{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Incidence du syndrome grippal" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "%matplotlib inline\n", "import matplotlib.pyplot as plt\n", "import pandas as pd\n", "import isoweek" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Les données de l'incidence du syndrome grippal sont disponibles du site Web du [Réseau Sentinelles](http://www.sentiweb.fr/). Nous les récupérons sous forme d'un fichier en format CSV dont chaque ligne correspond à une semaine de la période demandée. Nous téléchargeons toujours le jeu de données complet, qui commence en 1984 et se termine avec une semaine récente." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "data_url = \"http://www.sentiweb.fr/datasets/incidence-PAY-3.csv\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Voici l'explication des colonnes données [sur le site d'origine](https://ns.sentiweb.fr/incidence/csv-schema-v1.json):\n", "\n", "| Nom de colonne | Libellé de colonne |\n", "|----------------|-----------------------------------------------------------------------------------------------------------------------------------|\n", "| week | Semaine calendaire (ISO 8601) |\n", "| indicator | Code de l'indicateur de surveillance |\n", "| inc | Estimation de l'incidence de consultations en nombre de cas |\n", "| inc_low | Estimation de la borne inférieure de l'IC95% du nombre de cas de consultation |\n", "| inc_up | Estimation de la borne supérieure de l'IC95% du nombre de cas de consultation |\n", "| inc100 | Estimation du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants) |\n", "| inc100_low | Estimation de la borne inférieure de l'IC95% du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants) |\n", "| inc100_up | Estimation de la borne supérieure de l'IC95% du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants) |\n", "| geo_insee | Code de la zone géographique concernée (Code INSEE) http://www.insee.fr/fr/methodes/nomenclatures/cog/ |\n", "| geo_name | Libellé de la zone géographique (ce libellé peut être modifié sans préavis) |\n", "\n", "La première ligne du fichier CSV est un commentaire, que nous ignorons en précisant `skiprows=1`." ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "True\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
020233433011923068.037170.04534.056.0FRFrance
0120233331934413318.025370.02920.038.0FRFrance
1220233231466110302.019020.02215.029.0FRFrance
2320233131528610705.019867.02316.030.0FRFrance
342023303132058647.017763.02013.027.0FRFrance
452023293111227113.015131.01711.023.0FRFrance
56202328391795703.012655.0149.019.0FRFrance
67202327389995763.012235.0149.019.0FRFrance
78202326390235934.012112.0149.019.0FRFrance
892023253100906739.013441.01510.020.0FRFrance
9102023243113087639.014977.01711.023.0FRFrance
101120232331430010661.017939.02217.027.0FRFrance
111220232231830313822.022784.02821.035.0FRFrance
121320232131646012188.020732.02519.031.0FRFrance
131420232031616211963.020361.02418.030.0FRFrance
141520231931690112577.021225.02518.032.0FRFrance
151620231831992915402.024456.03023.037.0FRFrance
161720231732700721779.032235.04133.049.0FRFrance
171820231632787522767.032983.04234.050.0FRFrance
181920231533745530993.043917.05646.066.0FRFrance
192020231434806040671.055449.07261.083.0FRFrance
202120231336485956800.072918.09886.0110.0FRFrance
212220231237275064499.081001.010997.0121.0FRFrance
222320231137463866420.082856.0112100.0124.0FRFrance
232420231037636868243.084493.0115103.0127.0FRFrance
242520230936206254778.069346.09382.0104.0FRFrance
252620230837639168065.084717.0115102.0128.0FRFrance
262720230738985180397.099305.0135121.0149.0FRFrance
272820230639736887636.0107100.0146131.0161.0FRFrance
282920230539546986268.0104670.0144130.0158.0FRFrance
293020230437490166916.082886.0113101.0125.0FRFrance
....................................
1995199619852132609619621.032571.04735.059.0FRFrance
1996199719852032789620885.034907.05138.064.0FRFrance
1997199819851934315432821.053487.07859.097.0FRFrance
1998199919851834055529935.051175.07455.093.0FRFrance
1999200019851733405324366.043740.06244.080.0FRFrance
2000200119851635036236451.064273.09166.0116.0FRFrance
2001200219851536388145538.082224.011683.0149.0FRFrance
200220031985143134545114400.0154690.0244207.0281.0FRFrance
200320041985133197206176080.0218332.0357319.0395.0FRFrance
200420051985123245240223304.0267176.0445405.0485.0FRFrance
200520061985113276205252399.0300011.0501458.0544.0FRFrance
200620071985103353231326279.0380183.0640591.0689.0FRFrance
200720081985093369895341109.0398681.0670618.0722.0FRFrance
200820091985083389886359529.0420243.0707652.0762.0FRFrance
200920101985073471852432599.0511105.0855784.0926.0FRFrance
201020111985063565825518011.0613639.01026939.01113.0FRFrance
201120121985053637302592795.0681809.011551074.01236.0FRFrance
201220131985043424937390794.0459080.0770708.0832.0FRFrance
201320141985033213901174689.0253113.0388317.0459.0FRFrance
2014201519850239758680949.0114223.0177147.0207.0FRFrance
2015201619850138548965918.0105060.0155120.0190.0FRFrance
2016201719845238483060602.0109058.0154110.0198.0FRFrance
20172018198451310172680242.0123210.0185146.0224.0FRFrance
201820191984503123680101401.0145959.0225184.0266.0FRFrance
20192020198449310107381684.0120462.0184149.0219.0FRFrance
2020202119844837862060634.096606.0143110.0176.0FRFrance
2021202219844737202954274.089784.013199.0163.0FRFrance
2022202319844638733067686.0106974.0159123.0195.0FRFrance
202320241984453135223101414.0169032.0246184.0308.0FRFrance
2024202519844436842220056.0116788.012537.0213.0FRFrance
\n", "

2025 rows × 11 columns

\n", "
" ], "text/plain": [ " 0 202334 3 30119 23068.0 37170.0 45 34.0 56.0 FR \\\n", "0 1 202333 3 19344 13318.0 25370.0 29 20.0 38.0 FR \n", "1 2 202332 3 14661 10302.0 19020.0 22 15.0 29.0 FR \n", "2 3 202331 3 15286 10705.0 19867.0 23 16.0 30.0 FR \n", "3 4 202330 3 13205 8647.0 17763.0 20 13.0 27.0 FR \n", "4 5 202329 3 11122 7113.0 15131.0 17 11.0 23.0 FR \n", "5 6 202328 3 9179 5703.0 12655.0 14 9.0 19.0 FR \n", "6 7 202327 3 8999 5763.0 12235.0 14 9.0 19.0 FR \n", "7 8 202326 3 9023 5934.0 12112.0 14 9.0 19.0 FR \n", "8 9 202325 3 10090 6739.0 13441.0 15 10.0 20.0 FR \n", "9 10 202324 3 11308 7639.0 14977.0 17 11.0 23.0 FR \n", "10 11 202323 3 14300 10661.0 17939.0 22 17.0 27.0 FR \n", "11 12 202322 3 18303 13822.0 22784.0 28 21.0 35.0 FR \n", "12 13 202321 3 16460 12188.0 20732.0 25 19.0 31.0 FR \n", "13 14 202320 3 16162 11963.0 20361.0 24 18.0 30.0 FR \n", "14 15 202319 3 16901 12577.0 21225.0 25 18.0 32.0 FR \n", "15 16 202318 3 19929 15402.0 24456.0 30 23.0 37.0 FR \n", "16 17 202317 3 27007 21779.0 32235.0 41 33.0 49.0 FR \n", "17 18 202316 3 27875 22767.0 32983.0 42 34.0 50.0 FR \n", "18 19 202315 3 37455 30993.0 43917.0 56 46.0 66.0 FR \n", "19 20 202314 3 48060 40671.0 55449.0 72 61.0 83.0 FR \n", "20 21 202313 3 64859 56800.0 72918.0 98 86.0 110.0 FR \n", "21 22 202312 3 72750 64499.0 81001.0 109 97.0 121.0 FR \n", "22 23 202311 3 74638 66420.0 82856.0 112 100.0 124.0 FR \n", "23 24 202310 3 76368 68243.0 84493.0 115 103.0 127.0 FR \n", "24 25 202309 3 62062 54778.0 69346.0 93 82.0 104.0 FR \n", "25 26 202308 3 76391 68065.0 84717.0 115 102.0 128.0 FR \n", "26 27 202307 3 89851 80397.0 99305.0 135 121.0 149.0 FR \n", "27 28 202306 3 97368 87636.0 107100.0 146 131.0 161.0 FR \n", "28 29 202305 3 95469 86268.0 104670.0 144 130.0 158.0 FR \n", "29 30 202304 3 74901 66916.0 82886.0 113 101.0 125.0 FR \n", "... ... ... .. ... ... ... ... ... ... .. \n", "1995 1996 198521 3 26096 19621.0 32571.0 47 35.0 59.0 FR \n", "1996 1997 198520 3 27896 20885.0 34907.0 51 38.0 64.0 FR \n", "1997 1998 198519 3 43154 32821.0 53487.0 78 59.0 97.0 FR \n", "1998 1999 198518 3 40555 29935.0 51175.0 74 55.0 93.0 FR \n", "1999 2000 198517 3 34053 24366.0 43740.0 62 44.0 80.0 FR \n", "2000 2001 198516 3 50362 36451.0 64273.0 91 66.0 116.0 FR \n", "2001 2002 198515 3 63881 45538.0 82224.0 116 83.0 149.0 FR \n", "2002 2003 198514 3 134545 114400.0 154690.0 244 207.0 281.0 FR \n", "2003 2004 198513 3 197206 176080.0 218332.0 357 319.0 395.0 FR \n", "2004 2005 198512 3 245240 223304.0 267176.0 445 405.0 485.0 FR \n", "2005 2006 198511 3 276205 252399.0 300011.0 501 458.0 544.0 FR \n", "2006 2007 198510 3 353231 326279.0 380183.0 640 591.0 689.0 FR \n", "2007 2008 198509 3 369895 341109.0 398681.0 670 618.0 722.0 FR \n", "2008 2009 198508 3 389886 359529.0 420243.0 707 652.0 762.0 FR \n", "2009 2010 198507 3 471852 432599.0 511105.0 855 784.0 926.0 FR \n", "2010 2011 198506 3 565825 518011.0 613639.0 1026 939.0 1113.0 FR \n", "2011 2012 198505 3 637302 592795.0 681809.0 1155 1074.0 1236.0 FR \n", "2012 2013 198504 3 424937 390794.0 459080.0 770 708.0 832.0 FR \n", "2013 2014 198503 3 213901 174689.0 253113.0 388 317.0 459.0 FR \n", "2014 2015 198502 3 97586 80949.0 114223.0 177 147.0 207.0 FR \n", "2015 2016 198501 3 85489 65918.0 105060.0 155 120.0 190.0 FR \n", "2016 2017 198452 3 84830 60602.0 109058.0 154 110.0 198.0 FR \n", "2017 2018 198451 3 101726 80242.0 123210.0 185 146.0 224.0 FR \n", "2018 2019 198450 3 123680 101401.0 145959.0 225 184.0 266.0 FR \n", "2019 2020 198449 3 101073 81684.0 120462.0 184 149.0 219.0 FR \n", "2020 2021 198448 3 78620 60634.0 96606.0 143 110.0 176.0 FR \n", "2021 2022 198447 3 72029 54274.0 89784.0 131 99.0 163.0 FR \n", "2022 2023 198446 3 87330 67686.0 106974.0 159 123.0 195.0 FR \n", "2023 2024 198445 3 135223 101414.0 169032.0 246 184.0 308.0 FR \n", "2024 2025 198444 3 68422 20056.0 116788.0 125 37.0 213.0 FR \n", "\n", " France \n", "0 France \n", "1 France \n", "2 France \n", "3 France \n", "4 France \n", "5 France \n", "6 France \n", "7 France \n", "8 France \n", "9 France \n", "10 France \n", "11 France \n", "12 France \n", "13 France \n", "14 France \n", "15 France \n", "16 France \n", "17 France \n", "18 France \n", "19 France \n", "20 France \n", "21 France \n", "22 France \n", "23 France \n", "24 France \n", "25 France \n", "26 France \n", "27 France \n", "28 France \n", "29 France \n", "... ... \n", "1995 France \n", "1996 France \n", "1997 France \n", "1998 France \n", "1999 France \n", "2000 France \n", "2001 France \n", "2002 France \n", "2003 France \n", "2004 France \n", "2005 France \n", "2006 France \n", "2007 France \n", "2008 France \n", "2009 France \n", "2010 France \n", "2011 France \n", "2012 France \n", "2013 France \n", "2014 France \n", "2015 France \n", "2016 France \n", "2017 France \n", "2018 France \n", "2019 France \n", "2020 France \n", "2021 France \n", "2022 France \n", "2023 France \n", "2024 France \n", "\n", "[2025 rows x 11 columns]" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from os.path import exists\n", "boo=exists(\"DATA.csv\")\n", "#boo Check if file has already been downloaded to not download the data at every execution\n", "if boo:\n", " raw_data=raw_data = pd.read_csv(\"DATA.csv\", skiprows=0)\n", "else: \n", " raw_data = pd.read_csv(data_url, skiprows=1)\n", " raw_data.to_csv(\"DATA.csv\")\n", "\n", "print(boo)\n", "raw_data\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Y a-t-il des points manquants dans ce jeux de données ? Oui, la semaine 19 de l'année 1989 n'a pas de valeurs associées." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
020233433011923068.037170.04534.056.0FRFrance
178817891989193-NaNNaN-NaNNaNFRFrance
\n", "
" ], "text/plain": [ " 0 202334 3 30119 23068.0 37170.0 45 34.0 56.0 FR France\n", "1788 1789 198919 3 - NaN NaN - NaN NaN FR France" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "raw_data[raw_data.isnull().any(axis=1)]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Nous éliminons ce point, ce qui n'a pas d'impact fort sur notre analyse qui est assez simple." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
020233433011923068.037170.04534.056.0FRFrance
0120233331934413318.025370.02920.038.0FRFrance
1220233231466110302.019020.02215.029.0FRFrance
2320233131528610705.019867.02316.030.0FRFrance
342023303132058647.017763.02013.027.0FRFrance
452023293111227113.015131.01711.023.0FRFrance
56202328391795703.012655.0149.019.0FRFrance
67202327389995763.012235.0149.019.0FRFrance
78202326390235934.012112.0149.019.0FRFrance
892023253100906739.013441.01510.020.0FRFrance
9102023243113087639.014977.01711.023.0FRFrance
101120232331430010661.017939.02217.027.0FRFrance
111220232231830313822.022784.02821.035.0FRFrance
121320232131646012188.020732.02519.031.0FRFrance
131420232031616211963.020361.02418.030.0FRFrance
141520231931690112577.021225.02518.032.0FRFrance
151620231831992915402.024456.03023.037.0FRFrance
161720231732700721779.032235.04133.049.0FRFrance
171820231632787522767.032983.04234.050.0FRFrance
181920231533745530993.043917.05646.066.0FRFrance
192020231434806040671.055449.07261.083.0FRFrance
202120231336485956800.072918.09886.0110.0FRFrance
212220231237275064499.081001.010997.0121.0FRFrance
222320231137463866420.082856.0112100.0124.0FRFrance
232420231037636868243.084493.0115103.0127.0FRFrance
242520230936206254778.069346.09382.0104.0FRFrance
252620230837639168065.084717.0115102.0128.0FRFrance
262720230738985180397.099305.0135121.0149.0FRFrance
272820230639736887636.0107100.0146131.0161.0FRFrance
282920230539546986268.0104670.0144130.0158.0FRFrance
293020230437490166916.082886.0113101.0125.0FRFrance
....................................
1995199619852132609619621.032571.04735.059.0FRFrance
1996199719852032789620885.034907.05138.064.0FRFrance
1997199819851934315432821.053487.07859.097.0FRFrance
1998199919851834055529935.051175.07455.093.0FRFrance
1999200019851733405324366.043740.06244.080.0FRFrance
2000200119851635036236451.064273.09166.0116.0FRFrance
2001200219851536388145538.082224.011683.0149.0FRFrance
200220031985143134545114400.0154690.0244207.0281.0FRFrance
200320041985133197206176080.0218332.0357319.0395.0FRFrance
200420051985123245240223304.0267176.0445405.0485.0FRFrance
200520061985113276205252399.0300011.0501458.0544.0FRFrance
200620071985103353231326279.0380183.0640591.0689.0FRFrance
200720081985093369895341109.0398681.0670618.0722.0FRFrance
200820091985083389886359529.0420243.0707652.0762.0FRFrance
200920101985073471852432599.0511105.0855784.0926.0FRFrance
201020111985063565825518011.0613639.01026939.01113.0FRFrance
201120121985053637302592795.0681809.011551074.01236.0FRFrance
201220131985043424937390794.0459080.0770708.0832.0FRFrance
201320141985033213901174689.0253113.0388317.0459.0FRFrance
2014201519850239758680949.0114223.0177147.0207.0FRFrance
2015201619850138548965918.0105060.0155120.0190.0FRFrance
2016201719845238483060602.0109058.0154110.0198.0FRFrance
20172018198451310172680242.0123210.0185146.0224.0FRFrance
201820191984503123680101401.0145959.0225184.0266.0FRFrance
20192020198449310107381684.0120462.0184149.0219.0FRFrance
2020202119844837862060634.096606.0143110.0176.0FRFrance
2021202219844737202954274.089784.013199.0163.0FRFrance
2022202319844638733067686.0106974.0159123.0195.0FRFrance
202320241984453135223101414.0169032.0246184.0308.0FRFrance
2024202519844436842220056.0116788.012537.0213.0FRFrance
\n", "

2024 rows × 11 columns

\n", "
" ], "text/plain": [ " 0 202334 3 30119 23068.0 37170.0 45 34.0 56.0 FR \\\n", "0 1 202333 3 19344 13318.0 25370.0 29 20.0 38.0 FR \n", "1 2 202332 3 14661 10302.0 19020.0 22 15.0 29.0 FR \n", "2 3 202331 3 15286 10705.0 19867.0 23 16.0 30.0 FR \n", "3 4 202330 3 13205 8647.0 17763.0 20 13.0 27.0 FR \n", "4 5 202329 3 11122 7113.0 15131.0 17 11.0 23.0 FR \n", "5 6 202328 3 9179 5703.0 12655.0 14 9.0 19.0 FR \n", "6 7 202327 3 8999 5763.0 12235.0 14 9.0 19.0 FR \n", "7 8 202326 3 9023 5934.0 12112.0 14 9.0 19.0 FR \n", "8 9 202325 3 10090 6739.0 13441.0 15 10.0 20.0 FR \n", "9 10 202324 3 11308 7639.0 14977.0 17 11.0 23.0 FR \n", "10 11 202323 3 14300 10661.0 17939.0 22 17.0 27.0 FR \n", "11 12 202322 3 18303 13822.0 22784.0 28 21.0 35.0 FR \n", "12 13 202321 3 16460 12188.0 20732.0 25 19.0 31.0 FR \n", "13 14 202320 3 16162 11963.0 20361.0 24 18.0 30.0 FR \n", "14 15 202319 3 16901 12577.0 21225.0 25 18.0 32.0 FR \n", "15 16 202318 3 19929 15402.0 24456.0 30 23.0 37.0 FR \n", "16 17 202317 3 27007 21779.0 32235.0 41 33.0 49.0 FR \n", "17 18 202316 3 27875 22767.0 32983.0 42 34.0 50.0 FR \n", "18 19 202315 3 37455 30993.0 43917.0 56 46.0 66.0 FR \n", "19 20 202314 3 48060 40671.0 55449.0 72 61.0 83.0 FR \n", "20 21 202313 3 64859 56800.0 72918.0 98 86.0 110.0 FR \n", "21 22 202312 3 72750 64499.0 81001.0 109 97.0 121.0 FR \n", "22 23 202311 3 74638 66420.0 82856.0 112 100.0 124.0 FR \n", "23 24 202310 3 76368 68243.0 84493.0 115 103.0 127.0 FR \n", "24 25 202309 3 62062 54778.0 69346.0 93 82.0 104.0 FR \n", "25 26 202308 3 76391 68065.0 84717.0 115 102.0 128.0 FR \n", "26 27 202307 3 89851 80397.0 99305.0 135 121.0 149.0 FR \n", "27 28 202306 3 97368 87636.0 107100.0 146 131.0 161.0 FR \n", "28 29 202305 3 95469 86268.0 104670.0 144 130.0 158.0 FR \n", "29 30 202304 3 74901 66916.0 82886.0 113 101.0 125.0 FR \n", "... ... ... .. ... ... ... ... ... ... .. \n", "1995 1996 198521 3 26096 19621.0 32571.0 47 35.0 59.0 FR \n", "1996 1997 198520 3 27896 20885.0 34907.0 51 38.0 64.0 FR \n", "1997 1998 198519 3 43154 32821.0 53487.0 78 59.0 97.0 FR \n", "1998 1999 198518 3 40555 29935.0 51175.0 74 55.0 93.0 FR \n", "1999 2000 198517 3 34053 24366.0 43740.0 62 44.0 80.0 FR \n", "2000 2001 198516 3 50362 36451.0 64273.0 91 66.0 116.0 FR \n", "2001 2002 198515 3 63881 45538.0 82224.0 116 83.0 149.0 FR \n", "2002 2003 198514 3 134545 114400.0 154690.0 244 207.0 281.0 FR \n", "2003 2004 198513 3 197206 176080.0 218332.0 357 319.0 395.0 FR \n", "2004 2005 198512 3 245240 223304.0 267176.0 445 405.0 485.0 FR \n", "2005 2006 198511 3 276205 252399.0 300011.0 501 458.0 544.0 FR \n", "2006 2007 198510 3 353231 326279.0 380183.0 640 591.0 689.0 FR \n", "2007 2008 198509 3 369895 341109.0 398681.0 670 618.0 722.0 FR \n", "2008 2009 198508 3 389886 359529.0 420243.0 707 652.0 762.0 FR \n", "2009 2010 198507 3 471852 432599.0 511105.0 855 784.0 926.0 FR \n", "2010 2011 198506 3 565825 518011.0 613639.0 1026 939.0 1113.0 FR \n", "2011 2012 198505 3 637302 592795.0 681809.0 1155 1074.0 1236.0 FR \n", "2012 2013 198504 3 424937 390794.0 459080.0 770 708.0 832.0 FR \n", "2013 2014 198503 3 213901 174689.0 253113.0 388 317.0 459.0 FR \n", "2014 2015 198502 3 97586 80949.0 114223.0 177 147.0 207.0 FR \n", "2015 2016 198501 3 85489 65918.0 105060.0 155 120.0 190.0 FR \n", "2016 2017 198452 3 84830 60602.0 109058.0 154 110.0 198.0 FR \n", "2017 2018 198451 3 101726 80242.0 123210.0 185 146.0 224.0 FR \n", "2018 2019 198450 3 123680 101401.0 145959.0 225 184.0 266.0 FR \n", "2019 2020 198449 3 101073 81684.0 120462.0 184 149.0 219.0 FR \n", "2020 2021 198448 3 78620 60634.0 96606.0 143 110.0 176.0 FR \n", "2021 2022 198447 3 72029 54274.0 89784.0 131 99.0 163.0 FR \n", "2022 2023 198446 3 87330 67686.0 106974.0 159 123.0 195.0 FR \n", "2023 2024 198445 3 135223 101414.0 169032.0 246 184.0 308.0 FR \n", "2024 2025 198444 3 68422 20056.0 116788.0 125 37.0 213.0 FR \n", "\n", " France \n", "0 France \n", "1 France \n", "2 France \n", "3 France \n", "4 France \n", "5 France \n", "6 France \n", "7 France \n", "8 France \n", "9 France \n", "10 France \n", "11 France \n", "12 France \n", "13 France \n", "14 France \n", "15 France \n", "16 France \n", "17 France \n", "18 France \n", "19 France \n", "20 France \n", "21 France \n", "22 France \n", "23 France \n", "24 France \n", "25 France \n", "26 France \n", "27 France \n", "28 France \n", "29 France \n", "... ... \n", "1995 France \n", "1996 France \n", "1997 France \n", "1998 France \n", "1999 France \n", "2000 France \n", "2001 France \n", "2002 France \n", "2003 France \n", "2004 France \n", "2005 France \n", "2006 France \n", "2007 France \n", "2008 France \n", "2009 France \n", "2010 France \n", "2011 France \n", "2012 France \n", "2013 France \n", "2014 France \n", "2015 France \n", "2016 France \n", "2017 France \n", "2018 France \n", "2019 France \n", "2020 France \n", "2021 France \n", "2022 France \n", "2023 France \n", "2024 France \n", "\n", "[2024 rows x 11 columns]" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data = raw_data.dropna().copy()\n", "data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Nos données utilisent une convention inhabituelle: le numéro de\n", "semaine est collé à l'année, donnant l'impression qu'il s'agit\n", "de nombre entier. C'est comme ça que Pandas les interprète.\n", " \n", "Un deuxième problème est que Pandas ne comprend pas les numéros de\n", "semaine. Il faut lui fournir les dates de début et de fin de\n", "semaine. Nous utilisons pour cela la bibliothèque `isoweek`.\n", "\n", "Comme la conversion des semaines est devenu assez complexe, nous\n", "écrivons une petite fonction Python pour cela. Ensuite, nous\n", "l'appliquons à tous les points de nos donnés. Les résultats vont\n", "dans une nouvelle colonne 'period'." ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "ename": "KeyError", "evalue": "'week'", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/core/indexes/base.py\u001b[0m in \u001b[0;36mget_loc\u001b[0;34m(self, key, method, tolerance)\u001b[0m\n\u001b[1;32m 2524\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2525\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_engine\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2526\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mKeyError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32mpandas/_libs/index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc\u001b[0;34m()\u001b[0m\n", "\u001b[0;32mpandas/_libs/index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc\u001b[0;34m()\u001b[0m\n", "\u001b[0;32mpandas/_libs/hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001b[0;34m()\u001b[0m\n", "\u001b[0;32mpandas/_libs/hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001b[0;34m()\u001b[0m\n", "\u001b[0;31mKeyError\u001b[0m: 'week'", "\nDuring handling of the above exception, another exception occurred:\n", "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mpd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mPeriod\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mw\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mday\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'W'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 8\u001b[0;31m \u001b[0mdata\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'period'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mconvert_week\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0myw\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0myw\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mdata\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'week'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/core/frame.py\u001b[0m in \u001b[0;36m__getitem__\u001b[0;34m(self, key)\u001b[0m\n\u001b[1;32m 2137\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_getitem_multilevel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2138\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2139\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_getitem_column\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2140\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2141\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_getitem_column\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/core/frame.py\u001b[0m in \u001b[0;36m_getitem_column\u001b[0;34m(self, key)\u001b[0m\n\u001b[1;32m 2144\u001b[0m \u001b[0;31m# get column\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2145\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcolumns\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mis_unique\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2146\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_get_item_cache\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2147\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2148\u001b[0m \u001b[0;31m# duplicate columns & possible reduce dimensionality\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/core/generic.py\u001b[0m in \u001b[0;36m_get_item_cache\u001b[0;34m(self, item)\u001b[0m\n\u001b[1;32m 1840\u001b[0m \u001b[0mres\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mcache\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mitem\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1841\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mres\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1842\u001b[0;31m \u001b[0mvalues\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_data\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mitem\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1843\u001b[0m \u001b[0mres\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_box_item_values\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mitem\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalues\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1844\u001b[0m \u001b[0mcache\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mitem\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mres\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/core/internals.py\u001b[0m in \u001b[0;36mget\u001b[0;34m(self, item, fastpath)\u001b[0m\n\u001b[1;32m 3841\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3842\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0misna\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mitem\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 3843\u001b[0;31m \u001b[0mloc\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mitems\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mitem\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3844\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3845\u001b[0m \u001b[0mindexer\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0marange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mitems\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0misna\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mitems\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/core/indexes/base.py\u001b[0m in \u001b[0;36mget_loc\u001b[0;34m(self, key, method, tolerance)\u001b[0m\n\u001b[1;32m 2525\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_engine\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2526\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mKeyError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2527\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_engine\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_maybe_cast_indexer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2528\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2529\u001b[0m \u001b[0mindexer\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_indexer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmethod\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mmethod\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtolerance\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mtolerance\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32mpandas/_libs/index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc\u001b[0;34m()\u001b[0m\n", "\u001b[0;32mpandas/_libs/index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc\u001b[0;34m()\u001b[0m\n", "\u001b[0;32mpandas/_libs/hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001b[0;34m()\u001b[0m\n", "\u001b[0;32mpandas/_libs/hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001b[0;34m()\u001b[0m\n", "\u001b[0;31mKeyError\u001b[0m: 'week'" ] } ], "source": [ "def convert_week(year_and_week_int):\n", " year_and_week_str = str(year_and_week_int)\n", " year = int(year_and_week_str[:4])\n", " week = int(year_and_week_str[4:])\n", " w = isoweek.Week(year, week)\n", " return pd.Period(w.day(0), 'W')\n", "\n", "data['period'] = [convert_week(yw) for yw in data['week']]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Il restent deux petites modifications à faire.\n", "\n", "Premièrement, nous définissons les périodes d'observation\n", "comme nouvel index de notre jeux de données. Ceci en fait\n", "une suite chronologique, ce qui sera pratique par la suite.\n", "\n", "Deuxièmement, nous trions les points par période, dans\n", "le sens chronologique." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "sorted_data = data.set_index('period').sort_index()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Nous vérifions la cohérence des données. Entre la fin d'une période et\n", "le début de la période qui suit, la différence temporelle doit être\n", "zéro, ou au moins très faible. Nous laissons une \"marge d'erreur\"\n", "d'une seconde.\n", "\n", "Ceci s'avère tout à fait juste sauf pour deux périodes consécutives\n", "entre lesquelles il manque une semaine.\n", "\n", "Nous reconnaissons ces dates: c'est la semaine sans observations\n", "que nous avions supprimées !" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "periods = sorted_data.index\n", "for p1, p2 in zip(periods[:-1], periods[1:]):\n", " delta = p2.to_timestamp() - p1.end_time\n", " if delta > pd.Timedelta('1s'):\n", " print(p1, p2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Un premier regard sur les données !" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "sorted_data['inc'].plot()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Un zoom sur les dernières années montre mieux la situation des pics en hiver. Le creux des incidences se trouve en été." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "sorted_data['inc'][-200:].plot()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Etude de l'incidence annuelle" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Etant donné que le pic de l'épidémie se situe en hiver, à cheval\n", "entre deux années civiles, nous définissons la période de référence\n", "entre deux minima de l'incidence, du 1er août de l'année $N$ au\n", "1er août de l'année $N+1$.\n", "\n", "Notre tâche est un peu compliquée par le fait que l'année ne comporte\n", "pas un nombre entier de semaines. Nous modifions donc un peu nos périodes\n", "de référence: à la place du 1er août de chaque année, nous utilisons le\n", "premier jour de la semaine qui contient le 1er août.\n", "\n", "Comme l'incidence de syndrome grippal est très faible en été, cette\n", "modification ne risque pas de fausser nos conclusions.\n", "\n", "Encore un petit détail: les données commencent an octobre 1984, ce qui\n", "rend la première année incomplète. Nous commençons donc l'analyse en 1985." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "first_august_week = [pd.Period(pd.Timestamp(y, 8, 1), 'W')\n", " for y in range(1985,\n", " sorted_data.index[-1].year)]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "En partant de cette liste des semaines qui contiennent un 1er août, nous obtenons nos intervalles d'environ un an comme les périodes entre deux semaines adjacentes dans cette liste. Nous calculons les sommes des incidences hebdomadaires pour toutes ces périodes.\n", "\n", "Nous vérifions également que ces périodes contiennent entre 51 et 52 semaines, pour nous protéger contre des éventuelles erreurs dans notre code." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "year = []\n", "yearly_incidence = []\n", "for week1, week2 in zip(first_august_week[:-1],\n", " first_august_week[1:]):\n", " one_year = sorted_data['inc'][week1:week2-1]\n", " assert abs(len(one_year)-52) < 2\n", " yearly_incidence.append(one_year.sum())\n", " year.append(week2.year)\n", "yearly_incidence = pd.Series(data=yearly_incidence, index=year)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Voici les incidences annuelles." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "yearly_incidence.plot(style='*')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Une liste triée permet de plus facilement répérer les valeurs les plus élevées (à la fin)." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "yearly_incidence.sort_values()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Enfin, un histogramme montre bien que les épidémies fortes, qui touchent environ 10% de la population\n", " française, sont assez rares: il y en eu trois au cours des 35 dernières années." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "yearly_incidence.hist(xrot=20)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 1 }