1074.0</td>\n",
" <td>1236.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2012</th>\n",
" <td>2013</td>\n",
" <td>198504</td>\n",
" <td>3</td>\n",
" <td>424937</td>\n",
" <td>390794.0</td>\n",
" <td>459080.0</td>\n",
" <td>770</td>\n",
" <td>708.0</td>\n",
" <td>832.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2013</th>\n",
" <td>2014</td>\n",
" <td>198503</td>\n",
" <td>3</td>\n",
" <td>213901</td>\n",
" <td>174689.0</td>\n",
" <td>253113.0</td>\n",
" <td>388</td>\n",
" <td>317.0</td>\n",
" <td>459.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2014</th>\n",
" <td>2015</td>\n",
" <td>198502</td>\n",
" <td>3</td>\n",
" <td>97586</td>\n",
" <td>80949.0</td>\n",
" <td>114223.0</td>\n",
" <td>177</td>\n",
" <td>147.0</td>\n",
" <td>207.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2015</th>\n",
" <td>2016</td>\n",
" <td>198501</td>\n",
" <td>3</td>\n",
" <td>85489</td>\n",
" <td>65918.0</td>\n",
" <td>105060.0</td>\n",
" <td>155</td>\n",
" <td>120.0</td>\n",
" <td>190.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2016</th>\n",
" <td>2017</td>\n",
" <td>198452</td>\n",
" <td>3</td>\n",
" <td>84830</td>\n",
" <td>60602.0</td>\n",
" <td>109058.0</td>\n",
" <td>154</td>\n",
" <td>110.0</td>\n",
" <td>198.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2017</th>\n",
" <td>2018</td>\n",
" <td>198451</td>\n",
" <td>3</td>\n",
" <td>101726</td>\n",
" <td>80242.0</td>\n",
" <td>123210.0</td>\n",
" <td>185</td>\n",
" <td>146.0</td>\n",
" <td>224.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2018</th>\n",
" <td>2019</td>\n",
" <td>198450</td>\n",
" <td>3</td>\n",
" <td>123680</td>\n",
" <td>101401.0</td>\n",
" <td>145959.0</td>\n",
" <td>225</td>\n",
" <td>184.0</td>\n",
" <td>266.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2019</th>\n",
" <td>2020</td>\n",
" <td>198449</td>\n",
" <td>3</td>\n",
" <td>101073</td>\n",
" <td>81684.0</td>\n",
" <td>120462.0</td>\n",
" <td>184</td>\n",
" <td>149.0</td>\n",
" <td>219.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2020</th>\n",
" <td>2021</td>\n",
" <td>198448</td>\n",
" <td>3</td>\n",
" <td>78620</td>\n",
" <td>60634.0</td>\n",
" <td>96606.0</td>\n",
" <td>143</td>\n",
" <td>110.0</td>\n",
" <td>176.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2021</th>\n",
" <td>2022</td>\n",
" <td>198447</td>\n",
" <td>3</td>\n",
" <td>72029</td>\n",
" <td>54274.0</td>\n",
" <td>89784.0</td>\n",
" <td>131</td>\n",
" <td>99.0</td>\n",
" <td>163.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2022</th>\n",
" <td>2023</td>\n",
" <td>198446</td>\n",
" <td>3</td>\n",
" <td>87330</td>\n",
" <td>67686.0</td>\n",
" <td>106974.0</td>\n",
" <td>159</td>\n",
" <td>123.0</td>\n",
" <td>195.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2023</th>\n",
" <td>2024</td>\n",
" <td>198445</td>\n",
" <td>3</td>\n",
" <td>135223</td>\n",
" <td>101414.0</td>\n",
" <td>169032.0</td>\n",
" <td>246</td>\n",
" <td>184.0</td>\n",
" <td>308.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2024</th>\n",
" <td>2025</td>\n",
" <td>198444</td>\n",
" <td>3</td>\n",
" <td>68422</td>\n",
" <td>20056.0</td>\n",
" <td>116788.0</td>\n",
" <td>125</td>\n",
" <td>37.0</td>\n",
" <td>213.0</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>2024 rows × 11 columns</p>\n",
"</div>"
],
"text/plain": [
" 0 202334 3 30119 23068.0 37170.0 45 34.0 56.0 FR \\\n",
"0 1 202333 3 19344 13318.0 25370.0 29 20.0 38.0 FR \n",
"1 2 202332 3 14661 10302.0 19020.0 22 15.0 29.0 FR \n",
"2 3 202331 3 15286 10705.0 19867.0 23 16.0 30.0 FR \n",
"3 4 202330 3 13205 8647.0 17763.0 20 13.0 27.0 FR \n",
"4 5 202329 3 11122 7113.0 15131.0 17 11.0 23.0 FR \n",
"5 6 202328 3 9179 5703.0 12655.0 14 9.0 19.0 FR \n",
"6 7 202327 3 8999 5763.0 12235.0 14 9.0 19.0 FR \n",
"7 8 202326 3 9023 5934.0 12112.0 14 9.0 19.0 FR \n",
"8 9 202325 3 10090 6739.0 13441.0 15 10.0 20.0 FR \n",
"9 10 202324 3 11308 7639.0 14977.0 17 11.0 23.0 FR \n",
"10 11 202323 3 14300 10661.0 17939.0 22 17.0 27.0 FR \n",
"11 12 202322 3 18303 13822.0 22784.0 28 21.0 35.0 FR \n",
"12 13 202321 3 16460 12188.0 20732.0 25 19.0 31.0 FR \n",
"13 14 202320 3 16162 11963.0 20361.0 24 18.0 30.0 FR \n",
"14 15 202319 3 16901 12577.0 21225.0 25 18.0 32.0 FR \n",
"15 16 202318 3 19929 15402.0 24456.0 30 23.0 37.0 FR \n",
"16 17 202317 3 27007 21779.0 32235.0 41 33.0 49.0 FR \n",
"17 18 202316 3 27875 22767.0 32983.0 42 34.0 50.0 FR \n",
"18 19 202315 3 37455 30993.0 43917.0 56 46.0 66.0 FR \n",
"19 20 202314 3 48060 40671.0 55449.0 72 61.0 83.0 FR \n",
"20 21 202313 3 64859 56800.0 72918.0 98 86.0 110.0 FR \n",
"21 22 202312 3 72750 64499.0 81001.0 109 97.0 121.0 FR \n",
"22 23 202311 3 74638 66420.0 82856.0 112 100.0 124.0 FR \n",
"23 24 202310 3 76368 68243.0 84493.0 115 103.0 127.0 FR \n",
"24 25 202309 3 62062 54778.0 69346.0 93 82.0 104.0 FR \n",
"25 26 202308 3 76391 68065.0 84717.0 115 102.0 128.0 FR \n",
"26 27 202307 3 89851 80397.0 99305.0 135 121.0 149.0 FR \n",
"27 28 202306 3 97368 87636.0 107100.0 146 131.0 161.0 FR \n",
"28 29 202305 3 95469 86268.0 104670.0 144 130.0 158.0 FR \n",
"29 30 202304 3 74901 66916.0 82886.0 113 101.0 125.0 FR \n",
"... ... ... .. ... ... ... ... ... ... .. \n",
"1995 1996 198521 3 26096 19621.0 32571.0 47 35.0 59.0 FR \n",
"1996 1997 198520 3 27896 20885.0 34907.0 51 38.0 64.0 FR \n",
"1997 1998 198519 3 43154 32821.0 53487.0 78 59.0 97.0 FR \n",
"1998 1999 198518 3 40555 29935.0 51175.0 74 55.0 93.0 FR \n",
"1999 2000 198517 3 34053 24366.0 43740.0 62 44.0 80.0 FR \n",
"2000 2001 198516 3 50362 36451.0 64273.0 91 66.0 116.0 FR \n",
"2001 2002 198515 3 63881 45538.0 82224.0 116 83.0 149.0 FR \n",
"2002 2003 198514 3 134545 114400.0 154690.0 244 207.0 281.0 FR \n",
"2003 2004 198513 3 197206 176080.0 218332.0 357 319.0 395.0 FR \n",
"2004 2005 198512 3 245240 223304.0 267176.0 445 405.0 485.0 FR \n",
"2005 2006 198511 3 276205 252399.0 300011.0 501 458.0 544.0 FR \n",
"2006 2007 198510 3 353231 326279.0 380183.0 640 591.0 689.0 FR \n",
"2007 2008 198509 3 369895 341109.0 398681.0 670 618.0 722.0 FR \n",
"2008 2009 198508 3 389886 359529.0 420243.0 707 652.0 762.0 FR \n",
"2009 2010 198507 3 471852 432599.0 511105.0 855 784.0 926.0 FR \n",
"2010 2011 198506 3 565825 518011.0 613639.0 1026 939.0 1113.0 FR \n",
"2011 2012 198505 3 637302 592795.0 681809.0 1155 1074.0 1236.0 FR \n",
"2012 2013 198504 3 424937 390794.0 459080.0 770 708.0 832.0 FR \n",
"2013 2014 198503 3 213901 174689.0 253113.0 388 317.0 459.0 FR \n",
"2014 2015 198502 3 97586 80949.0 114223.0 177 147.0 207.0 FR \n",
"2015 2016 198501 3 85489 65918.0 105060.0 155 120.0 190.0 FR \n",
"2016 2017 198452 3 84830 60602.0 109058.0 154 110.0 198.0 FR \n",
"2017 2018 198451 3 101726 80242.0 123210.0 185 146.0 224.0 FR \n",
"2018 2019 198450 3 123680 101401.0 145959.0 225 184.0 266.0 FR \n",
"2019 2020 198449 3 101073 81684.0 120462.0 184 149.0 219.0 FR \n",
"2020 2021 198448 3 78620 60634.0 96606.0 143 110.0 176.0 FR \n",
"2021 2022 198447 3 72029 54274.0 89784.0 131 99.0 163.0 FR \n",
"2022 2023 198446 3 87330 67686.0 106974.0 159 123.0 195.0 FR \n",
"2023 2024 198445 3 135223 101414.0 169032.0 246 184.0 308.0 FR \n",
"2024 2025 198444 3 68422 20056.0 116788.0 125 37.0 213.0 FR \n",
"\n",
" France \n",
"0 France \n",
"1 France \n",
"2 France \n",
"3 France \n",
"4 France \n",
"5 France \n",
"6 France \n",
"7 France \n",
"8 France \n",
"9 France \n",
"10 France \n",
"11 France \n",
"12 France \n",
"13 France \n",
"14 France \n",
"15 France \n",
"16 France \n",
"17 France \n",
"18 France \n",
"19 France \n",
"20 France \n",
"21 France \n",
"22 France \n",
"23 France \n",
"24 France \n",
"25 France \n",
"26 France \n",
"27 France \n",
"28 France \n",
"29 France \n",
"... ... \n",
"1995 France \n",
"1996 France \n",
"1997 France \n",
"1998 France \n",
"1999 France \n",
"2000 France \n",
"2001 France \n",
"2002 France \n",
"2003 France \n",
"2004 France \n",
"2005 France \n",
"2006 France \n",
"2007 France \n",
"2008 France \n",
"2009 France \n",
"2010 France \n",
"2011 France \n",
"2012 France \n",
"2013 France \n",
"2014 France \n",
"2015 France \n",
"2016 France \n",
"2017 France \n",
"2018 France \n",
"2019 France \n",
"2020 France \n",
"2021 France \n",
"2022 France \n",
"2023 France \n",
"2024 France \n",
"\n",
"[2024 rows x 11 columns]"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data = raw_data.dropna().copy()\n",
"data"
......@@ -122,9 +2257,38 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 6,
"metadata": {},
"outputs": [],
"outputs": [
{
"ename": "KeyError",
"evalue": "'week'",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/core/indexes/base.py\u001b[0m in \u001b[0;36mget_loc\u001b[0;34m(self, key, method, tolerance)\u001b[0m\n\u001b[1;32m 2524\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2525\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_engine\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2526\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mKeyError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32mpandas/_libs/index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc\u001b[0;34m()\u001b[0m\n",
"\u001b[0;32mpandas/_libs/index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc\u001b[0;34m()\u001b[0m\n",
"\u001b[0;32mpandas/_libs/hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001b[0;34m()\u001b[0m\n",
"\u001b[0;32mpandas/_libs/hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001b[0;34m()\u001b[0m\n",
"\u001b[0;31mKeyError\u001b[0m: 'week'",
"\nDuring handling of the above exception, another exception occurred:\n",
"\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-6-4f9c04a6e476>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mpd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mPeriod\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mw\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mday\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'W'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 8\u001b[0;31m \u001b[0mdata\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'period'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mconvert_week\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0myw\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0myw\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mdata\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'week'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/core/frame.py\u001b[0m in \u001b[0;36m__getitem__\u001b[0;34m(self, key)\u001b[0m\n\u001b[1;32m 2137\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_getitem_multilevel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2138\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2139\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_getitem_column\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2140\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2141\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_getitem_column\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/core/frame.py\u001b[0m in \u001b[0;36m_getitem_column\u001b[0;34m(self, key)\u001b[0m\n\u001b[1;32m 2144\u001b[0m \u001b[0;31m# get column\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2145\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcolumns\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mis_unique\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2146\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_get_item_cache\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2147\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2148\u001b[0m \u001b[0;31m# duplicate columns & possible reduce dimensionality\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/core/generic.py\u001b[0m in \u001b[0;36m_get_item_cache\u001b[0;34m(self, item)\u001b[0m\n\u001b[1;32m 1840\u001b[0m \u001b[0mres\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mcache\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mitem\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1841\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mres\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1842\u001b[0;31m \u001b[0mvalues\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_data\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mitem\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1843\u001b[0m \u001b[0mres\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_box_item_values\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mitem\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalues\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1844\u001b[0m \u001b[0mcache\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mitem\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mres\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/core/internals.py\u001b[0m in \u001b[0;36mget\u001b[0;34m(self, item, fastpath)\u001b[0m\n\u001b[1;32m 3841\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3842\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0misna\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mitem\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 3843\u001b[0;31m \u001b[0mloc\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mitems\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mitem\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3844\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3845\u001b[0m \u001b[0mindexer\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0marange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mitems\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0misna\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mitems\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/core/indexes/base.py\u001b[0m in \u001b[0;36mget_loc\u001b[0;34m(self, key, method, tolerance)\u001b[0m\n\u001b[1;32m 2525\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_engine\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2526\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mKeyError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2527\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_engine\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_maybe_cast_indexer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2528\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2529\u001b[0m \u001b[0mindexer\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_indexer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmethod\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mmethod\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtolerance\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mtolerance\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32mpandas/_libs/index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc\u001b[0;34m()\u001b[0m\n",
"\u001b[0;32mpandas/_libs/index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc\u001b[0;34m()\u001b[0m\n",
"\u001b[0;32mpandas/_libs/hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001b[0;34m()\u001b[0m\n",
"\u001b[0;32mpandas/_libs/hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001b[0;34m()\u001b[0m\n",
"\u001b[0;31mKeyError\u001b[0m: 'week'"
]
}
],
"source": [
"def convert_week(year_and_week_int):\n",
" year_and_week_str = str(year_and_week_int)\n",
......@@ -153,9 +2317,7 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"metadata": {},
"outputs": [],
"source": [
"sorted_data = data.set_index('period').sort_index()"
......@@ -253,9 +2415,7 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"metadata": {},
"outputs": [],
"source": [
"first_august_week = [pd.Period(pd.Timestamp(y, 8, 1), 'W')\n",
......@@ -341,9 +2501,7 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"metadata": {},
"outputs": [],
"source": []
}
......@@ -364,7 +2522,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.1"
"version": "3.6.4"
}
},
"nbformat": 4,
......
, Yr, Mn, Date, Date, CO2,seasonally, fit, seasonally, CO2, seasonally, Sta
0, , , , , , adjusted, ,adjusted fit, filled,adjusted filled,
1, , , Excel, , [ppm], [ppm] , [ppm], [ppm], [ppm], [ppm],
2,1958, 01, 21200, 1958.0411, -99.99, -99.99, -99.99, -99.99, -99.99, -99.99, MLO
3,1958, 02, 21231, 1958.1260, -99.99, -99.99, -99.99, -99.99, -99.99, -99.99, MLO
4,1958, 03, 21259, 1958.2027, 315.71, 314.44, 316.19, 314.91, 315.71, 314.44, MLO
5,1958, 04, 21290, 1958.2877, 317.45, 315.16, 317.30, 314.99, 317.45, 315.16, MLO
6,1958, 05, 21320, 1958.3699, 317.51, 314.69, 317.89, 315.07, 317.51, 314.69, MLO
7,1958, 06, 21351, 1958.4548, -99.99, -99.99, 317.27, 315.15, 317.27, 315.15, MLO
8,1958, 07, 21381, 1958.5370, 315.87, 315.20, 315.86, 315.22, 315.87, 315.20, MLO
9,1958, 08, 21412, 1958.6219, 314.93, 316.21, 313.97, 315.29, 314.93, 316.21, MLO
10,1958, 09, 21443, 1958.7068, 313.21, 316.11, 312.44, 315.35, 313.21, 316.11, MLO
11,1958, 10, 21473, 1958.7890, -99.99, -99.99, 312.42, 315.41, 312.42, 315.41, MLO
12,1958, 11, 21504, 1958.8740, 313.33, 315.21, 313.61, 315.46, 313.33, 315.21, MLO
13,1958, 12, 21534, 1958.9562, 314.67, 315.43, 314.77, 315.52, 314.67, 315.43, MLO
14,1959, 01, 21565, 1959.0411, 315.58, 315.52, 315.64, 315.57, 315.58, 315.52, MLO
15,1959, 02, 21596, 1959.1260, 316.49, 315.84, 316.29, 315.63, 316.49, 315.84, MLO
16,1959, 03, 21624, 1959.2027, 316.65, 315.38, 316.98, 315.70, 316.65, 315.38, MLO
17,1959, 04, 21655, 1959.2877, 317.72, 315.42, 318.09, 315.77, 317.72, 315.42, MLO
18,1959, 05, 21685, 1959.3699, 318.29, 315.46, 318.68, 315.85, 318.29, 315.46, MLO
19,1959, 06, 21716, 1959.4548, 318.15, 316.00, 318.07, 315.94, 318.15, 316.00, MLO
20,1959, 07, 21746, 1959.5370, 316.54, 315.87, 316.67, 316.03, 316.54, 315.87, MLO
21,1959, 08, 21777, 1959.6219, 314.80, 316.09, 314.80, 316.13, 314.80, 316.09, MLO
22,1959, 09, 21808, 1959.7068, 313.84, 316.75, 313.30, 316.22, 313.84, 316.75, MLO
23,1959, 10, 21838, 1959.7890, 313.33, 316.34, 313.31, 316.31, 313.33, 316.34, MLO
24,1959, 11, 21869, 1959.8740, 314.81, 316.69, 314.53, 316.40, 314.81, 316.69, MLO
25,1959, 12, 21899, 1959.9562, 315.58, 316.35, 315.72, 316.48, 315.58, 316.35, MLO
26,1960, 01, 21930, 1960.0410, 316.43, 316.37, 316.63, 316.56, 316.43, 316.37, MLO
27,1960, 02, 21961, 1960.1257, 316.98, 316.33, 317.29, 316.64, 316.98, 316.33, MLO
28,1960, 03, 21990, 1960.2049, 317.58, 316.28, 318.03, 316.72, 317.58, 316.28, MLO
29,1960, 04, 22021, 1960.2896, 319.03, 316.70, 319.14, 316.79, 319.03, 316.70, MLO
30,1960, 05, 22051, 1960.3716, 320.03, 317.20, 319.70, 316.87, 320.03, 317.20, MLO
31,1960, 06, 22082, 1960.4563, 319.58, 317.45, 319.04, 316.93, 319.58, 317.45, MLO
32,1960, 07, 22112, 1960.5383, 318.18, 317.53, 317.59, 316.98, 318.18, 317.53, MLO
33,1960, 08, 22143, 1960.6230, 315.90, 317.22, 315.67, 317.02, 315.90, 317.22, MLO
34,1960, 09, 22174, 1960.7077, 314.17, 317.09, 314.11, 317.05, 314.17, 317.09, MLO
35,1960, 10, 22204, 1960.7896, 313.83, 316.84, 314.08, 317.08, 313.83, 316.84, MLO
36,1960, 11, 22235, 1960.8743, 315.00, 316.89, 315.25, 317.11, 315.00, 316.89, MLO
37,1960, 12, 22265, 1960.9563, 316.19, 316.96, 316.40, 317.15, 316.19, 316.96, MLO
38,1961, 01, 22296, 1961.0411, 316.89, 316.84, 317.27, 317.20, 316.89, 316.84, MLO
39,1961, 02, 22327, 1961.1260, 317.70, 317.06, 317.93, 317.27, 317.70, 317.06, MLO
40,1961, 03, 22355, 1961.2027, 318.54, 317.26, 318.63, 317.33, 318.54, 317.26, MLO
41,1961, 04, 22386, 1961.2877, 319.48, 317.16, 319.75, 317.42, 319.48, 317.16, MLO
42,1961, 05, 22416, 1961.3699, 320.58, 317.74, 320.35, 317.50, 320.58, 317.74, MLO
43,1961, 06, 22447, 1961.4548, 319.77, 317.61, 319.73, 317.59, 319.77, 317.61, MLO
44,1961, 07, 22477, 1961.5370, 318.56, 317.89, 318.32, 317.68, 318.56, 317.89, MLO
45,1961, 08, 22508, 1961.6219, 316.79, 318.09, 316.44, 317.77, 316.79, 318.09, MLO
46,1961, 09, 22539, 1961.7068, 314.99, 317.91, 314.91, 317.85, 314.99, 317.91, MLO
47,1961, 10, 22569, 1961.7890, 315.31, 318.33, 314.91, 317.92, 315.31, 318.33, MLO
48,1961, 11, 22600, 1961.8740, 316.10, 318.00, 316.12, 317.99, 316.10, 318.00, MLO
49,1961, 12, 22630, 1961.9562, 317.01, 317.78, 317.30, 318.06, 317.01, 317.78, MLO
50,1962, 01, 22661, 1962.0411, 317.94, 317.88, 318.20, 318.13, 317.94, 317.88, MLO
51,1962, 02, 22692, 1962.1260, 318.55, 317.90, 318.86, 318.20, 318.55, 317.90, MLO
52,1962, 03, 22720, 1962.2027, 319.68, 318.40, 319.56, 318.26, 319.68, 318.40, MLO
53,1962, 04, 22751, 1962.2877, 320.57, 318.24, 320.66, 318.32, 320.57, 318.24, MLO
54,1962, 05, 22781, 1962.3699, 321.02, 318.16, 321.24, 318.39, 321.02, 318.16, MLO
55,1962, 06, 22812, 1962.4548, 320.62, 318.45, 320.60, 318.45, 320.62, 318.45, MLO
56,1962, 07, 22842, 1962.5370, 319.61, 318.94, 319.15, 318.51, 319.61, 318.94, MLO
57,1962, 08, 22873, 1962.6219, 317.40, 318.70, 317.22, 318.56, 317.40, 318.70, MLO
58,1962, 09, 22904, 1962.7068, 316.24, 319.18, 315.65, 318.60, 316.24, 319.18, MLO
59,1962, 10, 22934, 1962.7890, 315.42, 318.45, 315.62, 318.64, 315.42, 318.45, MLO
60,1962, 11, 22965, 1962.8740, 316.69, 318.59, 316.80, 318.68, 316.69, 318.59, MLO
61,1962, 12, 22995, 1962.9562, 317.70, 318.47, 317.96, 318.72, 317.70, 318.47, MLO
62,1963, 01, 23026, 1963.0411, 318.74, 318.68, 318.83, 318.76, 318.74, 318.68, MLO
63,1963, 02, 23057, 1963.1260, 319.07, 318.41, 319.47, 318.81, 319.07, 318.41, MLO
64,1963, 03, 23085, 1963.2027, 319.86, 318.57, 320.16, 318.86, 319.86, 318.57, MLO
65,1963, 04, 23116, 1963.2877, 321.38, 319.05, 321.26, 318.91, 321.38, 319.05, MLO
66,1963, 05, 23146, 1963.3699, 322.25, 319.38, 321.83, 318.96, 322.25, 319.38, MLO
67,1963, 06, 23177, 1963.4548, 321.49, 319.31, 321.17, 319.02, 321.49, 319.31, MLO
68,1963, 07, 23207, 1963.5370, 319.74, 319.07, 319.71, 319.06, 319.74, 319.07, MLO
69,1963, 08, 23238, 1963.6219, 317.77, 319.07, 317.76, 319.10, 317.77, 319.07, MLO
70,1963, 09, 23269, 1963.7068, 316.21, 319.16, 316.19, 319.15, 316.21, 319.16, MLO
71,1963, 10, 23299, 1963.7890, 315.99, 319.03, 316.16, 319.19, 315.99, 319.03, MLO
72,1963, 11, 23330, 1963.8740, 317.07, 318.97, 317.35, 319.23, 317.07, 318.97, MLO
73,1963, 12, 23360, 1963.9562, 318.35, 319.13, 318.52, 319.28, 318.35, 319.13, MLO
74,1964, 01, 23391, 1964.0410, 319.57, 319.51, 319.39, 319.32, 319.57, 319.51, MLO
75,1964, 02, 23422, 1964.1257, -99.99, -99.99, 320.03, 319.37, 320.03, 319.37, MLO
76,1964, 03, 23451, 1964.2049, -99.99, -99.99, 320.74, 319.41, 320.74, 319.41, MLO
77,1964, 04, 23482, 1964.2896, -99.99, -99.99, 321.83, 319.46, 321.83, 319.46, MLO
78,1964, 05, 23512, 1964.3716, 322.25, 319.38, 322.37, 319.50, 322.25, 319.38, MLO
79,1964, 06, 23543, 1964.4563, 321.89, 319.74, 321.67, 319.53, 321.89, 319.74, MLO
80,1964, 07, 23573, 1964.5383, 320.44, 319.79, 320.18, 319.56, 320.44, 319.79, MLO
81,1964, 08, 23604, 1964.6230, 318.69, 320.03, 318.22, 319.59, 318.69, 320.03, MLO
82,1964, 09, 23635, 1964.7077, 316.71, 319.67, 316.63, 319.61, 316.71, 319.67, MLO
83,1964, 10, 23665, 1964.7896, 316.87, 319.92, 316.59, 319.62, 316.87, 319.92, MLO
84,1964, 11, 23696, 1964.8743, 317.68, 319.59, 317.75, 319.64, 317.68, 319.59, MLO
85,1964, 12, 23726, 1964.9563, 318.71, 319.49, 318.90, 319.66, 318.71, 319.49, MLO
86,1965, 01, 23757, 1965.0411, 319.44, 319.38, 319.76, 319.69, 319.44, 319.38, MLO
87,1965, 02, 23788, 1965.1260, 320.45, 319.79, 320.39, 319.73, 320.45, 319.79, MLO
88,1965, 03, 23816, 1965.2027, 320.89, 319.59, 321.08, 319.77, 320.89, 319.59, MLO
89,1965, 04, 23847, 1965.2877, 322.14, 319.79, 322.20, 319.83, 322.14, 319.79, MLO
90,1965, 05, 23877, 1965.3699, 322.17, 319.29, 322.79, 319.91, 322.17, 319.29, MLO
91,1965, 06, 23908, 1965.4548, 321.87, 319.69, 322.17, 320.00, 321.87, 319.69, MLO
92,1965, 07, 23938, 1965.5370, 321.21, 320.53, 320.75, 320.10, 321.21, 320.53, MLO
93,1965, 08, 23969, 1965.6219, 318.87, 320.18, 318.86, 320.21, 318.87, 320.18, MLO
94,1965, 09, 24000, 1965.7068, 317.82, 320.78, 317.35, 320.33, 317.82, 320.78, MLO
95,1965, 10, 24030, 1965.7890, 317.30, 320.37, 317.38, 320.44, 317.30, 320.37, MLO
96,1965, 11, 24061, 1965.8740, 318.87, 320.79, 318.65, 320.55, 318.87, 320.79, MLO
97,1965, 12, 24091, 1965.9562, 319.42, 320.20, 319.90, 320.67, 319.42, 320.20, MLO
98,1966, 01, 24122, 1966.0411, 320.62, 320.57, 320.86, 320.79, 320.62, 320.57, MLO
99,1966, 02, 24153, 1966.1260, 321.60, 320.94, 321.57, 320.91, 321.60, 320.94, MLO
100,1966, 03, 24181, 1966.2027, 322.39, 321.09, 322.33, 321.01, 322.39, 321.09, MLO
101,1966, 04, 24212, 1966.2877, 323.70, 321.34, 323.49, 321.12, 323.70, 321.34, MLO
102,1966, 05, 24242, 1966.3699, 324.08, 321.19, 324.12, 321.22, 324.08, 321.19, MLO
103,1966, 06, 24273, 1966.4548, 323.75, 321.56, 323.50, 321.32, 323.75, 321.56, MLO
104,1966, 07, 24303, 1966.5370, 322.37, 321.69, 322.06, 321.41, 322.37, 321.69, MLO
105,1966, 08, 24334, 1966.6219, 320.36, 321.68, 320.13, 321.48, 320.36, 321.68, MLO
106,1966, 09, 24365, 1966.7068, 318.64, 321.61, 318.57, 321.56, 318.64, 321.61, MLO
107,1966, 10, 24395, 1966.7890, 318.10, 321.18, 318.56, 321.62, 318.10, 321.18, MLO
108,1966, 11, 24426, 1966.8740, 319.78, 321.71, 319.78, 321.69, 319.78, 321.71, MLO
109,1966, 12, 24456, 1966.9562, 321.02, 321.81, 320.98, 321.74, 321.02, 321.81, MLO
110,1967, 01, 24487, 1967.0411, 322.33, 322.27, 321.87, 321.80, 322.33, 322.27, MLO
111,1967, 02, 24518, 1967.1260, 322.50, 321.83, 322.53, 321.86, 322.50, 321.83, MLO
112,1967, 03, 24546, 1967.2027, 323.03, 321.73, 323.23, 321.91, 323.03, 321.73, MLO
113,1967, 04, 24577, 1967.2877, 324.41, 322.05, 324.34, 321.96, 324.41, 322.05, MLO
114,1967, 05, 24607, 1967.3699, 325.00, 322.10, 324.92, 322.02, 325.00, 322.10, MLO
115,1967, 06, 24638, 1967.4548, 324.09, 321.89, 324.26, 322.08, 324.09, 321.89, MLO
116,1967, 07, 24668, 1967.5370, 322.54, 321.86, 322.79, 322.14, 322.54, 321.86, MLO
117,1967, 08, 24699, 1967.6219, 320.92, 322.24, 320.85, 322.21, 320.92, 322.24, MLO
118,1967, 09, 24730, 1967.7068, 319.25, 322.24, 319.28, 322.28, 319.25, 322.24, MLO
119,1967, 10, 24760, 1967.7890, 319.39, 322.48, 319.28, 322.35, 319.39, 322.48, MLO
120,1967, 11, 24791, 1967.8740, 320.73, 322.66, 320.51, 322.42, 320.73, 322.66, MLO
121,1967, 12, 24821, 1967.9562, 321.95, 322.74, 321.73, 322.50, 321.95, 322.74, MLO
122,1968, 01, 24852, 1968.0410, 322.57, 322.51, 322.64, 322.57, 322.57, 322.51, MLO
123,1968, 02, 24883, 1968.1257, 323.15, 322.48, 323.33, 322.65, 323.15, 322.48, MLO
124,1968, 03, 24912, 1968.2049, 323.89, 322.55, 324.08, 322.73, 323.89, 322.55, MLO
125,1968, 04, 24943, 1968.2896, 325.02, 322.63, 325.24, 322.83, 325.02, 322.63, MLO
126,1968, 05, 24973, 1968.3716, 325.57, 322.66, 325.84, 322.93, 325.57, 322.66, MLO
127,1968, 06, 25004, 1968.4563, 325.36, 323.17, 325.20, 323.03, 325.36, 323.17, MLO
128,1968, 07, 25034, 1968.5383, 324.14, 323.48, 323.77, 323.14, 324.14, 323.48, MLO
129,1968, 08, 25065, 1968.6230, 322.11, 323.46, 321.87, 323.26, 322.11, 323.46, MLO
130,1968, 09, 25096, 1968.7077, 320.33, 323.33, 320.36, 323.37, 320.33, 323.33, MLO
131,1968, 10, 25126, 1968.7896, 320.25, 323.34, 320.41, 323.49, 320.25, 323.34, MLO
132,1968, 11, 25157, 1968.8743, 321.32, 323.26, 321.71, 323.62, 321.32, 323.26, MLO
133,1968, 12, 25187, 1968.9563, 322.89, 323.68, 322.98, 323.75, 322.89, 323.68, MLO
134,1969, 01, 25218, 1969.0411, 324.00, 323.94, 323.96, 323.89, 324.00, 323.94, MLO
135,1969, 02, 25249, 1969.1260, 324.41, 323.75, 324.71, 324.03, 324.41, 323.75, MLO
136,1969, 03, 25277, 1969.2027, 325.63, 324.32, 325.49, 324.16, 325.63, 324.32, MLO
137,1969, 04, 25308, 1969.2877, 326.66, 324.29, 326.70, 324.31, 326.66, 324.29, MLO
138,1969, 05, 25338, 1969.3699, 327.38, 324.46, 327.36, 324.44, 327.38, 324.46, MLO
139,1969, 06, 25369, 1969.4548, 326.71, 324.49, 326.77, 324.57, 326.71, 324.49, MLO
140,1969, 07, 25399, 1969.5370, 325.88, 325.19, 325.35, 324.69, 325.88, 325.19, MLO
141,1969, 08, 25430, 1969.6219, 323.66, 324.99, 323.44, 324.81, 323.66, 324.99, MLO
142,1969, 09, 25461, 1969.7068, 322.38, 325.38, 321.89, 324.91, 322.38, 325.38, MLO
143,1969, 10, 25491, 1969.7890, 321.78, 324.88, 321.90, 325.00, 321.78, 324.88, MLO
144,1969, 11, 25522, 1969.8740, 322.85, 324.80, 323.16, 325.08, 322.85, 324.80, MLO
145,1969, 12, 25552, 1969.9562, 324.11, 324.91, 324.38, 325.16, 324.11, 324.91, MLO
146,1970, 01, 25583, 1970.0411, 325.06, 325.00, 325.31, 325.24, 325.06, 325.00, MLO
147,1970, 02, 25614, 1970.1260, 325.99, 325.32, 326.00, 325.33, 325.99, 325.32, MLO
148,1970, 03, 25642, 1970.2027, 326.93, 325.61, 326.73, 325.40, 326.93, 325.61, MLO
149,1970, 04, 25673, 1970.2877, 328.13, 325.75, 327.88, 325.48, 328.13, 325.75, MLO
150,1970, 05, 25703, 1970.3699, 328.08, 325.15, 328.48, 325.55, 328.08, 325.15, MLO
151,1970, 06, 25734, 1970.4548, 327.67, 325.44, 327.84, 325.63, 327.67, 325.44, MLO
152,1970, 07, 25764, 1970.5370, 326.34, 325.65, 326.37, 325.70, 326.34, 325.65, MLO
153,1970, 08, 25795, 1970.6219, 324.68, 326.02, 324.40, 325.77, 324.68, 326.02, MLO
154,1970, 09, 25826, 1970.7068, 323.10, 326.11, 322.81, 325.84, 323.10, 326.11, MLO
155,1970, 10, 25856, 1970.7890, 323.07, 326.18, 322.79, 325.89, 323.07, 326.18, MLO
156,1970, 11, 25887, 1970.8740, 324.01, 325.96, 324.00, 325.93, 324.01, 325.96, MLO
157,1970, 12, 25917, 1970.9562, 325.13, 325.93, 325.19, 325.97, 325.13, 325.93, MLO
158,1971, 01, 25948, 1971.0411, 326.17, 326.11, 326.08, 326.01, 326.17, 326.11, MLO
159,1971, 02, 25979, 1971.1260, 326.69, 326.01, 326.73, 326.05, 326.69, 326.01, MLO
160,1971, 03, 26007, 1971.2027, 327.18, 325.85, 327.43, 326.09, 327.18, 325.85, MLO
161,1971, 04, 26038, 1971.2877, 327.78, 325.39, 328.55, 326.14, 327.78, 325.39, MLO
162,1971, 05, 26068, 1971.3699, 328.93, 325.99, 329.14, 326.20, 328.93, 325.99, MLO
163,1971, 06, 26099, 1971.4548, 328.57, 326.34, 328.48, 326.26, 328.57, 326.34, MLO
164,1971, 07, 26129, 1971.5370, 327.36, 326.67, 327.00, 326.33, 327.36, 326.67, MLO
165,1971, 08, 26160, 1971.6219, 325.43, 326.77, 325.03, 326.41, 325.43, 326.77, MLO
166,1971, 09, 26191, 1971.7068, 323.36, 326.38, 323.44, 326.48, 323.36, 326.38, MLO
167,1971, 10, 26221, 1971.7890, 323.56, 326.69, 323.44, 326.55, 323.56, 326.69, MLO
168,1971, 11, 26252, 1971.8740, 324.80, 326.75, 324.69, 326.62, 324.80, 326.75, MLO
169,1971, 12, 26282, 1971.9562, 326.01, 326.81, 325.92, 326.70, 326.01, 326.81, MLO
170,1972, 01, 26313, 1972.0410, 326.77, 326.71, 326.86, 326.79, 326.77, 326.71, MLO
171,1972, 02, 26344, 1972.1257, 327.63, 326.96, 327.56, 326.88, 327.63, 326.96, MLO
172,1972, 03, 26373, 1972.2049, 327.75, 326.40, 328.35, 326.98, 327.75, 326.40, MLO
173,1972, 04, 26404, 1972.2896, 329.72, 327.30, 329.54, 327.10, 329.72, 327.30, MLO
174,1972, 05, 26434, 1972.3716, 330.07, 327.12, 330.18, 327.23, 330.07, 327.12, MLO
175,1972, 06, 26465, 1972.4563, 329.09, 326.87, 329.58, 327.38, 329.09, 326.87, MLO
176,1972, 07, 26495, 1972.5383, 328.04, 327.37, 328.18, 327.54, 328.04, 327.37, MLO
177,1972, 08, 26526, 1972.6230, 326.32, 327.69, 326.32, 327.72, 326.32, 327.69, MLO
178,1972, 09, 26557, 1972.7077, 324.84, 327.88, 324.86, 327.92, 324.84, 327.88, MLO
179,1972, 10, 26587, 1972.7896, 325.20, 328.33, 324.99, 328.11, 325.20, 328.33, MLO
180,1972, 11, 26618, 1972.8743, 326.50, 328.46, 326.38, 328.31, 326.50, 328.46, MLO
181,1972, 12, 26648, 1972.9563, 327.55, 328.35, 327.73, 328.51, 327.55, 328.35, MLO
182,1973, 01, 26679, 1973.0411, 328.55, 328.49, 328.79, 328.72, 328.55, 328.49, MLO
183,1973, 02, 26710, 1973.1260, 329.56, 328.89, 329.61, 328.93, 329.56, 328.89, MLO
184,1973, 03, 26738, 1973.2027, 330.30, 328.97, 330.46, 329.11, 330.30, 328.97, MLO
185,1973, 04, 26769, 1973.2877, 331.50, 329.10, 331.73, 329.31, 331.50, 329.10, MLO
186,1973, 05, 26799, 1973.3699, 332.48, 329.52, 332.44, 329.48, 332.48, 329.52, MLO
187,1973, 06, 26830, 1973.4548, 332.07, 329.83, 331.87, 329.64, 332.07, 329.83, MLO
188,1973, 07, 26860, 1973.5370, 330.87, 330.17, 330.44, 329.77, 330.87, 330.17, MLO
189,1973, 08, 26891, 1973.6219, 329.31, 330.66, 328.50, 329.88, 329.31, 330.66, MLO
190,1973, 09, 26922, 1973.7068, 327.52, 330.56, 326.91, 329.96, 327.52, 330.56, MLO
191,1973, 10, 26952, 1973.7890, 327.19, 330.33, 326.89, 330.02, 327.19, 330.33, MLO
192,1973, 11, 26983, 1973.8740, 328.17, 330.13, 328.10, 330.05, 328.17, 330.13, MLO
193,1973, 12, 27013, 1973.9562, 328.65, 329.45, 329.29, 330.08, 328.65, 329.45, MLO
194,1974, 01, 27044, 1974.0411, 329.36, 329.30, 330.17, 330.10, 329.36, 329.30, MLO
195,1974, 02, 27075, 1974.1260, 330.71, 330.04, 330.81, 330.13, 330.71, 330.04, MLO
196,1974, 03, 27103, 1974.2027, 331.49, 330.15, 331.50, 330.15, 331.49, 330.15, MLO
197,1974, 04, 27134, 1974.2877, 332.65, 330.24, 332.62, 330.19, 332.65, 330.24, MLO
198,1974, 05, 27164, 1974.3699, 333.10, 330.13, 333.19, 330.23, 333.10, 330.13, MLO
199,1974, 06, 27195, 1974.4548, 332.26, 330.01, 332.51, 330.27, 332.26, 330.01, MLO
200,1974, 07, 27225, 1974.5370, 331.18, 330.48, 330.99, 330.32, 331.18, 330.48, MLO
201,1974, 08, 27256, 1974.6219, 329.40, 330.75, 328.98, 330.37, 329.40, 330.75, MLO
202,1974, 09, 27287, 1974.7068, 327.44, 330.49, 327.36, 330.42, 327.44, 330.49, MLO
203,1974, 10, 27317, 1974.7890, 327.38, 330.53, 327.33, 330.47, 327.38, 330.53, MLO
204,1974, 11, 27348, 1974.8740, 328.46, 330.44, 328.58, 330.53, 328.46, 330.44, MLO
205,1974, 12, 27378, 1974.9562, 329.58, 330.38, 329.81, 330.59, 329.58, 330.38, MLO
206,1975, 01, 27409, 1975.0411, 330.41, 330.35, 330.74, 330.67, 330.41, 330.35, MLO
207,1975, 02, 27440, 1975.1260, 331.41, 330.73, 331.44, 330.75, 331.41, 330.73, MLO
208,1975, 03, 27468, 1975.2027, 332.04, 330.70, 332.18, 330.83, 332.04, 330.70, MLO
209,1975, 04, 27499, 1975.2877, 333.32, 330.89, 333.36, 330.92, 333.32, 330.89, MLO
210,1975, 05, 27529, 1975.3699, 333.98, 331.00, 333.99, 331.02, 333.98, 331.00, MLO
211,1975, 06, 27560, 1975.4548, 333.62, 331.36, 333.36, 331.12, 333.62, 331.36, MLO
212,1975, 07, 27590, 1975.5370, 331.91, 331.21, 331.88, 331.21, 331.91, 331.21, MLO
213,1975, 08, 27621, 1975.6219, 330.06, 331.42, 329.92, 331.31, 330.06, 331.42, MLO
214,1975, 09, 27652, 1975.7068, 328.57, 331.62, 328.32, 331.40, 328.57, 331.62, MLO
215,1975, 10, 27682, 1975.7890, 328.35, 331.51, 328.33, 331.48, 328.35, 331.51, MLO
216,1975, 11, 27713, 1975.8740, 329.50, 331.48, 329.61, 331.57, 329.50, 331.48, MLO
217,1975, 12, 27743, 1975.9562, 330.77, 331.58, 330.86, 331.65, 330.77, 331.58, MLO
218,1976, 01, 27774, 1976.0410, 331.76, 331.70, 331.80, 331.73, 331.76, 331.70, MLO
219,1976, 02, 27805, 1976.1257, 332.58, 331.90, 332.50, 331.81, 332.58, 331.90, MLO
220,1976, 03, 27834, 1976.2049, 333.50, 332.14, 333.27, 331.88, 333.50, 332.14, MLO
221,1976, 04, 27865, 1976.2896, 334.59, 332.14, 334.43, 331.96, 334.59, 332.14, MLO
222,1976, 05, 27895, 1976.3716, 334.89, 331.90, 335.02, 332.04, 334.89, 331.90, MLO
223,1976, 06, 27926, 1976.4563, 334.34, 332.10, 334.35, 332.12, 334.34, 332.10, MLO
224,1976, 07, 27956, 1976.5383, 333.06, 332.38, 332.85, 332.21, 333.06, 332.38, MLO
225,1976, 08, 27987, 1976.6230, 330.95, 332.34, 330.88, 332.30, 330.95, 332.34, MLO
226,1976, 09, 28018, 1976.7077, 329.31, 332.39, 329.31, 332.41, 329.31, 332.39, MLO
227,1976, 10, 28048, 1976.7896, 328.95, 332.12, 329.36, 332.52, 328.95, 332.12, MLO
228,1976, 11, 28079, 1976.8743, 330.32, 332.30, 330.69, 332.65, 330.32, 332.30, MLO
229,1976, 12, 28109, 1976.9563, 331.69, 332.50, 331.99, 332.79, 331.69, 332.50, MLO
230,1977, 01, 28140, 1977.0411, 332.94, 332.88, 333.02, 332.95, 332.94, 332.88, MLO
231,1977, 02, 28171, 1977.1260, 333.43, 332.75, 333.81, 333.12, 333.43, 332.75, MLO
232,1977, 03, 28199, 1977.2027, 334.71, 333.36, 334.65, 333.28, 334.71, 333.36, MLO
233,1977, 04, 28230, 1977.2877, 336.08, 333.64, 335.92, 333.47, 336.08, 333.64, MLO
234,1977, 05, 28260, 1977.3699, 336.76, 333.76, 336.64, 333.65, 336.76, 333.76, MLO
235,1977, 06, 28291, 1977.4548, 336.28, 334.01, 336.08, 333.83, 336.28, 334.01, MLO
236,1977, 07, 28321, 1977.5370, 334.93, 334.22, 334.67, 334.00, 334.93, 334.22, MLO
237,1977, 08, 28352, 1977.6219, 332.76, 334.13, 332.77, 334.17, 332.76, 334.13, MLO
238,1977, 09, 28383, 1977.7068, 331.60, 334.68, 331.23, 334.32, 331.60, 334.68, MLO
239,1977, 10, 28413, 1977.7890, 331.17, 334.35, 331.30, 334.47, 331.17, 334.35, MLO
240,1977, 11, 28444, 1977.8740, 332.41, 334.41, 332.64, 334.61, 332.41, 334.41, MLO
241,1977, 12, 28474, 1977.9562, 333.86, 334.67, 333.95, 334.75, 333.86, 334.67, MLO
242,1978, 01, 28505, 1978.0411, 334.98, 334.92, 334.96, 334.89, 334.98, 334.92, MLO
243,1978, 02, 28536, 1978.1260, 335.40, 334.71, 335.72, 335.02, 335.40, 334.71, MLO
244,1978, 03, 28564, 1978.2027, 336.65, 335.30, 336.51, 335.14, 336.65, 335.30, MLO
245,1978, 04, 28595, 1978.2877, 337.76, 335.32, 337.73, 335.27, 337.76, 335.32, MLO
246,1978, 05, 28625, 1978.3699, 338.02, 335.02, 338.39, 335.39, 338.02, 335.02, MLO
247,1978, 06, 28656, 1978.4548, 337.91, 335.63, 337.76, 335.50, 337.91, 335.63, MLO
248,1978, 07, 28686, 1978.5370, 336.55, 335.84, 336.29, 335.61, 336.55, 335.84, MLO
249,1978, 08, 28717, 1978.6219, 334.69, 336.06, 334.31, 335.71, 334.69, 336.06, MLO
250,1978, 09, 28748, 1978.7068, 332.77, 335.86, 332.71, 335.81, 332.77, 335.86, MLO
251,1978, 10, 28778, 1978.7890, 332.56, 335.75, 332.72, 335.90, 332.56, 335.75, MLO
252,1978, 11, 28809, 1978.8740, 333.93, 335.93, 334.02, 336.00, 333.93, 335.93, MLO
253,1978, 12, 28839, 1978.9562, 334.96, 335.77, 335.30, 336.10, 334.96, 335.77, MLO
254,1979, 01, 28870, 1979.0411, 336.24, 336.18, 336.28, 336.20, 336.24, 336.18, MLO
255,1979, 02, 28901, 1979.1260, 336.77, 336.08, 337.02, 336.32, 336.77, 336.08, MLO
256,1979, 03, 28929, 1979.2027, 337.97, 336.62, 337.80, 336.43, 337.97, 336.62, MLO
257,1979, 04, 28960, 1979.2877, 338.89, 336.44, 339.02, 336.55, 338.89, 336.44, MLO
258,1979, 05, 28990, 1979.3699, 339.48, 336.47, 339.69, 336.68, 339.48, 336.47, MLO
259,1979, 06, 29021, 1979.4548, 339.30, 337.01, 339.08, 336.82, 339.30, 337.01, MLO
260,1979, 07, 29051, 1979.5370, 337.74, 337.03, 337.63, 336.95, 337.74, 337.03, MLO
261,1979, 08, 29082, 1979.6219, 336.10, 337.47, 335.68, 337.09, 336.10, 337.47, MLO
262,1979, 09, 29113, 1979.7068, 333.93, 337.03, 334.12, 337.24, 333.93, 337.03, MLO
263,1979, 10, 29143, 1979.7890, 333.87, 337.07, 334.19, 337.38, 333.87, 337.07, MLO
264,1979, 11, 29174, 1979.8740, 335.30, 337.31, 335.56, 337.54, 335.30, 337.31, MLO
265,1979, 12, 29204, 1979.9562, 336.74, 337.56, 336.90, 337.70, 336.74, 337.56, MLO
266,1980, 01, 29235, 1980.0410, 338.03, 337.97, 337.94, 337.86, 338.03, 337.97, MLO
267,1980, 02, 29266, 1980.1257, 338.37, 337.68, 338.73, 338.03, 338.37, 337.68, MLO
268,1980, 03, 29295, 1980.2049, 340.09, 338.70, 339.59, 338.19, 340.09, 338.70, MLO
269,1980, 04, 29326, 1980.2896, 340.78, 338.30, 340.85, 338.35, 340.78, 338.30, MLO
270,1980, 05, 29356, 1980.3716, 341.48, 338.46, 341.52, 338.50, 341.48, 338.46, MLO
271,1980, 06, 29387, 1980.4563, 341.19, 338.92, 340.90, 338.65, 341.19, 338.92, MLO
272,1980, 07, 29417, 1980.5383, 339.57, 338.89, 339.44, 338.78, 339.57, 338.89, MLO
273,1980, 08, 29448, 1980.6230, 337.61, 339.02, 337.48, 338.92, 337.61, 339.02, MLO
274,1980, 09, 29479, 1980.7077, 335.90, 339.02, 335.91, 339.04, 335.90, 339.02, MLO
275,1980, 10, 29509, 1980.7896, 336.03, 339.24, 335.96, 339.15, 336.03, 339.24, MLO
276,1980, 11, 29540, 1980.8743, 337.12, 339.13, 337.27, 339.26, 337.12, 339.13, MLO
277,1980, 12, 29570, 1980.9563, 338.23, 339.05, 338.56, 339.36, 338.23, 339.05, MLO
278,1981, 01, 29601, 1981.0411, 339.25, 339.19, 339.54, 339.47, 339.25, 339.19, MLO
279,1981, 02, 29632, 1981.1260, 340.50, 339.81, 340.27, 339.57, 340.50, 339.81, MLO
280,1981, 03, 29660, 1981.2027, 341.40, 340.04, 341.03, 339.66, 341.40, 340.04, MLO
281,1981, 04, 29691, 1981.2877, 342.52, 340.06, 342.23, 339.75, 342.52, 340.06, MLO
282,1981, 05, 29721, 1981.3699, 342.93, 339.90, 342.86, 339.83, 342.93, 339.90, MLO
283,1981, 06, 29752, 1981.4548, 342.27, 339.97, 342.20, 339.92, 342.27, 339.97, MLO
284,1981, 07, 29782, 1981.5370, 340.50, 339.79, 340.68, 340.00, 340.50, 339.79, MLO
285,1981, 08, 29813, 1981.6219, 338.45, 339.83, 338.67, 340.09, 338.45, 339.83, MLO
286,1981, 09, 29844, 1981.7068, 336.71, 339.83, 337.05, 340.19, 336.71, 339.83, MLO
287,1981, 10, 29874, 1981.7890, 336.88, 340.10, 337.08, 340.29, 336.88, 340.10, MLO
288,1981, 11, 29905, 1981.8740, 338.38, 340.40, 338.40, 340.40, 338.38, 340.40, MLO
289,1981, 12, 29935, 1981.9562, 339.63, 340.45, 339.70, 340.50, 339.63, 340.45, MLO
290,1982, 01, 29966, 1982.0411, 340.77, 340.71, 340.69, 340.61, 340.77, 340.71, MLO
291,1982, 02, 29997, 1982.1260, 341.63, 340.94, 341.42, 340.72, 341.63, 340.94, MLO
292,1982, 03, 30025, 1982.2027, 342.72, 341.35, 342.19, 340.81, 342.72, 341.35, MLO
293,1982, 04, 30056, 1982.2877, 343.59, 341.11, 343.39, 340.90, 343.59, 341.11, MLO
294,1982, 05, 30086, 1982.3699, 344.16, 341.12, 344.02, 340.98, 344.16, 341.12, MLO
295,1982, 06, 30117, 1982.4548, 343.37, 341.06, 343.35, 341.06, 343.37, 341.06, MLO
296,1982, 07, 30147, 1982.5370, 342.07, 341.36, 341.83, 341.14, 342.07, 341.36, MLO
297,1982, 08, 30178, 1982.6219, 339.83, 341.21, 339.80, 341.22, 339.83, 341.21, MLO
298,1982, 09, 30209, 1982.7068, 338.00, 341.12, 338.16, 341.31, 338.00, 341.12, MLO
299,1982, 10, 30239, 1982.7890, 337.88, 341.11, 338.18, 341.40, 337.88, 341.11, MLO
300,1982, 11, 30270, 1982.8740, 339.28, 341.31, 339.51, 341.52, 339.28, 341.31, MLO
301,1982, 12, 30300, 1982.9562, 340.51, 341.33, 340.84, 341.65, 340.51, 341.33, MLO
302,1983, 01, 30331, 1983.0411, 341.40, 341.33, 341.87, 341.80, 341.40, 341.33, MLO
303,1983, 02, 30362, 1983.1260, 342.54, 341.85, 342.68, 341.97, 342.54, 341.85, MLO
304,1983, 03, 30390, 1983.2027, 343.12, 341.74, 343.52, 342.14, 343.12, 341.74, MLO
305,1983, 04, 30421, 1983.2877, 344.96, 342.48, 344.83, 342.33, 344.96, 342.48, MLO
306,1983, 05, 30451, 1983.3699, 345.78, 342.73, 345.57, 342.52, 345.78, 342.73, MLO
307,1983, 06, 30482, 1983.4548, 345.34, 343.02, 345.01, 342.71, 345.34, 343.02, MLO
308,1983, 07, 30512, 1983.5370, 344.00, 343.28, 343.58, 342.89, 344.00, 343.28, MLO
309,1983, 08, 30543, 1983.6219, 342.40, 343.79, 341.64, 343.06, 342.40, 343.79, MLO
310,1983, 09, 30574, 1983.7068, 339.89, 343.02, 340.08, 343.23, 339.89, 343.02, MLO
311,1983, 10, 30604, 1983.7890, 340.00, 343.25, 340.15, 343.38, 340.00, 343.25, MLO
312,1983, 11, 30635, 1983.8740, 341.16, 343.19, 341.52, 343.53, 341.16, 343.19, MLO
313,1983, 12, 30665, 1983.9562, 342.99, 343.81, 342.86, 343.67, 342.99, 343.81, MLO
314,1984, 01, 30696, 1984.0410, 343.82, 343.76, 343.89, 343.82, 343.82, 343.76, MLO
315,1984, 02, 30727, 1984.1257, 344.62, 343.93, 344.66, 343.96, 344.62, 343.93, MLO
316,1984, 03, 30756, 1984.2049, 345.38, 343.98, 345.50, 344.08, 345.38, 343.98, MLO
317,1984, 04, 30787, 1984.2896, 347.14, 344.63, 346.74, 344.22, 347.14, 344.63, MLO
318,1984, 05, 30817, 1984.3716, 347.52, 344.46, 347.39, 344.34, 347.52, 344.46, MLO
319,1984, 06, 30848, 1984.4563, 346.88, 344.58, 346.74, 344.46, 346.88, 344.58, MLO
320,1984, 07, 30878, 1984.5383, 345.47, 344.77, 345.23, 344.57, 345.47, 344.77, MLO
321,1984, 08, 30909, 1984.6230, 343.34, 344.76, 343.23, 344.69, 343.34, 344.76, MLO
322,1984, 09, 30940, 1984.7077, 341.13, 344.29, 341.63, 344.80, 341.13, 344.29, MLO
323,1984, 10, 30970, 1984.7896, 341.40, 344.64, 341.68, 344.92, 341.40, 344.64, MLO
324,1984, 11, 31001, 1984.8743, 343.02, 345.05, 343.03, 345.04, 343.02, 345.05, MLO
325,1984, 12, 31031, 1984.9563, 344.25, 345.08, 344.35, 345.16, 344.25, 345.08, MLO
326,1985, 01, 31062, 1985.0411, 344.99, 344.93, 345.36, 345.28, 344.99, 344.93, MLO
327,1985, 02, 31093, 1985.1260, 346.01, 345.31, 346.12, 345.41, 346.01, 345.31, MLO
328,1985, 03, 31121, 1985.2027, 347.43, 346.05, 346.91, 345.52, 347.43, 346.05, MLO
329,1985, 04, 31152, 1985.2877, 348.34, 345.85, 348.14, 345.63, 348.34, 345.85, MLO
330,1985, 05, 31182, 1985.3699, 348.92, 345.85, 348.80, 345.73, 348.92, 345.85, MLO
331,1985, 06, 31213, 1985.4548, 348.24, 345.91, 348.14, 345.83, 348.24, 345.91, MLO
332,1985, 07, 31243, 1985.5370, 346.53, 345.81, 346.61, 345.92, 346.53, 345.81, MLO
333,1985, 08, 31274, 1985.6219, 344.64, 346.04, 344.57, 346.00, 344.64, 346.04, MLO
334,1985, 09, 31305, 1985.7068, 343.06, 346.21, 342.92, 346.09, 343.06, 346.21, MLO
335,1985, 10, 31335, 1985.7890, 342.77, 346.04, 342.92, 346.17, 342.77, 346.04, MLO
336,1985, 11, 31366, 1985.8740, 344.21, 346.26, 344.24, 346.26, 344.21, 346.26, MLO
337,1985, 12, 31396, 1985.9562, 345.53, 346.36, 345.54, 346.35, 345.53, 346.36, MLO
338,1986, 01, 31427, 1986.0411, 346.28, 346.21, 346.53, 346.45, 346.28, 346.21, MLO
339,1986, 02, 31458, 1986.1260, 346.93, 346.23, 347.27, 346.56, 346.93, 346.23, MLO
340,1986, 03, 31486, 1986.2027, 347.83, 346.44, 348.07, 346.67, 347.83, 346.44, MLO
341,1986, 04, 31517, 1986.2877, 349.53, 347.03, 349.32, 346.80, 349.53, 347.03, MLO
342,1986, 05, 31547, 1986.3699, 350.19, 347.12, 350.00, 346.92, 350.19, 347.12, MLO
343,1986, 06, 31578, 1986.4548, 349.54, 347.20, 349.36, 347.05, 349.54, 347.20, MLO
344,1986, 07, 31608, 1986.5370, 347.92, 347.19, 347.87, 347.17, 347.92, 347.19, MLO
345,1986, 08, 31639, 1986.6219, 345.88, 347.28, 345.86, 347.30, 345.88, 347.28, MLO
346,1986, 09, 31670, 1986.7068, 344.83, 347.99, 344.25, 347.43, 344.83, 347.99, MLO
347,1986, 10, 31700, 1986.7890, 344.15, 347.43, 344.30, 347.56, 344.15, 347.43, MLO
348,1986, 11, 31731, 1986.8740, 345.64, 347.69, 345.66, 347.69, 345.64, 347.69, MLO
349,1986, 12, 31761, 1986.9562, 346.88, 347.71, 347.00, 347.82, 346.88, 347.71, MLO
350,1987, 01, 31792, 1987.0411, 348.00, 347.94, 348.04, 347.96, 348.00, 347.94, MLO
351,1987, 02, 31823, 1987.1260, 348.47, 347.76, 348.83, 348.12, 348.47, 347.76, MLO
352,1987, 03, 31851, 1987.2027, 349.40, 348.02, 349.67, 348.27, 349.40, 348.02, MLO
353,1987, 04, 31882, 1987.2877, 350.97, 348.46, 350.97, 348.44, 350.97, 348.46, MLO
354,1987, 05, 31912, 1987.3699, 351.84, 348.75, 351.70, 348.61, 351.84, 348.75, MLO
355,1987, 06, 31943, 1987.4548, 351.25, 348.91, 351.12, 348.80, 351.25, 348.91, MLO
356,1987, 07, 31973, 1987.5370, 349.50, 348.77, 349.68, 348.99, 349.50, 348.77, MLO
357,1987, 08, 32004, 1987.6219, 348.08, 349.49, 347.74, 349.18, 348.08, 349.49, MLO
358,1987, 09, 32035, 1987.7068, 346.44, 349.61, 346.19, 349.38, 346.44, 349.61, MLO
359,1987, 10, 32065, 1987.7890, 346.09, 349.37, 346.30, 349.57, 346.09, 349.37, MLO
360,1987, 11, 32096, 1987.8740, 347.54, 349.60, 347.74, 349.77, 347.54, 349.60, MLO
361,1987, 12, 32126, 1987.9562, 348.69, 349.53, 349.15, 349.97, 348.69, 349.53, MLO
362,1988, 01, 32157, 1988.0410, 350.16, 350.10, 350.25, 350.18, 350.16, 350.10, MLO
363,1988, 02, 32188, 1988.1257, 351.47, 350.77, 351.10, 350.39, 351.47, 350.77, MLO
364,1988, 03, 32217, 1988.2049, 351.96, 350.54, 352.01, 350.58, 351.96, 350.54, MLO
365,1988, 04, 32248, 1988.2896, 353.33, 350.79, 353.34, 350.78, 353.33, 350.79, MLO
366,1988, 05, 32278, 1988.3716, 353.97, 350.88, 354.06, 350.97, 353.97, 350.88, MLO
367,1988, 06, 32309, 1988.4563, 353.55, 351.22, 353.46, 351.16, 353.55, 351.22, MLO
368,1988, 07, 32339, 1988.5383, 352.14, 351.44, 352.00, 351.33, 352.14, 351.44, MLO
369,1988, 08, 32370, 1988.6230, 350.19, 351.63, 350.02, 351.50, 350.19, 351.63, MLO
370,1988, 09, 32401, 1988.7077, 348.50, 351.69, 348.45, 351.65, 348.50, 351.69, MLO
371,1988, 10, 32431, 1988.7896, 348.66, 351.94, 348.53, 351.80, 348.66, 351.94, MLO
372,1988, 11, 32462, 1988.8743, 349.85, 351.90, 349.90, 351.93, 349.85, 351.90, MLO
373,1988, 12, 32492, 1988.9563, 351.12, 351.96, 351.23, 352.05, 351.12, 351.96, MLO
374,1989, 01, 32523, 1989.0411, 352.55, 352.49, 352.25, 352.17, 352.55, 352.49, MLO
375,1989, 02, 32554, 1989.1260, 352.86, 352.15, 353.00, 352.29, 352.86, 352.15, MLO
376,1989, 03, 32582, 1989.2027, 353.48, 352.08, 353.80, 352.38, 353.48, 352.08, MLO
377,1989, 04, 32613, 1989.2877, 355.21, 352.69, 355.03, 352.49, 355.21, 352.69, MLO
378,1989, 05, 32643, 1989.3699, 355.47, 352.37, 355.69, 352.59, 355.47, 352.37, MLO
379,1989, 06, 32674, 1989.4548, 354.92, 352.57, 355.03, 352.69, 354.92, 352.57, MLO
380,1989, 07, 32704, 1989.5370, 353.70, 352.96, 353.49, 352.79, 353.70, 352.96, MLO
381,1989, 08, 32735, 1989.6219, 351.47, 352.88, 351.44, 352.89, 351.47, 352.88, MLO
382,1989, 09, 32766, 1989.7068, 349.61, 352.80, 349.78, 352.99, 349.61, 352.80, MLO
383,1989, 10, 32796, 1989.7890, 349.79, 353.09, 349.80, 353.08, 349.79, 353.09, MLO
384,1989, 11, 32827, 1989.8740, 351.10, 353.16, 351.14, 353.18, 351.10, 353.16, MLO
385,1989, 12, 32857, 1989.9562, 352.32, 353.17, 352.46, 353.28, 352.32, 353.17, MLO
386,1990, 01, 32888, 1990.0411, 353.46, 353.40, 353.46, 353.38, 353.46, 353.40, MLO
387,1990, 02, 32919, 1990.1260, 354.50, 353.79, 354.21, 353.49, 354.50, 353.79, MLO
388,1990, 03, 32947, 1990.2027, 355.19, 353.79, 355.00, 353.58, 355.19, 353.79, MLO
389,1990, 04, 32978, 1990.2877, 356.00, 353.47, 356.24, 353.69, 356.00, 353.47, MLO
390,1990, 05, 33008, 1990.3699, 356.96, 353.85, 356.90, 353.79, 356.96, 353.85, MLO
391,1990, 06, 33039, 1990.4548, 356.04, 353.68, 356.25, 353.91, 356.04, 353.68, MLO
392,1990, 07, 33069, 1990.5370, 354.62, 353.89, 354.73, 354.02, 354.62, 353.89, MLO
393,1990, 08, 33100, 1990.6219, 352.71, 354.13, 352.70, 354.16, 352.71, 354.13, MLO
394,1990, 09, 33131, 1990.7068, 350.77, 353.98, 351.08, 354.30, 350.77, 353.98, MLO
395,1990, 10, 33161, 1990.7890, 350.99, 354.29, 351.14, 354.44, 350.99, 354.29, MLO
396,1990, 11, 33192, 1990.8740, 352.64, 354.71, 352.54, 354.59, 352.64, 354.71, MLO
397,1990, 12, 33222, 1990.9562, 354.02, 354.86, 353.91, 354.73, 354.02, 354.86, MLO
398,1991, 01, 33253, 1991.0411, 354.53, 354.46, 354.96, 354.88, 354.53, 354.46, MLO
399,1991, 02, 33284, 1991.1260, 355.55, 354.84, 355.74, 355.02, 355.55, 354.84, MLO
400,1991, 03, 33312, 1991.2027, 356.96, 355.55, 356.56, 355.14, 356.96, 355.55, MLO
401,1991, 04, 33343, 1991.2877, 358.40, 355.86, 357.81, 355.25, 358.40, 355.86, MLO
402,1991, 05, 33373, 1991.3699, 359.14, 356.02, 358.47, 355.35, 359.14, 356.02, MLO
403,1991, 06, 33404, 1991.4548, 358.04, 355.67, 357.78, 355.43, 358.04, 355.67, MLO
404,1991, 07, 33434, 1991.5370, 355.98, 355.24, 356.20, 355.49, 355.98, 355.24, MLO
405,1991, 08, 33465, 1991.6219, 353.81, 355.24, 354.09, 355.55, 353.81, 355.24, MLO
406,1991, 09, 33496, 1991.7068, 351.95, 355.16, 352.38, 355.61, 351.95, 355.16, MLO
407,1991, 10, 33526, 1991.7890, 352.02, 355.34, 352.36, 355.67, 352.02, 355.34, MLO
408,1991, 11, 33557, 1991.8740, 353.55, 355.63, 353.67, 355.73, 353.55, 355.63, MLO
409,1991, 12, 33587, 1991.9562, 354.79, 355.64, 354.97, 355.80, 354.79, 355.64, MLO
410,1992, 01, 33618, 1992.0410, 355.79, 355.72, 355.94, 355.87, 355.79, 355.72, MLO
411,1992, 02, 33649, 1992.1257, 356.52, 355.81, 356.66, 355.94, 356.52, 355.81, MLO
412,1992, 03, 33678, 1992.2049, 357.61, 356.18, 357.45, 356.00, 357.61, 356.18, MLO
413,1992, 04, 33709, 1992.2896, 358.95, 356.38, 358.65, 356.06, 358.95, 356.38, MLO
414,1992, 05, 33739, 1992.3716, 359.46, 356.33, 359.25, 356.12, 359.46, 356.33, MLO
415,1992, 06, 33770, 1992.4563, 359.06, 356.70, 358.50, 356.16, 359.06, 356.70, MLO
416,1992, 07, 33800, 1992.5383, 356.82, 356.11, 356.88, 356.20, 356.82, 356.11, MLO
417,1992, 08, 33831, 1992.6230, 354.80, 356.26, 354.74, 356.23, 354.80, 356.26, MLO
418,1992, 09, 33862, 1992.7077, 352.81, 356.04, 353.02, 356.26, 352.81, 356.04, MLO
419,1992, 10, 33892, 1992.7896, 353.11, 356.43, 352.98, 356.29, 353.11, 356.43, MLO
420,1992, 11, 33923, 1992.8743, 353.96, 356.04, 354.27, 356.33, 353.96, 356.04, MLO
421,1992, 12, 33953, 1992.9563, 355.20, 356.05, 355.54, 356.37, 355.20, 356.05, MLO
422,1993, 01, 33984, 1993.0411, 356.50, 356.44, 356.50, 356.43, 356.50, 356.44, MLO
423,1993, 02, 34015, 1993.1260, 356.97, 356.25, 357.22, 356.49, 356.97, 356.25, MLO
424,1993, 03, 34043, 1993.2027, 358.18, 356.76, 357.98, 356.55, 358.18, 356.76, MLO
425,1993, 04, 34074, 1993.2877, 359.26, 356.70, 359.20, 356.63, 359.26, 356.70, MLO
426,1993, 05, 34104, 1993.3699, 360.08, 356.94, 359.85, 356.71, 360.08, 356.94, MLO
427,1993, 06, 34135, 1993.4548, 359.40, 357.01, 359.16, 356.80, 359.40, 357.01, MLO
428,1993, 07, 34165, 1993.5370, 357.38, 356.63, 357.61, 356.90, 357.38, 356.63, MLO
429,1993, 08, 34196, 1993.6219, 355.33, 356.76, 355.55, 357.01, 355.33, 356.76, MLO
430,1993, 09, 34227, 1993.7068, 353.50, 356.73, 353.90, 357.14, 353.50, 356.73, MLO
431,1993, 10, 34257, 1993.7890, 353.80, 357.13, 353.95, 357.28, 353.80, 357.13, MLO
432,1993, 11, 34288, 1993.8740, 355.15, 357.24, 355.37, 357.43, 355.15, 357.24, MLO
433,1993, 12, 34318, 1993.9562, 356.62, 357.47, 356.76, 357.59, 356.62, 357.47, MLO
434,1994, 01, 34349, 1994.0411, 358.19, 358.12, 357.84, 357.76, 358.19, 358.12, MLO
435,1994, 02, 34380, 1994.1260, 358.73, 358.01, 358.66, 357.93, 358.73, 358.01, MLO
436,1994, 03, 34408, 1994.2027, 359.79, 358.37, 359.52, 358.09, 359.79, 358.37, MLO
437,1994, 04, 34439, 1994.2877, 361.09, 358.52, 360.84, 358.26, 361.09, 358.52, MLO
438,1994, 05, 34469, 1994.3699, 361.52, 358.36, 361.57, 358.42, 361.52, 358.36, MLO
439,1994, 06, 34500, 1994.4548, 360.78, 358.38, 360.96, 358.59, 360.78, 358.38, MLO
440,1994, 07, 34530, 1994.5370, 359.38, 358.63, 359.47, 358.75, 359.38, 358.63, MLO
441,1994, 08, 34561, 1994.6219, 357.31, 358.74, 357.46, 358.93, 357.31, 358.74, MLO
442,1994, 09, 34592, 1994.7068, 355.68, 358.92, 355.85, 359.11, 355.68, 358.92, MLO
443,1994, 10, 34622, 1994.7890, 355.83, 359.18, 355.95, 359.28, 355.83, 359.18, MLO
444,1994, 11, 34653, 1994.8740, 357.42, 359.52, 357.40, 359.47, 357.42, 359.52, MLO
445,1994, 12, 34683, 1994.9562, 358.87, 359.73, 358.81, 359.65, 358.87, 359.73, MLO
446,1995, 01, 34714, 1995.0411, 359.81, 359.74, 359.91, 359.84, 359.81, 359.74, MLO
447,1995, 02, 34745, 1995.1260, 360.84, 360.12, 360.75, 360.02, 360.84, 360.12, MLO
448,1995, 03, 34773, 1995.2027, 361.48, 360.06, 361.62, 360.18, 361.48, 360.06, MLO
449,1995, 04, 34804, 1995.2877, 363.30, 360.73, 362.94, 360.36, 363.30, 360.73, MLO
450,1995, 05, 34834, 1995.3699, 363.64, 360.49, 363.68, 360.52, 363.64, 360.49, MLO
451,1995, 06, 34865, 1995.4548, 363.11, 360.71, 363.06, 360.69, 363.11, 360.71, MLO
452,1995, 07, 34895, 1995.5370, 361.74, 361.00, 361.56, 360.85, 361.74, 361.00, MLO
453,1995, 08, 34926, 1995.6219, 359.31, 360.75, 359.53, 361.01, 359.31, 360.75, MLO
454,1995, 09, 34957, 1995.7068, 357.91, 361.16, 357.91, 361.17, 357.91, 361.16, MLO
455,1995, 10, 34987, 1995.7890, 357.62, 360.97, 357.99, 361.33, 357.62, 360.97, MLO
456,1995, 11, 35018, 1995.8740, 359.42, 361.53, 359.41, 361.49, 359.42, 361.53, MLO
457,1995, 12, 35048, 1995.9562, 360.56, 361.42, 360.81, 361.65, 360.56, 361.42, MLO
458,1996, 01, 35079, 1996.0410, 361.91, 361.85, 361.88, 361.80, 361.91, 361.85, MLO
459,1996, 02, 35110, 1996.1257, 363.11, 362.39, 362.68, 361.95, 363.11, 362.39, MLO
460,1996, 03, 35139, 1996.2049, 363.88, 362.43, 363.55, 362.08, 363.88, 362.43, MLO
461,1996, 04, 35170, 1996.2896, 364.58, 361.98, 364.83, 362.21, 364.58, 361.98, MLO
462,1996, 05, 35200, 1996.3716, 365.29, 362.12, 365.49, 362.32, 365.29, 362.12, MLO
463,1996, 06, 35231, 1996.4563, 364.84, 362.46, 364.79, 362.43, 364.84, 362.46, MLO
464,1996, 07, 35261, 1996.5383, 363.52, 362.80, 363.22, 362.53, 363.52, 362.80, MLO
465,1996, 08, 35292, 1996.6230, 361.35, 362.82, 361.11, 362.62, 361.35, 362.82, MLO
466,1996, 09, 35323, 1996.7077, 359.32, 362.59, 359.42, 362.71, 359.32, 362.59, MLO
467,1996, 10, 35353, 1996.7896, 359.48, 362.84, 359.44, 362.79, 359.48, 362.84, MLO
468,1996, 11, 35384, 1996.8743, 360.64, 362.74, 360.79, 362.87, 360.64, 362.74, MLO
469,1996, 12, 35414, 1996.9563, 362.21, 363.06, 362.11, 362.95, 362.21, 363.06, MLO
470,1997, 01, 35445, 1997.0411, 363.06, 363.00, 363.11, 363.03, 363.06, 363.00, MLO
471,1997, 02, 35476, 1997.1260, 363.87, 363.15, 363.86, 363.12, 363.87, 363.15, MLO
472,1997, 03, 35504, 1997.2027, 364.44, 363.01, 364.65, 363.21, 364.44, 363.01, MLO
473,1997, 04, 35535, 1997.2877, 366.23, 363.65, 365.92, 363.31, 366.23, 363.65, MLO
474,1997, 05, 35565, 1997.3699, 366.68, 363.50, 366.61, 363.43, 366.68, 363.50, MLO
475,1997, 06, 35596, 1997.4548, 365.52, 363.11, 365.96, 363.57, 365.52, 363.11, MLO
476,1997, 07, 35626, 1997.5370, 364.36, 363.61, 364.43, 363.72, 364.36, 363.61, MLO
477,1997, 08, 35657, 1997.6219, 362.39, 363.84, 362.41, 363.89, 362.39, 363.84, MLO
478,1997, 09, 35688, 1997.7068, 360.08, 363.34, 360.81, 364.09, 360.08, 363.34, MLO
479,1997, 10, 35718, 1997.7890, 360.67, 364.04, 360.95, 364.31, 360.67, 364.04, MLO
480,1997, 11, 35749, 1997.8740, 362.32, 364.44, 362.46, 364.55, 362.32, 364.44, MLO
481,1997, 12, 35779, 1997.9562, 364.17, 365.03, 363.96, 364.81, 364.17, 365.03, MLO
482,1998, 01, 35810, 1998.0411, 365.22, 365.15, 365.15, 365.08, 365.22, 365.15, MLO
483,1998, 02, 35841, 1998.1260, 366.04, 365.32, 366.09, 365.35, 366.04, 365.32, MLO
484,1998, 03, 35869, 1998.2027, 367.20, 365.77, 367.05, 365.60, 367.20, 365.77, MLO
485,1998, 04, 35900, 1998.2877, 368.50, 365.91, 368.49, 365.88, 368.50, 365.91, MLO
486,1998, 05, 35930, 1998.3699, 369.19, 366.00, 369.33, 366.14, 369.19, 366.00, MLO
487,1998, 06, 35961, 1998.4548, 368.77, 366.35, 368.80, 366.40, 368.77, 366.35, MLO
488,1998, 07, 35991, 1998.5370, 367.53, 366.78, 367.37, 366.65, 367.53, 366.78, MLO
489,1998, 08, 36022, 1998.6219, 365.67, 367.13, 365.39, 366.88, 365.67, 367.13, MLO
490,1998, 09, 36053, 1998.7068, 363.80, 367.08, 363.81, 367.10, 363.80, 367.08, MLO
491,1998, 10, 36083, 1998.7890, 364.13, 367.52, 363.92, 367.29, 364.13, 367.52, MLO
492,1998, 11, 36114, 1998.8740, 365.36, 367.48, 365.37, 367.47, 365.36, 367.48, MLO
493,1998, 12, 36144, 1998.9562, 366.87, 367.73, 366.77, 367.62, 366.87, 367.73, MLO
494,1999, 01, 36175, 1999.0411, 368.05, 367.99, 367.83, 367.75, 368.05, 367.99, MLO
495,1999, 02, 36206, 1999.1260, 368.77, 368.05, 368.61, 367.87, 368.77, 368.05, MLO
496,1999, 03, 36234, 1999.2027, 369.49, 368.05, 369.41, 367.95, 369.49, 368.05, MLO
497,1999, 04, 36265, 1999.2877, 371.04, 368.44, 370.66, 368.04, 371.04, 368.44, MLO
498,1999, 05, 36295, 1999.3699, 370.90, 367.71, 371.30, 368.11, 370.90, 367.71, MLO
499,1999, 06, 36326, 1999.4548, 370.25, 367.83, 370.58, 368.18, 370.25, 367.83, MLO
500,1999, 07, 36356, 1999.5370, 369.17, 368.41, 368.97, 368.24, 369.17, 368.41, MLO
501,1999, 08, 36387, 1999.6219, 366.83, 368.29, 366.82, 368.32, 366.83, 368.29, MLO
502,1999, 09, 36418, 1999.7068, 364.54, 367.83, 365.09, 368.39, 364.54, 367.83, MLO
503,1999, 10, 36448, 1999.7890, 365.04, 368.44, 365.09, 368.47, 365.04, 368.44, MLO
504,1999, 11, 36479, 1999.8740, 366.58, 368.71, 366.45, 368.55, 366.58, 368.71, MLO
505,1999, 12, 36509, 1999.9562, 367.92, 368.78, 367.79, 368.64, 367.92, 368.78, MLO
506,2000, 01, 36540, 2000.0410, 369.05, 368.99, 368.81, 368.73, 369.05, 368.99, MLO
507,2000, 02, 36571, 2000.1257, 369.37, 368.64, 369.57, 368.83, 369.37, 368.64, MLO
508,2000, 03, 36600, 2000.2049, 370.42, 368.95, 370.41, 368.93, 370.42, 368.95, MLO
509,2000, 04, 36631, 2000.2896, 371.57, 368.93, 371.69, 369.03, 371.57, 368.93, MLO
510,2000, 05, 36661, 2000.3716, 371.74, 368.53, 372.35, 369.15, 371.74, 368.53, MLO
511,2000, 06, 36692, 2000.4563, 371.60, 369.19, 371.67, 369.28, 371.60, 369.19, MLO
512,2000, 07, 36722, 2000.5383, 370.02, 369.30, 370.11, 369.42, 370.02, 369.30, MLO
513,2000, 08, 36753, 2000.6230, 368.03, 369.52, 368.03, 369.56, 368.03, 369.52, MLO
514,2000, 09, 36784, 2000.7077, 366.53, 369.84, 366.38, 369.71, 366.53, 369.84, MLO
515,2000, 10, 36814, 2000.7896, 366.64, 370.04, 366.46, 369.85, 366.64, 370.04, MLO
516,2000, 11, 36845, 2000.8743, 368.20, 370.33, 367.88, 369.99, 368.20, 370.33, MLO
517,2000, 12, 36875, 2000.9563, 369.44, 370.31, 369.27, 370.12, 369.44, 370.31, MLO
518,2001, 01, 36906, 2001.0411, 370.20, 370.13, 370.32, 370.25, 370.20, 370.13, MLO
519,2001, 02, 36937, 2001.1260, 371.42, 370.68, 371.11, 370.37, 371.42, 370.68, MLO
520,2001, 03, 36965, 2001.2027, 372.04, 370.59, 371.94, 370.48, 372.04, 370.59, MLO
521,2001, 04, 36996, 2001.2877, 372.78, 370.16, 373.23, 370.60, 372.78, 370.16, MLO
522,2001, 05, 37026, 2001.3699, 373.94, 370.72, 373.93, 370.72, 373.94, 370.72, MLO
523,2001, 06, 37057, 2001.4548, 373.23, 370.79, 373.27, 370.85, 373.23, 370.79, MLO
524,2001, 07, 37087, 2001.5370, 371.54, 370.78, 371.71, 370.98, 371.54, 370.78, MLO
525,2001, 08, 37118, 2001.6219, 369.47, 370.94, 369.62, 371.13, 369.47, 370.94, MLO
526,2001, 09, 37149, 2001.7068, 367.88, 371.19, 367.96, 371.28, 367.88, 371.19, MLO
527,2001, 10, 37179, 2001.7890, 368.01, 371.43, 368.03, 371.43, 368.01, 371.43, MLO
528,2001, 11, 37210, 2001.8740, 369.60, 371.74, 369.48, 371.60, 369.60, 371.74, MLO
529,2001, 12, 37240, 2001.9562, 371.16, 372.03, 370.91, 371.76, 371.16, 372.03, MLO
530,2002, 01, 37271, 2002.0411, 372.36, 372.29, 372.01, 371.93, 372.36, 372.29, MLO
531,2002, 02, 37302, 2002.1260, 373.00, 372.27, 372.85, 372.10, 373.00, 372.27, MLO
532,2002, 03, 37330, 2002.2027, 373.44, 371.99, 373.73, 372.27, 373.44, 371.99, MLO
533,2002, 04, 37361, 2002.2877, 374.77, 372.15, 375.09, 372.45, 374.77, 372.15, MLO
534,2002, 05, 37391, 2002.3699, 375.48, 372.26, 375.87, 372.65, 375.48, 372.26, MLO
535,2002, 06, 37422, 2002.4548, 375.33, 372.89, 375.28, 372.86, 375.33, 372.89, MLO
536,2002, 07, 37452, 2002.5370, 373.95, 373.19, 373.80, 373.07, 373.95, 373.19, MLO
537,2002, 08, 37483, 2002.6219, 371.41, 372.88, 371.79, 373.30, 371.41, 372.88, MLO
538,2002, 09, 37514, 2002.7068, 370.63, 373.94, 370.20, 373.53, 370.63, 373.94, MLO
539,2002, 10, 37544, 2002.7890, 370.18, 373.60, 370.35, 373.76, 370.18, 373.60, MLO
540,2002, 11, 37575, 2002.8740, 372.01, 374.16, 371.87, 373.99, 372.01, 374.16, MLO
541,2002, 12, 37605, 2002.9562, 373.71, 374.58, 373.36, 374.22, 373.71, 374.58, MLO
542,2003, 01, 37636, 2003.0411, 374.61, 374.55, 374.52, 374.44, 374.61, 374.55, MLO
543,2003, 02, 37667, 2003.1260, 375.55, 374.81, 375.41, 374.66, 375.55, 374.81, MLO
544,2003, 03, 37695, 2003.2027, 376.04, 374.58, 376.33, 374.86, 376.04, 374.58, MLO
545,2003, 04, 37726, 2003.2877, 377.58, 374.95, 377.72, 375.07, 377.58, 374.95, MLO
546,2003, 05, 37756, 2003.3699, 378.28, 375.05, 378.50, 375.27, 378.28, 375.05, MLO
547,2003, 06, 37787, 2003.4548, 378.07, 375.62, 377.91, 375.48, 378.07, 375.62, MLO
548,2003, 07, 37817, 2003.5370, 376.54, 375.78, 376.40, 375.67, 376.54, 375.78, MLO
549,2003, 08, 37848, 2003.6219, 374.42, 375.89, 374.35, 375.86, 374.42, 375.89, MLO
550,2003, 09, 37879, 2003.7068, 372.92, 376.24, 372.70, 376.04, 372.92, 376.24, MLO
551,2003, 10, 37909, 2003.7890, 372.94, 376.38, 372.78, 376.21, 372.94, 376.38, MLO
552,2003, 11, 37940, 2003.8740, 374.29, 376.44, 374.24, 376.37, 374.29, 376.44, MLO
553,2003, 12, 37970, 2003.9562, 375.63, 376.50, 375.65, 376.51, 375.63, 376.50, MLO
554,2004, 01, 38001, 2004.0410, 376.73, 376.66, 376.73, 376.65, 376.73, 376.66, MLO
555,2004, 02, 38032, 2004.1257, 377.31, 376.57, 377.53, 376.79, 377.31, 376.57, MLO
556,2004, 03, 38061, 2004.2049, 378.33, 376.85, 378.41, 376.91, 378.33, 376.85, MLO
557,2004, 04, 38092, 2004.2896, 380.44, 377.77, 379.71, 377.03, 380.44, 377.77, MLO
558,2004, 05, 38122, 2004.3716, 380.56, 377.31, 380.38, 377.14, 380.56, 377.31, MLO
559,2004, 06, 38153, 2004.4563, 379.49, 377.06, 379.67, 377.26, 379.49, 377.06, MLO
560,2004, 07, 38183, 2004.5383, 377.70, 376.97, 378.08, 377.38, 377.70, 376.97, MLO
561,2004, 08, 38214, 2004.6230, 375.77, 377.28, 375.97, 377.52, 375.77, 377.28, MLO
562,2004, 09, 38245, 2004.7077, 373.99, 377.34, 374.31, 377.67, 373.99, 377.34, MLO
563,2004, 10, 38275, 2004.7896, 374.17, 377.61, 374.41, 377.83, 374.17, 377.61, MLO
564,2004, 11, 38306, 2004.8743, 375.79, 377.95, 375.88, 378.01, 375.79, 377.95, MLO
565,2004, 12, 38336, 2004.9563, 377.39, 378.27, 377.34, 378.20, 377.39, 378.27, MLO
566,2005, 01, 38367, 2005.0411, 378.29, 378.22, 378.49, 378.41, 378.29, 378.22, MLO
567,2005, 02, 38398, 2005.1260, 379.56, 378.82, 379.37, 378.62, 379.56, 378.82, MLO
568,2005, 03, 38426, 2005.2027, 380.07, 378.60, 380.30, 378.82, 380.07, 378.60, MLO
569,2005, 04, 38457, 2005.2877, 382.01, 379.37, 381.71, 379.04, 382.01, 379.37, MLO
570,2005, 05, 38487, 2005.3699, 382.21, 378.96, 382.51, 379.26, 382.21, 378.96, MLO
571,2005, 06, 38518, 2005.4548, 382.05, 379.58, 381.93, 379.48, 382.05, 379.58, MLO
572,2005, 07, 38548, 2005.5370, 380.63, 379.86, 380.43, 379.69, 380.63, 379.86, MLO
573,2005, 08, 38579, 2005.6219, 378.64, 380.12, 378.39, 379.91, 378.64, 380.12, MLO
574,2005, 09, 38610, 2005.7068, 376.38, 379.73, 376.76, 380.12, 376.38, 379.73, MLO
575,2005, 10, 38640, 2005.7890, 376.77, 380.22, 376.87, 380.32, 376.77, 380.22, MLO
576,2005, 11, 38671, 2005.8740, 378.27, 380.44, 378.37, 380.51, 378.27, 380.44, MLO
577,2005, 12, 38701, 2005.9562, 379.93, 380.81, 379.84, 380.70, 379.93, 380.81, MLO
578,2006, 01, 38732, 2006.0411, 381.33, 381.27, 380.96, 380.88, 381.33, 381.27, MLO
579,2006, 02, 38763, 2006.1260, 381.98, 381.24, 381.81, 381.06, 381.98, 381.24, MLO
580,2006, 03, 38791, 2006.2027, 382.53, 381.06, 382.69, 381.21, 382.53, 381.06, MLO
581,2006, 04, 38822, 2006.2877, 384.33, 381.68, 384.03, 381.36, 384.33, 381.68, MLO
582,2006, 05, 38852, 2006.3699, 384.89, 381.63, 384.77, 381.51, 384.89, 381.63, MLO
583,2006, 06, 38883, 2006.4548, 384.00, 381.52, 384.11, 381.66, 384.00, 381.52, MLO
584,2006, 07, 38913, 2006.5370, 382.25, 381.48, 382.53, 381.80, 382.25, 381.48, MLO
585,2006, 08, 38944, 2006.6219, 380.44, 381.93, 380.42, 381.95, 380.44, 381.93, MLO
586,2006, 09, 38975, 2006.7068, 378.77, 382.12, 378.72, 382.09, 378.77, 382.12, MLO
587,2006, 10, 39005, 2006.7890, 379.03, 382.49, 378.79, 382.24, 379.03, 382.49, MLO
588,2006, 11, 39036, 2006.8740, 380.11, 382.28, 380.24, 382.39, 380.11, 382.28, MLO
589,2006, 12, 39066, 2006.9562, 381.63, 382.51, 381.67, 382.54, 381.63, 382.51, MLO
590,2007, 01, 39097, 2007.0411, 382.55, 382.48, 382.77, 382.69, 382.55, 382.48, MLO
591,2007, 02, 39128, 2007.1260, 383.68, 382.94, 383.60, 382.84, 383.68, 382.94, MLO
592,2007, 03, 39156, 2007.2027, 384.31, 382.83, 384.48, 382.99, 384.31, 382.83, MLO
593,2007, 04, 39187, 2007.2877, 386.19, 383.54, 385.83, 383.15, 386.19, 383.54, MLO
594,2007, 05, 39217, 2007.3699, 386.38, 383.11, 386.57, 383.30, 386.38, 383.11, MLO
595,2007, 06, 39248, 2007.4548, 385.85, 383.36, 385.92, 383.46, 385.85, 383.36, MLO
596,2007, 07, 39278, 2007.5370, 384.42, 383.64, 384.36, 383.62, 384.42, 383.64, MLO
597,2007, 08, 39309, 2007.6219, 381.81, 383.31, 382.26, 383.79, 381.81, 383.31, MLO
598,2007, 09, 39340, 2007.7068, 380.83, 384.19, 380.57, 383.95, 380.83, 384.19, MLO
599,2007, 10, 39370, 2007.7890, 380.83, 384.31, 380.65, 384.11, 380.83, 384.31, MLO
600,2007, 11, 39401, 2007.8740, 382.32, 384.50, 382.11, 384.26, 382.32, 384.50, MLO
601,2007, 12, 39431, 2007.9562, 383.58, 384.47, 383.54, 384.41, 383.58, 384.47, MLO
602,2008, 01, 39462, 2008.0410, 385.04, 384.97, 384.64, 384.56, 385.04, 384.97, MLO
603,2008, 02, 39493, 2008.1257, 385.81, 385.06, 385.46, 384.70, 385.81, 385.06, MLO
604,2008, 03, 39522, 2008.2049, 385.80, 384.30, 386.36, 384.84, 385.80, 384.30, MLO
605,2008, 04, 39553, 2008.2896, 386.74, 384.04, 387.71, 385.00, 386.74, 384.04, MLO
606,2008, 05, 39583, 2008.3716, 388.48, 385.21, 388.43, 385.15, 388.48, 385.21, MLO
607,2008, 06, 39614, 2008.4563, 388.02, 385.56, 387.76, 385.32, 388.02, 385.56, MLO
608,2008, 07, 39644, 2008.5383, 386.22, 385.48, 386.20, 385.49, 386.22, 385.48, MLO
609,2008, 08, 39675, 2008.6230, 384.05, 385.58, 384.09, 385.66, 384.05, 385.58, MLO
610,2008, 09, 39706, 2008.7077, 383.05, 386.43, 382.42, 385.82, 383.05, 386.43, MLO
611,2008, 10, 39736, 2008.7896, 382.75, 386.23, 382.51, 385.98, 382.75, 386.23, MLO
612,2008, 11, 39767, 2008.8743, 383.98, 386.16, 383.98, 386.14, 383.98, 386.16, MLO
613,2008, 12, 39797, 2008.9563, 385.08, 385.97, 385.42, 386.29, 385.08, 385.97, MLO
614,2009, 01, 39828, 2009.0411, 386.63, 386.56, 386.52, 386.45, 386.63, 386.56, MLO
615,2009, 02, 39859, 2009.1260, 387.10, 386.35, 387.37, 386.61, 387.10, 386.35, MLO
616,2009, 03, 39887, 2009.2027, 388.50, 387.02, 388.25, 386.75, 388.50, 387.02, MLO
617,2009, 04, 39918, 2009.2877, 389.54, 386.87, 389.61, 386.92, 389.54, 386.87, MLO
618,2009, 05, 39948, 2009.3699, 390.15, 386.86, 390.38, 387.09, 390.15, 386.86, MLO
619,2009, 06, 39979, 2009.4548, 389.60, 387.11, 389.75, 387.27, 389.60, 387.11, MLO
620,2009, 07, 40009, 2009.5370, 388.05, 387.27, 388.20, 387.46, 388.05, 387.27, MLO
621,2009, 08, 40040, 2009.6219, 386.06, 387.56, 386.12, 387.66, 386.06, 387.56, MLO
622,2009, 09, 40071, 2009.7068, 384.64, 388.02, 384.48, 387.88, 384.64, 388.02, MLO
623,2009, 10, 40101, 2009.7890, 384.32, 387.82, 384.61, 388.09, 384.32, 387.82, MLO
624,2009, 11, 40132, 2009.8740, 386.05, 388.24, 386.15, 388.31, 386.05, 388.24, MLO
625,2009, 12, 40162, 2009.9562, 387.48, 388.38, 387.66, 388.54, 387.48, 388.38, MLO
626,2010, 01, 40193, 2010.0411, 388.55, 388.49, 388.85, 388.77, 388.55, 388.49, MLO
627,2010, 02, 40224, 2010.1260, 390.08, 389.33, 389.76, 388.99, 390.08, 389.33, MLO
628,2010, 03, 40252, 2010.2027, 391.02, 389.54, 390.69, 389.19, 391.02, 389.54, MLO
629,2010, 04, 40283, 2010.2877, 392.39, 389.70, 392.10, 389.40, 392.39, 389.70, MLO
630,2010, 05, 40313, 2010.3699, 393.24, 389.94, 392.89, 389.60, 393.24, 389.94, MLO
631,2010, 06, 40344, 2010.4548, 392.26, 389.75, 392.26, 389.78, 392.26, 389.75, MLO
632,2010, 07, 40374, 2010.5370, 390.35, 389.57, 390.70, 389.96, 390.35, 389.57, MLO
633,2010, 08, 40405, 2010.6219, 388.53, 390.03, 388.59, 390.13, 388.53, 390.03, MLO
634,2010, 09, 40436, 2010.7068, 386.85, 390.24, 386.89, 390.30, 386.85, 390.24, MLO
635,2010, 10, 40466, 2010.7890, 387.18, 390.69, 386.96, 390.45, 387.18, 390.69, MLO
636,2010, 11, 40497, 2010.8740, 388.69, 390.89, 388.43, 390.61, 388.69, 390.89, MLO
637,2010, 12, 40527, 2010.9562, 389.83, 390.73, 389.87, 390.74, 389.83, 390.73, MLO
638,2011, 01, 40558, 2011.0411, 391.33, 391.26, 390.96, 390.88, 391.33, 391.26, MLO
639,2011, 02, 40589, 2011.1260, 391.96, 391.21, 391.78, 391.01, 391.96, 391.21, MLO
640,2011, 03, 40617, 2011.2027, 392.49, 391.00, 392.64, 391.13, 392.49, 391.00, MLO
641,2011, 04, 40648, 2011.2877, 393.40, 390.71, 393.98, 391.27, 393.40, 390.71, MLO
642,2011, 05, 40678, 2011.3699, 394.33, 391.02, 394.72, 391.42, 394.33, 391.02, MLO
643,2011, 06, 40709, 2011.4548, 393.75, 391.24, 394.07, 391.58, 393.75, 391.24, MLO
644,2011, 07, 40739, 2011.5370, 392.64, 391.86, 392.49, 391.74, 392.64, 391.86, MLO
645,2011, 08, 40770, 2011.6219, 390.25, 391.75, 390.38, 391.92, 390.25, 391.75, MLO
646,2011, 09, 40801, 2011.7068, 389.05, 392.45, 388.69, 392.10, 389.05, 392.45, MLO
647,2011, 10, 40831, 2011.7890, 388.98, 392.50, 388.78, 392.28, 388.98, 392.50, MLO
648,2011, 11, 40862, 2011.8740, 390.30, 392.50, 390.29, 392.47, 390.30, 392.50, MLO
649,2011, 12, 40892, 2011.9562, 391.86, 392.76, 391.77, 392.65, 391.86, 392.76, MLO
650,2012, 01, 40923, 2012.0410, 393.13, 393.07, 392.92, 392.84, 393.13, 393.07, MLO
651,2012, 02, 40954, 2012.1257, 393.42, 392.66, 393.80, 393.03, 393.42, 392.66, MLO
652,2012, 03, 40983, 2012.2049, 394.43, 392.91, 394.75, 393.22, 394.43, 392.91, MLO
653,2012, 04, 41014, 2012.2896, 396.51, 393.78, 396.16, 393.42, 396.51, 393.78, MLO
654,2012, 05, 41044, 2012.3716, 396.96, 393.64, 396.94, 393.62, 396.96, 393.64, MLO
655,2012, 06, 41075, 2012.4563, 395.97, 393.48, 396.31, 393.84, 395.97, 393.48, MLO
656,2012, 07, 41105, 2012.5383, 394.60, 393.85, 394.78, 394.06, 394.60, 393.85, MLO
657,2012, 08, 41136, 2012.6230, 392.61, 394.15, 392.72, 394.30, 392.61, 394.15, MLO
658,2012, 09, 41167, 2012.7077, 391.20, 394.62, 391.10, 394.54, 391.20, 394.62, MLO
659,2012, 10, 41197, 2012.7896, 391.09, 394.61, 391.27, 394.78, 391.09, 394.61, MLO
660,2012, 11, 41228, 2012.8743, 393.03, 395.23, 392.84, 395.02, 393.03, 395.23, MLO
661,2012, 12, 41258, 2012.9563, 394.42, 395.31, 394.37, 395.25, 394.42, 395.31, MLO
662,2013, 01, 41289, 2013.0411, 395.69, 395.63, 395.57, 395.49, 395.69, 395.63, MLO
663,2013, 02, 41320, 2013.1260, 396.94, 396.18, 396.49, 395.72, 396.94, 396.18, MLO
664,2013, 03, 41348, 2013.2027, 397.35, 395.86, 397.43, 395.92, 397.35, 395.86, MLO
665,2013, 04, 41379, 2013.2877, 398.44, 395.74, 398.85, 396.13, 398.44, 395.74, MLO
666,2013, 05, 41409, 2013.3699, 400.06, 396.74, 399.66, 396.33, 400.06, 396.74, MLO
667,2013, 06, 41440, 2013.4548, 398.96, 396.43, 399.03, 396.53, 398.96, 396.43, MLO
668,2013, 07, 41470, 2013.5370, 397.45, 396.67, 397.48, 396.72, 397.45, 396.67, MLO
669,2013, 08, 41501, 2013.6219, 395.49, 397.00, 395.36, 396.92, 395.49, 397.00, MLO
670,2013, 09, 41532, 2013.7068, 393.47, 396.89, 393.67, 397.11, 393.47, 396.89, MLO
671,2013, 10, 41562, 2013.7890, 393.77, 397.31, 393.77, 397.28, 393.77, 397.31, MLO
672,2013, 11, 41593, 2013.8740, 395.27, 397.49, 395.28, 397.47, 395.27, 397.49, MLO
673,2013, 12, 41623, 2013.9562, 396.90, 397.80, 396.75, 397.64, 396.90, 397.80, MLO
674,2014, 01, 41654, 2014.0411, 398.01, 397.94, 397.89, 397.81, 398.01, 397.94, MLO
675,2014, 02, 41685, 2014.1260, 398.18, 397.42, 398.76, 397.98, 398.18, 397.42, MLO
676,2014, 03, 41713, 2014.2027, 399.56, 398.06, 399.65, 398.14, 399.56, 398.06, MLO
677,2014, 04, 41744, 2014.2877, 401.43, 398.72, 401.04, 398.31, 401.43, 398.72, MLO
678,2014, 05, 41774, 2014.3699, 401.98, 398.65, 401.80, 398.46, 401.98, 398.65, MLO
679,2014, 06, 41805, 2014.4548, 401.41, 398.88, 401.13, 398.62, 401.41, 398.88, MLO
680,2014, 07, 41835, 2014.5370, 399.17, 398.38, 399.53, 398.78, 399.17, 398.38, MLO
681,2014, 08, 41866, 2014.6219, 397.30, 398.82, 397.38, 398.94, 397.30, 398.82, MLO
682,2014, 09, 41897, 2014.7068, 395.49, 398.91, 395.65, 399.10, 395.49, 398.91, MLO
683,2014, 10, 41927, 2014.7890, 395.74, 399.28, 395.73, 399.26, 395.74, 399.28, MLO
684,2014, 11, 41958, 2014.8740, 397.32, 399.54, 397.23, 399.43, 397.32, 399.54, MLO
685,2014, 12, 41988, 2014.9562, 398.88, 399.79, 398.71, 399.59, 398.88, 399.79, MLO
686,2015, 01, 42019, 2015.0411, 399.95, 399.88, 399.85, 399.77, 399.95, 399.88, MLO
687,2015, 02, 42050, 2015.1260, 400.40, 399.63, 400.72, 399.94, 400.40, 399.63, MLO
688,2015, 03, 42078, 2015.2027, 401.60, 400.09, 401.63, 400.11, 401.60, 400.09, MLO
689,2015, 04, 42109, 2015.2877, 403.52, 400.81, 403.04, 400.31, 403.52, 400.81, MLO
690,2015, 05, 42139, 2015.3699, 404.04, 400.69, 403.85, 400.50, 404.04, 400.69, MLO
691,2015, 06, 42170, 2015.4548, 402.81, 400.27, 403.24, 400.72, 402.81, 400.27, MLO
692,2015, 07, 42200, 2015.5370, 401.54, 400.75, 401.71, 400.95, 401.54, 400.75, MLO
693,2015, 08, 42231, 2015.6219, 398.93, 400.45, 399.65, 401.22, 398.93, 400.45, MLO
694,2015, 09, 42262, 2015.7068, 397.43, 400.87, 398.05, 401.50, 397.43, 400.87, MLO
695,2015, 10, 42292, 2015.7890, 398.22, 401.77, 398.26, 401.80, 398.22, 401.77, MLO
696,2015, 11, 42323, 2015.8740, 400.17, 402.40, 399.91, 402.11, 400.17, 402.40, MLO
697,2015, 12, 42353, 2015.9562, 401.82, 402.73, 401.53, 402.42, 401.82, 402.73, MLO
698,2016, 01, 42384, 2016.0410, 402.58, 402.51, 402.82, 402.74, 402.58, 402.51, MLO
699,2016, 02, 42415, 2016.1257, 404.09, 403.33, 403.82, 403.05, 404.09, 403.33, MLO
700,2016, 03, 42444, 2016.2049, 404.79, 403.25, 404.88, 403.32, 404.79, 403.25, MLO
701,2016, 04, 42475, 2016.2896, 407.50, 404.74, 406.38, 403.60, 407.50, 404.74, MLO
702,2016, 05, 42505, 2016.3716, 407.59, 404.24, 407.20, 403.85, 407.59, 404.24, MLO
703,2016, 06, 42536, 2016.4563, 406.94, 404.42, 406.59, 404.09, 406.94, 404.42, MLO
704,2016, 07, 42566, 2016.5383, 404.43, 403.67, 405.04, 404.32, 404.43, 403.67, MLO
705,2016, 08, 42597, 2016.6230, 402.17, 403.72, 402.94, 404.54, 402.17, 403.72, MLO
706,2016, 09, 42628, 2016.7077, 400.95, 404.40, 401.28, 404.76, 400.95, 404.40, MLO
707,2016, 10, 42658, 2016.7896, 401.43, 404.99, 401.43, 404.97, 401.43, 404.99, MLO
708,2016, 11, 42689, 2016.8743, 403.57, 405.80, 402.98, 405.18, 403.57, 405.80, MLO
709,2016, 12, 42719, 2016.9563, 404.48, 405.39, 404.49, 405.37, 404.48, 405.39, MLO
710,2017, 01, 42750, 2017.0411, 406.00, 405.94, 405.65, 405.57, 406.00, 405.94, MLO
711,2017, 02, 42781, 2017.1260, 406.57, 405.81, 406.53, 405.75, 406.57, 405.81, MLO
712,2017, 03, 42809, 2017.2027, 406.99, 405.47, 407.44, 405.91, 406.99, 405.47, MLO
713,2017, 04, 42840, 2017.2877, 408.88, 406.14, 408.83, 406.08, 408.88, 406.14, MLO
714,2017, 05, 42870, 2017.3699, 409.84, 406.48, 409.60, 406.24, 409.84, 406.48, MLO
715,2017, 06, 42901, 2017.4548, 409.05, 406.50, 408.93, 406.40, 409.05, 406.50, MLO
716,2017, 07, 42931, 2017.5370, 407.13, 406.34, 407.31, 406.55, 407.13, 406.34, MLO
717,2017, 08, 42962, 2017.6219, 405.17, 406.70, 405.13, 406.71, 405.17, 406.70, MLO
718,2017, 09, 42993, 2017.7068, 403.20, 406.66, 403.39, 406.86, 403.20, 406.66, MLO
719,2017, 10, 43023, 2017.7890, 403.57, 407.14, 403.46, 407.01, 403.57, 407.14, MLO
720,2017, 11, 43054, 2017.8740, 405.10, 407.34, 404.96, 407.17, 405.10, 407.34, MLO
721,2017, 12, 43084, 2017.9562, 406.68, 407.59, 406.43, 407.32, 406.68, 407.59, MLO
722,2018, 01, 43115, 2018.0411, 407.98, 407.91, 407.56, 407.48, 407.98, 407.91, MLO
723,2018, 02, 43146, 2018.1260, 408.36, 407.59, 408.41, 407.63, 408.36, 407.59, MLO
724,2018, 03, 43174, 2018.2027, 409.21, 407.69, 409.32, 407.78, 409.21, 407.69, MLO
725,2018, 04, 43205, 2018.2877, 410.23, 407.49, 410.73, 407.96, 410.23, 407.49, MLO
726,2018, 05, 43235, 2018.3699, 411.23, 407.86, 411.53, 408.16, 411.23, 407.86, MLO
727,2018, 06, 43266, 2018.4548, 410.82, 408.26, 410.91, 408.37, 410.82, 408.26, MLO
728,2018, 07, 43296, 2018.5370, 408.83, 408.03, 409.36, 408.60, 408.83, 408.03, MLO
729,2018, 08, 43327, 2018.6219, 407.02, 408.56, 407.28, 408.86, 407.02, 408.56, MLO
730,2018, 09, 43358, 2018.7068, 405.53, 408.99, 405.64, 409.13, 405.53, 408.99, MLO
731,2018, 10, 43388, 2018.7890, 405.93, 409.51, 405.82, 409.39, 405.93, 409.51, MLO
732,2018, 11, 43419, 2018.8740, 408.04, 410.29, 407.44, 409.66, 408.04, 410.29, MLO
733,2018, 12, 43449, 2018.9562, 409.17, 410.08, 409.03, 409.92, 409.17, 410.08, MLO
734,2019, 01, 43480, 2019.0411, 410.85, 410.78, 410.26, 410.18, 410.85, 410.78, MLO
735,2019, 02, 43511, 2019.1260, 411.59, 410.82, 411.21, 410.43, 411.59, 410.82, MLO
736,2019, 03, 43539, 2019.2027, 411.91, 410.39, 412.18, 410.64, 411.91, 410.39, MLO
737,2019, 04, 43570, 2019.2877, 413.46, 410.71, 413.63, 410.87, 413.46, 410.71, MLO
738,2019, 05, 43600, 2019.3699, 414.76, 411.38, 414.46, 411.08, 414.76, 411.38, MLO
739,2019, 06, 43631, 2019.4548, 413.89, 411.32, 413.85, 411.30, 413.89, 411.32, MLO
740,2019, 07, 43661, 2019.5370, 411.78, 410.98, 412.28, 411.52, 411.78, 410.98, MLO
741,2019, 08, 43692, 2019.6219, 410.01, 411.55, 410.16, 411.74, 410.01, 411.55, MLO
742,2019, 09, 43723, 2019.7068, 408.48, 411.95, 408.47, 411.96, 408.48, 411.95, MLO
743,2019, 10, 43753, 2019.7890, 408.40, 411.99, 408.60, 412.18, 408.40, 411.99, MLO
744,2019, 11, 43784, 2019.8740, 410.16, 412.41, 410.18, 412.40, 410.16, 412.41, MLO
745,2019, 12, 43814, 2019.9562, 411.81, 412.73, 411.72, 412.61, 411.81, 412.73, MLO
746,2020, 01, 43845, 2020.0410, 413.30, 413.24, 412.91, 412.83, 413.30, 413.24, MLO
747,2020, 02, 43876, 2020.1257, 414.05, 413.28, 413.82, 413.04, 414.05, 413.28, MLO
748,2020, 03, 43905, 2020.2049, 414.45, 412.90, 414.80, 413.23, 414.45, 412.90, MLO
749,2020, 04, 43936, 2020.2896, 416.11, 413.32, 416.24, 413.44, 416.11, 413.32, MLO
750,2020, 05, 43966, 2020.3716, 417.15, 413.76, 417.02, 413.63, 417.15, 413.76, MLO
751,2020, 06, 43997, 2020.4563, 416.29, 413.74, 416.36, 413.84, 416.29, 413.74, MLO
752,2020, 07, 44027, 2020.5383, 414.42, 413.65, 414.76, 414.03, 414.42, 413.65, MLO
753,2020, 08, 44058, 2020.6230, 412.52, 414.09, 412.62, 414.23, 412.52, 414.09, MLO
754,2020, 09, 44089, 2020.7077, 411.18, 414.68, 410.92, 414.43, 411.18, 414.68, MLO
755,2020, 10, 44119, 2020.7896, 411.12, 414.72, 411.04, 414.62, 411.12, 414.72, MLO
756,2020, 11, 44150, 2020.8743, 412.88, 415.14, 412.58, 414.81, 412.88, 415.14, MLO
757,2020, 12, 44180, 2020.9563, 413.89, 414.80, 414.09, 414.98, 413.89, 414.80, MLO
758,2021, 01, 44211, 2021.0411, 415.15, 415.08, 415.24, 415.16, 415.15, 415.08, MLO
759,2021, 02, 44242, 2021.1260, 416.48, 415.70, 416.12, 415.34, 416.48, 415.70, MLO
760,2021, 03, 44270, 2021.2027, 417.16, 415.63, 417.04, 415.49, 417.16, 415.63, MLO
761,2021, 04, 44301, 2021.2877, 418.24, 415.47, 418.44, 415.66, 418.24, 415.47, MLO
762,2021, 05, 44331, 2021.3699, 418.95, 415.55, 419.23, 415.83, 418.95, 415.55, MLO
763,2021, 06, 44362, 2021.4548, 418.70, 416.12, 418.56, 416.00, 418.70, 416.12, MLO
764,2021, 07, 44392, 2021.5370, 416.65, 415.85, 416.95, 416.18, 416.65, 415.85, MLO
765,2021, 08, 44423, 2021.6219, 414.34, 415.89, 414.78, 416.36, 414.34, 415.89, MLO
766,2021, 09, 44454, 2021.7068, 412.90, 416.40, 413.04, 416.55, 412.90, 416.40, MLO
767,2021, 10, 44484, 2021.7890, 413.55, 417.16, 413.14, 416.74, 413.55, 417.16, MLO
768,2021, 11, 44515, 2021.8740, 414.82, 417.08, 414.69, 416.92, 414.82, 417.08, MLO
769,2021, 12, 44545, 2021.9562, 416.43, 417.36, 416.19, 417.10, 416.43, 417.36, MLO
770,2022, 01, 44576, 2022.0411, 418.01, 417.94, 417.34, 417.26, 418.01, 417.94, MLO
771,2022, 02, 44607, 2022.1260, 418.99, 418.21, 418.21, 417.42, 418.99, 418.21, MLO
772,2022, 03, 44635, 2022.2027, 418.45, 416.92, 419.11, 417.56, 418.45, 416.92, MLO
773,2022, 04, 44666, 2022.2877, 420.02, 417.25, 420.50, 417.71, 420.02, 417.25, MLO
774,2022, 05, 44696, 2022.3699, 420.77, 417.36, 421.27, 417.86, 420.77, 417.36, MLO
775,2022, 06, 44727, 2022.4548, 420.68, 418.09, 420.60, 418.03, 420.68, 418.09, MLO
776,2022, 07, 44757, 2022.5370, 418.68, 417.87, 418.98, 418.21, 418.68, 417.87, MLO
777,2022, 08, 44788, 2022.6219, 416.76, 418.31, 416.80, 418.40, 416.76, 418.31, MLO
778,2022, 09, 44819, 2022.7068, 415.41, 418.91, 415.07, 418.59, 415.41, 418.91, MLO
779,2022, 10, 44849, 2022.7890, 415.31, 418.93, 415.18, 418.78, 415.31, 418.93, MLO
780,2022, 11, 44880, 2022.8740, 417.04, 419.31, 416.74, 418.98, 417.04, 419.31, MLO
781,2022, 12, 44910, 2022.9562, 418.57, 419.49, 418.27, 419.18, 418.57, 419.49, MKO
782,2023, 01, 44941, 2023.0411, 419.24, 419.17, 419.46, 419.38, 419.24, 419.17, MKO
783,2023, 02, 44972, 2023.1260, 420.33, 419.55, 420.38, 419.59, 420.33, 419.55, MKO
784,2023, 03, 45000, 2023.2027, 420.51, 418.97, 421.34, 419.79, 420.51, 418.97, MLO
785,2023, 04, 45031, 2023.2877, 422.73, 419.95, 422.81, 420.01, 422.73, 419.95, MLO
786,2023, 05, 45061, 2023.3699, 423.78, 420.36, 423.65, 420.23, 423.78, 420.36, MLO
787,2023, 06, 45092, 2023.4548, 423.39, 420.80, 423.03, 420.46, 423.39, 420.80, MLO
788,2023, 07, 45122, 2023.5370, -99.99, -99.99, -99.99, -99.99, -99.99, -99.99, MLO
789,2023, 08, 45153, 2023.6219, -99.99, -99.99, -99.99, -99.99, -99.99, -99.99, MLO
790,2023, 09, 45184, 2023.7068, -99.99, -99.99, -99.99, -99.99, -99.99, -99.99, MLO
791,2023, 10, 45214, 2023.7890, -99.99, -99.99, -99.99, -99.99, -99.99, -99.99, MLO
792,2023, 11, 45245, 2023.8740, -99.99, -99.99, -99.99, -99.99, -99.99, -99.99, MLO
793,2023, 12, 45275, 2023.9562, -99.99, -99.99, -99.99, -99.99, -99.99, -99.99, MLO
This source diff could not be displayed because it is too large. You can view the blob instead.
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment